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Chapter 1 
Equivalence Relations and Ellipsoidal Tight Frames 

We find the closest and respectively the nearest tight frame to a given frame .Our 
main tool in the infinite dimensional case is a result we have proven which concerns the 
decomposition of a positive invertible operator into a strongly converging sum of (not 
necessarily mutually orthogonal) self-adjoint projections. This decomposition result implies 
the existence of tight frames in the ellipsoidal surface determined by the positive operator. 
In the real or complex  finite dimensional case, this provides an alternate (but not 
algorithmic) proof that every such surface contains tight frames with every prescribed 
length at least as large as dim ℋ. A corollary in both finite and infinite dimensions is that 
every positive invertible operator is the frame operator for a spherical frame. 
Section(1.1):  Distances Between Hilbert Frames 

Suppose 𝐻𝐻 is an infinite dimensional separable Hilbert space. A theorem due to 
Paley-Wiener [198] states the following: let {𝑒𝑒𝑖𝑖 }𝑖𝑖∈𝑁𝑁be an orthonormal basis of 𝐻𝐻 and let 
{𝑓𝑓𝑖𝑖 }𝑖𝑖∈𝑁𝑁 be a family of vectors in 𝐻𝐻. If there exists a constant  𝜆𝜆 ∈ [0, 1) such that  
‖∑ 𝑐𝑐𝑖𝑖 (𝑒𝑒𝑖𝑖 − 𝑓𝑓𝑖𝑖 )𝑛𝑛

𝑖𝑖=1 ‖ ≤ 𝜆𝜆‖∑ 𝑐𝑐𝑖𝑖 𝑒𝑒𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ‖ = 𝜆𝜆(∑ |𝑐𝑐𝑖𝑖 |2𝑛𝑛

𝑖𝑖=1 )1/2                               (1) 
for all 𝑛𝑛, 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛 , then {𝑓𝑓𝑖𝑖 }𝑖𝑖∈𝑁𝑁is a Riesz basis in 𝐻𝐻 and a frame with bounds (1 −
𝜆𝜆)2, (1 + 𝜆𝜆)2. An extension of this theorem was given by Christensen in [193] to Hilbert 
frames and by Christensen and Heil in [194] to Banach frames. Duffin and Eachus ([75]) 
proposed a converse of the above result by proving that every Riesz basis, after a proper 
scaling, is close to an orthonormal basis in the sense of (1). We are going to extend this 
result to Hilbert frames and show some results about quadratic closeness and distance 
between two frames. 

Let I be a countable index set. A family of vectors ℱ = {𝑓𝑓𝑖𝑖 }𝑖𝑖∈𝐼𝐼   in H is called 
a(Hilbert) frame if there exist two real numbers 0 < 𝐴𝐴 ≤ 𝐵𝐵 < ∞ such that for any  𝑥𝑥 ∈
𝐻𝐻 we have: 
                           𝐴𝐴  ‖𝑥𝑥‖2 ≤ ∑ |〈𝑥𝑥, 𝑓𝑓𝑖𝑖 〉|2 ≤ 𝐵𝐵‖𝑥𝑥‖2.𝑖𝑖∈𝐼𝐼                                          (2)  
If 𝐴𝐴 = 𝐵𝐵 we call the frame tight. The largest constant A and respectively the smallest 
constant B that satisfy  (2)  are called the (optimal) frame bounds. 

To a frame ℱ we associate several objects. Consider the operator 
𝑇𝑇 ∶  𝐻𝐻 → 𝑙𝑙2(𝐼𝐼) , 𝑇𝑇(𝑥𝑥) = (〈𝑥𝑥, 𝑓𝑓𝑖𝑖 〉)𝑖𝑖∈𝐼𝐼, 

called the analysis operator associated to ℱ (see [199] for terminology). From (2) we get 
that it is a bounded operator with norm  ‖𝑇𝑇‖ = √𝐵𝐵 and its range is closed. The adjoint of 
𝑇𝑇 is given by 

𝑇𝑇∗ ∶  𝑙𝑙2(𝐼𝐼) → 𝐻𝐻, 𝑇𝑇∗𝑐𝑐 = � 𝑐𝑐𝑖𝑖 𝑓𝑓𝑖𝑖
𝑖𝑖∈𝐼𝐼

 , 

and is called the synthesis operator. With these two operators we construct the frame 
operator by     𝑆𝑆 ∶ 𝐻𝐻 → 𝐻𝐻, 𝑆𝑆 = 𝑇𝑇∗𝑇𝑇 𝑜𝑜𝑜𝑜 𝑆𝑆(𝑥𝑥) = ∑ 〈𝑥𝑥, 𝑓𝑓𝑖𝑖 〉𝑖𝑖∈𝐼𝐼 𝑓𝑓𝑖𝑖 . The condition (2) can then be 
read as 𝐴𝐴. 1 ≤ 𝑆𝑆 ≤  𝐵𝐵. 1 and therefore the frame bounds are 𝐵𝐵 = ‖ 𝑆𝑆 ‖, 𝐴𝐴 =  ‖𝑆𝑆−1‖−1d . 

To every frame ℱ one can associate two special frames: one is called the (stan-dard) 
dual frame and the other (less frequently used) is called the associated tight frame  [191]. 
The (standard) dual frame is defined by 
                                       ℱ� = �𝑓𝑓𝑖𝑖 �

𝑖𝑖∈𝐼𝐼 , 𝑓𝑓𝑖𝑖 = 𝑆𝑆−1 𝑓𝑓𝑖𝑖                                              ( 3) 
and has a lot of useful properties. A few of them are the following: 
(a) ℱ�  is a frame with frame bounds 1

𝐵𝐵
, 1

𝐴𝐴
   .  

 (b) If 𝑇𝑇� is the analysis operator associated to ℱ� , then 𝑇𝑇�  =  𝑇𝑇𝑆𝑆−1 and the following 
resolutions of identity (or reconstruction formulae) hold: 

1 = 𝑇𝑇� ∗𝑇𝑇 = 𝑇𝑇∗𝑇𝑇�  𝑜𝑜𝑜𝑜 𝑥𝑥 = ∑ 〈𝑥𝑥, 𝑓𝑓𝑖𝑖 〉 𝑓𝑓𝑖𝑖 = ∑ 〈𝑥𝑥, 𝑓𝑓𝑖𝑖 〉 𝑓𝑓𝑖𝑖𝑖𝑖∈𝐼𝐼𝑖𝑖∈𝐼𝐼 . 
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 (c) In 𝑙𝑙2(𝐼𝐼), 𝑇𝑇 and 𝑇𝑇�  have the same range (𝐸𝐸 =  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇 =  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇�) and 𝑃𝑃 =  𝑇𝑇𝑇𝑇� ∗ = 𝑇𝑇�𝑇𝑇∗ is 
the orthogonal projector onto 𝐸𝐸. 
(d) For any  𝑐𝑐 ∈ 𝑙𝑙2(𝐼𝐼) we can consider the set of sequences 𝑑𝑑 ∈ 𝑙𝑙2(𝐼𝐼) with the same image 
as 𝑐𝑐, 𝑖𝑖. 𝑒𝑒. , 𝑇𝑇∗𝑐𝑐 = 𝑇𝑇∗𝑑𝑑;  the minimum 𝑙𝑙2-norm in this set is achieved by the sequence 
𝑐𝑐∗ =  𝑃𝑃𝑐𝑐 ∈  𝐸𝐸. The associated tight frame is defined by 

ℱ# =  �𝑓𝑓𝑖𝑖
#�

𝑖𝑖∈𝐼𝐼 , 𝑓𝑓𝑖𝑖
# = 𝑆𝑆−1/2𝑓𝑓𝑖𝑖 .                                                                 ( 4) 

A few properties of the associated tight frame that can be simply checked are the following: 
(i) The associated tight frame is a tight frame with frame bound 1. 
(ii) If 𝑇𝑇# is the analysis operator associated to ℱ#, then 𝑇𝑇#  =  𝑇𝑇𝑆𝑆−1/2; its range coincides 
with 𝐸𝐸 =  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇 , and the orthogonal projector onto 𝐸𝐸, 𝑃𝑃, is also equal to 𝑇𝑇#(𝑇𝑇#)∗. We shall 
come back to this associated tight frame in this section . 

So far, we have just listed properties of one frame and some derived frames. 
We shall discuss mainly the relations between two frames. Let ℱ = {𝑓𝑓𝑖𝑖 }𝑖𝑖∈𝐼𝐼   and 

 𝒢𝒢 = {𝑔𝑔𝑖𝑖 }𝑖𝑖∈𝐼𝐼  be two frames in 𝐻𝐻. We define the following notions: 
(a) If 𝑄𝑄 is an invertible bounded operator 𝑄𝑄 ∶  𝐻𝐻 →  𝐻𝐻 and if 𝑔𝑔𝑖𝑖  =  𝑄𝑄𝑓𝑓𝑖𝑖 , then we say that ℱ 
and 𝒢𝒢 are 𝑄𝑄-equivalent.  
(b)We say they are unitarily equivalent if they are 𝑄𝑄-equivalent for a unitary operator 𝑄𝑄. 
(c)If 𝑄𝑄 is a bounded operator 𝑄𝑄 ∶  𝐻𝐻 →  𝐻𝐻 (not necessarily invertible) and 𝑔𝑔𝑖𝑖  =  𝑄𝑄𝑓𝑓𝑖𝑖 , then 
we say ℱ is 𝑄𝑄-partial equivalent with 𝒢𝒢. 
(d)We say ℱ is   partial isometric equivalent with 𝒢𝒢 if there exists a partial isometry 
𝐽𝐽 ∶  𝐻𝐻 → 𝐻𝐻 such that 𝑔𝑔𝑖𝑖 = 𝐽𝐽𝑓𝑓𝑖𝑖  (then 𝐽𝐽 should satisfy 𝐽𝐽𝐽𝐽∗  =  1 since 𝑔𝑔𝑖𝑖 ∈ 𝑅𝑅𝑅𝑅𝑛𝑛 𝐽𝐽 and 𝒢𝒢 is a 
complete set in 𝐻𝐻). 

The last two relations (𝑄𝑄-partial equivalent and partial isometric equivalent) are not 
equivalency relations, because they are not symmetric. 

We say that a frame  𝒢𝒢 = {𝑔𝑔𝑖𝑖 }𝑖𝑖∈𝐼𝐼 is (quadratically) close to a frame ℱ = {𝑓𝑓𝑖𝑖 }𝑖𝑖∈𝐼𝐼 if 
there exists a positive number 𝜆𝜆 ≥ 0 such that 
                  ‖∑ 𝑐𝑐𝑖𝑖 (𝑔𝑔𝑖𝑖 − 𝑓𝑓𝑖𝑖 )𝑖𝑖∈𝐼𝐼 ‖ ≤ 𝜆𝜆‖∑ 𝑐𝑐𝑖𝑖𝑖𝑖∈𝐼𝐼 𝑓𝑓𝑖𝑖 ‖                                      ( 5)  
for any 𝑐𝑐 =  (𝑐𝑐𝑖𝑖 )𝑖𝑖∈𝐼𝐼 ∈  𝑙𝑙2(𝐼𝐼) (see [201]). The infimum of such  𝜆𝜆′𝑠𝑠 for which (5) holds for 
any 𝑐𝑐 ∈ 𝑙𝑙2(𝐼𝐼) will be called the closeness bound of the frame 𝒢𝒢 to the frame ℱ and denoted 
by 𝑐𝑐(𝒢𝒢, ℱ). 

The closeness relation is not an equivalency relation (it is transitive, but not reflexive, 
in general). However, if 𝒢𝒢 is quadratically close to ℱ with a closeness bound less than 1, 
then ℱ is also quadratically close to 𝒢𝒢 but the closeness bound is different, in general. 
Indeed, from (5) it follows that �∑ 𝑐𝑐𝑖𝑖  �𝑔𝑔𝑖𝑖−𝑓𝑓𝑖𝑖 �𝑖𝑖∈𝐼𝐼 � ≤ 𝜆𝜆

1−𝜆𝜆
‖∑ 𝑐𝑐𝑖𝑖𝑖𝑖∈𝐼𝐼 𝑔𝑔𝑖𝑖 ‖. 

The closeness bound can be related to a relative operator bound used in perturbation 
theory (see [197]). More specifically, if 𝑇𝑇𝑔𝑔  , 𝑇𝑇𝑓𝑓  denote the analysis operators associated, 
respectively, to the frames 𝒢𝒢  and ℱ, then 𝑐𝑐(𝒢𝒢  , ℱ) is the (𝑇𝑇𝑓𝑓 )∗ -bound of (𝑇𝑇𝑔𝑔 )∗  −  (𝑇𝑇𝑓𝑓 )∗ 
(in the terminology of Kato). 
The next step is to correct the nonreflexivity of the closeness relation. We say that two 
frames ℱ = {𝑓𝑓𝑖𝑖 }𝑖𝑖∈𝐼𝐼  and 𝒢𝒢  = {𝑔𝑔𝑖𝑖 }𝑖𝑖∈𝐼𝐼  are near if ℱ is close to 𝒢𝒢   and 𝒢𝒢    is close to ℱ. It is 
fairly easy to check that this is an equivalency relation. In this case we define the 
predistance between ℱ and 𝒢𝒢   , denoted 𝑑𝑑0(ℱ, 𝒢𝒢 ) as the maximum between the two 
closeness bounds: 
                               𝑑𝑑0(ℱ, 𝒢𝒢 ) =  𝑚𝑚𝑅𝑅𝑥𝑥�𝑐𝑐(ℱ, 𝒢𝒢), 𝑐𝑐(𝒢𝒢 , ℱ)�.                              ( 6)  
It is easy to prove that 𝑑𝑑0 is positive and symmetric, but does not satisfy the triangle 
inequality. This inconvenience can be removed if we define the (quadratic) distance 
between ℱ and 𝒢𝒢    by 
                                    𝑑𝑑(ℱ, 𝒢𝒢 ) = 𝑙𝑙𝑜𝑜𝑔𝑔(𝑑𝑑0(ℱ, 𝒢𝒢) + 1).                                      (7) 
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Then, as we shall see later (Theorem(1.1.7), this is a veritable distance (a metric) on 
the set of frames which are near to one another. 

Since the nearness relation is an equivalency relation, we can partition the set 
of all frames on 𝐻𝐻, denoted ℱ(𝐻𝐻), into disjoint equivalent classes, indexed by an index set 
A: 

ℱ(𝐻𝐻)  = ⋃ 𝜀𝜀𝛼𝛼𝛼𝛼∈𝐴𝐴                                     ( 8) 
with the following properties: 
                            𝜀𝜀𝛼𝛼 ∩ 𝜀𝜀𝛽𝛽 = 𝜙𝜙,  for 𝛼𝛼 ≠ 𝛽𝛽 

∀ℱ, 𝒢𝒢 ∈ 𝜀𝜀𝛼𝛼   , 𝑑𝑑(ℱ, 𝒢𝒢) < ∞ 𝑅𝑅𝑛𝑛𝑑𝑑 ∀ℱ ∈ 𝜀𝜀𝛼𝛼 , 𝒢𝒢 ∈ 𝜀𝜀𝛽𝛽  𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝛼𝛼 ≠ 𝛽𝛽 , 𝑑𝑑(ℱ, 𝒢𝒢)  = ∞. 
Let 𝜋𝜋 denote the index projection  𝜋𝜋: ℱ(𝐻𝐻) → 𝐴𝐴,  with ℱ → 𝜋𝜋(ℱ) = 𝛼𝛼  if ℱ ∈ 𝜀𝜀𝛼𝛼 . 

We shall prove that the partition (8) corresponds to the nondisjoint partition of 𝑙𝑙2(I) into 
closed infinite dimensional subspaces. Moreover, the two equivalency relations introduced 
before are identical (i.e., two frames are near if and only if they are 𝑄𝑄-equivalent) as we 
shall prove later. 

For a frame 𝒢𝒢 we denote by 𝑇𝑇1  the set of tight frames which are quadratically close 
to 𝒢𝒢 and by 𝑇𝑇2  the set of tight frames such that 𝒢𝒢 is close to them: 

𝒯𝒯1 = {ℱ = {𝑓𝑓𝑖𝑖 }𝑖𝑖∈𝐼𝐼|ℱ  �𝑖𝑖𝑠𝑠  𝑅𝑅 tight frame and  c(𝒢𝒢, ℱ) < +∞},                      ( 9) 
𝒯𝒯2 = {ℱ = {𝑓𝑓𝑖𝑖 }𝑖𝑖∈𝐼𝐼|ℱ  �𝑖𝑖𝑠𝑠 𝑅𝑅 tight frame and  c(ℱ, 𝒢𝒢) < +∞}.                       (10) 
Let 𝑑𝑑1 ∶ 𝑇𝑇 1 →  𝑅𝑅+, 𝑑𝑑2 ∶  𝑇𝑇 2  → 𝑅𝑅+denote the map from each ℱ to the associated 

closeness bound, i.e., 𝑑𝑑1(ℱ) =  𝑐𝑐(𝒢𝒢, ℱ) and 𝑑𝑑2(ℱ)  =  𝑐𝑐(ℱ, 𝒢𝒢). If 𝒢𝒢 is a tight frame itself, 
then 𝒢𝒢 ∈ 𝒯𝒯1 ∩ 𝒯𝒯2 and min 𝑑𝑑1  =  𝑚𝑚𝑖𝑖𝑛𝑛𝑑𝑑2  =  0. 

Consider now the intersection between these two sets 
Τ = 𝒯𝒯1 ∩ 𝒯𝒯2 = {ℱ = {𝑓𝑓𝑖𝑖 }𝑖𝑖∈𝐼𝐼|ℱ  �𝑖𝑖𝑠𝑠  𝑅𝑅 tight frame and  d(ℱ, 𝒢𝒢) < +∞} ⊂ 𝜀𝜀𝜋𝜋(𝒢𝒢).    (11)               

In this section  we will be looking for the minima of the functions 𝑑𝑑1, 𝑑𝑑2 and 𝑑𝑑|Τ . 
And we are mainly concerned with the relations introduced previously. We shall prove that 
𝑄𝑄-equivalence is the same as nearness (in other words, two frames are 𝑄𝑄-equivalent if and 
only if they are near). The following lemmas are fundamental for all constructions and 
results in this section. 
Lemma (1.1.1)[62]: Consider ℱ1 = {𝑓𝑓𝑖𝑖

1}𝑖𝑖∈𝐼𝐼 and ℱ2 = {𝑓𝑓𝑖𝑖
2}𝑖𝑖∈𝐼𝐼  two tight frames in 𝐻𝐻 with 

frame bounds 1. Denote by 𝑇𝑇1 and 𝑇𝑇2 respectively their analysis operators. Then: 
a)  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2 ⊂    𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇 1if and only if ℱ1 and ℱ2 are partial isometric equivalent;moreover,if 
𝐽𝐽 is the corresponding partial isometry,then 𝑘𝑘𝑒𝑒𝑜𝑜𝐽𝐽 ≃ 𝑅𝑅𝑅𝑅𝑛𝑛𝑇𝑇1  /𝑅𝑅𝑅𝑅𝑛𝑛𝑇𝑇2; more specifically 
𝐾𝐾𝑒𝑒𝑜𝑜 𝐽𝐽 = 𝑇𝑇1

∗(𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1  ∩ (𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2)⊥); 
b)   𝑅𝑅𝑅𝑅𝑛𝑛𝑇𝑇1 =  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2 if and only if ℱ1and ℱ2 are unitarily equivalent. 
Proof. 1. Suppose ℱ1 and ℱ2 are partial isometric equivalent. Then 𝑓𝑓𝑖𝑖

2 = 𝐽𝐽𝑓𝑓𝑖𝑖
2 

and 𝑇𝑇2 =  𝑇𝑇1𝐽𝐽∗ for some partial isometry 𝐽𝐽. Obviously, 𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2  ⊂  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1. Now, recall that 
𝑇𝑇1 and 𝑇𝑇2 are isometries from 𝐻𝐻 onto their ranges (since ℱ1 and ℱ2 are tight frames with 
bound 1). Therefore they preserve the scalar product and linear independence. Thus, 

𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1 = 𝑇𝑇1(𝑅𝑅𝑅𝑅𝑛𝑛 𝐽𝐽∗ ⊕  𝐾𝐾𝑒𝑒𝑜𝑜 𝐽𝐽)  = 𝑇𝑇1𝐽𝐽∗(𝐻𝐻) ⊕ 𝑇𝑇1(𝐾𝐾𝑒𝑒𝑜𝑜 𝐽𝐽)  =  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2 ⊕ 𝑇𝑇1(𝐾𝐾𝑒𝑒𝑜𝑜 𝐽𝐽) 
and 𝑇𝑇1(𝐾𝐾𝑒𝑒𝑜𝑜 𝐽𝐽) is the orthogonal complement of Ran 𝑇𝑇2into Ran 𝑇𝑇1. On the other hand, 
𝑇𝑇1

∗|𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1   is the inverse of 𝑇𝑇1 ∶  𝐻𝐻 →  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1; thus, 
𝐾𝐾𝑒𝑒𝑜𝑜 𝐽𝐽 =  𝑇𝑇1

∗(𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1 ∩  (𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2)⊥) 
fixing canonically the isometric isomorphism 𝐾𝐾𝑒𝑒𝑜𝑜 𝐽𝐽 ⋍ 𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1/𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2. Conversely, 
suppose 𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2 ⊂ 𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1. Then, the two projectors are 𝑃𝑃1 =  𝑇𝑇1𝑇𝑇1

∗  onto 𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1 and 
𝑃𝑃2 = 𝑇𝑇2𝑇𝑇2

∗  onto Ran 𝑇𝑇2 and we have 𝑃𝑃1𝑇𝑇2 = 𝑇𝑇2 .Now, consider 𝐽𝐽: 𝐻𝐻 → 𝐻𝐻, 𝐽𝐽 = 𝑇𝑇2
∗𝑇𝑇1 which 

acts in the following way: 
𝐽𝐽(𝑥𝑥) = �〈𝑥𝑥, 𝑓𝑓𝑖𝑖

1〉
𝑖𝑖∈𝐼𝐼

𝑓𝑓𝑖𝑖
2. 

