CHAPTER THREE

MANUAL ANALYSIS AND DESIGN

3.1Introduction:

The first function in design is the planning carried out by the architect to determine the arrangement and layout of the building to meet the client's requirements. Architect and engineer should work together at this conceptual design stage. The design of different structures is achieved by performing, in general, two main steps: (1) determining the different forces acting on the structure after estimation of loads using proper methods of structural analysis, (2) proportioning all structural members economically, considering the safety, stability, serviceability, and functionality of the structure [12].

3.2 Description of Case Studied:

A forty story concrete framed tube building,
-Basic wind speed: $100 \mathrm{mph}(45 \mathrm{~m} / \mathrm{s})$

- Terrain: flat
-Plan Dimension: 20* $15 \mathrm{~m}^{2}$
-Building Height: 128.8 m
-Story height: 3.2 m and 4 m for ground floor
-Building lateral system: perimeter tube with exterior columns typically spaced at 5 m , with spandrel beams and core at centre of the building.
-Building Use: health care facilities.
-Typical Floor Live Load: $2.4 \mathrm{kN} / \mathrm{m}^{2}$
-RoofLiveLoad: $0.96 \mathrm{kN} / \mathrm{m}^{2}$
-Super Imposed Dead Load:
Floor: $1.5 \mathrm{kN} / \mathrm{m}^{2}$ (ceiling load and partition)
Roof: $1.075 \mathrm{kN} / \mathrm{m}^{2}\left(0.48 \mathrm{kN} / \mathrm{m}^{2}+200 \mathrm{kN} / \mathrm{m}^{2}\right.$ for penthouse $)$
- Member Section:

Beam section: $0.9 * 0.3 \mathrm{~m}^{2}$
Column section: $0.8 * 0.8 \mathrm{~m}^{2}$
Wall thickness: 300 mm
Slab depth: 200mm

- Material Properties:
$\mathrm{W}_{\mathrm{c}}=24 \mathrm{kN} / \mathrm{m}^{3}$
$\mathrm{W}_{\mathrm{m}}=22 \mathrm{KN} / \mathrm{m}^{3}$
$\mathrm{f}_{\mathrm{y}}=420 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{c}}{ }^{\prime}=35 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{ys}}=250 \mathrm{~N} / \mathrm{mm}^{2}$

Fig. (3.1): Floors Plan

3.3 Analysis results:

3.3.1 Wind Loads Calculation:

- Wind design data is as follows:
$\mathrm{V}=45 \mathrm{~m} / \mathrm{sec}$
Assuming, the building is a health care facilities with a capacity of 50 or more resident patients, so, occupancy category is III (ASCE7-05 table 1-1) and the exposure categories is D (the ground surface roughness ASCE7-05-6.5.6.3)
For exposure (D), I = 1.25 according to ASCE7-05 table 6-1(Appendix A)
$\mathrm{k}_{\mathrm{d}}=0.85$ for main wind force resisting systems of buildings according to ASCE7-05 table 6-4 (Appendix A)
$\mathrm{k}_{\mathrm{z}}=2.01\left(\mathrm{z} / \mathrm{z}_{\mathrm{g}}\right)^{2 / \mathrm{e}}$
$\mathrm{e}=11.5$ for exposure D according to ASCE7-05 table 6-2 (Appendix A)
$\mathrm{z}_{\mathrm{g}}=213$ for exposure D according to ASCE7-05 table 6-2 (Appendix A)
k_{z} at the $40^{\text {th }}$ story $=2.01(128.8 / 213)^{2 / 11.5}=1.842$
$\mathrm{k}_{\mathrm{zt}}=1$ assuming the terrain is flat (Appendix A)
$\mathrm{G}_{\mathrm{f}}=0.925\left(\left(1+1.7 \mathrm{I}_{\mathrm{z}} \sqrt{ }\left(\mathrm{g}_{\mathrm{Q}}{ }_{\mathrm{Q}} \mathrm{Q}^{2}+\mathrm{g}_{\mathrm{g}}^{2} \mathrm{R}^{2}\right) /\left(1+1.7 \mathrm{~g}_{\mathrm{v}} \mathrm{I}_{\mathrm{z}}\right)\right) \quad\right.$ Equation 6-8 from ASCE7-05
$\mathrm{G}_{\mathrm{f}}=0.94$
$\mathrm{q}_{\mathrm{z}}=0.613 \mathrm{k}_{\mathrm{z}} \mathrm{k}_{\mathrm{zz}} \mathrm{k}_{\mathrm{d}} \mathrm{V}^{2} \mathrm{I}$
$\mathrm{q}_{\mathrm{z}}=0.613 \times 1.842 \times 1 \times 0.85 \times 1.25 \times 45^{2}=2429 \mathrm{~N} / \mathrm{m}^{2}$
Assuming the building is enclosed (ASCE6.5.9), $\mathrm{GC}_{\mathrm{pi}}= \pm 0.18$
C_{p} for wind in E-W direction (ASCE7-05 figure 6.6), (Appendix A)
$\mathrm{C}_{\mathrm{p}}($ wind ward wall $)=0.8$
$\mathrm{C}_{\mathrm{p}}($ lee ward wall $)=-0.5$
$\mathrm{C}_{\mathrm{p}}($ side wall $)=-0.7$
$\mathrm{C}_{\mathrm{p}}($ over entire roof $)=-1.3$
$\mathrm{P}_{\text {windward }}($ external pressure $)=\mathrm{qGC}_{\mathrm{p}}=2429 \times 0.94 \times 0.8=1827 \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{P}($ internal pressure $)=\mathrm{qGC}_{\mathrm{pi}}=2429 \times(\pm 0.18)=437 \mathrm{~N} / \mathrm{m}^{2}$
$P_{\text {leeward }}($ external pressure $)=2429 \times 0.94 \times 0.5=1142 \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{P}=\mathrm{P}_{\text {wind ward }}+\mathrm{P}_{\text {lee ward }}=98.8 \mathrm{kN}$
Wind loads at story level are shown in table (3.1).
Table (3.1): Summary of Wind Loads at Story Level

Level	Story height (m)	Position (m)	Tributary area (m)	Design Wind Load (kN)
$40^{\text {th }}$	3.2	128.8	1.6	98.8
$39^{\text {th }}$	3.2	125.6	3.2	197
$38^{\text {th }}$	3.2	122.4	3.2	195.8
37	3.2	119.2	3.2	195.7
36	3.2	116	3.2	195.3
35	3.2	112.8	3.2	194.6
34	3.2	109.6	3.2	194.1
33	3.2	106.4	3.2	193.4
32	3.2	103.2	3.2	192.7
31	3.2	100	3.2	192.3
30	3.2	96.8	3.2	191.6
29	3.2	90.6	3.2	190.8
28	3.2	87.2	3.2	189.8
27	3.2	84	3.2	189.5
26	3.2	80.8	3.2	188.7
25	3.2	77.6	3.2	188
24	3.2	74.4	3.2	187.2
23	3.2	68	3.2	186.4
22	3.2	38.8	3.2	185.5
21	3.2	3.2	3.2	184.7
20	3.2	3.2	183.2	
19	3.2	3.2	180.8	
18	3.2	3.2		
17	38.2			

16	3.2	52	3.2	179.7
15	3.2	48.8	3.2	178.6
14	3.2	45.6	3.2	177.3
13	3.2	42.4	3.2	176.1
12	3.2	39.2	3.2	174.6
11	3.2	36	3.2	173.2
10	3.2	32.8	3.2	171.8
9	3.2	29.6	3.2	170
8	3.2	26.4	3.2	168.2
7	3.2	23.2	3.2	165.3
6	3.2	20	3.2	163.6
5	3.2	16.8	3.2	161.2
$4^{\text {th }}$	3.2	13.6	3.2	158.2
$3^{\text {rd }}$	3.2	10.4	3.2	154.3
$2^{\text {nd }}$	3.2	7.2	3.2	149.5
$1^{\text {st }}$	4	4	3.6	162

3.3.2 Distribution of Wind Loads:

Wind load percentage carried by core $=\mathrm{EI}_{\text {core }} /\left(\mathrm{EI}_{\text {core }}+\mathrm{GA}_{\text {frames }}\right)=$ $14.29 \times 2.78 \times 10^{7} /\left(14.29 \times 2.78 \times 10^{7}+128.2 \times 10^{7}\right)=24 \%$

Wind load percentage carried by four frames $=1-0.24=76 \%$
Table 3.2 shows the distribution of wind loads
Table (3.2): Distribution of Wind Loads between Core and Frames

Level	story height (m)	Position (m)	Load resist by core (kN)	Load resist by Frames (kN)
$40^{\text {th }}$	3.2	128.8	30	70
$39^{\text {th }}$	3.2	125.6	47	150
38	3.2	122.4	47	149
37	3.2	119.2	47	148
36	3.2	116	47	148

CHAPTER THREE

35	3.2	112.8	47	147
34	3.2	109.6	47	146
33	3.2	106.4	46	146
32	3.2	103.2	46	146
31	3.2	100	46	146
30	3.2	96.8	46	146
29	3.2	93.6	46	145
28	3.2	90.4	46	144
27	3.2	87.2	46	144
26	3.2	84	45	144
25	3.2	80.8	45	143
24	3.2	77.6	45	142
23	3.2	74.4	45	141
22	3.2	71.2	45	141
21	3.2	68	44	141
20	3.2	64.8	44	140
19	3.2	61.6	44	139
18	3.2	58.4	44	138
17	3.2	55.2	43	138
16	3.2	52	43	137
15	3.2	48.8	43	136
14	3.2	45.6	43	134
13	3.2	42.4	42	134
12	3.2	39.2	42	133
11	3.2	36	42	131
10	3.2	32.8	41	131
9	3.2	29.6	41	129
8	3.2	26.4	40	128
7	3.2	23.2	40	125
6	3.2	20	40	124
5	3.2	16.8	40	121
$4^{\text {th }}$	3.2	13.6	38	120

$3^{\text {rd }}$	3.2	10.4	37	117
$2^{\text {nd }}$	3.2	72	36	114
$1^{\text {st }}$	4	4	39	123

