Sudan University of Science & Technology College of Postgraduate Studies

Accuracy Evaluation of Digital Photogrammetric Projects. Khartoum State, Case Study

تقييم دقة مشروع مساحة تصويرية رقمية دراسة حالة ولاية الخرطوم

A thesis Submitted for the degree of Ph.D in Surveying Engineering

Prepared by:

Mohammed FatorZaid Mohammed

Supervisor: Dr. NagiZomrawi Mohammed Yousif

July 2015

i

بسم الله الرحمن الرحيم

وَإِذْقَالَ رَبُّكَ لِلْمَلَتِ بَحَةِ إِنِّي جَاعِلُ فِي ٱلأَرْضِ خَلِيفَةً قَالُوَا أَتَجْعَلُ فِيهَا مَن يُفْسِدُ فِيهَا وَيَسْفِكُ ٱلدِّمَاءَ وَخَنُ شَبَتِحُ بِحَمْدِكَ وَنُقَدِّسُ لَكَ قَالَ إِنِي أَعْلَمُ مَا لَا نَعْلَمُونَ () وَعَلَمَ ءَادَمَ ٱلْأَسْمَاءَ كُلَّهَا ثُمَّ عَرَضَهُمْ عَلَى الْمَلَيَ كَةِ فَقَالَ أَنْبِتُونِي بِأَسْمَاءِ هَوَلُآء إِن كُنتُمْ صَدِقِينَ () قَالُوا سُبْحَنكَ لَاعِلْمَ لَنَآ إِلَّا مَاعَلَمْتَنَأَ إِنَّ كُنتُمْ صَدِقِينَ () فَالُوا ()

البقرة

Abstract

In spite of the development and digital replacement of the conventional techniques, there is a need for evaluating and assessing photogrammetric mapping projects, to see if they conform to specifications.

In order to develop infrastructure and improve services and utilities, Khartoum State (Sudan) signed a contract in (2010) to cover the state by large scale topographic maps. Digital photogrammetric methods and techniques were planned to be used in this project.

The planned project was divided into two parts; the first part covers the centre of the state by 1:5000 photographic coverage to produce maps at scale 1:1000, while the second part, cover the rural areas of the state by 1:20000 photographic scale coverage to produce maps at scale 1:10000.

Technical specifications and criteria of this photogrammetric project were suggested by a high technical committee.

The output of this project, including photographic coverage and the maps, were not subject to evaluation and assessment because of the absence of supervision.

This research work is oriented to make some sort of technical evaluation and assessment of this project. Camera specifications, flying height, scale of the photography, accuracy of vector mapsproduced and other points were taken into account.

Two sets of measurements and tests were carried out, for each part of the project. The laid specifications for the project and samples of the executed project were the refrain data.

A number of ground points were observed by Differential Global Positioning System (DGPS), with their coordinates based on Universal Transverse Mercator (UTM) projection, at zone 36 north and the World Geodetic System 1984 (WGS84) datum. The Leica Photogrammetric Set (LPS), included in Erdas Imagine package, was used.

The results obtained showed that, the used camera, photographic coverage in centre of the state project, and the produced line maps are all in disagreement with the specifications, but it is satisfied with the specifications of the rural area of the state.

المستخلص

علىالر غممنالتطور الذىحدثو الاحلالالر قميالذىتمللتقنياتالتقليدية تظلهنالكضر ورقانقييممشار يعالخر إنطللتأكدمنمطابقتهاللمو اصفات بغرضتطوير البنيةالتحتيةو تحسينالخدمات قامتو لايةالخر طومفي 7.1. بتوقيععقد لتغطية الولاية بخر ائططبو غرافيةذا تمقاييسر سمكبيرة وتمإختيار المساحةالتصويريةالرقميةعلىانتكونها لتقنيةالمستخدمةفا إعدادهذهالخر ائط. لينقسمالمشرو عالمقتر حاليقسمين الأوليغطدو سطالو لايةبصور رقميةبمقياسر سم 1:1... بغرضانتاجخر ائططبو غرافيةبمقياسر سم 1:0... أماالآخر فيهدفالمتغطيةأطر افالو لايةبصور رقميةبمقياسرسم ١٠٢٠٠٠ بغرضانتاجخر انططبو غر افيةبمقياسرسم ١٠٠٠٠٠. غير انمخر جاتهذا المشرو عسواء وقدقامتلجنةمتخصصيةفدو ضيعالمو اصفاتالمطلو بةلتنفيذالمشروع كانتالصور الجوية والخر الطالمنتجة لمتخضع للتقييمنسبة لغياب الإشراف على المشروع. تمتوجيههذهالدر استلعملنو عمنالتقييملهذاالمشرو عآخذينف الاعتبار مواصفاتالكامير اوإر تفاعالطير انومقياسر سمالتصوير والخر ائطا لمنتجةو عدداممنالنقاطالاخر بالتبوضعتفيا لإعتبار. تمعملقياساتلكلجزء منأجزاء المشروعوتما لإعتماد علىالتقييمعلى المواصفاتالموضو عةلتنفيذ المشروعبا لإضافة الىعينا تمنمخرجات المشروع. تمإنشاء نقاطضبطأرضيةعنطريةنظامالموقعالعالميالتفاضلي ، وبنيت إحداثياتها على مسقط ماركيتر المستعرض العالمي في النطاق ٣٦ شمال ، وعلى سطح الاسناد الجيوديسي العالمي للعام ١٩٨٤كماتمإستخدامحزمةبرامج لايكا التصويرية المضمنة فيبرنامج ايرداس. أوضحتالنتائجالتيتمالحصو لعليهاانالكامير إتالمستخدمة فيعملية التصوير والصور المنتجة بالإضافة الدالخر ائطالمنتجة مجميعها لاتطابق المواصفات الموضوعة لوسط الولاية ولكنها تطابق الموصفات الموضوعة لمشروع أطراف الولاية .

ACKNOWLEDGMENTS

First of all I would like to express my appreciation and thanks myGod for His reconciling me. Also I would like to thank my supervisorDr. NagiZomrawi Mohammed Yuosif, for his support and guidance throughout my graduate studies. His continuous encouragement and advice were greatly appreciated. I also thank all my lectursand colleagues at school of Surveying Engineering in Sudan University of Science & Technology. In addition I would like to thank my dear lecturesMr. Abd Allah.A. Mohammedand Mr. Mohammed .A. Hussienfor their help throughout this study. Also I would not forget the family of the Sudan Military Survey who gave me all that was needed to complete this research. Special thanks to Eng. MohammedELnourYagoub and his team, who gave me their time and effort and help in establishing the survey network around the study areas.

Dedication

I dedicate this work to:

My parents

Who were the causes in my presence in this life...

My brothers & sisters

On whom I relied in my life...

My small family

Asma, Lamíss, and Yasseín who are my safe refuge...

TABLE OF CONTENTS

	i
Arabic)	ii
ments	iii
	iv
ents	V
	Х
3	xi
ONE: INTRODUCTION	1
Overview	1
Problem of the Research	3
Research Objectives	4
Research Methodology	4
Thesis Layout	5
WO: PHOTOGRAMMRIC CONCEPTS	7
Introduction	7
Conventional Photogrammetry Techniques	7
Cameras	8
Frame Cameras	8
Single-lens Frame Cameras	8
Multilens Frame Cameras	8
Conventional Photogrammetric Cameras Components	9
	Arabic) ments ents ents NE: INTRODUCTION Overview Problem of the Research Research Objectives Research Methodology Thesis Layout WO: PHOTOGRAMMRIC CONCEPTS Introduction Conventional Photogrammetry Techniques Cameras Frame Cameras Single-lens Frame Cameras Multilens Frame Cameras

2.2.1.3	Characteristics of Aerial Frame Cameras	10
2.2.2	Conventional films	12
2.2.2.1	Black and white films	12
2.2.2.1.1	Black and White film Components	13
2.2.2.2	Colored films	13
2.2.2.2.1	Processing Colored Film	14
2.2.3	Mathematical models used in conventional photogrammetry	16
2.2.3.1	Vertical photograph	16
2.2.3.2	Tilted photograph	17
2.2.4	Coordinates measuring instruments in conventional photogrammetry	21
2.2.4.1	Comparators	22
2.2.4.2	Analytical plotters	22
2.2.4.2.1	Functions of an analytical plotter	23
2.3	Digital photogrammetric media	24
2.3.1	Digital cameras	24
2.3.1.1	Fundamentals of Solid State Sensing	25
2.3.1.2	Sensor basics	25
2.3.1.3	Charge Coupled Device camera systems design	25
2.3.2	Digital images	28
2.3.2.1	Configuration of the Digital Image	29
2.3.2.2	Digital image Processing	29
2.3.2.2.1	Digital image acquisition	29
2.3.2.2.2	Storage and Compression	30
2.3.2.2.3	Digital image enhancement	30
2.3.3	Digital methods of image measurement	30
2.3.3.1	Advantages of Digital Method of Image Measurement	31
2.4	Automation of Photogrammetric Processes	31

2.4.1	Digital image correlation	31
2.5	Control Points for photography	32
2.5.1	Selection of Ground Control Points(GCP) for aerial survey	34
2.5.2	Types of Aerial Surveying Control Points	34
2.5.2.1	Full Control Points	34
2.5.2.2	Horizontal Control Points	34
2.5.2.3	Vertical Control Points	34
CHAPTER 7	FHREE: TOPOGRAPHIC MAPPING35	
3.1	Introduction	35
3.2	Topographic Maps	36
3.2.1	Components of Topographic Maps	36
3.2.2	Topographic MapsScale	37
3.2.2.1	Types of Topographic Map Scales	37
3.2.2.1.1	The longitudinal graphical scale	37
3.2.2.1.2	The numerical scale	37
3.2.2.1.3	The reticulate graphical scale	37
3.2.3	Topographic MappingDatum	37
3.2.3.1	Definition of the World Geodetic System 1984	39
3.2.4	Topographic MapsProjections	40
3.2.4.1	Types of Topographic MapsProjections	40
3.2.4.1.1	Cylindrical Projections	40
3.2.4.1.2	Conical Projections	41
3.2.4.1.3	Azimuth Projections	41
3.2.4.1.4	Normal Projections	42
3.2.4.1.5	Oblique Projections	42
3.2.4.1.6	Transverse Projections	42
3.2.4.2	Uses of Topographic Maps	43

CHAPTER FOUR: AERIAL TRIANGULATION44

4.1	Introduction	44
4.2	Aerial triangulation Methods	44
4.2.1	Analogue Aerial Triangulation	44
4.2.1.1	Analogue Aerial Triangulation Instruments	44
4.2.2	Semi Analytical Aerial Triangulation	46
4.2.3	Analytical Aerial Triangulation	48
4.2.3.1	Advantages of Analytical Aerial Triangulation	48
4.2.3.2	Basic Concept of Analytical Plotter	48
4.2.4	Digital photogrammetric Methods	50
4.2.4.1	Advantages of Digital photogrammetric Methods	51
4.3	Aerial Triangulation Applications	51
4.4	Specifications for aerial triangulation	51
4.4.1	Instrument Specifications	52
4.4.1.1	Point Marking Device	52
4.4.1.2	Measuring Device	52
4.4.1.3	Distortion Correction Devices	53
4.4.2	Material Components' Specifications	53
4.4.3	Operator Specifications	53
4.4.4	Operational Specifications	53
4.4.5	Output Specifications	53
CHAPTER I	FIVE: GLOBAL POSITIONING SYSTEM INPHOTOGRAMMETRY	¥55
5.1	Introduction	55
5.1.1	Administrative Unit	55
5.1.2	Satellites Unit	55
5.1.2.1	Frequency and Signals	56
5.1.3	Users Unit	57
5.2	Global Positioning System and Photogrammetry	58
5.2.1	Use of GPS in Photographic Aircraft	58

5.2.1.1	The Use of Navigation Global Positioning System for Survey Flights	58
5.2.1.1.1	Set GPS Navigation Observation Methods	58
5.2.2	Locating the Camera Position	59
5.2.3	Measurement of Airplane Attitude	60
5.2.4	Use of GPS in Aerial triangulation	61
5.2.5	Complementary Observations for A photogrammetric Project	62
5.2.5.1	Measurements during the Process of Aviation	62
5.2.5.2	Measurements during The Process Of Images Acquisition	63
5.2.5.3	Determination of the Location by GPS Systems	63
5.2.4.4	The Relationship between GPS antenna and Camera Lens	64
CHAPTER S	X: DIGITAL PHOTOGRAMMETRIC WORKSTATION	65
6.1	Introduction	65
6.2	Ergonomics of Digital Photogrammetric Workstations	65
6.3	General Photogrammetric Algorithms	66
6.4	Digital Photogrammetric Workstation Components	66
6.4.1	Central Processing Unit (CPU)	67
6.4.2	Operating System	67
6.4.2.1	Capacity Memory	68
6.4.3	Storage Systems	68
6.4.3.1	Hard Disks	68
6.4.3.2	Optical Disks	68
6.4.3.3	Magnetic Tapes	68
6.4.4	Graphic System	69
6.4.5	Viewing System	69
6.4.5.1	Spatial techniques	69
6.4.5.2	Spectral techniques	69
6.4.5.3	Temporal techniques	69
6.4.6	Measuring System	70

6.4.6.1	Quality Control of Measurements	71
6.5	Basic System Functionality	71
6.5.1	Archiving	72
6.5.2	Processing	72
6.5.3	Displaying	75
6.5.3.1	Image Stabilization Method	75
6.5.3.2	Cursor Stabilization Method	75
6.5.4	Roaming	75
6.5.5	Measuring	76
6.5.6	Super positioning	77
6.6	Classification of Digital Photogrammetric Workstations	77
6.6.1	Category Based on Functionality and Performance	77
6.6.2	Category Based on Installation of the Hardware Components	77
6.7	Applied Functionalities	78
6.7.1	Data Management	78
6.7.1.1	Format of used Images in Digital Photogrammetric Workstation	79
6.7.2	Basic Photogrammetric Operations	79
6.7.2.1	Interior(Inner) Orientation	80
6.7.2.2	Exterior Orientation	84
6.7.2.2.1	Automatic Relative Orientation	84
6.7.2.2.2	Automatic Absolute Orientation	87
6.7.3	Advanced Photogrammetric Applications	87
6.7.3.1	Automatic Aerial Triangulation	88
6.7.3.2	Digital Terrain Models (DTMs)	89
CHAPTER SE	EVEN: EVALUATION OF PHOTOGRAMMETRIC SURVEYS	91
7.1	Introduction	91
7.1.1	Advantages and Disadvantages	91

7.2	Evaluation of Photogrammetric Components Processes	92
7.2.1	Image Acquisition	92
7.2.1.1	Flight Planning	92
7.2.1.2	Aerial Cameras	93
7.2.1.3	Aerial Films	93
7.2.1.4	Image Scanning	93
7.2.2	Control for Photogrammetry	94
7.2.2.1	Ground Control	94
7.2.2.2	Targeting	94
7.2.2.3	Field Survey of Photogrammetric Control	95
7.2.2.4	Aerial Triangulation	95
7.2.2.5	GPS as Control for Photogrammetry	96
7.2.3	Product Compilation	96
7.2.3.1	Photogrammetric Plotters	96
7.2.3.2	Data Collection and Mapping	97
7.3	Accuracy and Errors	98
CHAPTER EI	GHT: TESTS AND RESULTS	99
8.1	Introduction	99
8.2	The Study Area	100
8.3	Measurements and Results	101
8.3.1	Accuracy Evaluation of the Center of Khartoum State Project	104
8.3.2	Accuracy Evaluation of The Rural Areas of Khartoum State Project	111
CHAPTER N	INE: CONCLUSIONS AND RECOMMENDATIONS	118
9.1	Conclusions	118
9.2	Recommendations	120
REFERENCE	S	121
APPENDICES	$\mathbf{\tilde{b}}$	
Appendix A : A	Aerial Survey Project Specifications (Khartoum State)	124

Appendix B : Triangulation Analytical Report with LPS system for Centre of the project	128
Appendix C : Triangulation Analytical Report with LPS system for rural of the project	156
Appendix D : Aerial Triangulation Block for centre area of Khartoum State	163
Appendix E : Aerial Triangulation Block for rural area of Khartoum State	164
APUBLICATIONS	
Paper one: Etrex Garmin GPS Receiver Accuracy Testing	165
Paper two: Technical Evaluation of Khartoum State Mapping Project	165

LIST OF TABLES

Table NO	Table name	Page
2.1	Major types of digital cameras	27
2.2	Major types of digital CCD- line cameras	28
3.1	Number of certified reference surfaces	38
6.1	Distinguishing separate images systems	70
7.1	Characteristics of photogrammetric stereo plotters	97
8.1	Part of technical specifications for the two projects	100
8.2	part of the calibration report of a Large Format Panchromatic camera	101
8.3	part of the calibration report of a medium format multispectral camera	102
8.4	Inertial Measurement (IMU) file for center of Khartoum State study area	103
8.5	Coordinates of observed points	105
8.6	Computed control and tie points coordinates for centre of Khartoum state study area	106
8.7	Root Mean Square Errors (RMSE) for center of Khartoum study area coordinates	108
8.8	Measured coordinates for the centre of Khartoum study area from an existing topographic map	110
8.9	Difference between "actual" ground coordinates and map coordinates for	110

centrearea

8.10	Inertial Measurement (IMU) file for rural study area of Khartoum state	112
8.11	Observed coordinates of control points of the rural study area	113
8.12	Computed control and tie points coordinates for the study area	114
8.13	Root Mean Square Error (RMSE) for rural study area coordinates	115
8.14	Existing topographic map coordinates of control points for the rural study area.	116
8.15	difference between "actual" ground coordinates and map coordinates for Khartoum state rural study area	116

LIST OF FIGURES

Figure NO	Figure name	Page
2.1	Generalized cross section of a frame aerial mapping camera	9
2.2	Photographic coordinates systems	11
2.3	Cross section of a black and white film	13
2.4	Cross section of a colored film	14
2.5	Concept of a normal colored film material	15
2.6	Concept an IR colored film material	15
2.7	Vertical photograph with the camera and object coordinates system	16
2.8	Tilted photograph with camera and object coordinates system	18
2.9	Relationship between the comparator and image coordinates	21
2.10	Function of an analytical plotter	24
2.11	The main parts of digital camera	26
2.12	Coordinates system of a digital image	29
2.13	Digital image correlation	32
2.14	A ground control points configuration for a strip	33
2.15	A ground control points in a block of images	33
3.1	Elements of a reference surface	38

3.2	Process of the envelop earth by a cylinder	40
3.3	Process of the enveloped earth by a conic	41
3.4	Plane projection surface tangent to surface of the ball	41
3.5	Map of the world on the UTM projection	43
4.1	Tie points distribution for triangulation in a single image	45
4.2	Tie points distribution for triangulation in a block of images	46
4.3	Three adjacent relatively oriented stereo-models	47
4.4	Individual arbitrary coordinates system	47
4.5	A continuous strip of stereo-models	47
4.6	Basic concept of an analytical stereo plotter	49
4.7	Quid specifications of aerial triangulation	52
5.1	Distribution of satellites along the equator	55
5.2	Position determination using GPS	56
5.3	Modulated carrier code	56
5.4	Components of GPS receivers	57
5.5	Use of GPS in the photography process	60
6.1	Digital Photogrammetric Workstation and Photogrammetry equipments	65
6.2	Digital Photogrammetric Workstation system	67
6.3	Circuit integrated functions of the system	72
6.4	Visualization of stereoscopic model	73
6.5	Epipolar resampling	74
6.6	Zoom pyramid	76
6.7	Internal image geometry	80
6.8	Pixel coordinate system versus image coordinate system	81
6.9	Radial and tangential lens distortions	82
6.10	Radial lens distortion curve	83
6.11	Elements of exterior orientation	85
6.12	Rotation elements omega, phi, and kappa	85

6.13	Concept of the algorithm for automatic relative orientation	86
6.14	The main tasks of a digital terrain modeling system	90
7.1	Photogrammetric ground control targets	95
8.1	Centre of Khartoum state study area image block	102
8.2	Triangulation summary of the centre of Khartoum state study area	109
8.3	Study area image of selected rural areas of Khartoum State	112
8.4	Triangulation summary of the rural areas of Khartoum state study area	115

CHAPTER ONE INTRODUCTION

1.1 Overview

The development of nations is determined with its own infrastructure. Many countries of the world followed innovations in science and technology and created for themselves landslides in the fields of industries, and other activities making life easy for economic and social development guided by well planned strategies. The face of any country is reflected by its architectural appearance based on scientific plans showing the state of the art in horizontal and vertical setups. The other side of the coin in such plans refers to the drainage system related to sewage, storm water and irrigation canal. Furthermore, they also show transportation systems in land, sea, and air, together with some others show the electric networks and more other vided services.

The development, reaches its climax in presence of up-to date topographic maps and plans showing all human activities in their exact / correct location and in various mapping scales. Definition of a topographic map is that it is a basic type of maps upon which, strategic vision of infrastructure projects and future developments can be planned. Therefore, all developed countries are completely covered with this type of maps. A topographic map is a representation of natural and man-made features, of part - or the entire surface of the earth at an appropriate scale. Map production is not a simple matter, but it includes different difficult and complicated stages, starting from data collection to the stages of the plotting and distribution.

Conventional land surveying techniques of map production, are very expensive, and time consuming, especially when covering large areas. So, photogrammetric methods of map production are practical alternative methods of land surveying. Here, measurements are taken indirectly from photograph rather than the field i.e. transforming the direct measurements from the nature, to indirect measurements from the photograph.

In fact photogrammetry is not one of the late sciences, but it is the most developed of in terms of instrumentation, equipments, tools, or computer programs on the other hand in terms of technologies applications and various technologies implemented in execution and high performance (Kilford.W.K,(1998).The history of the air surveys date back to the fifteenth

century, when the world witnessed the emergence of photography and perspective geometry technology. In real practice there are many institutions and organizations specialized in the field of photogrammetry attempted to define this science their own way, but most comprehensive, mostly used, is that of the American Society of Photogrammetry and Remote Sensing as 'the art, science, and technology of obtaining reliable information about the physical objects and the environment through processes of recording, measuring, and interpreting photographic images and patterns of recorded radiant electromagnetic energy and other phenomena'(Johnston,2007). According to type of data extraction, photogrammetry can be divided into two distinct areas:

- Metric photogrammetry; consists of making precise measurements from photographs and other information sources to determine in general, the relative locations of points. This enables finding distances, angles, volumes, elevations, size and shape of the objects, the most common application of metric photogrammetry is the preparation of planimetric and topographic maps from photographs.
- Interpretative photogrammetry; deals principally in recognizing and identifying objects and judging their significance through careful and systematic analysis. It includes branches of photographic interpretation and remote sensing.

Photographic interpretation involves the study of photographic images, while remote sensing which is a newer branch of interpretative photogrammetry, includes not only the analysis of photography but also the use of gathered data from a wide variety of sensing instruments, including multispectral cameras, infrared sensors, thermal scanners, and side looking airborne radar. Remote sensing instruments which are often carried in vehicles, as remote as orbiting satellites, are capable of providing quantitative as well as qualitative information about objects.

The science of photogrammetry goes hand in hand with the tremendous development that occurred in scientific knowledge and the introduction of digital technologies in most scientific fields. This innovation were automatically reflected in the diversity of traditional analogue techniques to modern ones. This in fact can be seen in the new ways of data collection, taking photography and the related processes of manipulating the digital image to make it workable to all users. The old optical cameras are replaced by digital ones giving a high performance of image quality, accuracy, durability, and permanence. The ease and cost of obtaining high resolution imagery can be easily extremely sustained. To some extent, image reproduction processes are highly established. Analytical photogrammetric plotting and Digital

photogrammetric softcopy are now in use and under continuous research for better results. That led to ease and speed data collection and data processing which is reflected in time, effort and cost reduction.

Importance of Khartoum state makes it keen on the introduction of modern technologies in the field of data collection. The development which attended the state in the past two decades, roads, bridges, banks, planning extension and residential services generally need a master plan outlining the shape and future of the state. To be modern, accurate maps, help distribute those services and utilities.

Since the maps production from the corresponding remote sensing imageries of Khartoum state, does not satisfy the accuracy requirements as well as the lack of topographic data of the state. The state government tried to produce up to date topographic maps of the sates in two scales utilizing modern digital photogrammetric techniques. Accordingly, the state was covered by two types of photographs: 1:5,000 photography for the center of the state to produce topographic maps at scale 1:1,000 and the other is 1:20,000 photography for the rural areas to produce topographic maps at 1:10,000 scale.

1.2 Problem of the Research

In recent years, Khartoum state received many migrations from rural areas and some large cities looking for wider jop opportunities or better health and education services. As a result of this irregular migrations, an increase in population and residential rates were appeared. This affected, negatively, the level of services in the state. Khartoum State Government created extensions to the four parts of state. This led to an increase in state area. For these resons, in addition to the new manifestations of structures , such as, bridges, roads and buildings of which require updated topographic maps of the state. Initially, the state produced topographic maps at various scales from satellite images and other tools. Some problems faced this project, such as horizontal and vertical displacements of features from their correct locations. Therefore project was mended to use digital photogrammetric techinques to produce a new two types of topographic maps for the central and rural parts of the state.

Unfortunately the final outputs of the project is not checked to match the agreed specificationsas.

This research aims at making some sort of accuracy evaluation of the project and study the factors that affect, positively or negatively, such projects.

1.3 Research Objectives

This research aims to study and investigate some methods and techniques by which one can justify the accuracy of topographic maps produced using a digital photogrammetric project and consequently sets out standards for the evaluation of the various degrees of accuracies attainable. The guide to the factors influencing such results, of which the following points can be quoted:

- vevaluate the horizontal accuracy of 1: 1,000 maps produced for central area of Khartoum state,
- vevaluate the horizontal accuracy of 1:10,000 maps produced for rural areas of Khartoum state,
- > determine the effect of camera pixel resolution of the final product,
- > examine the impact of the scale of photography on the map accuracy,
- study the different parameters affecting the geometrical accuracy in the digital photogrammetric project, and
- make some sort of reliability assessment for the national companies working in the field of mapping services.

1.4 Research Methodology

Evaluation of a digital photogrammetric projects of Khartoum state for the purpose of production of topographic maps with two different scales (1: 1,000 for the central area of state and the other at scale is 1: 10,000 for the rural areas) planned to pass through the following steps:

- i. Get and study the specifications of the aerial photogrammetric project,
- ii. Study the flight plan of the project,
- iii. Get a number of overlapping stereo-pairs of photographs which represent samples for each scale.
- iv. Study the data associated with the orientation parameters of each photograph such as exposure station.
- v. Provide a number of ground control points to assist in model orientation and adjustment.
- vi. Use a digital photogrammetric work station to develop three dimensional models of the area under consideration.

- vii. Utilize a commercial digital photogrammetric package such as Erdas Imagine, to process available data in personal computer.
- viii. Produce digital maps from the developed models and evaluate the accuracy.
- ix. Compare the results obtained with those of the project.
- x. Assess the accuracy of the results obtained from available commercial softwares and the possibility of producing maps for large projects.

1.5 Thesis Layout

This research is, arranged in nine chapters and five appendices. Chapter one contains general definition of topographic mapping, and some of the problems facing the data collection processes, to produce these types of mapswith a solution to address the alternative methods used for land surveying. In addition to the definition of conventional and digital photogrammetry and discusses the case study.

Chapter two discusses the main and auxiliary equipments that are used in photogrammetric survey projects including conventional film, digital image, types of cameras, and their specifications and taking into account their effects on ensuring the success or failure of survey projects.

Definition of topographic maps is discussed in Chapter three. Some details of the maps projections in addition to the world geodetic system 1984 (WGS84) as a global datum, were also discussed. Besides that, the various types of ground control points for aerial surveying work were illustrated.

Chapter four contains the techniques of aerial triangulation in addition to illustrating the concept of analytical machines. Also it includes some important specifications for aerial triangulation.

In Chapter five, the use of Global Positioning System (GPS) in photogrammetry is discussed. Types of position, observation methods and determination of camera position and attitude at the time of exposure were also discussed.

Chapter six contains the definition of digital photogrammetric work stations, their components and internal and external orientations. It also includes its software and hardware components. Furthermore it also discuss how to improve and enhance digital images and, management of digital data and advanced photogrammetric functionality.

Chapter seven discuss, in some detail, the measurements that are carried out and important results obtained.

Chapter eight discuss the standard accuracy evaluation of the photogrammetric projects Finally, conclusions obtained and suggested recommendations for the future are arranged in Chapter nine.

The research also contains five Appendices. Appendix (A) illustrates the specifications of the aerial survey project of Khartoum state. Appendix (B) includes the analytical triangulation report from the LPS system for the centre of Khartoum state project, while Appendix (C) contains the analytical triangulation report from the LPS system for the rural areas of Khartoum state project, Appendices (D) and (E) respectively show the created aerial triangulation blocks for the centre and rural areas of Khartoum state projects.

CHAPTER TWO

PHOTOGRAMMETRIC CONCEPTS

2-1 Introduction

In imaging operations in general, and in particular aerial photography, a camera cannot be alone getting a static image for objects that can be used in photogrammetric projects. There are a number of tools and equipments working beside a camera to assist in the success of any aerial survey process.

Anyway, these elements cannot be less important than the camera. In conventional photogrammetry, in the absence of the film and the sensitive material, for pictures printing there wouldn't be any possibility for obtaining any static image. Also if there is no analogue or analytical photogrammetric plotting machines, there wouldn't be any possibility for obtaining a stereo-model that simulates a real world of the project area at the moment of exposure; so also in the digital photogrammetry environment. If there is no enough memory it is impossible to store the raw digital image, and if there is no good computer specifications, there wouldn't be any processing or measuring from the digital image.

So, it could be said that a photograph is the result of integrating the previous elements with each other. All these elements are called the assistance imaging process techniques, which can be explained as follows.

2.2 Conventional Photogrammetric Techniques

Before computer science and software widespreaded in uses of photogrammetry, all the processes of photogrammetry were based on the use of analogue frame cameras for image acquisition, which lead to obtain analogue images from films. The images are then processed by analogue or analytical photogrammetric instruments to obtain photogrammetric models. These classical processes are called the conventional photogrammetry techniques(Zheng.Y.J,(1995)).

2.2.1Cameras

There are so many important instruments in photogrammetry that would be difficult tospecify the most significant. Surely the camera is one of the most important since it is used to obtain the photographs upon which much photogrammetry depends. (Wolf,(1983)).

There are, now, two different types of cameras provided into the photogrammetric instruments, market. These are used in two different types of photogrammetric techniques for map production. Thefirst type is the frame cameras, which are used in conventional photogrammetry. The second type is the digital cameras, which are used in digital photogrammetry.Anyone of them has different components but both types are used for the purpose of image acquisition processes.

2.2.1.1 Frame Cameras

In conventional or classical photogrammetry as the photogrametrists say, there are many types of frame cameras used to produce photographs for topographic mapping or other types of maps. The selected camera depends mainly on the purpose of the exposed images. Anyhow there are four main types of frame cameras used in photogrammetry. These are:-

- 1- Single-lens frame cameras,
- 2- Multi-lens frame cameras,
- 3- Strip cameras, and
- 4- Panoramic cameras.

2.2.1.1.1 Single-lens Frame Cameras

Single-lens frame cameras are use to obtain photographs for mapping purpose. This type of cameras provide the highest quality geometric picture compared to the other three types, because they are characterized by the use of a single lens.

2.2.1.1.2 Multilens Frame Cameras

Multilens frame cameras have the basic characteristics of single-lens frame cameras, except that they have two or more lenses and expose two or more pictures simultaneously.

2.2.1.1.3 Strip Cameras

Strip cameras expose a continuous photograph of strip of terrain beneath the path of the aircraft.

2.2.1.1.4 Panoramic Cameras

A panoramic camera photographs a strip of terrain from horizon to horizon, the strip being transverse to the direction of the flight.

2.2.1.2 Conventional Photogrammetric Camera Components

An imaging camera is considered as the backbone which is based upon the general concept of photogrammetry. There are many aerial photograph camerasin commercial markets. However, they vary in their shapes and specifications refered to their different manufacturers. Nevertheless, they all agree in three main components as illustrated in Figure (2.1) below.

Figure (2.1) Generalized cross section of a frame aerial camera.

1- Camera magazine

The camera magazine houses the reels which hold exposed and unexposed film. It also contains the film advancing and flattening mechanism.

2- Camera body

The camera body is a one piece casting which usually houses the drive mechanism.

3- Lens cone assembly

The lens cone assembly contains a number of parts and serves several functions. Figure (2-1) above defines each part in the assemblyarranged as:-

- a- Lens: it is the most important part of a camera. It gathers light rays from the object space and brings them to focus in the focal plane behind the lens.
- b- Filter : It serves three purposes:
 - i- Reduces the effect of atmospheric haze.
 - ii- Helpsin providing uniform light distribution over the entire camera.
 - iii-Protects the lens from damage and dust.
- c- Shutter and diaphragm: They, together, regulate the length of time a given amount of light is allowed to pass through the lens to make the exposure. Shutter controls the length of time that light is permitted to pass through the lens.

