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Abstract

In this thesis we studied the muon decay µ → eνeνµ according to the
standard model (SM). We computed the decay width Γµ and lifetime τµ for
leptonic muon , We found their values Γµ = 1

2.19×10−6 Second−1 and τµ =
2.19×10−6 second respectively, these results showed a good agreement with the
experimental results. We Used the obtained value of τµ with the given muon
mass to determine the Fermi coupling of weak interaction Gf . In addition,
We have calculated the value of g2, this is the weak coupling constant in the
standard model, we found that: α2 =

1
29

which is larger than the fine structure
constant of the electromagnetic interaction, that is: α1 = 1

137
. Consequently,

the weak interaction is actually found to be not ”weak”, as the word ”weak”
reflect meaning.
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Chapter 1

Introduction

The interaction between cosmic rays and atoms and molecules present in the
air produces a shower of particles that include protons, neutrons, pions (both
charged and neutral), kaons, photons, electrons and positrons. These sec-
ondary particles then these particle interact via electromagnetic and nuclear
interactions to produce an additional particles in a cascade process. Of par-
ticular interest is the fate of the charged pions produced in the cascade. Some
of these will interact via the strong force with atmospheric molecule nuclei
but others will decay via the weak force into a muon plus a neutrino or an-
tineutrino. The muon decay is of most great important in studying the weak
interactions. One of the fundamental force in nature. In this thesis we shall
study the muon decay width and its lifetime in the standard model of particle
physics at length.

1.0.1 The importance of the research

The muon is considered to be the simplest and cleanest process which used to
determine the left handed V-A structure of the weak charged currents . The
decay rate of the muon has been studied for decades and continuously to test
the standard model of particle physics and search for new physics .

1.0.2 The main objectives of the thesis

We proposed to calculate the decay width of muon and its lifetime τµ, then
we shall use the calculated muon mass and lifetime to determine the Fermi
coupling constant. Furthermore we also use the measurement of W mass to
determine the g2 (the weak coupling constant) . As well as the fine structure
for weak interaction α.

1.0.3 Literature review

Muon is an elementary particle, muon is very smaller to electron mass. Muon
decay is governed by charged weak interaction . One can use the measurements
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of τ and mµ to measure Gf (strength of weak interaction )for more details
on this we refer interested reader to the following book:introduction to high
energy- D. H.parkin.

Cosmic rays are the source of muons in experiment, cosmic rays interact
with upper atmosphere produces many secondary elementary particles, mostly
the muon. See for example T-suzaki, Total nuclear capture rates for negative
muon-physical Review C35 (1987)2212.

1.1 Outline of the thesis

The thesis is structured as follows: In chapter 2 we briefly reviewed the SM
of particle physics. The decay width and lifetime are studied in chapter 3,
specifically we discussed the calculation in details. We presented results and
discussion in chapter 4. Our conclusions will be presented in chapter 5.
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Chapter 2

The Standard Model (SM)

This chapter shall study the structure of the standard model and its mathe-
matical formulation, then we discuss the Higgs mechanism to see how particles
can obtained their masses.

2.1 What is the SM

The SM is currently accepted theory and has been verified to high level of
accuracy. The SM is a theory that describes the interactions between elemen-
tary particles. It combines the strong interaction known as Quantum Chro-
modynamics (QCD), based on the group SU(3)C [2, 3, 7], and the Glashow-
Weinberg-Salam theory of the electroweak interaction (that unifed the weak
and electromagnetic interactions), based on the group SU(2)L X U(1)Y [2,3,7].
Thus the SM is the product of SU(3)C × SU(2)L × U(1)Y gauge theory. The
spectrum of SM fermion has the following assignment.

qL =

(

u
d

)

L

; uR, dR, (2.1)

ℓL =

(

ν
e

)

L

; eR, (2.2)

where the colour index have been omitted for quarks and we show here only one
generation for simplicity. Note that the left handed and right handed fermions
transform differently. For example, the doublet shown in Eq.(2.2) is assumed
to transform in the fundamental representation of an SU(2)L group, whereas
the right handed partners are singlet under this group, and the neutrinos are
assumed to be left handed only. The neutrino will not acquire mass because
its right handed partner does not exist in this theory [8] .