3.3.3 Load Resisted by Frame (1) in Fig. (3.1):

Shear rigidity of frames $(1,2,5,6)$
$\mathrm{GA}_{(1,6)}=12 \mathrm{E} / \mathrm{h}((1 / \mathrm{C})+(1 / \mathrm{G}))=19.3 \times 10^{7}$
Shear rigidity of frames (2) and (5)
$\mathrm{GA}_{(2,5)}=44.8 \times 10^{7}$
Rigidity of frame (1) $=\mathrm{GA}_{1} /\left(\mathrm{GA}_{1}+\mathrm{GA}_{6}+\mathrm{GA}_{2}+\mathrm{GA}_{5}\right)=20 \%$
Load resisted by frame (1) is shown in table (3.3)
Table (3.3): Load Resisted by Frame (1)

Level	Position (m)	Wind Load (kN)	S.F at mid story (kN)
$40^{\text {th }}$	128.8	15	15
$39^{\text {th }}$	125.6	30	45
$38^{\text {th }}$	122.4	30	75
37	119.2	30	95
36	116	30	125
35	112.8	30	155
34	109.6	30	185
33	106.4	29	214
32	103.2	29	243
31	100	29	272
30	96.8	29	301
29	93.6	29	330
28	90.4	29	359
27	87.2	29	388
26	84	29	417
25	80.8	29	446

24	77.6	29	475
23	74.4	28	504
22	71.2	28	533
21	68	28	562
20	64.8	28	591
19	61.6	28	620
18	58.4	28	649
17	55.2	28	678
16	52	27	707
15	48.8	27	736
14	45.6	27	765
13	42.4	27	794
12	39.2	27	823
11	36	26	852
10	32.8	26	881
9	29.6	26	910
8	26.4	26	939
7	23.2	25	968
6	20	25	997
5	16.8	25	1026
$4^{\text {th }}$	13.6	24	1055
$3^{\text {rd }}$	10.4	24	1084
$2^{\text {nd }}$	72	23	1113
$1^{\text {st }}$	4	25	1142

3.3.4 Analysis of Gravity Loads:

Gravity Loads on beam (C11-C10)
$\mathrm{DL}_{\text {floor }}=45 \mathrm{kN} / \mathrm{m}$
$L_{\text {floor }}=5 \mathrm{kN} / \mathrm{m}$
$\mathrm{DL}_{\text {roof }}=35 \mathrm{kN} / \mathrm{m}$
$L_{\text {roof }}=2 \mathrm{kN} / \mathrm{m}$

Fixed end moments $=\mathrm{wL}^{2} / 12, \quad \mathrm{~L}=5 \mathrm{~m}$
By moments distribution method
Stiffness $\left(\mathrm{k}_{\text {(beam or column }}\right)=\mathrm{I} / \mathrm{L}_{\text {(beam or column) }}$
Moment of inertia $\left(\mathrm{I}_{\text {(beam or column }}\right)=\mathrm{bh}^{3} / 12$
Distribution factor $(\mathrm{DF})=\mathrm{k} / \Sigma \mathrm{k}$
Bending moments and shear forces under gravity loads are shown in table (3.4)
Table (3.4): Summary of Bending Moments and Shear Forces under Gravity Loads for beam (C11-C10) and beam (C10-C9)

Cases		Location		B.M (kN-m)	S.F (kN)
For Roof	Span (C11-C10)	Support	Exterior	-116	-68
			Interior	42	55
		Mid span		51	
	Span(C10-C9)	Support	First	-53	-58.4
			Second	-53	58.4
		Mid span		25	
For Floors	Span (C11-C10)	Support	Exterior	-128	-100
			Interior	68	76
		Mid span		57.7	
	Span(C10-C9)	Support	First	-71	-60
			Second	-71	60
		Mid span		40	
For First Floor	$\begin{aligned} & \text { Span } \\ & \text { (C11-C10) } \end{aligned}$	Support	Exterior	-85	-80
			Interior	65	72
		Mid span		49	
	Span(C10-C9)	Support	First	-69.3	-82.5
			Second	-69.3	82.5
		Mid span		35	

- Beams shear force and bending moment diagrams due to gravity loads are shown in Figures bellow.

Fig. (3.2): Shear Forces Diagrams due to
Gravity Loads for Beams at Roof Level

Fig. (3.3): Shear Forces Diagrams due to
Gravity Loads for Beams at Floors Level

Fig. (3.4): Bending Moments Diagrams due to Gravity Loads for Beams at Roof Level

Fig. (3.5): Bending Moments Diagrams due to Gravity Loads for Beams at Floors Level

3.3.5 Analysis of Wind Loads:

By cantilever method
Wind load at $40^{\text {th }}$ story level (frame 1) $=15 \mathrm{kN}$
External moment due to wind $=15 \times 1.6=24 \mathrm{kNm}$
Second moment of area

$$
=1\left(7.5^{2}+2.5^{2}+2.5^{2}+7.5^{2}\right)=125 \mathrm{~m}^{4}
$$

Column(C11) axial forces

$$
=24 \times 7.5 / 125=1.5 \mathrm{kN}
$$

Shear forces at beam $(\mathrm{C} 11-\mathrm{C} 10)=1.5 \mathrm{kN}$
Moment at left end of beam $(\mathrm{C} 11-\mathrm{C} 10)=1.5 \times 2.5= \pm 4 \mathrm{kNm}$
Bending moments and shear forces under wind loads are shown in table (3.5) and (3.6)

Table (3.5): Summary of Bending Moments and Shear Forces for Beam
(C11-C10) under Wind loads

Level	Location		B.M (kN-m)	S.F (kN)
$40^{\text {th }}$	Support	Exterior	± 4	± 1.5
		Interior	± 4	± 1.5
$39^{\text {th }}$	Support	Exterior	± 15	± 5

		Interior	± 15	± 5
$38^{\text {th }}$	Support	Exterior	± 28.8	± 11.5
		Interior	± 28.8	± 11.5
37	Support	Exterior	± 43.3	± 17.3
		Interior	± 43.3	± 17.3
36	Support	Exterior	± 57.6	± 23
		Interior	± 57.6	± 23
35	Support	Exterior	± 70	± 28.8
		Interior	± 70	± 28.8
34	Support	Exterior	± 86.5	± 34.6
		Interior	± 86.5	± 34.6
33	Support	Exterior	± 100.5	± 40.2
		Interior	± 100.5	± 40.2
32	Support	Exterior	± 113.5	± 45.4
		Interior	± 113.5	± 45.4
31	Support	Exterior	± 130	± 52
		Interior	± 130	± 52
30	Support	Exterior	± 142.5	± 57
		Interior	± 142.5	± 57
29	Support	Exterior	± 157.5	± 63
		Interior	± 157.5	± 63
28	Support	Exterior	± 170	± 68
		Interior	± 170	± 68
27	Support	Exterior	± 183	± 73
		Interior	± 183	± 73
26	Support	Exterior	± 198	± 79
		Interior	± 198	± 79

25	Support	Exterior	± 213	± 85
		Interior	± 213	± 85
24	Support	Exterior	± 225	± 90
	Support	Interior	± 225	± 90
23	Support	Exterior	± 240	± 96
		Interior	± 240	± 96
22	Support	Exterior	± 253	± 101
		Interior	± 253	± 101
21	Support	Exterior	± 268	± 107
		Interior	± 268	± 107
20	Support	Exterior	± 280	± 112
		Interior	± 280	± 112
19	Support	Exterior	± 291	± 117
		Interior	± 291	± 117
18	Support	Exterior	± 307	± 123
		Interior	± 307	± 123
17	Support	Exterior	± 317.5	± 127
		Interior	± 317.5	± 127
16	Support	Exterior	± 325	± 130
		Interior	± 325	± 130
15	Support	Exterior	± 352	± 141
		Interior	± 352	± 141
14	Support	Exterior	± 360	± 144
		Interior	± 360	± 144
13	Support	Exterior	± 367	± 147
		Interior	± 367	± 147
12	Support	Exterior	± 398	± 159

		Interior	± 398	± 159
11	Support	Exterior	± 411	± 165
		Interior	± 411	± 165
10	Support	Exterior	± 440	± 180
		Interior	± 440	± 180
9	Support	Exterior	± 450	± 180
		Interior	± 450	± 180
8	Support	Exterior	± 450	± 184
		Interior	± 450	± 184
7	Support	Exterior	± 450	± 180
		Interior	± 450	± 180
$6^{\text {th }}$	Support	Exterior	± 450	± 180
		Interior	± 450	± 180
$5^{\text {th }}$	Support	Exterior	± 450	± 180
		Interior	± 450	± 180
$4^{\text {th }}$	Support	Exterior	± 400	± 160
		Interior	± 400	± 160
$3^{\text {rd }}$	Support	Exterior	± 425	± 170
		Interior	± 425	± 170
$2^{\text {nd }}$	Support	Exterior	± 450	± 180
		Interior	± 450	± 180
$1^{\text {st }}$	Support	Exterior	± 350	± 140
		Interior	± 350	± 140

Table (3.6): Summary of Bending Moments and Shear Forces for Beam
(C10-C9) under Wind Loads

level	Location	B.M (kN-m)	S.F (kN)
$40^{\text {th }}$	Support	± 8	± 3
$39^{\text {th }}$	Support	± 25	± 10
38	Support	± 45	± 18
37	Support	± 58	± 23
36	Support	± 75	± 30
35	Support	± 90	± 37
34	Support	± 110	± 45
33	Support	± 115	± 50
32	Support	± 130	± 55
31	Support	± 150	± 68
30	Support	± 180	± 75
29	Support	± 210	± 84
28	Support	± 227	± 91
27	Support	± 242	± 97
26	Support	± 265	± 106
25	Support	± 282	± 113
24	Support	± 300	± 120
23	Support	± 320	± 128
22	Support	± 335	± 135
21	Support	± 355	± 142
20	Support	± 357	± 143
19	Support	± 370	± 150
18	Support	± 390	± 157
17	Support	± 417	± 167

16	Support	± 450	± 180
15	Support	± 470	± 190
14	Support	± 500	± 230
13	Support	± 475	± 190
12	Support	± 500	± 200
11	Support	± 500	± 200
10	Support	± 550	± 220
9	Support	± 575	± 230
8	Support	± 585	± 234
7	Support	± 575	± 230
6	Support	± 570	± 225
5	Support	± 525	± 210
$4^{\text {th }}$	Support	± 500	± 190
$3^{\text {rd }}$	Support	± 475	± 230
$2^{\text {nd }}$		± 190	
$1^{\text {st }}$			

- Beams bending moment, shear forces diagrams due to wind loads are shown in figures bellow.