2.2.1.3 Characteristics of Aerial Frame Cameras

There are many geometrical properties whereby aerial frame cameras can be distinguished. These characteristics help in the extraction of information and the definition of the image coordinates system. The most important of these elements are the focal plane of an aerial camera. This is the plane in which all incident light rays are brought to focus. Therefore, aerial frame cameras have their focus fixed for infinite object distances (Kilford.W.K, (1989)). Camera fiducial marks are one of the important features of the frame camera. These are usually four or eight marks in number, situated in the middle sides of the focal plane opening or in its corners or in both locations. Fiducial marks can be utilized in a variety of tasks such as, to define the location of the principal point by the intersection of the lines joining opposite marks. This point of intersection is an exceedingly important reference in photogrammetric work. In addition to that the fiducial marks also provide a rectangular coordinate axis system for measuring image positions on a photograph, which is the major unit of data in photogrammetry. It is of vital importance that the camera selected for a particular project is capable of exposing an image of sufficient quality for the required task. The collinearity quations refer to plate and camera coordinate systems and, in the majority of cases

in photogrammetry, it is necessary for the camera employed to define these coordinate systems on the photograph (Atkinson, K.B, 1997). This relationship between plate and camera coordinate systems is illustrated in Figure (2.2) below.

Figure (2.2) Photographic coordinates systems

Referring to Figure (2.2), it can be seen that it contains many of the terms and geometric properties of the image based on the camera which is used, these properties can be obtained by analyzing the Figure as the following:

A, B: are the object points respectively imaged at a and b on the negative plane.

 \overline{a} , \overline{b} : is the imaged points of A and B respectively on the positive plane.

 Θ : is the angle subtended at O by A and B; it is recreated inside the camera by the angle Θ subtended at \overline{O} by a and \overline{b} .

P: is the principal point. It can be defined as the intersection point of the ray which passes through the perspective center ,O, and intersects the film plane normal to it. This point represents the origin of the plate coordinates.

OP: is the principal distance, defined as the distance between the perspective centers and the principal point, or more commonly the focal length fand this is the z coordinate of the camera coordinates system.

Refering to the plate and camera coordinates system, and in the majority of cases in photogrammetry, it is necessary that the camera be able to define these coordinate systems on the photograph. Cameras which are capable of supplying this information are called metric cameras while those which cannot define these coordinate systems are known as non-metric cameras.

2.2.2 Conventional films

In traditional photogrammetry there are two types of films used to produce negatives and fixed dimension photographs. These are explained in the coming paragraphs.

2.2.2.1 Black and white films

These are the basic type of photogrammetric films which are used to produce topographic maps from aerial photographs. Black and white films are branched into three categories :

i- Orthochromatic films which are sensitive to the blue and green range, which have the optical radiation wavelength ranging between $0.3\mu m - 0.6 \mu m$.

ii- Panchromatic films which are sensitive to the blue, green, and red colours of the visible spectrum, ranging between $0.4\mu m - 0.7 \mu m$ in wavelength. That is the actually same range, which the human eye is sensitive for the wavelength.

iii-InfraRed(IR) films which are sensitive to the optical radiation wavelengths ranging between $0.7\mu m - 1.2\mu m$. This type is nowadays widely used for a variety of applications such as detection of crop stress, tree species mapping...etc.

In traditional photogrammetry, silver halide photographic emulsion are used as the sensitive material on the film.

The emulsion has to be supported by a base material which is either a flexible plastic film or a plane glass plate.

Dimensional stability of the base material is of prime importance. If the camera is fitted with a reseau plate and an analytical solution is to be employed, then significant film distortion can be allowed for by transforming the measured images of the reseau marks back to their calibrated values.

The unflatness of the base material is very important and is much harder to model. To keep unflatness to a minimum the camera should have some form of film-flattening device. This can be in the form of either a vacuum back with pump to hold the film flat or a pressure plate system which presses the film forward on to plane glass plate mounted in the focal plane of the camera.

2.2.2.1.1 Black and White film Components

A black and white film consists of two basic layers. The first layer is the emulation which contains sensitive crystals of silver halide, and is too sensitive to the light, which works to disintegrate a chemical compound. Accordingly, invisible images are received on the sensitive layer are called latent images. Black and white films are exposed to many chemical processes; completely separate from each other, that areas follows:-

- Developing: in this first step the exposed emulation is placed in a chemical solution called the developer.
- Stop Bath: used to stop the developing action after the proper darkness and contrast of the image has been attained from the developing process.
- Fixing: necessary to remove the undeveloped silver halide grains from the film.
- Washing: it is necessary to remove any remain chemicals.
- Drying: this is the final step, and it is necessary to remove the water from the emulation and backing martial.

. The final outcome is a positive visible image.

Figure (2.3) Cross section of a black and white film.

The second layer is known as the film base which acts as a support for the emulation layer. It may be made from paper, glass, or plastic material. Today, most films used for photogrammetric applications (called aerial films), have a polyester base that provides stability over the entire frame of a few microns.

2.2.2.2 Colored films

There are two types of colored films used in photogrammetric process. Normal colored films, thatcontain three thin layers of gelatin in which sensitive silver halide crystalsare suspended. The top layer is sensitive to red light only, the second layer is sensitive to the green light, and the lower third layer is sensitive to the blue light of spectrum. Figure (2.4) depicts a cross-section of a coloured film layers.

Figure (2.4) Cross section of a coloured film.

The second type of colored films is the infrared colored films, or the falsecolored films. Sometimes, in military uses, are called a camouflage detection film. The IR colored films, also, contain three layers, each sensitive layer has a spectrum photogravure different from the second layer. The top layer is sensitive to the ultraviolet, blue, and green. The middle layer has a sensitivity peak in the red portion of the spectrum, but it is very sensitive to ultraviolet light. The layer, is sensitive to both ultraviolet rays and infrared.

Usually, in both colored films a yellow filter which blocks wavelengths shorter than 0.5µmis used.

2.2.2.1 Processing Colored Film

During the development process of natural colored and false colored films the situation is reversed; a red layer becomes transparent for red light. Wherever, green was incident the red layer becomes magenta (white minus green).Likewise, blue changes to yellow. If this developed film is viewed under a white light, the original colors are perceived. (T. Schenk, 2005) Figures,(2.5) and (2.6) illustrate the concept of natural colored and false colored film material, respectively.

The final outcome of integration of the colored IR film and a yellow filter any object that reflects infrared energy will appear red on the final processed image as appeared in Figure (2.6).

Figure (2.5) Concept of a normal colored film material.

Figure (2.6) Concept of IR colored film materials.

2.2.3 Mathematical models used in conventional photogrammetry

The conventional mathematical models concern with all geometric computations which are carried out to produce topographic maps. In a conventional photography, there are two types of photographs obtained.

2.2.3.1 Vertical photographs

In vertical aerial photographs the optical axis of the camera is vertical, or nearly vertical as possible, at the moment of image acquisition. The situation is as shown in Figure (2.7) below.

Figure (2.7) Vertical photograph with camera and object coordinates system.

Where,

f: the camera focal length.

H: the flight height above datum.

O: the origin point of the camera coordinate system.

x, y, z : the camera coordinates system.

X, Y, Z: the ground coordinates system.

 X_0 , Y_0 , Z_0 : the ground coordinates of the perspective center.

 X_A, Y_A, Z_A : the ground coordinates of point A, imaged of at point a on photograph.

 x_a , y_a : the image coordinates of point a.

 Δz : the height of point A (imaged on photograph at point a) above the point A.

 x_a, y_a, z_a : the camera coordinates of point a

In a completely vertical aerial image, or the ortho-image (rectified image), the coordinate system is parallel with the ground coordinates system. Therefore, it is very easy to calculate the geometric relationships between the two systems given an image scale factor. From Figure (2.7) we can derive the ground coordinates from image coordinates using the following equations:

$$S = \frac{f}{H} \quad [\text{ scale of vertical image}] \quad (2.1)$$

$$X_A = S_a \cdot x_a + X_0$$

$$Y_A = S_a \cdot y_a + Y_0$$

$$Z_A = S_a \cdot z_a + Z_0$$

$$(2.2)$$

Where z_a is the focal length of the camera when we use the negative image or the focal length with a sign changed to negative when we use the positive image. In the same way the coordinates of any point laid above the surface datum, also can be computed from the same above equations; but we must keep in mind the effects of the relief displacement in our calculations as follows.

$$X_{A}-X_{O} = S_{a} \cdot x_{a}$$

$$Y_{A} - Y_{O} = S_{a} \cdot y_{a}$$

$$Z_{A} - Z_{O} = S_{a} \cdot z_{a}$$
where
$$(2.3)$$

(2.4)

$$S_a = \frac{Z_A - Z_0}{Z_a}$$

2.2.3.2 Tilted photographs

As a result of many factors, such as natural factors or others, it is very difficult to get a completely vertical image. Therefore, the optical axis of the camera makes a small angle with its vertical axis at the moment of photography. This results in atilted image as shown in Figure (2.8).

Figure (2.8) Tilted photograph with camera and object coordinates system

For this reason, the mathematical calculations of such images are fundamentally different from those of the vertical image. The Figureshows a tilted image, taken from altitude Has flying height above the datum surface, by a camera whose focal length equals f.

Usually, in such images, the coordinates system is non-parallel to the object ground coordinates system. To resolve this issue we need to rotate the image coordinates system around the required axes. In addition to this, the scale factor between the two systems besides knowledge of the displacements along the *x*, *y*, and *z* axis are to be considered. This is known as projective transformation. If the photograph is rotated about *x* axis through a small angle ω , these will result in a tilted camera coordinate system x_{ω} , y_{ω} , z_{ω} and therefore it is necessary to transform tilted camera coordinate system to vertical camera coordinate system. The projective transformation equations can be derived as follows:

To be able to use the projective transformation equations in (2.2) it is necessary to transform the tilted camera coordinates to their corresponding untitled coordinates.

Consider the fist rotation ω around the tilted x axis:

$$x_{0} = x_{\omega}$$

$$y_{0} = y_{\omega} \cos\omega - z_{\omega} \sin \omega$$

$$z_{0} = z_{\omega} \sin \omega + z_{\omega} \cos \omega$$
(2.5)

In matrix form equations (2.5) can be written as follows:

$$\begin{pmatrix} x_{o} \\ y_{o} \\ z_{o} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \omega - \sin \omega \\ 0 & \sin \omega \cos \omega \end{pmatrix} \cdot \begin{pmatrix} x_{\omega} \\ y_{\omega} \\ z_{\omega} \end{pmatrix}$$
(2.6)

Now consider the secondary rotation Φ around the tilted y axis:

$$\begin{pmatrix} \mathbf{x}_{\omega} \\ \mathbf{y}_{\omega} \\ \mathbf{z}_{\omega} \end{pmatrix} = \begin{pmatrix} \cos\Phi & 0 & \sin\Phi \\ 0 & 1 & 0 \\ -\sin\Phi & 0 & \cos\Phi \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x}_{\omega\Phi} \\ \mathbf{y}_{\omega\Phi} \\ \mathbf{z}_{\omega\Phi} \end{pmatrix} - \dots (2.7)$$

Finally, consider the tertiary rotation κ around the tilted y axis:

$$\begin{array}{rcl} y_{\omega \Phi} &=& \sin \kappa & \cos \kappa & 0 & . & y_{\omega \Phi} \kappa \\ z_{\omega \Phi} & & 0 & 0 & 1 & z_{\omega \Phi \kappa} \end{array} \tag{2.8}$$

Normally the camera is tilted around all axes so the transformation from the tilted to the corresponding vertical plate coordinates involves a rotation matrix resulting from the sequential rotation of ω , Φ , and κ . This is usually written as:

$$\begin{pmatrix} x_{0} \\ y_{0} \\ z_{0} \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \cdot \begin{pmatrix} x_{a} \\ y_{a} \\ z_{a} \end{pmatrix}$$
(2.9)

Where x_a , y_a , z_a are the tilted plate coordinates; x_o , y_o , z_o are the corresponding vertical plate coordinates; and r_{11} to r_{33} are the nine elements of the three-dimensional orthogonal rotation matrix resulting from combining equations (2.2) with equations (2.9) which gives:

$$X_{A} - X_{O} = S_{a} [r_{11}x_{a} + r_{12}y_{a} - r_{13}z_{a}]$$

$$Y_{A} - Y_{O} = S_{a} [r_{21}x_{a} + r_{22}y_{a} - r_{23}z_{a}]$$

$$Z_{A} - Z_{O} = S_{a} [r_{31}x_{a} + r_{32}y_{a} - r_{33}z_{a}]$$

$$2.10$$

Equation (2.10) can be written in matrix form as:

$$\begin{pmatrix} X_{A}-X_{O} \\ Y_{A}-Y_{O} \\ Z_{A}-Z_{O} \end{pmatrix} = S_{a} \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \cdot \begin{pmatrix} x_{a} \\ y_{a} \\ z_{a} \end{pmatrix}$$
(2.11)

Rearrangingt gives:

$$\begin{pmatrix} x_a \\ y_a \\ z_a \end{pmatrix} = S^1 \cdot \begin{pmatrix} r_{11} & r_{21} & r_{31} \\ r_{12} & r_{22} & r_{32} \\ r_{13} & r_{23} & r_{33} \end{pmatrix} \cdot \begin{pmatrix} X_A - X_O \\ Y_A - Y_O \\ 0 \\ Z_A - Z_O \end{pmatrix}$$
(2.12)

Dividing the first two lines by the third line and substituting, -f, for, z_a gives us the most important equations (2.13) and (2.14)' called the collinearity equations' which are used to resolve the most problems in photogrammetry, (Stirling. (2001).

$$x_a = -f \frac{[r_{11}(X_A - X_0) + r_{21}(Y_A - Y_0) + r_{31}(Z_A - Z_0)]}{[r_{13}(X_A - X_0) + r_{23}(Y_A - Y_0) + r_{33}(Z_A - Z_0)]}$$
(2.13)

$$y_a = -f \frac{[r_{12}(X_A - X_0) + r_{22}(Y_A - Y_0) + r_{32}(Z_A - Z_0)]}{[r_{13}(X_A - X_0) + r_{23}(Y_A - Y_0) + r_{33}(Z_A - Z_0)]}$$
(2.14)

These equations are based on a theoretical hypothetical condition that does not exist in practice. It is the condition which says that the object point A, the perspective centreO, and the image point a in a photograph, all lie on one straight line.

2.2.4 Coordinates' measuring instruments in conventional photogrammetry

Usually the analogue image coordinates measurements are done using an acceptable coordinates system; the origin of which is the intersection point resulting from the intersection of the lines joining opposite fiducial marks. This point is often called the centre of collimation. For a precise mapping camera it is very near to the principal point. There are many techniques which are used in photogrammetry to measure the coordinates. Each technique depends on the tool or instrument used. One of these methods is based on a mechanical technique such as comparators, and others such as those used in analytical plotters.

2.2.4.1Comparators

The idea of measuring the coordinates using a comparator is based on a rectangular coordinates system. There are two types of comparators one of which is the mono-comparator that uses a single photograph placed on a stage plate. The second type is the stereo-comparator that uses a pair of stereo-photographs. It is consists of the following components (fig (2.9)).

Figure (2.9) Relationship between the comparator and image coordinates

i- Image stabilization board. ii- Binoculars. iii- Lighting system.

iv- Screw to move the table in both axial perpendicular directions x and y.

v- Rulers to read distances in both x and y directions.

There are two methods used to measure photographic coordinates with this instrument. The first method is done by making the photographic x axis parallel to the *X* axis of the comparator. This is a trial and error procedure, using the y- rotary slow motion screw to make the y coordinates of both fiducial marks A and C, in Figure (2.9), equal. If the X and Y readings are taken on the four fiducial marks then the photographic coordinates x_i and y_i of point *i*, are reduced from the comparator readings to the photographic coordinates as follows:

$$x_{i} = X_{i} - \frac{X_{B} + X_{D}}{2}$$
(2.23)
$$Y_{i} = Y_{i} - \frac{Y_{A} + Y_{C}}{2}$$
(2.24)

The second method used to measure image coordinates by a comparator, is done with the help of a computer. In this method the Y coordinates of fiducial points A and C are made equal without the need to orient the plate. The measurements are then taken to all fiducial points and all image point whose coordinates are desired. The photographic coordinates are reduced numerically from comparator coordinates X,Y system to the photograph x, y coordinates system.

2.2.4.2 Analytical plotters

Obtaining precise and continuous measurements requires an improvement of the traditional methods used, while saving the fundamentals of the devices used. Although comparators are considered as high degree precision devices for linear measurements up to 0.1 of a millimeter, all types of these instruments are considered as point measurement devices. For this resonanalytical plotters have been wide spreaded in the past years.Nowadays, analytical plotters have been replaced by Digital Photogrammetric Workstation devices in the processes of topographic maps' production.

In general analytical plotters are similar stereo comparators and consist f a stereo binocular viewing system, two stage plates and a controlling computer. The main difference between the two types of instruments is the way in which the photographs are moved in the machine.

In a comparator there is a direct mechanical connection between the operator input (via handweels). In analytical plotters this mechanical connection has been removed and replaced by an electronic connection. The operators' inputs are sensed, either by rotary encoders attached to handweels or a digitizing table below a sensitised mouse.

Analytical plotters can be operated in either a comparator mode or a plotter mode. The comparator mode is used for the initial measurement of fiducial marks to solve for the inner orientation .

Once the camera parameters have been computed the method of operation changes to plotter mode i.e. looking through the binocular viewing system to see a three-dimensional stereoscopic image of the object photographed (Stirling(2001)).

The analytical plotter also features a closed-loop system in which the computer provides a realtime solution of the analytical photogrammetric equations.Therefore, the provision of the software required to implement the analytical plotter concept is essential. This includes:-(Zomrawi (2005)).

- **a.** Orientation and rectification programs: For purposes of image rectification, and automatic processes related to model formations and orientation.
- **b. Real time program:** Carries out the necessary corrections for the measured coordinates and computes the image or object coordinates from the measured input data.
- **c. Application programs:** These programs have the ability to carry out all photogrammetric techniques analytically; such as formation of 3-D scaled model for the purpose of production of topographic maps, linking more than one model for the purpose of densification of air control points, providing numerical data in the form of three-dimensional coordinates of random points, formation of estimated models in an estimated space (i.e. independent models).Finally and the most important aim is the ability to analyze the observations and provide statistical reports such as the Root Mean Square Error(RMSE).

2.2.4.2.1 Functionality of an analytical plotter

In conventional stereo-plotters the x, y, z coordinates of points are determined by the plotter user at the scale of the stereo model depending on the observed x, y coordinates of points found in the overlapping area.

In an analytical plotter the (x,y) coordinates of points are determined by moving the floating mark around on the model surface .i.e. the operator inputs are interpreted as movements along the x, y, and z coordinates axes.For the solution of the interior orientation parameters, the computer calculates the object coordinates. The analytical plotter functioning is shown in Figure (2.10) below.

Figure (2.10) Functionality of an analytical plotter.

2.3 Digital photogrammetric Techniques

The term Digital photogrammetry is used to describe the softcopy photogrammetrywhich converts the conventional photogrammetry equipments; such as analogue cameras into digital cameras, analogue images into digital ones, and analytical plotters to digital plotters. The most important sources of information in digital photogrammetric techniques are the camerasto be used and methods required for digital image measurements and processing.

2.3.1 Digital cameras

Digital imaging camerasare identical to conventional imaging cameras, in terms of the goal of their use, but they are quite different in terms of shape, performance, and nature of the configuration. In conventional imaging cameras mentioned in the beginning of this Chapter, the recepted images are printed on films specifically designed for this purpose. However, in digital cameras the recepted images are configurated by sensitive sensors known as photodetectors. These sensors normally take the form of an arrangement of a Charged Coupled Device (CCD) or other sensor types, such as Charge Injection Devices (CID), Closed Circuit Television (CCTV), and Metal Oxide Semiconductors (MOS).(Li,(1999))

2.3.1.1 Fundamentals of Solid State Sensing

There are many different concepts for solid state sensing fundamentals, all of them agree that image detector elements are the main component. The first generation of image detector elements CCD was initially developed as a memory device consisting of 8 elements built on existing fabrication linesof metal oxide semiconductors.(Tompsett et al, 1970). Their main advantages are that they are small in size, low power consumption, low cost, and low noise. Due to these characteristics many commercial companies raced to produce these types of CCD detector, with some improvements such as increasing thenumber of image detector elements.

2.3.1.2Sensor basics

An often used analogy for a solid state sensor is that of a bucketing anarray which catches the light photons. Each bucket in the array corresponds to a discrete photo sensitive detector known as sensor element. The amount of light falling on each element is read out by extending the analogy to mounting the lines of buckets on conveyors. The last conveyor line in array is shift register which takes each line of buckets off to serially measure. By maintaining a line count and timing the buckets as they are shifted along the final conveyor, the location of any bucket in the original array can be determined (Shortis& Beyer, (1995)).

2.3.1.3 Charge Coupled Device camera systems design

Digital cameras have ahigh potential and a huge storage capacity, in a smaller zone, compared with the length and width of the films which are used in conventional aerial cameras causing

them to be lighter in weight and ease of camera movement. All different types of digital cameras are consist of the main parts shown in the following. Figure (2.11).

Figure (2.11) Main parts of a digital camera.

The solid CCD digital camera components can be defined as below:

- Lens: it is installed in the front part of the camera, and it is of a Closed Circuit Television (CCTV) type, chosen for its, low cost, and high reliability.
- **Infrared filter:** installed between the lens and the CCD sensor. There is more than one function forthe use of an IR filter, but the most important function is similar to that used in conventional aerial cameras. It is used in order to absorb ultraviolet radiation and not allow it to enter the CCD sensor. On the other hand, it allows the visible spectrum radiations or the X-ray radiation in the same way as with conventional aerial films.
- **Diffuser:** it is made from a bilateral refractive quartz plate is found in most cameras using interline transfer sensors as it serves as an optical low-pass filter to suppress aliasing.
- Cover glass: safeguards the lens from outside impurities, such as dust mites.
- Ceramic substrate: consists of small pockets and is used to connect the sensor to the pins.
- Sensor: used for picking up the light photonscoming from ground objects.
- **DIP (Dual Inline Pins):**used for electrical connection.
- **Power supply:** used to supply the system with the operational energy.
- Camera electronics:contains the precise electronic units used for processing operations.

To date, there is a very huge number of digital camerasmanufactured by different worldwide companies in the global markets. However, there are apparent differences in the precision, digital image resolution, the number of pixels or lines per mm in a camera lens for each type of cameras, the dimensions of the pixel and the area of the earth surface covered by an image. Table (2.1) illustrates the major types of digital cameras use in digital photogrammetry, showing their most important features, as an example, and not as a limitation.

Array camera	Pixels	Pixels size	Mean focal length
VexelUltrCam _D	7500 X 11500	9µm	100.0mm
VexelUltrCam _X	3140 X 4810	21µm	100.5mm
Z/IDMC	8000 X 14000	12µm	120.0mm

Table (2.1) Major types of digital cameras.(Shortis et al, (1995))

DIAMC	4080 X 5440	9µm	60.0mm – 150.0mm
Applanix DSS	4092 X 4077	9µm	55.0mm or 35.0mm

The obvious advantages of digital cameras are the better image quality, shorter turn around, and at least the same accuracy leadto a clear trend in replacing the analogue cameras by digital ones . The small format cameras DSS and DIMAC do have their special field of application. The combination of up to 4 original cameras in the DIMAC cannot be compared with the DMC or the UltrCam_D because there is no fixed relation between the cameras and they have to be handled like independent cameras. The quite higher number of images required to for cover the same ground area is leading to economic limitations for the classic bundle orientation. This is compensated by the direct sensor orientation, but still quite more lines are required. Table (2.2) illustrates the major types and specifications of digital CCD- line cameras that are used in digital photogrammetry, in corridor mapping of traverses and roads as an example.

Line camera	Pixels	Pixels size	View direction in flight direction	Field of view across
HRSC	5272	7μm	±18.9°, ±12.8°	11.8°
Lieca ADS40	2 X 12000	6.5µm	-16° , nader,26°	64°
StarlaboStarImage	14400	5µm	-23°, nader,17°	62°
Wehrli 3DAS-1	8032	9µm	-16° , nader,26°	42°

Table (2.2) Major types of digital CCD- line cameras

The CCD-line cameras cannot be compared directly with the digital array cameras. Achievable object point accuracy is dominated by the required direct sensor orientation, in addition to the combination of Global Positioning System (GPS) and an Inertial Measurement Unit (IMU). Also, accuracy can be improved by a bundle orientation without which the y-parallaxes can exceed the tolerance levels (Shortis& Beyer, (1995)).

2.3.2 Digital images

The term digital image means a softcopy image that can be stored in a computer CentralProcessing Unit (CPU) or displayed on a computer monitor.

Mathematically, the photograph can be described by a continuous function F(x, y), called an image. When the function becomes discrete, then the result is a digital image. Consequently digital images are considred as a non-continuous function in the variables x, y. There are special variables (Δx , Δy) known as sampling; the discrete Δx and Δy is the pixel and the Δg is the gray level. By these elements a digital image can be represented by f (Δx . i, Δy . j) where i = 0, ...n-1; j = 0,...m-1, i and j are the pixel addresses (n is the number of rows and m is the number of columns).This image function f(x,y) can be illustrated clearly in Figure(2.12) below(Schenk(1998)

Figure (2.12) Coordinates system of a digital image.

A digital image can be recognized in a computer by a file containing a group of digits, confined between the two numbers, 0 and 255 for a black and white image digital number 0 means complete blackness and 255 means total brightness. The rest of digital numbers confined between these two numbers represent the gradient of the gray. The final complete image is made up of a two- dimensional array.

On the other hand, the colored image file contains three sets of intensity values for each pixelwhich is an integrated colors of red, green, and blue bands due to their ability to form the image.

2.3.2.1 Configuration of the Digital Image

Digital photogrammetric systems use the digitized aerial photographs or digital images as the primary source of point definition. Digital imagery can be obtained either indirectly or directly. (LPS Users Guide, 2008):

The indirect method consists of digitizing existing analogue photographs, while the indirect method consists of using digital cameras to record imagery or using sensors onboard satellites such as Landsat, SPOT, and IRS to record imagery.

2.3.2.2 Digital image Processing

Digital image processing contains several components. These are as follows:-

2.3.2.2.1 Digital image acquisition

This is the first stage in getting a digital image by any means ormethod available.

2.3.2.2.2 Storage and Compression

Storing a digital image requires a large memory especially in conducting a photogrammetric project having a huge number of images. In such cases, there must be a mechanism to compress these images without any data influence, and then having another mechanism for retrieving the compressed images again. For example digital image with 16k X 16k resolution (pixel size approx. $13\mu m$) required that a storage capacity of 256MB per uncompressed black and white. Consider a compression rate of three we arrive at the typical number of 80 MB per image (Kasser andEgels(2002)).

2.3.2.2.3 Digital image enhancement.

By the term digital image enhancementismeant finding all techniques which are used to improve the appearance of the digital image. It cancan be divided into the following:

Image smoothing.

Means intending to remove distortions such as distortions resulting from the noise, as an example.

• Sharpening the image.

A process to clarify the objects and letters in the digital image.

Correcting defects

They are either geometric defects or errors which are resulting from the digitizer.

Segmentation.

Is means the process of dividing the digital image into segments (smaller parts).

Visualization

It includes all the techniques which are used to view digital images in different media, such as the screen, magnetic tape, printer, and other output tools.

2.3.3Digital methods of image measurement

Digital methods are used to describe instruments or processes which use digital images as opposed to conventional film images. The photogrammetric computations are generally the same as those used in analytical instruments. In digital methods all required is a computer display screen and some methods of extracting image coordinates off the screen (such as a mouse) is used to move the cursor across the image. Many commercial image processing packages have a facility for displaying the pixel coordinates of cursor position.

Digital photogrammetric systems were based on Unix workstations. However these have generally been superseded with systems based on high performance PC_s . The major market for these systems is aerial mapping. In order to meet this requirement they include stereo-viewing systems utilizing either polarising or liquid crystal viewing spectacles.

This stereo viewing system is used in plotter mode. In initial operation, as with analytical plotters, the instrument operates in comparator mode where photographs are measured individually to recover the inner orientation and camera parameters.(Zheng, (1995),)

2.3.3.1 Advantages of Digital Method of Image Measurement

There are a number of advantages of digital method of image measurement over analytical ones. These may include:

- More than one person can view the images at the same time,
- scan conventional photogrammetric images,
- use a disk or a flash to store required images,
- an image can be compressed,
- high precision result can be obtained.

2.4Automation of Photogrammetric Processes

Automation of photogrammetric processes means to benefit from the advantages of all automatic digital technologies in all stages of photogrammetric operations. This automation may

lead to time saving, reduced costs and human efforts, when compared with traditional techniques.One of the most important automation processes is the digital image correlation.

2.4.1 Digital image correlation

Digital image correlation is a technique of matching the overlapping area in the images stereo pairs automatically by a computer by comparing thepattern and the number of pixels in the selected area on the first image with the corresponding second image. Therefore, the digital image correlation involves a process of area based matching in which a computer attempts to find the same pattern pixel intensities on the second photograph as the one in a small image area in the first phonograph. Referring to Figure (2.13), a small area of 3 X 3pixels is selected on an image. A larger area of 5 X 5 pixels is searched to find a similar pattern.

Figure (2.13) Digital image correlation

2.5 Control Points for photography

The quantity and quality of the required control points depend on the dimensions and target area of the desired project, besides the covered area in one image and its corresponding area on the ground surface. Theoretically the least number of required control points to link the image area with the same ground area is two full plus one vertical control points. Based on that, the required numbers of unknown parameters to establish the relationship between the image areas with the same ground area becomes seven, outlined as follows:

- A scale factor S (one parameter) that relates the dimensions on the image with the same dimensions on the ground.
- Rotation angles omega ω , phi Φ , and kappa κ (three parameters) they define the attitude of the camera at the moment of image capture.
- > Three translations ΔX , ΔY , and ΔZ (three parameters), they define the position of the image relative to the ground object space.

Therefore, to obtain a unique solution for the previous seven unknowns, we need at least seven equations. To increase the level of accuracy the least number of control points can be increased and in that case the method of least squares should be used to obtain the most probable values for the unknowns. For more illustration, we can give the following:

Processing One Image

Processing a single-image is generally carried out in order to rectify the tilted image. The smallest number of control points, which can be used is three full control points, well distributed to ensure that the camera or sensor is accurately modeled.

Processing a Strip of Images

The smallest number of control points, which can be used to process adjacent images in one strip is two full control points for each set of three consecutive images. To improve the level of rectification, three ground control points, well distributed, at the corner edges of a strip, as shown in Figure (2.6). (Leica february2008) can be used.

Figure (2.6) A ground control points configuration for a strip 33

Processing Multiple Strips of Images

Processing multiple strips of images technique depends on the combination of the method used for Processing one image, and a strip of images as in Figure (2.7), showing a block comprising four strips of eight image each.

Figure (2.7) Ground control points in a block of images

Referring to Figure (2.7), generally there is specific strategies that can be followed to locate the positions of the ground control points. The strategy is that:-

- There should be at least, one ground control point to tie each three consecutive images of a strip (i.e in the area of triple overlapping).

- The first and last stripsshould have only one GCP on a single image at the beginning and end of each strip.

- The numbers of GCP_S lying at the edges of block boundaries should be the same.

2.5.1 Selection of Ground Control Points (GCP) for Aerial Surveying

Generally the main purpose of any photogrammetric output is to create 3-D model representing the actual real world at the moment of imaging. Therefore ground control points are needed to adjust the created 3-Dmodel.

Aerial surveying ground control points can be defined as points having known horizontal and, or vertical coordinates and can be defined clearly in both image and model.

Selection of the ground control points for aerial surveying depends on the flight mapping. There is more than one method used to obtain ground control points such as:

- The Global Positioning System (GPS).
- Old maps containing the project areatargeted.

To mention the least but not all.

2.5.2 Types of Aerial Surveying Control Points

Based on the known horizontal and vertical coordinates of the points the aerial surveying ground control points can be divided into three sections as follows:-

2.5.2.1 Full Control Points

These are points having known horizontal and vertical coordinates. Sometimes they are called completed control points.

2.5.2.2Horizontal Control Points

These are points having known horizontal coordinates (X, Y or E, N or Φ , λ) relative to the origin.

2.5.2.3Vertical Control Points

These are points withZcoordinates only i.e. levels (height) above a specified datum.

CHAPTER THREE

TOPOGRAPHIC MAPS

3.1 Introduction

A map is a representation of all, or a portion, of the earth's surface, with specified scale, to locate the positions of points thereby helping to transition ease, keeping the ownership records, which help intaking proper decisions. The first map was created in the Babylonian era, in the year 2300 BC.The maps are empossed on stones and wood slabs and are used for tax collection purposes and levies from the parish.(Microsoft, 2003)

Maps have passed through many advancing stages, coupled with the developments in the various fields of science in general, and geographical science, in particular. They are printed on papers and plastics slabs till they reached to the stage of softcopies conserved and stored in computers with the help of many specialized and multipurpose programs.