We have 
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𝐽𝐽𝐽𝐽∗  =  𝑇𝑇2
∗𝑇𝑇1 𝑇𝑇1

∗𝑇𝑇2  = 𝑇𝑇2
∗𝑃𝑃1 𝑇𝑇2  = 𝑇𝑇2

∗ 𝑇𝑇2 = 1. 
We want to prove now that 𝑓𝑓𝑗𝑗

2 =  𝐽𝐽𝑓𝑓𝑗𝑗
1 for all 𝑗𝑗. We have, for fixed 𝑗𝑗, 

𝐽𝐽𝑓𝑓𝑗𝑗
1 − 𝑓𝑓𝑗𝑗

2 = ��〈𝑓𝑓𝑗𝑗
1, 𝑓𝑓𝑖𝑖

1〉 − 〈𝑓𝑓𝑗𝑗
2, 𝑓𝑓𝑖𝑖

2〉�𝑓𝑓𝑖𝑖
2

𝑖𝑖∈𝐼𝐼

= 𝑇𝑇2
∗𝑐𝑐 

Where  𝑐𝑐 = {𝑐𝑐𝑖𝑖 }𝑖𝑖∈𝐼𝐼 , 𝑐𝑐𝑖𝑖 = 〈𝑓𝑓𝑗𝑗
1, 𝑓𝑓𝑖𝑖

1〉 − 〈𝑓𝑓𝑗𝑗
2, 𝑓𝑓𝑖𝑖

2〉 . On the other hand, 

0 = 𝑓𝑓𝑗𝑗
1 − � 〈𝑓𝑓𝑗𝑗

1, 𝑓𝑓𝑖𝑖
1〉𝑓𝑓𝑖𝑖

1 = � �𝛿𝛿𝑖𝑖𝑗𝑗 − 〈𝑓𝑓𝑗𝑗
1, 𝑓𝑓𝑖𝑖

1〉�
𝑖𝑖∈𝐼𝐼

𝑓𝑓𝑖𝑖
1 = 𝑇𝑇1

∗𝑅𝑅𝑗𝑗

𝑖𝑖∈𝐼𝐼
 

where 𝑅𝑅𝑗𝑗 =  �𝑅𝑅𝑖𝑖
𝑗𝑗 �

𝑖𝑖∈𝐼𝐼
 , 𝑅𝑅𝑖𝑖

𝑗𝑗 = 𝛿𝛿𝑖𝑖𝑗𝑗 − 〈𝑓𝑓𝑗𝑗
1, 𝑓𝑓𝑖𝑖

1〉  and 𝛿𝛿𝑖𝑖𝑗𝑗 is the Kronecker symbol. Similarly, 
0 = 𝑇𝑇2

∗𝑏𝑏𝑗𝑗   with 𝑏𝑏𝑗𝑗  = � 𝑏𝑏𝑖𝑖
𝑗𝑗 �

𝑖𝑖∈𝐼𝐼
,  𝑏𝑏𝑖𝑖

𝑗𝑗 = 𝛿𝛿𝑖𝑖𝑗𝑗 − 〈𝑓𝑓𝑗𝑗
2, 𝑓𝑓𝑖𝑖

2〉. Thus, 𝑅𝑅𝑗𝑗 ∈  𝐾𝐾𝑒𝑒𝑜𝑜 𝑇𝑇1
∗ and 𝑏𝑏𝑗𝑗 ∈  𝐾𝐾𝑒𝑒𝑜𝑜𝑇𝑇2

∗. 
But 𝐾𝐾𝑒𝑒𝑜𝑜 𝑇𝑇1

∗ =  (𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1)⊥ ⊂   (𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2)⊥ =  𝐾𝐾𝑒𝑒𝑜𝑜 𝑇𝑇2
∗.Therefore 𝑅𝑅𝑗𝑗 ∈ 𝐾𝐾𝑒𝑒𝑜𝑜𝑇𝑇2

∗  and then 
𝑐𝑐𝑗𝑗  =  𝑅𝑅𝑗𝑗  −  𝑏𝑏𝑗𝑗  ∈  𝐾𝐾𝑒𝑒𝑜𝑜𝑇𝑇2

∗  which means 𝑇𝑇2
∗ 𝑐𝑐𝑗𝑗 =  0 or  𝑓𝑓𝑗𝑗

2 = 𝐽𝐽𝑓𝑓𝑗𝑗
1 . Moreover, 𝑇𝑇2  =  𝑇𝑇1𝐽𝐽∗ 

and, as we have proved before, 𝐾𝐾𝑒𝑒𝑜𝑜 𝐽𝐽 = 𝑇𝑇1
∗ (𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1 ∩ (𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2)⊥).  

2.  The conclusion comes from point 1: the partial isometry will have a zero kernel 
(𝐾𝐾𝑒𝑒𝑜𝑜 𝐽𝐽 = { 0}) and therefore it is a unitary operator (recall that the range of 𝐽𝐽 should be 𝐻𝐻). 
This ends the proof of the lemma. 
Lemma (1.1.2)[62]:  Consider ℱ1 =  {𝑓𝑓𝑖𝑖

1}𝑖𝑖∈𝐼𝐼  and  ℱ2 =  {𝑓𝑓𝑖𝑖
2}𝑖𝑖∈𝐼𝐼   two frames in 𝐻𝐻. Let us 

denote by 𝑇𝑇1 and 𝑇𝑇2respectively, their analysis operators. Then: 
a)  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2 ⊂ 𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1 if and only if ℱ1 and ℱ2are 𝑄𝑄-partial equivalent for some bounded 
operator 𝑄𝑄; furthermore, 𝐾𝐾𝑒𝑒𝑜𝑜𝑄𝑄 = 𝑇𝑇1

∗ (𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1 ∩ (𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2)⊥). 
b) 𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1  =  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2 if and only if ℱ1 and ℱ2 are 𝑄𝑄-equivalent, for some invertible 
operator 𝑄𝑄. 
Proof.  Let us denote by 𝑆𝑆1 = 𝑇𝑇1

∗ 𝑇𝑇1, 𝑆𝑆2  =  𝑇𝑇2
∗𝑇𝑇2 the frame operators. 

a. Suppose 𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2  ⊂  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1. We have that ℱ1 is 𝑄𝑄-equivalent with ℱ1
# 

    �(𝑓𝑓𝑖𝑖
1)# = 𝑆𝑆1

−1
2� 𝑓𝑓𝑖𝑖

1� ; ℱ1
#  is 𝐽𝐽-partial equivalent with ℱ2

#  from Lemma (1.1.1), where 

𝐽𝐽 = (𝑇𝑇2
#)∗𝑇𝑇1

#  is a partial isometry, and ℱ2
#  is 𝑄𝑄-equivalent with ℱ2 with 𝑄𝑄 = 𝑆𝑆2

1/2 (𝑓𝑓𝑖𝑖
2  =

𝑆𝑆2

1
2(𝑓𝑓𝑖𝑖

2)#). By composing , we get ℱ1is 𝑄𝑄-partial equivalent with ℱ2 𝑣𝑣𝑖𝑖𝑅𝑅 𝑄𝑄 = 𝑆𝑆2
1/2𝐽𝐽𝑆𝑆1

−1/2. 
Furthermore, since 𝑆𝑆1 and 𝑆𝑆2 are invertible, 𝐾𝐾𝑒𝑒𝑜𝑜𝑄𝑄 =  𝑆𝑆1

1/2 𝐾𝐾𝑒𝑒𝑜𝑜 𝐽𝐽 =  𝑇𝑇1
∗ (𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1  ∩

 (𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2)⊥). 
Conversely, if ℱ1 is 𝑄𝑄-partial equivalent with ℱ2 and 𝑄𝑄 is the bounded operator 

relating ℱ1 to ℱ2, then 𝑇𝑇2 = 𝑇𝑇1𝑄𝑄∗ and obviously 𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2  ⊂  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1. On the other hand, 
since 𝑇𝑇1

∗ 𝑇𝑇1 =  𝑆𝑆1 is invertible, 𝑄𝑄 =  𝑇𝑇2
∗ 𝑇𝑇1𝑆𝑆1

−1 and then ℱ1 
#  is 𝐽𝐽-partial equivalent with ℱ2

#  
with 𝐽𝐽 =  𝑆𝑆2

−1/2 𝑄𝑄𝑆𝑆1
1/2 . We have 
𝐽𝐽𝐽𝐽∗ =  𝑆𝑆2

−1/2𝑄𝑄𝑆𝑆1
1/2𝑆𝑆1

1/2𝑄𝑄∗𝑆𝑆2
−1/2 = 𝑆𝑆2

−1/2𝑇𝑇2
∗𝑃𝑃1𝑇𝑇2𝑆𝑆2

−1/2 
where 𝑃𝑃1 = 𝑇𝑇1𝑆𝑆1

−1 𝑇𝑇1
∗  is the orthogonal projection onto Ran 𝑇𝑇1. But 𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2  ⊂  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1; 

hence, 𝑃𝑃1𝑇𝑇2  = 𝑇𝑇2. Thus, 𝐽𝐽𝐽𝐽∗ = 𝑆𝑆2
−1/2𝑇𝑇2

∗𝑇𝑇2𝑆𝑆2
−1/2 = 1,proving that 𝐽𝐽 is a partial 

isometry.Now we apply the conclusion of Lemma (1.1.1) and obtain that 𝐾𝐾𝑒𝑒𝑜𝑜 𝐽𝐽 =
 (𝑇𝑇1

#)∗(𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1 ∩ (𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2)⊥). Substituting this into 𝐾𝐾𝑒𝑒𝑜𝑜𝑄𝑄 = 𝑆𝑆1
1/2 𝐾𝐾𝑒𝑒𝑜𝑜 𝐽𝐽 we obtain the 

result. 
b. The statement is obtained from (1) by observing that 𝐾𝐾𝑒𝑒𝑜𝑜𝑄𝑄 =  {0}; since we also know 
that 𝑅𝑅𝑅𝑅𝑛𝑛𝑄𝑄 =  𝐻𝐻, 𝑄𝑄 is therefore invertible with bounded inverse. 
Lemma (1.1.3)[62]: Consider ℱ1 =  {𝑓𝑓𝑖𝑖

1}𝑖𝑖∈𝐼𝐼  and ℱ2 =  {𝑓𝑓𝑖𝑖
2}𝑖𝑖∈𝐼𝐼  two frames in 𝐻𝐻. Let us 

denote by 𝑇𝑇1and 𝑇𝑇2, respectively, their analysis operators. Then, ℱ1 is close to ℱ2 (i.e., 
c(ℱ1, ℱ2) < ∞) if and only if ℱ2 is Q-partial equivalent with ℱ1 for some bounded operator 
𝑄𝑄 and therefore 𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2 ⊂  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1. Moreover, c(ℱ1, ℱ2) = ‖𝑄𝑄 − 1‖. 
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Proof.  ⟹ Suppose ℱ1 is close to ℱ2.Then ‖∑ 𝑐𝑐𝑖𝑖 (𝑓𝑓𝑖𝑖
1 − 𝑓𝑓𝑖𝑖

2)𝑖𝑖∈𝐼𝐼 ‖ ≤ 𝜆𝜆‖∑ 𝑐𝑐𝑖𝑖 𝑓𝑓𝑖𝑖
2

𝑖𝑖∈𝐼𝐼 ‖   for 
𝜆𝜆 =  𝑐𝑐( ℱ1, ℱ2). 𝐼𝐼𝑓𝑓 𝑐𝑐 = {𝑐𝑐𝑖𝑖 }𝑖𝑖∈𝐼𝐼 ∈ 𝐾𝐾𝑒𝑒𝑜𝑜 𝑇𝑇2

∗,  
then necessarily 𝑐𝑐 ∈  𝐾𝐾𝑒𝑒𝑜𝑜𝑇𝑇1

∗ Therefore, 𝐾𝐾𝑒𝑒𝑜𝑜 𝑇𝑇2
∗  ⊂ 𝐾𝐾𝑒𝑒𝑜𝑜 𝑇𝑇1

∗ 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇1 =  (𝐾𝐾𝑒𝑒𝑜𝑜 𝑇𝑇1
∗)⊥ ⊂

 (𝐾𝐾𝑒𝑒𝑜𝑜𝑇𝑇2
∗)⊥  =  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇2. Now, applying Lemma (1.1.2) we get that ℱ2 is 𝑄𝑄-partial equivalent 

with ℱ1. Then, 𝑓𝑓𝑖𝑖
1 = 𝑄𝑄𝑓𝑓𝑖𝑖

2 and if we denote 𝑣𝑣 = ∑ 𝑐𝑐𝑖𝑖 𝑓𝑓𝑖𝑖
2

𝑖𝑖∈𝐼𝐼  we have 
 ‖(𝑄𝑄 −  1)𝑣𝑣 ‖ ≤ 𝜆𝜆‖𝑣𝑣‖ . 

The smallest  𝜆𝜆 ≥ 0 that satisfies the above inequality for any 𝑣𝑣 ∈ 𝐻𝐻 is  ‖𝑄𝑄 −  1‖ . 
Therefore 𝑐𝑐( ℱ1, ℱ2) =  ‖𝑄𝑄 − 1‖. 
⟸Suppose ℱ2 is 𝑄𝑄-partial equivalent with ℱ1. Then, it is easy to check that 𝑐𝑐( ℱ1, ℱ2). =
‖𝑄𝑄 − 1‖ and then ℱ1 is close to ℱ2. As a consequence of this lemma, we obtain the 
following result: 
Theorem (1.1.4)[62]: Let ℱ1 and ℱ2 be two frames. Then, they are near if and only if they 
are 𝑄𝑄-equivalent for some invertible operator 𝑄𝑄. Moreover,  

𝑑𝑑0( ℱ1, ℱ2) = 𝑚𝑚𝑅𝑅𝑥𝑥(‖𝑄𝑄 −  1‖, ‖1 −  𝑄𝑄−1‖ ). 
Applying this theorem to the set Τ defined in (11) we obtain the following corollary: 
Corollary (1.1.5)[62]: Consider a frame 𝒢𝒢 = {𝑔𝑔𝑖𝑖 }𝑖𝑖∈𝐼𝐼 in H and consider also the set Τ 
defined by (11). Then T is parametrized in the following way: 
𝑇𝑇 = {ℱ = {𝑓𝑓𝑖𝑖 }𝑖𝑖∈𝐼𝐼  �𝑓𝑓𝑖𝑖 = 𝛼𝛼𝛼𝛼𝑔𝑔𝑖𝑖

# � where 𝛼𝛼 >  0 and 𝛼𝛼 is unitary}. 
Proof. Indeed, let 𝛼𝛼 >  0  and U be unitary. Then, by computing its frame operator one can 
easily check that ℱ = {𝑓𝑓𝑖𝑖 }𝑖𝑖∈𝐼𝐼 , 𝑓𝑓𝑖𝑖 = 𝛼𝛼𝛼𝛼𝑔𝑔𝑖𝑖

#  is a tight frame with bound 𝛼𝛼2. Conversely, 
suppose ℱ = {𝑓𝑓𝑖𝑖 }𝑖𝑖∈𝐼𝐼 ∈ Τ  . Then, from Theorem (1.1.4) we obtain 𝑓𝑓𝑖𝑖 = 𝑄𝑄𝑔𝑔𝑖𝑖

# for some 
invertible 𝑄𝑄. We compute its frame operator: 
       𝑆𝑆ℱ = ∑ 〈. , 𝑓𝑓𝑖𝑖 〉𝑓𝑓𝑖𝑖𝑖𝑖∈𝐼𝐼 = 𝑄𝑄�∑ 〈. , 𝑔𝑔𝑖𝑖

#〉𝑔𝑔𝑖𝑖
#

𝑖𝑖∈𝐼𝐼 �𝑄𝑄∗ = 𝑄𝑄𝑄𝑄∗ 
Therefore, 𝑄𝑄𝑄𝑄∗ = 𝐴𝐴 . 1 which means that 1

√𝐴𝐴
𝑄𝑄  is unitary. Thus 𝑄𝑄 = √𝐴𝐴 𝛼𝛼 for some unitary 

𝛼𝛼.  
The following result makes a connection between the extension of the Paley and 

Wiener theorem given by Christensen in [193] and the relations introduced so far. 
Theorem (1.1.6)[62]: Let ℱ = {𝑓𝑓𝑖𝑖 }𝑖𝑖∈𝐼𝐼 be a frame in 𝐻𝐻 and 𝒢𝒢 = {𝑔𝑔𝑖𝑖 }𝑖𝑖∈𝐼𝐼 be a set of vectors in 
𝐻𝐻. Suppose there exists   𝜆𝜆 ∈ [0, 1) such that 

�� 𝑐𝑐𝑖𝑖 (𝑔𝑔𝑖𝑖 − 𝑓𝑓𝑖𝑖 )
𝑖𝑖∈𝐼𝐼

� ≤ 𝜆𝜆 �� 𝑐𝑐𝑖𝑖 𝑓𝑓𝑖𝑖
𝑖𝑖∈𝐼𝐼

� 

for any 𝑛𝑛 ∈  𝑁𝑁 and 𝑐𝑐1, 𝑐𝑐2, … in 𝐶𝐶. Then 𝒢𝒢 is a frame in 𝐻𝐻 and 
(a)  𝒢𝒢 is 𝑄𝑄-equivalent with ℱ; 
(b)    if 𝑇𝑇𝑓𝑓  and 𝑇𝑇𝑔𝑔   are the analysis operators associated respectively to ℱ and 𝒢𝒢, 
then 𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇𝑓𝑓 =  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇𝑔𝑔 ; 
(c)   c(𝒢𝒢, ℱ) ≤ 𝜆𝜆 <  1 and 𝑑𝑑0(𝒢𝒢, ℱ) < ∞. 
Proof. The conclusion that 𝒢𝒢 is a frame follows from a stability result proved by 
Christensen in [193]. As we have checked before, from 𝑐𝑐(𝒢𝒢, ℱ) < 1 we get 
𝑐𝑐(ℱ, 𝒢𝒢) ≤ 𝜆𝜆

1−𝜆𝜆
 < ∞. Therefore, ℱ and 𝒢𝒢 are near and we can apply Theorem (1.1.4) and 

complete the proof. Theorem (1.1.4) allows us to partition the set of all frames on 𝐻𝐻, 
denoted ℱ(𝐻𝐻), into equivalent classes, as follows:    ℱ(𝐻𝐻) = ⋃ 𝜀𝜀𝛼𝛼𝛼𝛼∈𝐴𝐴  where 𝜀𝜀𝛼𝛼 ⊂ ℱ(𝐻𝐻) is 
a set of frames such that any ℱ, 𝒢𝒢 ∈ 𝜀𝜀𝛼𝛼 , ℱ is 𝑄𝑄-equivalent with 𝒢𝒢 or, equivalent, ℱ is near to 
𝒢𝒢. Therefore, for each index 𝛼𝛼 ∈  𝐴𝐴, the function 𝑑𝑑0 ∶ 𝜀𝜀𝛼𝛼 × 𝜀𝜀𝛼𝛼 →  𝑅𝑅+ is well-defined and 
finite. We want to show now that the function 𝑑𝑑 ∶ 𝜀𝜀𝛼𝛼 × 𝜀𝜀𝛼𝛼 → 𝑅𝑅+ , 𝑑𝑑(ℱ, 𝒢𝒢) =  𝑙𝑙𝑜𝑜𝑔𝑔(1 +
𝑑𝑑0(ℱ, 𝒢𝒢)) is a distance on each class 𝜀𝜀𝛼𝛼 . 
Theorem (1.1.7)[62]: The function 𝑑𝑑 defined above is a distance on 𝜀𝜀𝛼𝛼 . Moreover, for any 
ℱ ∈  𝜀𝜀𝛼𝛼  and 𝒢𝒢 ∈ ℱ(𝐻𝐻), if 𝑑𝑑 (ℱ, 𝒢𝒢) < ∞, then 𝒢𝒢 ∈  𝜀𝜀𝛼𝛼 . 
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Proof. The second part of the statement is immediate: if 𝑑𝑑(ℱ, 𝒢𝒢)is finite so is 𝑑𝑑0(ℱ, 𝒢𝒢); 
hence, ℱ is close to 𝒢𝒢 and therefore they belong to the same class. 
To show that d is a distance we need to check only the triangle inequality. Let ℱ, 𝒢𝒢, ℋ ∈  𝜀𝜀𝛼𝛼  
then, there exist 𝑄𝑄 and 𝑅𝑅 invertible bounded operators on 𝐻𝐻 such that 𝑔𝑔𝑖𝑖 =  𝑄𝑄𝑓𝑓𝑖𝑖 , ℎ𝑖𝑖  =  𝑅𝑅𝑔𝑔𝑖𝑖  
and therefore ℎ𝑖𝑖  =  𝑅𝑅𝑄𝑄𝑓𝑓𝑖𝑖 . We have 

𝑑𝑑(ℱ, 𝒢𝒢)  =  𝑙𝑙𝑜𝑜𝑔𝑔(1 +  𝑚𝑚𝑅𝑅𝑥𝑥( ‖𝑄𝑄 −  1‖ , ‖𝑄𝑄−1 − 1‖)) 
𝑑𝑑(𝒢𝒢, ℋ)  =  𝑙𝑙𝑜𝑜𝑔𝑔(1 + 𝑚𝑚𝑅𝑅𝑥𝑥( ‖𝑅𝑅 − 1‖ , ‖𝑅𝑅−1 − 1‖)) 

𝑑𝑑(ℱ, ℋ) =  𝑙𝑙𝑜𝑜𝑔𝑔(1 + 𝑚𝑚𝑅𝑅𝑥𝑥( ‖𝑅𝑅𝑄𝑄 − 1‖, ‖𝑄𝑄−1𝑅𝑅−1 − 1‖)) 
and 

 ‖𝑅𝑅𝑄𝑄 − 1‖  =   ‖(𝑅𝑅 − 1)(𝑄𝑄 − 1) + 𝑅𝑅 + 𝑄𝑄 − 2 ‖ 
≤   ‖𝑅𝑅 − 1‖ .  ‖𝑄𝑄 − 1‖  +  ‖𝑅𝑅 − 1‖  + ‖𝑄𝑄 − 1 ‖ 

=  ( ‖𝑅𝑅 − 1 ‖  + 1)( ‖𝑄𝑄 −  1‖  + 1) −  1. 
Hence, 

𝑙𝑙𝑜𝑜𝑔𝑔(‖𝑅𝑅𝑄𝑄 −  1 ‖ + 1) ≤ 𝑙𝑙𝑜𝑜𝑔𝑔(‖𝑅𝑅 −  1‖ + 1) +  𝑙𝑙𝑜𝑜𝑔𝑔(‖ 𝑄𝑄 −  1‖  + 1). 
Similarly for  ‖𝑄𝑄−1𝑅𝑅−1 − 1‖  and therefore 𝑑𝑑(ℱ, ℋ) ≤  𝑑𝑑(ℱ, 𝒢𝒢)  +  𝑑𝑑(𝒢𝒢, ℋ). 