Fig. (3.6): Bending Moment Diagrams due to
Wind Loads For Beam at $20^{\text {th }}$ Story Level

Fig. (3.7): Shear Forces Diagrams due to
Wind Loads for Beam at $20^{\text {th }}$ Story Level

3.3.6 Column C11 Axial Loads Calculations (at $40^{\text {th }}$ Story Level)

- Dead load:

Tributary area $=9 \mathrm{~m}^{2}$
Column self weight $=0.8 \times 0.8(3.2-0.9-0.2) \times 24=32.3 \mathrm{kN}$
Slab self weight within the tributary area $=36.3 \mathrm{kN}$
Beam self weight within the tributary area $=29.2 \mathrm{kN}$
Masonry weight $=5 \times 0.3 \times 1 \times 22=33 \mathrm{kN}$
Super imposed dead load for roof $=9.7 \mathrm{kN}$
Total axial loads at $40^{\text {th }}$ story level
$36.3+33+29.7+9.7=118.2 \mathrm{kN}$

- Live load $=0.96 \times 9=8.6 \mathrm{kN}$

Axial load due to dead, live and wind are shown in table (3.7)
Table (3.7): Summary of Axial Load for Col (C11)

Level	Height (m)	Dead Load (kN)	Live Load (kN)	Wind load (kN)
$40^{\text {th }}$	128.8	118.2	8.6	2
$39^{\text {th }}$	125.6	334.1	30.2	8
38	122.4	554.7	51.8	18.7
37	119.2	775.4	73.4	36
36	116	996	95	59
35	112.8	1216.6	116.6	87.8

CHAPTER THREE

34	109.6	1437.3	138.2	122.4
33	106.4	1657.9	159.8	162.6
32	103.2	1878.6	181.4	208
31	100	2099.2	203	260
30	96.8	2319.8	224.6	317
29	93.6	2540.5	246.6	380
28	90.4	2761.1	267.8	448
27	87.2	2981.8	289.4	521
26	84	3202.4	311	600
25	80.8	3423	332.6	685
24	77.6	3643.7	354.2	775
23	74.4	3864.32	375.8	871
22	71.2	4085	397.4	970
21	68	4305.6	419	1079
20	64.8	4526.2	440.6	1191
19	61.6	4746.9	462.2	1308
18	58.4	4967.5	483.8	1430
17	55.2	5188.2	505.4	1559
16	52	5408.8	527	1689
15	48.8	5629.4	548.6	1830
14	45.6	5850	570.2	1974
13	42.4	6070.7	591.8	2121
12	39.2	6291.4	613.4	2280
11	36	6512	635	2400
10	32.8	6732.6	656.6	2580
9	29.6	6953	678.2	2760
8	26.4	7173.9	699.8	2944
7	23.2	7394.6	721.4	3123
6	20	7615.2	743	3300
5	16.8	7835.8	764.6	3480
$4^{\text {th }}$	13.6	8056.5	786.2	3640
$3^{\text {rd }}$	10.4	8277	807.3	3780

$2^{\text {nd }}$	72	8497.8	829.4	3960
$1^{\text {st }}$	4	8718	851	4140
Base	0	8958	872.6	4140

Table (3.8): Summary of Bending Moments and Shear Forces for Col (C11)

Level	Location	Gravity load (Moments distribution method) B.M (kNm)	Wind load (Cantilever method)	
			B.M (kNm)	S.F (kN)
$40^{\text {th }}$	At Top	63	± 5	3.1
	At Bottom	-94	± 5	
$39^{\text {th }}$	At Top	36	± 13	8
	At Bottom	-89	± 13	
38	At Top	36	± 18	11
	At Bottom	-89	± 18	
37	At Top	36	± 25.3	15.8
	At Bottom	-89	± 25.3	
36	At Top	36	± 30	18.7
	At Bottom	-89	± 30	
35	At Top	36	± 38	23.7
	At Bottom	-89	± 38	
34	At Top	36	± 47	29.4
	At Bottom	-89	± 47	
33	At Top	36	± 53	33
	At Bottom	-89	± 53	
32	At Top	36	± 60	37.5
	At Bottom	-89	± 60	
31	At Top	36	± 70	43.7
	At Bottom	-89	± 70	
30	At Top	36	± 73	45.6
	At Bottom	-89	± 73	
29	At Top	36	± 84	52

	At Bottom	-89	± 84	
28	At Top	36	± 86	54
	At Bottom	-89	± 86	
27	At Top	36	± 95	59.4
	At Bottom	-89	± 95	
26	At Top	36	± 103	64.4
	At Bottom	-89	± 103	
25	At Top	36	± 110	68.8
	At Bottom	-89	± 110	
24	At Top	36	± 115	72
	At Bottom	-89	± 115	
23	At Top	36	± 125	79
	At Bottom	-89	± 125	
22	At Top	36	± 128	81
	At Bottom	-89	± 128	
21	At Top	36	± 139	87
	At Bottom	-89	± 139	
20	At Top	36	± 142	89
	At Bottom	-89	± 142	
19	At Top	36	± 149	94
	At Bottom	-89	± 149	
18	At Top	36	± 158	98
	At Bottom	-89	± 158	
17	At Top	36	± 162	101
	At Bottom	-89	± 162	
16	At Top	36	± 166	103
	At Bottom	-89	± 166	
15	At Top	36	± 180	112
	At Bottom	-89	± 180	
14	At Top	36	± 180	112
	At Bottom	-89	± 180	
13	At Top	36	± 192	117

	At Bottom	-89	± 192	
12	At Top	36	± 200	125
	At Bottom	-89	± 200	
11	At Top	36	± 200	125
	At Bottom	-89	± 200	
10	At Top	36	± 203	127
	At Bottom	-89	± 203	
9	At Top	36	± 215	134
	At Bottom	-89	± 215	
8	At Top	36	± 220	138
	At Bottom	-89	± 220	
7	At Top	36	± 227	142
	At Bottom	-89	± 227	
$6^{\text {th }}$	At Top	36	± 231	144
	At Bottom	-89	± 231	
$5^{\text {th }}$	At Top	36	± 247	147
	At Bottom	-89	± 247	
$4^{\text {th }}$	At Top	36	± 255	159
	At Bottom	-89	± 255	
$3^{\text {rd }}$	At Top	36	± 260	167
	At Bottom	-89	± 260	
$2^{\text {nd }}$	At Top	36	± 285	178
	At Bottom	-89	± 285	
$1^{\text {st }}$	At Top	34	± 297.5	186
	At Bottom	-17	± 665	

- Column bending moment diagrams due to gravity loads and wind loads are shown in Fig. (3.8)

34 KNm

(a)

(b)

Fig. (3.8): Bending Moment Diagrams for Column (C11) at First Story Level due to (a) Gravity Loads (b) Wind Loads

3.4.7 Column C10 Axial Loads Calculations at $\mathbf{4 0}^{\text {th }}$ Story Level

- Dead load:

Tributary area $=15 \mathrm{~m}^{2}$
Column self weight $=0.8 \times 0.8(3.2-0.9-0.2) \times 24=32.3 \mathrm{kN}$
Slab self weight within the tributary area $=69.6 \mathrm{kN}$
Beam self weight within the tributary area $=46 \mathrm{kN}$
Masonry weight $=5 \times 0.3 \times 1 \times 22=33 \mathrm{k}$
Superimposed dead load for roof $=1.07 \times 15=17.2 \mathrm{kN}$
Total axial loads at $40^{\text {th }}$ story level due to dead loads;
$70+46+33+17.2=167 \mathrm{kN}$

- Live load $=0.96 \times 15=14.4 \mathrm{kN}$

Axial load due to dead, live and wind are shown in table (3.9)

Table (3.9): Summary of Axial Forces for Col (C10)

Level	Height(m)	Dead Load (kN)	Live Load (kN)	Wind Load (kN)
$40^{\text {th }}$	128.8	167	14.4	1
$39^{\text {th }}$	125.6	433.8	50.4	3
38	122.4	700.6	86.4	6.2
37	119.2	967.4	122.4	12
36	116	1234.1	158.4	20
35	112.8	1501	194.4	29
34	109.6	1767.8	230.4	40.8
33	106.4	2034.6	266.4	54
32	103.2	2301.4	302.4	69
31	100	2568.2	338.4	86
30	96.8	2835	374.4	105.6
29	93.6	3101.8	410.4	126
28	90.4	3368.6	446.4	149
27	87.2	3635.4	482.4	173
26	84	3902.2	518.4	200
25	80.8	4169	554.4	228
24	77.6	4435.8	590.4	258
23	74.4	4702.6	626.4	290
22	71.2	4969.4	662.4	324
21	68	5236.2	698.4	359
20	64.8	5503	734.4	396
19	61.6	5769.8	770.4	436
18	58.4	6036.4	806.4	470
17	55.2	6303.2	842.4	510
16	52	6570	878.4	560
15	48.8	6836.8	914.4	610
14	45.6	7103.6	950.4	650
13	42.4	7370.4	986.4	700
12	39.2	7637.2	1022.4	760

11	36	7904	1058.4	800
10	32.8	8170.8	1094.4	850
9	29.6	8437.6	1130.4	900
8	26.4	8704.4	1202.4	950
7	23.2	8971.2	1238.4	1000
6	20	9238	1274.4	1050
5	16.8	9504.8	1310.4	1100
$4^{\text {th }}$	13.6	9771.6	1346.4	1150
$3^{\text {rd }}$	10.4	10038	1382.4	1200
$2^{\text {nd }}$	7.2	10305.2	1418.4	1300
$1^{\text {st }}$	4	10591.2	1454.4	1380
Base 4	0	10858	1490.4	1380

Table (3.10): Summary of Bending Moments and Shear Forces for Col (C10)

Level	Location	Gravity load (Moments distribution method)B.M (kN-m)	Wind load (Cantilever method)	
			B.M (kN-m)	S.F (kN)
$40^{\text {th }}$	At Top	22	± 13	± 8.1
	At Bottom	-24	± 13	
$39^{\text {th }}$	At Top	18	± 26	± 16.3
	At Bottom	-20	± 26	
38	At Top	18	± 47	± 30
	At Bottom	-20	± 47	
37	At Top	18	± 54	± 34
	At Bottom	-20	± 58	
36	At Top	18	± 71	± 44
	At Bottom	-20	± 71	
35	At Top	18	± 89	± 55
	At Bottom	-20	± 89	