Now, there are many types of maps in commercial markets produced by many scientific institutions that differ in their contents and their components, such as:

a) Thematic Maps

Thematic maps are designed to illustrate the farmland boundaries and residential areas by measuring lengths, heights, and areas. These help to establish a record to look after the rights of the state and of individuals, and save the ownerships. The final layout of thematic maps contain and communicate a concept or an idea. Moreover the maps are often meant to support textual information (United Nations, 2000)

b) Engineering Maps

Engineering maps are designed using a largedrawing scale to depictclearerly and more comprehensively the elevations, profiles, crossections, and any other informations which help in the implementation of engineering projects the most efficient ways.

c) Hydrographic Maps

These maps are mainly designed to represent the water bodies with their different types ranging from oceans and seas to riversand lakes. They can also show shallow and deep waters. In addition, these maps describe the positions of protruding rocks, millat marine drilling, coral reefs, and other relics or constructions found near the coasts.

d) Mining Maps

These maps specialize in determining the positions of all acts of mining such as coal extraction, gas oil boreholes...etc. they also show marine, ground and underground surface topographies. Despite all these vast amounts of maps topographic maps remain the most common and widely used mapslocally and globally.

3.2Topographic Maps

The term "topographic" in Latin language consists of two-pronged:Topo which means placeand Graphic which means drawing i.e. it means drawing a place. Based on this any topographic mapshows the positions of natural and artificial features appearing on the ground.It also shows heightsof points from a given datum or surfaces such as hydrographic surfaces. The heights are represented by using, for example, contour lines method which distinguishes topographic maps from other maps. Contour linesare imaginary lines connecting points of equal heights associated with and referred to a specified and agreed surface (datum).Usually topographic maps are drawn with scales rangingbetween 1: 5000 to 1: 250000(Petrie. (1997).

3.2.1 Components of Topographic Maps

In addition to contour lines, topographic maps contains a set of symbols and signs that describe the natural features such as; rivers, trees, mountains, or the man-made features such as ; railway lines, roads,...etc. These symbols can be divided into three types as follows:

- Point symbols which are used to represent the raster features such as the ground control points, mines, wells...etc.
- Line symbols which are used to represent the longitudinal features such as; roads, railways, waterways ... etc.
- Area symbols which are used to represent closed (regular or irregular) features such as; buildings, ponds...etc.

These symbols are formed with globally agreed colors, resulting in a global use of topographic maps. These most internationally used coloursare (Lonergan, (1999)) :

- ➤ Green:usually used to represent the green features relevant to plants and weeds.
- Red:often used to represent residential areas, industrial areas, and limited services buildings.
- Brown: always used to draw contour lines (i.e. used to represent surfaces and heights).
- > Blue: usually used to represent the different types of water bodies.
- > Black: ordinarily used to represent the general longitudinal features.

Finally topographic maps contain a key which is one of the important characteristics of these maps. They act as a solution for the map talismans and define the meanings of the symbols used.

3.2.2 Topographic Map Scale

Scale is the relative relationship linking the dimensions of features on the map with their corresponding real dimension on the earth's surface.

3.2.2.1 Types of Topographic MapScales

There are more than one type of scale which are used in the design topographic maps.Each type is characterized by its purpose of use. These types are illustrated below:

3.2.2.1.1 The longitudinal graphical scale: it is a small ruler painted on the bottom of the map. If the map is exposed to any process of contraction, expansion or dilation, the scale is automatically exposed to the same process.

3.2.2.1.2 The numerical scale: mathematically can be in a regular fracture form or a proportion form.

3.2.2.1.3 The reticulate graphical scale: this type of scale is used when the desired accuracy is difficult to be clarified in the longitudinal graphical scale.

3.2.3 Topographic MapsDatums

In any topographic map it is possible to identify the locations of points and describe places with a high accuracy level. This requires an appropriate reading of horizontal and vertical coordinates from the map. Therefore we must have a good knowledge of the reference surfaces, adopted for the purpose of measuring ground coordinates. Reference surfaces vary according to the different locations of countries on the globe. As a result, each country uses the reference surface which commensurates with the shape and topography of that country.

There are two main elements that distinguish the determination of one references urface from the other. These are the semi-major axis, a, and the flattening, f, of the surface as shown in Figure (3.1).

Figure (3.1) Elements of a reference surface

In this Figure:-

bis the semi-minor axis

ais the semi-major axis

The geometric elements of a reference surface can be calculated as follows:

1- The flattening *f*, of the surface

$$f = \frac{a-b}{a} (3.1)$$
2-First eccentricity *e*

$$e^2 = \frac{a^2 - b^2}{a^2} = 1 - \frac{b^2}{a^2}$$
(3.2)

3- Linear eccentricity E

$$E^2 = a^2 - b^2 \tag{3.3}$$

The main reference surface used worldwide are shown in Table(3.1) below.

Table (3.1) number of certified reference surfaces. (WGS84 Implementation Manual, (1998))

Reference surface Datum	Semi-major axis(m)	Flattening f ¹
Airy 1830	6377593.396	299.3249646
Australian National	6378160	298.25
Bessel 1841	6377397.155	299.1528128

Table (3.1) continued

Clarke 1866	6378206.4	294.9786982
Clarke 1880	6378249.145	293.465
Everest	6377298.556	300.8017
India1830	6377276.345	300.8017
India1956	6377301.243	300.8017
W. Malaysia and Singapore 1948	6377304.063	300.8017
W. Malaysia 1960	6377295.664	300.8017

Geodetic Reference System1980	6378137	298.257222101
Helmert 1906	6378200	298.3
Hough 1960	6378270	297
International 1924 (Hayford)	6378388	297
Krassovsky 1940	6378245	298.3
Modified Fischer 1960	6378155	298.3
South American 1969	6378160	298.25
WGS 1972	6378135	298.26
WGS 1984	6378137	298.257223563

Since the advent of the Global Positioning System (GPS), which relies on satellites to determine location, World Geodetic System of 1984 (WGS84)was chosen as a global reference surface to can be used in all countries of the worldto find the coordinates.

3.2.3.1 Definition of the World Geodetic System 1984

WGS84 was established by the American Ministry of Defense (Pentagon) to work as an integrated system with the global positioning system. The WGS84 was used as the reference frame to broadcast orbits on 23 January 1987(Rabbany, 2002). In this system:

- The earth represents the origin of the system.
- The Z axis is the direction of the conventional terrestrial pole for polar motion.
- The *X* axis is the line joining the intersection of the zero meridian and the equator and the origin.
- The *Y* axis completes a right-handed, earth centered, earth fixed orthogonal coordinates system.

3.2.4 Topographic Maps Projections

The aim of using projections in cartography, in general, and for topographic maps' production, in particular, is to convert the curved surface of the earth to a paper plane surface.

3.2.4.1 Types of Topographic Maps Projections

There are several foundations criteria used to classify the projections in cartography based on the mathematical relationships as analog projections, equivalent projections, and equal distances projections. Techniques used for of packaging the globe are divided into three types as follows:

3.2.4.1.1 Cylindrical Projections: in these projection the earth is enveloped by a cylinder and the latitudes and longitudes are projected into this cylinder. The cylinder is then an warped to become a flat surface as shown in Figure (3.2) below.

Figure (3.2) Process of the envelop earth by a cylinder

3.2.4.1.2 Conical Projections: these projections, are obtained when half of the earth is enveloped by a conical section and the projection is done in the conic, After that, the conical surface is then unwrapped to become flat as shown in figure (3.3)

Figure (3.3) Process of the enveloped earth by a conic

3.2.4.1.3 Azimuth Projections: Also known as plane projections and obtained when the projection surface touches the surface of the ball (sphere) in a point or cut it off in a small circle as shown in Figure (3.4)

Figure (3.4) Plane projection surface tangent to surface of the ball

Projections can also be classified on the basis of the tilts of projections surfaces, into three types: normal projections, oblique projections, and transversal projections(Lonergan,.,1999).

3.2.4.1.4 Normal Projections: In these projection, the surface is made perpendicular to the direction of the earth's axis of rotation and tangent to the earth along the equator. This is when the projection is a cylindrical Projection. If the projection is conical one, the projection surface is perpendicular to the direction of the earth's axis and tangent to one of the Latitude circuits. When the projection surface is perpendicular to the direction of the earth axis and touches the earth's surface at one of the earth poles then the projection surface is a plane projection.

3.2.4.1.5 Oblique Projections: In oblique projections the projection surface is tangent to the earth's surface in major circles, except the equator and meridians. This happens only if the projection is a cylindrical Projection. In a conical projection, the oblique surface touches the earth's surface in a small circle other than a latitude. If the projection surface is a plane then the

oblique projection surface is tangent to the earth's surface at any point other than points on the equator or the earth poles.

3.2.4.1.6 Transverse Projections: In transverse projections, the projection surface is tangent to the meridians if it is a cylindrical Projection, but if the Projection is conical, then the tangent small circle which is parallel to the rotation axis of the earth whereas if the projection surface is tangent to the equator if it is a plane projection.

The most important type of transverse projections is the Universal Transverse Mercator Projection (UTM)(Lonergan, 1999).

The cartographer Gerrards Mercator (1594-1512) who established this projection is considered as one of the most famous cartographers in the sixteenth century. His works' till now, occupies a large space in modern cartography (Lonergan,.,1999). The main characteristics of a UTM projection can be illustrated as follows:

- Considered as one of the similarity projections which mean that the projection preserves angles which result in correct directions.
- Covers most of the earth's surface area (between Latitudes $80^{\circ} N$ and $80^{\circ} S$)
- Usually used in the production of navigational maps.
- The meridians appear perpendicular to latitudes as shows in Figure (3.5) below.
- Distances between meridians appear equal, which is opposite to their appearance on the earth's surface.
- One of its advantages is that there is no distortions in the equator.

Considered to be unsuitable to use in polar regions because distortions increase with distances from the equator. This is considered as one of the disadvantages of this projection.

Figure (3.5) Map of the world on the UTM projection

3.2.4.2 Uses of Topographic Maps

There are more than one use of the topographic maps in civilian fields such as:

- > Knowledge of the sources of the national resources and wealth.
- > Assist in the planning of civil constructions in general.
- > Provide good grounds for appropriate places for energy generation.
- Various military uses; such as determining the locations of the campsites, identifying the stores and training areas.
- > Help to implement large engineering projects such as dams, roads and others.
- Use in agricultural projects such as the establishment of farms, monuments and forest protection.

CHAPTER FOUR

AERIAL TRAINGULATION

4.1 Introduction

Aerial Triangulation is one of the key steps which is used for the implementation of photogrammetric projects, it is the process of determining X, Y and Z coordinates of points in the target project area from photographs.

There are many applications of aerial triangulation. One of the principal applications is densifying ground control points through strips or blocks of photographs for use in subsequent photogrammetric operations. Besides this purpose aerial triangulation has other benefits such as:-

- i. Having an economic advantage over field surveying.
- ii. Most of the work is done under laboratory conditions.
- iii. Access to much of the property within a project area is not required.
- iv. Minimized field surveying in the difficult areas.

4.2 Aerial Triangulation Methods.

Aerial triangulation techniques are classified into four broad categories these are:

- i. Analogue aerial triangulation
- ii. Semi analytical aerial triangulation
- iii. Analytical aerial triangulation
- iv. Digital aerial triangulation

4.2.1 Analogue Aerial Triangulation

This method involves manual relative and absolute orientation of model using stereoscopic plotting instruments followed by measurement of model coordinates. Aerial triangulation by using this technique also called a stereo-triangulation.

4.2.1.1 Analogue Aerial Triangulation Instruments

This method of photogrammetric aerial triangulation utilizes a multi-projector stereo-plotter. In extending control by this method, adjacent stereo-models of a strip are successively oriented to each other to form a continuous "strip model." Coordinates of all pass points and control points are read from the strip model and then all points are transformed to limited amount of field surveyed ground control to arrive at their final coordinates.

The first stage in aerial triangulation with a multi-projector instrument is the preparation of a long manuscript map which will accommodate the strip model. Horizontal and vertical ground control points are plotted thereon. The manuscript is placed in the plotting table, and assuming enough control exists in the first model, it is complete by oriented.

Disadvantages of the multi-projector technique is that a continuous strip aerial triangulation requires a rather large instrument equipped with many projectors. Therefore, the manufacturers solved this problem by producing a universal instrument that possess bas-in and base-out capabilities. The same procedure of continuous strip can be accomplished here with a stereoplotter having only two projectors.

Types of control points, used in aerial triangulation are divided into three types.

i- **Ground control points:** The coordinates of the points are determined using one of the land surveying methods or from the global positioning system.

ii-**Pass points:** It is a set of points with unknown coordinates that appear in the margins of the overlapping areas. They work as links between adjacent photographs(images) in each flight strip.

iv- **Tie points:**These points are similar to the pass points. Their only difference is that they are chosen to link each two adjacent flight strips. Sometimes image positions of tie points may appear on overlapping areas of multiple photographs. Required, when choosing these points, to be distributed over the area of the block; typically, nine tie points in each image are adequate for block triangulation (Leica, 2008) Figures (4.1) and (4.2) respectively depict the placement of tie points in a single image and in multiple images lying in between two adjacent strips

Figure (4.1) Tie points distribution for triangulation in a single image

Figure (4.2) Tie points distribution for triangulation in a block of images

4.2.2Semi Analytical Aerial Triangulation

Semi analytical aerial triangulation often referred to as independent model aerial triangulation. The method involves manual relative orientation of stereo models within a stereo plotter, followed by measurement of model coordinates. Since the absolute orientation is done numerically therefore this method is *called semi analytical*. The most significant advantage of the method over analogue aerial triangulation is that:

- Any two-projector stereo-plotter can be used, provided that it is equipped with a coordinatograph for reading model coordinates.
- Absolute orientation is performed analytically and is therefore unnecessary in the plotter; thus time is saved, and least squares can be used in numerical strip formation which increases precision.

In semi analytical aerial triangulation, each stereo-pair of a strip is relatively oriented in the plotter, the coordinate system of each model being independent from the others. Figure (4.3) and Figure (4.4) illustrate the first three relatively oriented stereo-models and show plan views of their respective independent coordinates system.

Figure (4.3) three adjacent relatively oriented stereo-models

Figure (4.4) Individual arbitrary coordinates system

By applying successive coordinate transformations, a continuous strip of stereo-models may be formed, as illustrated in Figure (4.5) below

Figure (4.5) A continuous strip of stereo-models

4.2.3 Analytical Aerial Triangulation

The most elementary approach to analytical aerial triangulation consist of the same basic steps as those of analogue methods and include:

- 1. Relative orientation of each stereo-model,
- 2. Connection of adjacent models to from a continuous strip,
- 3. Adjustment of the strip to field surveyed ground control.

The difference only of analytical techniques from those of analogue ones is that the basic input consists of precisely measured photo-coordinates of control and tie points. Relative orientation is performed analytically based upon the measured coordinates and known camera constant.

Analytical aerial triangulation tends to be more accurate than analogue and semi analytical, largely because analytic techniques can more effectively eliminate systematic errors such as film shrinkage, atmospheric refraction distortions, camera lens distortions, and other systematic effects.

4.2.3.1 Advantages of Analytical Aerial Triangulation

The most significant advantage of the method over analogue and semi analytical aerial triangulation is that:

- 1. Higher accuracies are possible with specialized procedures.
- 2. Freedom from the mechanical or optical limitations imposed by stereo-plotters.
- 3. Photography of any focal length, tilt, and flying height can be handled with the same efficiency.

The disadvantage of analytical aerial triangulation method is that:

- 1. Computations are somewhat complicated and difficult to comprehend.
- 2. Necessitates a computer with a relatively large storage capacity.

4.2.3.2Basic Concept of Analytical Plotter

The aerial triangulation system consists of two independent parts, one is the measuring system and the other is the bundle adjustment system which share a common data base (Helsinki University of technology, 1984). The following figure (4.4) illustrates the aerial triangulation system implemented in analytical stereo plotter.

Data base

Figure (4.6) Basic concept of an analytical stereo plotter.

The connection between the two independent parts directly happens directly with the help of two small routines, or indirectly through the data base set. This called the communication media.

The block adjustment is performed by choosing the block data immediately in a form of subblocking. After the block adjustments are completed, an adjustment report is received automatically and contains weight coefficients of the residuals. Through the analysis of these residual errorsone can know what are the measurements which are accurately made and the measurements that need to be measured again.

The data base combinationunit depends on the following items:

- 1. Number of points that are required to be adjusted.
- 2. Number of images in the project.
- 3. Number of strips in the project.
- 4. Number of created blocks in the whole project.
- 5. Specifications of the used camera.
- 6. The model set up.
- 7. Points to be intersected after the final bundle block adjustment.
- 8. Number of the point groups having the same measuring and adjustment parameters such as pointing precession, accuracy of geodetic coordinates, numbering scheme etc.

To make the bundle block adjustment more efficient all observations must be stored on a point records form.

The most important measurement specifications are taken strip by strip in any form of order, having in mind the performance of successive inner orientations and the measurements on the models; Therefore there are several strategies after each pointing, these are follows:

a. Check on differences for points already measured.

- b. Updating of parameters of relative orientation (first model in the strip) or triplet formation (other models).
- c. Updating of parameters of similarity transformation between model and object, if object coordinates of the observed point is known (control point, tie point from the previous strip or model etc.)
- d. Updating of the total data base. Therefore no measurements are lost whatever happens during the measurement process for example a power cut, if the disk is not scratched.

The process of the detection of gross errors is related automatically with the completion of the model measurement process, i.e. all residual values of the gross errors for model formation and also similarity transformation between the model and the object are computed. Moreover the small gross errors in the object coordinates are detected by using a polynomial adjustment with gross error detection process. If some errors are found, all necessary remeasurements and detecting are made (Helsinki University of technology, 1984).

4.2.3Digital photogrammetric Methods.

Now, with the presence of digital technologies it became possible to carry out aerial triangulation with smooth and fast processes, by using a range of special programs, and use of regimesdigital photogrammetric workstations device. Therefore the aerial triangulation begins with the preparing and annotating photographs and, automatically, a suitable number of well distributed points is carefully selected. After this stage is completed, the pass points and tie points must be transferred to all photographs. The quality of the point transfer affect significantly the success of the aerial triangulation project.

4.2.3.1. Advantages of Digital photogrammetric Methods.

Advantages of the use of automatic aerial triangulation is the possibility to simultaneously determine conjugate points by using the procedure called multiple image matching. Increasing the number of points from the typical 9 point pattern per image to, 50 or even 100 points considerably increases the reliability and the accuracy.Besides that, the automatic aerial triangulation represents an economic system, thus preserving the effort and time together.

4.3 Aerial Triangulation Applications

As a resultant of the aerial triangulation benefits as mentioned above, it is now useful in a variety of applications that include: (to mention the least and not all)

- 1. Property surveying to locate section corners and property corners or locate evidence that will assist in finding these corners.
- 2. Develop Digital Terrain Model (DTM) in topographic mapping.

- 3. Determine ground coordinates of points at various time intervals to monitor movements of dams and retaining walls.
- 4. Measure ground subsidence due to mining activity or water pumping.
- 5. Densification of geodetic control networks and precise determination of the relative positions of large machine parts during fabrication.

4.3 Specifications for aerial triangulation

Before embarking on the implementation of the photogrammetric project, there must be presence of specific specifications, depending upon the work to be done, to ensure access to the required precision. Therefore, there are more specifications can be put as a quid or track to access the aerial triangulation stage. These specifications are divided into five integrated branches, as shown in the chart below:

Figure (4.7) guide specifications for aerial triangulation

4.3.1 Instrument Specifications

Instrument specifications include the general and private specifications for devices and utilities needed to complete the process of aerial triangulation. They could be clarified as below:

4.3.1.1 Point Marking Device

These devices are used for the purpose of numbering points by giving numbers and special signs (cross mark)engraved in the emulsion with a maximum diameter of sixty (60) micrometres to distinguish each point from the other. This is done either manually in traditional photogrammetry or automatically as in analytical or digital photogrammetry.

4.3.1.2 Measuring Device

These devices are used to measureimage coordinates of control points and coordinates of the marks points. Therefore, we must bear in mind the relationship between the reference mark size and the size of the mark whose coordinates are required to be measured.

4.3.1.3 Distortion Correction Devices

When lens, earth curvature, and atmospheric refraction distortions are computed analytically, the corrections are done automatically with the measuring device. Therefore, there is no need to use the distortion correction device. (Ministry of Sustainable Resource Management, 1998).

4.3.2 Material Components' Specifications

This section concerns with the conventional photogrammetry materials, because the materials which are used to print the negative or positive imageisaffected by temperature and humidity.These maylead to a contraction or expansion of these materials as time elapses. This in turn, may cause geometrical effects in the film.To overcome this problem it is preferable to use a material with a very low coefficient of expansion, such as polyester having a sustainable thickness of about 0.17 micrometers.

4.3.3 Operator Specifications

This term is intended to mean the human cadre's specifications who are responsible for the implementation of the photogrammetric project. They, must be selected from a high qualified staff responsible for the photographic process. The second thing to consider is the lab operators responsible for image processing must be chosen from a highly efficient staff. Finally, the aerial triangulation staff responsible for marking, numbering, measuring, and determining the ground; tie , and pass points, must consist of highly skilled, well trained staff, in these fields.

4.3.4 Operational Specifications

These are the specifications intended to carry out the photogrammetric processes dealing with the conversion of geographical features, which can be distinguished on the image and transform them to the required data.

4.3.5 Output Specifications

These are the aerial triangulation products' specifications and quality examination levels which should be specified to be sure that the aerial triangulation process has been designed according to these specifications. The errors are then corrected afterwards using the mathematical review media. One of the most important output specifications is the final complete report that includes the Root Mean Square Errors (RMSE) at image scale. These errors are specified in such a way that they should not exceed the following (at image scale).

- i. Tie and pass points: $15 \ \mu m$ in all three coordinates.
- ii. Ground control points: $30 \,\mu m$ in all three coordinates.
- iii. Lake points: 20μ in Z coordinates.

No residual error in (microns) at image scale shall exceed the following (at image scale)

(BMGS, 1998)).

- i. Tie and pass points: $50 \mu m$ in all three coordinates..
- ii. Ground control points: $60 \ \mu m$ in all three coordinates.
- iii. Lake points: 50μ in Z coordinates.

iv. Block ties: $70 \ \mu m$ in all three coordinates.

CHAPTER FIVE

GLOBAL POSITIONING SYSTEM IN PHOTOGRAMMETRY

5.1 Introduction
The Global Positioning System (GPS) has been established, in the mid-seventies of the last century by the American Ministry of Defense (Pentagon) such as the development of the TRANSIT system.

The basic purposes for the establishment of the system, are purely defensive and security. The system is divided into three sections as follows:

5.1.1 Administrative Unit

The administrative unit contains five monitoring stations, one of which is used a master control station. These observation stations have been distributed around the globe over the equator. (Rabbany, 2002).

These stations sent informations relating with the satellites orbit such as, satellite clock's to determinate position of a satellite, they also send Kepler factors to determine the shape and orbit size. One of the main functions of this unit isto protect system from outside invasion.

5.1.2 Satellites Unit

The second section is the satellites unit, generally known as the space segment. it is related with the set of satellites which consists of 24 active satellites distributed in 6 sectors along the equator, with a distance of 60° from each other, as shown in figure(5-1) below.

Figure (5-1) distribution of satellites along thequator.

Each satellite completes a session in 12 hours sidereal time. Active satellites operate 24 hours a day to cover the earth's surface, without being influenced by any ritual factor, such as rain, wind, temperature, and humidity. The adverage distance between satellites' orbits and the

earth's surface is about 20,000 km. To determinate a position, it requires at least four active satellites, not necessarily in one orbit, as shown in figure (5-2) below, (Rabbany. (2002).

Figure (5-2) Position determinationusing GPS.

5.1.2.1 Frequency and Signals

The satellite sends the message into two different waves, which are known as, Long Band₁ (L_1), and Long Band₂(L_2). These bands can be obtained as below:

The waves carrier band L_1 and L_2 carry two types of information, one is the L_1 carrier (1575.42 MHz), and a precise code known as P-Code, with 19mm wavelength, and another carrier frequency signal known as Course Acquisition Code (C/A-Code). In addition to these, there found a navigational message of 50MHz, which exists only in L_1 carrier frequency. This what differentiates L_1 from L_2 . Note that L_2 does not have a C/A-Code and its wavelength is 244mm. Figure (5.3) illustrates the modulate carrier code signal pulse.

Figure (5-3) modulated carrier code.

Signals are usually found in the random or pseudo form known as Pseudo RandomNoise (PRN), which is used to distinguish between satellites. To interpret a PRN, you need to use special devices (receivers).

There are two types of GPS observations that can be used. The first type is the pseudo-range that measures the time of propagation of the pseudo-random modulation of the signal. The second type is the measure of phase, performed on wave carriers on an identical but stable signal generated by the receptor and locked on the satellite signal.

5.1.3 Users Unit

This section is divided into two parts. The first one is a secured partcalled Precise Positioning Service (PPS) which can only be used by the American Ministry of Defense. It generally contains some variables that affect the satellite clock thereby giving false positions. This is what is known as the Selective Availability (S/A).

The second part is the one used by civilians and is known as Standard Positioning Service (SPS).

There are two types of receivers thatcan be used regardless of whether PPS or SPS is used. These are:-

- a. Single frequency receivers.
- b. Double frequency receivers.

The receiversmainly consistof the following system and device:-

- 1- Antenna.
- 2- Control device.
- 3- Reception and processing device.
- 4- Storage device.

Figure (5-4) Components of GPS receivers.

After the signal enters the antenna, it is transformed into a machine code consisting of two numbers 0, or 1. These are then translated using a system known as Receiver Independent Exchange Format (RINEX).

5.2 Global Positioning Systemand Photogrammetry

Global Positioning System (GPS) can be used in conventional photogrammetry, or digital photogrammetry, in two different ways:

- 1. The establishment of ground control points in the photogrammetric project target area as explained in Chapter three.
- 2. Use to supplement ground control needed for photogrammetric applications or for aircraft navigator during photography.

5.2.1 Use of GPS in Photographic Aircraft

In aerial images acquisition, the Global Positioning System is used inthree various ways:

- i. Used to control the navigation of the survey flight,(pin pointing).
- ii. Determination of the trajectory of the photographic aircraft.More precisely, the determination of the position of the camera lens at the time of the image acquisition.
- iii. Determination of the attitude of the photographic aircraft.

5.2.1.1 The Use of Navigation Global Positioning System for Survey Flights

The Global, Positioning System in photogrammetric observations is used to find an informationabout the centre of the camera at the moment ofphotographsexposure. These informations are require to:

- 1- Find the actual position of the perspective centre point. This can be obtained by locating the camera at a moment of acquisition of the photograph.
- 2- Good follow-up along the axis of aviation, and then make sure the theoretical values for the amount of end overlap on one strip and side overlap on adjacent strips are appropriately

5.2.1.1.1 Set GPS Navigation Observation Methods

To complete any observation process, there are specific techniques used to obtain the required information. There are two two types of positioning exist, the; absolute positioning and the relative positioning. The precision of the positioning varies according to the type of

observations, from a positioning accurate at the level of a fewmeters to a relative precision of the order of 2 mm $\pm 6^{-10}$ D to 10^{-8} D using the measure of phase; (Michel Kasser, et al, 2002).

Generally precision depends on the purpose of the photogrammetric survey project and on the observation methods. Accuracy of GPS navigation observation can be improved by using a computational method known as differential corrections. Its corrective values can be obtained whenever necessary by any of the following ways:

- 1. Use the network stations which broadcast these corrections at different frequencies.
- 2. Linking GPS receptors signal with ground observation stations which have known coordinates where the corrections are calculated and the values of these corrections are they sent.
- Correctionvalues can be obtained directly from the special service stations corrections. This method is one of the most commonly used methods in photogrammetric observations for its ability of monitoring atmospheric conditions.

5.2.2 Locating the Camera Position

Global Positioning System in an airplane provides high precision camera positions at the time of exposure that are used in aerial triangulation. There are some known problems and errors which have to be solved when using kinematic GPS positioning of a camera in an airplane.

The GPS receiver records ephemeris data emitted by satellites to determine the position of the receiver. However, the position of the camera is required. The GPS antenna offset, or eccentricity vector, has to be measured while the airplane is on the ground. GPS phase measurements have the problem that the initial number of integer cycles, which compose the range to the satellite, is unknown. Known as initial phase ambiguity. This number can be determined by making stationary recordings before take-off and determining the baseline from the stationary receiver on a reference point to the airplane receiver. GPS signal disruption, called loss of lock, spoils the ambiguity solution. Loss of lock may occur when the

airplane wings interrupt signals over many seconds, (Bethel et al, 1996).

There are mathematical relationships between the reference ground control points, GPS antenna, and the signal devices receptors on the GPS plate. This mathematical relationship is known as Trajectography, shown in Figure (5-5).

Figure (5.5) Use of GPS in the photography process.

It is known that amount of signal noise coming from the phase measurement, is slightly different compared to the signal noise coming from the pseudo-rang measurements. Therefore, precision of the pseudo-rang can be improved by reducing the noise, using smoothing methods (Michel Kasser, et al, 2002).

The ambiguity resolution when using the differential method, depends on two factors; the first one is the number of receptors and the fixed reference which are used. The second is the distance between these receptors. Whenever the distance between the receptors is short (range between 10-30km), leads to a good connection between satellites and receptors, without any problem in ambiguity resolution. If one of the receptors is a mobile receptor, this may lead to an interruption of the signal (cycle slip). Therefore, the GPS devices equipped with an initialization system to resume the communication with the satellite automatically by using the On The Fly' (OTF) ambiguity resolution can be used to resolve ambiguity.

5.2.3 Measurement of Airplane Attitude

Determiniation of the air plane attitude salways obtained by measuring the time of arrival of a signal wave using a number of antennas. There are many types of antenna that can be used with

the GPS devices. The best is the antenna that provides angular precision, by measuring the rotational motions, and thereby finding the values of angles of rotation omega (ω), phi (Φ), and kappa (κ). Linking the file of acquisition of images with the camera center coordinates(X₀, Y₀, Z₀), measured by GPS system, is known as Inertial Measurement Unit (IMU) file.

5.2.4 Use of GPS in Aerial triangulation

To make sure of photogrammetric projects accuracy and compliance with the real world results are linked with reality at the moment of photographs acquisition. In photogrammetry, generally, Ground Control Points (GCPs) are considered as liaison that relate the real world with the photographs. Therefore, we need a number of GCPs that depends on the stereo-model. For example, to adjustment of stereo-model requires two horizontal control points and three vertical points. It is obtained either by using field surveying or areal triangulation techniques.

In conventional photogrammetry, aero-triangulation obtained by analytical photogrammetric methods. In digital photogrammetry new control points are obtained automatically, without need to complex and monotonous calculations using only the tie points, between the adjacent images in overlapping areas.

There are many softwaresused for digital photogrammetry. When using digital methods, the number of points required can be reduced to less than what can be obtained, with the required precision to implement the project. For example some softwares only need to adjust one ground control point to use into five or six couples to horizontal positioning, and one vertical ground control point to use into one couple to determinate the vertical height. The process of reducing the number of control points which are used with increasing number of couples is accommodated depends on two factors.

- a) The purpose of the photogrammetric survey project, and engineering techniques which are used to ensure the required accuracy.
- b) Proportion of the end overlap, and side overlap between the images.

The average proportion of end overlap could be up to 65%, while the average proportion of side lap in some cases up to 35%. Increase of the side overlaps percentage, directly leads to the increase of the number of used images. Therefore, every point is found in three adjacent strips, but at the end it doesn't permit an appreciable decrease in the number of control points below

half of values needed for normal aero-triangulation. On the other hand that lead to a much better reliability and precision is improved as well (Thierry et al, 2002).

5.2.5 Complementary Observations for A photogrammetric Project

Besides the GPSsystem observations, there are some necessary measurements which are extremely helpful to the success of any photogrammetric project. These measurements can be divided into two types the first one is the measurements during the process of aviation and the second is the measurements during the process of images acquisition

5.2.5.1 Measurements during the Process of Aviation

The measurements during the process of aviation can be used in both, conventional photogrammetry and in digital photogrammetry. The most important of these measurements at all is the height of the airoplanee above the datum surface, which can be obtained in the traditional photogrammetry in the past by barometric observations. In recent years the flight height is determined using GPS ,on board in the aircraft. There are some photogrammetric problems which can be solved by using the vertical measured distance from an aircraft to the ground surface, such as image scale. The scale of image is the ratio of a distance on the image to that distance on the ground. An aerial image is a perspective projection and, as will be demonstrated herein, its scale varies with the variations in terrain elevations. At first the scale of a vertical analogue image can be computed from the equationsbelow.

$$S = \frac{f}{H'} \text{can be used in flat terrains.}$$

$$S = \frac{f}{H'-h_i} \text{can be used in variable terrain heights.}$$

$$(5.1)$$

Where: *S* is the image scale,

f is the camera focal length,

H'is the flying height above datum, and

Hi is the elevation of point (i) above datum.

Secondly, the scale of a digital image may be expressed in terms of Ground Resolution Distance (GRD), and the pixel size of lenses measured by micron (μm) or (line/mm) using the following equation:

$$S = Pixel Size/GRD \tag{5.2}$$

5.2.5.2 Measurements during The Process Of Images Acquisition

The second type of the complementary measurements are taken at the same time of photographic exposures,todeterminate respectively the (X_0, Y_0, Z_0) and (ω, Φ, κ) ,position using GPS and rotation elements of camera lens using an Inertial Navigation System (INS). The orientation of the camera, based on theuse of accelerometers whose values are integrated twice to get the displacements,and on gyrometers or gyroscopes to measure the variations of attitude, they have by their very nature a random drift more or less proportional to the square of the time.