The next step is to relate the partition (8)with the set of infinite dimensional closed 
subspaces of 𝑙𝑙2(I). We suppose H is infinite dimensional and I is countable.Otherwise, the 
following result still holds providing we replace  “infinite   dimensional closed subspaces of 
dimension equal to the dimension of H”.  
  Let us denote by 𝑆𝑆(𝑙𝑙2(𝐼𝐼)) the set of all infinite dimensional closed subspaces of 
𝑙𝑙2(𝐼𝐼). Then Lemma (1.1.2) and Theorem (1.1.4) assert that ℱ(𝐻𝐻) is mapped into 𝑆𝑆(𝑙𝑙2(𝐼𝐼)) 
by 

𝑖𝑖 ∶  ℱ(ℋ) →  𝑆𝑆�𝑙𝑙2(𝐼𝐼)�, 𝑖𝑖(𝜀𝜀𝛼𝛼 )  =  𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇                                                  (12) 
where 𝑇𝑇 is the analysis operator associated to any frame ℱ ∈ 𝜀𝜀𝛼𝛼  . The natural question that 
can be asked is whether 𝑖𝑖 is surjective, i.e., if for any closed infinite dimensional subspace 
of 𝑙𝑙2(𝐼𝐼) we can find a corresponding frame in ℱ(𝐻𝐻). The answer is yes as the following 
theorem proves (see Christensen [192], Aldroubi [88] or Holub [196] for this type of 
argument). 
Theorem (1.1.8)[62]: For any infinite dimensional closed subspace 𝐸𝐸 of 𝑙𝑙2(𝐼𝐼) there exists a 
frame ℱ ∈ ℱ(𝐻𝐻) (and therefore a class 𝜀𝜀𝛼𝛼 ) such that 𝑖𝑖(ℱ)  =  𝐸𝐸 (in other words, 𝑅𝑅𝑅𝑅𝑛𝑛 𝑇𝑇 =
 𝐸𝐸 with 𝑇𝑇 the analysis operator associated to ℱ). Therefore, 𝑖𝑖, considered from the set of 
classes 𝜀𝜀𝛼𝛼 into 𝑆𝑆(𝑙𝑙2(𝐼𝐼)), is a bijective mapping. 
Proof. Let 𝐸𝐸 ⊂  𝑙𝑙2(𝐼𝐼) be an infinite dimensional closed subspace. Choose an orthonormal 
basis {𝑑𝑑𝑖𝑖 }𝑖𝑖∈𝐼𝐼  in 𝐸𝐸 and a basis {𝑒𝑒𝑖𝑖 }𝑖𝑖∈𝐼𝐼 in 𝐻𝐻 (recall 𝐻𝐻 is infinite dimensional and I countable). 
Let 𝑝𝑝𝑖𝑖 ∶ 𝑙𝑙2(𝐼𝐼) → 𝐶𝐶 be the canonical projection, 𝑝𝑝𝑖𝑖 (𝑐𝑐) = 𝑐𝑐𝑖𝑖 , where 𝑐𝑐 = �𝑐𝑐𝑗𝑗 �

𝑗𝑗 ∈𝐼𝐼
, let 𝑖𝑖 ∈ 𝐼𝐼 and 

𝑃𝑃 ∶ 𝑙𝑙2(𝐼𝐼) →  𝐶𝐶 be the canonical projection onto 𝐸𝐸. 
Let us denote by {𝛿𝛿𝑖𝑖 }𝑖𝑖∈𝐼𝐼 the canonical basis in 𝑙𝑙2(𝐼𝐼), i.e., 𝛿𝛿𝑖𝑖 = �𝛿𝛿𝑖𝑖𝑗𝑗 �

𝑗𝑗 ∈𝐼𝐼
. 

Then, it is known (see [196]) that {𝑃𝑃𝛿𝛿𝑖𝑖 }𝑖𝑖∈𝐼𝐼 is a tight frame with bound 1 in 𝐸𝐸 (and 
any tight frame indexed by 𝐼𝐼 with bound 1 in 𝐸𝐸 is of this form, i.e., the orthogonal 
projection of some orthonormal basis of 𝑙𝑙2(𝐼𝐼),  since 

�〈𝑐𝑐, 𝑃𝑃𝛿𝛿𝑖𝑖 〉
𝑖𝑖∈𝐼𝐼

𝑃𝑃𝛿𝛿𝑖𝑖 = 𝑃𝑃 �〈𝑃𝑃𝑐𝑐, 𝛿𝛿𝑖𝑖 〉
𝑖𝑖∈𝐼𝐼

𝛿𝛿𝑖𝑖 = 𝑃𝑃𝑐𝑐 = 𝑐𝑐,     ∀𝑐𝑐 ∈ 𝐸𝐸 

We define a tight frame with bound 1 in 𝐻𝐻 in the following way: 
𝑓𝑓𝑖𝑖 = ∑ 〈𝑃𝑃𝛿𝛿𝑖𝑖 , 𝑑𝑑𝑗𝑗 〉𝑒𝑒𝑗𝑗𝑗𝑗 ∈𝐼𝐼 = ∑ 〈𝛿𝛿𝑖𝑖 , 𝑑𝑑𝑗𝑗 〉𝑗𝑗 ∈𝐼𝐼 𝑒𝑒𝑗𝑗 = ∑ 𝑝𝑝𝑖𝑖𝑗𝑗𝑖𝑖 �𝑑𝑑𝑗𝑗 �𝑒𝑒𝑗𝑗 . 

It is easy to show that 𝑓𝑓𝑖𝑖 ′𝑠𝑠 are well defined, since ‖𝑓𝑓𝑖𝑖 ‖2 = ∑ �〈𝑃𝑃𝛿𝛿𝑖𝑖 , 𝑑𝑑𝑗𝑗 〉�𝑗𝑗 ∈𝐼𝐼
2
 = ‖𝑃𝑃𝛿𝛿𝑖𝑖 ‖ 2 < ∞. 

Let 𝑇𝑇 be the analysis operator associated to �𝑓𝑓𝑗𝑗 �
𝑖𝑖∈𝐼𝐼

  and 𝑥𝑥 ∈  𝐻𝐻 be arbitrary. Then 
〈𝑥𝑥, 𝑓𝑓𝑖𝑖 〉 = ∑ 𝑝𝑝𝑖𝑖 �𝑑𝑑𝑗𝑗 �〈𝑥𝑥, 𝑒𝑒𝑗𝑗 〉 = 𝑝𝑝𝑖𝑖 �∑ 〈𝑥𝑥, 𝑒𝑒𝑗𝑗 〉𝑑𝑑𝑗𝑗𝑗𝑗 ∈𝐼𝐼 �𝑗𝑗 ∈𝐼𝐼 ,    ∀𝑖𝑖 ∈ 𝐼𝐼 
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Thus, 𝑇𝑇 (𝑥𝑥) = {〈𝑥𝑥, 𝑓𝑓𝑖𝑖 〉}𝑖𝑖∈𝐼𝐼 = ∑ 〈𝑥𝑥, 𝑒𝑒𝑗𝑗 〉𝒋𝒋∈𝑰𝑰 𝑑𝑑𝑗𝑗  and obvious Ran 𝑇𝑇 = 𝐸𝐸. It is simple to check that 
𝑇𝑇𝑓𝑓𝑖𝑖  = 𝑃𝑃𝛿𝛿𝑖𝑖  and therefore, {𝑓𝑓𝑖𝑖 }𝑖𝑖∈𝐼𝐼is a tight frame with bound 1. 
We are concerned here with the closeness and distance functions 𝑑𝑑1, 𝑑𝑑2 and 𝑑𝑑|Τ introduced 
earlier. In fact, we would like to characterize the minima of these functions. Here is the 
main result: 
Theorem (1.1.9)[62]: Consider 𝒢𝒢 = {𝑔𝑔𝑖𝑖 }𝑖𝑖∈𝐼𝐼   a frame in 𝐻𝐻 with optimal frame bounds 
𝐴𝐴; 𝐵𝐵 and consider the setsΤ1, Τ2and 𝑇𝑇 introduced in (9), (10) and (11). Let us denote by 
𝜃𝜃 = √𝐵𝐵−√𝐴𝐴

√𝐵𝐵+√𝐴𝐴 
 and 𝜌𝜌 = 1

4
(𝑙𝑙𝑜𝑜𝑔𝑔𝐵𝐵 − 𝑙𝑙𝑜𝑜𝑔𝑔𝐴𝐴). Then the following conclusions hold: 

(a) The values of the minima of 𝑑𝑑1, 𝑑𝑑2 and 𝑑𝑑|Τ are given by 
𝑚𝑚𝑖𝑖𝑛𝑛 𝑑𝑑1 =  𝑚𝑚𝑖𝑖𝑛𝑛𝑑𝑑2  = 𝜃𝜃 𝑚𝑚𝑖𝑖𝑛𝑛 𝑑𝑑|Τ = 𝜌𝜌. 

(b) These values are achieved by the following scalings of the associated tight frames of  𝒢𝒢 : 
                                       ℱ1 = {𝑓𝑓𝑖𝑖

1}𝑖𝑖∈𝐼𝐼  , 𝑓𝑓𝑖𝑖
1 = √𝐴𝐴+√𝐵𝐵

2
𝑔𝑔𝑖𝑖

#                            (13)  

                                       ℱ2 = {𝑓𝑓𝑖𝑖
2}𝑖𝑖∈𝐼𝐼  , 𝑓𝑓𝑖𝑖

2 = 2√𝐴𝐴𝐵𝐵
√𝐴𝐴+√𝐵𝐵

𝑔𝑔𝑖𝑖
#,                           (14) 

                                       ℱ0 = {𝑓𝑓𝑖𝑖
0}𝑖𝑖∈𝐼𝐼  , 𝑓𝑓𝑖𝑖

0 = √𝐴𝐴𝐵𝐵4 𝑔𝑔𝑖𝑖
#                              (15)  

Hence, 𝑑𝑑1(ℱ1)  = 𝑑𝑑2 (ℱ2) = 𝜃𝜃 𝑅𝑅𝑛𝑛𝑑𝑑 𝑑𝑑(ℱ0)  = 𝜌𝜌. 
(c)  Any tight frame that achieves the minimum of one of the three functions 𝑑𝑑1, 𝑑𝑑2 or d is 
unitarily equivalent with the corresponding solution (13), (14) or (15) in the following way: 

(𝑑𝑑1)−1(𝜃𝜃) = {Κ = {𝑘𝑘𝑖𝑖 }𝑖𝑖∈𝐼𝐼|𝑘𝑘𝑖𝑖 = 𝛼𝛼𝑓𝑓𝑖𝑖
1 �, 

                                       𝛼𝛼 unitary and�𝛼𝛼 − 2
√𝐴𝐴+√𝐵𝐵

𝑆𝑆1/2� = 𝜃𝜃}                  (16) 
                                       (𝑑𝑑2)−1(𝜃𝜃) = {Κ = {𝑘𝑘𝑖𝑖 }𝑖𝑖∈𝐼𝐼|𝑘𝑘𝑖𝑖 = 𝛼𝛼�𝑓𝑓𝑖𝑖

2 
                                       𝛼𝛼 unitary and�𝛼𝛼 − 2√𝐴𝐴𝐵𝐵

√𝐴𝐴+√𝐵𝐵
𝑆𝑆−1/2� = 𝜃𝜃}                  (17) 

                      𝑑𝑑−1(𝜌𝜌) == {Κ = {𝑘𝑘𝑖𝑖 }𝑖𝑖∈𝐼𝐼|𝑘𝑘𝑖𝑖 = 𝛼𝛼�𝑓𝑓𝑖𝑖
0, 

                     𝛼𝛼 unitary and�𝛼𝛼 − √𝐴𝐴𝐵𝐵4 𝑆𝑆−1/2� = �𝛼𝛼 − 1
√𝐴𝐴𝐵𝐵4 𝑆𝑆1/2� = 𝜌𝜌}        (18) 

where 𝑆𝑆 is the frame operator associated to 𝒢𝒢. Moreover, any unitary operator that 
parametrizes (𝑑𝑑1)−1(𝜃𝜃), (𝑑𝑑2)−1(𝜃𝜃) 𝑜𝑜𝑜𝑜 𝑑𝑑−1(𝜌𝜌) as above, has the value 1 in its spectrum. 
Proof. If 𝒢𝒢 is a tight frame, then ℱ1 = ℱ2 = ℱ0  =  𝒢𝒢 and  𝜃𝜃 = 𝜌𝜌 =  0 and the 
problem is solved. Therefore, we may suppose that 𝐴𝐴 <  𝐵𝐵. 
We show this in the following way: In the first step we check that 𝑑𝑑1(ℱ1) = 𝑑𝑑2(ℱ2) = 𝜃𝜃 
and  𝑑𝑑(ℱ0)  = 𝜌𝜌 . Then, since  𝜃𝜃 < 1, it follows that the infimum of 𝑑𝑑1and 𝑑𝑑2 are less than 
1. Now, using Corollary (1.1.5) and Theorem (1.1.4) we can reduce our problem to an 
infimum of an operator norm. In the third step we will prove two lemmas, one to be applied 
to 𝑑𝑑1 and 𝑑𝑑2, and the other to 𝑑𝑑, and this will end, the proof. 
(a) Let us check that (13), (14), (15) achieve the desired values for 𝑑𝑑1, 𝑑𝑑2 and 𝑑𝑑, 
respectively. For 𝑓𝑓𝑖𝑖

1 = 𝑄𝑄𝑔𝑔𝑖𝑖  with 𝑄𝑄 = √𝐴𝐴+√𝐵𝐵
2

𝑆𝑆−1/2  we have 𝑑𝑑1(ℱ1)  =  𝑐𝑐(𝒢𝒢, ℱ1)  =
‖1 − 𝑄𝑄−1‖.  Now,√𝐴𝐴 ≤ 𝑆𝑆1/2 ≤ √𝐵𝐵  where the inequalities cannot be improved. Therefore, 

−
√𝐵𝐵 − √𝐴𝐴
√𝐵𝐵 + √𝐴𝐴

≤ 1 − 𝑄𝑄−1 ≤
√𝐵𝐵 − √𝐴𝐴
√𝐵𝐵 + √𝐴𝐴

 

which means that ‖1 − 𝑄𝑄−1‖ = 𝜃𝜃. Similarly, for 𝑓𝑓𝑖𝑖
2 = 𝐿𝐿𝑔𝑔𝑖𝑖   with 𝐿𝐿 = 2√𝐴𝐴𝐵𝐵

√𝐴𝐴+√𝐵𝐵
𝑆𝑆−1/2 we have 

𝑑𝑑2(ℱ2) = 𝑐𝑐(ℱ2, 𝒢𝒢)  = ‖𝐿𝐿 − 1‖ and a similar calculus shows that 𝑑𝑑2(ℱ2) = 𝜃𝜃  . For 𝐹𝐹0 we 
have 𝑓𝑓𝑖𝑖

0 = 𝑅𝑅𝑔𝑔𝑖𝑖  with 𝑅𝑅 = √𝐴𝐴𝐵𝐵4 𝑆𝑆−1/2  and therefore 
𝑑𝑑(ℱ0) = 𝑙𝑙𝑜𝑜𝑔𝑔�1 + 𝑚𝑚𝑅𝑅𝑥𝑥( ‖𝑅𝑅 −  1‖ , ‖1 −  𝑅𝑅−1‖)�. 

Now, an easy calculation shows that 

‖𝑅𝑅 −  1‖ = ‖1 −  𝑅𝑅−1‖ = 𝑚𝑚𝑅𝑅𝑥𝑥 � �𝐵𝐵
𝐴𝐴

4 − 1,1 −  �𝐴𝐴
𝐵𝐵

4 � = �𝐵𝐵
𝐴𝐴

4 − 1  . 
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Therefore, 𝑑𝑑(ℱ0) = 𝑙𝑙𝑜𝑜𝑔𝑔 �𝐵𝐵
𝐴𝐴

4 = 𝜌𝜌. 

(b) Since we are looking for the infimum of the functions 𝑑𝑑1, 𝑑𝑑2 and since 𝜃𝜃 <  1 we may 
then restrict our attention to only the tight frames ℱ ∈ Τ1 (or to Τ2) such that 𝑑𝑑1( ℱ) < 1 
(respectively, 𝑑𝑑2(ℱ) < 1). But this implies also that 𝑑𝑑2(ℱ) < ∞ (respectively, 𝑑𝑑1( ℱ) <
∞). Therefore, we may restrict our attention only to tight frames in Τ1 ∩ Τ2 = Τ . 
Corollary (1.1.5) tells us that these frames must have the form ℱ = {𝑓𝑓𝑖𝑖 }𝑖𝑖∈𝐼𝐼   and 
 𝑓𝑓𝑖𝑖 = √𝐶𝐶𝛼𝛼𝑔𝑔𝑖𝑖

# = √𝐶𝐶𝛼𝛼𝑆𝑆−1/2𝑔𝑔𝑖𝑖   for some 𝐶𝐶 > 0 and 𝛼𝛼 unitary. Hence 
𝑑𝑑1( ℱ) = �1 − 1

√𝐶𝐶
𝑆𝑆

1
2𝛼𝛼−1� = � 1

√𝐶𝐶
𝑆𝑆

1
2 − 𝛼𝛼�,                                         (19) 

𝑑𝑑2( ℱ) = �√𝐶𝐶𝛼𝛼𝑆𝑆
−1
2 − 1� = �√𝐶𝐶𝑆𝑆

1
2 − 𝛼𝛼�,                                          (20) 

𝑑𝑑0( ℱ) = 𝑚𝑚𝑅𝑅𝑥𝑥 �� 1
√𝐶𝐶

𝑆𝑆
1
2 − 𝛼𝛼� , �√𝐶𝐶𝑆𝑆−1

2 − 𝛼𝛼��.                                    (21) 
To minimize 𝑑𝑑 is equivalent to minimizing 𝑑𝑑0; since 𝑑𝑑0 has a simpler expression, we 

prefer to work with 𝑑𝑑0 from now on. Thus, our problem is reduced to find minima of the 
operator norms (19), (20), (21) subject to 𝐶𝐶 > 0 and 𝛼𝛼 unitary. 
(c) The next step is to solve these norm problems. For 𝑑𝑑1 and 𝑑𝑑2 we apply the following 
lemma to be proved later: 
Lemma (1.1.10)[62]: Consider R a selfadjoint operator on 𝐻𝐻 with 𝑅𝑅 =  ‖𝑅𝑅−1‖−1 and 
𝑏𝑏 = ‖𝑅𝑅‖ . Then, the solution of the following inf-problem 

                                           𝜇𝜇 = inf
𝑅𝑅>0

𝑢𝑢  𝑢𝑢𝑛𝑛𝑖𝑖𝑤𝑤𝑅𝑅𝑜𝑜𝑢𝑢

 ‖𝑅𝑅𝑅𝑅 − 𝛼𝛼‖                                           (22) 

is given by  𝜇𝜇 =  𝑏𝑏−𝑅𝑅
𝑏𝑏+𝑅𝑅

 and  𝛼𝛼 =  2
𝑅𝑅+𝑏𝑏

 . This infimum is achieved by the identity operator; any 
other unitary 𝛼𝛼 that achieves the infimum must have 1 in its spectrum. 

If we apply this lemma with 𝑅𝑅 = 𝑆𝑆
1
2, 𝛼𝛼 = 1

√𝐶𝐶
 and 𝑅𝑅 = √𝐴𝐴, 𝑏𝑏 = √𝐵𝐵 , then we get 

𝜇𝜇 = √𝐵𝐵−√𝐴𝐴
√𝐵𝐵+√𝐴𝐴

≡ 𝜃𝜃 and 𝛼𝛼 = 2
√𝐵𝐵+√𝐴𝐴

 , hence the parametrization (16) of the solutions. This shows 

(19). For (20) we apply the lemma with 𝑅𝑅 = 𝑆𝑆−1/2, 𝛼𝛼 = √𝐶𝐶    and  𝑅𝑅 = 1
√𝐵𝐵

 , 𝑏𝑏 = 1
√𝐴𝐴

 . We get 

𝜇𝜇 = 𝜃𝜃 and 𝛼𝛼 = 2√𝐴𝐴𝐵𝐵
√𝐴𝐴+√𝐵𝐵

, hence the parametrization (17) of the solutions. 