34	At Top	18	± 100	± 63
	At Bottom	-20	± 100	
33	At Top	18	± 115	± 72
	At Bottom	-20	± 115	
32	At Top	18	± 120	± 75
	At Bottom	-20	± 120	
31	At Top	18	± 150	± 94
	At Bottom	-20	± 150	
30	At Top	18	± 170	± 106
	At Bottom	-20	± 170	
29	At Top	18	± 190	± 124
	At Bottom	-20	± 190	
28	At Top	18	± 207	± 129
	At Bottom	-20	± 207	
27	At Top	18	± 218	± 136
	At Bottom	5.7	± 218	
26	At Top	18	± 238	± 149
	At Bottom	-20	± 238	
25	At Top	18	± 257	± 161
	At Bottom	-20	± 257	
24	At Top	18	± 268	± 168
	At Bottom	-20	± 268	
23	At Top	18	± 290	± 181
	At Bottom	-20	± 290	
22	At Top	18	± 298	± 186
	At Bottom	-20	± 298	
21	At Top	18	± 315	± 198
	At Bottom	-20	± 315	
20	At Top	18	± 322	± 200
	At Bottom	-20	± 322	
19	At Top	18	± 344	± 215
	At Bottom	-20	± 344	

18	At Top	18	± 353	± 221
	At Bottom	-20	± 353	
17	At Top	18	± 380	± 237
	At Bottom	-20	± 380	
16	At Top	18	± 396	± 247
	At Bottom	-20	± 396	
15	At Top	18	± 424	± 265
	At Bottom	-20	± 424	
14	At Top	18	± 436	± 272
	At Bottom	-20	± 436	
13	At Top	18	± 436	± 272
	At Bottom	-20	± 436	
12	At Top	18	± 454	± 284
	At Bottom	-20	± 454	
11	At Top	18	± 476	± 297
	At Bottom	-20	± 476	
10	At Top	18	± 480	± 300
	At Bottom	-20	± 480	
9	At Top	18	± 502	± 313
	At Bottom	-20	± 502	
8	At Top	18	± 518	± 324
	At Bottom	-20	± 518	
7	At Top	18	± 507	± 317
	At Bottom	-20	± 507	
6	At Top	18	± 532	± 332
	At Bottom	-20	± 532	
5	At Top	18	± 463	± 289
	At Bottom	-20	± 463	
$4^{\text {th }}$	At Top	18	± 475	± 297
	At Bottom	-20	± 475	
$3^{\text {rd }}$	At Top	18	± 522	± 326
	At Bottom	-20	± 522	

$2^{\text {nd }}$	At Top	5	± 598	± 374
	At Bottom	-6	± 598	
$1^{\text {st }}$	At Top	2.3	± 622	± 389
	At Bottom	-2.4	± 622	

Table (3.11): Summary of Design Bending Moments and Axial Force at the Base of Core.

Load Cases	Axial (kN)	Bending (kNm)	Shear (kN)
Dead	35239	0	0
Live	5183	0	0
Wind	0	116620	1715

3.4 Design Results:

3.4.1 Design of Slab:

- Two way solid slab designed by direct design method, it is currently the most common method of analysis in designing concrete floor systems.

Moment transfer between the slab, beam and column , the structure is divided into a series of equivalent frames along support lines. Each frame consists of a row of columns and corresponding slab-beam strip.
Floor slab and roof slab design calculations are shown in tables (3.13) and (3.15)

Table (3.12): Summary of Design Bending Moments for slab (an Edge

Panel)

Cases	Location	Column strip moment		Middle strip
		Beam	Slab	slab moment
Floors	Interior negative	55.3	10	22
	Interior positive	45.3	8	20

	Exterior negative	17	3	0
Roof	Interior negative	45.3	8	18.1
	Interior positive	37.4	7	14.2
	Exterior negative	14	2.5	0

Table (3.13): Floor Design Calculations

Reference	Calculation	Out put
AC1318-05 Eq. (13-3)	- computing α_{1} for both direction Gross moment of inertia of slab 5 m wide $I_{\mathrm{s}}=(1 / 12)\left(5 \times 0.2^{3}\right)$ Gross I of T beam cross section about centered axis for interior beams $\begin{aligned} & \mathrm{I}_{\mathrm{b}}=1.9 \times 0.2^{3} / 3+0.3 \times 0.9^{3} / 3 \\ & \alpha_{1}=\mathrm{EI}_{\mathrm{b}} / \mathrm{EI}_{\mathrm{s}}=0.079 / 0.0033 \end{aligned}$ For edge beams (width $=5 / 2+0.15=2.65 \mathrm{~m}$) $\mathrm{I}_{\mathrm{s}}=2.65 \times 0.2^{3} / 12$ I for edge beams $=1.2 \times 0.2^{3} / 3+0.3 \times 0.9^{3} / 3$ $\begin{aligned} & \alpha_{2}=0.076 / 0.0018 \\ & \alpha_{\mathrm{m}}=(2 \times 23.9+42.2 \times 2) / 4 \\ & \mathrm{~h}=\mathrm{l}_{\mathrm{n}}\left(0.8+\mathrm{f}_{\mathrm{y}} / 1400\right) /(36+9 \beta) \\ & \mathrm{l}_{\mathrm{n}(\text { long and short })}=5-0.8 \end{aligned}$ $\begin{aligned} & \beta=5 / 5 \\ & \mathrm{~h}=4200(0.8+420 / 1400) /(36+9) \end{aligned}$ O.K. 200 mm be satisfy - Moment for the both spans for floors slab:	$\begin{aligned} & 0.0033 \mathrm{~m}^{4} \\ & 0.079 \mathrm{~m}^{2} \\ & 23.9 \\ & \\ & \\ & 0.0018 \mathrm{~m}^{4} \\ & 0.076 \mathrm{~m}^{4} \\ & 42.2 \\ & 33>2 \\ & \\ & 4.2 \mathrm{~m} \\ & 1 \\ & 103 \mathrm{~mm} \end{aligned}$

	0.75×-87	-65kNm
ACI318-05	This -65 is allotted 0.85% to the beam,	$-55.3 \mathrm{kNm}$
13.5.6	and 15% to the slab, or	-10kNm
	The remaining negative moment, $87-65$ is	22 kNm
	Allotted to the middle strip.	
ACI318-05	The portion of the exterior negative moment to be	
13.6.4.2	resisted by the column strip,	
	$\beta_{\mathrm{t}}=\mathrm{E}_{\mathrm{cb}} \mathrm{C} / 2 \mathrm{E}_{\mathrm{cs}} \mathrm{I}_{\mathrm{S}}$	
	$\mathrm{C}=\sum(1-0.63 x / y) x 3 \mathrm{y} / 3=.001=0$	0.001
	Exterior negative moment $=1 \times-20 \mathrm{KN} / \mathrm{m}$, this	-20kNm
	allotted 0.85% to the beam,	-17kN/m
ACI318-05	and 15% to the slab, no moment at the middle strip.	-3kNm
13.6.4.4	The portion of the interior positive moment to be	
	resisted by the column strip, 0.75×71	53.3 kNm
	This value 0.85% to the beam,	45.3 kNm
	and 0.15% to the slab,	8 kNm
	The remaining positive moment,	
	71-53.3 goes to the middle strip	20 kNm
	- Moment for the both spans for roof:	
	$\mathrm{w}_{\mathrm{u}}=(1.2 \times 6.36)+(1.6 \times 0.96)$	$9.2 \mathrm{kN} / \mathrm{m}^{2}$
	$\mathrm{M}_{\mathrm{u}}=\left(\mathrm{wl}_{2}\right)\left(\mathrm{l}_{\mathrm{n}}{ }^{2}\right) / 8=9.2 \times 5 \times 4.2^{2} / 8$	102 kNm
	-Check shear strength in the slab at a distance d	
	from the face of the beam, shear is assumed to be	
	produced by the load on the tributary area, working with a 1 m wide strip.	
	$\mathrm{d}=\mathrm{h}$ - cover - half bar diameter	
	$=200-25-6$	169 mm
	-Design shear forces capacity at critical section(at	

Eq. (13-5)	Exterior negative moment $=1 \times-16.5$ this allotted	$-16.5 \mathrm{kNm}$
Eq. (13-6)	0.85% to the beam, and 15% to the slab, no moment	$-14 \mathrm{kNm}$
	at the middle strip.	$-2.5 \mathrm{kNm}$
	The portion of the interior positive moment to be	
	resisted by the column strip, 0.75×58.2, This value	44 kNm
	0.85% to the beam, and 0.15% to the slab, The	37.4 kNm
ACI318-05	remaining positive moment,	7 kNm
13.6.4.4	58.2-44 goes to the middle strip.	
	1.Floor slab design	14.2 kNm
	a-Design of steel in column strip:	
	* M_{u} (interior negative)	10 kNm
	The minimum reinforcement is that required for control of shrinkage and temperature cracking	
ACI7.12.2.1	$\mathrm{A}_{\text {smin }}=0.0018 \mathrm{bh}$	
	$=0.0018 \times 1000 \times 200$	$360 \mathrm{~mm}^{2}$
	$\rho_{\text {min }}($ in both direction $)=360 /(1000 \times 169)$	0.00213
	$\mathrm{M}_{\mathrm{u}} / \emptyset \mathrm{bd}^{2}=10 \times 10^{6} /\left(0.9 \times 0.25 \times 5000 \times 169^{2}\right)$	3.2
	$\mathrm{m}=14.1$	
Design of Reinforced	$\rho=1 / 14.1(1-\sqrt{ }(1-(2 \times 14.1 \times 3.2 / 420)))>\rho_{\text {min }}$	0.0081
	$\mathrm{A}_{\mathrm{s}}=0.0081 \times 1250 \times 169$	$1700 \mathrm{~mm}^{2}$
ConcreteACI318-05	Use 13-No12 ($\mathrm{A}_{\text {sprovide }}=1700 \mathrm{~mm}^{2}$)	
	-Moment transfer design:	
Seven edition	additional bars must be added over the column in a	
	$\text { width }=\text { column diameter }+(2)(1.5 \mathrm{~h})$	
	$=0.8+(2 \times 1.5 \times 0.2)$	1.4 m
	The additional reinforcing needed over the column is to be designed for a moment	
	$\gamma_{\mathrm{f}}=1 /\left(1+2 / 3 \sqrt{ }\left(\mathrm{~b}_{1} / \mathrm{b}_{2}\right)\right)$	