2.2 SM Lagrangian

The Lagrangian of SM can be written as:
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LSM = LGauge + Lfermion + LHiggs + LY ukawa + LGuage.fixing + LGhost. (2.3)

We will briefly introduce each sector of the above Lagrangian:

2.2.1 Guage Sector

The gauge sector is consist of 12 gauge fields which mediate the interactions
among the fermion fields; the photon (γ, mediates the electromagnetic in-
teractions), the three weak gauge bosons (W± and Z, mediate the weak in-
teractions) and eight gluons (gα,α = 1, 2, 3..., 8, mediate the strong interac-
tions). The gauge field dynamics are written in the Lagrangian in terms of
field strength tensors as

LGauge = −1

4
GA

µνG
Aµν − 1

4
W a

µνW
aµν − 1

4
BµνB

µν (2.4)

where repeated indices imply summ over that index, and µ, ν, takes the values
of 0,1,2,3, where the field strength tensors for non-Abelian theories are given
by:

GA
µν = ∂µG

A
ν − ∂νG

A
µ − igsf

ABCGB
µG

C
ν , (2.5)

being the SU(3)C field strength, gs is the coupling strength of the strong in-
teraction, A,B,C run from 1 to 8 and fABC are the(antisymmetric) structure
constants of SU(3), which satisfies the Lie algebra for the group generator tA

[tA, tB] = ifABCtc. (2.6)

W a
µν = ∂µW

a
ν − ∂νW

a
µ − igǫabcW b

µW
c
ν , (2.7)

is the SU(2)L field strength, a,b,c run from 1 to 3 and ǫabc is the totally
antisymmetric three-index tensor with ǫ123 = 1, g is the coupling strength of
the weak interaction.The field strength of the U(1)Y gauge boson which has
the same form as electromagnetism is given by:

Bµν = ∂µBν − ∂νBµ. (2.8)

2.2.2 Fermion Sector

Fermions are elementary particles have a spin (1/2) and consists of leptons
and quarks. Quarks and leptons are the elementary particles that build up
matter. This means that they are the smallest building blocks that have been
discovered so far. There exist six different types of quarks, called different
flavors, which are divided into three generations depending on how they occur
in pairs. The generations have similar properties but increasing mass. In
contrast to the quarks in the first generation, which are stable, quarks in the
second and third generation are heavier and are therefore unstable and decay.
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The SM contains three copies of chiral fermions (generations) with differ-
ent gauge transformations. The fermionic Lagrangian has the usual covariant
Dirac form

LFermions =
∑

fγµD
µf, (2.9)

The covariant derivatives to be read as:

Dµ

(

u
d

)

L

=

(

∂µ − igs
λa

2
Ga

µ − ig
σa

2
W a

µ − ig′
1

6
Bµ

)(

u
d

)

L

, (2.10)

DµuR =

(

∂µ − igs
λa

2
Ga

µ − ig′
2

3
Bµ

)

uR , (2.11)

DµdR =

(

∂µ − igs
λa

2
Ga

µ + ig′
1

3
Bµ

)

dR , (2.12)

Dµ

(

ν
e

)

L

=

(

∂µ − ig
σa

2
W a

µ + ig′
1

2
Bµ

)(

ν
e

)

L

, (2.13)

and

DµeR = (∂µ + ig′Bµ) eR . (2.14)

Where γµ are the usual Dirac matrices, g′ is the coupling strength of the
hypercharge interaction, Y is the hypercharge, σa are the generators of SU(2)L
(simply the Pauli matrices), and λa are the generators of SU(3)C (the Gell-
Mann matrices).

Note that gauge symmetry forbids a mass term for fermions (quarks and
leptons) and gauge bosons. A mass term would break the gauge invariance
SU(2)L × U(1)Y . But, we observed the mass of gauge bosons W and Z and
the fermions experimentally [11], so we need to give mass to these particles.
The masses in the SM are generated through a different mechanism, the Higgs
mechanism, which will be discussed at length in next section.

2.2.3 The Higgs Mechanism

As was mentioned in the previous section, a Dirac mass term will break the
gauge symmetry. So we need a mechanism that gives mass to the SM particles
and keeps the Lagrangian invariant under gauge symmetries. This can be done
through the mechanism of spontaneous gauge symmetry breaking also known
as the Higgs mechanism. This mechanism added a new complex scalar field Φ
which is a doublet with respect to SU(2)L group, and singlet under SU(3)C
and has hypercharge YΦ = 1 [12–15].

Φ =

(

φ+

φ0

)

=

(

φ1 + iφ2

φ3 + iφ4

)

, (2.15)

5



where φ1, φ2, φ3 and φ4 are real scalars. This new scalar Φ adds extra
terms to the SM Lagrangian:

LHiggs = (DµΦ)
†(DµΦ)− V (Φ) , (2.16)

where the covariant derivative Dµ is defined as

Dµ = ∂µ − i
g′

2
Bµ − ig

σa

2
W a

µ . (2.17)

The general gauge invariant renormalizable potential involving Φ is

V (Φ) = −1

2
µ2Φ†Φ +

λ

4
(Φ†Φ)2 . (2.18)

The above equation.(2.18) describes the Higgs potential, which involves
two new real parameters µ and λ. We demand λ > 0 for the potential to be
bounded; otherwise the potential is unbounded from below and there is no
stable vacuum state. µ takes the following two values:

• µ2 > 0 then the vacuum corresponds to Φ = 0, the potential has a
minimum at the origin (see Fig.2.1 right panel).