Proof. Let 𝛿𝛿 = 𝛼𝛼 − 2
𝑅𝑅+𝑏𝑏

  .We denote by 𝜎𝜎(𝑋𝑋) the spectrum of the operator 𝑋𝑋. Thus, 
𝑅𝑅, 𝑏𝑏 ∈ 𝜎𝜎(𝑅𝑅). Now, by Weyl 's criterion (see for instance, [200]), there are two sequences of 
normed vectors in 𝐻𝐻, (𝑣𝑣𝑛𝑛 )𝑛𝑛∈𝑵𝑵 and ((𝑤𝑤𝑛𝑛 )𝑛𝑛∈𝑵𝑵 such that 

‖𝑣𝑣𝑛𝑛 ‖  = ‖𝑤𝑤𝑛𝑛 ‖ = 1 and 𝑙𝑙𝑖𝑖𝑚𝑚𝑛𝑛   ‖(𝑅𝑅 −  𝑅𝑅)𝑣𝑣𝑛𝑛 ‖ = 0, 𝑙𝑙𝑖𝑖𝑚𝑚𝑛𝑛  ‖ (𝑅𝑅 −  𝑏𝑏)𝑤𝑤𝑛𝑛 ‖ = 0. 
Consider   𝛿𝛿 > 0. Let  𝜀𝜀 = 𝛿𝛿

2
𝑏𝑏 . Then there exists an index 𝑁𝑁 such that for any 

𝑛𝑛 >  𝑁𝑁, ‖𝑅𝑅𝑤𝑤𝑛𝑛  −  𝑏𝑏𝑤𝑤𝑛𝑛 ‖ ≤ 𝜀𝜀
𝛼𝛼

  . We get ‖𝛼𝛼𝑅𝑅𝑤𝑤𝑛𝑛 ‖  ≥ 𝛼𝛼𝑏𝑏 − 𝜀𝜀 > 1 and 

‖(𝛼𝛼𝑅𝑅 −  𝛼𝛼)𝑤𝑤𝑛𝑛 ‖  ≥ ‖𝛼𝛼𝑅𝑅𝑤𝑤𝑛𝑛 ‖ − ‖𝛼𝛼𝑤𝑤𝑛𝑛 ‖ = ‖𝛼𝛼𝑅𝑅𝑤𝑤𝑛𝑛 ‖ − 1 ≥ 𝛼𝛼 𝑏𝑏 − 𝜀𝜀 − 1 =
𝑏𝑏 − 𝑅𝑅
𝑏𝑏 + 𝑅𝑅

+ 𝜀𝜀. 
Therefore, 
                        ‖𝛼𝛼𝑅𝑅 − 𝛼𝛼‖ ≥ 𝑏𝑏−𝑅𝑅

𝑏𝑏+𝑅𝑅
+ 𝜀𝜀 > 𝑏𝑏−𝑅𝑅

𝑏𝑏+𝑅𝑅
= 𝜇𝜇.                                    (23)  

Consider now  𝛿𝛿 <  0. Let  𝜀𝜀 = 𝛿𝛿
2

𝑅𝑅 > 0. Then, there exists an 𝑁𝑁 such that for any 𝑛𝑛 >
𝑁𝑁,‖𝑅𝑅𝑣𝑣𝑛𝑛 − 𝑅𝑅𝑣𝑣𝑛𝑛 ‖ ≤ 𝜀𝜀

𝛼𝛼
 . We get ‖𝛼𝛼𝑅𝑅𝑣𝑣𝑛𝑛 ‖ ≤ 𝛼𝛼𝑅𝑅 + 𝜀𝜀 < 1 and 

‖(𝛼𝛼𝑅𝑅 − 𝛼𝛼)𝑣𝑣𝑛𝑛 ‖ ≥ |‖𝛼𝛼𝑅𝑅𝑣𝑣𝑛𝑛 ‖� − ‖ 𝛼𝛼𝑣𝑣𝑛𝑛 ‖ |= � 1 − ‖ 𝛼𝛼𝑅𝑅𝑣𝑣𝑛𝑛 ‖  ≥ 1 − 𝛼𝛼𝑅𝑅 − 𝜀𝜀 = 𝑏𝑏−𝑅𝑅
𝑏𝑏+𝑅𝑅

+ 𝜀𝜀 . 
Therefore, 

‖𝛼𝛼𝑅𝑅 − 𝛼𝛼‖ ≥ 𝑏𝑏−𝑅𝑅
𝑏𝑏+𝑅𝑅

+ 𝜀𝜀 > 𝑏𝑏−𝑅𝑅
𝑏𝑏+𝑅𝑅

= 𝜇𝜇.                                       (24) 
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From (23) and (24) we observe that the infimum of ‖𝛼𝛼𝑅𝑅 − 𝛼𝛼‖ has the value 𝑏𝑏−𝑅𝑅
𝑏𝑏+𝑅𝑅

  and may 

be achieved only if  𝛿𝛿 = 0 , i.e., 𝛼𝛼 = 2
𝑅𝑅+𝑏𝑏

 . Thus, the first part of the lemma has been 
showed. 

The set of all unitary 𝛼𝛼 that achieves the infimum is then given by 
              {𝛼𝛼 ∶  𝐻𝐻 →  𝐻𝐻|𝛼𝛼 unitary and � 2

𝑅𝑅+𝑏𝑏
𝑅𝑅 − 𝛼𝛼� = 𝑏𝑏−𝑅𝑅

𝑏𝑏+𝑅𝑅
}.                           (25)  

We still have to prove that the set (25) contains the identity and 1 is in spectrum of any 
unitary operator from this set. From 𝑅𝑅 ≤  𝑅𝑅 ≤  𝑏𝑏 we get − 𝑏𝑏−𝑅𝑅

𝑏𝑏+𝑅𝑅
≤ 2

𝑅𝑅+𝑏𝑏
𝑅𝑅 − 1 ≤ 𝑏𝑏−𝑅𝑅

𝑏𝑏+𝑅𝑅
 

.Therefore, � 2
𝑅𝑅+𝑏𝑏

𝑅𝑅 − 1� ≤ 𝑏𝑏−𝑅𝑅
𝑏𝑏+𝑅𝑅

  .But, us we have showed, 𝑏𝑏−𝑅𝑅
𝑏𝑏+𝑅𝑅

  is the minimum that can be 

achieved. Therefore, � 2
𝑅𝑅+𝑏𝑏

𝑅𝑅 − 1� = 𝑏𝑏−𝑅𝑅
𝑏𝑏+𝑅𝑅

= 𝜇𝜇   and thus, 1 is in the set (25). 
Now recall the sequence (𝑣𝑣𝑛𝑛 )𝑛𝑛  and the inequality (23) which is realized on (𝑣𝑣𝑛𝑛 )𝑛𝑛 . For 𝛼𝛼 in 
the set (25) we have  �� 2

𝑅𝑅+𝑏𝑏
𝑅𝑅 − 𝛼𝛼� 𝑣𝑣𝑛𝑛 � → 𝜇𝜇. But 

          �� 2
𝑅𝑅+𝑏𝑏

𝑅𝑅 − 𝛼𝛼� 𝑣𝑣𝑛𝑛 �
2

= 4
(𝑅𝑅+𝑏𝑏)2 〈𝑣𝑣𝑛𝑛 , 𝑅𝑅2𝑣𝑣𝑛𝑛 〉 − 2

𝑅𝑅+𝑏𝑏
〈𝑣𝑣𝑛𝑛 , (𝑅𝑅𝛼𝛼 + 𝛼𝛼∗𝑅𝑅)𝑣𝑣𝑛𝑛 〉 + 1. 

From (𝑅𝑅 −  𝑅𝑅)𝑣𝑣𝑛𝑛 → 0 we get 〈𝑣𝑣𝑛𝑛 , 𝑅𝑅2𝑣𝑣𝑛𝑛  〉 → 𝑅𝑅2. Therefore, 
                 lim𝑛𝑛 〈𝑣𝑣𝑛𝑛 , (𝑅𝑅𝛼𝛼 + 𝛼𝛼∗𝑅𝑅)𝑣𝑣𝑛𝑛 〉 = 𝑅𝑅+𝑏𝑏

2
� 4𝑅𝑅2

(𝑅𝑅+𝑏𝑏)2 + 1 − 𝜎𝜎2� = 2𝑅𝑅 
Now: 

𝑅𝑅𝛼𝛼 + 𝛼𝛼∗𝑅𝑅 = (𝑅𝑅 − 𝑅𝑅)𝛼𝛼 + 𝛼𝛼∗(𝑅𝑅 − 𝑅𝑅) + 𝑅𝑅(𝛼𝛼 + 𝛼𝛼∗) 
and the previous limit gives lim𝑛𝑛 〈 � 𝑣𝑣𝑛𝑛 ,  (𝛼𝛼 + 𝛼𝛼∗)𝑣𝑣𝑛𝑛

� 〉  = 2. 
Therefore, 

 ‖(𝛼𝛼 −  1)𝑣𝑣𝑛𝑛 ‖2 = 〈𝑣𝑣𝑛𝑛 (2 −  (𝛼𝛼 + 𝛼𝛼∗)𝑣𝑣𝑛𝑛 〉 → 0 
or lim

𝑛𝑛
 ‖(𝛼𝛼 −  1)𝑣𝑣𝑛𝑛 ‖ = 0 which proves 1 ∈ 𝜎𝜎(𝛼𝛼). 

Lemma (1.1.11)[62]: Consider 𝑅𝑅 a bounded invertible selfadjoint operator on 𝐻𝐻 with 
𝑅𝑅 = ‖𝑅𝑅−1‖−1 and 𝑏𝑏 = ‖ 𝑅𝑅‖ . Then, the solution of the following optimization problem: 
             𝜇𝜇 = inf a>0

U unitary
max �‖𝛼𝛼𝑅𝑅 − 𝛼𝛼‖, �1

𝛼𝛼
𝑅𝑅−1 − 𝛼𝛼��                                               (26)            

is given by 𝜇𝜇 = �𝑏𝑏
𝑅𝑅

− 1 , 𝛼𝛼 = 1
√𝑅𝑅𝑏𝑏

 and 𝛼𝛼  in the set                                                   (27) 

   {𝛼𝛼: 𝐻𝐻 → 𝐻𝐻|𝛼𝛼 𝑢𝑢𝑛𝑛𝑖𝑖𝑤𝑤𝑅𝑅𝑜𝑜𝑢𝑢 and� 1
√𝑅𝑅𝑏𝑏

𝑅𝑅 − 𝛼𝛼� = �√𝑅𝑅𝑏𝑏𝑅𝑅−1 − 𝛼𝛼� = �𝑏𝑏
𝑅𝑅

− �1}.        

Moreover, the set (25) contains the identity and therefore, is not empty and the spectrum of 
any 𝛼𝛼 contains 1. The solution for 𝑑𝑑0 is now straightforward: we apply this lemma to (21) 

with 𝑅𝑅 = 𝑆𝑆1/2 , 𝛼𝛼 = 1
√𝐶𝐶

 and  𝑅𝑅 = √𝐴𝐴, 𝑏𝑏 = √𝐵𝐵 . We get   𝜇𝜇 =  𝑚𝑚𝑖𝑖𝑛𝑛𝑑𝑑0 = �𝐵𝐵
𝐴𝐴

4 − 1 and 

𝛼𝛼 = 1
√𝐴𝐴𝐵𝐵4 , hence the parametrization (18) of the solution and the proof of theorem is 

complete.   
Proof. First, let us solve the following scalar problem: 

�̅�𝜇  =  inf𝛼𝛼>0 𝑚𝑚𝑅𝑅𝑥𝑥 �max𝑅𝑅≤𝑥𝑥≤𝑏𝑏 |𝛼𝛼𝑥𝑥 − 1|, max
𝑅𝑅≤𝑥𝑥≤𝑏𝑏

� 1
𝛼𝛼𝑥𝑥

− 1��                                 (28) 
Because of monotonicity, 
                            max

𝑅𝑅≤𝑥𝑥≤𝑏𝑏
|𝛼𝛼𝑥𝑥 − 1| = 𝑚𝑚𝑅𝑅𝑥𝑥(|𝛼𝛼𝑅𝑅 − 1|, |𝛼𝛼𝑏𝑏 − 1|),                 

                               max
𝑅𝑅≤𝑥𝑥≤𝑏𝑏

� 1
𝛼𝛼𝑥𝑥

− 1� = 𝑚𝑚𝑅𝑅𝑥𝑥 �� 1
𝛼𝛼𝑅𝑅

− 1� , � 1
𝛼𝛼𝑏𝑏

− 1�� 
Therefore, �̅�𝜇 = inf𝛼𝛼>0 𝑓𝑓 (𝛼𝛼) where 

𝑓𝑓(𝛼𝛼) = 𝑚𝑚𝑅𝑅𝑥𝑥 �|𝛼𝛼𝑅𝑅 − 1|, |𝛼𝛼𝑏𝑏 − 1|, �
1

𝛼𝛼𝑅𝑅
− 1� , �

1
𝛼𝛼𝑏𝑏

− 1�� 
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It is now simple to check that the infimum may be achieved only when at least two moduli 
are equal. This condition is fulfilled at the following points: 

               𝛼𝛼1 = 2
𝑅𝑅+𝑏𝑏

; 𝛼𝛼2 = 1
𝑅𝑅

; 𝛼𝛼3 = 1
𝑅𝑅

± 1
𝑅𝑅 �1 − 𝑅𝑅

𝑏𝑏
; 𝛼𝛼4 = 1

√𝑅𝑅𝑏𝑏
; 𝛼𝛼5 = 1

𝑏𝑏
; 𝛼𝛼6 = 𝑅𝑅+𝑏𝑏

2𝑅𝑅𝑏𝑏
 

We evaluate 𝑓𝑓(𝛼𝛼) at these points and we get 

𝑓𝑓(𝛼𝛼1) =
𝑏𝑏 − 𝑅𝑅

2𝑅𝑅
 ; 𝑓𝑓(𝛼𝛼2) =

𝑏𝑏 − 𝑅𝑅
𝑅𝑅

; 𝑓𝑓(𝛼𝛼3) =
√𝑏𝑏 − 𝑅𝑅

𝑅𝑅
 �√𝑏𝑏 − √𝑏𝑏 − 𝑅𝑅�, 

𝑓𝑓(𝛼𝛼4) = �𝑏𝑏
𝑅𝑅

− 1 ; 𝑓𝑓(𝛼𝛼5) =
𝑏𝑏 − 𝑅𝑅

𝑅𝑅
; 𝑓𝑓(𝛼𝛼6) =

𝑏𝑏 − 𝑅𝑅
2𝑅𝑅

 

It is obvious now that 𝑓𝑓(𝛼𝛼4) ≤ 𝑓𝑓(𝛼𝛼1) = 𝑓𝑓(𝛼𝛼6) ≤ 𝑓𝑓(𝛼𝛼2) = 𝑓𝑓(𝛼𝛼5) ≤ 𝑓𝑓(𝛼𝛼3)  and therefore, 

�̅�𝜇 = 𝑓𝑓(𝛼𝛼4) = �𝑏𝑏
𝑅𝑅

− 1  and   𝛼𝛼𝑜𝑜𝑝𝑝𝑤𝑤𝑖𝑖𝑚𝑚  =  𝛼𝛼4 = 1
√𝑅𝑅𝑏𝑏

.  Observe also that for  𝛼𝛼 = 𝛼𝛼4 we have  

max𝑅𝑅≤𝑥𝑥≤𝑏𝑏 |𝛼𝛼4𝑥𝑥 − 1| = max
𝑅𝑅≤𝑥𝑥≤𝑏𝑏

� 1
𝛼𝛼4𝑥𝑥

− 1� . 
Let us now return to the norm problem (26). Our claim is that the infimum is 
achieved for 𝛼𝛼 = 1

√𝑅𝑅𝑏𝑏
= 𝛼𝛼4  and 𝛼𝛼 =  1 (the identity) and the value of the infimum is 

 𝜇𝜇 = �𝑏𝑏
𝑅𝑅

− 1 = �̅�𝜇 . The solution of the scalar problem (28) proves also that the set (27) 

contains the identity. We are now going to prove that 𝜇𝜇 = �̅�𝜇 is the optimum and 𝛼𝛼 = 𝛼𝛼4. As 
in the previous lemma, consider (𝑣𝑣𝑛𝑛 )𝑛𝑛≥1 and (𝑤𝑤𝑛𝑛 )𝑛𝑛≥1 two sequences of normed vectors in 
𝐻𝐻 ( ‖𝑣𝑣𝑛𝑛 ‖ =  ‖𝑤𝑤𝑛𝑛 ‖ = 1) such that lim𝑛𝑛 ‖(𝑅𝑅 −  𝑅𝑅)𝑣𝑣𝑛𝑛 ‖ =  0, lim

𝑛𝑛
‖(𝑅𝑅 −  𝑏𝑏)𝑤𝑤𝑛𝑛 ‖ = 0 . 

It is simple to check that lim
𝑛𝑛

��𝑅𝑅−1 − 1
𝑅𝑅

� 𝑣𝑣𝑛𝑛 � = 0  and lim
𝑛𝑛

��𝑅𝑅−1 − 1
𝑏𝑏
� 𝑤𝑤𝑛𝑛 � = 0   hold 

also. Now, consider some  𝛼𝛼 >  0, 𝛼𝛼 ≠ 𝛼𝛼4 = 1
√𝑅𝑅𝑏𝑏

 . Then, as the scalar problem proved, we 
have  
either max

𝑅𝑅≤𝑥𝑥≤𝑏𝑏
|𝛼𝛼𝑥𝑥 − 1| > �̅�𝜇 𝑜𝑜𝑜𝑜 max

𝑅𝑅≤𝑥𝑥≤𝑏𝑏
� 1

𝛼𝛼𝑥𝑥
− 1� > �̅�𝜇                                             (29)  

Suppose the first inequality holds. Now, either  |𝛼𝛼𝑅𝑅 − 1| > �̅�𝜇 or |𝛼𝛼𝑏𝑏 − 1|  > �̅�𝜇 . In the 
former case we use the sequence (𝑣𝑣𝑛𝑛 )𝑛𝑛  as follows: Let  𝜀𝜀 = 1

2
(|𝛼𝛼𝑅𝑅 − 1| − �̅�𝜇) > 0 

and 𝑙𝑙𝑒𝑒𝑤𝑤   𝑁𝑁𝜀𝜀   be such that‖(𝑅𝑅 − 𝑅𝑅)𝑣𝑣𝑛𝑛 ‖ ≤ 𝜀𝜀
𝛼𝛼
 for any 𝑛𝑛 ≥ 𝑁𝑁𝜀𝜀 . Then 

‖(𝛼𝛼𝑅𝑅 − 𝛼𝛼)𝑣𝑣𝑛𝑛 ‖ ≥ |‖𝛼𝛼𝑅𝑅𝑣𝑣𝑛𝑛 ‖� − ‖𝛼𝛼𝑣𝑣𝑛𝑛 ‖|=|𝛼𝛼‖𝛼𝛼𝑣𝑣𝑛𝑛 + (𝑅𝑅 − 𝑅𝑅)𝑣𝑣𝑛𝑛 ‖ − �1| ≥ |𝛼𝛼𝑅𝑅 − 1| −
𝛼𝛼‖(𝑅𝑅 − 𝑅𝑅)𝑣𝑣𝑛𝑛 ‖ > �̅�𝜇 + 𝜀𝜀 which implies ‖𝛼𝛼𝑅𝑅 − 𝛼𝛼‖ > �̅�𝜇 + 𝜀𝜀Similarly, in the later case(|�𝑅𝑅𝑏𝑏 −

1>𝜇𝜇− 𝑤𝑤𝑒𝑒 𝑤𝑤𝑅𝑅𝑘𝑘𝑒𝑒 𝜀𝜀=12 𝑅𝑅𝑏𝑏−1−𝜇𝜇>0  𝑅𝑅𝑛𝑛𝑑𝑑 𝑁𝑁𝜀𝜀   𝑠𝑠𝑢𝑢𝑐𝑐ℎ 𝑤𝑤ℎ𝑅𝑅𝑤𝑤  
‖(𝑅𝑅 − 𝑏𝑏 )𝑤𝑤𝑛𝑛 ‖ ≤ 𝜀𝜀

𝛼𝛼
 for any 𝑛𝑛 ≥ 𝑁𝑁𝜀𝜀 .Therefore,  

‖(𝛼𝛼𝑅𝑅 − 𝛼𝛼)𝑤𝑤𝑛𝑛 ‖ ≥ |‖𝛼𝛼𝑅𝑅𝑤𝑤𝑛𝑛 ‖� − ‖𝛼𝛼𝑤𝑤𝑛𝑛 ‖|=|𝛼𝛼‖𝑏𝑏𝑤𝑤𝑛𝑛 + (𝑅𝑅 − 𝑏𝑏)𝑤𝑤𝑛𝑛 ‖ − �1|
≥ |𝛼𝛼𝑏𝑏 − 1| − 𝛼𝛼‖(𝑅𝑅 − 𝑏𝑏)𝑤𝑤𝑛𝑛 ‖ > �̅�𝜇 + 𝜀𝜀. 

Thus, in both cases we obtain‖𝛼𝛼𝑅𝑅 − 𝛼𝛼‖ > �̅�𝜇. If the second inequality in (29) holds, a 
similar argument can be used to prove that, for 𝛼𝛼 ≠ 𝛼𝛼4 we have 
                         �1

𝛼𝛼
𝑅𝑅−1 − 𝛼𝛼� > �̅�𝜇 

Therefore, the optimum in (26) is achieved for 𝛼𝛼 = 1
√𝑅𝑅𝑏𝑏

 and the value of it is 𝜇𝜇 = �𝑏𝑏
𝑅𝑅

− 1 . It 

is obvious now that the set of unitary operators that achieve the optimum is given by (27) 
and also that the identity operator is in that set. The only problem that still remains to be 
proved is that all these unitary operators have 1 in their spectra. 