The GPS measurements come from receiving signals from satellites to GPS antenna. Therefore, accuracy depends on the size and shape of the antenna. The accuracy of measuring the vertical distance of each antenna should be less than 1cm. This implies as antennas on wings, the nose and the vertical stabilizer of plane cannot be distantby more than 10meters; a precision of measure that is hardly better than some millimeters, (Kasser and Egels ,(2002).

5.2.5.3 Determination of the Location by GPS Systems.

The required precision to locate the camera position at the time of image exposure depends on the geometric elements which are extracted from the image integration with complementary measurements, such as image scale, flying height above the surface datum, and pixel size of the lens.

Design speed of the aerial photography plane, may be entered as one of the factors that also affects precision of the determination of the location of the camera. Overall, a precision can range between 5 cm and 30 cm when the plane's speed is between 100 and 200 m/s .A differential GPS system is used to find in a continuous positioning basis during the movement of the aircraft, every fraction of a second, using the Kinematic differential methods (DGPS).This is based on the measure of phase of at least four satellites. The principal consist in solving the ambiguities by an initialization, then to observe the points a few seconds while preserving the signal on satellites during the flight process, therefore the same integer ambiguities.(Kasser and Egels. 2002).

5.2.5.4 The Relationship between GPS antenna and Camera Lens

There is a strong relationship between the GPS antenna and the optical center of the camera lens, to get a good synchronization between them for the moment between image capture and recording the coordinates which are obtained by the aircraft GPS system. Mathematically these relegations can belinked by the following equation:(Thierry et al. 2002)

$$C_0 = A_n + V + R \cdot E$$
 (5.8)

Where: C_0 is the optical center of the camera lens.

 A_n is the position of the GPS antenna.

V is the residual systematize of the measures.

R is the rotation matrix of the camera.

E is the link vector ranging from the GPS antenna to the optical center of camera in the aircraft reference system.

CHAPTER SIX

DIGITAL PHOTOGRAMMETRY WORKSTATION

6.1 Introduction

As a result of the developments that occurred in the photogrammetry, due to the prosperity progress and which happened in the computer science fields, led directly to a radical change to the photogrammetric labor market.

Currently, it became possible to deal with several kinds of images, regardless of the source that was used to acquire the images.By that we mean satellite images, analogue aerial images, or digital images specifically and to deal with the unique ability of processing maps generally.To do so, necessary amendments to the existing analytical plotters using high performance computer hardwares, which operate in an integrated environment with specialized software have been made. Accordingly, the specialized companies in the field of photogrammetry competed to produce what is known as Digital Photogrammetric Workstations (DPW_S), also called softcopy workstations. These workstations adopted, in their approach and behavior, the basics and concepts of the Analytical Plotters with the addition of some improvements,(T. Schenk,2005).

6.2 Ergonomics of Digital Photogrammetric Workstations

The concept of the Digital Photogrammetric Workstation generallyincludes the relationship between thescience photogrammetry of and Softcopy Workstation technologies because they work in one environment system, beginningfrom data entry, through data processing and ending with the output results. The packages used in all processes can be divided into three main packages, as shown in Figure (6.1) below.

▼

Figure (6.1) Digital Photogrammetric Workstation and Photogrammetry equipment

- Package 1:only contains digital images of the target project area, obtained directly using electronic cameras or aerial photographs digitized using a scanner.
- Package 2: represents the backbone of the system. It contains the digital Photogrammetric Workstationused for the purpose of processing digital images, the three -dimensional measurements procedure, and the three- dimensional viewing system.
- Package 3: contains the required devices and equipments which help in getting the final products of the photogrammetric project such as, film recorder to produce hardcopies in a raster format (orthoimage) and a plotter to provide hardcopy production in a vector format.

6.3General Photogrammetric Algorithms

To implementation the photogrammetric project it was not necessary to reinvent photogrammetry to make it digital. Analytical photogrammetric equations such as the collinearity or coplanarity equations are reaching to the same output results.

There is more than one system are 'multi-sensor', that is to say that they can be use not only process aerial images, but there are many types of geometry image are similarity to the processed aerial image characteristics for example the images from scanning sensors or from radar. Mathematical models are required to setting up the scanned photographic or the photographs from radar system of sure are different from the traditional photographic perspective, possibly parameter able by the operator.

Whatever their origin, once images are set up or georeferenced, the function 'terrain image' allows one to transmit, in real time, the displacement of the terrain introduced with the mouse or the cranks.(Kasser and Egels, 2002).

However, for economic reasons,gain time, and Saving money and effort, the analogue or analytical photogrammetry is converted to digital photogrammeytry. In order to beintegrated in one system, this requires that many assisting functions, such as image processing function and shape recognition, be used.

6.4 Digital Photogrammetric Workstation Component

To date there are apparent differences between Digital Photogrammetric Workstation devices in global markets. This is, because there is more than onecompany, widespread around the world produces such devices. It may, therefore, be noted that there are a differences in prices, depending on the quality of the product. All of these devices must be available with the following basic parts; a graphic workstation with enhanced image processing, memory and display capabilities including in must but not at all cases, a facility for stereoscopic viewing (Walker, 1996). These units are perfectly separated from each other, but they work in an integrated form to build the system configuration body. This can be illustrated in Figure (6.2) follows (Miller, (1993)).

Figure (6.2) Digital Photogrammetric Workstation system

1. Central Processing Unit (CPU)

This unit contains a robust processor and a huge memory acting as storage system, in order to accommodate the huge number of images which are used to cover the project area. In addition, this unit is the one responsible for data and image processing, which is then stored and retrieved

and displayed when we needed.Based on these it is possible to differentiated between these three previously mentioned tasks as follows:

1. Operating System

For real time processing, the suitable operating system functionality should be of 32 bits. To improve the operations the system uses allot of menus similar to these found in an analytical plotter which allows for communications between the user and the system. These are displayed on the screen of the terminal. In addition a strategy for giving advice to the user is always heavily incorporated.

One special feature of the operating system is the point groupingcapablity, mentioned in Chapter four.

1- Capacity Memory

The inventory of a large number of required images processed and the extraction of information, the system must have a sufficient memory. Overall, an ideal memory required to be provided in Software Workstations must be greater than 64 MB of RAM in capacity (T. Schenk,2005).

2. Storage Systems

The number of images required to cover a given photogrammetric project depends on the dimensions of the target area of the project generally, railges this from a few hundred images in medium-sized projects to thousands of images in large-sized projects. This leads to overstrain and may fill the existing storage system. As result, an image compression system should be used to reduce the space required to store the images. For example we require 256MB to store one black and white image with 16K X 16K resolution (pixel size approximately 13 μ m). When a compression rate of up to three is used the same previous image is stored in only 80 MB. Consequently, the space required to store an image is greatly reduced without any effect on the geometry of the image.i.e a compression rate of times reduces the required memory space with a factor 3.2.

Now there are many electronic media which are used to save files and images which mayvaryin terms of capacityand quality such as the following ways.

i. **Hard Disks:**The two types (external and internal hard disks) are characterized by a high storage capacity and fast performance.They are used in applications of roaming and displaying the images related to the project.

ii. **Optical Disks:** These may be weak in terms of performance speed, and lack of storage possibilities compared with the first two types. Its advantages are their low cost and availablity for use by everyone, such as CD-ROM, CD-R (writable), and flashes.

iii. **Magnetic Tapes:** These options of the existing storage systems are similar to a large extent, to the optical disksin terms of speed and performance functionality.For these reasons, they were used in the past as backup devices. However, they recently became a much used in online applications.

3- Graphic System

This system is able to bring the data and work to view or change the images displayed on the screenat full pelt.

4- Viewing System

One of the most important characteristics of the Digital Photogrammetric Workstation system is the possibility of seeing a 3-D model, by more than one person at the same time by using the stereoscopic viewing unit attached to the system. To achieve a three-dimensional viewing stereoscopic composition condition, the system must be able to provide a mechanism to see the left and right conjugate images in isolation from each other. There are more than one technique that can be used to achieve this condition, such as spatial , spectral or temporal illustrated below, (T. Schenk, 2005).

- i. **Spatialtechniques:** These are done by using a pair of computer screens to display the left and right conjugate images the first screen has a horizontal polarization infront of it, and the second one has a vertical polarization infront of it. There is, also, a reflecting mirror between the two screens. To achieve a stereoscopic viewing, the operator must weara special glasses containing horizontal and vertical polarizing filters.
- ii. Spectraltechniques: These techniques are sometimes called anaglyphic system which relies on the use of the three main colors; green, blue, and red for their ability to produce a 3-D model. The observer uses a pair of filters in his eyes to enable him to distinguish the right image from the left one.
- iii. **Temporal techniques:**These arethe most knownforphotogrammetristsby the name of stereo-image alternator system. This type of viewing depends on using spectacles equipped with alternating shouters synchronized with the alternating images on the screen. The alternative display of the two images is achieved through a device using

liquid crystals letting the image passes towards the eye to which it is destined, (Miller, (1993)).

Generally in the professional systems, only this last solution is used for their better ergonomics. The quality of the stereoscopic visualization depends on the type of the screen frequency, because there are two alternative frequency discerned by the operator. To achieve the stereoscopic viewing, there are two solutions: The first one consists of liquid crystals placed directly before the operators eyeand synchronized by a wire or by infrared link. This is a better solution from the economicalview because it is a low-cost solution. The second one is that e liquid crystals are placed directly on the screen. The user uses a couple of passive polarized glasses. This helps the operator to look at the stereoscopic screen and the command screen simultaneously. This is a comfortable solution but it is more expensive when compared with the fist solution.

To distinguish between the viewing systems, refer to the following table, (Schenk, 1998).

Separation	Implementation
	2 Monitors+ Stereoscope
Spatial	1Monitor + Stereoscope(split screen)
	2 Monitors+ Polarization
	Anaglyphic
Spectral	Polarization
	Alternate display of left and right image
Temporal	Synchronized by polarization

Table (6.1) Distinction between separate images viewing systems

2. Measuring System

In conventional or digital photogrammetry and although the viewing system and the measuring system, each has its specific concept and functionality, the measuring system depends on the viewing system components,

In a Digital Photogrammetric Workstation, 3-D cursors that are created by using a pattern of pixels, such as cross or circle, are used for the measurement of ground control points, check points, and tie points on one or more overlapping images. The 3-D cursors can be divided into three categories:

- Point measurement views.
- Point measurement cell arrays.
- Point measurement tools.

The point measurement tool allows for the display, on the screen, of the two conjugate of two images contained within a block. Each image has associated with it an overview, main view and detail view. In most of the digital photogrammetric software, the 3-D cursor located is linked with the overview and main view. This makes it easy to use propertyzoom in and out of the image area and roam around the image to identify the image positions of ground control points, check points, and tie points.(Zomrawi, (2005)).

There are several purposes for the use 3D cursors including:

- > Collecting and entering ground control point and check point coordinates.
- > Measuring the image positions of ground control point, check point, and tie points.
- > Defining the statistical quality of of the ground control point.
- Launching processes associated with automatic tie point collection and aerial triangulation. (Leica, 2008)).

6.4.4.1 Quality Controlof Measurements

One of the most important characteristics of ,a measuring system is that it enables the control of observations quality to be carried out as early as possible. Moreover, the system direct the operator to improve the geometric quality of the work, as in the general specifications for the implementation of the project. Quality of the model is checked by computing the reliability based on Baard's theory. The gross errors are always detected by computing the standard errors of the residuals and by using the t- test.(CASPARARY , 1987).

6.5 Basic System Functionality

The basic system functionality is a group of functions working in a circuit integrated system this is one of the aspects to improve the operation of the Digital Photogrammetric Workstation system.Figure (6.3) below illustratesthis system circuit.

Figure (6.3) Circuit integrated functions of the system

1. Archiving

This function processes a stored compressed digital image or decompresses a stored image.

2. Processing

This function is able to do the process of adjustment of the contrast' or the brightness of positive or negative inversions. Based on the color table of images, it works in real time and don't require the creation of new images. On the other hand, this function has the ability to applyconvolution filters, contours improvement, and smoothing. Also this function plays a great role in the processes of enhancement and image resampling.

The process of image resampling depends on the visualization of the stereoscopic model whose conjugatepoints are acquired by different angles because the two images which contain these points have different scales and orientation. This is a very tedious operation for operators. Performance of usual image matching techniques are degraded, also, by this type of images. Figures (6.4) and (6.5) ,respectively, illustrate the process of visualization and how to do the resampling process for these images by Epipolar resampling method.

Figure (6.4) visualization of stereoscopic model

Figure (6.5) Epipolar resampling

In Epipolar resampling appreciably that the optical axes of images had been made parallel and perpendicular to the basis. After completing this stage, the two points of the left image will have their counterparts in one line of the right image, and the transverse parallax is constant. The lines of intersection of the planes containing the basis and the two image planes are called *Epipolar lines*.(kasser and Egels,(2002)).

6.5.2.1 Advantages and Disadvantages of Epipolar Resampling

Generally in photogrammmetry there are many techniques that use to resample the status of the images in order to configure the models which represent the real world in the target project area, at the moment of images' acquisition. The Epipolar resampling method is considered as one of the most used techniques, because it has many advantages. These are:-

- It has only one couplewhich makes cutting of images possible and very easy. It also deals only with the overlapping parts which the model.
- Provides the user with very little effort, which add to the comfort of the user.
- Accelerates the work of images correlation.
- Can be used for the extraction of Digital Terrain Model (DTM).

3. Displaying

This function enables the operator to display the image or a 3-D model on the system screen. When the size of the image required to be displayed is larger than the display screen, it isnecessary to have a mechanism that works to displace the screen display in order to become suitable to accommodate the entire image. The last operation can be carried out by using one of these two ways: (Schenk, 1998).

- 1. Image stabilization and moving the cursor to carried out the measurement.
- 2. Cursor stabilization and moving the image.
- a- Image Stabilization Method.

The success of this method depends on the geometry of the image resampling process. This is because if images are not reprocessed geometrically, leads to the appearance of some parallax when the cursor of the measurement is moved and the parallax is eliminated only from the centre point of the image. This makes the pointing impreciseif not impossible.

b- Cursor StabilizationMethod.

This method requires the calculation of the mobile image and the central cursor configuration which recalls the analytical devices. On the other hand, this method is preferable to dedicate the maximum surface of the stereo screen to display the two images. In additionthis method is suitable for to displaying every point in all images when carrying out aerial triangulation.

4. Roaming

The main purpose of this function is to carry out the processes of zoom in and zoom out for all or part of the images or a 3-D model. One of the virtues of this function is usually to allow to point with a better precision than the real pixel of an image. However, this may be lead to a decrease in the resolution of an image. Besides that, ablurred image can be obtained at a magnification processwhich is considered as one of the defects of roaming. Unfortunately, the solution of this problem is not available in standard graphic libraries.

In the case where the image is fixed, it is enough to resample the cursor so that it appears positioned between two pixels, which require that it is even-formed of several pixels. If the image is mobile, then it is the totality of the displayed image that it is necessary to recomputed. Concerning the rear zooms, they are immediately calculated or generated in advance under the

shape of a pyramid of physical images of decreasing resolution as shows inFigure (6.6) below. In the case of image pyramids, one won't be able to zoom back at any scale.,(kasser and Egels,(2002)).

Figure (6.6). Zoom pyramid

5. Measuring

This function contains the 3-D measurement system which is also carry out able to the process of measurement for points and features.

6. Super positioning

This function enables the overlap of measured data or digital maps on the displayed images. The measurement is be performed by superimposing a pointing index, whose color will be adjusted automatically to the background image.

6.6 Classification of Digital Photogrammetric Workstations

The widening circle of engineering projects that can be carry out using digital photogrammetric techniques, increased the demand for the use of digital photogrammetric workstations. This lead to an,the is increase in the number of companiesmanufacturing such devices around world.

Digital photogrammetric workstations emerged in the year 1955. Since there, the photogrammetric field saw the birth of many digital photogrammetric workstation systems, including low quality commercial devices, withlow prices. On the other hand, also there are also high efficiency devices with high costs.

Photogrammetrists are diligent in setting a clear criterion for the classification of these devices. They classified them into two main classes. The first category is based onfunctionality and Performance and the second category is based on the installation of hardware components (Schenk, 1998).

6.6.1 Category Based onFunctionality and Performance

a. Performance and function of an analytical plotter with automatic feature extraction.

- b. Performance and function of an analytical plotter with computer assisted feature extraction.
- c. Systems designed for specific applications with high Performance but limited functionality.
- d. Systems designed for specific applications with limited Performance and functionality but have low costs.

6.6.2 Category Based on Installation of the Hardware Components

- **a.** Stereo DPW: used for interactive stereo plotting. Include high end and lowend system.
- **b. Mono DPW:** used for planimetric plotting for example, by digitizing orthophoto. High information may come from DEMs.
- **c.** Aerial triangulation DPW: have a specific functionality to perform point transfer and the measurement of features in multiple images as automatically as possible.
- **d. DTM DPW:** provide for automatically derived DTM with the possibility of interactive editing and quality control.
- e. Orthoimage DPW: have special module for orthoprojection and mosaicking. Such modules are usually added to systems developed for remote sensing applications.

6.7Applied Functionalities

Each functional application that can be applied using the techniques of e conventional or analytical photogrammetry, are now available for application in the mosteasiest and quickest way. This is achived by using the techniques of digital photogrammetry. Moreover, there has become a possibility for job re-use at any time without any geometric changes.to the opposite of that, there has been addition of more new functions in the points and features measurement, improved visibility, resampling of images geometry for the conjugate points...etc, which profit from the digital nature of the image.

The geometric quality of the photogrammetric products such as vector data base, DTM, orthophotos, are calculated in an independent shape on the digital photogrammetric workstation.Target quality, when implementing those products, is affected by the quality of the following basic components:

- Specifications for the used films.
- Specifications for the used digital camera.
- > Type and resolution of the used scanner to digitize analogue images.
- > Geometric distribution of the control points in the target area.

- Quality of the control points.
- > Accuracy of points used for relative and absolute orientations.

Digital photogrammetric workstations are, generally, considered as total photogrammetric work devices able to carry out all kinds of photogrammetric applications, including basic and advanced applications, starting from the management of data until the final outputs required.

6.7.1 Data Management

Digital photogrammetric workstations are characterized by their ability to interact withall kinds of black and white and color images, no matter the source the way acquiring the digital images. They are able to deal with various kinds of scanned analogue aerial images, various classifications of satellite images, and the images coming from various types of digital cameras. The main factor which is based upon the integration of digital photogrammetric workstations and digital images is the image resolution which depends on the size of the pixel and, its number of bits which are digitally detected. Therefore, the black and white 8 bits and color 24 bits images can easily be read by the various digital photogrammetric workstation systems.(Jasim.(2006)).

6.7.1.1 Format of used Images in Digital Photogrammetric Workstation

There is more than one preservation of the digital image file formats, absorbed in digital photogrammetric workstation systems, as a result of different techniques used to get the digital image. The following images represent the most used images in digital photogrammetric systems.

Images Saved as A JPEG File

The term JPEG is an abbreviation designed as an image compression system which is known as the Joint Photographic Experts Group. It is one of the most common formats used with digital cameras. Of the most important advantages of using JPEG format are:

- a) All programs dealing with images are able to open image files of type JPEG.
- b) JPEG image file is relatively small which means the possibility of storing a large number of images in memory available.
- c) JPEG image file take a short time to save in a digital camera this allows a large number of images to acquired quickly
- d) JPEG image file does not require many processingsoftwares.
- Images Saved as TIFF File

TIFF is an abbreviation of Tagged Image File Format where the image taken by a digital camera is stored. In this case, the file is not compressed but there is possibility of compression after processing. One of the most important advantages of using TIFF formula is suitable formula to deal with the photographs need to processing

Images Saved as RAW File

The word RAW is a photographic term which meansthe exhibition of a film to light before acidification process. The file RAW is opened through a program that contains natural file converter, which is available in many image processing programs. After conducting the necessary processing, the file can be stored in another format such as JPEG or TIFF file. The disadvantage of a RAW file format is thatthe file size is large which means a large memory is need. On the other hand one of the most important advantages of RAW format is that the image is saved without any processingwhich means that the RAW file remains as it is without any changes even if the images are processed once or more.

6.7.2 Basic Photogrammetric Operations

Basic operation contain all the primary procedures required for the adjustment and rectification of e models.

6.7.2.1 Interior(Inner) Orientation

The main goal of the interior orientation is to make the measured image coordinates system parallel to the space coordinates system. Therefore, inner orientation concerns with the work of reestablishing the relationship between image coordinate system and pixel coordinate system (always necessary for images coming from a digitized classical aerial image). This requires the definition of the internal geometry of a camera to conform with the geometry that exists at the time of image acquisition. The actual basic parameters which are required to implement the internal orientation procedure are:

- a. The focal length of the used camera.
- b. Perspective centrecoordinates of the used camera.
- c. The calibrated coordinates of the principal point (x_0, y_0) . i.e. Coordinates of the principle point at the moment of image acquisition.
- d. The coordinates of the fiducial marks.
- e. Lens distortions.

The actual values of these parameters are associated with the internal geometry of the image acquired by an aerial camera as illustrates in figure (6.7) where,o,represents the principal point and,a, represents an image point.

Figure (6.7) internal image geometry

The relationship between pixel coordinates system and image space coordinates systemis depends on the method used for digital image acquisition which may be either direct or indirect.

1- Indirect method

An indirect method means that the digital image is obtained from the scanning process using a scanner. The mathematical model that relates the two types of coordinates is carried out by computing a six parameter, 2-D affine transformation, as in the following equations.

$$x = a_1 + a_2 X + a_3 Y$$

$$y = b_1 + b_2 X + b_3 Y$$
 (6.1)

Where

a₁, a₂, a₃, b₁, b₂, and b₃ are the 2- D affine transformation parameters those are two scale factors, two translation and two rotations.

x, y are the image coordinates carried out from the coordinates of the image fiducial marks.

X, Y are the pixel coordinates obtained from the matrix of grey values; X coordinate is the column and Y coordinate is the raw of the grey matrix.

Therefore, these parameters of transformation include the angle of image rotation resulting from the scanning process as shown in Figure (6.8) below.

Figure (6.8) Pixel coordinates system versus image coordinates system

2- Direct method

The direct method means a digital image obtained using digital camera. The relationship between the pixel coordinates system and image coordinates system is constant and is determined during the camera calibration procedure.

The basic interior orientation variables which have been mentioned before, it can be defined as follows:

Lens Distortion

Lens distortion happens when light rays, passing through the lens intersect the image plane at

positions deviant from the norm. There are two types of distortion that may occur:

- i. Radial lens distortion (Δr).
- ii. Tangential lens distortion (Δt)

Figure (6.9) Radial and tangential lens distortions

Radial lens distortion (Δr) shown in Figure (6.9), causes distortion along radial lines from the principal point (o). On the other hand tangential lens distortion happensat right angles to the radial lines from the principal point (Lieca, 2008).

Usually the tangential lens distortion is very small in value, so always be ignored except in the jobs that require high accuracy such as medicine and industry. The radial distortion effects are the most serious and there, have to be corrected using different methods .

1. Graphical methods

The required correction is readdirectly from the radial lens distortion curve drawn from the calibrated focal length and the radial distance as shown in figure (6.10)

Radial lens distortion Δr (µ)

Figure (6.10) radial lens distortion curve

$$r^{-} = r - \Delta r - (6.2)$$

r :Measured radial distance.

 $\overline{\mathbf{r}}$: Corrected radial distance.

 Δr : Radial lens distortion.

2. Interpolation method

The radial lens distortion can also be obtained from interpolated corrections extracted from a table containing measured radial distances and their corresponding Δrs .

3.Numerical method

The radial lens distortion can be carried out numerically using anapproximate polynomial of the form: (6.3)

$$\Delta r = k_1 r + k_2 r^3 + k_3 r^5 + k_4 r^7$$

r :Measured radial distance

K₁, k₂, k₃, k₄...etc are coefficients of approximate polynomial that are to be determined.

 Δr is the Radial lens distortion.

6.7.2.2 Exterior Orientation

The exterior (outer) orientation process contains the relative and absolute orientations' procedures. Both types of orientation are required to adjust, level, and scale the created 3-D model.

6.7.2.2.1 Automatic Relative Orientation

The relative orientation of two overlapping images describes the relative position and attitude of two photographs with respect to one another. It is 5 parameters all photography rays of conjugate features intersect, and these intersections from the model surface. After interior orientation is completed for both photographs separately. The two photograph coordinate systems are explicitly is known. Therefore, relative orientation is non semantic task, and arbitrary conjugate features can be used for the computation of the orientation parameters.

Automatic relative orientation, can be defined as the process which is describe the located x_0 , y_0 , and z_0 , beside to the angular rotation ω , Φ , and κ for the camera at the moment of image acquired. As shown in Figures (6.11) and (6.12) below. (Tang and Heipke, (1993)).

Automatic relative orientation approach should be ideally work with multi-temporal, multispectral and multi- sensor imagery. The input should only consist of the photographs themselves and the result of interior orientation, the output are the five orientation parameters, the 3-d of the conjugate features and corresponding accuracy measures.

A generally, automatic relative orientation softwares should be fast, accurate, robust and reliable. Further, it should not require any approximate values.(Heipke, (1996).

Figure (6.11) elements of exterior orientation

Figure (6.12) rotation elements omega, phi, and kappa

Omega is a rotation about the image x-axis, phi is a rotation about the image y-axis, and kappa is a rotation about the image z-axis. Rotation sign depends on the direction of the rotation .i.e. rotation being positive if they are takenwith clockwise and being negative if they are taken anticlockwise. Image z axis equivalent to the camera focal length. The \overline{x} , \overline{y} , and \overline{z} coordinates are parallel to the ground coordinates system.

In digital relative orientation, the process of re-correcting conjugate rays coming from a pair of overlapping images automatically happens. The parameters of relative orientation are needed for epipolar resampling of digital images. Therefore, automatic relative orientation is an essential procedure for the automation of further procedures in photogrammetric stereo processing. The procedure is completed by fixing one cursor of a stereo positionwhile moving the second cursor.

Figure (6.13) gives the algorithms used for a practical application of automatic relative orientation by using digital photogrammetric workstation systems (Tank and Heipke, 1994).

Feature exraction

Figure (6.13) Concept of the algorithm for automatic relative orientation

Where:

- Additional information: Additional information is used to derive initial values for the unknown orientation parametersusing the method of local forward intersection.
- Feature extraction: is the determination of images of distinct points, edges (or lines), and areas.
- Feature Matching: is the process of finding the corresponding feature pairs.
- Computation of relative orientation Parameters: After feature matching, the parameters of relative orientation are calculated in each pyramid level in a leastsquares bundle adjustment using the candidates for conjugate points as observations.
- Evaluation of results: results are evaluated by computing theoretical standard deviation values of the six orientation parameters.
- Pyramid levels: The relative orientation procedure starts from the highest pyramid level with the smallest image size and the lowest resolution, and ends at the lowest level with the original size and resolution.
- Window Tracking: The idea of window tracking is based on the consideration that a feature from a given level can only be one of the following:
- An indication for a good feature on a lower level,
- ➤ a representative of several good features on a lower level, or
- ➤ a pseudo-feature which disappears later.

6.7.2.2.2 Automatic Absolute Orientation

Most systems calculate the relative and absolute orientations by the simultaneous use of the collinearity equations, illustrated in Chapter Two. After relative orientation, the three dimensional model surface is available through the stereo viewing. An automatic module, however, obviously does not have stereo viewing capabilities and thus, unless the surface has been explicitly extracted, for example as in the form of DTM, it is not available. Therefore, there are two basic purposes are achievable where carrying out the process of absolute orientation in general photogrammetric idea.

- It assists in leveling of the model.
- It assists in the process of model scalling.

Automatic absolute orientation demonstrates the relations between images or model coordinates system and the object coordinatessystem. Therefore, there must be found a number of ground control points, to complete the absolute orientation process.

6.7.3 Advanced Photogrammetric Applications

Advanced photogrammetric applications include all extra techniques which are used as assistance methods to improve the photogrammetric applications, such as automatic aerial triangulation, digital terrain models, ortho-images... etc.

6.7.3.1 Automatic Aerial Triangulation

The main goal of the aerial triangulation isto increase the least number of control points, physically located in the overlapping area between the images, to assist in the process of georeferencingof images in a form of blocks or image sets.

In digital photogrammetric system the same calculations and formulae are the same as those used to complete the aerial triangulation in analytical photogrammetric systems.

On the other hand, in automatic aerial triangulation, the reference points can be measured automatically and interactively with the assistance of a multi windowing design. Each point is measured automatically on the image where it appears. All images containing the same point are displayed in mini windows, directly zoomed on the area concerned. Therefore, all points' positions can be measured from the window where it appears.

In automatic aerial triangulation, the measurement of any tie point, identifiable on a pair of or more, overlapping images, whose ground coordinates are not known, is very automated.

There are many types of modern softwares, designed by multi different companies, are used in digital photogrammetric workstation systems. These have been developed to carry out the automatic aerial triangulation more effectively to meet the shortfalls increase the reliability and effectiveness of the traditional systems. The Leica Photogrammetry Suite (LPS) is one of these softwares which works in integration with ERDAS software. This software has manyadvantages and characteristics, when applied to carry out aerial triangulation such as(LPS Users Guide, 2008):

- Automatic block configuration: Based on the initial input requirements, this software automatically detects the relationship of the block with respect to image adjacency.
- Automatic tie point extraction: Extraction of the candidates of tie points.
- Point transfer: All conjugate points are automatically identified on the image where they appear.
- **Gross error detection:**The gross errors in measured points are automatically identified and removed before they are used in the solution.
- **Tie point selection:**The intended number of tie points defined by the user is automatically selected as the final number of tie points.

6.7.3.2 Digital Terrain Models (DTMs)

The term DTM refers to those datasets which originate as point features while the term DEM refers to those datasets which originate as continuous surfaces. Therefore, Digital Terrain Models (DTM), is a representation process, to dipict the terrain reliefsand the relative heights of a part or all of the earth's surface in digital forms.

Terrain or etherrelief, means the physical shape of the earth surface in the vertical and horizontal dimension levels. Therefore, there are many expressions that can be used to illustrate the concept of terrain, or earth, relief. These may be in terms of elevations, slopes, and orientation of terrain features on the surface of the earth. Generally, the terms Digital Terrain Models (DTM) and Digital Elevation Models (DEM) are often used interchangeably in Geographical Information System (GIS) sciences.

Representation of the terrain is one of the arduous tasks that are difficult to produce manually. Therefore the Digital Terrain Models are used as supporting data to the restitutions and or as a product.(Weib and Heller (1990)). All of digital photogrammetric workstations are perfectly designed and adapted to control and correct DTMs obtained from automatic techniques. In addition to that there a possibility of modifying the existing digital terrain models, by fixing the DTM measure mark, which leads to save effort evolved. However, this process is of limited benefit for many reasons; such as the frequently excessive generalization which may lead to non-representation of the objects over the ground surface and false correlation may happen especially when the signal noise ratio is slow. So, to complete the process of a DTM, and outlook to a really represents the terrain and to give a real shape of the surface of the earth these the created Digital Terrain Models must includes the following tasks, as illustrated in Figure (6.14)below (Weibel and Heller, 1990).

- **DTM generation:**Sampling of original terrain data among the diverse observationsformation of relations.
- **DTM manipulation:**Rectification refinement of DTM.
- **DTM interpretation:**DTM analysis, and information extraction from DTMs.
- **DTM visualization**:Graphical rendering of DTMs and derived information.
- DTM application: Development of appropriate application models for specific disciplines.

Data capture

For the purposes of enhancement, DTM correction and system controlling, there are some measures that must be done manually. The control is often performed visually by stereoscopic observation of level lines calculated from the DTM superimposed onto the couple of images. The correction process can be done using different solutions from local recalculations with different parameters.

CHAPTER SEVEN

EVALUATION OF PHOTOGRAMMETRIC SURVEYS

7.1 Introduction

Photogrammetry is a surveying and mapping method that has many applications in civilian, include topographic mapping, site planning, earthwork volume estimation for proposed roads, compilation of digital elevation models (DEM), and image base mapping (orthophotography).

The term "photogrammetry" is composed of the words "photo" and "meter" meaning measurements from photographs. From the classical definition of photogrammetry that illustrated in Chapter One. Photogrammetry is an art, because obtaining reliable measurements requires certain skills, techniques and judgments to be made by an individual. It is a science and a technology because it takes an image and transforms it, via technology, into meaningful results. Modern photogrammetry includes image sources and image forms other than photographs, such as radar images.

Images used for photogrammetry can originate from an analogue camera, digital sensors, or image can be recorded from a device mounted on a satellite,

7.1.1 Advantages and Disadvantages.

Some advantages of photogrammetry over conventional surveying and mapping methods are:

- 1- Provides a permanent photographic record of conditions that existed at the time the aerial photographs were taken. Since this record has metric characteristics, it is not only a pictorial record but also an accurate measurable record.
- 2- If informationhas to be re-surveyed or re-evaluated, it is not necessary to perform expensive field work. The same photographs can be measured again and new information can be compiled in a very timely fashion.
- 3- Provide a large mapped area so alternate line studies can be made with the same data source can be performed more efficiently and economically then other conventional methods.
- 4- Provides a broad view of the project area, identifying both topographic and cultural features.
- 5- Used in locations that are difficult, unsafe, or impossible to access. Photogrammetry is an ideal surveying method for toxic areas where field work may compromise the safety of the surveying cadre.
- 6- An extremely important advantage of photogrammetry is that road surveys can be done without closing lanes, disturbing traffic or endangering the field crew. Once a road is photographed, measurement of road features, including elevation data, is done in the office, not in the field.