• µ2 < 0 then the potential develops a non-zero Vacuum Expectation Value
(VEV) and the minimum is along a circle of radius υ√

2
= 246√

2
(see Fig.2.1

left panel). Minimizing the potential one gets

φ2
1 + φ2

2 + φ2
3 + φ2

4 = −µ2

λ
= υ2 . (2.19)
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Figure 2.1: The Higgs potential V (Φ) with: in the left panel, the case µ2 < 0;

and the right panel for the case µ2 > 0 as a function of |Φ| =
√
Φ†Φ.
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〈Φ〉 = 1√
2

(

0
υ

)

. (2.20)

As such, we have to choose one of these minima as the ground state (φ3 = υ
and φ1 = 0, φ2 = 0 and φ4 = 0). Therefore the vacuum does not have the
original symmetry of the Lagrangian, and therefore the symmetry sponta-
neously broken [15]. In other words, the Lagrangian is still invariant under
the SU(2)L × U(1)Y , but the ground state is not. We choose the VEV in the
neutral direction as the photon is neutral, so Φ becomes

〈Φ〉 = 1√
2

(

0
υ

)

. (2.21)

With this particular choice of the ground state, the electroweak gauge group
SU(2)L × U(1)Y is broken to electromagnetism one, U(1)em ,

SU(2)L × U(1)Y
〈Φ〉→ U(1)em . (2.22)

2.2.4 Gauge Boson Masses

The gauge boson masses can be obtained from the kinetic term of the Higgs
field [2]. Expanding the Lagrangian around the VEV yields:

LHiggs =
1

2

(

0 υ
)

(g
σa

2
W a

µ +
1

2
g′Bµ)(g

σb

2
W b

µ +
1

2
g′Bµ)

(

0
υ

)

. (2.23)

Using the definition of W±
µ = 1√

2
(W 1

µ ±W 2
µ), Zµ = W 3

µ cos θW − Bµ sin θW
and Aµ = W 3

µ sin θW −Bµ cos θW , we obtained three massive gauge bosons

m2
W =

1

4
g2υ2 , m2

Z =
1

4
(g′2 + g2)υ2 , (2.24)

and one massless gauge boson (identified as the photon)

m2
A = 0 . (2.25)

The Weinberg angle θW is defined by

cos θW =
g

√

g′2 + g2
, (2.26)

sin θW =
g′

√

g2 + g′2
. (2.27)
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2.2.5 Fermion Masses

Fermion masses are originating from Yukawa interactions, which are the cou-
plings between the fermion doublets and the scalar field Φ [2]. These Yukawa
couplings are uniquely fixed by gauge invariance and the Lagrangian, as given
by:

LY ukawa = Y d
ij q̄

i
LΦd

j
R + Y u

ij q̄
i
LΦ̃u

j
R + Y e

ij l̄
i
LΦe

j
R + h.c. , (2.28)

where the Y’s are 3 × 3 complex matrices, the so called Yukawa coupling
constants, h.c. indicates the Hermitian conjugate and φ̃ is defined by

Φ̃ =

(

−φ∗
2

φ∗
1

)

. (2.29)

When the Higgs doublet acquires a non vanishing VEV, Eq.(2.28) gives the
mass terms for the fermions as follows:

LY ukawa = mu ūL uR +md d̄L dR +me ēLeR , (2.30)

with mu = 1√
2
yuυ; md =

1√
2
ydυ; me =

1√
2
yeυ .

Note that neutrinos are massless and will never acquire mass, this is due
to the absent of its chiral partner νR.

When we consider all the generations of quarks, there are possibilities for
their mixing. This mixing is described by the Cabbibo Kobayatchi Masakawa,
which has four observable parameters, including three mixing angles and one
phase [16]. It appears upon the diagonalisation of Yukawa matrices by using
two unitary matrices U and V , where

UY †
uYuU

† = diag(f 2
u , f

2
c , f

2
t ); V Y †

d YdV
† = diag(h2

d, h
2
s, h

2
b) . (2.31)

The CKM matrix is given by

VCKM = UV † . (2.32)

The form of the CKMmatrix that describes the quark sector mixing is parametrised
as

VCKM =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 ,

and the standard parametrisation in terms of the three mixing angles and one
phase can have the form

VCKM =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



 ,

(2.33)

where s12 = sin θ12, c12 = cos θ12 etc. are the sines and cosines of the three
mixing angles θ12, θ23 and θ13, and δ is the CP violating phase.
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2.2.6 The Higgs Boson

As was discussed in section 2.2.3, the spontaneous symmetry breaking pre-
dicted a new particle: the Higgs Boson, which must be a scalar and neutral.
The Lagrangian for this new scalar comes from the kinetic term of Eq.(2.16)
expanded around the VEV

LHiggs.Boson =
1

2
(∂µh)(∂

µh)− 1

2
m2

hh
2 + interactions , (2.34)

Here m2
h =

√
λv is the Higgs boson mass. The interaction terms contain both

Higgs self-interactions and interactions with gauge bosons and fermions. Note
that as a consequence of the Higgs mechanism all the Higgs couplings are
completely determined in terms of the coupling constants and masses. The
Higgs boson, which was the last missing piece of the SM, has been discovered
by the ATLAS and CMS experiments, and this is compatible with the SM
Higgs expectations with a mass of about 126 GeV [5,6].