The previous argument shows the following conclusion fix 𝛿𝛿0 > small enough and 
let 𝛼𝛼 be in the set (27). Then, for any 0 < 𝛿𝛿 ≤ 𝛿𝛿0 the following inequality holds: 



11 
 
 

                            �̅�𝜇 ≤ ��𝛿𝛿𝑅𝑅 + 1
√𝑅𝑅𝑏𝑏

𝑅𝑅 − 𝛼𝛼� 𝑤𝑤𝑛𝑛 � 

for 𝑛𝑛 ≥ 𝑁𝑁𝛿𝛿  here 𝑁𝑁𝛿𝛿  is an integer depending on 𝛿𝛿. Then, �̅�𝜇 ≤ ��𝛿𝛿𝑅𝑅 + 1
√𝑅𝑅𝑏𝑏

𝑅𝑅 − 𝛼𝛼� 𝑤𝑤𝑛𝑛 � <

𝛿𝛿‖𝑅𝑅‖ + �̅�𝜇 for 𝑛𝑛 ≥ 𝑁𝑁𝛿𝛿 , and it is fairly easy to prove now that �� 1
√𝑅𝑅𝑏𝑏

𝑅𝑅 − 𝛼𝛼� 𝑤𝑤𝑛𝑛 � →  �̅�𝜇 when 
𝑛𝑛 → ∞. Now, by repeating the argument given in the previous lemma we obtain limn ‖(U −
1)𝑤𝑤𝑛𝑛 ‖ =  0 which proves 1 ∈ 𝜎𝜎(𝛼𝛼) and the lemma is showed. (or In this section we 
introduced and studied a distance between Hilbert frames having the same index set I. This 
distance partitions the set of frames into equivalency classes characterized (and indexed) by 
closed subspaces of the space of coefficients 𝑙𝑙2(𝐼𝐼). Thus, two frames are at a finite distance 
if and only if their analysis operators have the same (closed) range in 𝑙𝑙2(𝐼𝐼) and this happens 
if and only if there exists a bounded and invertible operator on the Hilbert space that maps 
one frame set into the other.)Next we determined the closest, respectively nearest, tight 
frame to a given frame. It turns out that these tight frames are scaled versions of the 
associated tight frame.We point out that the entire theory can be carried out on the set of 
Hilbert frames over different Hilbert spaces, but indexed by the same index set. All the 
results are similar, the changes being straightforward. 

As a final remark we acknowledge that Lemmas (1.1.1) and (1.1.2) have also been 
independently obtained by D. Han and D. R. Larson in a recent paper ([79]). 
Section (1.2)[45]: Projection Decompositions of Operators 
Frames were first introduced by Dufflin and Schaeffer [75] in 1952 as a component in the 
development of non-harmonic Fourier series, and a paper by Daubechies, Grossmann, and 
Meyer [94] in 1986 initiated the use of frame theory in signal processing. A frame on a 
separable Hilbert space ℋ is defined to be a complete collection of vectors{ 𝑥𝑥𝑖𝑖 } ⊂ ℋ for 
which there exist constants 0 < 𝐴𝐴 ≤  𝐵𝐵 such that for any 𝑥𝑥 ∈ ℋ, 𝐴𝐴‖𝑥𝑥‖2 ≤ ∑ |〈𝑥𝑥, 𝑥𝑥𝑖𝑖 〉|2 ≤𝑖𝑖
𝐵𝐵‖𝑥𝑥‖2 . 

The constants 𝐴𝐴 and 𝐵𝐵 are known as the frame bounds. The collection is called a 
tight frame if 𝐴𝐴 = 𝐵𝐵, and a Parseval frame if 𝐴𝐴 = 𝐵𝐵 = 1. (In some of the existing literature, 
Parseval frames have been called normalized tight frames; however it should be noted that 
other authors have used the term normalized to describe a frame consisting only of unit 
vectors.) The length of a frame is the number of vectors it contains, which cannot be less 
than the Hilbert space dimension. References in the study of frames include [184], [79], and 
[185]. 
Hilbert space frames are used in a variety of signal processing applications, often 
demanding additional structure. Tight frames may be constructed having 
specified length, components having a predetermined sequence of norms, or with properties 
making them resilient to erasures. For examples, see [36], [47], and [49]. One area of 
rapidly advancing research lies in describing tight frames in which all the vectors are of 
equal norm, and thus are elements of a sphere, [36]. Since frame theory is geometric in 
nature, it is natural to ask which other surfaces in a finite or infinite dimensional Hilbert 
space contain tight frames. 

By an ellipsoidal surface we mean the image of the unit sphere 𝑆𝑆1 = {𝑥𝑥 ∶ ‖𝑥𝑥‖ =
1} under a bounded invertible operator 𝑇𝑇 ∈ 𝐵𝐵(ℋ) . Let ℰ𝑇𝑇  denote the ellipsoidal surface 
ℰ𝑇𝑇 = 𝑇𝑇𝑆𝑆1 . A frame contained in ℰ𝑇𝑇  is called an ellipsoidal frame, and if it is tight it is 
called an ellipsoidal tight frame (𝐸𝐸𝑇𝑇𝐹𝐹) for that surface. We say that a frame bound 𝐾𝐾 is 
attainable for ℰ𝑇𝑇  if there is an 𝐸𝐸𝑇𝑇 for ℰ𝑇𝑇  with frame bound 𝐾𝐾. If an ellipsoid ℰ is a sphere 
we will call a frame in ℰ spherical. 

Given an ellipsoid ℰ, we can assume  ℰ = ℰ𝑇𝑇 , where 𝑇𝑇 is a positive invertible  
operator. Given 𝐴𝐴 an invertible operator, let 𝐴𝐴∗ =  𝛼𝛼|𝐴𝐴∗| be the polar decomposition where  
|𝐴𝐴∗| = (𝐴𝐴𝐴𝐴∗)1/2. Then 𝐴𝐴 = |𝐴𝐴∗|𝛼𝛼∗. By taking 𝑇𝑇 = | 𝐴𝐴∗| we see that 𝑇𝑇𝑆𝑆1 = 𝐴𝐴𝑆𝑆1 . Moreover 
it is easily seen that the positive operator 𝑇𝑇 for which ℰ = ℰ𝑇𝑇  is unique. 
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Throughout the section, ℋ will be a separable real or complex Hilbert space and for 
𝑥𝑥;  𝑢𝑢;  𝑢𝑢 ∈ ℋ, we will use the notation 𝑥𝑥 ⊗  𝑢𝑢 to denote the rank-one operator 𝑢𝑢 ↦ 〈𝑢𝑢, 𝑢𝑢〉𝑥𝑥. 
Note that ‖𝑥𝑥 ‖ = 1 implies that 𝑥𝑥 ⊗ 𝑥𝑥 is a rank-1 projection. There are three theorems in 
this section. The first gives an elementary construction of 𝐸𝐸𝑇𝑇𝐹𝐹′𝑠𝑠 when ℋ = ℝ𝑛𝑛 , and is 
proved in this Section .  

We note that, in the non-degenerate case, the definition of an ellipsoidal surface 𝜀𝜀 
given in Theorem(1.2.2) is equivalent to the definition given in the introduction, specifying 
that the Hilbert space be ℝ𝑛𝑛  . Indeed, if 𝑅𝑅𝑖𝑖 > 1 for all 𝑖𝑖 = 1, … , 𝑛𝑛 and if 
𝐷𝐷 =  𝑑𝑑𝑖𝑖𝑅𝑅𝑔𝑔�𝑅𝑅1, 𝑅𝑅2, … , 𝑅𝑅𝑛𝑛 �, then ∑ 𝑅𝑅𝑖𝑖 𝑥𝑥𝑖𝑖

2 = 1 𝑖𝑖𝑓𝑓𝑓𝑓 𝑛𝑛
𝑖𝑖=1 〈𝐷𝐷𝑥𝑥, 𝑥𝑥〉 = 1 if and only if 

�𝐷𝐷
1
2𝑥𝑥� 1   𝑖𝑖𝑓𝑓𝑓𝑓   𝐷𝐷

1
2𝑥𝑥 ∈ 𝑆𝑆1(ℝ𝑛𝑛 )  if and only if  𝑥𝑥 ∈ 𝐷𝐷−1/2𝑆𝑆1(ℝ𝑛𝑛 ). So 𝜀𝜀 = 𝜀𝜀𝑇𝑇  𝑓𝑓𝑜𝑜𝑜𝑜 𝑇𝑇 = 𝐷𝐷−1/2, 

and thus 𝜀𝜀 has the requisite form. To reverse this argument for a non-diagonal positive 
operator 𝑇𝑇, first diagonalize it by an orthogonal transformation given by rotations. 
Reversing the steps will then show that 𝜀𝜀𝑇𝑇  is equivalent to 𝜀𝜀 for some choice of positive 
constants {𝑅𝑅1,, … , 𝑅𝑅𝑛𝑛 }. The second theorem is used to prove Theorem(1.2.3) in the infinite 
dimensional case. It has independent interest in operator theory, and to our knowledge is 
a new result. The proof, as well as the corresponding result infinite dimensions (Proposition 
(1.2.6)), is contained in this Section . Some preliminaries are required before we state 
Theorem(1.2.2). 
It is well-known (see [187]) that a separably acting positive operator A decomposes as the 
direct sum of a positive operator 𝐴𝐴1with nonatomic spectral measure and a positive 
operator 𝐴𝐴2  with purely atomic spectral measure (i.e., a diagonalizable operator). For 
 𝐵𝐵 ∈ 𝐵𝐵(ℋ) , the essential norm of 𝐵𝐵 is ‖𝐵𝐵‖𝑒𝑒𝑠𝑠𝑠𝑠 ∶=  𝑖𝑖𝑛𝑛𝑓𝑓 {‖𝐵𝐵 − 𝐾𝐾 ‖ ∶ 𝐾𝐾 is a compact operator 
in 𝐵𝐵(ℋ)} . 

In the proof of Proposition (1.2. 11), we have the special case where 𝐴𝐴 is a diagonal 
operator, 𝐴𝐴 = 𝑑𝑑𝑖𝑖𝑅𝑅𝑔𝑔(𝑅𝑅1, 𝑅𝑅2, … ), with respect to some orthonormal basis. In this case, it is 
clear that ‖𝐴𝐴‖𝑒𝑒𝑠𝑠𝑠𝑠 =  𝑠𝑠𝑢𝑢𝑝𝑝 {𝛼𝛼 > 0 ∶ |�𝑅𝑅𝑖𝑖 |�  ≥ 𝛼𝛼 for infinitely many 𝑖𝑖}. 
For a positive operator 𝐴𝐴 with spectrum 𝜎𝜎(𝐴𝐴), we have ‖𝐴𝐴‖ =  sup{𝜆𝜆 ∶ 𝜆𝜆 ∈ 𝜎𝜎(𝐴𝐴)} and if 𝐴𝐴 
is invertible, then‖𝐴𝐴−1‖−1 =  inf{𝜆𝜆 ∶ 𝜆𝜆 ∈ 𝜎𝜎(𝐴𝐴)}. Similarly, ‖𝐴𝐴‖𝑒𝑒𝑠𝑠𝑠𝑠 = sup{𝜆𝜆 : 𝜆𝜆 ∈ 𝜎𝜎𝑒𝑒𝑠𝑠𝑠𝑠 (𝐴𝐴) 
and ‖𝐴𝐴−1‖𝑒𝑒𝑠𝑠𝑠𝑠

−1 =  inf{𝜆𝜆 ∶ 𝜆𝜆 ∈ 𝜎𝜎𝑒𝑒𝑠𝑠𝑠𝑠 (𝐴𝐴)}.In particular, ‖𝐴𝐴−1‖−1 ≤  ‖𝐴𝐴−1‖𝑒𝑒𝑠𝑠𝑠𝑠
−1 ≤ ‖𝐴𝐴‖ 𝑒𝑒𝑠𝑠𝑠𝑠 ≤

‖𝐴𝐴‖. 
For 𝐴𝐴 a positive operator, we say that 𝐴𝐴 has a projection decomposition if 𝐴𝐴 can be 

expressed as the sum of a finite or infinite sequence of (not necessarily mutually orthogonal) 
self-adjoint projections, with convergence in the strong operator topology. 
Note that in this theorem A need not be invertible. There are theorems in the literature (e.g., 
[188]) expressing operators as linear combinations of projections and as sums of 
idempotents (non self-adjoint projections). The decomposition in Theorem(1.2.9) is 
different in that each term is a self-adjoint projection rather than a scalar multiple of a 
projection. 
The next theorem states that every ellipsoidal surface contains a tight frame. We also 
include some detailed information about the nature of the set of attainable frame bounds. 
Lemma(1.2. 1)[45]: Let  𝑛𝑛 ∈ ℕ, let 𝑅𝑅1,, … , 𝑅𝑅𝑛𝑛 ≥ 0.be such that ∑ 𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛

1  and let  
                                𝜀𝜀 = �𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 )𝑤𝑤 ∈ ℝ𝑛𝑛 �∑ 𝑅𝑅𝑗𝑗 𝑥𝑥𝑗𝑗

2 = 1𝑛𝑛
1

��.   
Then there is an orthonormal basis 𝑣𝑣1,, … , 𝑣𝑣𝑛𝑛  for ℝ𝑛𝑛  consisting of vectors 𝑣𝑣𝑗𝑗 ∈ 𝜀𝜀. 
Proof:  Proceed by induction on n. The case 𝑛𝑛 = 1 is trivial. Assume 𝑛𝑛 ≥ 2 and without 
loss of generality suppose 𝑅𝑅1, ≥ 1 and 𝑅𝑅2, ≤ 1. Let 𝜃𝜃 be such that 𝑅𝑅1,(𝑐𝑐𝑜𝑜𝑠𝑠 𝜃𝜃)2 +
𝑅𝑅2 (𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃)2 = 1 and let 𝑏𝑏2 = 𝑅𝑅1(𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃)2 + 𝑅𝑅2(𝑐𝑐𝑜𝑜𝑠𝑠 𝜃𝜃)2. Consider the rotation matrix 
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𝑅𝑅 = �

𝑐𝑐𝑜𝑜𝑠𝑠𝜃𝜃    𝑠𝑠𝑖𝑖𝑛𝑛𝜃𝜃
−𝑠𝑠𝑖𝑖𝑛𝑛𝜃𝜃    𝑐𝑐𝑜𝑜𝑠𝑠𝜃𝜃 

                1
                       ⋱ 1

     � 

Then 
𝑅𝑅−1𝜀𝜀 = {(𝑢𝑢1, … , 𝑢𝑢𝑛𝑛 )𝑤𝑤 � ∈ �ℝ𝑛𝑛 | 

                                𝑢𝑢1
𝑛𝑛 + 2(𝑅𝑅1 − 𝑅𝑅2)𝑢𝑢1𝑢𝑢2𝑐𝑐𝑜𝑜𝑠𝑠𝜃𝜃𝑠𝑠𝑖𝑖𝑛𝑛𝜃𝜃 + 𝑏𝑏2𝑢𝑢2

2 + ∑ 𝑅𝑅𝑗𝑗 𝑢𝑢𝑗𝑗
2 = 1}.𝑛𝑛

3  
We have 𝑏𝑏2 + ∑ 𝑅𝑅𝑗𝑗 = 𝑛𝑛 − 1𝑛𝑛

3 . Let 𝑣𝑣 be the subspace of ℝ𝑛𝑛  consisting of all vectors of the 
form (0 , 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 )𝑤𝑤 . By the induction hypothesis, there is n orthonormal basis 𝑢𝑢2, … , 𝑢𝑢𝑛𝑛 for 
𝑣𝑣 consisting of vectors 𝑢𝑢𝑗𝑗  ∈ 𝑅𝑅−1𝜀𝜀. Let 𝑢𝑢1 = (1,0, … ,0)𝑤𝑤  ∈ ℝ𝑛𝑛 , and let 𝑣𝑣𝑗𝑗 = 𝑅𝑅𝑢𝑢𝑗𝑗  . Then 
𝑣𝑣1, … . , 𝑣𝑣𝑛𝑛  is an orthonormal basis for ℝ𝑛𝑛  consisting of vectors 𝑣𝑣𝑗𝑗 ∈ 𝜀𝜀. 
In the case of a general ellipsoid, where∑ 𝑅𝑅𝑗𝑗 = 𝑜𝑜 > 0,𝑛𝑛

𝑗𝑗 =1   the lemma gives a constant 
multiple of an orthonormal basis on the ellipsoid. 
Theorem(1.2.2)[45]: Let 𝑛𝑛;  𝑘𝑘 ∈ ℕ with 𝑛𝑛 ≤ 𝑘𝑘, let 𝑅𝑅1, … , 𝑅𝑅𝑛𝑛 ≥  0 be such that 𝑜𝑜: = ∑ 𝑅𝑅𝑗𝑗

𝑛𝑛
1 >

0 and consider the (possibly degenerate) ellipsoid 

𝜀𝜀 = �𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 )𝑤𝑤 ∈ ℝ𝑛𝑛 �� 𝑅𝑅𝑗𝑗 𝑥𝑥𝑗𝑗
2 = 1

𝑛𝑛

1

�� . 

Then there is a tight frame for ℝ𝑛𝑛  consisting of 𝑘𝑘 vectors 𝑢𝑢1, … , 𝑢𝑢𝑘𝑘 ∈ 𝜀𝜀. 
This result is valid for degenerate ellipsoids (in which some of the major axes are infinitely 
long). Our method of proof provides geometric insight to the problem, but does not extend 
to infinite dimensions. 
Proof.  Consider the isometry 𝑊𝑊: ℝ𝑛𝑛 → ℝ𝑘𝑘  and the projection 𝑃𝑃 =  𝑊𝑊∗: ℝ𝑘𝑘 → ℝ𝑛𝑛  given by 

𝑊𝑊(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 )𝑤𝑤  =  (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 , 0, … , 0)𝑤𝑤 , 
𝑃𝑃(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 )𝑤𝑤  =  ((𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 )𝑤𝑤 . 

Let 𝑅𝑅𝑗𝑗 =  0 𝑓𝑓𝑜𝑜𝑜𝑜 𝑛𝑛 + 1 ≤ 𝑗𝑗 ≤  𝑘𝑘 and let 

𝜀𝜀′ = �𝑢𝑢 = (𝑢𝑢1, … , 𝑢𝑢𝑘𝑘 )𝑤𝑤 ∈ ℝ𝑘𝑘 �� 𝑅𝑅𝑗𝑗 𝑢𝑢𝑗𝑗
2 = 1

𝑘𝑘

1

��. 

By Lemma(1.2. 1), there is a multiple of an orthonormal basis 𝑣𝑣1, … . , 𝑣𝑣𝑘𝑘 for ℝ𝑘𝑘  consisting 
of vectors 𝑣𝑣1 ∈ 𝜀𝜀′ . Let 𝑢𝑢𝑗𝑗 =  𝑃𝑃𝑣𝑣𝑗𝑗  . Then 𝑢𝑢𝑗𝑗 ∈ 𝜀𝜀. Moreover, 𝑢𝑢1, … , 𝑢𝑢𝑘𝑘  is a tight frame for ℝ𝑛𝑛 , 
because if 𝑥𝑥 ∈ ℝ𝑛𝑛 , then  

��〈𝑥𝑥, 𝑢𝑢𝑗𝑗 〉�2
= ��〈𝑊𝑊𝑥𝑥, 𝑣𝑣𝑗𝑗 〉�2

𝑘𝑘

𝑗𝑗 =1

𝑘𝑘

𝑗𝑗 =1

=
𝑘𝑘
𝑜𝑜

 ‖𝑊𝑊𝑥𝑥‖2 =
𝑘𝑘
𝑜𝑜

‖𝑥𝑥‖2. 

Proposition(1.2.3)[45]: Let 𝐴𝐴 ∈ 𝐵𝐵(ℋ) be a finite rank positive operator with integer trace 
k. If 𝑘𝑘 ∈ 𝑜𝑜𝑅𝑅𝑛𝑛𝑘𝑘(𝐴𝐴), then 𝐴𝐴 is the sum of 𝑘𝑘 projections of rank one. 
Proof. We will construct unit vectors x1; 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 so that 𝐴𝐴 is the sum of the projections 
𝑥𝑥𝑖𝑖 ⊗ 𝑥𝑥𝑖𝑖  . The proof uses induction on 𝑘𝑘. Let 𝑛𝑛 = 𝑜𝑜𝑅𝑅𝑛𝑛𝑘𝑘(𝐴𝐴) and write ℋ𝑛𝑛  =  𝑜𝑜𝑅𝑅𝑛𝑛𝑔𝑔𝑒𝑒(𝐴𝐴). If 
𝑘𝑘 = 1, then 𝐴𝐴 must itself be a rank-1 projection. 
Assume 𝑘𝑘 ≥ 2. Select an orthonormal basis {𝑒𝑒𝑖𝑖 }𝑖𝑖=1

𝑛𝑛  for ℋ𝑛𝑛  such that 𝐴𝐴 can be written on 
ℋ𝑛𝑛 as a diagonal matrix with positive entries 𝑅𝑅1 ≥ 𝑅𝑅2 … 𝑅𝑅𝑛𝑛 > 0. 
Case 1: 𝑘𝑘 > 𝑛𝑛. In this case, we have 𝑅𝑅1 > 1, so we can take 𝑥𝑥𝑘𝑘 =  𝑒𝑒1. The remainder on 
ℋ𝑛𝑛 , 

𝐴𝐴 − (𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 ) =  𝑑𝑑𝑖𝑖𝑅𝑅𝑔𝑔(𝑅𝑅1 − 1, 𝑅𝑅2, … , 𝑅𝑅𝑛𝑛 ), 
has positive diagonal entries, still has rank 𝑛𝑛, and now has trace 𝑘𝑘 −  1 ≥ 𝑛𝑛. By the 
inductive hypothesis, the result holds. 
Case 2: 𝑘𝑘 = 𝑛𝑛. We now have that 𝑅𝑅1 ≥ 1 and 𝑅𝑅𝑛𝑛  ≤ 1. Given any finite rank, self-adjoint 
𝑅𝑅 ∈ 𝐵𝐵(ℋ) , let 𝜇𝜇𝑛𝑛 (𝑅𝑅) denote the 𝑛𝑛-th largest eigenvalue of 𝑅𝑅 counting multiplicity. Note 
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that  𝜇𝜇𝑛𝑛 (𝐴𝐴 − (𝑒𝑒1 ⊗ 𝑒𝑒1)) ≥ 0, 𝜇𝜇𝑛𝑛 (𝐴𝐴 − (𝑒𝑒𝑛𝑛 ⊗ 𝑒𝑒𝑛𝑛 )) ≤ 0, and  𝜇𝜇𝑛𝑛 (𝐴𝐴 − (𝑥𝑥 ⊗ 𝑥𝑥)) is a 
continuous function of 𝑥𝑥 ∈ ℋ𝑛𝑛 . Hence, there exists 𝑢𝑢 ∈ ℋ𝑛𝑛  such that  
𝜇𝜇𝑛𝑛 (𝐴𝐴 − (𝑢𝑢 ⊗ 𝑢𝑢)) = 0. Choose 𝑥𝑥𝑘𝑘 = 𝑢𝑢. Note the remainder (𝐴𝐴 −  (𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 ))  ≥ 0 and 
Trace  �𝐴𝐴 − (𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 )� = 𝑛𝑛 − 1, Rank  �𝐴𝐴 − (𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 )� = 𝑛𝑛 − 1 = 𝑘𝑘 − 1. 
Again, by the inductive hypothesis, the result holds. _ 
Lemma (1.2.4)[45]: Let 𝑃𝑃1, 𝑃𝑃2, … , 𝑃𝑃𝑛𝑛  be mutually orthogonal projections on 𝑅𝑅 Hilbert space 
ℋ, all of the same nonzero rank 𝑘𝑘, where 𝑘𝑘 can be finite or Infinite. Let 𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑛𝑛  be 
nonnegative real numbers, and let 𝑜𝑜 = ∑ 𝑜𝑜𝑖𝑖