Some disadvantages are:

1- Weather conditions such as, winds, clouds, haze... etc. affects the aerial photography process and the quality of the images.

- 2- Seasonal conditions affect the aerial photographs, i.e., snow cover will obliterate the targets and give a false ground impression. Therefore, there is only a short time is ideal for general purpose aerial photography.
- 3- Hidden grounds caused by man-made objects, such as an overpass and a roof, cannot be mapped with photogrammetry. Therefore the information hidden from the camera must be mapped with other surveying methods.
- 4- The accuracy of the mapping contours and cross sections depends on flight height and the accuracy of the field survey.

7.2 Evaluation of Photogrammetric Components Processes

Evaluation of the photogrammetric process include of project planning, image acquisition, image processing, and control data for image orientation, data compilation and presentation of ouput product formed in coordinate values of individual points, topographic map, or orthophotographs.

7.2.1 Image Acquisition

Image acquisition includes planning the over flight, selecting an appropriate frame or digital camera system, photo taking film processing, film inspection and annotation, printing of paper prints and diapositives, and image scanning if necessary.

7.2.1. 1 Flight Planning

A flight plan generally consists of two items:

A flight map which shows where the photos are to be taken. It consists of flight lines, showing the starting and ending points of each line. It is used by the pilot for navigation and by the photographer for taking the pictures. Usually, there are enough topographical features in the flight area to assist the pilot in flying the designated flight lines. Otherwise, a large arrow on the ground at the beginning and end of each flight strip is necessary to aid the pilot and photographer. The number of flight lines, their location, the spacing between them, and their orientation depends on the characteristics of the project to be mapped and on the specifications of the flight mission.

Specifications which outline how to take the photographs, including camera and film or sensors requirements, scale, flying heights, end lap, side lap... etc.

7.2.1.2 Aerial Cameras

Aerial mapping cameras are perhaps the most important photogrammetric instruments, since they record the image on which the photogrammetric principles will be applied. Aerial cameras must be able to produce very sharp images, almost distortion free, in rapid succession under the adverse conditions of a moving aircraft. Any error, distortion, or compromise in the clarity of the image will result in mapping and positioning errors.(Wolf,(1983)).

7.2.1.3 Aerial Films

Aerial films are fine grained, high speed photographic emulsion on a stable polyester film base. The fine grain is necessary for identifying features as small as 1 micron on the negative. High speed film permits short exposure time which is necessary to prevent image smearing and displacement that may result from the movement of the aircraft. The image must be recorded on a stable film to prevent it from irregular shrinkage or expansion. Any change in the dimension of the film results in a measurement error and less accurate product. Aerial films come in a roll of about 200 exposures of 9x9 inches (23x23 cm) each.

To insure dimensional stability, the film should not be stretched or deformed in any way. It should not be subjected to extreme changes in humidity and temperature. The film should be sealed in its container and stored at a temperature recommended by the manufacturer at all times, except when in actual use during the flight mission or when being processed.

When we used a digital camera to obtain digital image directly, number and size of the sensitive sensors such as a CCD, CID, or CCTV, illustrated in Chapter two are having an impact.

7.2.1.4 Image Scanning

Sometimes, photogrammetric products were developed from diapositives or paper prints. With the emergence of digital photogrammetry, photographs are now scanned into a digital format that is compatible with digital image processing software. Scanners for digital photogrammetry are precision devices that maintain the radiometric and geometric integrity of the scanned image.

7.2.2 Control for Photogrammetry

The second element of the evaluation of photogrammetric process is control, which is used to establish the position and orientation of the camera at the instant of exposure. The necessity, accuracy and the rigor of photogrammetric control depends on the particular product sought. Photograph mosaics used for annotation, cultural studies, public meetings, and other varied purposes may not require any control. Rectified aerial photographs, used mainly for photograph

plan sheets, may require partial control in the form of measured distances. Field measured distances are scaled down to match corresponding distances on the photograph. However, most common photogrammetric products, such as mapping and ortho-photography, require full control information. As illustrated in Chapter Two.

Photographs can be controlled using three different methods:

- 1- Ground control points that were surveyed on the ground using ordinary surveying techniques.
- 2- Bridging control through aerial triangulation. Bridging is accomplished by measuring on the photographs common points that appear in three consecutive photographs or in two adjacent strips and computing their 3-D coordinate values.
- 3- Aerial photography control through kinematic GPS technique in which the position and the attitude of the camera are computed without ground control.

In most photogrammetric projects, combinations of all or some of these methods are utilized.

7.2.2.1 Ground Control

Ground control can be classified as targeted and photograph-identifiable control points, and can also be classified as horizontal control, vertical only control, or as 3-D control. Horizontal and vertical controls require different configurations to make them serve their intended purposes. The use of only ground control is now limited to small projects, such as bridge sites, borrow areas and where only one or two models are needed. Photograph identifiable control points are rarely needed.

7.2.2.2 Targeting

Targeting operations are an essential part of photogrammetric mapping to be considered prior to establishing a control survey. Preflight targeting is performed to make ground locations of control points visible on the photographs. Easy identification and clear image of the control points on the photograph increases the accuracy and efficiency of the photogrammetric process. Photographic targets should be of symmetrical shape, adequate size, and appropriate photographic contrast and resolution. As shows in Figure (7.1) below,(Department of Transportation. (2009)).

Figure 7.1 Photogrammetric ground control targets

7.2.2.3 Field Survey of Photogrammetric Control

Field surveys for photogrammetric control should be treated as ordinary surveys. Photogrammetric control points are usually spaced widely around, or in the project area. For large projects, this spacing could be extensive enough to require a significant surveying effort. Therefore, GPS is the better suited surveying method for most large photogrammetric projects.Ground control that is to be used in successive photogrammetric projects or field surveys should be monumented accordingly.

7.2.2.4 Aerial Triangulation

Aerial triangulation is the process of determining X, Y, and Z ground coordinates of individual points based on measurements from photographs. Aerial triangulation is used extensively for many purposes. One of the principal applications is densifying ground control through strips or a block of photos to be used in subsequent photogrammetric operations. When used for this purpose it is often called bridging, because it allows the computation of necessary control points between those measured in the field. In a large project, with dozens of photographs, the effort and cost of providing the needed control using field surveys is prohibitive. (Leica, 2008) Aerial triangulation is used to provide the necessary control for each stereo model with only a limited number of field surveyed control point. Referred to Chapter Four.

7.2.2.5 GPS as Control for Photogrammetry

In recent years, GPS has been demonstrated to be able to replace, partially or entirely, the need for ground control. The basic concept of GPS controlled photogrammetry is to use GPS equipment to determine the position and orientation of the camera at the instant of exposure. The only reason for using ground control in photogrammetry is to recover the position and orient a photograph in space at the time that the photograph was taken. If the values of these

parameters can be resolved at the time of photography with GPS and/or additional instruments, there is no need for ground control to compute them. Even if GPS controlled photography is not yet at a level of maturity to be able to completely replace the need for ground control, it does reduce the number of field surveyed control points in a given project.(Kasser, et al, 2002).

7.2.3 Product Compilation

These kinds of evaluation include photogrammetric plotters, data collection, and mapping.

7.2.3.1 Photogrammetric Plotters

The most commonly used photogrammetric instrument is the stereo plotter. A stereo plotter is used to reconstruct the actual orientation and geometric integrity of an image at the instant of exposure and to collect three dimensional (3- D) data. Data collection with a stereo plotter is a two stage process. The first stage is orientation, which consists of:

- 1. Inner orientation Orient each photograph with respect to the geometry of the camera.
- 2. **Relative orientation** Orient two photographs with respect to each other to form a stereo model.
- Absolute orientation Orient and scale the stereo model to the ground. In some instruments the relative and absolute orientation are performed simultaneously. The simultaneous solution of these orientations is called exterior orientation. As illustrated in Chapter Six.

In the second stage, the operator views the image of the ground in 3-D. Data collection is performs by placing a floating mark on the images of the feature that is surveyed and record its X,Y,Z coordinates. Line features, such as roads or contours, can be digitized, point by point, or traced and recorded continuously,(Atkinson, K.B, 1997).

There are different types of stereo plotters, analog, analytical, and digital (softcopy.) Each of these types of plotters are classified according to their accuracy characteristics as first, second, or third order stereo plotters. Another classification of stereo plotters is as precision, topographic, or simple plotters. Table (7.2) summarizes the differences between the various types of photogrammetric stereo plotters.(Department of Transportation. (2009)).

Table (7.2) Characteristics of photogrammetric stereo plotters.

Characteristics	Analog	Analytic	Digital
Image	Film	Film	Pixels
Plotter	Analog	Analytical	Computer
Model Construc.	Mechanical	mechanic/computer	Computer
Stereo Viewing	Optical	Optical	Varies
Output	Mech./CAD	Mech./CAD	CAD
Aero-triangulation	Very limited	On/Off Line	Semi-automatic [*]
Ortho-photo	Very limited	Unavailable	Automatic ^{**}
Limitations	Focal length	Film Format	None
	Film format		
Accuracy	Average up to	Very high up to	Same as scanning
	±15μm(microns)	$\pm 3 \mu m$	accuracy
Cost	Very high	Very high	Reasonable to high

7.2.3.2 Data Collection and Mapping

Photogrammetry can be used to collect a variety of data, presented in the following formats:

Planimetric maps – Planimetric maps are maps that represents only the horizontal features of the mapped area. Planimetric maps display features such as roads, sidewalks, buildings, river banks, shore lines, manholes, trees etc. No elevation information appears on planimetric maps.

Topographic maps – Topographic maps are maps on which both horizontal and vertical features of the mapped are represented. In addition to the above mentioned planimetric features, a topographic map depicts elevation information as contours and/or as spot elevations.

DEMs – Digital Elevation Model (DEM) or Digital Terrain Model (DTM) are dense networks of spot elevations represented by X,Y,Z coordinates. The DEM points are collected in a regular grid with break points which depict the characteristics of the topography. DEM's are used to draw contours and are an essential ingredient for the production of orthophotos.

Special purpose maps – Special purpose maps are maps that are designed to meet special needs or depict a special theme. The rule is that if you can see it on the aerial photograph, you can map it with photogrammetry.

7.3 Accuracy and Errors

The attainable accuracy of a photogrammetric product depends on two main factors. The first is the scale of the photographs from which the product is derived and the second is related to errors in the photogrammetric process.

The scale of the photograph determines the ground resolution. If the smallest identifiable ground feature on the photograph is a 0.1 m^2 object, then the mapping accuracy from this photograph, assuming perfect data compilation, is limited to no better than 0.3 m (±1 ft). Selecting the appropriate photo scale for a particular product depends on product specifications. For example, the photo scale for topographic mapping is a function of the required map scale, the contour interval, and the quality of the photogrammetric plotter. A required accuracy can be met by either using smaller scale photographs and high quality equipment or larger scale photos with less accurate photogrammetric equipment. The photo scale is always smaller than the map scale but the ratio between these two scales should never be larger than eight.

The second factor controlling the accuracy of a photogrammetric product is the total amount of errors accumulated during its derivation. In photogrammetry, as in any other surveying and mapping procedures, there are systematic errors and random errors, assuming all blunders have been removed.

CHAPTER EIGHT TESTS AND RESULTS

8.1 Introduction

From a photogrammetric point of view there are several potentials of the new modern technology of digital photogrammetry which support the development of a real time conventional photogrammetric system. The evaluation of these potentials includes three basic aspects. Starting from the acquisition of digital image stage using electronic cameras embodied in intelligent sensors, such as Closed Circuit Television (CCTV) and broadcasted television systems, or Charge-Coupled Device (CCD) sensors, due to their higher spatial resolution, in addition to their low cost and low noise. Moreover, these sensors are characterized by their high reliability compared to other system.

The second evaluation of the modern photogrammetric potential comprise the updated softwares, such as ERDAS IMAGINE which is regarded as a comprehensive photogrammetric package useful in many photogrammetric applications, such as aerial triangulation or orthorectification of images acquired from different systems, either directly from digital cameras or indirectly from scanned analogue photogrammetric images or even images coming from satellites.

Finally the evaluation of the modern photogrammetric technology potential contains a group of hardware devices, working in an integrated manner with the software packages, such as the Digital Photogrammetric Work station (DPWs) or softcopy workstation. These are characterized by their high capabilities, represented in their functionality for processing, displaying, roaming, measuring, supper positioning, and archiving, besides their large storage capacities, and huge memories.

These capabilities led to an increase of the number of project areas that can be applied in the field of photogrammetry, for an obvious reason; the precession of any project implementation can easily be secured. This was reflected, clearly, in photogrammetric application in the following surveying fields:-

Determining ground coordinates of any point whose coordinates in a created three – dimensional model are known.

Production of thematic maps that represent a three – dimensional model area.

3- Production of topographic maps that represent a three – dimensional model area.

8.2 The Study Area

In order to find out the extent of potential, reliance and reliability of the new modern technologies associated with a digital photogrammetric field, two types of Khartoum topographic maps, planned to be produced, using digital photogrammetric methods, were used in this research.

Khartoum state is the most important state in the country of Sudan. Its importance comes from the fact that it is the capital of Sudan. In addition, it is the foal point of Sudan industry and economy. It is approximately located between longitudes 31° 45′ 00", and 34° 30′ 00" in east west direction and latitudes 15° 30′00", and 16° 30′ 00" in north south direction. The survey Authority of Khartoum state planed to produce two types of topographic maps. The first one is to cover the centre of the state with a scale 1:1000 to be prepared from digital images taken at 1:5000 scale. The second project is designed to produce new topographic maps for the rural areas of the state at a scale of 1:10000 from digital images taken at a scale of 1:20000. The photogrammetric technical specifications to be considered in the implementation of these projects were suggested by a high technical committee. These are as shown in Table (8.1) below.

Elements	Parameters	Requirements		
		Focal length to subtend a normal angle for		
	Lens	1:5,000 scale& a wide angle for 1:20000		
		scale		
Digital	Geometric Precision	$\leq 2 \ \mu m$		
Camera	Geometric Resolution(Physical	< 15 um		
	Pixel Size)			
	Radiometric Resolution	\geq 12 bits		
	Shutter Speed	1/500 or faster		
	Tie points on each Image	Not less than 9 points appearing in a		
Aerial	The points on each image	minimum of 3 Photographs		
Triangulation	A Control Diagram	Should show the location of all control		
		points using appropriate symbols		

Table (8.1) part of technical specifications for the projects

RMSE of Residuals in E, N and	\leq 1/10,000 of the flying height above			
h at control points	ground			
Average standard deviation and	\leq 1/10,000 of the flying height above			
σ of E, N and h	ground			
Maximum residuals in any				
Control point & σ in E, N, h of	≤2.5RMSE of Control Points Residuals			
Pass points				
RMSE of Tie Point	$\leq 1/20,000$ of the flying height above ground			
Maximum Residual in any Tie point	≤2.5RMSE of Tie Points Residuals			
Average Adjustment to Photo- coordinates in a block	$\pm 10 \ \mu m$			
Max Adjustment to Photo- coordinates Values	$\pm 20 \ \mu m$			

8.3 Measurements and Results

The research work aims to make a technical evaluation of the products concentrating on some parameters. Those include camera specifications, scale of photography, besides making some field observations concerned with the collection of coordinates of ground control points, and some office investigations.

The digital photographic coverage of the project was executed using UltraCamD, manufactured by Vexcel Imaging GmbH, Austria. The following Tables ((8.2) and (8.3)) are parts of the calibration reports of the used panchromatic and multispectral cameras respectively.

A long track	67.5mm	7500 pixels
Cross track	103.5 mm	11500 pixels

Table (8.2) part of the calibration report of a Large Format Panchromatic camera.

Image Format					
Image Extent		(-33.75, -51.75) mm	(33.75, 51.75) mm		
Pixel Size		9.000 μm X 9.000 μm			
Focal Length	Ck	105.200 mm	± 0.002 mm		
Principal point	X ppa	0.000 mm	± 0.002 mm		
(Level 2)	Y ppa	0.000 mm	± 0.002 mm		
Lens Distortion	Remaining Distortion less than ± 0.002 mm				

Table (8.3) part of the calibration report of a medium format multispectral camera.

	Along track	67.5mm	2400 pixels			
Image Format	Cross track	103.5 mm	3680 pixels			
Image Extent		(-33.75, -51.75) mm	(33.75, 51.75) mm			
Pixel Size		28.125 μm X 28.125 μm				
Focal Length	Ck	105.200 mm	± 0.002 mm			
Principal point	X ppa	0.000 mm	± 0.002 mm			
	Y ppa	0.000 mm	± 0.002 mm			
(Level 2)						
Lens Distortion	Remaining Distortion less than ± 0.002 mm					

A sample area selected from the centre area of Khartoum state topographic maps project was chosen. The selected area is covered by 32 digital photographs, taken from four adjacent strips (numbers 38, 39, 40, and 41) comprising a block shown in Figure (8.1) below.

A digital airborne imaging system was integrated with a flight control system consisting of Global Positioning System (GPS), Inertial Measurement Unit (IMU), and an Inertial Navigation System (INS). The resultant IMU file of the selected photographs contains photograph numbers, easting, northing, and ellipsoidal height of the camera at the moment of exposure. Added to these are the rotations about the axis. All these are shown in Table (8.4) below:

NO	Image ID	E (m)	N (m)	H (m)	Omega°	Phi ^o	Kappa°
1	38-08281	448790.811	1725270.859	1602.606	0.18067	0.11479	۹۰ <u></u> ٦٦٢٢٩
2	38-08282	448792.748	1724999.366	1600.537	0.16774	0.13713	90.67694
3	38-08283	448794.556	1724727.808	1599.753	0.18455	0.11108	90.64428

Table (8.4) IMU file of the selected center of Khartoum State study area.

4	38-08284	448795.752	1724456.970	1600.585	0.15520	0.13028	90.25298
5	38-08285	448795.611	1724184.605	1602.610	0.16647	0.10943	89.87967
6	38-08286	448794.587	1723912.834	1605.266	0.16496	0.13458	89.85954
7	38-08287	448793.099	1723639.417	1607.355	0.16860	0.11611	89.74474
8	38-08288	448791.264	1723367.457	1607.448	0.15970	0.11127	89.71868
9	39-08021	449634.219	1723326.613	1602.461	-0.17043	-0.07834	-90.59829
10	39-08022	449636.343	1723598.519	1602.638	-0.17534	-0.10700	-90.14487
11	39-08023	449637.189	1723871.223	1604.625	-0.17953	-0.10763	-90.03777
12	39-08024	449637.618	1724143.356	1607.540	-0.17465	-0.09316	-89.93163
13	39-08025	449636.686	1724415.635	1608.616	-0.16362	-0.10281	-89.49022
14	39-08026	449634.260	1724686.588	1606.883	-0.17774	-0.10162	-89.37464
15	39-08027	449631.282	1724958.423	1603.242	-0.16730	-0.10592	-89.29397
16	39-08028	449628.453	1725229.401	1600.141	-0.16436	-0.09872	-89.37066
17	40-05370	450472.663	1723303.126	1595.371	-0.16798	-0.10185	-89.62783
18	40-05371	450472.333	1723574.764	1594.505	-0.16719	-0.10402	-89.45963
19	40-05372	450470.684	1723846.815	1594.069	-0.17341	-0.09312	-89.17806
20	40-05373	450467.735	1724119.637	1594.124	-0.18638	-0.08552	-89.12423
21	40-05374	450463.884	1724391.272	1594.650	-0.18672	-0.09574	-88.72759
22	40-05375	450459.669	1724662.770	1595.356	-0.17466	-0.09909	-88.73162
23	40-05376	450455.371	1724935.167	1596.016	-0.16677	-0.09528	-88.69266
24	40-05377	450451.185	1725207.356	1596.497	-0.15849	-0.09890	-88.81016
25	41-05030	451290.777	1724907.095	1607.832	0.17081	0.10269	89.84162
26	41-05031	451289.333	1724635.759	1605.810	0.14634	0.06526	89.92647
27	41-05032	451288.923	1724364.043	1603.945	0.15488	0.10390	90.20696
28	41-05033	451288.998	1724091.971	1602.738	0.17059	0.09677	90.12815
29	41-05034	451289.344	1723820.203	1602.174	0.15063	0.09287	90.14999
30	41-05035	451290.079	1723548.987	1602.265	0.15663	0.10381	90.39027
31	41-05036	451290.892	1723276.981	1603.046	0.17141	0.07918	90.26049
32	41-05037	451291.541	1723005.245	1604.316	0.16492	0.09857	90.19906

Referring to the calibration report of the used camera, it can be noted that it is a large format wide angle camera while a normal angle was suggested to be used in the project specification.

The average flying height is the average distance between the position of the camera at the time of exposure and the average ground elevation (LPS, user guide, 2008). Accordingly, the average flying height, computed using equation (8.1) below, was found to be approximately equal 1220m above average terrain elevation.

Average flying height (H') = $\overline{\Sigma H}$ - average height of all control points above datum (8.1)

The image scale can simply be computed as a ratio of the focal length of the camera used to the average flying height. Applying this relation to the available data of photographic coverage, image scale is then computed from equation (8.2) hereunder.

Image scale = $\frac{\text{focal length}}{\text{average flying height}}$ (8-2)

The image scale computed was found to be equal 1:11579 or, approximately, equal 1:12000. Compared with the suggested scale of photography, it is found that there is a disagreement. It is 2.4 times smaller than the required scale of 1:5000.

The Ground Resolution Distance (GRD) is the smallest area of the earth's surface that can be clearly distinguished by the camera. This value can be obtained by multiplying the dimensions of a Charge Coupled Device (CCD) by the scale of photography. Mathematically, it can be derived from equation (8.3), below, as following.

$$GRD = \frac{H'}{f} \cdot \rho^{s}$$
(8.3)

Where

f is the used digital camera focal length.

H' is the average flying height above the earth's surface.

ρs is the pixel size.

Referring to the used camera specifications and the above computed scale, the ground resolution distance will be 0.108m for the panchromatic photography and 0.3375m for the multispectral photography. This value was suggested to be less than 0.075m in the specification.

8.3.1 Accuracy Evaluation of the Center of Khartoum State Project

In order to evaluate the precession of the project, were a selected number of 18 well distributed points covering the study area, these points were then observed in the field using Differential Global Positioning System (DGPS). The observations were made using a GPS receiver model R8- GNN from Trimble Company. In a static mode. Each point was observed for 45 minutes. The expected accuracy was equal to 0.5 cm + 1ppm. Points are taken based on Universal Transverse Mercator (UTM) projection, at zoon 36 north and the World Geodetic System 1984 (WGS84) datum. The result is a three dimensional coordinates shown in Table (8.5).

Point	E (m)	N (m)	H (m)
1	449101.669	1725509.714	383.113
2	448340.140	1725365.933	383.415
3	448412.645	1724739.837	383.519
4	448367.877	1724260.062	381.851
5	448470.900	1723645.658	382.161
6	448400.810	1723172.145	383.810
7	449144.144	1724130.761	381.782
8	449152.327	1723066.223	384.543
9	450199.025	1725462.274	381.784
10	450159.446	1724744.166	383.997
11	450067.027	1724230.469	385.429
12	450198.86	1723497.647	385.493
13	450078.078	1722963.961	383.832
14	450921.739	1725231.631	386.380
15	450718.066	1724957.814	383.806
16	450877.109	1724054.616	383.764

Table (8.5) Coordinates of observed points

17	450775.234	1723581.077	383.200
18	451003.688	1723088.568	385.259

Ground control points , which were observed above plus 63 tie points were used to carry out aerial triangulation , using LPS package. For practical applications, LPS package was used for a number of reasons that can be summarized as:-

It has a high capacity to accept all kinds of digital images in spite of the different acquiring media

tends to reduce the time, effort, and cost required to conduct an aerial triangulation process, and / or ortho -rectification of images.

has the ability to:-

Connect data coming from the airborne Global Positioning System with their image ID

ii- carry out the aerial triangulation automatically and

iii- connect the ground coordinates points with their image coordinates system in a unified file

it contains two different methods to find the tie points from a 3-D model, manually, or automatically by the system itself and

it works to create mathematical relationships between overlapped images, type of used camera, and the ground coordinates. This relationship is called Block triangulation.

When the orientation and aerial triangulation processes were completed, the ground coordinates and tie points (points whose ground coordinates are not known, but are visually recognizable in the overlap area between two or more images) coordinates were computed from the created three-dimensional model. The values of these coordinates were recorded as shown in Table (8.6) below.

NO	POINT ID	ТҮРЕ	USAGE	E (m)	N (m)	H (m)
1	1	Full	Control	448340.993	1725366.027	382.935
2	2	Full	Control	448411.933	1724739.471	383.910
3	3	Full	Control	448367.271	1724260.281	382.413
4	4	Full	Control	448470.591	1723645.576	382.306
5	5	Full	Control	448400.810	1723172.145	383.810
6	6	Full	Control	449100.781	1725509.974	383.190
7	7	Full	Control	449144.659	1724130.966	382.074
8	8	Full	Control	449151.904	1723065.882	384.163
9	9	Full	Control	450199.077	1725461.984	382.365
10	10	Full	Control	450159.455	1724743.812	383.890
11	11	Full	Control	450066.896	1724230.507	384.831
12	12	Full	Control	450198.724	1723497.933	385.339
13	13	Full	Control	450077.872	1722963.676	384.399
14	14	Full	Control	450922.081	1725231.845	386.009
15	16	Full	Control	450877.031	1724054.627	383.985
16	18	Full	Control	451003.956	1723088.538	385.159
17	17	Full	Check	450774.581	1723580.787	384.918
18	15	Full	Check	450718.076	1724958.052	384.722
19	19	None	Tie	449266.742	1724969.748	377.082
20	20	None	Tie	449154.964	1725178.616	374.635
21	21	None	Tie	448314.323	1724957.084	377.739
22	22	None	Tie	449297.309	1725598.812	377.005
23	23	None	Tie	448860.604	1724988.393	385.964
24	24	None	Tie	448737.523	1725219.659	379.182
25	25	None	Tie	448302.614	1725143.969	379.501

Table (8.6) computed control and tie points coordinates for centre of Khartoum state study area

26	26	None	Tie	448283.128	1724708.657	378.493
27	27	None	Tie	448388.670	1724701.778	370.749
28	28	None	Tie	449305.829	1724629.654	379.896
Table	(8.6) continu	ied		l	•	
29	29	None	Tie	448372.730	1724358.396	382.387
30	30	None	Tie	448915.412	1724352.037	377.765
31	31	None	Tie	449288.830	1724426.426	380.346
32	32	None	Tie	448730.992	1724087.408	380.765
33	34	None	Tie	449206.240	1724132.288	377.897
34	35	None	Tie	448260.172	1723809.767	381.554
35	36	None	Tie	448848.308	1723809.143	380.346
36	37	None	Tie	449294.917	1723803.486	380.361
37	38	None	Tie	448201.168	1723548.126	381.768
38	39	None	Tie	448827.669	1723537.281	382.598
39	40	None	Tie	449305.528	1723540.738	380.978
40	41	None	Tie	448231.344	1723296.836	379.632
41	42	None	Tie	448900.985	1723310.533	381.911
42	43	None	Tie	449322.215	1723285.018	381.350
43	56	None	Tie	446547.270	1723572.062	381.830
44	57	None	Tie	450216.258	1723490.671	385.337
45	54	None	Tie	449700.712	1723789.656	379.844
46	55	None	Tie	450192.246	1723942.715	378.029
47	52	None	Tie	449575.910	1724086.415	382.234
48	53	None	Tie	450212.242	1724052.375	376.623
49	50	None	Tie	449526.878	1724380.064	381.918
50	51	None	Tie	450027.717	1724419.159	383.965
51	48	None	Tie	449758.413	1724570.748	379.054
52	49	None	Tie	450100.787	1724588.147	381.373
53	46	None	Tie	449485.228	1724920.040	382.059
54	47	None	Tie	450180.300	1724958.106	381.454
55	44	None	Tie	449569.969	1725181.309	382.263
56	45	None	Tie	450144.922	1725220.272	372.997

57	68	None	Tie	450470.678	1723493.269	381.436
58	69	None	Tie	450957.617	1723535.348	383.919
59	70	None	Tie	450591.809	1723212.455	381.164
Table	(8.6) continu	ied				
60	71	None	Tie	451033.660	1723242.359	385.336
61	66	None	Tie	450300.471	1723763.840	376.448
62	67	None	Tie	450959.909	1723823.900	384.476
63	64	None	Tie	450332.530	1724023.685	382.560
64	65	None	Tie	450988.734	1724112.910	383.870
65	62	None	Tie	450495.066	1724283.180	383.717
66	63	None	Tie	451043.407	1724415.959	384.413
67	60	None	Tie	450419.975	1724559.526	383.629
68	61	None	Tie	450985.932	1724639.249	384.754
69	58	None	Tie	450658.334	1724881.128	384.251
70	59	None	Tie	450969.899	1724922.797	385.133
71	72	None	Tie	451099.487	1725097.938	383.765
72	73	None	Tie	451867.912	1725109.639	387.881
73	74	None	Tie	451844.686	1724800.962	387.157
74	75	None	Tie	451571.072	1724272.719	385.552
75	76	None	Tie	451232.376	1724314.817	384.331
76	77	None	Tie	451799.108	1723792.177	385.371
77	78	None	Tie	451110.268	1723714.628	385.006
78	79	None	Tie	451205.855	1723526.012	385.115
79	80	None	Tie	451237.528	1723465.998	381.376
80	81	None	Tie	451446.073	1723172.514	384.747
81	82	None	Tie	450.876.954	1723286.312	385.586

In addition to the ground coordinates values, the error in the calculated coordinates ΔE , ΔN , and Δh has been found. Moreover, the Root Mean Square Error (RMSE), were computed for each control point from the aerial triangulation process. The results are recorded as shown in Table (8.7) below.

NO	POINT ID	ТҮРЕ	USAGE	$\Delta E(m)$	$\Delta N(m)$	$\Delta H(m)$	Total
							RMSE
1	1	Full	Control	0.853	0.094	-0.480	0.983
2	2	Full	Control	-0.712	-0.366	0.391	0.891
3	3	Full	Control	-0.606	0.219	0.562	0.855
4	4	Full	Control	-0.309	-0.082	0.145	0.352
5	5	Full	Control	0.000	0.000	0.000	0.000
6	6	Full	Control	-0.888	0.260	0.077	0.929
7	7	Full	Control	0.515	0.205	0.292	0.626
8	8	Full	Control	-0.423	-0.341	-0.380	0.663
9	9	Full	Control	0.052	-0.290	0.581	0.651
10	10	Full	Control	0.009	-0.354	-0.107	0.370
11	11	Full	Control	-0.131	0.038	-0.598	0.613
12	12	Full	Control	-0.136	0.286	-0.154	0.352
13	13	Full	Control	-0.206	-0.285	0.567	0.667
14	14	Full	Control	0.342	0.214	-0.371	0.548
15	16	Full	Control	-0.078	0.011	0.221	0.235
16	18	Full	Control	-0.268	-0.030	-0.100	0.288
17	17	Full	Check	-0.653	-0.290	1.718	1.861
18	15	Full	Check	0.010	0.238	0.916	0.947

Table (8.7) Root Mean Square Errors (RMSE) for center of Khartoum study area coordinates

The total Root Mean Square Error (RMSE) for the total images are computed by the LPS software and was found to be 0.0625m as illustrated in Figure (8.2).

Triangulati Total Imag	on Iteration Conve e Unit-Weight RM!	rgence: SE: (Yes).0625	Close
Control F	oint RMSE:	Check P	oint RMSE:	Update
CIV	0.4470 (10)	C19	0.4000 (2)	Accep
Ground X:	0.4476(16)	Ground X:	0.4620 (2)	Benort
Ground Y:	0.2297 (16)	Ground Y:	0.2652 (2)	
Ground Z:	0.3711 (16)	Ground Z:	1.3769 (2)	Review
Image X:	0.0372 (52)	Image X:	0.0149 (12)	Help
Image Y:	0.0805 (52)	Image Y:	0.0121 (12)	

Figure (8.2) triangulation summary of the centre of Khartoum state study area

From the above triangulation summary result, a linear accuracy indicator was calculated from equation (7.4) hereunder.

Linear accuracy=
$$\sqrt{(\text{RMSE (E)})^2 + (\text{RMSE (N)})^2 + (\text{RMSE (H)})^2}$$
 (8.4)

Accordingly, for the check points the liner accuracy indicator was found to be;

$$\sqrt{(0.4620)^2 + (0.2652)^2 + (1.3769)^2} = 1.4764$$
m.

The existing topographic maps, which were produced from the covered digital image, were a subject to accuracy evaluation. This was done by measuring the map coordinates of seven control points and comparing the results with their "actual" ground coordinates.

Table (8.8) below is a list of the coordinates of control of seven points measured from the existing topographic maps.