2.2.7 Gauge Fixing and Ghosts

Gauge fixing and ghost fields are necessary when the gauge fields are quantised.
These are important subjects when dealing with higher loops order. Note that
our calculation is three level decay so we just write down the Lagrangian for
gauge fixing and ghost fields and refer interested reader on this subject to look
at [2, 17].

LGauge.fixing = −ζ

2
(∂µA

µ)2 , (2.35)

and
LGhost = c̄b∂

µDab
µ ca . (2.36)

Thus, we are now in the right position to write the full SM Lagrangian

LSM = LGauge +LFermions +LY ukawa +LHiggs +LGauge.fixing +LGhost. (2.37)
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Chapter 3

Decay Widths and Scattering
Cross Sections

We are now ready to calculate the rates of some simple scattering and decay
processes. The cross section, σ, is a measure of the probability of a specific
scattering process under some given set of initial and final conditions, such as
momenta and spin polarization. The lifetime, τ , or, equivalently, decay width,
Γ = ( 1

τ
), which is a measure of the probability of a specific decay process

occurring within a given amount of time in the particles rest frame [16]. The
calculation involves two steps:

Calculate the amplitude M

It is often referred to as the matrix element, and denoted by Mfi , to indicate
that in a matrix representation of the transformation process, with the ini-
tial and final states as bases, this is the element that connects a particular
final state f to a given initial state i. A process can be a combination of
subprocesses, in which case, the total amplitude is the sum of the subprocess
amplitudes. Each simple (sub) process is represented by a unique Feynman di-
agram. Its amplitude is a point function in the phase space of all the particles
involved, including any intermediate propagator, and depends on the nature of
the coupling at each vertex (of the diagram). For a given diagram, the ampli-
tude can be obtained by using the Feynman rules for combining the elements
a factor for each external line (representing a free particle in the initial or final
state), one for each internal line (representing a virtual propagator particle),
and one for each vertex point where the lines do meet.

Integrate the amplitude

Integrating the amplitude over the allowed phase space to get the σ or Γ. The
integral can be constructed, easily in principle, by utilizing Fermis golden rule.
This section will describe the above rules and use them to calculate the decay
rates.

10



3.1 Physical meaning of decay width

One of the most important characteristics of a particle is the lifetime [16]. It
depends, of course, on the available decay modes or channels, which are subject
to conservation laws for appropriate quantum numbers, coupling strength of
the decay process, and kinematic constraints. The decay rate is the probability
per unit time that a given particle will decay. The probability that a single
unstable entity will cease to exist as such after an interval is proportional to
that interval. In elementary particles, for an ensemble of N → ∞ identical
particles, the change in the number after a time dt is given by:

dN = −ΓNdt. (3.1)

Therefore, the expected number surviving after time t is:

N(t) = N(0) exp−Γt (3.2)

The time after which the ensemble is expected to reduced to 1
e
of its original

size is called the lifetime:

τ =
1

Γ
. (3.3)

If multiple decay modes are available, as is often the case, then one can
associate a decay rate for each mode, and the total rate, will be the sum of
the rates of the individual modes.

Γtotal =
n

∑

i=1

Γi. (3.4)

The particles lifetime is given by

τ =
1

Γtotal

. (3.5)

In such cases, we are often interested in the branching fractions, i.e. the
probabilities of the decay by individual modes. The branching fraction of
mode i is:

Bi =
Γi

Γtotal

(3.6)

Since the dimension of Γ is the inverse of time, in our system of natural units, it
has the same dimension as mass (or energy). When the mass of an elementary
particle is measured, the total rate shows up as the irreducible width of the
shape of the distribution. Hence the name decay width

3.1.1 Physical meaning of scattering cross section

Consider the 2 −→ n scattering process

ab → cd.... (3.7)
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The system of incoming particles labeled a, b constitute the initial state |i〉,
and that of the outgoing particles labeled c, d, . . . constitute the final state
|f〉. If a packet of a particles is made to pass head-on through a packet of b
particles with overlap area is A, and the number of particles swept by that
overlap area in the two packets are Na and Nb receptively, then the number of
scatterings, NS is directly proportional to Na and Nb, and inversely to A. The
overall constant of proportionality is called the cross section,σ:

Ns = σ
NaNb

A
(3.8)

Thus, the cross section must have the same dimension as area. Cross sections
in contemporary High Energy Physics experiments are typically measured in
units of nanobarn (nb) to femtobarn (fb), where a barn is defined as follow:

1b = 10−24cm2 = 2.568GeV −2 (3.9)

As for decays, one is often more interested in various differential (or exclusive)
cross sections, σi rather than the total (or inclusive) cross section, σtotal

σtotal =
n

∑

i=1

σi (3.10)

For example, the total cross section of proton-antiproton collisions at a
center-of-mass energy (

√
s), as in Tevatron Run 2, is huge,

σ(pp → X) ≈ 75mb, (3.11)

where X represents anything, but that for the most highly sought-after pro-
cesses are small (duh!), e.g.