𝑛𝑛
1 . Difine the operator 

𝐴𝐴 =  𝑜𝑜1𝑃𝑃1 +  𝑜𝑜2𝑃𝑃2 + ⋯ + 𝑜𝑜𝑛𝑛 𝑃𝑃𝑛𝑛 . 
If the sum 𝑜𝑜 is an integer and 𝑜𝑜 ≥ 𝑛𝑛, then there exist rank-𝑘𝑘 projections 𝑄𝑄1, … , 𝑄𝑄𝑜𝑜  such that 

𝐴𝐴 =  𝑄𝑄1 + 𝑄𝑄2 + ⋯ + 𝑄𝑄𝑜𝑜 . 
Proof. If 𝑘𝑘 = 1, then 𝑜𝑜 = 𝑤𝑤𝑜𝑜𝑅𝑅𝑐𝑐𝑒𝑒(𝐴𝐴) and we have rank (𝐴𝐴) ≤ 𝑛𝑛 ≤ 𝑜𝑜, so the result follows 
from Proposition (1.3.3). If  𝑘𝑘 > 1, each projection 𝑃𝑃𝑖𝑖  can be written as a sum of 𝑘𝑘 mutually 
orthogonal rank-1 projections: 

𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑖𝑖1  + 𝑃𝑃𝑖𝑖2 + ⋯ + 𝑃𝑃𝑖𝑖𝑘𝑘 . 
(Here and elsewhere in this proof, sums with indices running from 1 to 𝑘𝑘 should be 
interpreted as infinite sums in the case where 𝑘𝑘 = ∞.) All rank-1 projections 𝑃𝑃𝑖𝑖𝑗𝑗  are thus 
mutually orthogonal. Define operators 𝐴𝐴1, … , 𝐴𝐴𝑘𝑘  by 𝐴𝐴𝑗𝑗  = 𝑜𝑜1𝑃𝑃1𝑗𝑗  +  𝑜𝑜2𝑃𝑃2𝑗𝑗 + ⋯ + 𝑜𝑜𝑛𝑛 𝑃𝑃𝑛𝑛𝑗𝑗 . 
Now, 𝐴𝐴 = 𝐴𝐴1 + ⋯ + 𝐴𝐴𝑘𝑘  and each 𝐴𝐴𝑗𝑗  has rank n and trace 𝑜𝑜. By Proposition(1.2.3), each 
𝐴𝐴𝑗𝑗  can be written as a sum of 𝑜𝑜 rank-1 projections: 

𝐴𝐴𝑗𝑗  = 𝑇𝑇𝑗𝑗1 + 𝑇𝑇𝑗𝑗2 +  … + 𝑇𝑇𝑗𝑗𝑜𝑜 . 
Note that projections 𝑇𝑇𝑗𝑗𝑙𝑙  and 𝑇𝑇𝑚𝑚𝑝𝑝  are orthogonal if  𝑗𝑗 ≠ 𝑚𝑚. De_ne the rank-𝑘𝑘 projections 
𝑄𝑄1, … , 𝑄𝑄𝑜𝑜  by 

𝑄𝑄𝑙𝑙  =  𝑇𝑇1𝑙𝑙  + 𝑇𝑇2𝑙𝑙  + ⋯ +  𝑇𝑇𝑘𝑘𝑙𝑙 . 
This gives 𝐴𝐴 = 𝑄𝑄𝑙𝑙 + 𝑄𝑄2  +  … + 𝑄𝑄𝑜𝑜 . 
Lemma(1.2.5)[45]: Let 𝐴𝐴 be a positive operator with finite spectrum contained in the 
rationals ℚ, such that all spectral projections are infinite dimensional, and also such that 
‖𝐴𝐴‖ > 1. Then 𝐴𝐴 is a finite sum of self-adjoint projections. 
Proof.  By hypothesis, there are mutually orthogonal infinite-rank projections 𝑃𝑃1, … , 𝑃𝑃𝑛𝑛  and 
positive rational numbers 𝑜𝑜1 ≥  𝑜𝑜2 ≥ ⋯ ≥ 𝑜𝑜𝑛𝑛  such that 

𝐴𝐴 = 𝑜𝑜1𝑃𝑃1 + ⋯ + 𝑜𝑜𝑛𝑛 𝑃𝑃𝑛𝑛 . 
By hypothesis ‖𝐴𝐴‖ > 1, hence 𝑜𝑜1 >  1. 
Write 𝑜𝑜𝑖𝑖 =  𝑠𝑠𝑖𝑖 /𝑤𝑤𝑖𝑖  with  𝑠𝑠𝑖𝑖and 𝑤𝑤𝑖𝑖  positive integers, and let 𝑠𝑠 = ∑  𝑠𝑠𝑖𝑖 , 𝑤𝑤 =𝑛𝑛

𝑖𝑖=1 ∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1  . We may 

assume 𝑠𝑠 ≥ 𝑤𝑤, for otherwise we can choose 𝑚𝑚 ∈ ℕsuch that 
𝑚𝑚𝑠𝑠1 + 𝑠𝑠2 + ⋯  + 𝑠𝑠𝑛𝑛  ≥  𝑚𝑚𝑤𝑤1 + 𝑤𝑤2  + ⋯ + 𝑤𝑤𝑛𝑛  

and replace 𝑠𝑠1 with 𝑚𝑚𝑠𝑠1 and 𝑤𝑤 with 𝑚𝑚𝑤𝑤1. 
Each 𝑃𝑃𝑖𝑖  can be written as a sum of 𝑤𝑤𝑖𝑖  mutually orthogonal infinite rank projections 𝑃𝑃𝑖𝑖𝑗𝑗  , 𝑗𝑗 =
1, … , 𝑤𝑤𝑖𝑖  which then allows us to write  

𝐴𝐴 = � � 𝑜𝑜𝑖𝑖 𝑃𝑃𝑖𝑖𝑗𝑗

𝑤𝑤𝑖𝑖

𝑗𝑗 =1

𝑛𝑛

𝑖𝑖=1

. 

The operator is now a linear combination of ∑ 𝑤𝑤𝑖𝑖 = 𝑤𝑤 mutually orthogonal Projections of 
infinite rank, and the sum of the coefficients is now an integer ∑ 𝑤𝑤𝑖𝑖 𝑜𝑜𝑖𝑖 = ∑ 𝑠𝑠𝑖𝑖 = 𝑠𝑠. Since 
𝑠𝑠 ≥ 𝑤𝑤, Lemma (1.2.4) implies that 𝐴𝐴 can be written as a sum of s projections.  
Lemma (1.2.6)[45]: Let 𝐴𝐴 be a positive operator which has a projection-decomposition. 
Then either 𝐴𝐴 is a projection or ‖𝐴𝐴‖ > 1. 
Proof. Suppose, to obtain a contradiction, that ‖𝐴𝐴‖ ≤ 1 and that 𝐴𝐴 is not a projection. By 
assumption, A = ∑ Pi  with the series converging strongly. 

Thus A − Pi ≥  0 for all i. Then Pi(A −  Pi)Pi ≥  0, so PiAPi  ≥ Pi. 
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Let Ki  = Piℋ and B = PiA| Ki  . Then Bi is positive and Bi ≥ Ik   (the identity operator 
on Ki). Since ‖Bi ‖ ≤ 1, this implies Bi = Ik  , and thus 

PiAPi = Pi. 
Now, Pi = Pi(∑ Pjj  )Pi = Pi + ∑ PiPjj≠i Pi  ,so ∑ Pij≠i PjPi = 0 . Since each PiPjPi ≥ 0 , this 
implies PiPjPi = 0. Thus, �PjPi�

∗
(PjPi) =  0, so PjPi = 0. Since this is true for arbitrary i, j 

with i ≠  j, this shows that A is the sum of mutually orthogonal projections, and hence is 
itself a projection. 
The contradiction shows the result. 
Proposition(1.2.7)[45]: Let 𝐴𝐴 be a positive operator in 𝐵𝐵(ℋ) with the property that all 
nonzero spectral projections for 𝐴𝐴 are of infinite rank. If ‖𝐴𝐴 ‖ > 1, then 𝐴𝐴 admits a 
projection decomposition as a sum of infinite rank projections.  
Proof. We will show that 𝐴𝐴 can be written as a sum 𝐴𝐴 = ∑ 𝐴𝐴𝑖𝑖  

∞
𝑖𝑖=1  of positive operators, each 

satisfying the hypotheses of Lemma(1.2.5), where the sum converges in the strong operator 
topology. We can then decompose each of the operators 𝐴𝐴𝑖𝑖  as a finite sum of projections 
𝐴𝐴𝑖𝑖𝑗𝑗 and then re-enumerate with a single index to obtain a sequence 𝑄𝑄𝑖𝑖  of projections which 
sum to 𝐴𝐴 in 𝑆𝑆𝑆𝑆𝑇𝑇. Indeed, the partial sums of ∑ 𝑄𝑄𝑖𝑖  are dominated by 𝐴𝐴, hence∑ 𝑄𝑄𝑖𝑖  converges 
strongly to some operator 𝐶𝐶, and since the partial sums of ∑ 𝐴𝐴𝑖𝑖  are also partial sums of ∑ 𝑄𝑄𝑖𝑖  
, the sequence of partial sums of  ∑ 𝑄𝑄𝑖𝑖   has a subsequence which converges to 𝐴𝐴, and hence 
𝐶𝐶 = 𝐴𝐴. 

By hypothesis, we have ‖𝐴𝐴‖ > 1. We may choose a positive rational number   𝛼𝛼 > 1 
and a nonzero spectral projection 𝐺𝐺 for 𝐴𝐴 such that 𝐴𝐴 ≥ 𝛼𝛼𝐺𝐺. 

Let 𝐵𝐵 = 𝐴𝐴 −  𝛼𝛼𝐺𝐺, so that 𝐵𝐵 ≥ 0. Using a standard argument, we can write 𝐵𝐵 =
∑ 𝐵𝐵𝑖𝑖

∞
𝑖𝑖=1 , where each 𝐵𝐵𝑖𝑖  is a positive rational multiple of a spectral projection for 𝐴𝐴, with 

convergence in the 𝑆𝑆𝑆𝑆𝑇𝑇. We can write 𝐺𝐺 = ∑ 𝐺𝐺𝑖𝑖 , 𝐺𝐺𝑖𝑖  as an infinite direct sum of nonzero 
infinite rank projections, with the requirement that 𝐺𝐺𝑖𝑖  be a subprojection of 𝐺𝐺 which 
commutes with all the spectral projections for 𝐴𝐴. (This can clearly be done when the 
spectral projections for 𝐴𝐴 are all of infinite rank.) Now, let 𝐴𝐴𝑖𝑖 = 𝛼𝛼𝐺𝐺𝑖𝑖 + 𝐵𝐵𝑖𝑖 . We have  

‖𝐴𝐴𝑖𝑖 ‖ ≥ 𝛼𝛼 > 1. 
By Lemma(1.2.5), it follows that 𝐴𝐴𝑖𝑖  is a finite sum of projections. By the 

construction, we have the requisite form 𝐴𝐴 = ∑ 𝐴𝐴𝑖𝑖 . 
Proposition(1.2.8)[45]: Let 𝐴𝐴 be a positive operator in 𝐵𝐵(ℋ) which is diagonal with 
respect to some orthonormal basis {𝑒𝑒𝑖𝑖 } for the Hilbert space ℋ. Suppose ‖𝐴𝐴‖𝑒𝑒𝑠𝑠𝑠𝑠  > 1. Then 
there is a sequence of rank-1 projections {𝑃𝑃𝑖𝑖 }𝑖𝑖=1

∞ = 1 such that 𝐴𝐴 = ∑ 𝑃𝑃𝑖𝑖 , where the sum 
converges in the strong operator topology.  
Proof. Write 𝐴𝐴 as diag (𝑅𝑅0, 𝑅𝑅1, … ) and let 𝐸𝐸𝑛𝑛 =  𝑒𝑒𝑛𝑛 ⊗  𝑒𝑒𝑛𝑛  . Since ‖𝐴𝐴‖𝑒𝑒𝑠𝑠𝑠𝑠  > 1, there is a 
constant 𝛼𝛼 >  1 such that 𝑅𝑅𝑖𝑖 ≥ 𝛼𝛼 for infinitely many 𝑖𝑖. Let 𝑘𝑘 ≥ 2 be an integer such that 
1 + 2/(𝑘𝑘 − 1) ≤ 𝛼𝛼 . Permuting if necessary, we can without loss of generality assume that 
the indices 𝑛𝑛 for which 𝑅𝑅𝑛𝑛 < 𝛼𝛼 are all multiples of  𝑘𝑘. 

Let 𝐵𝐵0  =  𝑅𝑅0𝐸𝐸0 + ⋯ + 𝑅𝑅𝑘𝑘−1 𝐸𝐸𝑘𝑘−1. Therefore, we have rank (𝐵𝐵0)  ≤ 𝑘𝑘 and Trace (𝐵𝐵0) =
∑ 𝑅𝑅𝑖𝑖

𝑘𝑘−1
0 ≥ 𝑅𝑅0 + (𝑘𝑘 − 1)𝛼𝛼 ≥ 𝑅𝑅0 + (𝑘𝑘 − 1) �1 + 2

𝑘𝑘−1
� = 𝑅𝑅0 + 𝑘𝑘 + 1. 

Let 𝐿𝐿0 be the greatest integer less than trace (𝐵𝐵0). Then 𝐿𝐿0 ≥ 𝑘𝑘 + 1. Define �́�𝑅𝑘𝑘−1 to 
be the real number 0 ≤ �́�𝑅𝑘𝑘−1 ≤  𝑅𝑅𝑘𝑘−1 such that if 

�̀�𝐵0 = 𝑅𝑅0𝐸𝐸0  + ⋯ + 𝑅𝑅𝑘𝑘−2𝐸𝐸𝑘𝑘−2 + �̀�𝑅𝑘𝑘−1𝐸𝐸𝑘𝑘−1, 
then 

𝑤𝑤𝑜𝑜𝑅𝑅𝑐𝑐𝑒𝑒��̀�𝐵0� = 𝐿𝐿0 ≥ 𝑘𝑘 +  1 > 𝑜𝑜𝑅𝑅𝑛𝑛𝑘𝑘��̀�𝐵0�. 
By Proposition(1.2.3), �̀�𝐵0  can be written as a sum of 𝐿𝐿0 rank-1 projections. 
In the next step, let 𝑅𝑅𝑘𝑘−1

′′ = 𝑅𝑅𝑘𝑘−1 − �́�𝑅𝑘𝑘−1 and let 
𝐵𝐵1 = 𝑅𝑅𝑘𝑘−1

′′ 𝐸𝐸𝑘𝑘−1  + 𝑅𝑅𝑘𝑘 𝐸𝐸𝑘𝑘 + 𝑅𝑅𝑘𝑘+1𝐸𝐸𝑘𝑘+1 + ⋯ + 𝑅𝑅2𝑘𝑘−1𝐸𝐸2𝑘𝑘−1. 
Thus rank (𝐵𝐵1) ≤  𝑘𝑘 + 1 and 
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Trace  (𝐵𝐵1) =  𝑅𝑅𝑘𝑘−1
′′ + 𝑅𝑅𝑘𝑘 + (𝑅𝑅𝑘𝑘+1 + ⋯ + 𝑅𝑅2𝑘𝑘−1 ) ≥  𝑅𝑅𝑘𝑘−1

′′  + 𝑅𝑅𝑘𝑘 + (𝑘𝑘 − 1)𝛼𝛼 
  

≥ 𝑅𝑅𝑘𝑘−1
′′ + 𝑅𝑅𝑘𝑘 + (𝑘𝑘 − 1) �1 +

2
𝑘𝑘 − 1

� = 𝑅𝑅𝑘𝑘−1
′′ + 𝑅𝑅𝑘𝑘 + 𝑘𝑘 + 1 ≥ 𝑜𝑜𝑅𝑅𝑛𝑛𝑘𝑘(𝐵𝐵1). 

Construct 𝐵𝐵1
′  in a similar manner, so that its trace is an integer greater than or equal 

to its rank. Then 𝐵𝐵1
′  can be written as a sum of rank-1 projections using Proposition(1.2.3). 

Proceeding recursively in a like manner, we may write 𝐴𝐴 = ∑ 𝐵𝐵𝑗𝑗
′∞

𝑗𝑗 =1  converging in 𝑆𝑆𝑆𝑆𝑇𝑇, 
where each 𝐵𝐵𝑗𝑗

′   is a positive operator supported in 𝐸𝐸𝑗𝑗𝑘𝑘 −1 + ⋯ + 𝐸𝐸(𝑗𝑗 +1)𝑘𝑘−1 and with trace 
(𝐵𝐵𝑗𝑗

′ )  an integer that is greater than or equal to rank(𝐵𝐵𝑗𝑗
′ ).    Invoking Proposition(1.2.3) again 

to write each 𝐵𝐵𝑗𝑗
′  as a sum of rank-1 projections, the proposition is showed. 

 Theorem(1.2.9)[45]: Let 𝐴𝐴 be a positive operator in 𝐵𝐵(ℋ) for ℋ a real or complex Hilbert 
space with infinite dimension, and suppose ‖𝐴𝐴‖ 𝑒𝑒𝑠𝑠𝑠𝑠 >  1. Then 𝐴𝐴 has a projection 
decomposition 
Proof . Write 𝐴𝐴 = 𝐴𝐴1 +  𝐴𝐴2, where 𝐴𝐴1 and 𝐴𝐴2 respectively denote the nonatomic and purely 
atomic parts of 𝐴𝐴. Then ‖𝐴𝐴1‖𝑒𝑒𝑠𝑠𝑠𝑠 = ‖𝐴𝐴1‖ , and ‖𝐴𝐴‖𝑒𝑒𝑠𝑠𝑠𝑠 =  max{‖𝐴𝐴1‖, ‖𝐴𝐴2‖𝑒𝑒𝑠𝑠𝑠𝑠  }. So 
‖𝐴𝐴‖𝑒𝑒𝑠𝑠𝑠𝑠 >  1 implies ‖𝐴𝐴1‖  >  1 or ‖𝐴𝐴2‖𝑒𝑒𝑠𝑠𝑠𝑠 >  1. Suppose first that ‖𝐴𝐴1‖ > 1. Then there is 
a nonzero spectral projection 𝑃𝑃 for 𝐴𝐴1 and a constant 𝛼𝛼 > 1 such that 𝐴𝐴1𝑃𝑃 ≥ 𝛼𝛼𝑃𝑃. Let 𝑄𝑄 be a 
nonzero spectral projection for 𝐴𝐴1 dominated by 𝑃𝑃 such that 𝑃𝑃 − 𝑄𝑄 ≠  0. 
Then 𝐴𝐴1 − 𝛼𝛼𝑄𝑄 satisfies the hypotheses of Proposition (1.2.7), so is projection 
decomposable. Also, 𝑄𝑄𝐴𝐴2 = 𝐴𝐴2𝑄𝑄 = 0, 𝑠𝑠𝑜𝑜 𝐴𝐴2 + 𝛼𝛼𝑄𝑄 is a diagonal operator with essential 
norm greater than or equal to  𝛼𝛼, and so it is projection decomposable by Proposition 
(1.2.8). The result follows by decomposing 𝐴𝐴1 − 𝛼𝛼𝑄𝑄 and 𝐴𝐴2 − 𝛼𝛼𝑄𝑄 as sums of projections 
and combining the series. 
For the case ‖𝐴𝐴1‖ ≤ 1 and ‖𝐴𝐴2‖𝑒𝑒𝑠𝑠𝑠𝑠 >  1, we use a similar argument. There is a constant 
𝛼𝛼 > 1 and an infinite rank spectral projection 𝑃𝑃 for 𝐴𝐴2 such that 𝐴𝐴2 − 𝛼𝛼𝑃𝑃 ≥ 0. Then 𝑃𝑃 
dominates a projection 𝑄𝑄 that commutes with 𝐴𝐴2 such that both 𝑄𝑄 and 𝑃𝑃 −  𝑄𝑄 are of infinite 
rank. Then 𝐴𝐴2 − 𝛼𝛼𝑄𝑄 satisfies Proposition (1.2.8) and hence has a projection decomposition. 
The operator 𝐴𝐴1 + 𝛼𝛼𝑄𝑄 has norm greater than or equal to 𝛼𝛼 and all of its nonzero spectral 
projections have infinite rank, so it satisfies the hypotheses of Proposition(1.2.7). Thus, 
𝐴𝐴1 + 𝛼𝛼𝑄𝑄 has a projection decomposition, and we combine this decomposition with the 
decomposition of 𝐴𝐴2 + 𝛼𝛼𝑄𝑄 to get a projection decomposition for 𝐴𝐴.  
Let ℋ be a finite or countably infinite dimensional Hilbert space. Let �𝑥𝑥𝑗𝑗 �

𝑗𝑗 ∈𝕁𝕁
be a frame for 

ℋ, where 𝕁𝕁 is some index set. Consider the standard frame operator defined by 
𝑆𝑆𝑤𝑤 = �〈𝑤𝑤, 𝑥𝑥𝑗𝑗 〉𝑥𝑥𝑗𝑗  =

𝑗𝑗 ∈𝕁𝕁

��𝑥𝑥𝑗𝑗 ⊗ 𝑥𝑥𝑗𝑗 �𝑤𝑤
𝑗𝑗 ∈𝕁𝕁

. 