	$=1 /(1+2 / 3 \sqrt{ }(0.925 / 0.925))$	0.6
	Reminder of the unbalanced moment	
ACI318-05	$\gamma_{\mathrm{v}}=1-0.6$	0.4
13.5.3.2	$\gamma_{\mathrm{f}} \mathrm{M}_{\mathrm{u}}=0.6 \times 10$	6 kNm
ACI318-05	$\mathrm{M}_{\mathrm{u}} / \emptyset \mathrm{bd}{ }^{2}=6 \times 10^{6} /\left(0.9 \times 1400 \times 169^{2}\right)$	0.17
Eq. (11-39)	$\rho_{\min }(=0.00213)$	
	$\begin{aligned} & \rho=.0004<0.00213 \\ & \mathrm{~A}_{\mathrm{s}}=0.00213 \times 1400 \times 169 \end{aligned}$	$504 \mathrm{~mm}^{2}$
	Add 4-No 12 bars in the 1.4 m width and check to see the moment transfer situation is satisfactory. $\mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} /\left(0.85 \mathrm{f}_{\mathrm{c}} \mathrm{~b}\right)=504 \times 420 /(0.85 \times 35 \times 1400)$	5.1 mm
Design of Reinforced Concrete	$\begin{aligned} \emptyset \mathrm{M}_{\mathrm{n}} & =\emptyset \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2) \\ & =0.9(504)(420)(169-5.1 / 2) \end{aligned}$	$31.7 \mathrm{kNm}>$ 6 kNm
ACI318-05		
Seven edition	-Compute combined shear stress at exterior column due to shear and moment transfer	
edition	-Nominal moment strength of full column strip with 17-No 12 bars($2205 \mathrm{~mm}^{2}$)	
		12.45 mm
	$\mathrm{a}=2205 \times 420 /(0.85 \times 35 \times 2500)$	$150 \mathrm{kNm}$
	$\mathrm{M}_{\mathrm{n}}=2205 \times 420(169-12.45 / 2)$	
	-Fraction of unbalanced moment carried by	
	eccentricity of shear $=$	60 kNm
	$\gamma_{\mathrm{v}} \mathrm{M}_{\mathrm{n}}=150 \times 0.4$	8 kNm
	$* \mathrm{M}_{\mathrm{u}}($ positive)	0.21
	$\mathrm{M}_{\mathrm{u}} / \emptyset \mathrm{bd}^{2}=8 \times 10^{6} /\left(0.9 \times 1250 \times 169^{2}\right)$	
	$\mathrm{m}=14.1$	0.00061
	$\rho=1 / 14.1(1-\sqrt{ }(1-(2 \times 14.1 \times 0.21 / 420)))$	

Table (3.14): Required Floors Reinforcement

Strip cases	Location	moment		$\mathrm{A}_{\mathrm{s}}\left(\mathrm{mm}^{2}\right)$	Number of bars No-12
5m span Two column strip	Exterior negative	3	0.00213	492	4
	positive	8	0.00213	492	4
	Interior Negative	10	0.0081	1700	13
	Exterior Negative	0	0	0	0
	Positive	20	0.00213	985	8
	Interior Negative	22	0.00213	985	8

Table (3.15): Roof Design Calculations

\begin{tabular}{|c|c|c|}
\hline Seven edition \& \begin{tabular}{l}
Use 11-No12 (\(\mathrm{A}_{\text {sprovide }}=1375 \mathrm{~mm}^{2}\)) \\
-Moment transfer design: \\
The code 13.5.3.2 state that additional bars must be added over the column in a width = column diameter
\[
\begin{aligned}
\& +(2)(1.5 \mathrm{~h}) \\
\& =0.8+(2 \times 1.5 \times 0.2)
\end{aligned}
\]
\end{tabular} \& 1.4 m \\
\hline \[
\begin{aligned}
\& \text { ACI318-05 } \\
\& 13.5 .3 .2
\end{aligned}
\] \& The additional reinforcing needed over the column is to be designed for a moment
\[
\begin{aligned}
\gamma_{\mathrm{f}} \& =1 /\left(1+2 / 3 \sqrt{ }\left(b_{1} / b_{2}\right)\right) \\
\& =1 /(1+2 / 3 \sqrt{ }(0.925 / 0.925))
\end{aligned}
\] \& 0.6 \\
\hline \[
\begin{aligned}
\& \text { ACI318-05 } \\
\& \text { Eq. }(11-39)
\end{aligned}
\] \& \[
\begin{aligned}
\& \gamma_{\mathrm{v}}=1-0.6=0.4(\text { reminder of the unbalanced moment }) \\
\& \gamma_{\mathrm{f}} \mathrm{M}_{\mathrm{u}}=0.6 \times 8 \\
\& \mathrm{M}_{\mathrm{u}} / \emptyset \mathrm{bd}^{2}=5 \times 10^{6} /\left(0.9 \times 1400 \times 169^{2}\right) \\
\& \rho=.0003<0.00213
\end{aligned}
\] \& \[
\begin{aligned}
\& 5 \mathrm{kNm} \\
\& 0.14
\end{aligned}
\] \\
\hline Design of \& \begin{tabular}{l}
\[
\begin{aligned}
\& \rho_{\min }(=0.00213) \\
\& \mathrm{A}_{\mathrm{s}}=0.00213 \times 1400 \times 169
\end{aligned}
\] \\
Add 4-No 12 bars in the 1.4 m width and check to see the moment transfer situation is satisfactory.
\[
\mathrm{a}=\mathrm{A}_{s} \mathrm{f}_{\mathrm{y}} /\left(0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{b}\right)=504 \times 420 /(0.85 \times 35 \times 1400)
\]
\end{tabular} \& \(504 \mathrm{~mm}^{2}\)

5.1 mm

\hline | Reinforced |
| :--- |
| Concrete |
| ACI318-05 | \& \[

$$
\begin{aligned}
\emptyset \mathrm{M}_{\mathrm{n}} & =\emptyset \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2) \\
& =0.9(504)(420)(169-5.1 / 2)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 31.7 \mathrm{kNm} \\
& <5 \mathrm{kNm}
\end{aligned}
$$
\]

\hline \& | -Compute combined shear stress at exterior column due to shear and moment transfer |
| :--- |
| -Nominal moment strength of full column strip with | \&

\hline
\end{tabular}

Table (3.16): Required Roof Reinforcement

Strip cases	Location	Moment		$\mathrm{A}_{\mathbf{s}}\left(\mathrm{mm}^{2}\right)$	Number of bars No-13
Column strip	Exterior negative	2.5	0.00213	492	4
	positive	7	0.00213	492	4
	Interior negative	8	0.0065	1375	11
Middle strip	Exterior negative	0	0	0	0
	Positive	14.2	0.00213	985	8
	Interior Negative	18.1	0.00213	985	8

Table (3.17): Summary of Design Bending Moments and Shear Forces for

 Beam C10-C11 at First Story Level| Load Cases | Location | B.M (kNm) | S.F (kN) |
| :--- | :--- | :--- | :--- |
| Gravity (DL+LL) | Support | -85 | 80 |
| | Mid span | 49 | |
| | Support | ± 350 | ± 140 |
| | Mid span | 0 | 0 |
| Load Combination | | | |
| | Support | -106 | 100 |
| | Mid span | 61 | 320 |
| | Support | -660 | |

3.4.2 Design of Beams:

Beams must have an adequate safety margin against other types of failure (flexural and shear).
Beams flexural and shear design calculations shown in tables (3.18), (3.20), (3.22), (3.24), (3.26) and (3.28).

Table (3.18): Flexural Beam Design Calculations at First Story

Reference	Calculations	Out Put
ACI318-05	1-Flexural Design:	
21.12 .4	The factored axial load on the member, Which is negligible, is less than $\mathrm{Ag}_{\mathrm{g}} \mathrm{f}_{\mathrm{d}} / 10$, for beams must be satisfied. All other applicable provisions in ACI318-05 are to be satisfied as well. ACI318-05	

Table (3.19): Required Beam Reinforcement at First Story

Location	$\mathrm{M}_{\mathrm{u}}(\mathrm{m}-\mathrm{kN})$	$\mathrm{A}_{\mathrm{s}}\left(\mathrm{mm}_{2}\right)$	Reinforcement	$\emptyset \mathrm{Mn}(\mathrm{m}-\mathrm{kN})$
Support	-660	2455	$5-\mathrm{No} 25$	690
Mid span	61	942	$3-\mathrm{No} 20$	260

ACI21.12.4.1: the positive moment strength at the joint be greater than or equal to 33% of the negative moment strength at that location. This is satisfied, since $260 \mathrm{~m}-\mathrm{KN}>690 \times 0.33=227.7 \mathrm{~m}-\mathrm{KN}$.

Table (3.20): Shear Design Calculation at First Story

Reference	Calculation	Out Put
	2.Shear Design:	
Fig. R21.12.3	Shear demand from nominal flexural capacity $\mathrm{V}_{\mathrm{u}}=(690-260) / 4.2$	102.4 kN
ACI318-05	Shear demand from gravity load	
	$\mathrm{W}_{\mathrm{u}}=1.2 \mathrm{~W}_{\mathrm{D}}+\mathrm{W}_{\mathrm{L}}=1.2 \times 45+5$	$60 \mathrm{kN} / \mathrm{m}$
	$\mathrm{V}_{\mathrm{u}}=\mathrm{W}_{\mathrm{u}} \mathrm{l}_{\mathrm{n}} / 2=60 \times 4.2 / 2$	126 kN
	$\mathrm{V}_{\mathrm{u}}=102.4+126$	228.4 kN
	The nominal shear strength provided by	
ACI318-05	concrete (V_{c})	
11.3.1	$\mathrm{V}_{\mathrm{c}}=0.17 \times \sqrt{\text { fic }} \times \mathrm{b} \times \mathrm{d}$	
	$=0.17 \times \sqrt{35} \times 300 \times 800 / 1000$	241.4 kN
	$\mathrm{V}_{\mathrm{u}}=(228.4 \mathrm{KN})>\emptyset \mathrm{V}_{\mathrm{c}}=(0.75 \times 241.4)$	181 kN
	Provide shear reinforcement in assuming No. 10 hoops, the required spacing s is determined,	
	$S=\left(A_{v} f_{y t} d\right) / V_{s}$	
11.5.6	$=(142 \times 250 \times 800) /((28800 / 0.75)-241400)$ The	200 mm

Eq. (11-15)	maximum spacing of hoops over the length	
ACI318-05	$2 \mathrm{~h}=2 \times 900$ from the face of the support at	1800 mm
21.12.4.2	each end of the member is the smallest of the following:	
	(1) $\frac{d}{4}=\frac{800}{4}$ (2) $24($ diameter of hoop bar) $=$	200 mm 228 mm
ACI318-05	24×9.5	400 mm
	For the remainder of the beam, the maximum stirrup spacing is $\frac{d}{2}$	
	Use No. 10stirrups @ 200mm for the remainder of the beam.	