σ(pp → ttX) ≈ 75pb. (3.12)

3.2 Calculation of widths and cross sections

The matrix element between the initial state |i〉 and the final state |f〉 is called
the S matrix:

Sfi = (2π)4δ4(pf − pi)Mfi (3.13)

where pi is the total initial momentum, pf the total final momentum, and
the 4-dimensional δ function expresses the conservation of 4-momentum (E, ~p).
The quantity Mfi, called the (reduced) matrix element or amplitude of the
process,contains the non-trivial physics of the problem, including spins and
couplings. It is usually calculated by perturbative approximation [16]. The
probability of the transition from |i〉 to |f〉 is given by

12



Pi→f =
Sfi

〈f |f〉 〈i|i〉 (3.14)

The rate of the transition is determined by Fermi’s Golden Rule:

transitionrate = 2π|M |2 × (phasespace) (3.15)

3.2.1 The Golden Rule for Decays

For an n-body decay
i → fk; k = 1, ....., n (3.16)

the differential decay rate is given by

dΓ = |M |2 S

2mi

(
n
∏

k=1

d3 ~pk
(2π)32Ek

)× (2π)4δ4(pi −
n

∑

(k=1)

pK) (3.17)

where pk is the 4-momentum of the kth particle, and S is a product of statistical
factors: 1

m!
for each group of m identical particles in the final state.Usually we

are not interested in specific momenta of the decay products. So,the total
decay rate is obtained by integrating the above For a general 2-body decay,
the total width is given by

Γ =
S|~p|
8πmi

| ~M |2 (3.18)

where |~p| is the magnitude of the momentum of either outgoing particle in
the particle rest frame (this is fully determined by the masses of the 3 particles
involved in the process), and M is evaluated at the momenta required by the
conservation laws.

3.2.2 The Golden Rule for Scattering

Just as for the decay rate, for a 2 −→ n scattering process

ij → fk; k = 1, ......., n (3.19)

the differential cross section is given by

dσ = |M |2 S

4
√

(piPj)2 − (mimj)2
(

n
∏

(k=1)

d3 ~pk
(2π)32Ek

)× (2π)4δ4(pi + pj −
n

∑

k=1

pk)

(3.20)
For a 2× 2 process in the CM frame, this leads to

dσ =
S

64π2E2
CM

|~pf |
|~pi|

|M |2dΩ, (3.21)

13



where |~pf | is the magnitude of the momentum of either outgoing particle,
|~pi| is the magnitude of the momentum of either incoming particle, and

dΩ = sin θdθdφ (3.22)

is the solid-angle element in which the final state particles scatter.

3.3 Feynman rules for calculating the ampli-

tude

In the previous sections, the formula for decay rates and scattering cross sec-
tions are given in terms of the amplitude Mfi. Here we give the recipe to
calculate iMfi for a given Feynman diagram for tree-level processes:

3.3.1 External lines

(a) For an incoming electron, positron, or photon, associate a factor u, ν, or
eµ, respectively. (b) For an outgoing electron, positron, or photon, associate a
factor u, ν, or e∗µ respectively.

3.3.2 Vertices

For each vertex, include a factor of igγµ for an electron or igγµ for a positron.
Care must be exercised to get the overall sign for fermions correct.

3.4 Internal lines

(a) For an gauge boson connecting two vertices, include a term

igµν − qµqν/m
2
W

q2 −m2
W + iǫ

(3.23)

(b) Integrate over all undetermined internal momenta.

3.5 Muon life time

This will be the most important calculation as most weak decays of particle
are calculated in the same manner [16]. We firstly draw a Feynman diagram
where the muon first decays into a neutrino and W immediately followed by
the decay of the W− in to an electron and anti-electron neutrino as:

µ(p) −→ νµ + (W− −→ e−(q) + νe(k)) (3.24)

The matrix element is given by,

14



M =
g2
2
(νµγ

λpLµ)×
1

(q2 −m2
w)

× g2
2
(eγλpLνe) (3.25)

where PL = (1 − γ5). 1
(q2−m2

W
)
is the propagator of intermediate W since the

maximum value of q2 ∼ m2
W is much smaller than m2

W , then the propagator to
a very good approximation equal to 1

m2
W

. if we neglect the spinor complication

and remember that the wave function are basically just given by the square
root of energy , we set mµ for each vertex and the full matrix element is :