Thus, 𝑆𝑆 = ∑ 𝑥𝑥𝑗𝑗 ⊗ 𝑥𝑥𝑗𝑗𝕁𝕁 , where this series of positive rank-1 operators converges in the strong 
operator topology (i.e., the topology of pointwise convergence). 
In the special case where each �𝑥𝑥𝑗𝑗  � =  1, 𝑆𝑆 is the sum of the rank-1 projections 
𝑃𝑃𝑗𝑗  = 𝑥𝑥𝑗𝑗 ⊗ 𝑥𝑥𝑗𝑗  . If we let 𝑢𝑢𝑗𝑗 = 𝑆𝑆−1/2𝑥𝑥𝑗𝑗 , then it is well-known that �𝑢𝑢𝑗𝑗 �

𝑗𝑗 ∈𝕁𝕁
 is a Parseval frame 

(i.e., tight with frame bound 1). If each �𝑥𝑥𝑗𝑗 � = 1, then �𝑢𝑢𝑗𝑗 �
𝑗𝑗 ∈𝕁𝕁

 is an ellipsoidal tight frame 
for the ellipsoidal surface 𝜀𝜀𝑆𝑆−1/2 = 𝑆𝑆−1/2𝑆𝑆1 . 
Moreover, it is well-known (see [79]) that a sequence �𝑥𝑥𝑗𝑗 �

𝑗𝑗 ∈𝕁𝕁
⊆ ℋ is a tight frame for ℋ if 

and only if the frame operator 𝑆𝑆 is a positive scalar multiple of the identity, i.e., 𝑆𝑆 = 𝐾𝐾𝐼𝐼, and 
in this case 𝐾𝐾 is the frame bound. 

The link between Theorem(1.2.9) and Theorem(1.2.11) is the following: 
Proposition(1.3.10)[45]: Let 𝑇𝑇 be a positive invertible operator in 𝐵𝐵(ℋ) , and let 
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 𝐾𝐾 > 0 be a positive constant. The ellipsoidal surface ℰ𝑇𝑇  =  𝑇𝑇𝑆𝑆1 contains a tight frame {𝑢𝑢𝑖𝑖 } 
with frame bound 𝐾𝐾 if and only if the operator 𝑅𝑅 =  𝐾𝐾𝑇𝑇−2 admits a projection 
decomposition. In this case, 𝑅𝑅 is the frame operator for the spherical frame {𝑇𝑇−1𝑢𝑢𝑖𝑖 }. 
Proof.  We present the proof in the infinite dimensional setting, and note that the 
calculations in the finite dimensional case are identical but do not require discussion of 
convergence. Let 𝕁𝕁 be a finite or infinite index set. 
Assume 𝜀𝜀𝑇𝑇  contains a tight frame �𝑢𝑢𝑗𝑗 �

𝑗𝑗 ∈𝕁𝕁
with frame bound 𝐾𝐾. Then ∑ 𝑢𝑢𝑗𝑗 ⊗ 𝑢𝑢𝑗𝑗𝑗𝑗 ∈𝕁𝕁 = 𝐾𝐾𝐼𝐼, with 

the series converging in the strong operator topology. 
Let 𝑥𝑥𝑗𝑗 ∶=  𝑇𝑇−1𝑢𝑢𝑗𝑗  ∈ 𝑆𝑆1 , so 𝑥𝑥𝑗𝑗 ⊗ 𝑥𝑥𝑗𝑗  are projections. We can then compute: 

𝑅𝑅 = 𝐾𝐾𝑇𝑇−2 =  𝑇𝑇−1 �� 𝑢𝑢𝑗𝑗 ⊗ 𝑢𝑢𝑗𝑗
𝑗𝑗 ∈𝕁𝕁

� 𝑇𝑇−1 = � 𝑇𝑇−1𝑢𝑢𝑗𝑗
𝑗𝑗 ∈𝕁𝕁

⊗ 𝑇𝑇−1𝑢𝑢𝑗𝑗 = � 𝑥𝑥𝑗𝑗 ⊗ 𝑥𝑥𝑗𝑗
𝑗𝑗 ∈𝕁𝕁

. 

This shows that 𝑅𝑅 can be decomposed as required. Conversely, suppose 𝑅𝑅 admits a 
projection decomposition 𝑅𝑅 = ∑ 𝑃𝑃𝑗𝑗  , where �𝑃𝑃𝑗𝑗 � are self-adjoint projections and 
convergence is in the strong operator topology. We can assume that the 𝑃𝑃𝑗𝑗  have rank-1, for 
otherwise we can decompose each 𝑃𝑃𝑗𝑗 as a strongly convergent sum of rank-1 projections, and 
re-enumerate appropriately. Since 𝑃𝑃𝑗𝑗 ≥  0, the convergence is independent of the 
enumeration used. Write 𝑃𝑃𝑗𝑗 = 𝑥𝑥𝑗𝑗 ⊗ 𝑥𝑥𝑗𝑗 for some unit vector 𝑥𝑥𝑗𝑗  . Letting 𝑢𝑢𝑗𝑗  =  𝑇𝑇𝑥𝑥𝑗𝑗  , we have 
𝑢𝑢𝑗𝑗  ∈ 𝜀𝜀𝑇𝑇 , and we also have 

𝐾𝐾𝐼𝐼 =  𝑇𝑇𝑅𝑅𝑇𝑇 = 𝑇𝑇 �� 𝑥𝑥𝑗𝑗 ⊗ 𝑥𝑥𝑗𝑗
𝑗𝑗 ∈𝕁𝕁

� 𝑇𝑇 = � 𝑇𝑇𝑥𝑥𝑗𝑗 ⊗ 𝑇𝑇𝑥𝑥𝑗𝑗 = � 𝑢𝑢𝑗𝑗 ⊗ 𝑢𝑢𝑗𝑗 .
𝑗𝑗 ∈𝕁𝕁𝑗𝑗 ∈𝕁𝕁

 

This shows that∑ 𝑢𝑢𝑗𝑗 ⊗ 𝑢𝑢𝑗𝑗   converges in the strong operator topology to 𝐾𝐾𝐼𝐼. 
Thus, �𝑢𝑢𝑗𝑗 �

𝑗𝑗 ∈𝕁𝕁
 is a tight frame on 𝜀𝜀𝑇𝑇  , as required.  

Theorem(1.2. 11)[45]: Let 𝑇𝑇 be a bounded invertible operator on a real or complex Hilbert 
space. Then the ellipsoidal surface 𝜀𝜀𝑇𝑇  contains a tight frame. If ℋ is finite dimensional with 
𝑛𝑛 = 𝑑𝑑𝑖𝑖𝑚𝑚ℋ, then for any integer 𝑘𝑘 ≥  𝑛𝑛, 𝜀𝜀𝑇𝑇  contains a tight frame of length 𝑘𝑘, and every 
𝐸𝐸𝑇𝑇𝐹𝐹 on 𝜀𝜀𝑇𝑇  of length 𝑘𝑘 has frame bound 𝐾𝐾 = 𝑘𝑘[ 𝑤𝑤𝑜𝑜𝑅𝑅𝑐𝑐𝑒𝑒(𝑇𝑇−2]−1. If 𝑑𝑑𝑖𝑖𝑚𝑚ℋ = ∞  then for any 
constant 𝐾𝐾 > ‖𝑇𝑇−2‖𝑒𝑒𝑠𝑠𝑠𝑠

−1  𝜀𝜀𝑇𝑇contains a tight frame with frame bound K. 
We begin by showing that every ellipsoid can be scaled to contain an orthonormal basis. 
 
Proof. Let 𝜀𝜀 be an ellipsoid. Then 𝜀𝜀 =  𝜀𝜀𝑇𝑇  =  𝑇𝑇𝑆𝑆1 for some positive invertible 𝑇𝑇 ∈ 𝐵𝐵(ℋ) . 
Let 𝐾𝐾 be a positive constant, and let 𝑅𝑅 = 𝐾𝐾𝑇𝑇−2. 
The condition 𝐾𝐾 > ‖𝑇𝑇−2‖𝑒𝑒𝑠𝑠𝑠𝑠

−1  implies ‖𝑅𝑅‖𝑒𝑒𝑠𝑠𝑠𝑠 > 1. So, by Theorem (1.2.9), 𝑅𝑅 admits a 
projection decomposition, and thus Proposition(1.2.10) implies that E contains a tight frame 
with frame bound 𝐾𝐾. 
In the finite dimensional case, let 𝑛𝑛 =  𝑑𝑑𝑖𝑖𝑚𝑚ℋ. Proposition (1.2.10) states that ℰ will contain 
a tight frame with frame bound 𝐷𝐷 if and only if 𝐾𝐾𝑇𝑇−2 admits a projection decomposition, 
and by Proposition(1.2.3) this happens if and only if trace(𝐾𝐾𝑇𝑇−2) is an integer 𝑘𝑘 ≥ 𝑛𝑛, and in 
this case 𝑘𝑘 is the length of the frame. Thus, we have 𝐾𝐾 = 𝑘𝑘[𝑤𝑤𝑜𝑜𝑅𝑅𝑐𝑐𝑒𝑒(𝑇𝑇−2)]−1. Therefore, 
every ellipsoid ℰ = ℰ𝑇𝑇  contains a tight frame of every length 𝑘𝑘 ≥ 𝑛𝑛, and every such tight 
frame has frame bound 𝑘𝑘[𝑤𝑤𝑜𝑜𝑅𝑅𝑐𝑐𝑒𝑒(𝑇𝑇−2)]−1.  
Corollary(1.2.12)[45]: Every positive invertible operator 𝑆𝑆 on a separable Hilbert space ℋ 
is the frame operator for a spherical frame. If ℋ has finite dimension n, then for every 
integer 𝑘𝑘 ≥  𝑛𝑛, 𝑆𝑆 is the frame operator for a spherical frame of length 𝑘𝑘, and the radius of 
the sphere is �𝑤𝑤𝑜𝑜𝑅𝑅𝑐𝑐𝑒𝑒(𝑆𝑆)/𝑘𝑘.  If ℋ is infinite dimensional, the radius of the sphere can be 
taken to be any positive number 

𝑜𝑜 < ‖𝑆𝑆‖𝑒𝑒𝑠𝑠𝑠𝑠
1/2. 
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Proof. In the finite dimensional case, let 𝑐𝑐 = 𝑘𝑘/𝑤𝑤𝑜𝑜𝑅𝑅𝑐𝑐𝑒𝑒(𝑆𝑆) and 𝐴𝐴 = 𝑐𝑐𝑆𝑆, so that trace (𝐴𝐴) = 𝑘𝑘. 
Then,by Proposition(1.2.3), 𝐴𝐴 has a projection decomposition into k rank-1 projections, 
making 𝐴𝐴 the frame operator for the frame of unit vectors ‖𝑥𝑥𝑖𝑖 ‖𝑖𝑖=1

𝑘𝑘 . Thus, 𝑆𝑆 is the frame 
operator for �𝑥𝑥𝑖𝑖 /√𝑐𝑐�

𝑖𝑖=1
𝑘𝑘

. 
When ℋ has infinite dimension, let 𝑐𝑐 be any constant greater than ‖𝑆𝑆‖𝑒𝑒𝑠𝑠𝑠𝑠

−1  and let 𝐴𝐴 = 𝑐𝑐𝑆𝑆. 
The hypotheses of Theorem (1.2.9) are satisfied, so 𝐴𝐴 admits a projection decomposition. 
Then 𝐴𝐴 is the frame operator for a frame {𝑥𝑥𝑖𝑖 } of unit vectors, so S is the frame operator for 
the spherical frame �𝑥𝑥𝑖𝑖 /√𝑐𝑐�. 
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Chapter 2 
Parseval Frames and Prescribed  Norms 

We further investigate several of Parseval frame properties. Finally, we apply the 
algorithm to several numerical examples . Let ℋ be a finite dimensional (real or complex) 
Hilbert space and let {𝑅𝑅𝑖𝑖 }𝑖𝑖=1

∞  be a non-increasing sequence of positive numbers. Given a 
finite sequence of vectors    ℱ = {𝑓𝑓𝑖𝑖 }𝑖𝑖=1

𝑝𝑝  in  ℋ  we find necessary and sufficient 
conditions for the existence of 𝑜𝑜 ∈ 𝑁𝑁 ∪ {∞} and a Bessel sequence  𝒢𝒢 = {𝑔𝑔𝑖𝑖 }𝑖𝑖=1

𝑜𝑜  in ℋ such 
that ℱ ∪ 𝒢𝒢 is a tight frame for ℋ and‖𝑔𝑔𝑖𝑖 ‖2 = 𝑅𝑅𝑖𝑖   for 1 ≤ i ≤ r. 
 
Section(2.1)[71]: A Generalization Of Gram–Schmidt Orthogonalization  
Let ℋbe a finite–dimensional Hilbert space. A sequence (𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 ⊂ ℋ forms a frame, if 
there exist constants 0 < 𝐴𝐴 ≤ 𝐵𝐵 < ∞ such that 

𝐴𝐴‖𝑔𝑔‖2 ≤ ∑ |〈𝑓𝑓𝑖𝑖 , 𝑔𝑔〉|2 ≤ 𝐵𝐵‖𝑔𝑔‖2𝑛𝑛
𝑖𝑖=1   for all 𝑔𝑔 ∈ ℋ.                                          (1) 

Frames have turned out to be an essential tool for many applications such as, for example, 
data transmission, due to their robustness not only against noise but also against losses and 
due to their freedom in design [74, 47]. Their main advantage lies in the fact that a frame 
can be designed to be redundant while still providing a reconstruction formula. Since the 
frame operator 𝑆𝑆𝑔𝑔 = ∑ 〈𝑔𝑔, 𝑓𝑓𝑖𝑖 〉𝑛𝑛

𝑖𝑖=1 𝑓𝑓𝑖𝑖  is invertible, each vector 𝑔𝑔 ∈ ℋ can be always 
reconstructed from the values (𝑔𝑔, 𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛   via 

𝑔𝑔 = 𝑆𝑆𝑆𝑆−1𝑔𝑔 = �  
𝑛𝑛

𝑖𝑖=1

〈𝑔𝑔, 𝑓𝑓𝑖𝑖 〉 𝑆𝑆−1𝑓𝑓𝑖𝑖 . 

However, the inverse frame operator is usually very complicated to compute. This 
difficulty can be avoided by choosing a frame whose frame operator equals the identity. 
This is one reason why Parseval frames, i.e., frames for which 𝑆𝑆 = 𝐼𝐼𝑑𝑑 or equivalently for 
which 𝐴𝐴 and 𝐵𝐵 in (1) can be chosen as 𝐴𝐴 = 𝐵𝐵 = 1, enjoy rapidly increasing attention. 
Another reason is that quite recently it was shown by Benedetto and Fickus [36] that in ℝ𝑑𝑑  
as well as in ℂ𝑑𝑑  finite equal norm Parseval frames, i.e., finite Parseval frames whose 
elements all have the same norm, are exactly those sequences which are in equilibrium 
under the so–called frame force, which parallels a Coulomb potential law in electrostatics. 
In fact, they demonstrate that in this setting both orthonormal sets and finite equal norm 
Parseval frames arise from the same optimization problem. Thus, in general, Parseval 
frames are perceived as the most natural generalization of orthogonal bases [183],[74]. 

Our algorithm is designed to be iterative in the sense that one vector is added each 
time to an already modified set of vectors and then the new set is adjusted again. In each 
iteration it not only computes a Parseval frame for the span of the sequence of vectors 
already dealt with at this point, but also preserves redundancy in an exact way. Moreover, it 
reduces to Gram–Schmidt orthogonalization if applied to a sequence of linearly independent 
vectors and each time a linearly dependent vector is added, the algorithm computes the 
Parseval frame which is closest in 𝑙𝑙2 –norm to the already modified sequence of vectors. 

The section is organized as follows. In this  Section  we first state the algorithm and 
show that it in fact generates a special Parseval frame in each iteration. Additional 
properties of the algorithm such as, for example, the preservation of redundancy, are treated 
in this  Section. Finally, in this Section  we first compare the complexity of our algorithm 
with the complexity of the Gram–Schmidt orthogonalization and then study the different 
steps of the algorithm applied to several numerical examples. Throughout this section let ℋ 
denote a finite–dimensional Hilbert space. We start by describing our iterative algorithm. 
On input 𝑛𝑛 ∈ ℕ and 𝑓𝑓 = (𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 ⊂ ℋ the procedure 𝐺𝐺𝐺𝐺𝑆𝑆𝑃𝑃 (Generalized Gram–Schmidt 
orthogonalization to compute Parseval frames) outputs a Parseval frame 𝑔𝑔 = (𝑔𝑔𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 ⊂ ℋ 
for span{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 } with special properties (see Theorem 2.2). procedure 𝐺𝐺𝐺𝐺𝑆𝑆𝑃𝑃(𝑛𝑛, 𝑓𝑓;  𝑔𝑔) 
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0   for 𝑘𝑘: = 1 to 𝑛𝑛 do 
1   begin 
2    if 𝑓𝑓𝑘𝑘 = 0 then 
3    𝑔𝑔𝑘𝑘 ∶= 0; 
4    else 
5     begin 
6    𝑔𝑔𝑘𝑘 ∶= 𝑓𝑓𝑘𝑘 − ∑ 〈𝑓𝑓𝑘𝑘 , 𝑔𝑔𝑗𝑗 〉𝑘𝑘−1

𝑗𝑗 =1 𝑔𝑔𝑗𝑗 ; 
7   if 𝑔𝑔𝑘𝑘 ≠ 0 then  
8     𝑔𝑔𝑘𝑘 ∶= 1

‖𝑔𝑔𝑘𝑘 ‖
𝑔𝑔𝑘𝑘 ; 

9     else 
10    begin 
11    for 𝑖𝑖: =  1 𝑤𝑤𝑜𝑜 𝑘𝑘 − 1 𝑑𝑑𝑜𝑜 𝑔𝑔𝑖𝑖 ∶= 𝑔𝑔𝑖𝑖 + 1

‖𝑓𝑓𝑘𝑘 ‖2 � 1
�1+‖𝑓𝑓𝑘𝑘 ‖2 − 1� 〈𝑔𝑔𝑖𝑖 , 𝑓𝑓𝑘𝑘 〉𝑓𝑓𝑘𝑘 ; 

12                  𝑔𝑔𝑘𝑘 ∶= 1
�1+‖𝑓𝑓𝑘𝑘 ‖2 𝑓𝑓𝑘𝑘 ;  

13              end; 
14           end; 
15      end; 
end. 
In the remainder of this section the following notation will be used. 
Let Φ denote the mapping(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 ⟼ (𝑔𝑔𝑖𝑖 )𝑖𝑖=1
𝑛𝑛   of a sequence of vectors in ℋ to another 

sequence of vectors in ℋ given by the procedure 𝐺𝐺𝐺𝐺𝑆𝑆𝑃𝑃. We will also use the notation 
((𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 , 𝑔𝑔) ≔ (𝑓𝑓1, … , 𝑓𝑓𝑛𝑛 , 𝑔𝑔) for (𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛 ⊂ ℋ and 𝑔𝑔 ∈ ℋ. 

The following result shows that the algorithm not only produces a Parseval frame for 
span{�𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑘𝑘 �, but even in each iteration also produces a special Parseval frame for 
span{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑘𝑘 }, 𝑘𝑘 = 1, . . . , 𝑛𝑛. 
It is well–known that applying 𝑆𝑆−1

2 to a sequence of vectors (𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑘𝑘  in ℋ yields a Parseval 

frame, where 𝑆𝑆 denotes the frame operator for this sequence (see [182]). Moreover, 
Theorem(2.1. 3) will show that the Parseval frame (𝑆𝑆−1

2𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛   is the closest in 𝑙𝑙2–norm to 

the sequence (𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛  . However, in general the computation of the operator 𝑆𝑆−1

2 is not very 
efficient. In fact, in our algorithm we do not compute 𝑆𝑆−1

2((𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛 ).  Instead in each iteration 

when adding a vector, which is linearly dependent to the already modified vectors, we apply 
𝑆𝑆−1

2 to those vectors and the added one, where here 𝑆𝑆 denotes the frame operator for this 
new set of vectors. This eases the computation in a significant manner, since the set of 
computed vectors already forms a Parseval frame, and nevertheless we compute the closest 
Parseval frame in each iteration. When we add a linearly independent vector, we 
orthogonalize this one vector by using a Gram–Schmidt step. Thus this algorithm is also a 
generalization of Gram–Schmidt orthogonalization. 
Theorem(2.1.1)[71]: Let 𝑛𝑛 ∈ ℕ and (𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 ⊂ ℋ. Then, for each 𝑘𝑘 ∈ {1, . . . , 𝑛𝑛}, the 
sequence of vectors Φ((𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑘𝑘 ) is a Parseval frame for span{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑘𝑘 = 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛�Φ((𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑘𝑘 )�.  
In particular, for each 𝑘𝑘 ∈ {1, . . . , 𝑛𝑛}, the following conditions hold. 
(i)   If 𝑓𝑓𝑘𝑘 ∈ 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(�𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑘𝑘 �} , then 

Φ(�𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑘𝑘 � = (𝑆𝑆−1

2(Φ(�𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑘𝑘−1�, 𝑓𝑓𝑘𝑘 )), 

where 𝑆𝑆 is the frame operator for (Φ ��𝑓𝑓𝑖𝑖 )𝑖𝑖=1 
𝑘𝑘−1�, 𝑓𝑓𝑘𝑘 �. 