NO	POINT	ТҮРЕ	USAGE	E (m)	N (m)
	ID				
1	1	Full	Control	448340.175	1725366.322
2	2	Full	Control	448412.502	1724739.010
3	3	Full	Control	448368.047	1724260.351
4	6	Full	Control	449101.930	1725509.777
5	7	Full	Control	449144.572	1724131.203
6	10	Full	Control	450159.885	1724743.852
7	11	Full	Control	450067.143	1724230.490

Table (8.8) measured coordinates for the centre of Khartoum study area from an existing topographic map

The differences between "actual" ground coordinates of control point and their map coordinates were found to be as shown in Table (8.9) below.

Table (8.9) difference between "actual" ground coordinates and map coordinates for the centre of Khartoum state study area.

NO	POINT ID	ТҮРЕ	USAGE	$\Delta E(m)$	$\Delta N(m)$	ΔE2 (m)	ΔN2 (m)
1	1	Full	Control	0.035	0.389	0.0010	0.1510
2	2	Full	Control	0.143	0.827	0.0210	0.6840
3	3	Full	Control	0.170	0.289	0.0290	0.0840
4	6	Full	Control	0.261	0.063	0.0681	0.0040
5	7	Full	Control	0.428	0442	0.1832	0.1950
6	10	Full	Control	0.439	0.314	0.1930	0.0990
7	11	Full	Control	0.116	0.021	0.0140	0.0004

From the above results, the Root Mean Square Error in E-coordinates was calculated as 0.269m, while the RMSE of N-coordinates was found to be 0.417m. Consequently, the Planmetric accuracy was calculated from equation (8.5), hereunder as:-

Planmertric accuracy =
$$\sqrt{(\text{RMSE}(E))^2 + (\text{RMSE}(N))^2}$$
 (8.5)

Therefore,

planmertric accuracy = $\sqrt{(0.269)^2 + (0.417)^2}$

Accordingly the planmetric accuracy of the produced topographic map for the centre of Khartoum state was found to be 0.496m.

Also from the above results we can calculation of suitable test statistic from the Gauss Markov Model (GMM) using the actual observations. The statistic is selected in such a way that is distributional properties are known by definition if HO is true and that it is as sensitive as possible to departures from HO. there is a large number of test statistic, such as t –distribution (Caspary .(1998)), that as folws:

$$t = \frac{d'}{\frac{s}{\sqrt{n}}}$$
(8.6)

$$S = \sqrt{\frac{\sum (x_i - x')^2}{n - 1}}$$
(8.7)

Whete :

S: standard deviation.

d': average value of the different between actual and observed coordinates.

i: 1, 2, 3...n.

Therefore, for the centre of the Khartoum state projects the test statistic in E-coordinates was calculated as 3.006m. while the test statistic of N-coordinates was found to be 2.495m.

x: observation value.

n: number of points.

8.5 Accuracy Evaluation of The Rural Areas of Khartoum State Project

In order to evaluate the accuracy of the rural area of Khartoum state topographic maps project, a sample area south of Khartoum, covered by 8 photographs, taken from two adjacent strips(numbers 55, and 56) illustrated in Figure(8.3) below is used.

Figure (8.3) Study area image of selected rural areas of Khartoum State

Referring to the calibration report of the camera used (Tables (8.2) and (8.3)) it is clear that the camera used is a large format which means a wide angle lens. Therefor, for the suggested technical specification were not satisfied. The resultant IMU file of the selected photographs, shown in Table (8.10) below, contains photograph numbers, easting, northing, and ellipsoidal height of the camera at the moment of exposure. Added to these are the rotations about the three axis

NO	Image ID	E (m)	N (m)	H (m)	Omega°	Phi°	Kappa°
1	55-03804	462974.312	1711228.157	1606.376	0.14998	0.09112	9.70799
2	55-03805	462975.44	1710956.660	1608.249	0.15760	0.10999	90.29637
3	55-03806	462976.471	1710683.897	1608.849	0.15674	0.09648	90.16161
4	55-03807	462977.277	1710412.073	1608.045	0.16161	0.11533	89.95021
5	56-03446	463785.458	1710408.799	1601.310	-0.16818	-0.09235	-89.67367
6	56-03447	463784.344	1710680.897	1603.610	-0.16836	-0.07865	-89.70219
7	56-03448	463784.706	1710953.048	1607.124	-0.17011	-0.10183	-90.23025
8	56-03449	463786.164	1711225.282	1608.468	-0.16209	-0.08032	-90.31148

Table (8.10) IMU file of the photograph of the selected rural area of Khartoum state

Analyzing the data in Table (8.10) above, the computed flying height above ground was found to be , approximately equal 1220m. which when used with the camera focal length value, an image scale of 1:12000, resulted.

Depending on available calibration data of the camera used and applying the above computed scale, ground resolution distance (GRD) will be 0.108m for panchromatic and 0.3375m for multispectral cameras respectively..

When the computed values of flying height, image scale, and ground resolution distance were compared with those for the centre of Khartoum state study area, they were found to be the same.

In order to evaluate the accuracy of the project, a seven well distributed points were selected to cover the chosen area. These points were then field observed using Differential Global Positioning System (DGPS) model R8- GNN from Trimble Company. A static mode is used, every 45 minutes, to observe each point. Unexpected accuracy was equal to 0.5 cm + 1ppm. Points are taken based on Universal Transverse Mercator (UTM) projection, at zone 36 north and the World Geodetic System 1984 (WGS84) datum. Table (8.11) below shows the observed control points coordinates results of the rural study area.

NO	E cords(m)	N cords(m)	H cords(m)	REMARKS
1	462452.600	1711316.563	384.013	Full point
2	463230.526	1711107.382	383.482	Full point
3	462465.290	1710147.500	385.072	Full point
4	462700.003	1710913.440	383.900	Full point
5	463209.022	1710914.899	382.461	Full point
6	463416.010	1710678.511	381.387	Full point
7	463430.331	1710306.879	383.140	Full point

Table (8.11) observed coordinates of control points of the rural study area

Ground control points, which were observed above plus 14 tie points were used to carry out aerial triangulation, using LPS package. After orientation procedures and aerial triangulation processes were done, the coordinates of the ground and tie points were computed from the created 3-D model, the results were shown in Table (8.12) below.

NO	POINT	ТҮРЕ	USAGE	E cords(m)	N cords(m)	H cords(m)
	ID					
1	1	Full	Control	462452.231	1711316.066	383.895
2	2	Full	Control	463230.323	1711107.000	382.973
3	3	Full	Control	462465.557	1710147.260	385.247
4	4	Full	Control	462700.085	1710913.895	383.737
5	5	Full	Control	463209.898	1710915.310	383.033
6	6	Full	Control	463416.974	1710679.054	382.162
7	7	Full	Control	463428.715	1710306.588	382.409
8	8	None	Tie	462656.462	1710867.023	383.930
9	9	None	Tie	462984.046	1710867.650	383.407
10	19	None	Tie	463315.155	1711097.368	382.693
11	21	None	Tie	463214.278	1710932.442	383.040

Table (8.12) computed control and tie points coordinates for the study area

12	10	None	Tie	462984.970	1710868.042	383.281
13	11	None	Tie	463155.763	1710572.328	381.042
14	12	None	Tie	463124.374	1710606.490	380.749
15	18	None	Tie	463239.880	1710603.844	379.488
16	20	None	Tie	463399.003	1710288.182	378.671
17	13	None	Tie	464315.099	1710724.275	378.048
18	14	None	Tie	464200.198	1710704.612	376.666
19	15	None	Tie	464238.697	1710596.396	377.387
20	16	None	Tie	464158.569	1711032.896	379.772
21	17	None	Tie	464074.891	1710896.038	379.897

The errors in the calculated coordinates for the rural study area ΔE , ΔN , and ΔH were found. Accordingly the RMSE for each individual point were computed from the aerial triangulation process. The results are recorded as shown Table (8.13) below .

NO POINT TYPE USAGE ΔE ΔN ΔH Total ID RMSE Full -0.497 1 1 Control -0.369 -0.118 0.630 Full -0.203 -0.382 -0.509 2 2 Control 0.668 3 3 Full Control 0.267 -0.240 0.175 0.399 4 4 Full Control 0.082 0.455 -0.163 0.490 0.876 0.572 5 5 Full Control 0.411 1.124 0.543 0.964 0.775 6 6 Full Control 1.351 7 7 Full Control -1.616 -0.291 -0.731 1.798

Table (8.13) Root Mean Square Error (RMSE) for rural study area coordinates

The RMSE for the total images is computed by the LPS software and was found to be 0.0061m. As in Figure (8.4) hereunder.

Triangulati Total Imag	on Iteration Conve e Unit-Weight RM	rgence: SE: (Yes).0061	Close
Control F	Point RMSE:	Check P	oint RMSE:	Update
Ground X:	0.8075 (7)	Ground X:	0.0000 (0)	Accept
Ground Y:	0.4150 (7)	Ground Y:	0.0000 (0)	Report.
Ground Z:	0.5060 (7)	Ground Z:	0.0000 (0)	Review.
mage X:	0.0031 (25)	Image X:	0.0000 (0)	Help
Image Y:	0.0023 (25)	Image Y:	0.0000 (0)	

Figure (8.4) triangulation summary of the rural areas of Khartoum state study area

The linear accuracy calculated from the above triangulation summary result was found to be $\sqrt{(0.8075)^2 + (0.4150)^2 + (0.5060)^2} = 1.039$ m.

Distributed ground control points in the rural areas of Khartoum study area, were measured from the existing topographic map prepared from the digital images, resulted as shown in Table (8.14) below.

NO	POINT	ТҮРЕ	USAGE	E cords (m)	N cords (m)
	ID				
1	1	Full	Control	462452.245	1711316.446
2	2	Full	Control	463230.669	1711107.240
3	3	Full	Control	462465.265	1710147.529
4	4	Full	Control	462700.015	1710914.146
5	5	Full	Control	463210.711	1710915.542
6	6	Full	Control	463415.686	1710679.372
7	7	Full	Control	463427.506	1710307.975

Table (8.14) existing topographic map coordinates of control points for the rural study area.

Differences between actual ground coordinates and rural map coordinates were found to be as shown in Table (8.15) below.

Table (8.15) difference between "actual" groundinates coordinates and map coordinates for Khartoum state rural study area.

NO	POINT ID	ТҮРЕ	USAGE	ΔE (m)	$\Delta N(m)$	ΔE2 (m)	ΔN2 (m)
1	1	Full	Control	0.355	0.117	01260	0.014
2	2	Full	Control	0.140	0.142	0.0200	0.020
3	3	Full	Control	0.025	0.029	0.0010	0.001
4	4	Full	Control	0.012	0.706	0.0001	0.498
5	5	Full	Control	1.689	0.643	2.8530	0.414
6	6	Full	Control	0.324	0.861	0.1050	0.741
7	7	Full	Control	2.825	1.096	7.9810	1.201

From the above results, RMSE in E-coordinates was calculated as 1.259m, while the RMSE of the N-coordinates was found to be 0.642m. Consequently, Planmetric accuracy was found to be

 $\sqrt{(1.259)^2 + (0.642)^2} = 1.413$ m.

Accordingly, the planmetric accuracy of the produced topographic map for the rural area of Khartoum state was found to be 1.413m.

While, the test statistic in E-coordinates was calculated as 3.875m, and in N-coordinates was found to be 3.724m

CHAPTER NINE CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

Despite the multiplicity of different surveying methods for data collection to produce topographic maps, photogrammetric techniques remain the most widely used, especially for mapping vast areas. This is due to a number of reasons; firstly the overall cost of projects is reduced; Secondly, the effort and manpower are also reduced. And thirdly time is saved. In addition, the great developments that has been occurred in turning the conventional photogrammetric system to digital photogrammetric systems, due to the great developments that has occurred in the fields of computer science and softwares.

Moreover, the availability of softwares related to surveying sciences, such as ERDAS IMAGINE, and Aig software, led to implement the most complex applications of surveying, such as aerial triangulation, Digital Terrain Modeling (DTM) or Digital Elevation Modeling (DEM), and ortho-rectification. In addition, it provides statistical values to assess errors in measurements, by computing the Root Mean Square Errors (RMSE) and other statistics.

The combination of all these led to an increase in the reliability of produced topographic maps prepared from digital photogrammetric images.

The aim of this research work is to make some sort of technical evaluation for the centre and rural areas of Khartoum state topographic mapping project executed in 2012. Based on the available data of the project and measurements carried out, conclusions can be summarized in the following points:

- The used camera for both, centre and rural areas of Khartoum state to produce topographic maps was a wide angle camera. This did not comply with the suggested technical specifications.
- The average flying height used for both topographic maps does not satisfy the suggested technical specifications.
- The scale of photography for the centre of Khartoum state was about 2.5 times smaller than the required scale.

- Photographic scale of the rural area of Khartoum state was about 0.5 times greater than the required scale.
- Resolution of the used digital camera for both projects was found to be 0.108m is lower than the specified.
- Linear accuracy of the photographic coverage of centre of the Khartoum state was found to be 1.476m. This accuracy is suitable for the production of maps at scale 1:14760. This did not comply with the suggested technical specifications for the production of centre maps.
- Linear accuracy of the photographic coverage of rural areas of Khartoum state was found to be 1.039m. This accuracy is suitable for the production of maps at scale 1:10390. This scale satisfies the specifications for the production of rural maps.
- Planmetric accuracy of topographic maps produced for the centre of Khartoum state was found to be 0.496m. This accuracy is suitable for the production of maps at scale 1:2480 or smaller. This did not comply with the suggested technical specifications for the production of centre maps.
- Planmetric accuracy of topographic maps produced for the rural areas of Khartoum state was found to be 1.413m. This accuracy is suitable for the production of maps at scale 1:7065 or smaller. This scale satisfies the specifications for the production of rural maps.

9.2 Recommendations

This research work concentrated on the evaluation of Khartoum state mapping project (2012) concerned with the utilization of digital photogrammetric methods to produce topographic maps. So further studies may be extended to:

- 1- Evaluate other mapping projects that may be executed for the state regardless of whether GPS mapping projects or satellite imagery mapping projects or the techniques are employed.
- 2- Examine the accuracy of satellite mapping techniques and making some sort of comparison between these satellites.
- 3- Other photogrammetric softwares such as Agisoft photo scan can be used for aerial triangulation or mapping.
- 4- Digital terrain models can be generated from aerial photographs and subject to accuracy evaluation.

REFERENCES

- 1- Ahmed EL-Rabbany. (2002), Introduction to GPS the Global Positioning System. artech house, INC.
- 2- A.Stewart.Walker& Gordon Petrie .(1992), Digital Photogrammetric Workstation.,Glasgw, G64, UK.
- 3- Bethel et al. 1996, Use of GPS to Enhance Mapping by Photogrammetry, West Lafayette, IN 47907.
- 4- Christian Heipke. 1996, Automation of Interior, Rrlative and Absolute Orientation. http://www.International Archives of Photogrammetry and Remote Sensing. Vol.XXXI, Vienna.
- 5- Dawod, Gomaa M.(2012), An Introduction to Computer Mapping, Holly Makkah, Saudi Arabia.
- 6- Department of Economic and Social Affairs Statistics Division Studies in Methods. (2000),Handbook on geographic information systems and digital mapping,UnitedNation s New York.
- 7- Department of Transportation. (2009), Aerial Photogrammetric Mapping Guidelines, Trenton, NJ,08625-0600.
- 8- Donald Stirling. (2001), Photogrammetry theory and technology,G.S.T.Armer reference Atkinson, K.B.
- 9- Gottfried Konecny. (2003),Geoinformation,Remote sensing, Photogrammetry and Geographic information systems, TJ International Ltd, Padstow.
- 10- Han S. (1995) Ambiguity recovery for GPS long range kinematic Positioning, Palm Springs, California.
- 11- Johnston. (2007), Basics of Modern Photogrammetry, Photogrammetry Workshop, NCDOT Photogrammetry Unit.
- 12-Jasim.(2006), Photography...Art and Techniques, Iraq, Baghdad
- 13-Kilford.W.K, (1998), Elementary air surveying 3^ded,Pintman publishing. Murchison
 , D.E, Surveying and Photogrammetry Newness- ButterwoRths, London.

- 14- Lonergan, M. E, Christopher B. Jones, and J. Mark Ware .(1999), Optimal Map Generalization: saving time with appropriate measures of imperfection, Proceedings of the 19TH International Cartographic Conference and 11th General Assembly of ICA, Volume 1, P.1205-1213, August 15-27, 1999, Ottawa,
- 15-Leica Photogrammetry Suite Project Manager Users Guide. (2008), Software.
- 16- Michel Kasser and Yves Egels. (2002) , Digital Photogrammetry.Taylor& FrancisGroup.
- 17-Microsoft, 2003), History of map, Encarta Encyclopedia.
- 18-Ministry of Sustainable Resource Management. (1998), Specifications for Aerial Triangulation, Geographic Data 810Blanshard Street Victoria BCV8W3E1.
- 19-NagiZomrawi Mohammed Yousif. (2005), TheEffectof Scanning resolution in Digital Photogrammetric Workstations, A thesis for Ph. University of Khartoum
- 20-Province of British Columbia Ministry of Sustainable Resource Management . (1998), Specifications for aerialtriangulation, http://www. IJERA.com .volume 3.
- 21-Paul R. Wolf, (1983), Elements of PhotogrammetryWith Air Photo Interpretation and Remote Sensing (Second Edition), McGraw-Hill, Inc.
- 22-Petrie. G. (1997), Developments in Digital Photogrammetric Systems for Topographic Mapping Applications, ITC Journal.
- 23-Sandra L. Arlinghous . (2005), Photogrammetry and topographic mapping. (second edition), CRC PressLLC.
- 24- Shortis et al. (1995), Sensor Technology for Digital photogrammetry and Machine Vision, California, USA..
- 25-Thierry et al, (2002), Use of GPS in photographic planes, Taylor& Francis.
- 26-T. Schenk. (2005), Introduction to Photogrammetry, Columbus, OH 43210.
- 27-Technical Committee comprising of members from Engineering and Photogrammetry of Geographic Data BC(BMGS).1998).
- 28-Tang, L., and C. Heipke, (1993), An Approach for Automatic RelativeOrientation, Optical 3-D Measurement Techniques I1 (A. Griin and H. Kahmen, editors), Wichmann, pp. 347-354.
- 29- Weib R, Heller M. (1990), A frame Work for Digital Terrain Modellingsof the 4TH International Symposium on Spatial Handling International Geographical Union, Columbus ohio, pp.219-29.
- 30-W. F. Caspary. (1998), Concept of Network and Deformation Analysis, Kensington,N. S. W., 2033 Australia.
- 31-WilfriedLinder. (2006), Digital Photogrammetry A Practical Course, Springer-Verlag Berlin Heidelberg.
- 32-Xiaopeng Li. (1999), Photogrammetric Investigation into Low-Resolution Digital Camera Systems. Fredericton, N.B. Canada E3B 5A3.
- 33- Zheng. Y.J. (1995), Digital photogrammetric Inversion: Theory and Application to Surface Reconstruction, Photogrammetric Engineering and Remote Sensing, http // www.Vol 4.

APPENDIX (A)

AERIAL SURVEY PROJECT SPECIFICATION KHARTOUM STATE

Elements	Parameters	Tolerance	Requirements		
	Lens	Focal length to suspend: normal Angle for 1:5,000 wide Angle for 1:20,000			
	Geometric Precision	$\leq 2 \ \mu m$			
	Geometric Resolution (Physical Pixel Size)	≤15 μm			
Digital Camera	Radiometric Resolution	≥ 12 bit			
	Shutter Speed	1/500 or Faster			
	Image Motion	$\leq 20 \ \mu m$ Image motion compensation too necessary			
	Certificate of Camera Calibration	< 4 Months			
	Image Quality	Using adequate filters Image, should be with a brightness, contrast and illumination satisfactory			

	Endlap	≥60 %			
	Sidelap	≥30 %	Cross string are		
	Tilt	Tilt < 3°	the first and the last		
1 notograpny	Drift	Drift < 5°	should cover area		
	Solar altitude	≤ 30°	limits		
	Cloud and haze	≤ 5 %			
	Flying Height	± 5 % of Indicated flying Plan			
Ground Control	Primary Ground Control Station	Accuracy $\leq 0.05 \text{ m}$ (WGS), Spacing ~ 50Km	Base stations ≥ 2 stations PDOP $\leq 4^{\circ}$ Satellite configuration \geq		
	Secondary Ground Control Stations	Accuracy ≤ 0.10 m (WGS), Spacing ~ 20-50 Km	5 satellites mast $\geq 10^{\circ}$		
	Number	At least 4 at the corners	of the block		
		other locations depend of	n the shape of the area		
Signalization	Shape	Cross Shape with the Dir	mensions as Attached		
	Tolerance	Standard Deviation $\sigma \le 0$ scales	0.05m for both image		
	Tie points	Tie points not less than 9 minimum of 3 Photos	point appearing in a		
Aerial Triangulation	A Control diagram sho control points by differ	uld be prepared showing t rent symbols	he locations of all types of		
	Interior Orientation	Average Residual ≤ 0.5 Pixel Size			

Relative Orientation	$ \begin{array}{l} \sigma \ x,y \ \leq 0.4 \ \text{Pixel Size} \\ \\ \sigma \ z \ \leq 0.7 \ \text{Pixel Size} \end{array} \end{array} \\ \hline \begin{array}{l} \sigma \ 0 \ \leq \ 0.3 \ \text{Pixel Size} \end{array} \end{array} \begin{array}{l} \begin{array}{l} \text{PAT- M \& BLUH or} \\ \\ \\ \text{Equivalent Software} \end{array} \end{array} $		
Bundle Adjustment Should be Used			
Max-y-Parallax at any Model	≤15 μm		
RMSE of Residuals in E, N, h at control points	$\leq 1/10,000$ of the flying height above ground		
Average σ in Computed E, N, h	$\leq 1/10,000$ of the flying h	neight above ground	
Max Residuals in any Control point & σ in E, N, h of Pass points	$\leq 2.5 \text{RMSE of Control Points Residuals}$ $\leq 1/20,000 \text{ of the flying height above ground}$ $\leq 2.5 \text{RMSE of Tie Points Residuals}$		
RMSE at any Mean Tie Point			
Max Residuals in any Tie point			
Average Adjustment to Photo-coordinates. in Block	$\pm 10 \ \mu m$		
Max Adjustment to Photo-coords. Value	$\pm 20 \ \mu m$		
Aerial Triangulation Re	esiduals should be submitted	ed as Report including:	
- Adjusted Positions an Parameters)	nd Altitude for Camera Stations (Camera Orientation		
- Adjusted Coords. Of	All Points		
- Differences Between Together with the RMS	n Given and Adjusted Coords. For Control Points ISE		
- Residual for all Image Adjusted Coords. Toge	e Coords. Differences Betw ther with the RMSE	veen Measured and	

DTM Orthophotos Contouring	DTM Has To be Generated With 0.30 & 0.15m Intervals Accuracy Rectifications Accuracy 1m Contour Interval For Scale 1:5,000 0.25m Contour Interval For Scale 1:1,000	0.15 &0.30m Resolution 0.02% Flying Height $\Delta r < 1/3 \Delta H (\Delta H \text{ is DTN})$ Accuracy $\leq 50\%$ of Cont	Grid points at 20m (Scale1:1000) & 100m (Scale 1:5000) Spacing have to be Measured and Recorded M Accuracy)
Vectorisation	Accuracy	σ2x,y = σ2CTL + σ210+ σ2AT + σ2VECT $σ2z = σ2CTL + σ210+ σ2AT + σ2DTM +σ2VECT σCTL = Control σ10= 0.5 Pixel Size (RMS) σAT= Arial Triangulation σDTM = DTM σVECT= 50 μm (Vectorisation)$	Roads, Rivers, Water Feature, Drains, Buildings, Bridges, Culverts, Fences, Electric Power Station, Substation, Poles and Lines, Railways, Trees Coverage and Vegetation, Gardens, Cemetery, Communication Towers and Poles, Radio and Television Microwaves Antennas, Canals, Tracks, Traffic Control Signals and Control points
	Grid Line	250mX250m For Scale 1 Scale 1:1,000	1:20,000 & 50mX50m For
Cartography	Marginal Information	Title, Sheet Name, Sheet No., Sheet Index, Scal Line, Date of Photography, Location in The Ma Series, Legend and Symbols table, North & Deviation, Projection & Datum	
	Lettering	Information Should be Written in Arabic & English	

	Test Layout	Has to be approved by The Clint
	Plotter	Minimum 3 colour plotter such as Hp 800 ps or Better
Printing	Paper	Dimensionally Stable Polyester film with Minimum Thickness of 0.15mm such as Hp High – Gloss Photo Paper Q1430A 1,524mm X 30m or Better

Note:

Signal (A) For 1:5,000 Photography

Signal (B) For 1:10,000 Photography

ABANDIX (B)

Triangulation Analytical Report with LPS System for Centre of Khartoum State Project

The Triangulation Report With LPS

The output	image x, y unit	cs: millim	neters	
The output	angle unit:	degrees		
The output	ground X, Y, Z	units: meters	5	
The Ir	put Image Coord	dinates		
image ID = 1				
Point ID	Х	У		
1	-8.3239	-38.6224		
6	-19.9901	27.2779		
19	27.3029	41.7069		
20	8.8707	32.1747		
21	27.4706	-41.8566		
22	-27.7714	44.6472		
23	24.9748	5.9973		
24	4.7898	-4.4727		
25	11.0125	-42.4893		
Affine coe	efficients from	file (pixels)	to film (m	illimeters)
A0 A1	A2	BO	B1	B2 -33.7455
0.009000 -0.000000	51.7455	0.00000	-0.009000	
image ID = 2				
Point ID	Х	У		
1	-31.7779	-38.5211		
2	22.4616	-32.9004		
19	3.4662	41.8904		
20	-15.0924	32.3518		
21	3.5674	-41.7617		
23	1.4827	6.1284		
24	-18.9146	-4.3424		
25	-12.7812	-42.3773		
26	25.3460	-44.6761		
27	26.5618	-36.1118		
28	33.1064	44.6351		
Affine coe	efficients from	file (pixels)	to film (m	illimeters)
AO A1	A2	в0	B1	B2
-33.7455 0.00900	-0.000000	51.7455	0.000000	-0.009000
image ID = 3				
Point ID	Х	У		
2	-0.9771	-32.8417		
19	-20.3728	41.9401		
21	-20.2647	-41.7176		
23	-21.9768	6.1704		
26	1.5853	-44.6233		
27	2.3411	-36.0638		
28	9.4435	44.6889		

	29 30 31	32.0383 33.4171 27.0265	-36.6658 10.4739 42.9048	
A0 -33.7455	Affine coeff Al 0.009000	icients from A2 -0.000000	file (pixels) B0 51.7455	to film (millimeters) B1 B2 0.000000 -0.009000
image ID =	= 4 nt TD	×	57	
	2 3 7 26 27 28 29 30 31 32 34	-24.1948 17.1731 28.6232 -21.8670 -21.6445 -14.4918 8.7048 9.5304 3.1632 32.3387 28.7497	-32.7813 -36.8404 30.2830 -44.5205 -35.9727 44.7295 -36.3497 10.7212 43.0554 -5.4731 36.0028	
A0 -33.7455	Affine coeff A1 0.009000	icients from A2 -0.000000	file (pixels) B0 51.7455	to film (millimeters) B1 B2 0.000000 -0.009000
image ID = Poi	= 5 Int ID 3 7 29 30 31 32 34 35 36 37	x -6.1166 4.8501 -14.6217 -14.3166 -20.6540 8.7158 4.7467 32.8866 32.8337 33.1213	y -36.7459 30.3229 -36.3281 10.6507 42.8962 -5.3321 36.0236 -46.0749 4.8768 43.5747	
A0 -33.7455	Affine coeff A1 0.009000	icients from A2 -0.000000	file (pixels) B0 51.7455	to film (millimeters) B1 B2 0.000000 -0.009000
image ID = Poi	= 6 Int ID 3 4 7 32 34 35 36 37 38 39 40	x -29.5099 23.4101 -18.5881 -14.7890 -18.8983 9.3282 9.2274 9.5357 31.9694 32.6450 32.3245	y -36.5839 -27.6379 30.3102 -5.2530 35.9978 -45.8631 4.9377 43.5358 -50.9676 3.1885 44.6019	

۵ ()	Affine coeff.	icients from	file (pixels)	to film (millimeters)
-33.7455	0.009000	-0.000000	51.7455	0.000000 -0.009000
image ID =	: 7			
Poi	nt ID 4 35 36 37 38 39 40 41	x -0.1001 -14.1499 -14.4086 -14.1386 8.4340 9.0368 8.5301 30.3315	y -27.5546 -45.7688 4.9189 43.4230 -50.8156 3.2253 44.5074 -48.4789	
	42 43	28.6390 30.7088	9.6714 46.1653	
A0 -33.7455	Affine coeff A1 0.009000	icients from A2 -0.000000	file (pixels) B0 51.7455	to film (millimeters) B1 B2 0.000000 -0.009000
image ID =	8			
Poi	nt ID 4 5 8 38 39 40 41 42 43	x -23.4844 17.2511 26.0696 -15.0037 -14.3668 -15.0187 6.6818 5.1183 7.1093	y -27.5119 -33.3131 31.4224 -50.7508 3.2524 44.5141 -48.4117 9.7020 46.1781	
A0 -33.7455	Affine coeff Al 0.009000	icients from A2 -0.000000	file (pixels) B0 51.7455	to film (millimeters) B1 B2 0.000000 -0.009000
image ID = Poi	9 nt ID 8 12 13 40 43 56 57	x -22.6474 15.5944 -30.6529 18.6535 -3.5469 21.5962 14.9796	y 41.5361 -48.5400 -38.5504 28.8679 27.1812 7.8831 -50.0419	
A0 -33.7455	Affine coeff A1 0.009000	icients from A2 -0.000000	file (pixels) B0 51.7455	to film (millimeters) B1 B2 0.000000 -0.009000
image ID =	10			