M =
g22
2

m2
µ

m2
W

= 2
√
2Gfm

2
µ (3.26)

now we can write down the decay rate differential in the momenta of the
incoming and outgoing particle :

dΓµ = (2π)4δ4(k + q + ḱ − p)|M |2 d3k

2EK(2π)3
d3q

2Eq(2π)3
d3ḱ

2Eḱ(2π)
2

(3.27)

dΓµ =
1

(2π)5
8G2

fm
4
µ

2mµ

1

2
δ4(k + q + ḱ − p)

d3k

2Ek

d3q

2Eq

d3ḱ

2Eḱ

, (3.28)

where the Extra factor one half comes from the fact that only left handed moun
are involved . In the rest frame moun p = (mµ, 0, 0, 0) so that the differential
can be written as:

ρ = δ3(k + q + ḱ)δ(EK + EP + Eḱ −mµ)
d3k

2Ek

dq

2Eq

dḱ

2Eḱ

. (3.29)

if we neglect the mass of me ,mνe ,m(νµ) we get:

ρ = δ(|k|+ |q|+ |k + q| −mµ)
d3kd3k

8|k|.|q|
d3q

|k + q| (3.30)

now go to polar coordinates.

δ(|k|+|q|+√
(k2q2 + 2kq cos θq)−mµ)

k2d|k|dΩkq
2d|q|dΩq

8|k||q|√k2 + q2 + 2|k||q| cos θq
(3.31)

we can always do the integral over dΩk = 4π and over azimuth angle of q
around k direction dΩq = 2π we get:

δ(|k|+ |q|)+
√

k2 + q2 + 2kq cos θq −mµ

(4π|k|d|k| − 2π|q|d|q|d cos θq)
8
√

k2 + q2 + 2|k||q| cos θq
(3.32)

integrating also over cos θq the delta function gives :

√

k2 + q2 + 2|k||q| cos θq = mµ − |k| − |q| (3.33)
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and the Jacobian
√

k2 + q2 + 2|k||q| cos θq
|k||q| = π2d|k|d|q|, (3.34)

therefore we get the differential decay width

dΓµ =
2G2

fm
3
µ

(2π)5
(π2d|k|d|q|) (3.35)

which can be integrated (|k| < mµ

2
; |q| < mµ

2
;mk − |k| − |q| < mµ

2
) thus:

dΓµ =
2G2

fm
5
µ

128π3
(3.36)

or if you could do the spin and kinematics correctly as we will do next we
get,

Γµ =
G2

f

192π3
(mµ)

5 (3.37)

so by measuring Γµ andmµ we can get a good value for g2 (and indirectly
,sin2 θW )

3.6 Decay rate of muon in the SM

Note that our calculation will relies heavily on previous sections. We start by
drawing Feynman diagram for muon decay in the SM.

νµ

µ

W

νe

e

Figure 3.1: Feynman diagram for muon decay.

The Feynman rules for this process is:
The vertex vactor = −i

2
√
2
g2γ

µ(1− γ5)

The propagator = −i
gµν− qµqν

(mW )2

q2−(mW )2

. The amplitude of this process is given by the matrix element :

M = i[u3(−
ig2

2
√
2γµ(1− γ5)

u1)][−i
gµν− qµqν

(mW )2

q2 − (mW )2
][u4(−

ig2

2
√
2
)γν(1− γ5)ν2]

(3.38)
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for low momentum transfer q2 << (mW )2 this means ,

M =
g22

8(mW )2
[(u3γ

µ(1− γ5)u1)(u4γµ(1− γ5)ν2)] (3.39)

averaging over initial state spin and summing over final state spin we obtained
:

∑

(spin)

|M |2 =
1

2
(

g22
8(mW )2

)2Tr(γµ(1− γ5)(p1 +me)γ
ν(1− γ5)p3)

×Tr(γµ(1− γ5)p2γν(1− (γ5))(p4 +mµ)) (3.40)

use trace technology to evaluate the trace; first bring the (1 − γ5) factors
together :

(1−γ5)p2γν(1−γ5) = (1−γ5)p2(1+γ5)γν = (1−γ5)(1−γ5)p2γν = 2(1−γ)p2γν
(3.41)

the mass dependent terms do not contribute, so we get:

|M |2 =
g42

2m4
W

[pµ1p
ν
3 + pν1p

µ
3 − (p1p3)g

µν − ǫµνλσp1λp3σ]

×[p2µp4ν + p2νp4µ − (p2 − p4)gµν − iǫµνkτp
k
2p

τ
4]

= 2
g42
m4

W

[(p1p2)(p3p4)] (3.42)

where :
ǫµνλσǫµνkτ = −2(δλkδ

σ
τ − δλτ δ

σ
k ) (3.43)

in the muon rest frame; we have

p1.p2 = mµEe; p1 = (mµ, 0, 0, 0), p2 = (Ee, 0, 0, 0) (3.44)

and,

p3.p4 =
(p3 + p4)