Table (3.21): Summary of Design Bending Moment and Shear Forces for Beam C10-C11 AT 20 ${ }^{\text {th }}$ Story Level

Load Cases	Location	B.M (kNm)	S.F (kN)
Gravity (DL+LL)	Support	-128	100
	Mid span	57	
	Support	± 250	± 120
	Mid span	0	0
Load Combination			
$1.2 \mathrm{DL}+1.6 \mathrm{LL}$	Support	-160	125
	Mid span	71	310
	Support	-550	

Table (3.22): Flexural Design Calculations at $20^{\text {th }}$ Story Level

Reference	Calculation	Out Put
ACI318-05 21.12.4 ACI318-05 10.5.1 ACI318-05 Fig.R10.3.3 ACI10.2.3	1.Flexural Design: The factored axial load on the member, Which is negligible, is less than $\mathrm{A}_{\mathrm{g}} \mathrm{f}_{\mathrm{d}} / 10$; thus, the provisions of section for beams must be satisfied. All other applicable provisions in ACI31805 are to be satisfied as well. Minimum flexural reinforcement $\begin{aligned} & \mathrm{A}_{\mathrm{s}, \min }=\left(0.25 \sqrt{\left.\mathrm{f}_{\underline{c}}{ }^{\prime} \underline{\mathrm{bd}}\right) / \mathrm{f}_{\mathrm{y}}=}\right. \\ & 0.25 \sqrt{ } 35 \times 300 \times 800 / 420 \\ & \geq 1.4 \mathrm{bd} / \mathrm{f}_{\mathrm{y}}=1.4 \times 300 \times 800 / 420 \end{aligned}$ Maximum flexural reinforcement: $\begin{aligned} & \mathrm{A}_{\mathrm{s}, \max }= \underline{0.85} \beta_{\underline{1}} \underline{\mathrm{f}^{\prime}} \underline{b \mathrm{bd}} \times(\underline{0.003}) \\ & \mathrm{f}_{\mathrm{y}} \quad(.003+.004) \\ &=0.85 \times 0.814 \times 35 \times 300 \times \\ & 800 / 420 \times(0.003 / 0.007) \end{aligned}$ -Maximum reinforcement percentage $\rho_{\max }=0.85 \beta_{1} \mathrm{f}_{\mathrm{c}}^{\prime} / \mathrm{f}_{\mathrm{y}}\left(\varepsilon_{\mathrm{c}} / \varepsilon_{\mathrm{c}+} 0.004\right)$ - Minimum reinforcement percentage $\rho_{\min }=\sqrt{ } \mathrm{f}_{\mathrm{c}}^{\prime} / 4 \mathrm{f}_{\mathrm{y}}$ -Strain in compression concrete $\varepsilon_{\mathrm{c}}=0.003$ $\beta_{1}=0.85-0.05\left(\mathrm{f}_{\mathrm{c}}-4000\right) / 1000$ $0.65 \leq \beta_{1 \leq} 0.85$ -Design moment strength	$\begin{aligned} & 850 \mathrm{~mm}^{2} \\ & 800 \mathrm{~mm}^{2} \\ & \\ & \\ & 5930 \mathrm{~mm}^{2} \end{aligned}$

Design of Reinforced Concrete ACI318-05 Seven edition	$\begin{aligned} & \emptyset \mathrm{M}_{\mathrm{n}}=\emptyset\left[\mathrm{A}_{\mathrm{S} 1} \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)+\mathrm{A}_{\mathrm{s}}^{\prime} \mathrm{f}_{\mathrm{s}}^{\prime}\left(\mathrm{d}-\mathrm{d}^{\prime}\right)\right] \\ & \mathrm{a}=\mathrm{A}_{\mathrm{S}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{b} \\ & \mathrm{~A}_{\mathrm{s}}=\rho \mathrm{bd} \\ & \rho=1 / \mathrm{m}\left(1-\sqrt{ }\left(1-2 \mathrm{mR} / \mathrm{f}_{\mathrm{y}}\right)\right. \\ & \mathrm{R}=\mathrm{M}_{\mathrm{u}} / \emptyset \mathrm{bd}^{2} \\ & \mathrm{~m}=\mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \\ & \text {-Effective depth } \\ & \mathrm{d}=\mathrm{h}-100 \end{aligned}$	800 mm

Table (3.23): Required Beam Reinforcement at 20 ${ }^{\text {th }}$ Story Level

Location	$\mathrm{M}_{\mathrm{u}}(\mathrm{m}-\mathrm{kN})$	$\mathrm{A}_{\mathrm{s}}\left(\mathrm{mm}_{2}\right)$	Reinforcement	$\emptyset \mathrm{Mn}(\mathrm{m}-\mathrm{kN})$
Support	-550	1964	4-No25	560
Mid span	71	942	3-No20	260

ACI21.12.4.1: the positive moment strength at the joint be greater than or equal to 33% of the negative moment strength at that location. This is satisfied, since $260 \mathrm{~m}-\mathrm{kN}>560 \times 0.33=185 \mathrm{~m}-\mathrm{kN}$.

Table (3.24): Shear Design Calculation at $20^{\text {th }}$ Story Level

Reference	Calculation	Out Put
	2.Shear Design:	
ACI318-05	Shear demand from nominal flexural capacity	
Fig.R21.12.3	$\mathrm{V}_{\mathrm{u}}=(560-260) / 4.2$	72 kN
	Shear demand from gravity load	
	$\mathrm{W}_{\mathrm{u}}=1.2 \mathrm{~W}_{\mathrm{D}}+\mathrm{W}_{\mathrm{L}}=1.2 \times 45+5$	$60 \mathrm{kN} / \mathrm{m}$
	$\mathrm{V}_{\mathrm{u}}=\mathrm{W}_{\mathrm{u}} \mathrm{l}_{\mathrm{n}} / 2=60 \times 4.2 / 2$	126 kN

	$\mathrm{V}_{\mathrm{u}}=72+126$	198 kN
11.3.1	The nominal shear strength provided by concrete (V_{c})	
	$\begin{aligned} V_{c} & =0.17 \times \sqrt{\mathrm{f}} \mathrm{c} \times \mathrm{b} \times \mathrm{d} \\ & =0.17 \times 300 \times 800 \sqrt{ } 35 / 1000 \end{aligned}$	241.4 kN
	$\mathrm{V}_{\mathrm{u}}=(198 \mathrm{KN})>\emptyset \mathrm{V}_{\mathrm{c}}(0.75 \times 241.4)$	181 kN
ACI318-05	Provide shear reinforcement in accordance with	
11.5.6	ACI318-05-11.5.6 assuming No. 10 hoops, the required spacing S is	
Eq. (11-15)	$S=\left(A_{v} \times f_{y s} d\right) / V_{s}$	
	$=\left(142 \times 250 \times 800 /\left(\frac{241400}{0.75}-198000\right)\right.$	230 mm
21.12.4.2	The maximum spacing of hoops over the length	1800 mm
	$2 h=2 \times 900$ from the face of the support at each end of the member is the smallest of the following:	
	(1) $\frac{d}{4}=\frac{800}{4}$	$\begin{aligned} & 200 \mathrm{~mm} \\ & 228 \mathrm{~mm} \end{aligned}$
	(2) $24($ diameter of hoop bars $)=$ 24×9.5	400 mm
21.12.4.3	For the remainder of the beam, the maximum stirrup spacing is $\frac{d}{2}$	
	Use No. 10stirrups @ 250mm for the remainder of the beam.	

Table (3.25): Summary of Design Bending Moment and Shear Forces for Beam C10-C11at $\mathbf{4 0}^{\text {th }}$ Story Level

Load Cases	Location	B.M (kNm)	S.F (kN)
Gravity (DL+LL)	Support	-116	68
	Mid span	51	
	Support	± 4	± 2
	Mid span		
	Load Combination		
$1.2 \mathrm{DL}+1.6 \mathrm{LL}$	Support	-148	85
	Mid span	63.6	84
	Support	-145	

Table (3.26): Flexural Design Calculations at $40^{\text {th }}$ Story Level

Reference	Calculation	Out Put
ACI318-05 21.12.4 ACI318-05	-Maximum percentage of reinforcement $\begin{aligned} \rho_{\max } & =0.85 \beta_{1} \mathrm{f}_{\mathrm{c}}^{\prime} / \mathrm{f}_{\mathrm{y}}\left(\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{c}}+.004\right) \\ & =0.85 \times 0.814 \times 35 \times(0.003 / .007) / 420 \end{aligned}$ -Minimum percentage of reinforcement $\rho_{\min }=\sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} / 4 \mathrm{f}_{\mathrm{y}}=\sqrt{35} / 4 \times 420$ 1.Flexural Design: The factored axial load on the member, Which is negligible, is less than $\mathrm{A}_{\mathrm{g}} \mathrm{f}_{\mathrm{d}} / 10$; thus, the provisions of section for beams must be satisfied. All other applicable provisions in ACI318-05 are to be satisfied as well. Minimum flexural reinforcement $\mathrm{A}_{\mathrm{s}, \min }=\left(0.25 \sqrt{\mathrm{f}_{\underline{c}}^{\prime} \underline{b d}}\right) / \mathrm{f}_{\mathrm{y}}=0.25 \sqrt{35} \times 300 \times$	$\begin{aligned} & 0.0247 \\ & 0.00352 \end{aligned}$