Inage ID IV		
Point ID	Х	У
12	-8.2867	-48.4430

1	3	6

	37	18.0505	29.7695	
	40	-4.6948	28.8759	
	43	-26.8970	27.3794	
	54	16.9942	-5.3826	
	55	30.7150	-48.7147	
	56	-1.9396	7.8803	
	Affine coeff:	icients from	file (pixels)	to film (millimeters)
AO	A1	A2	BO	B1 B2
-33.7455	0.009000	-0.000000	51.7455	0.000000 -0.009000
image ID =	: 11			
Poi	nt ID	х	y	
	7	22.7143	42.7715	
	12	-31.8561	-48.2459	
	34	23.0065	37.6035	
	37	-5.4812	29.7189	
	40	-28.2296	28.8725	
	52	18.9555	5.4610	
	53	16.3081	-50.5676	
	54	-6.7173	-5.3505	
	55	6.5985	-48.6004	
	56	-25.5317	7.9328	
	57	-32.4823	-49.7486	
	Affine coeff:	icients from	file (pixels)	to film (millimeters)
A0	A1	A2	в0	B1 B2
-33.7455	0.009000	-0.000000	51.7455	0.000000 -0.009000
in the tree	1.0			
image ID =	= 12			
image ID = Poi	= 12 .nt ID	X 0 E C 1 4	У 41 стро	
image ID = Poi	: 12 .nt ID 7	x -0.5614 7.7206	y 41.6530	
image ID = Poi	12 INT ID 7 11	x -0.5614 7.7396	y 41.6530 -36.8002	
image ID = Poi	= 12 nt ID 7 11 31	x -0.5614 7.7396 24.6797 -0.5860	y 41.6530 -36.8002 30.1149 37.4841	
image ID = Poi	= 12 .nt ID 7 11 31 34 37	x -0.5614 7.7396 24.6797 -0.5860 -28.8601	y 41.6530 -36.8002 30.1149 37.4841 29.6760	
image ID = Poi	= 12 .nt ID 7 11 31 34 37 50	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145	
image ID = Poi	12 10 11 31 34 37 50 51	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666	
image ID = Poi	: 12 .nt ID 7 11 31 34 37 50 51 52	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488	
image ID = Poi	= 12 .nt ID 7 11 31 34 37 50 51 52 53	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819 -7.7664	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488 -50.4070	
image ID = Poi	= 12 .nt ID 7 11 31 34 37 50 51 52 53 54	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819 -7.7664 -30.2934	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488 -50.4070 -5.2663	
image ID = Poi	= 12 ID 7 11 31 34 37 50 51 52 53 54 55	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819 -7.7664 -30.2934 -17.3557	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488 -50.4070 -5.2663 -48.4294	
image ID = Poi	12 11 7 11 31 34 37 50 51 52 53 54 55	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819 -7.7664 -30.2934 -17.3557	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488 -50.4070 -5.2663 -48.4294	to film (millimaters)
image ID = Poi	12 Int ID 7 11 31 34 37 50 51 52 53 54 55 Affine coeff:	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819 -7.7664 -30.2934 -17.3557 icients from	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488 -50.4070 -5.2663 -48.4294 file (pixels)	to film (millimeters)
A0	12 .nt ID 7 11 31 34 37 50 51 52 53 54 55 Affine coeff: A1 0 000000	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819 -7.7664 -30.2934 -17.3557 icients from A2	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488 -50.4070 -5.2663 -48.4294 file (pixels) B0	to film (millimeters) B1 B2 0.000000 0.000000
image ID = Poi A0 -33.7455	12 11 7 11 31 34 37 50 51 52 53 54 55 Affine coeff: A1 0.009000	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819 -7.7664 -30.2934 -17.3557 icients from A2 -0.000000	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488 -50.4070 -5.2663 -48.4294 file (pixels) B0 51.7455	to film (millimeters) B1 B2 0.000000 -0.009000
image ID = Poi A0 -33.7455 image ID =	<pre>12 .nt ID 7 11 31 34 37 50 51 52 53 54 55 Affine coeff: A1 0.009000</pre>	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819 -7.7664 -30.2934 -17.3557 icients from A2 -0.000000	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488 -50.4070 -5.2663 -48.4294 file (pixels) B0 51.7455	to film (millimeters) B1 B2 0.000000 -0.009000
A0 -33.7455 image ID = Poi	<pre>: 12 .nt ID 7 11 31 34 37 50 51 52 53 54 55 Affine coeff: A1 0.009000 : 13 .nt ID</pre>	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819 -7.7664 -30.2934 -17.3557 icients from A2 -0.000000	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488 -50.4070 -5.2663 -48.4294 file (pixels) B0 51.7455	to film (millimeters) B1 B2 0.000000 -0.009000
A0 -33.7455 image ID = Poi	<pre>: 12 .nt ID 7 11 31 34 37 50 51 52 53 54 55 Affine coeff: A1 0.009000 : 13 .nt ID 7</pre>	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819 -7.7664 -30.2934 -17.3557 icients from A2 -0.000000	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488 -50.4070 -5.2663 -48.4294 file (pixels) B0 51.7455	to film (millimeters) B1 B2 0.000000 -0.009000
A0 -33.7455 image ID = Poi	<pre>: 12 .nt ID 7 11 31 34 37 50 51 52 53 54 55 Affine coeff: A1 0.009000 : 13 .nt ID 7 10</pre>	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819 -7.7664 -30.2934 -17.3557 icients from A2 -0.000000 x -23.8072 28.1220	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488 -50.4070 -5.2663 -48.4294 file (pixels) B0 51.7455 y 42.7190 -45.0892	to film (millimeters) B1 B2 0.000000 -0.009000
A0 -33.7455 image ID = Poi	<pre>: 12 .nt ID 7 11 31 34 37 50 51 52 53 54 55 Affine coeff: A1 0.009000 : 13 .nt ID 7 10 11</pre>	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819 -7.7664 -30.2934 -17.3557 icients from A2 -0.000000 x -23.8072 28.1220 -15.9852	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488 -50.4070 -5.2663 -48.4294 file (pixels) B0 51.7455 y 42.7190 -45.0892 -36.6471	to film (millimeters) B1 B2 0.000000 -0.009000
A0 -33.7455 image ID = Poi	<pre>12 11 7 11 31 34 37 50 51 52 53 54 55 Affine coeff: A1 0.009000 13 .nt ID 7 10 11 28</pre>	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819 -7.7664 -30.2934 -17.3557 icients from A2 -0.000000 x -23.8072 28.1220 -15.9852 18.9550	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488 -50.4070 -5.2663 -48.4294 file (pixels) B0 51.7455 y 42.7190 -45.0892 -36.6471 28.5482	to film (millimeters) B1 B2 0.000000 -0.009000
A0 -33.7455 image ID = Poi	<pre>: 12 .nt ID 7 11 31 34 37 50 51 52 53 54 55 Affine coeff: A1 0.009000 : 13 .nt ID 7 10 11 28 31</pre>	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819 -7.7664 -30.2934 -17.3557 icients from A2 -0.000000 x -23.8072 28.1220 -15.9852 18.9550 1.4190	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488 -50.4070 -5.2663 -48.4294 file (pixels) B0 51.7455 y 42.7190 -45.0892 -36.6471 28.5482 30.0261	to film (millimeters) B1 B2 0.000000 -0.009000
A0 -33.7455 image ID = Poi	<pre>: 12 .nt ID 7 11 31 34 37 50 51 52 53 54 55 Affine coeff: A1 0.009000 : 13 .nt ID 7 10 11 28 31 34</pre>	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819 -7.7664 -30.2934 -17.3557 icients from A2 -0.000000 x -23.8072 28.1220 -15.9852 18.9550 1.4190 -23.8940	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488 -50.4070 -5.2663 -48.4294 file (pixels) B0 51.7455 y 42.7190 -45.0892 -36.6471 28.5482 30.0261 37.5838	to film (millimeters) B1 B2 0.000000 -0.009000
A0 -33.7455 image ID = Poi	<pre>: 12 .nt ID 7 11 31 34 37 50 51 52 53 54 55 Affine coeff: A1 0.009000 : 13 .nt ID 7 10 11 28 31 34 48</pre>	x -0.5614 7.7396 24.6797 -0.5860 -28.8601 20.6363 24.0330 -4.5819 -7.7664 -30.2934 -17.3557 icients from A2 -0.000000 x -23.8072 28.1220 -15.9852 18.9550 1.4190 -23.8940 13.6170	y 41.6530 -36.8002 30.1149 37.4841 29.6760 9.6145 -33.4666 5.4488 -50.4070 -5.2663 -48.4294 file (pixels) B0 51.7455 y 42.7190 -45.0892 -36.6471 28.5482 30.0261 37.5838 -10.5800	to film (millimeters) B1 B2 0.000000 -0.009000

	50	-2.7413	9.5891		
	51	0.2765	-33.4571		
	52	-28.0038	5.6285		
	53	-32.0813	-50.0917		
AO	Affine o Al	coefficients f A2	rom file (pixels B0	s) to film B1	(millimeters) B2
-33.7455	0.009	9000 -0.0000	00 51.7455	0.00000	0 -0.009000
image ID =	= 14				
Por	int ID	Х	У		
	10	4.7394	-45.1159		
	19	25.3140	31.9743		
	28	-4.3975	28.5776		
	31	-21.8532	30.0755		
	46	20.5221	12.7584		
	47	23.3564	-47.4248		
	48	-9.9135	-10.5627		
	49	-8.7369	-40.1493		
	50	-26.0041	9.6437		
	51	-23.1073	-33.4395		
	Affine (coefficients f	rom file (pixels	s) to film	(millimeters)
ЪÛ	A1	A2	B0	B1	B2
-33.7455	0.009	9000 -0.0000	00 51.7455	0.0000	0 -0.009000
image ID =	= 15				
Poi	int ID	Х	У		
	10	-18.8090	-45.2088		
	19	1.5123	32.0349		
	20	20.1470	41.9233		
	28	-27.9727	28.6795		
	44	19.5848	5.1950		
	45	22.9603	-45.6413		
	46	-2.9645	12.8039		
	47	-0.3018	-47.5264		
	48	-33.6679	-10.5582		
	49	-32.2197	-40.3441		
	Affine o	coefficients f	rom file (pixels	s) to film	(millimeters)
AO	A1	A2	вО	, В1	В2
-33.7455	0.0090	-0.0000	0 51.7455	0.00000	-0.009000
imaga TD -	- 16				
Illiage ID -	- IO Int TD	37	5.7		
FO	EIIC ID	25 0571	У 15 1711		
	9	19 8585	-19 1127		
	19	-22 2245	32 1243		
	20	-3 8044	42 0394		
	20	32 9023	28 8556		
	2 Z 2 A	-3 8612	5 2285		
	45	-1 0022	-45 7028		
	46	-26 4974	12 8198		
	47	-23.8289	-47.6188		
	Affine d	coefficients f	rom file (pixels	s) to film	(millimeters)
A0	A1	A2	BO	B1	В2

-33.7455	0.009000	-0.000000	51.7455	0.00000	0 -0.009000
image ID = Poi	= 17 111 ID 12 13 17 18 57 68 69 70 71	x 17.3172 -29.0997 24.3821 -18.4984 16.6813 17.0147 20.4488 -7.6803 -5.1298	y 23.9690 34.6269 -26.1821 -45.9484 22.4571 0.3121 -42.1867 -10.2582 -48.5732		
A0 -33.7455	Affine coeff: A1 0.009000	icients from A2 -0.000000	file (pixels) B0 51.7455	to film B1 0.000000	(millimeters) B2 -0.009000
image ID =	= 18				
Poi	Int ID 12 17 55 57 66 67 68 69 70 71	x -6.2538 0.6761 33.1070 -6.9070 17.2420 21.7397 -6.8625 -3.3788 -31.6201 -28.8630	y 24.0458 -26.1259 24.8370 22.5340 15.3858 -42.3682 0.3825 -42.1211 -10.1107 -48.4312		
A0	Affine coeff: A1	icients from A2	file (pixels) B0	to film B1	(millimeters) B2
-33./455	0.009000	-0.000000	51./455	0.000000	-0.009000
image ID =	= 19				
P01	10 16 17 53 55 57 64 65 66 67 68 69	x 17.9930 -23.1131 18.8884 9.0895 -30.4660 15.9395 22.9675 -6.9015 -2.1474 -30.7519 -27.2986	y -35.4195 -26.0179 22.9829 24.7732 22.6608 12.0969 -45.2019 15.4012 -42.3651 0.5103 -41.9967		
AO	Affine coeff. Al	icients from A2	file (pixels) B0	to film B1	(millimeters) B2
-33.7455	0.009000	-0.000000	51.7455	0.00000	-0.009000
image ID = Poi	= 20 Int ID 11 16	x 10.4108 -5.7769	у 34.9869 -35.3905		

	51 53 55 62 63 64 65 66 67	26.9390 -5.3864 -15.0600 14.5524 25.4545 -7.9299 -0.8246 -31.1224 -25.8961	38.2808 22.9420 24.7628 -2.3681 -50.2223 12.1114 -45.1715 15.4394 -42.3105	
	Affine coeff	icients from	file (pixels)	to film (millimeters)
-33.7455	0.009000	AZ -0.000000	BU 51.7455	-0.009000
image ID = Poi:	21 nt ID 10 11 16 49 51 53 60 61 62 63 64	x 31.5938 -13.0072 -29.6315 18.1729 3.4942 -29.3719 15.0393 20.9410 -9.1680 1.4438 -31.6135	y 26.1388 35.0182 -35.1662 31.7603 38.1882 23.0954 3.7511 -45.6174 -2.3460 -50.2039 12.2949	
	65	-24.7695	-44.9732	
A0 -33.7455	Affine coeff A1 0.009000	icients from A2 -0.000000	file (pixels) B0 51.7455	to film (millimeters) B1 B2 0.000000 -0.009000
A0 -33.7455 image ID = Poi:	Affine coeff A1 0.009000 22 nt ID 10 15 47 49 51 58 59 60 61 62 63	A2 -0.000000 x 7.8774 25.5444 26.6832 -5.6799 -20.1730 18.9466 21.9973 -8.6368 -2.7044 -32.8145 -22.1529	file (pixels) B0 51.7455 26.1941 -22.7842 24.1422 31.8014 38.2339 -17.4754 -44.6464 3.8351 -45.4758 -2.2498 -50.0548	to film (millimeters) B1 B2 0.000000 -0.009000
A0 -33.7455 image ID = Poi: A0 -33.7455	Affine coeff A1 0.009000 22 nt ID 10 15 47 49 51 58 59 60 61 62 63 Affine coeff A1 0.009000	x 7.8774 25.5444 26.6832 -5.6799 -20.1730 18.9466 21.9973 -8.6368 -2.7044 -32.8145 -22.1529 icients from A2 -0.000000	file (pixels) B0 51.7455 26.1941 -22.7842 24.1422 31.8014 38.2339 -17.4754 -44.6464 3.8351 -45.4758 -2.2498 -50.0548 file (pixels) B0 51.7455	to film (millimeters) B1 B2 0.000000 -0.009000 to film (millimeters) B1 B2 0.000000 -0.009000

	49	-29.2855	31.8353		
	58	-4.7965	-17.3764		
	59	-1.7564	-44.5233		
	60 61	-32.3101	3.932U -45.3307		
	01	-20.3911	-43.3307		
A	ffine coeffi	lcients from	file (pixels)	to film (mil	limeters)
A0	A1	A2	BO	B1	В2
-33.7455	0.009000	-0.000000	51.7455	0.00000	-0.009000
image TD =	24				
Poin	t ID	х	У		
	9	22.7936	21.6934		
	14	1.6571	-40.7239		
	15	-21.8259	-22.6034		
	45	1.9685	27.4464		
	4 / 5 8	-21.0302	-17 3042		
	59	-25.3350	-44.4094		
A	ffine coeffi	lcients from	file (pixels)	to film (mil	limeters)
AO	A1	A2	BO	B1	B2
-33./455	0.009000	-0.000000	51./455	0.000000	-0.009000
image ID =	25				
Poin	t ID	х	У		
	14	-27.5389	-31.6451		
	15	-3.9110	-49.1075		
	59	-0.8957	-27.4759		
	72	-16 1444	-16 3830		
	73	-17.1947	50.3255		
	74	9.6152	48.2532		
7	ffing gooffi	cionta from	file (pivele)	to film (mil	limotors)
A0	A1	A2	BO	B1	B2
-33.7455	0.009000	-0.000000	51.7455	0.00000	-0.009000
image ID =	26				
Poin	15 ID	X _27 1200	-40 1540		
	1J 59	-24 3857	-27 4759		
	61	0.0762	-26.0693		
	63	19.3092	-21.1347		
	74	-13.8567	48.3090		
	75	31.7778	24.3472		
	/6	28.08/1	-4.8598		
A	ffine coeffi	cients from	file (pixels)	to film (mil	limeters)
AO	Al	A2	BO	B1	в2
-33.7455	0.009000	-0.000000	51.7455	0.000000	-0.009000
imago TD -	27				
Poin	t ID	x	V		
	16	26.8808	-35.5090		
	61	-23.4848	-25.9050		

	63 65 75	-4.2378 21.8919 8.3102	-21.0518 -25.8880 24.4253	
	76	4.5550	-4.8091	
AO	Affine coeff A1	icients from A2	file (pixels) B0	to film (millimeters) B1 B2
-33.7455	0.009000	-0.000000	51.7455	0.000000 -0.009000
image ID =	= 28			
Poi	lnt ID	Х	У	
	16	3.4484	-35.4462	
	63	-27.6763	-21.0279	
	65	-1.5692	-25.8309	
	67	23.3900	-28.3456	
	75	-15.3345	24.4681	
	76	-18.9884	-4.7676	
	77	26.2845	44.3376	
	78	32.8504	-15.3576	
	Affine coeff	icients from	file (pixels)	to film (millimeters)
AO	A1	A2	BO	B1 B2
-33.7455	0.009000	-0.000000	51.7455	0.000000 -0.009000
image ID =	= 29			
Poi	lnt ID	Х	У	
	16	-20.0981	-35.4206	
	17	20.8204	-44.3509	
	65	-25.1136	-25.7898	
	67	-0.1706	-28.3198	
	69	24.8546	-28.6540	
		2.6507	44.3532	
	78	9.2863	-15.3502	
	79	25.6570	-7.0945	
	80	31.1631	-4.4111	
- 0	Affine coeff	icients from	file (pixels)	to film (millimeters)
A0	Al	A2	B0	B1 B2
-33./455	0.009000	-0.000000	51./455	0.000000 -0.009000
image ID =	= 30			
Poi	Int ID	X	У	
	17	-2.8114	-44.2879	
	67	-23.7029	-28.1716	
	69	1.2020	-28.6064	
	71	26.6169	-22.1179	
	.7.7	-20.6805	44.4418	
	78	-14.2177	-15.2367	
	/9	2.1241	-/.0826	
	80	/.41//	-4.4064	
	81	32.9965	13.6349	
	¢∠	22.6999	-35.5893	
- 0	Affine coeff	icients from	file (pixels)	to film (millimeters)
A0	Al	A2	BO	Bl B2
-33.7455	0.009000	-0.000000	51.7455	0.000000 -0.009000

<pre>image ID = 3</pre>	31				
Point	: ID	Х	У		
	17	-26.1529	-44.2474		
	18	16.4570	-24.6574		
	69	-22.2582	-28.5845		
	71	3.1600	-22.0343		
	80	-16 3201	-4 3845		
	81	9.3613	13.6903		
	82	-0.6920	-35.5133		
A	ffine coeffi	icients from	file (pixels)	to film (m	illimeters)
A0	Al	A2	B0	B1	B2
-33.7455	0.009000	-0.000000	51.7455	0.000000	-0.009000
image TD = 1	23				
Point	. ID	x	V		
	14	-4.0375	-31.8370		
	15	19.6574	-49.2310		
	59	22.6047	-27.5905		
	72	7.5008	-16.5489		
	73	6.2226	50.1305		
	74	32.9582	48.1496		
Ζλ -	ffine coeffi	icients from	file (nivels)	to film (m	illimators)
A0	A1	A2	RO	B1	B2
-33.7455	0.009000	-0.000000	51.7455	0.000000	-0.009000
00.7700			01.1100		
THE OU	JTPUT OF SEI	LF-CALIBRATI	NG BUNDLE BLOCH	K ADJUSTMEN'	Γ
the ne of	itoration -1	the sta	ndard orror -	0 0625	
the maximal	correction	of the obje	ct points = 28	0.0023	
	COLLECCION	or the obje	et points - 20	0.17705	
the no. of :	iteration =2	2 the sta	ndard error =	0.0625	
the maximal	correction	of the obje	ct points = 1	L.69656	
the no. of :	iteration =3	3 the sta	ndard error =	0.0625	
the maximal	correction	of the obje	ct points = (0.00859	
the ne of	toration -	1 the sta	ndard orror -	0 0625	
the maximal	correction	of the obje	nualu error - ct points = (0.0023	
	COLLECCION	or the obje			
	Tł	ne exterior	orientation pai	cameters	image ID
XYsZs OMEGA	A PHI	KAPPA8	-765.072-83	31.2242	-23.7780 -
0.2674 -0	.0306 89.7	7834 7	-764.3240 -5	558.7380	-24.6799 -
0.2301 0	.0062 89.8	3085 6	-764.290-284	.6075 -:	24.3648 -
0.1351 0	.0271 89.9	9453 5	-764.2936 -1	L1.5396	-23.6746 -
0.0229 0	.0939 89.9	98544	-764.5205262.3	3244 -22	.5578
U.1264 0	.0356 90.3	3426 J 7567	-/00.5514 53	33.1249	-21.4/20
2 -7	.UQDD 90. 58 8008 90.	1 2579 —	21 7023 -0 0/	167 0 03	90 90 7868
1 -764	3231 1052 304		8619 -1 1326	-0 2835	90 7423 9
80.9850 -8	374.1659	-20.6154	0.0955 0.00)38 -90.44	88
10 85	5.4895 -60)3 6402 -	21 8/06 -0 05	593 -0 23	23 - 89 9590
		.0102	21.0400 0.00	0.20	25 05.5550

12	87.1502	-58.1686	-25.6808	-0.0224	-0.4827	-89.7677
13	83.3848	214.8507	-24.8066	-0.0532	-0.2141	-89.3532
4	79.6696	487.4817	-24.2128	0.1540	-0.1314	-89.2865
15	75.2719	758.7942	-22.4958	0.0471	-0.0381	-89.2604
16	70.8503	1028.3223	-21.7190	-0.1410	0.0748	-89.2837
17	921.5437 -	-896.0250	-17.7183	0.0723	-0.0277	-89.6921
18 9	19.6512 -0	624.9327	-17.0494	-0.0288	0.0935 -	89.5330 19
917.0020	-352.876	6 -17.2	874 -0.0390	0.1152	-89.2410	20
913.7750	-79.5348	B -17.6	113 0.0249	9 0.0906	-89.1745	21
909.4464	192.7413	3 -17.9	070 0.0593	3 0.0920	-88.7624	
22	905.0360	464.9132	-18.0995	0.1066	0.0355	-88.7321
23	900.7426	736.9193	-18.7446	0.0578	-0.0695	-88.6330
24 89	7.0821 10	008.9470	-19.4553 -	-0.0152 -0	0.2140 -8	8.8071 31
1736.372	0 -914.9540	6 -18.8	912 -0.0436	6 -0.1897	90.3153	
30 1	734.581 -0	644.3782	-19.5258	-0.1664 -	-0.1274	90.4157
29 17	34.188 -3	73.2707	-20.1328 -	-0.2015 -0).1355 9	0.1780
28	1733.84	-100.0382	-20.8155	-0.1366	-0.1561	90.1657
27 173	3.3129 174	4.1334	-21.1401 (0.0202 -0.	.1642 90	.3495 26
1734.283	4 448.870	7 -20.1	822 0.2740	-0.2873	90.1984	25
1733.279	0 720.1376	6 -19.3	085 0.2239	9 -0.2685	90.0855	
33	1745.4087	999.0636	-830.0803	0.4193	-0.5669	89.8882

The accuracy of the exterior orientation parameters image ID mXsmYsmZsmOMEGAmPHImKAPPA 0.3625 0.0912 0.0667 0.0429 8 0.9352 0.9115 7 0.0914 0.0446 0.9360 0.8188 0.4361 0.0641 0.3028 6 0.7493 0.6545 0.0616 0.0538 0.0347 5 0.8524 0.7343 0.3348 0.0811 0.0613 0.0421 4 0.8861 0.7488 0.3065 0.0754 0.0644 0.0366 3 1.0106 0.7942 0.4279 0.0876 0.0718 0.0385 2 0.9065 0.7066 0.4248 0.0645 0.0666 0.0375 1 4.1341 5.7130 0.9368 0.2594 0.1772 0.0479 9 0.9732 0.7561 0.3445 0.0739 0.0599 0.0364 10 1.0201 0.9203 0.4563 0.1000 0.0730 0.0444 11 0.7666 0.6887 0.2779 0.0706 0.0520 0.0295 12 0.8300 0.8256 0.2960 0.0929 0.0577 0.0328 13 0.7132 0.6244 0.2749 0.0625 0.0482 0.0306 14 0.9277 0.9569 0.4388 0.1053 0.0704 0.0390 15 0.9146 0.4990 0.8472 0.0865 0.0631 0.0378 0.9202 0.8348 0.4242 0.0915 0.0521 0.0343 16 17 0.8243 0.3857 0.0399 0.8867 0.0885 0.0582 18 0.9952 0.8887 0.5167 0.0971 0.0851 0.0450 19 0.9194 0.0413 0.8471 0.4584 0.0886 0.0811 20 0.8663 0.7966 0.3379 0.0941 0.0667 0.0362 21 0.7684 0.7274 0.3005 0.0720 0.0603 0.0334 22 0.8459 0.9356 0.1025 0.0687 0.0420 0.4296 23 0.9888 1.0641 0.5964 0.1200 0.0810 0.0501 0.4827 24 1.1337 1.3218 0.1521 0.0921 0.0481 31 3.0996 3.5407 2.5302 0.3102 0.4109 0.1827 0.1517 30 2.2526 2.6575 1.8486 0.2029 0.2833 29 2.2783 1.7210 2.0174 0.1414 0.2902 0.0998 28 2.5328 2.3810 1.7389 0.2021 0.2891 0.1500 27 2.5764 1.8635 1.8483 0.1695 0.2902 0.1091

26	2.4	4056	2.61	27	1.81	132	0.22	05	0.2954	0.1285
25	2.2	2502	2.42	220	2.04	491	0.20	12	0.2915	0.1287
33	11	.0841	16.1	628	4.62	294	0.70	92	0.5070	0.1984
	The :	interio	or orier	ntation p	parar	neters c	of ph	otos		
image	ID	f(mm))	xo(mm)		yo (mn	n)			
		8	35.000	0	0.00	000	0.	0000		
		7	35.000	0	0.00	000	0.	0000		
		6	35.000	0	0.00	000	0.	0000		
		5	35.000	0	0.00	000	0.	0000		
		4	35.000	00	0.00	000	0.	0000		
		3	35.000	0	0.00	000	0.	0000		
		2	35.000	0	0.00	000	0.	0000		
		1	105.200	0	0.00	000	0.	0000		
		9	35.000	0	0.00	000	0.	0000		
		10	35.000	0	0.00	000	0.	0000		
		11	35.000	0	0.00	000	0.	0000		
		12	35.000	0	0.00	000	0.	0000		
		13	35.000	0	0.00	000	0.	0000		
	-	14	35.000	0	0.00	000	0.	0000		
	-	15	35.000	00	0.00	000	0.	0000		
	-	16	35.000	00	0.00)00	0.	0000		
	-	17	35.000	00	0.00	000	0.	0000		
		18	35.000	0	0.00	000	0.	0000		
	-	19	35.000	0	0.00	000	0.	0000		
	-	20	35.000	0	0.00	000	0.	0000		
	-	21	35.000	0	0.00		0.	0000		
	4	22	25.000	0	0.00		0.	0000		
		23 24	35 000	0			0.	0000		
	-	24 21	35 000				0.	0000		
		30	35 000	0			0.	0000		
		29	35 000	0	0.00	000	0	0000		
	-	2.8	35.000) ()	0.00	000	0.	0000		
	,	27	35.000	00	0.00	000	0.	0000		
		26	35.000	00	0.00	000	Ο.	0000		
	,	25	35.000	00	0.00	000	Ο.	0000		
		33	105.200	00	0.00	000	Ο.	0000		
	The re	esidual	ls of th	ne contro	ol po	oints				
Poir	nt ID	rک	KrYrZ							
	1	0.85	528	0.0961		-0.4801	L			
	2	-0.71	114	-0.3681		0.3913	3			
	3	-0.60	072	0.2176		0.5617	7			
	4	-0.30	094	-0.0827		0.1451	L			
	5	0.00	000	0.0000		0.0000)			
	6	-0.88	394	0.2585		0.0767	/			
	/	0.5.	142	0.2064		0.2918	3			
	8	-0.42	228	-0.3418		-0.3/9/	/ C			
	9	0.03	100	-0.2895		0.3813	כ ר			
	1 U	_0.01	LUZ 21.2	-0.3340		-0.1073	כ ר			
	⊥⊥ 1 2	_0.13	367	0.03/0		-0.5900	5			
	13	_0.1.)54	-0 2862		0.100	ן א			
	14	0.20	412	0.2151		-0 3706	5			
	16	-0 0	785	0 0107		0 2212	2			
	18	0.26	. 33 681	-0.0295		-0.1002	-			
	± V	0.20	~~-	0.0200	1	15	-			
					14	+5				

aXaYaZ					
no 1/200 1/200 17	-0.0908	-0.0265	0.0404		
MXMYMZ	0.4477	0.2300	0.3711		
Doint ID	The coordir	nates of ob	ject point	S	Oursenlan
POINT ID	A 1010 0060	1100	1 0151	لے 202 1012	overlap
	-1218.9203	TT00	0.0131	383.1913	2
2	-1145.0070	539	7.0131 7.750	201 7400	с С
3	-1100./330	55	7.7352	381.7400	3
4	-1084.3102	-554	.7025	382.0446	3
5	-1153.3848	-1028	5.5/18	383.6223	
0	-457.3913	1311		382.9610	2
/	-411.8512	-0/	.9062	381.7083	0
ð O	-401.3144	-1132		384.4292 201 6254	2
9	640.5374	1266	0.5056	381.6254	2
10	602.5287	548	0035	383.9449	6
	511.2051	33	0.8828	385.4084	4
12	644./128	-698	.9616	385.4219	5
13	525.0572	-1233	5.1422	383.6905	2
14	1364.0/10	1037	.3620	386.1493	3
16	1322.0218	-140	0.2563	383.6255	6
18	1450.7883	-1106	.4390	384.9975	2
19	-291.0546	771	.7080	377.0288	6
20	-403.3408	980	.4179	374.5467	4
21	-1243.8492	756	.9341	377.5728	3
22	-261.8648	1401	.1074	376.8446	2
23	-697.4067	789	.4652	385.8765	3
24	-821.0502	1020	.5569	379.0471	2
25	-1255.9765	943	8.8734	379.3067	2
26	-1274.5089	508	3.3337	378.3458	3
27	-1168.9056	501		370.6217	3
28	-251.1992	431	.5568	379.8760	6
29	-1184.0957	158	.1213	382.2756	3
30	-641.1691	152	.9592	377.7310	3
31	-267.7561	228	.2046	380.3363	6
32	-825.0835	-112	.1901	380.7105	3
34	-349.7319	-66	5.2413	377.8875	6
35	-1295.4904	-390	.9890	381.4107	3
36	-707.1023	-390	.3140	380.2951	3
37	-260.2907	-394	.9878	380.3439	6
38	-1353.9416	-652	.8712	381.5902	3
39	-727.1504	-662	.3379	382.5219	3
40	-249.0952	-657	.8240	380.9391	6
41	-1323.1972	-904	.2015	379.4301	2
42	-653.3026	-889	.0199	381.8147	2
43	-231.8369	-913	8.6164	381.2798	4
56	-7.3202	-625	.9534	381.7995	3
57	662.1338	-705	.9022	385.2632	5
54	145.7069	-407	.9276	379.8288	3
55	637.1122	-253	8.7176	377.9922	6
52	20.1963	-111	.3174	382.2329	3
53	656.8743	-143	.9669	376.5875	6
50	-29.5047	182	.3487	381.9152	3
51	471.4619	222	.5668	383.9436	6
48	201.7078	373	.6255	379.0398	3

49	544.1889	391.7878	381.3381	6
46	-72.3661	722.4623	382.0170	3
47	622.9182	762.0812	381.3778	6
44	11.8345	984.0307	382.1866	2
45	586.9452	1024.2789	372.8868	4
17	1220.4961	-614.5149	384.7716	6
68	916.6561	-702.7404	381.3314	3
69	1403.7113	-659.5686	383.7308	6
70	1038.4586	-983.4072	381.0036	2
71	1480.4339	-952.5158	385.0930	4
66	745.7788	-432.4298	376.3897	3
67	1405.3666	-370.8881	384.3103	6
64	777.2776	-172.4029	382.5099	3
65	1433.5658	-81.6912	383.7084	6
62	939.3106	87.5620	383.6472	3
63	1487.5931	221.6092	384.2352	6
60	863.5766	363.8606	383.5605	3
61	1429.6005	444.8675	384.5781	6
15	1160.9251	763.2151	384.5708	6
58	1101.3271	686.1261	384.1192	3
59	1412.9343	728.5023	384.9344	6
72	1542.1897	904.0045	383.5142	2
73	2310.9205	917.4091	387.3961	2
74	2288.3662	608.5477	386.7174	3
75	2015.8011	79.4733	385.2330	3
76	1676.8659	120.8411	384.1095	3
77	2244.9965	-400.7719	384.9637	3
78	1556.0313	-479.8752	384.7984	3
79	1652.0767	-668.3612	384.8663	3
80	1683.8939	-728.3306	381.1123	3
81	1893.1776	-1021.4803	384.3837	2
82	1323.5635	-908.8903	385.3837	2
	The total obje	ct points = 81		

The	accuracy	of	object	points	
7	- /ma 1/ma 17 ma 17		-		

Point ID	mXmYmZmP	Overlap	1		
19	0.5629	0.4981	0.6890	1.0196	6
20	0.5714	0.5435	0.7141	1.0639	4
21	1.3109	0.5739	1.2169	1.8785	3
22	0.8066	0.9634	1.0088	1.6113	2
23	0.6196	0.5515	1.3783	1.6087	3
24	0.7105	0.8089	1.9908	2.2632	2
25	1.4059	0.7072	1.4210	2.1204	2
26	1.3471	0.5735	1.0420	1.7970	3
27	1.0798	0.5405	0.9593	1.5422	3
28	0.4955	0.4661	0.5487	0.8740	6
29	1.2327	0.5968	1.1437	1.7843	3
30	0.6124	0.5370	0.9359	1.2407	3
31	0.4743	0.4325	0.4738	0.7978	6
32	0.5569	0.5263	0.8687	1.1583	3
34	0.3869	0.3803	0.3431	0.6419	6
35	1.5509	0.6447	1.2474	2.0921	3
36	0.5749	0.5476	0.9536	1.2408	3
37	0.4765	0.4412	0.4844	0.8102	6
38	1.5895	0.6479	1.1656	2.0748	3
39	0.5886	0.5527	0.9208	1.2247	3
40	0.5084	0.4792	0.4979	0.8579	6