2 − (p23 − p24)

2
=

(p1 − p2)
2 − 0− 0

2

=
p21 + p22 − 2p1p2

2
=

mµ(mµ − 2Ee)

2
(3.45)

then the spin averaged squared matrix element simplifies to :

|M |2 = g42
m4

W

m2
µEe(mµ − 2Ee) (3.46)

Note that |M |2 depend non-trivially on θ; we should use Fermi‘s Golden riles :

dΓµ =
|M |2
2mµ

d3p2
(2π)32E2

d3p3
(2π)32E3

d3p4
(2π)32E4

(3.47)
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the derivation of the matrix element yields valuable kinematic information

maxE2, E4 <
1

2
mµ < (E2 + E4) =⇒ E2 <

1

2
mµE4 <

1

2
mµE2 + E4 >

1

2
mµ

(3.48)
since all three final state particles are assumed to be massless ,Energy and
three momentum are the same . The sum of three momentum for the 3-final
state particle must be zero ,therefore no-single particle can have more than
half of the available energy and no two particle can have less than half of the
available energy ;

dΓµ

dE
= (

g2
mW

)4
(mµ)

2E2

2(4π)3
(1− 4E

3mµ

) (3.49)

integrate above formula over the electron energy we obtain the muon decay
rate :

Γµ =
g42
m4

W

(mµ)
2

2(4π)3

∫

mµ

2

0

dEE2(1− 4E

3mµ

) =
1

6144π
(
g2
mW

)4m5
µ (3.50)

we can define Fermi coupling constant Gf by Gf =
√
2g22

8m2
W

. this allows us to

write the muon decay rate as :

Γµ =
G2

Fm
5
µ

192π3
⇒ τµ =

1

Γµ

=
192π3

G2
fm

5
µ

(3.51)

we can use the measurement of the muon mass and lifetime τ to calculate the
Fermi constant Gf , the muon mass and lifetime (2007PDG)
Mµ = 105.658369± 0.000009Mev
τµ = (2.19703± 0.0004)× 10−6second

Gf = 192π3

τµm5
µ
= 1.6637× 10−5(Gev)−2

we can also use w mass measurement ;Mw = 80.4 GeV to determine g2 ,

g2 ≈ 0.65 ⇒ α2 =
g22
4π

=
1

29
(3.52)

this means that weak interaction is stronger than the electromagnetic interac-
tion αem = 1

137
the calculation given

τ =
~

Γ
=

192π3
~

G2
fm

5
µ

(3.53)

This can be improved by including the effect of electron mass ; if we define
(me

mµ
)2 = x and add the correction from electron mass then we get:

Γ =
G2

fm
5
µ

192π3
(1− 8x) (3.54)

If x is positive will give smaller decay constant correspondingly longer lifetime
.
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Chapter 4

Methodology and Findings

4.1 Methodology

To obtain our results we computed by hand the decay rate of muon. These
calculations need to be performed numerically by using dedicated numerical
packages. Here in this thesis we used MATHEMATICA program verion 9 to
obtain the figures 4.1 and 4.2. WE used equation (3.49) to generate the figure
4.1.

4.2 Result and Discussion

In this chapter we present our result for the muon decay
Figure 4.1, tells us the energy distribution of the electrons emitted in muon

decay. We can see that the maximum energy for the electron or any individual
outgoing particle shuld be half of muon mass EMax = mµ

2
and minimal total

for any pair. We show in this figure typically the fraction of energy carried off
by the electron which is about 53 MeV.

0 10 20 30 40 50 60 70
0

2.´10-18

4.´10-18

6.´10-18

8.´10-18

1.´10-17

EeHMeVL

d
G
Μ

d
E

e

Electron Spectrum from Muon decay

Figure 4.1: The Electron Energy spectrum from muon decay.
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As depicted in figure 4.2, the decay rate of muon as function of its mass is
presented: the red line is muon decay as function of its mass, while the blue
line is the decay rate of muon for mµ = 105.6 MeV. We observed that the
muon decay rate into eνeνµ increase with muon mass increases.
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0
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�
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e
Ν
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e
V
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Muon decay in the SM

Figure 4.2: decay rates of muon as function of its mass.

4.3 Conclusion

In this thesis we studied some aspects of leptonic muon decay and its lifetime
in the standard model of particle physics. We also used the measured muon
mass and calculated life time of muon to determine the week coupling strength
Gf . Our results are in a good agreement with the experimental result. We also
determined the value of Fermi coupling for weak interaction Gf by knowing
the lifetime of muon and its mass, as well as the weak coupling constant g2
and fine structure constant for the weak interaction α. We summarized our
results in the following:

characteristic properties of muon

Rest mass : mµ = 105.658398MeV
C2

Meanlife : τµ = (2.19703± 0.0004)× 10−6s.
Fermi constant: Gf = 1.66× 10−5GeV −2

Weak coupling: α2 =
1
29
.