10.5.1	800/420	$850 \mathrm{~mm}^{2}$
	$\geq 1.4 \mathrm{bd} / \mathrm{f}_{\mathrm{y}}=1.4 \times 300 \times 800 / 420$	$800 \mathrm{~mm}^{2}$
	Maximum flexural reinforcement:	
	$\mathrm{A}_{\mathrm{s}, \max }=\underline{0.85} \underline{1}_{\underline{f}}^{\underline{f}} \underline{\underline{b}} \underline{\mathrm{bd}} \times(\underline{0.003})$	
	$\mathrm{f}_{\mathrm{y}} \quad(.003+.004)$	
	$=0.85 \times 0.814 \times 35 \times 300 \times 800 /$	
	$420 \times(0.003 / 0.007)$	$5930 \mathrm{~mm}^{2}$
	-Maximum reinforcement percentage	
ACI318-05	$\rho_{\max }=0.85 \beta_{1} \mathrm{f}_{\mathrm{c}}^{\prime} / \mathrm{f}_{\mathrm{y}}\left(\varepsilon_{\mathrm{c}} / \varepsilon_{\mathrm{c}+} 0.004\right)$	
Fig.R10.3.3	- Minimum reinforcement percentage	
	$\rho_{\text {min }}=\sqrt{ } \mathrm{f}_{\mathrm{c}}{ }^{\prime} / 4 \mathrm{f}_{\mathrm{y}}$	
	-Strain in compression concrete	
ACI10.2.3	$\varepsilon_{\mathrm{c}}=0.003$	
	$\beta_{1}=0.85-0.05\left(\mathrm{f}_{\mathrm{c}}-4000\right) / 1000, \quad 0.65 \leq \beta_{1 \leq} 0.85$.	
Design of	-Design moment strength	
Reinforced	$\emptyset \mathrm{M}_{\mathrm{n}}=\emptyset\left[\mathrm{A}_{\mathrm{Sl}} \mathrm{f}_{\mathrm{y}}(\mathrm{d}-\mathrm{a} / 2)+\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{s}}{ }^{\prime}\left(\mathrm{d}-\mathrm{d}^{\prime}\right)\right]$	
Concrete ACI318-05	$\mathrm{a}=\mathrm{A}_{\mathrm{S}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}_{\mathrm{c}}{ }^{\prime} \mathrm{b}$	
	$\mathrm{A}_{\mathrm{s}}=\rho \mathrm{bd}$	
Seven edition	$\rho=1 / \mathrm{m}\left(1-\sqrt{ }\left(1-2 \mathrm{mR} / \mathrm{f}_{\mathrm{y}}\right)\right.$	
	$\mathrm{R}=\mathrm{M}_{\mathrm{u}} / \Phi \mathrm{bd}^{2}$	
	$\mathrm{m}=\mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}_{\mathrm{c}}{ }^{\prime}$	
	-Effective depth	
	$\mathrm{d}=\mathrm{h}-100$	800 mm
	$\mathrm{d}^{\prime}=100 \mathrm{~mm}$	

Table (3.27): Required Beam Reinforcement at $40^{\text {th }}$ Story Level

Location	$\mathrm{M}_{\mathrm{u}}(\mathrm{m}-\mathrm{kN})$	$\mathrm{A}_{\mathrm{s}}\left(\mathrm{mm}_{2}\right)$	Reinforcement	$\emptyset \mathrm{Mn}(\mathrm{m}-\mathrm{kN})$
Support	-145	942	$3-\mathrm{No} 20$	260
Mid span	64	942	$3-\mathrm{No} 20$	260

ACI21.12.4.1: the positive moment strength at the joint be
Greater than or equal to 33% of the negative moment strength at that location.
This is satisfied, since $260 \mathrm{~m}-\mathrm{kN}>260 \times 0.33 \mathrm{~m}-\mathrm{kN}$.
Table (3.28): Shear Design Calculations at $40^{\text {th }}$ Story Level

Reference	Calculation	Out Put
	2.Shear Design:	
ACI318-05	Shear demand from nominal flexural	
Fig.R21.12.3	capacity	
	$\mathrm{V}_{\mathrm{u}}=(260-260) / 4.2$	$45 \mathrm{kN} / \mathrm{m}$
	Shear demand from gravity load	
	$\mathrm{W}_{\mathrm{u}}=1.2 \mathrm{~W}_{\mathrm{D}}+\mathrm{W}_{\mathrm{L}}=1.2 \times 35+2$	95 kN
	$\mathrm{V}_{\mathrm{u}}=\mathrm{W}_{\mathrm{u}} \mathrm{l}_{\mathrm{n}} / 2=45 \times 4.2 / 2$	95 kN
	$\mathrm{V}_{\mathrm{u}}=0+95$	
ACI318-05	The nominal shear strength provided by	
11.3.1	concrete $\left(\mathrm{V}_{\mathrm{c}}\right)$	
	$\mathrm{V}_{\mathrm{c}}=0.17 \times \sqrt{\text { fic }} \times \mathrm{b} \times \mathrm{d}$	
	$=0.17 \times \sqrt{35} \times 300 \times 800 / 1000$	241.4 kN
	$\mathrm{V}_{\mathrm{u}}=(95 K N)<\emptyset \mathrm{V}_{\mathrm{c}}(0.75 \times 241.4)$	181 kN
	There is no reinforcement for shear.	

Table (3.29): Design of Column C11 at First Story Level

Load Cases	Axial load (kN)	B.M (kNm)	S.F (kN)
Gravity (DL+LL)	9569	-34	0
Wind (WL)	± 4140	± 665	± 186
Load Combination			
$1.2 \mathrm{DL}+1.6 \mathrm{LL}$	11823	-42	0
$1.2 \mathrm{DL}+\mathrm{LL} \pm 1.6 \mathrm{WL}$	17937	1104	298

3.4.3 Design of Columns:

All columns are subjected to some bending as well as axial forces, and they need to be proportioned to resist both.

Column design calculations shown in tables (3.30), (3.32) and (3.34)

Table (3.30): Column Axial Forces and Bending Design Calculations at First Story Level

Reference	Calculation	Out Put
Design of Reinforced Concrete ACI318-05 Seven edition	1.Design for Axial Force and Bending Since the design strength not investigated requirement of ACI for using interaction chart, so design using basic equations, considered that, balanced failure. -Basic Equations of Short Columns $\begin{aligned} & \mathrm{P}_{\mathrm{nb}}=0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{ab}+\mathrm{A}_{\mathrm{s}}^{\prime} \mathrm{f}_{\mathrm{s}}^{\prime}-\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} \\ & \mathrm{M}_{\mathrm{nb}}=0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{ab}(\mathrm{~h} / 2-\mathrm{a} / 2)+\mathrm{A}_{\mathrm{s}}^{\prime} \mathrm{f}_{\mathrm{s}}^{\prime}\left(\mathrm{h} / 2-\mathrm{d}^{\prime}\right)-\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{h} / 2) \end{aligned}$ Eccentricity $\mathrm{e}_{\mathrm{b}}=\mathrm{M}_{\mathrm{nb}} / \mathrm{P}_{\mathrm{nb}} \leq 0.03 \mathrm{~h}+15$ -Nominal Design Strength $\mathrm{P}_{\mathrm{nb}}=\mathrm{P}_{\mathrm{u}} / \varnothing=17937 / 0.65$	27595 kN

1699 kNm

429 mm

ACI10.9.1

ACI21.12.3
$\mathrm{M}_{\mathrm{nb}}=\mathrm{M}_{\mathrm{u}} / \emptyset=1104 / 0.65$
$\emptyset=0.65$ for column sections with tied reinforcement
-Strains in compression and tensile steel
$\varepsilon_{\mathrm{s}}^{\prime}=\left(\varepsilon_{\mathrm{u}}\right) \mathrm{c}-\mathrm{d}^{\prime} / \mathrm{c}$
$\varepsilon_{\mathrm{s}}^{\prime}=\left(\varepsilon_{\mathrm{u}}\right) \mathrm{d}-\mathrm{c} / \mathrm{c}$
Concrete
ACI318-05
Seven
edition
ACI10.2.7.1
$\mathrm{a}=\beta_{1} \mathrm{c}=0.814 \times 429$
$\mathrm{h}=800 \mathrm{~mm}$
$\mathrm{d}^{\prime}=70 \mathrm{~mm}$
$\mathrm{d}=800-70$
$\mathrm{b}=800 \mathrm{~mm}$
by Substituting into basic equations above
-Compression reinforcement
$\mathrm{A}_{\mathrm{s}}{ }^{\prime}=16612 \mathrm{~mm}^{2}$ (Use17-No 36)
-tension reinforcement

$$
\mathrm{A}_{\mathrm{s}}=3113 \mathrm{~mm}^{2}(\text { Use4-No } 36)
$$

$\mathrm{A}_{\text {sprovide }}=21378 \mathrm{~mm}^{2}$
Design is based on the governing load combinations in the table 3.29 , a $800 \times 800 \mathrm{~mm}$ column with $21-$ No. 36 bars $\left(\rho_{\mathrm{g}}=3.5 \%\right)$ is adequate for column supporting the first floor level. The provided reinforcement ratio is within the allowable rang of 1% and 8%
2.Design for Shear

3	must not exceed the smallest of the flowing:	
$-8($ smallest longitudinal bar diameter $)=8 \times 34.5$	284 mm	
	-24 (hoop bar diameter) $=24 \times 11.5$	300 mm
	Use No 12 hoops and crossties @ 250 mm with the	
first hoop located at $120 \mathrm{~mm}<\mathrm{S}_{0} / 2=300 / 2=150 \mathrm{~mm} ;$		
from the joint face below first floor above the base.		