41	2.8205	1.2009	2.1022	3.7171	2
42	0.8356	1.0116	1.7537	2.1902	2
43	0.5817	0.6013	0.5989	1.0289	4
56	0.6306	0.5320	0.9014	1.2219	3
57	0.4541	0.4331	0.4045	0.7466	5
54	0.5838	0.5268	0.9362	1.2227	3
55	0.4804	0.4283	0.4719	0.7981	6
52	0.5493	0.4880	0.8510	1.1243	3
53	0.4542	0.4102	0.4440	0.7561	6
50	0.6057	0.5037	0.9296	1.2185	3
51	0.4118	0.3857	0.3954	0.6890	6
48	0.6061	0.5309	0.8738	1.1886	3
49	0.3921	0.3803	0.3532	0.6505	6
46	0.6938	0.5598	1.0566	1.3824	3
47	0.4995	0.4180	0.5323	0.8411	6
44	0.7715	0.7092	1.7424	2.0332	2
45	0.5967	0.5454	0.6099	1.0126	4
17	0.6924	0.4575	0.7515	1.1196	6
68	0.5690	0.5270	0.9206	1.2038	3
69	0.6500	0.5596	0.6659	1.0858	6
70	0.8313	1.0992	1.8335	2.2936	2
71	0.6701	0.6482	0.6757	1.1515	4
66	0.6730	0.5645	0.9715	1.3097	3
67	0.5720	0.4700	0.5820	0.9417	6
64	0.6064	0.5540	0.8892	1.2105	3
65	0.5130	0.4382	0.4677	0.8210	6
62	0.5384	0.5299	0.9538	1.2167	3
63	0.8022	0.5746	0.8108	1.2772	6
60	0.5396	0.5329	0.8970	1.1746	3
61	0.7604	0.6478	0.8489	1.3109	6
15	0.7363	0.4859	0.9077	1.2657	6
58	0.7241	0.5689	1.0594	1.4037	3
59	0.6437	0.5650	0.7861	1.1626	6
72	1.0823	1.1271	2.1846	2.6859	2
73	4.3821	3.1786	4.8987	7.3010	2
74	5.5678	2.0787	4.8324	7.6599	3
75	2.6048	1.4213	3.8613	4.8698	3
76	0.9247	0.8463	2.0471	2.4004	3
77	4.6450	1.7909	4.7728	6.8966	3
78	0.8276	0.8623	1.5472	1.9551	3
79	0.7669	1.1819	1.9176	2.3795	3
80	0.7904	1.2739	2.0264	2.5206	3
81	2.2225	3.0873	4.1753	5.6483	2
82	2.0049	0.9052	2.0064	2.9774	2
=					

amXamYamZ

1.0119	0.7485	1.2808

The residuals of image points

Point	Image	VxVy	
1	2	0.0026	0.0189
1	1	0.0536	-0.1055
Point	Image	VxVy	
2	4	-0.0533	0.0306
2	3	-0.0348	0.0367

2	2	-0.0080	0.0233
Point 3 3 3	Image 6 5 4	VxVy -0.0052 -0.0234 0.0599	0.0135 -0.0160 0.0073
Point 4 4 4	Image 8 7 6	VxVy -0.0120 -0.0145 0.0048	0.0075 0.0129 0.0299
Point 5	Image 8	VxVy 0.0227	-0.0221
Point 6 6	Image 1 16	VxVy -0.0387 -0.0789	0.0983 -0.0484
Point 7 7 7 7 7 7 7	Image 6 5 4 11 12 13	VxVy -0.0023 0.0154 0.0004 -0.0040 -0.1093 0.0077	-0.0222 0.0042 -0.0183 -0.1134 0.4851 -0.1113
Point 8 8	Image 8 9	VxVy -0.0582 0.0467	0.0070 -0.0749
Point 9 9	Image 16 24	VxVy 0.0389 0.0729	-0.0662 0.0349
Point 10 10 10 10 10 10	Image 13 14 15 21 22 23	VxVy -0.0205 0.0005 0.0929 0.0237 0.0093 0.0682	0.0071 -0.0132 -0.0004 0.0296 0.0168 -0.0242
Point 11 11 11 11	Image 12 13 20 21	VxVy 0.0032 0.0310 -0.0247 -0.0069	0.0538 0.0336 -0.0570 -0.0722
Point 12 12 12 12 12 12	Image 9 10 11 17 18	VxVy -0.0437 -0.0243 -0.0068 -0.0305 -0.0136	0.0393 -0.0340 0.0083 -0.0375 0.0015
Point	Image	VxVy	

13 13	9 17	-0.0150 -0.0195	-0.0716 0.0310
Point 14 14 14	Image 24 25 33	VxVy -0.0497 0.0044 0.0285	0.0802 0.0170 -0.0242
Point 16 16 16 16 16 16	Image 19 20 21 29 28 27	VxVy 0.0330 -0.0067 -0.0527 0.0008 0.0039 -0.0102	-0.0264 -0.0266 -0.0173 -0.0056 -0.0172 -0.0068
Point 18 18	Image 17 31	VxVy 0.0090 -0.0051	0.0347 -0.0170
Point 19 19 19 19 19 19	Image 3 1 14 15 16	VxVy -0.0094 -0.0079 -0.0038 -0.0328 0.0608 -0.0481	0.0057 -0.0533 0.0665 -0.0355 -0.0028 0.0569
Point 20 20 20 20	Image 2 1 15 16	VxVy 0.0203 -0.0614 -0.0459 0.0045	0.0830 -0.0915 -0.0265 0.0181
Point 21 21 21	Image 3 2 1	VxVy 0.0312 0.0402 -0.0709	-0.0438 0.0044 0.0398
Point 22 22	Image 1 16	VxVy 0.0722 0.0711	-0.0377 -0.0376
Point 23 23 23	Image 3 2 1	VxVy 0.0168 -0.1002 0.0818	0.0130 -0.0404 0.0269
Point 24 24	Image 2 1	VxVy -0.0022 0.0022	0.0163 -0.0163
Point 25 25	Image 2 1	VxVy 0.0341 -0.0340	-0.0192 0.0193
Point	Image	VxVy	

26 26 26	4 3 2	-0.0004 0.0008 -0.0005	0.0094 -0.0005 -0.0089
Point 27 27 27	Image 4 3 2	VxVy 0.0021 -0.0043 0.0020	0.0106 0.0110 -0.0216
Point 28 28 28 28 28 28 28	Image 4 3 2 13 14 15	VxVy -0.0386 -0.0146 0.0173 0.0110 0.0137 -0.0604	-0.0135 -0.0222 -0.0029 -0.0569 -0.0071 0.0250
Point 29 29 29	Image 5 4 3	VxVy -0.0052 0.0104 -0.0054	0.0173 -0.0023 -0.0150
Point 30 30 30	Image 5 4 3	VxVy -0.0059 0.0115 -0.0057	0.0169 -0.0229 0.0061
Point 31 31 31 31 31 31 31	Image 5 4 3 12 13 14	VxVy -0.0657 -0.0215 0.0254 -0.0716 0.0382 -0.0286	-0.0397 0.0185 0.0094 -0.1451 0.0650 0.0667
Point 32 32 32	Image 6 5 4	VxVy -0.0071 0.0140 -0.0069	-0.0255 0.0137 0.0118
Point 34 34 34 34 34 34 34	Image 6 5 4 11 12 13	VxVy -0.0202 0.0181 0.0361 0.0686 0.0296 -0.0638	-0.0252 -0.0056 -0.0311 0.0855 -0.2268 0.0765
Point 35 35 35	Image 7 6 5	VxVy 0.0072 -0.0144 0.0072	0.0064 -0.0199 0.0134
Point 36 36 36	Image 7 6 5	VxVy 0.0009 -0.0017 0.0009	-0.0338 0.0036 0.0300

Point 37 37 37 37 37 37 37	Image 7 6 5 10 11 12	VxVy 0.0081 0.0516 0.0445 0.0201 -0.0440 0.1293	0.0060 0.0463 -0.0344 0.0470 0.0746 -0.1068
Point 38 38 38	Image 8 7 6	VxVy 0.0025 -0.0050 0.0025	0.0116 -0.0113 -0.0002
Point 39 39 39	Image 8 7 6	VxVy -0.0034 0.0069 -0.0034	-0.0274 -0.0004 0.0277
Point 40 40 40 40 40 40	Image 8 7 6 9 10 11	VxVy 0.0375 0.0189 -0.0045 0.0534 -0.0139 0.0110	0.0118 0.0135 -0.0278 0.0796 -0.0334 -0.0495
Point 41 41	Image 8 7	VxVy 0.0000 -0.0000	0.0023 -0.0023
Point 42 42	Image 8 7	VxVy 0.0000 0.0000	-0.0109 0.0109
Point 43 43 43 43	Image 8 7 9 10	VxVy 0.0108 -0.0225 -0.0433 0.0316	0.0201 -0.0020 0.0337 -0.0163
Point 56 56 56	Image 9 10 11	VxVy 0.0121 -0.0241 0.0122	-0.0229 0.0200 0.0031
Point 57 57 57 57 57 57	Image 9 11 17 18 19	VxVy -0.0104 0.0005 0.0011 0.0206 -0.0118	0.0159 -0.0151 -0.0264 0.0090 0.0165
Point 54 54 54	Image 10 11 12	VxVy 0.0213 -0.0431 0.0220	-0.0192 -0.0124 0.0318 152

1	с.	ר
L	Э	Z
_	_	_

Point 55 55 55 55 55 55 55	Image 10 11 12 18 19 20	VxVy -0.0107 0.0176 -0.0105 -0.0092 0.0065 0.0061	0.0354 0.0049 -0.0457 0.0011 -0.0071 0.0115
Point 52 52 52	Image 11 12 13	VxVy -0.0178 0.0360 -0.0179	-0.0040 0.0124 -0.0082
Point 53 53 53 53 53 53 53	Image 11 12 13 19 20 21	VxVy 0.0052 -0.0081 -0.0008 -0.0246 0.0057 0.0228	0.0165 -0.0330 0.0028 -0.0228 0.0248 0.0119
Point 50 50 50	Image 12 13 14	VxVy -0.0115 0.0228 -0.0115	-0.0016 0.0168 -0.0153
Point 51 51 51 51 51 51	Image 12 13 14 20 21 22	VxVy -0.0097 -0.0240 0.0563 0.0171 -0.0294 -0.0095	-0.0182 -0.0267 0.0313 0.0227 0.0193 -0.0283
Point 48 48 48	Image 13 14 15	VxVy 0.0029 -0.0061 0.0031	0.0325 0.0135 -0.0458
Point 49 49 49 49 49 49	Image 13 14 15 21 22 23	VxVy 0.0138 0.0554 -0.0827 0.0377 0.0380 -0.0630	-0.0320 0.0046 0.0927 -0.0057 -0.0215 -0.0373
Point 46 46 46	Image 14 15 16	VxVy -0.0077 0.0155 -0.0077	0.0152 -0.0179 0.0028
Point 47 47 47	Image 14 15 16	VxVy -0.0386 0.0022 0.0326	-0.0594 0.0003 0.0310

47 47 47	22 23 24	0.0078 -0.0257 0.0215	0.0576 0.0020 -0.0320
Point 44 44	Image 15 16	VxVy -0.0000 0.0000	0.0178 -0.0178
Point 45 45 45 45	Image 15 16 23 24	VxVy 0.0152 -0.0125 0.0394 -0.0428	-0.0408 0.0588 0.0080 -0.0259
Point 17 17 17 17 17 17	Image 17 18 19 31 30 29	VxVy 0.0320 -0.0003 -0.0091 0.0097 0.0140 -0.0007	0.0048 0.0042 0.0007 -0.0101 0.0151 0.0047
Point 68 68 68	Image 17 18 19	VxVy -0.0056 0.0111 -0.0056	0.0085 -0.0064 -0.0021
Point 69 69 69 69 69 69	Image 17 18 19 31 30 29	VxVy 0.0114 -0.0010 0.0003 -0.0026 0.0082 0.0050	-0.0339 0.0127 0.0272 -0.0034 0.0063 0.0030
Point 70 70	Image 17 18	VxVy -0.0000 -0.0000	0.0210 -0.0210
Point 71 71 71 71 71	Image 17 18 31 30	VxVy 0.0020 -0.0080 -0.0070 0.0010	-0.0024 0.0056 0.0034 -0.0002
Point 66 66 66	Image 18 19 20	VxVy -0.0006 0.0012 -0.0006	0.0062 0.0001 -0.0063
Point 67 67 67 67 67 67	Image 18 19 20 30 29 28	VxVy 0.0010 -0.0037 -0.0152 -0.0148 -0.0003 -0.0032	-0.0127 0.0006 0.0221 -0.0047 0.0020 0.0125 154

154

Point 64 64 64	Image 19 20 21	VxVy 0.0041 -0.0081 0.0041	0.0003 0.0047 -0.0051
Point 65 65 65 65 65 65	Image 19 20 21 29 28 27	VxVy 0.0101 0.0012 -0.0208 -0.0065 -0.0063 0.0031	0.0137 -0.0056 0.0059 0.0074 0.0055 0.0010
Point 62 62 62	Image 20 21 22	VxVy 0.0064 -0.0127 0.0064	-0.0142 -0.0020 0.0163
Point 63 63 63 63 63 63	Image 20 21 22 28 27 26	VxVy 0.0186 0.0155 -0.0185 0.0035 0.0049 0.0074	0.0232 0.0106 -0.0209 0.0004 -0.0020 0.0148
Point 60 60 60	Image 21 22 23	VxVy 0.0087 -0.0176 0.0090	-0.0175 -0.0097 0.0273
Point 61 61 61 61 61 61	Image 21 22 23 27 26 25	VxVy 0.0093 0.0216 -0.0225 0.0031 0.0116 -0.0063	0.0424 -0.0076 -0.0279 -0.0025 -0.0025 0.0120
Point 15 15 15 15 15 15	Image 22 23 24 26 25 33	VxVy -0.0239 -0.0063 -0.0015 0.0009 -0.0082 -0.0244	-0.0282 0.0094 0.0060 0.0102 -0.0172 -0.0068
Point 58 58 58	Image 22 23 24	VxVy -0.0007 0.0012 -0.0005	-0.0196 0.0086 0.0110
Point 59 59 59	Image 22 23 24	VxVy -0.0133 -0.0010 0.0007	0.0448 0.0341 -0.0733

1	E	E	
T	5	5	

59 59 59	26 25 33	-0.0196 -0.0031 0.0086	-0.0094 0.0049 0.0095
Point 72 72	Image 25 33	VxVy 0.0144 -0.0146	-0.0253 0.0254
Point 73 73	Image 25 33	VxVy 0.0086 -0.0086	0.0049 -0.0049
Point 74 74 74	Image 26 25 33	VxVy -0.0006 -0.0098 0.0104	-0.0048 0.0038 0.0010
Point 75 75 75	Image 28 27 26	VxVy 0.0025 -0.0049 0.0025	-0.0035 0.0017 0.0018
Point 76 76 76	Image 28 27 26	VxVy -0.0020 0.0040 -0.0020	0.0015 0.0086 -0.0101
Point 77 77 77 77	Image 30 29 28	VxVy 0.0028 -0.0057 0.0028	0.0000 -0.0020 0.0019
Point 78 78 78	Image 30 29 28	VxVy -0.0012 0.0024 -0.0012	-0.0055 0.0067 -0.0011
Point 79 79 79 79	Image 31 30 29	VxVy -0.0006 0.0013 -0.0006	0.0075 0.0060 -0.0135
Point 80 80 80	Image 31 30 29	VxVy 0.0056 -0.0113 0.0056	0.0018 0.0008 -0.0025
Point 81 81	Image 31 30	VxVy -0.0000 -0.0000	0.0038 -0.0038
Point 82 82	Image 31 30	VxVy -0.0001 -0.0000	0.0141

The image residuals of the control points

The image ID = 8Point ID VxVy 4 -0.0120 0.0075 5 0.0227 -0.0221 8 -0.0582 0.0070 RMSE of 3 points: mx=0.0367, my=0.0141 The image ID = 7Point ID VxVy 4 -0.0145 0.0129 RMSE of 1 points: mx=0.0145, my=0.0129 The image ID = 6Point ID VxVy -0.0052 3 0.0135 0.0048 0.0299 -0.0023 -0.0222 4 7 RMSE of 3 points: mx=0.0043, my=0.0229 The image ID = 5Point ID VxVy -0.0234 -0.0160 0.0154 0.0042 3 7 RMSE of 2 points: mx=0.0198, my=0.0117 The image ID = 4Point ID VxVy -0.0533 0.0306 0.0599 0.0073 0.0004 -0.0183 2 3 7 RMSE of 3 points: mx=0.0463, my=0.0210 The image ID = 3Point ID VxVy 2 -0.0348 0.0367 RMSE of 1 points: mx=0.0348, my=0.0367 The image ID = 2Point ID VxVy 1 0.0026 0.0189 2 -0.0080 0.0233 RMSE of 2 points: mx=0.0059, my=0.0212 The image ID = 1Point ID VxVy 1 1 0.0536 -0.1055 6 -0.0387 0.0983 RMSE of 2 points: mx=0.0467, my=0.1020 The image ID = 9Point ID VxVy -0.0749 8 0.0467 12 -0.0437 0.0393 -0.0150 -0.0716 13 RMSE of 3 points: mx=0.0379, my=0.0640

The image ID = 10Point ID VxVy 12 -0.0243 -0.0340 RMSE of 1 points: mx=0.0243, my=0.0340 The image ID = 11Point ID VxVy 7 -0.0040 -0.1134 12 -0.0068 0.0083 RMSE of 2 points: mx=0.0056, my=0.0804 The image ID = 12Point ID VxVy
 7
 -0.1093
 0.4851

 11
 0.0032
 0.0538
 7 RMSE of 2 points: mx=0.0773, my=0.3451 The image ID = 13Point ID VxVy 0.0077 -0.1113 7 -0.0205 0.0071 0.0310 0.0336 10 11 RMSE of 3 points: mx=0.0219, my=0.0672 The image ID = 14Point ID VxVy 10 0.0005 -0.0132 RMSE of 1 points: mx=0.0005, my=0.0132 The image ID = 15Point ID VxVy 10 0.0929 -0.0004 RMSE of 1 points: mx=0.0929, my=0.0004 The image ID = 16Point ID VxVy 6 -0.0789 -0.0484 9 0.0389 -0.0662 RMSE of 2 points: mx=0.0622, my=0.0580 The image ID = 17Point ID VxVy -0.0375 12 -0.0305 -0.0195 0.0310 0.0090 0.0347 13 18 RMSE of 3 points: mx=0.0215, my=0.0345 The image ID = 18Point ID VxVy 12 -0.0136 0.0015 RMSE of 1 points: mx=0.0136, my=0.0015 The image ID = 19Point ID VxVy 16 0.0330 -0.0264 RMSE of 1 points: mx=0.0330, my=0.0264

The image ID = 20Point ID VxVy 11-0.0247-0.057016-0.0067-0.0266 RMSE of 2 points: mx=0.0181, my=0.0445 The image ID = 21Point ID VxVy
 10
 0.0237
 0.0296

 11
 -0.0069
 -0.0722

 16
 -0.0527
 -0.0173
 RMSE of 3 points: mx=0.0336, my=0.0462 The image ID = 22Point ID VxVy 10 0.0093 0.0168 RMSE of 1 points: mx=0.0093, my=0.0168 The image ID = 23Point ID VxVy 10 0.0682 -0.0242 RMSE of 1 points: mx=0.0682, my=0.0242 The image ID = 24Point ID VxVy 9 0.0729 0.0349 14 -0.0497 0.0802 RMSE of 2 points: mx=0.0624, my=0.0618 The image ID = 31Point ID VxVy 18 -0.0051 -0.0170 RMSE of 1 points: mx=0.0051, my=0.0170 The image ID = 30Point ID VxVy There are no GCPs on this image. The image ID = 29Point ID VxVy 16 0.0008 -0.0056 RMSE of 1 points: mx=0.0008, my=0.0056 The image ID = 28Point ID VxVy 16 0.0039 -0.0172 RMSE of 1 points: mx=0.0039, my=0.0172 The image ID = 27Point ID VxVy 16 -0.0102 -0.0068 RMSE of 1 points: mx=0.0102, my=0.0068 The image ID = 26Point ID VxVy There are no GCPs on this image. The image ID = 25Point ID VxVy

14 0.0044 0.0170 RMSE of 1 points: mx=0.0044, my=0.0170 The image ID = 33 Point ID VxVy 14 0.0285 -0.0242 RMSE of 1 points: mx=0.0285, my=0.0242

APPENDIX (C)

TriangulationAnalytical Report with LPS System for Rural of Khartoum State Project

	The output ima The output ang The output grou	ge x, y units le unit: d und X, Y, Z un	: millime egrees nits: meters	eters	
	The Input	Image Coordin	nates		
image ID	= 1				
Po	int ID	Х	У		
	1	-7.5047	-44.7305		
	2	10.8707	22.2770		
	4	27.3303	-23.5363		
	5	27.3873	20.4427		
	8	31.3614	-27.3297		
	9	31.4286	0.9623		
	19	11.7360	29.5725		
	21	25.9160	20.8288		
	Affine coeffi	cients from f	ile (pixels)	to film (mi	llimeters)
AO	Al	A2	BO	B1	В2
-33.7455	0.009000	-0.000000	51.7455	0.00000	-0.009000

image ID =	= 2				
Poi	nt ID 2 4 5	x -12.5292 3.8606 3.9414	У 22.2700 -23.4585 20.4544		
	6 8 9 10	24.3954 7.8862 7.9524 7.9260	38.2420 -27.2400 0.9948 1.0795		
	11 12 18 21	33.6633 30.7116 31.0579 2 4726	15.7547 13.0625 23.1342 20.8342		
A0 -33.7455	Affine coeff A1 0.009000	icients from A2 -0.000000	file (pixels) B0 51.7455	to film (mi B1 0.000000	llimeters) B2 -0.009000
image ID =	= 3				
Poi	nt ID 4 5 6 7 9 10 11 12 18 21	x -19.5941 -19.6065 0.7331 32.8072 -15.5559 -15.5945 9.9190 6.9724 7.2475 -21.0849	y -23.4762 20.3784 38.2002 39.1492 0.9584 1.0358 15.7636 13.0678 23.1222 20.7565		
A0 -33.7455	Affine coeff A1 0.009000	icients from A2 -0.000000	file (pixels) B0 51.7455	to film (mi B1 0.000000	llimeters) B2 -0.009000
image ID =	= 4				
Poi	nt ID 3 6 7 11 18 20	x 23.1199 -22.8617 9.2050 -13.6950 -16.4975 10.9070	y -43.7579 38.1357 39.2094 15.7437 23.0803 37.0057		
A0 -33.7455	Affine coeff A1 0.009000	icients from A2 -0.000000	file (pixels) B0 51.7455	to film (mi B1 0.000000	llimeters) B2 -0.009000
image ID = Poi	= 5 Int ID 6 7 13 14 18 20	x 24.0472 -8.2359 27.6580 26.1128 17.7527	y 32.0598 31.1954 -45.9565 -36.1266 47.8375		
	20	-2.2021	J4.1000		

۵۵	Affine A1	coefficients	from file	(pixels)	to film B1	(millimeters) B2
-33.7455	0.00	9000 -0.000	0000 5	51.7455	0.000000	0.009000
image ID =	= 6					
Poi	int ID	X		У		
	5	20.90	03 49	0.7819		
	6	0.39	44 32	2.0082		
	7	-31.78	48 31	.1107		
	13	3.952	20 -45	5.8535		
	14	2.303	30 -36	5.0110		
	15	-7.13	18 -39	0.2463		
	16	30.72	07 -32	2.2947		
	18	-6.07	39 47	7.7166		
	21	22.37	41 49	0.4020		
	2.5.5.		c c' 1	(<u> </u>		
- 0	Affine	coefficients	from file	(pixels)	to film	(millimeters)
AU	AL	A2	L	30	BI	B2
-33.7455	0.009	-0.000	000 51	. 7455	0.000000	-0.009000
image ID :	= 7					
Poi	int ID	Х		V		
	2	13.39	75 48	3.1233		
	5	-3.12	61 49	.8012		
	6	-23.41	04 31	.8826		
	1.3	-19.21	61 -4.5	5.6556		
	15	-30 36	83 - 30	1862		
	16	7 37	59 – 31	9010		
	17	-4 45	20 -24	1 7670		
	18	-30 21	20 <u>2</u> 1	1 1883		
	21	-1.64	97 49	.4265		
- 0	Affine	coefficients	from file	(pixels)	to film	(millimeters)
A0	AL	A2	L L L L L L L L L L L L L L L L L L L	30	BI	В2
-33.7455	0.00	9000 -0.000	0000	51.7455	0.00000) -0.009000
image ID =	= 8					
Po	int ID	X		У		
	2	-10.182	20 48	8.0105		
	5	-26.68	44 49	0.6631		
	16	-16.09	97 -31	.8815		
	17	-27.92	10 -24	1.7394		
	19	-10.97	40 40	.7089		
	21	-25.20	06 49	.2893		
				-		
- 0	Affine	coefficients	from file	(pixels)	to film	(millimeters)
AU	Al	A2	E	30	B1	B2
-33.7455	0.00	9000 -0.000	0000 5	51.7455	0.00000) -0.009000

THE OUTPUT OF SELF-CALIBRATING BUNDLE BLOCK ADJUSTMENT

the no. of iteration =1 the standard error = 0.2521 the maximal correction of the object points =2196.83266

the no. of it the maximal	teration =2 correction of	the st the obj	andard error ect points =	= 0.0271 249.27373		
the no. of i the maximal	teration =3 correction of	the st the obj	andard error ect points =	= 0.0064 11.77096		
the no. of i the maximal	teration =4 correction of	the st the obj	andard error ect points =	= 0.0061 0.88322		
the no. of i the maximal	teration =5 correction of	the st the obj	andard error ect points =	= 0.0061 0.00533		
the no. of i the maximal	teration =6 correction of	the st the obj	andard error ect points =	= 0.0061 0.00002		
	The	exterior	orientation	parameters	image	
ID XsYsZs	OMEGA	PHI	KAP 4	462972	.2783	
1710414.0965	-22.5990 -0.	0460	0.1891 89.	8874 3	462972.3271	
1710959 269	-23.3519 -0).0447	0.1322 90.	1082 2 2744 1	462970.8680 462963 9095	
1711226.1655	-837.6591 -0	.2672	0.3322 90.	3045 5	463786.9372	
1710403.4319	-22.6788 -	0.0121	0.1826 -89.	7052		
6 463786.0	606 1710676.	3636 -23	.6727 0.0	194 0.1583	-89.7270	
463786.6	528 1710949. 672 1711222	0353 - 25 4517 - 25	.0506 0.0	080 0.1901 360 0.1932	-90.2615	
0 403707.7	072 1711222.	101/ 20	• • • • • • • • • • • • • • • • • • • •	500 0.1952	20.3303	
The i	nterior orier	ntation p	arameters of	photos		
image ID	f(mm)	xo(mm)	yo(mm)			
	4 35.000	0	0.0000	0.0000		
	3 35.000 2 35.000	10	0.0000	0.0000		
	1 105.200	0	0.0000	0.0000		
	5 35.000	0	0.0000	0.0000		
	6 35.000	00	0.0000	0.0000		
	7 35.000	0	0.0000	0.0000		
	8 35.000	10	0.0000	0.0000		
The re	siduals of th	ne contro	l points			
Point ID	rXrYrZ		-			
1	-0.3693	-0.4968	-0.1181			
2	-0.2034	-0.3818	-0.5091			
4	0.0825	0.4552	-0.1627			
5	0.8758	0.4107	0.5721			
6	0.9638	0.5434	0.7745			
7	-1.6164	-0.2907	-0.7313			
aXaYa7						
anarab	0.0000	-0.0000	-0.0000			
mXmYmZ						
	0.8075	0.4150	0.5060			
The coordinates of object points						
Point ID	X		Y	Z C	verlap	
1	462452.2307	17113	16.0662	383.8949	1	
2	463230.3226	17111	07.0002	382.9729	4	
3	402465.5569	1/101	4/.2600	385.2466	Ţ	
163						
4	462700.0855	1710913.8952	383.7373	3		
----	--------------	------------------	----------	---		
5	463209.8978	1710915.3097	383.0331	6		
6	463416.9738	1710679.0544	382.1615	6		
7	463428.7146	1710306.5883	382.4087	4		
8	462656.4618	1710867.0231	383.9302	2		
9	462984.0463	1710867.6500	383.4070	3		
19	463315.1547	1711097.3680	382.6933	2		
21	463214.2783	1710932.4420	383.0403	6		
10	462984.9702	1710868.0420	383.2811	2		
11	463155.7631	1710572.3277	381.0415	3		
12	463124.3744	1710606.4901	380.7489	2		
18	463239.8801	1710603.8441	379.4878	6		
20	463399.0025	1710288.1816	378.6709	2		
13	464315.0991	1710724.2747	378.0484	3		
14	464200.1982	1710704.6123	376.6661	2		
15	464238.6968	1710596.3957	377.3866	2		
16	464158.5692	1711032.8956	379.7724	3		
17	464074.8911	1710896.0378	379.8967	2		
	The total ob	ject points = 21				

The residuals of image points

Point 1	Image 1	VxVy -0.0001	0.0000
Point 2 2 2 2 2	Image 2 1 7 8	VxVy -0.0042 0.0002 0.0004 -0.0043	-0.0005 -0.0012 -0.0038 0.0020
Point 3	Image 4	VxVy -0.0000	-0.0000
Point 4 4 4	Image 3 2 1	VxVy 0.0003 0.0004 -0.0006	-0.0001 -0.0005 0.0006
Point 5 5 5 5 5 5 5	Image 3 2 1 6 7 8	VxVy -0.0034 0.0009 0.0031 -0.0029 -0.0025 0.0060	0.0023 -0.0030 0.0027 0.0040 0.0006 -0.0024
Point 6 6 6 6 6 6	Image 4 3 2 5 6 7	VxVy -0.0018 0.0028 0.0038 0.0056 0.0027 -0.0035	-0.0015 -0.0008 -0.0027 0.0023 -0.0017 -0.0055
Point 7	Image 4	VxVy 0.0042	0.0003

7 7 7	3 5 6	-0.0011 -0.0027 0.0058	0.0021 -0.0009 0.0031
Point 8 8	Image 2 1	VxVy -0.0025 0.0025	0.0003 -0.0003
Point 9 9 9	Image 3 2 1	VxVy -0.0004 0.0046 -0.0042	-0.0019 0.0040 -0.0021
Point 19 19	Image 1 8	VxVy 0.0015 0.0015	0.0002
Point 21 21 21 21 21 21 21	Image 3 2 1 6 7 8	VxVy 0.0043 -0.0029 -0.0025 0.0012 -0.0008 -0.0016	0.0020 -0.0013 0.0001 -0.0034 0.0023 0.0019
Point 10 10	Image 3 2	V×Vy -0.0000 0.0000	0.0006 -0.0006
Point 11 11 11	Image 4 3 2	VxVy -0.0035 0.0069 -0.0034	-0.0047 0.0002 0.0045
Point 12 12	Image 3 2	VxVy 0.0000 -0.0000	-0.0019 0.0019
Point 18 18 18 18 18 18	Image 4 3 2 5 6 7	VxVy 0.0057 -0.0095 0.0034 0.0020 -0.0059 0.0034	0.0058 -0.0025 -0.0021 -0.0044 0.0013 0.0044
Point 20 20	Image 4 5	VxVy -0.0046 -0.0046	0.0000 0.0001
Point 13 13 13	Image 5 6 7	VxVy -0.0004 0.0008 -0.0004	-0.0050 0.0032 0.0018
Point 14	Image 5	VxVy 0.0000	0.0080 165

14	6	-0.0001	-0.0080
Point 15 15	Image 6 7	VxVy 0.0000 -0.0000	0.0006 -0.0006
Point 16 16 16	Image 6 7 8	VxVy -0.0016 0.0032 -0.0016	0.0009 -0.0080 0.0071
Point 17 17	Image 7 8	VxVy 0.0000 -0.0000	0.0088 -0.0088

The image residuals of the control points

The image ID = 4Point ID VxVy -0.0000 3 -0.0000 -0.0018 -0.0015 0.0042 0.0003 6 7 RMSE of 3 points: mx=0.0026, my=0.0009 The image ID = 3Point ID VxVy 0.0003 -0.0001 4 -0.0034 0.0023 5 -0.0008 0.0021 6 0.0028 7 -0.0011 RMSE of 4 points: mx=0.0023, my=0.0016 The image ID = 2Point ID VxVy -0.0005 -0.0005 2 -0.0042 4 0.0004 5 0.0009 -0.0030 6 0.0038 -0.0027 RMSE of 4 points: mx=0.0029, my=0.0020 The image ID = 1Point ID VxVy -0.0001 0.0000 1 2 0.0002 -0.0012 -0.0006 0.0006 4 5 0.0031 0.0027 RMSE of 4 points: mx=0.0016, my=0.0015 The image ID = 5VxVy Point ID 0.0023 -0.0009 6 0.0056 7 -0.0027 RMSE of 2 points: mx=0.0044, my=0.0017 The image ID = 6Point ID VxVy

5 -0.0029 0.0040 6 0.0027 -0.0017 7 0.0058 0.0031 RMSE of 3 points: mx=0.0041, my=0.0031 The image ID = 7 Point ID VxVy 2 0.0004 -0.0038 5 -0.0025 0.0006 6 -0.0035 -0.0055 RMSE of 3 points: mx=0.0025, my=0.0039 The image ID = 8 Point ID VxVy 2 -0.0043 0.0020 5 0.0060 -0.0024 RMSE of 2 points: mx=0.0052, my=0.0022

Appendix (D)

Created aerial triangulation block for the central of the Khartoum state project

Appendix (E)

Created aerial triangulation block for the rural area of the Khartoum state project

PUBLICATIONS

1-Paper title: Etrex Garmin GPS Receiver Accuracy Testing 169 **Title of Journal:** International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume:3 Issue: 5 2772 – 2774. May2015.

Published Country:India

Authors: Mohammed Fator&NagiZomrawi

2-Paper title: Technical Evaluation of Khartoum StateMapping Project

Title of Journal: INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 6, NO. 5, MAY 2015. **Published Country:**Austria

Authors: NagiZomrawi&Mohammed Fator