This work may be extended by including the effects from the loop contri-
bution such as one-loop and two-loop effects.

20



Bibliography

[1] E.Fermi, NuovoCimento, (1934) Ultraviolet Behavior of Nonabelian Gauge
Theories, 11; Z.Phys.88, p.161

[2] T. P. Cheng and L. F. Li, (1984) Gauge Theory Of Elementary Particle
Physics, Oxford, Uk: Clarendon 536 P. ( Oxford Science Publications);
F. Halzen and A. D. Martin, ( 1984) Quarks And Leptons: An Introductory
Course In Modern Particle Physics, New York, Usa: Wiley 396p

[3] J. Iliopoulos, ( 1980) Unified Theories Of Elementary Particle Interac-
tions, Contemp. Phys. 21, p.159; J. Iliopoulos, Progress in Gauge Theories,
PTENS-74-4.

[4] D. J. Gross and F. Wilczek, (1973) Ultraviolet Behavior of Nonabelian
Gauge Theories, Phys. Rev. Lett. 30, p.1343 ;

[5] G. Aad et al. [ATLAS collaboration], (2012) Observation of a new particle
in the search for the Standard Model Higgs boson with the ATLAS detector
at the LHC, Phys. Lett. p.B716 [arXiv:1207.7214].

[6] S. Chatrchyan et al. [CMS collaboration], (2012) Observation of a new
boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys.
Lett.0, p.B716 [arXiv:1207.7235].

[7] S. L. Glashow, (1961) Partial Symmetries of Weak Interactions, Nucl.
Phys. 22, p.579 ; S. Weinberg, (1967) A Model of Leptons, Phys. Rev.
Lett. 19, p.1264; A. Salam, 1968 in Elementary Particle Physics (Nobel
Symp. N 8), N. Svartholm (eds.) Almquist and Wiksells, Stockholm , p.367;
A. Salam and J. C. Ward, (1964) Electromagnetic and weak interactions,
Phys. Lett. 13, p.168 .

[8] G. C. Branco and G. Senjanovic, (1978) The Question of Neutrino Mass,
Phys. Rev. D 18, p.1621 .

[9] G. Senjanovic, (1979) Spontaneous Breakdown of Parity in a Class of Gauge
Theories, Nucl. Phys. B 153, p.334 .

[10] R. N. Mohapatra and G. Senjanovic, (1981) Neutrino Masses and Mixings
in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23,
p.165 .

21



[11] G. Arnison et al. [UA1 Collaboration], (1983) Experimental Observation
of Isolated Large Transverse Energy Electrons with Associated Missing En-
ergy at s**(1/2) = 540-GeV, Phys. Lett. B 122, p.103; M. Banner et
al. [UA2 Collaboration], (1983) Observation of Single Isolated Electrons of
High Transverse Momentum in Events with Missing Transverse Energy at
the CERN anti-p p Collider, Phys. Lett. B 122, p.476 .

[12] P. W. Higgs, (1964) Broken Symmetries and the Masses of Gauge Bosons,
Phys. Rev. Lett. 13, p.508 .

[13] P. W. Higgs, (1964) Broken symmetries, massless particles and gauge
fields, Phys. Lett. 12, p.132.

[14] F. Englert and R. Brout, (1964) Broken Symmetry and the Mass of Gauge
Vector Mesons, Phys. Rev. Lett. 13, p.321.

[15] Y. Nambu, (1960) Axial vector current conservation in weak interactions,
Phys. Rev. Lett. 4, p.380; J. Goldstone, (1961) Field Theories with Super-
conductor Solutions, Nuovo Cim. 19, p.154; J. Goldstone, A. Salam and
S. Weinberg, (1962) Broken Symmetries, Phys. Rev. 127, p.965.

[16] N. Cabibbo, (1963) Unitary Symmetry and Leptonic Decays, Phys. Rev.
Lett. 10, p.531; M. Kobayashi and T. Maskawa, (1973) CP Violation in
the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49,
p.652.

[17] M. E. Peskin and D. V. Schroeder, (1995) An Introduction to quantum
field theory, Reading, USA: Addison-Wesley 842 C. Itzykson and J. B. Zu-
ber, (1980) Quantum Field Theory, New York, Usa: Mcgraw-hill 705
P.(International Series In Pure and Applied Physics)

N. N. Bogolyubov and D. V. Shirkov, (1959) Introduction To The Theory
Of Quantized Fields, Intersci. Monogr. Phys. Astron. 3. S. Weinberg, (1995)
The Quantum theory of fields. Vol. 1: Foundations, Cambridge, UK: Univ.
Pr. 609

[18] S. R. Coleman and J. Mandula, (1967) All Possible Symmetries of the S
Matrix, Phys. Rev. 159, p.1251.

22