Table (3.31): Design of Column C11 at $20^{\text {th }}$ Story Level

Load Cases	Axial load (kN)	B.M (kNm)	S.F (kN)
Gravity (DL+LL)	4967	-89	0
Wind (WL)	± 1191	± 142	± 89
Load Combination			
$1.2 \mathrm{DL}+1.6 \mathrm{LL}$	6136.4	-110	0
$1.2 \mathrm{DL}+\mathrm{LL} \pm 1.6 \mathrm{WL}$	7778	332	142

Table (3.32): Column Axial Forces and Bending Design Calculations at 20 ${ }^{\text {th }}$ Story Level

Reference	Calculation	Out Put
	1.Design for Axial Force and Bending Since the design strength not investigated requirement of ACI for using interaction chart, so design using basic equations, consider this, balanced failure. Design of Reinforced Concrete	-Basic Equations of Short Columns $\mathrm{P}_{\mathrm{nb}}=0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{ab}+\mathrm{A}_{\mathrm{s}}^{\prime} \mathrm{f}_{\mathrm{s}}^{\prime}-\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}$ $\mathrm{M}_{\mathrm{nb}}=0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{ab}(\mathrm{h} / 2-\mathrm{a} / 2)+\mathrm{A}_{\mathrm{s}}^{\prime} \mathrm{f}_{\mathrm{s}}^{\prime}(\mathrm{h} / 2-\mathrm{d})-\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}(\mathrm{d}-\mathrm{h} / 2)$

ACI318-05 Seven edition	Eccentricity $\mathrm{e}_{\mathrm{b}}=\mathrm{M}_{\mathrm{nb}} / \mathrm{P}_{\mathrm{nb}} \leq 0.03 \mathrm{~h}+15$ -Nominal Design Strength $\begin{aligned} & \mathrm{P}_{\mathrm{nb}}=\mathrm{P}_{\mathrm{u}} / \emptyset=7778 / 0.65 \\ & \mathrm{M}_{\mathrm{nb}}=\mathrm{M}_{\mathrm{u}} / \emptyset=332 / 0.65 \end{aligned}$ -Strains in compression and tensile steel $\begin{aligned} \varepsilon_{\mathrm{s}}^{\prime} & =\left(\varepsilon_{\mathrm{u}}\right) \mathrm{c}-\mathrm{d}^{\prime} / \mathrm{c} \\ \varepsilon_{\mathrm{s}}^{\prime} & =\left(\varepsilon_{\mathrm{u}}\right) \mathrm{d}-\mathrm{c} / \mathrm{c} \\ \mathrm{c} & =\mathrm{c}_{\mathrm{b}}=600 \mathrm{~d} /\left(600+\mathrm{f}_{\mathrm{y}}\right) \\ \mathrm{c} & =429 \mathrm{~mm} \end{aligned}$ -Stress in compression and tensile steel $\begin{aligned} & \mathrm{f}_{\mathrm{s}}^{\prime}=\mathrm{E}_{\mathrm{s}} \varepsilon_{\mathrm{s}}^{\prime} \\ & \mathrm{f}_{\mathrm{s}}=\mathrm{E}_{\mathrm{s}} \varepsilon_{\mathrm{s}} \end{aligned}$	11966kN 511 kNm
ACI10.2.7.1	$\begin{aligned} & \mathrm{a}=\beta_{1} \mathrm{c}=0.814 \times 429 \\ & \mathrm{~h}=800 \mathrm{~mm} \\ & \mathrm{~d}^{\prime}=70 \mathrm{~mm} \\ & \mathrm{~d}=800-70 \\ & \mathrm{~b}=800 \mathrm{~mm} \end{aligned}$ Substituting into the basic equations above -Compression reinforcement $\mathrm{A}_{\mathrm{s}}^{\prime}=9918 \mathrm{~mm}^{2}(\text { Use13-No. 32) }$ -tension reinforcement $\mathrm{A}_{\mathrm{s}}=9859 \mathrm{~mm}^{2}(\text { Use12-No. 32) }$ $\mathrm{A}_{\text {sprovide }}=20100 \mathrm{~mm}^{2}$ Design is based on the governing load combinations in the table 3.31 , a $800 \times 800 \mathrm{~mm}$ column with 25 No. 32 bars $\left(\rho_{\mathrm{g}}=3 \%\right)$ is adequate for column supporting the twenty floor level. The provided reinforcement ratio is within the allowable rang of	349 mm 730 mm

ACI21.12.3	1\% and 8\%	
	2.Design for Shear	
	Columns in intermediate moment frames must satisfy	
	the shear requirements in. The first of the two options	
	in that section is utilized here to determine the design	
	shear strength:	
	The sum of the shear associated with development of	
	nominal moment strengths of the member at each	
	restrained end of the clear span and the shear	
	calculated for the factored gravity loads.	
	Because the column is at twenty floor, and the	
	moment at any column end cannot exceed the	
	average of the nominal moment strengths of the	
	beams framing into that end, shear demand from the	
	lateral forces is calculated from the nominal flexural	
	strengths of the beams.	
	$\mathrm{V}_{\mathrm{u}}=(560+260) / 1.6$	$512.5 \mathrm{kN}>$
	The shear capacity of the column for members	142 kN
ACI318-05	subjected to axial compression:	
Eq. (11.4)	$\mathrm{V}_{\mathrm{c}}=0.17\left(1+\mathrm{N}_{\mathrm{u}} / 14 \mathrm{~A}_{\mathrm{g}}\right) \sqrt{ } \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{b}_{\mathrm{w}} \mathrm{d}$	
	$0.17\left(1+\left(7778000 / 14 \times 800^{2}\right)\right) \sqrt{35 \times 800 \times 730 / 1000}$	1097 kN
	Since $\mathrm{V}_{\mathrm{u}}>\emptyset \mathrm{V}_{\mathrm{c}} / 2=0.75 \times 1097 / 2$	411 kN
ACI11.5.6.1	minimum transverse reinforcement would be	
	required.	
	With No. 10 hoops with one cross-site, $\mathrm{A}_{\mathrm{v}}=213 \mathrm{~mm}^{2}$	
ACI318-05	$\mathrm{S}=213 \times 250 /(.062 \times 800 \sqrt{35})$	181.5 mm
11.5.5.1	$<\mathrm{d} / 2=730 / 2$	365 mm

ACI11.5.5.2	$S_{\text {required }}=181.5 \mathrm{~mm}$ For No 12 rectangular hoops, the vertical spacing s 0			
must not exceed the smallest of the flowing:				
ACI21.12.5.	$-8($ smallest longitudinal bar diameter $)=8 \times 31.5$ 3	Use No -10 hoops and crossties @ 200 mm with the first hoop located at $100 \mathrm{~mm}\left(<\mathrm{S}_{0} / 2=228 / 2=114 \mathrm{~mm} ;\right.$ from the joint face below twenty floor level and above the twenty-one level.		252 mm
:---				

Table (3.33): Design of Column C11 at $40^{\text {th }}$ Story Level

Load Cases	Axial load (kN)	B.M (kNm)	S.F (kN)
Gravity (DL+LL)	130	-94	0
Wind (WL)	± 2	± 5	± 3.1
Load Combination			
$1.2 \mathrm{DL}+1.6 \mathrm{LL}$	160	-117	0
$1.2 \mathrm{DL}+\mathrm{LL} \pm 1.6 \mathrm{WL}$	178	112	5

Table (3.34): Column Axial Forces and Bending Design Calculations at 40 ${ }^{\text {th }}$ Story Level

Reference	Calculation	Out Put
	1.Design for Axial Force and Bending Since the design strength not investigated requirement of ACI for using interaction chart, so design using basic equations, consider this,	

ACI10.9.1	with 13-No. 25 bars $\left(\rho_{\mathrm{g}}=1 \%\right)$ is adequate for column supporting the first floor level. The provided reinforcement ratio is within the allowable rang of 1% and 8% 2.Design for Shear	
ACI21.12.3	Columns in intermediate moment frames must satisfy the shear requirements. The first of the two options in that section is utilized here to determine the design shear strength: The sum of the shear associated with development of nominal moment strengths of the member at each restrained end of the clear span and the shear calculated for the factored gravity loads. Because the column is at roof, and the moment at any column end cannot exceed the average of the nominal moment strengths of the beams framing into that end, shear demand from the lateral forces is calculated from the nominal flexural strengths of the beams. $V_{u}=(260+260) / 1.6$ The shear capacity of the column w for members subjected to axial compression:	$\begin{aligned} & 325 \mathrm{kN}> \\ & 5 \mathrm{kN} \end{aligned}$
ACI318-05	$\mathrm{V}_{\mathrm{c}}=0.17\left(1+\mathrm{N}_{\mathrm{u}} / 14 \mathrm{~A}_{\mathrm{g}}\right) \sqrt{\mathrm{f}_{\mathrm{c}}} \mathrm{b}_{\mathrm{w}} \mathrm{d}$	
Eq. (11.4)	$0.17\left(1+\left(178000 / 14 \times 800^{2}\right)\right) \sqrt{ } 35 \times 800 \times 730 / 1000$ Since $\mathrm{V}_{\mathrm{u}}>\emptyset \mathrm{V}_{\mathrm{c}} / 2=0.75 \times 599 / 2$ minimum transverse reinforcement would be required.	$\begin{aligned} & 599 \mathrm{kN} \\ & 224.6 \mathrm{kN} \end{aligned}$
ACI11.5.6.1	$\mathrm{A}_{\mathrm{v}, \min }=.062 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{b}_{\mathrm{w}} \mathrm{~S} / \mathrm{f}_{\mathrm{yt}}}$	

ACI 11.5.5.1	With No. 10 hoops with one cross-site, $\mathrm{A}_{\mathrm{v}}=$	
	$\mathrm{S}=213 \times 250 /(.062 \times 800 \sqrt{35})$	181.5 mm
	$<\mathrm{d} / 2$	365 mm
	Thus, $\mathrm{S}_{\text {required }}=181.5 \mathrm{~mm}$	
ACI11.5.5.2	For No 12 rectangular hoops, the vertical spacing s_{0} must not exceed the smallest of the flowing:	
	$\begin{aligned} & -8(\text { smallest longitudinal bar diameter })= \\ & 8 \times 24.5 \end{aligned}$	196 mm
	$-24($ hoop bar diameter $)=24 \times 9.5$	228 mm
ACI21.12.5.3	Use No 12 hoops and crossties @ 200mm with the first hoop located at $90 \mathrm{~mm}\left(<\mathrm{S}_{0} / 2=196 / 2=98 \mathrm{~mm}\right.$; from the joint face below forty floor level.	

Table (3.35): Design Axial Forces, Bending Moments and Shear Forces at Base of Shear Wall on Line3

Load Cases	Axial (kN)	Bending (kNm)	Shear (kN)
Dead	8810	0	0
Live	1296	0	0
Wind	0	58310	858
Load Combination			
$1.2 \mathrm{DL}+1.6 \mathrm{LL}$	11417	0	0
$1.2 \mathrm{DL}+\mathrm{LL} \pm 1.6 \mathrm{WL}$	11868	93296	1373

3.5.4 Design of Shear walls:

Walls should be designed to resist all loads to which they are subjected, including eccentric axial loads and lateral forces.

Shear wall design calculations shown in table (3.36).

Table (3.36): Wall Shear Design Calculations