 (ii)   If 𝑓𝑓𝑘𝑘  ∉ 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛�(𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑘𝑘−1�, then 

Φ ��𝑓𝑓𝑖𝑖 )𝑖𝑖=1 
𝑘𝑘 � � = �Φ(�𝑓𝑓𝑖𝑖 )𝑖𝑖=1 

𝑘𝑘−1�, 𝑔𝑔𝑘𝑘 �,     𝑔𝑔𝑘𝑘 ∈ ℋ, ‖𝑔𝑔𝑘𝑘 ‖ = 1 
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and 
𝑔𝑔𝑘𝑘 ⊥ Φ ��𝑓𝑓𝑖𝑖 )𝑖𝑖=1 

𝑘𝑘−1� � . 
Proof. We will prove the first claim by induction and meanwhile in each step we show that, 
in particular, the claims in (i) and (ii) hold. For this, let 𝑙𝑙 denote the smallest number in 
{1, . . . , 𝑛𝑛} with 𝑓𝑓𝑙𝑙 ≠ 0. Obviously, for each 𝑘𝑘 ∈ {1, . . . , 𝑙𝑙 − 1}, the generated set of vectors 𝑔𝑔𝑘𝑘  
(see line 3 of 𝐺𝐺𝐺𝐺𝑆𝑆𝑃𝑃) forms a Parseval frame for span�(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑘𝑘 � = {0} and also (i) is fulfilled. 
The hypothesis in (ii) does not apply here. Next notice that in the case 𝑘𝑘 = 𝑙𝑙 we have 
𝑔𝑔𝑘𝑘 ∶= 1

‖𝑓𝑓𝑘𝑘 ‖
 𝑓𝑓𝑘𝑘  (𝑙𝑙𝑖𝑖𝑛𝑛𝑒𝑒 8), which certainly is a Parseval frame for span{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑘𝑘 } = 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{𝑓𝑓𝑘𝑘 }. It 
is also easy to see that (i) and (ii) are satisfied. 
Now fix some 𝑘𝑘 ∈   {𝑙𝑙 + 1, . . . , 𝑛𝑛} and assume that the sequence (𝑔𝑔𝑖𝑖� )𝑖𝑖=1

𝑘𝑘−1 ∶= Φ((𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑘𝑘−1) is a 

Parseval frame for span{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑘𝑘−1 }  =  𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛�(𝑔𝑔𝑖𝑖� )𝑖𝑖=1

𝑘𝑘−1�. We have to study two cases. 
Case 1: The vector 𝑔𝑔𝑘𝑘 ∶= 𝑓𝑓𝑘𝑘  – ∑ 〈𝑓𝑓𝑘𝑘 , 𝑔𝑔𝑗𝑗� 〉𝑘𝑘−1

𝑗𝑗 =1 �̅�𝑔𝑗𝑗  computed in line 6 is trivial. This implies that 
𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑘𝑘−1 } =  𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛�(𝑔𝑔𝑖𝑖� )𝑖𝑖=1
𝑘𝑘−1� =  𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑘𝑘  },                                    (2) 
since otherwise the Gram–Schmidt orthogonalization step would yield a non–trivial vector. 
In particular, only the hypothesis in (i) applies. 

Now let 𝑃𝑃 denote the orthogonal projection of ℋ onto span{𝑓𝑓𝑘𝑘 }. In order to compute 
𝑆𝑆−1

2  , where S denotes the frame operator for ((𝑔𝑔𝑖𝑖� )𝑖𝑖=1
𝑘𝑘−1, 𝑓𝑓𝑘𝑘 ), we first show that each (𝐼𝐼 −

𝑃𝑃)𝑔𝑔𝑖𝑖� , 𝑖𝑖 = 1, . . . , 𝑘𝑘 − 1 is an eigenvector for 𝑆𝑆 with respect to the eigenvalue 1 or the zero 
vector. This claim follows immediately from 

𝑆𝑆(𝐼𝐼 −  𝑃𝑃)𝑔𝑔𝑖𝑖� = �〈(𝐼𝐼 − 𝑃𝑃)𝑔𝑔𝑖𝑖� , �̅�𝑔𝑗𝑗 〉
𝑘𝑘−1

𝑗𝑗 =1

�̅�𝑔𝑗𝑗 + 〈(𝐼𝐼 − 𝑃𝑃)𝑔𝑔𝑖𝑖� , 𝑓𝑓𝑘𝑘 〉𝑓𝑓𝑘𝑘  

                                            =   ∑ 〈(𝐼𝐼 − 𝑃𝑃)𝑔𝑔𝑖𝑖� , �̅�𝑔𝑗𝑗 〉𝑘𝑘−1
𝑗𝑗 =1 �̅�𝑔𝑗𝑗   

                                                =    (𝐼𝐼 − 𝑃𝑃)𝑔𝑔𝑖𝑖�  
since (𝑔𝑔𝑖𝑖� )𝑖𝑖=1

𝑘𝑘−1 is a Parseval frame for span{(𝑔𝑔𝑖𝑖� )𝑖𝑖=1
𝑘𝑘−1 }. Also 𝑓𝑓𝑘𝑘  is an eigenvector for 𝑆𝑆, but 

with respect to the eigenvalue 1 + ‖𝑓𝑓𝑘𝑘 ‖2, which is proven by the following calculation: 

𝑆𝑆𝑓𝑓𝑘𝑘 = �〈𝑓𝑓𝑘𝑘 , �̅�𝑔𝑗𝑗 〉
𝑘𝑘−1

𝑗𝑗 =1

�̅�𝑔𝑗𝑗 + 〈𝑓𝑓𝑘𝑘 , 𝑓𝑓𝑘𝑘 〉𝑓𝑓𝑘𝑘 =  (1 + ‖𝑓𝑓𝑘𝑘 ‖2 𝑓𝑓𝑘𝑘 . 

Using 𝑓𝑓𝑘𝑘  as an eigenbasis for 𝑃𝑃�𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(𝑔𝑔𝑖𝑖� )𝑖𝑖=1
𝑘𝑘−1}� and an arbitrary eigenbasis for (𝐼𝐼 −

 𝑃𝑃)�𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(𝑔𝑔𝑖𝑖� )𝑖𝑖=1
𝑘𝑘−1}�, we can diagonalize S to compute 𝑆𝑆−1

2 . This together with the fact that 
(𝐼𝐼 −  𝑃𝑃)𝑔𝑔𝑖𝑖� , 𝑖𝑖 = 1, . . . , 𝑘𝑘 − 1 is an eigenvector for 𝑆𝑆 with respect to the eigenvalue 1 and that 
𝑆𝑆(𝐼𝐼 − 𝑃𝑃)𝑓𝑓𝑘𝑘 = 0 yields 
𝑆𝑆−1

2𝑔𝑔𝑖𝑖� = 1
�1+‖𝑓𝑓𝑘𝑘 ‖2  𝑝𝑝𝑔𝑔𝑖𝑖� +  (𝐼𝐼 −  𝑃𝑃)𝑔𝑔𝑖𝑖�   for   1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 – 1 

and 
𝑆𝑆−1

2 𝑓𝑓𝑘𝑘 = 1 − 1
�1+‖𝑓𝑓𝑘𝑘 ‖2

𝑓𝑓𝑘𝑘  . 

Comparing these equalities with line 11 and 12 of 𝐺𝐺𝐺𝐺𝑆𝑆𝑃𝑃 shows that in fact 

Φ�𝑓𝑓𝑖𝑖 )𝑖𝑖=1 
𝑘𝑘−1� = �𝑆𝑆−1

2�(𝑔𝑔𝑖𝑖� ),𝑖𝑖=1
𝑘𝑘−1 , 𝑓𝑓𝑘𝑘 ��  , which is (i). By [183] and (14), this immediately 

implies that the sequence Φ((𝑓𝑓𝑖𝑖 )𝑖𝑖=1 
𝑘𝑘 ) is a Parseval frame for span{Φ(�𝑓𝑓𝑖𝑖 )𝑖𝑖=1 

𝑘𝑘 �} =
𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{�𝑓𝑓𝑖𝑖 )𝑖𝑖=1 

𝑘𝑘 �}. 
Case2: The condition in line 7 applies, i.e., we have 𝑔𝑔𝑘𝑘 ∶=  (𝑓𝑓𝑘𝑘 − ∑ 〈𝑓𝑓𝑘𝑘 , �̅�𝑔𝑗𝑗 〉𝑘𝑘−1

𝐽𝐽 =1 �̅�𝑔𝑗𝑗 ) ∕
��𝑓𝑓𝑘𝑘 − ∑ 〈𝑓𝑓𝑘𝑘 , �̅�𝑔𝑗𝑗 〉�̅�𝑔𝑗𝑗

𝑘𝑘−1
𝐽𝐽 =1 �� ≠ 0 . Then we set 𝑔𝑔𝑖𝑖 ∶= 𝑔𝑔𝑖𝑖�  for all 𝑖𝑖 = 1, . . . , 𝑘𝑘 − 1. 

Obviously,‖𝑔𝑔𝑘𝑘 ‖ = 1. Moreover, since by induction hypothesis (𝑔𝑔𝑖𝑖� )𝑖𝑖=1
𝑘𝑘−1 forms a Parseval 

frame, for each 𝑖𝑖 = 1, . . . , 𝑘𝑘 − 1, we have 
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〈𝑔𝑔𝑖𝑖 , 𝑓𝑓𝑘𝑘 − �〈𝑓𝑓𝑘𝑘 , �̅�𝑔𝑗𝑗 〉�̅�𝑔𝑗𝑗

𝐾𝐾−1

𝑗𝑗 =1

〉 = 〈𝑔𝑔𝑖𝑖 , 𝑓𝑓𝑘𝑘 〉 − 〈𝑔𝑔𝑖𝑖 , 𝑓𝑓𝑘𝑘 〉 = 0. 

Thus 𝑔𝑔𝑘𝑘 is normalized vector, which is orthogonal to 𝑔𝑔1, . . . , 𝑔𝑔𝑘𝑘−1. Hence (ii) is satisfied and, 
for all ℎ ∈ 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(𝑔𝑔𝑖𝑖 )𝑖𝑖=1

𝑘𝑘 }, we obtain 

�|〈ℎ, 𝑔𝑔𝑖𝑖 〉|2
𝑘𝑘

𝑖𝑖=1

 = �|〈(𝐼𝐼 − 𝑃𝑃)〉ℎ, 𝑔𝑔𝑖𝑖 |2
𝑘𝑘−1

𝑖𝑖=1

 +  |〈𝑃𝑃ℎ, 𝑔𝑔𝑘𝑘 〉|2  =  ‖(𝐼𝐼 − 𝑃𝑃)ℎ‖2  + ‖𝑃𝑃ℎ‖2 = ‖ℎ‖2, 

where 𝑃𝑃 denotes the orthogonal projection of ℋonto span{𝑔𝑔𝑘𝑘 }. This proves that 
�𝑔𝑔𝑖𝑖 )𝑖𝑖=1 

𝑘𝑘 � = Φ(𝑓𝑓𝑖𝑖 )𝑖𝑖=1 
𝑘𝑘 ) is a Parseval frame for span{Φ(𝑓𝑓𝑖𝑖 )𝑖𝑖=1 

𝑘𝑘 )}. Moreover, we have 
span{Φ((𝑓𝑓𝑖𝑖 )𝑖𝑖=1 

𝑘𝑘 )} = 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1 
𝑘𝑘−1, 𝑓𝑓𝑘𝑘  – ∑ 〈𝑓𝑓𝑘𝑘 , 𝑔𝑔𝑗𝑗 〉𝑘𝑘−1

𝑗𝑗 =1 𝑔𝑔𝑗𝑗  = span{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1 
𝑘𝑘 }. This finishes the 

proof, since the hypothesis in (i) does not apply in this case.  
The algorithm can be seen as a “Gram–Schmidt procedure backwards” in the sense 

that in each iteration, if the added vector is linearly dependent to the already computed 
vectors, not only this vector is modified, but also all the other vectors are rearranged with 
respect to the new vector so that the collection forms a Parseval frame. This way of 
computation will be demonstrated by several examples in Subsection . 
In this section we first determine in general which Parseval frame is the closest to the initial 
sequence and study which properties of our algorithm this result implies. 
Then we investigate several additional properties of the procedure 𝐺𝐺𝐺𝐺𝑆𝑆𝑃𝑃, in particular we 
characterize those sequences, which lead to orthonormal bases, and we show that Φ 
regarded as a map from finite sequences to Parseval frames is “almost” bijective. At last, we 
examine the redundancy of the generated Parseval frame. 
Given a sequence (𝑓𝑓𝑖𝑖 )𝑖𝑖=1 

𝑛𝑛  with frame operator 𝑆𝑆, by [183], the sequence (𝑆𝑆−1
2𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛  always 
forms a Parseval frame. The following result shows that this sequence can in fact be 
characterized as the very same Parseval frame, which is the closest to(𝑓𝑓𝑖𝑖 )𝑖𝑖=1 

𝑛𝑛  𝑖𝑖𝑛𝑛  𝑙𝑙2-norm. 
Theorem(2.1.2)[71]: If (𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 ⊂ ℋ, 𝑛𝑛 ∈  ℕ is any frame for ℋ with frame operator 𝑆𝑆, 
then 

��𝑓𝑓𝑖𝑖 − 𝑆𝑆−1/2𝑓𝑓𝑖𝑖 �2
= 𝑖𝑖𝑛𝑛𝑓𝑓

𝑛𝑛

𝑖𝑖=1

��‖𝑓𝑓𝑖𝑖 − 𝑔𝑔𝑖𝑖 ‖2: (𝑔𝑔𝑖𝑖 )𝑖𝑖=1
𝑛𝑛 is a Parseval frame forℋ 

𝑛𝑛

𝑖𝑖=1

�.  

Moreover, (𝑆𝑆−1/2𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛  is the unique minimizer. 

Proof. Let (𝑒𝑒𝑗𝑗 )𝑗𝑗 =1
𝑑𝑑 , 𝑑𝑑 ∶=  𝑑𝑑𝑖𝑖𝑚𝑚ℋ, be an orthonormal eigenvector basis for ℋ with respect to 

𝑆𝑆 and respective eigenvalues (𝜆𝜆𝑗𝑗 )𝑗𝑗 =1
𝑑𝑑 . Then we can rewrite the left–hand side of the claimed 

inequality in the following way: 

��𝑓𝑓𝑖𝑖 − 𝑆𝑆−1/2𝑓𝑓𝑖𝑖 �2
𝑛𝑛

𝑖𝑖=1

= � ��〈𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉𝑒𝑒𝑗𝑗 −
1

�𝜆𝜆𝑗𝑗

𝑑𝑑

𝑗𝑗 =1

〈𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉𝑒𝑒𝑗𝑗 �

2𝑛𝑛

𝑖𝑖=1

 

                                                    = ∑ ∑ �〈𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉�2 �1 − 1

�𝜆𝜆𝑗𝑗
�

2
𝑑𝑑
𝑗𝑗 =1

𝑛𝑛
𝑖𝑖=1  

                                                    = ∑ �1 − 1

�𝜆𝜆𝑗𝑗
�

2

∑ �〈𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉�2𝑛𝑛
𝑖𝑖=1

𝑑𝑑
𝑗𝑗 =1  

                                                        = ∑ �1 − 1

�𝜆𝜆𝑗𝑗
�

2
𝑑𝑑
𝑗𝑗 =1 𝜆𝜆𝑗𝑗  

                                                      = ∑ �𝜆𝜆𝑗𝑗 − 2�𝜆𝜆𝑗𝑗 + 1�.𝑑𝑑
𝑗𝑗 =1  



23 
 
 

Now let (𝑔𝑔𝑖𝑖 )𝑖𝑖=1
𝑛𝑛  be an arbitrary Parseval frame for ℋ. Using again the eigenbasis and its 

eigenvalues, we obtain 

�‖𝑓𝑓𝑖𝑖 − 𝑔𝑔𝑖𝑖 ‖2 = � ��〈𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉
𝑑𝑑

𝑗𝑗 =1

𝑒𝑒𝑗𝑗 − 〈𝑔𝑔𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉𝑒𝑒𝑗𝑗 �

2𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 

                                                = ∑ ∑ �〈𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉 − 〈𝑔𝑔𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉�2𝑑𝑑
𝑗𝑗 =1

𝑛𝑛
𝑖𝑖=1                                                   

= ∑ ∑ ��〈𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉�2
+ �〈𝑔𝑔𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉�2

− 2𝑅𝑅𝑒𝑒�〈𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉〈𝑔𝑔𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉����������𝑛𝑛
𝑖𝑖=1

𝑑𝑑
𝑗𝑗 =1  

= � ���〈𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉�2
+ ��〈𝑔𝑔𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉�2

− 2𝑅𝑅𝑒𝑒 ��〈𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉〈𝑔𝑔𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉��������
𝑛𝑛

𝑖𝑖=1

�
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

�
𝑑𝑑

𝑗𝑗 =1

 

                       = ∑ �𝜆𝜆𝑗𝑗 + 1 − 2𝑅𝑅𝑒𝑒�∑ 〈𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉〈𝑔𝑔𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉��������𝑛𝑛
𝑖𝑖=1 ��𝑑𝑑

𝑗𝑗 =1 . 
Moreover, we have 
                     ∑ 𝑅𝑅𝑒𝑒�∑ 〈𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉〈𝑔𝑔𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉��������𝑛𝑛

𝑖𝑖=1 � ≤ ∑ ∑ �〈𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉�𝑛𝑛
𝑖𝑖=1

𝑑𝑑
𝑗𝑗 =1

𝑑𝑑
𝑗𝑗 =1 �〈𝑔𝑔𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉�                                                                      

≤ ∑ �∑ �〈𝑓𝑓𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉�2𝑛𝑛
𝑖𝑖=1 �∑ �〈𝑔𝑔𝑖𝑖 , 𝑒𝑒𝑗𝑗 〉�2𝑛𝑛

𝑖𝑖=1
𝑑𝑑
𝑗𝑗 =1  

                        = ∑ �𝜆𝜆𝑗𝑗 .𝑑𝑑
𝑗𝑗 =1  

Combining this estimate with the computations above yields 
     ∑ ‖𝑓𝑓𝑖𝑖 − 𝑔𝑔𝑖𝑖 ‖2 ≥ ∑ �𝜆𝜆𝑗𝑗 − 2�𝜆𝜆𝑗𝑗 + 1� = ∑ �𝑓𝑓𝑖𝑖 − 𝑆𝑆−1/2𝑓𝑓𝑖𝑖 �2

.𝑛𝑛
𝑖𝑖=1

𝑑𝑑
𝑗𝑗 =1

𝑛𝑛
𝑖𝑖=1  

Since (𝑆𝑆−1/2𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛  is a Parseval frame for ℋ, the first claim follows. 

For the moreover part, suppose that (𝑔𝑔𝑖𝑖 )𝑖𝑖=1
𝑛𝑛 is another minimizer. Then, by the above 

calculation, for each 𝑘𝑘 ∈ {1, . . . , 𝑛𝑛}, we have 
                           𝑅𝑅𝑒𝑒〈𝑓𝑓𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉〈𝑔𝑔𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉��������� =          �〈𝑓𝑓𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉� �〈𝑔𝑔𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉�                        (3) 
and, for each 𝑗𝑗 ∈ {1, . . . , 𝑑𝑑}, 

              ∑ �〈𝑓𝑓𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉�𝑛𝑛
𝑘𝑘=1 �〈𝑔𝑔𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉� = �∑ �〈𝑓𝑓𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉�2𝑛𝑛

𝑘𝑘=1 �∑ �〈𝑔𝑔𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉�2
.𝑛𝑛

𝑘𝑘=1           (4) 

Now let 𝑜𝑜𝑘𝑘 ,𝑗𝑗  , 𝑠𝑠𝑘𝑘 ,𝑗𝑗 > 0 and 𝜃𝜃𝑘𝑘 ,𝑗𝑗  , 𝜓𝜓 𝑘𝑘 ,𝑗𝑗  ∈ [0, 2𝜋𝜋) be such that 〈𝑓𝑓𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉 =  𝑜𝑜𝑘𝑘 ,𝑗𝑗 𝑒𝑒𝑖𝑖𝜃𝜃𝑘𝑘 ,𝑗𝑗  and 
〈𝑔𝑔𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉 = 𝑠𝑠𝑘𝑘 ,𝑗𝑗 𝑒𝑒𝑖𝑖𝜓𝜓𝑘𝑘 ,𝑗𝑗   . We compute 

𝑅𝑅𝑒𝑒�〈𝑓𝑓𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉〈𝑔𝑔𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉���������� = 𝑜𝑜𝑘𝑘 ,𝑗𝑗 𝑠𝑠𝑘𝑘 ,𝑗𝑗 𝑅𝑅𝑒𝑒�𝑒𝑒𝑖𝑖�𝜃𝜃𝑘𝑘 ,𝑗𝑗 −𝜓𝜓  𝑘𝑘 ,𝑗𝑗 �� = 𝑜𝑜𝑘𝑘 ,𝑗𝑗 𝑠𝑠𝑘𝑘 ,𝑗𝑗 𝑐𝑐𝑜𝑜𝑠𝑠�𝜃𝜃𝑘𝑘 ,𝑗𝑗 − 𝜓𝜓 𝑘𝑘 ,𝑗𝑗 �. 
Hence (3) implies that 

𝑜𝑜𝑘𝑘 ,𝑗𝑗 𝑠𝑠𝑘𝑘 ,𝑗𝑗  𝑐𝑐𝑜𝑜𝑠𝑠�𝜃𝜃𝑘𝑘 ,𝑗𝑗 − 𝜓𝜓 𝑘𝑘 ,𝑗𝑗 �  = 𝑜𝑜𝑘𝑘 ,𝑗𝑗 𝑠𝑠𝑘𝑘 ,𝑗𝑗  , 
which in turn yields 𝜃𝜃𝑘𝑘 ,𝑗𝑗 = 𝜓𝜓 𝑘𝑘 ,𝑗𝑗  . Thus 〈𝑔𝑔𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉 = 𝑤𝑤𝑘𝑘 ,𝑗𝑗  〈𝑓𝑓𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉 for some 𝑤𝑤𝑘𝑘 ,𝑗𝑗 > 0 for all  
𝑘𝑘 ∈ {1, . . . , 𝑛𝑛}, 𝑗𝑗 ∈ {1, . . . , 𝑑𝑑}. By (4), for each 𝑗𝑗 ∈ {1, . . . , 𝑑𝑑} there exists some 𝑢𝑢𝑗𝑗 > 0  such 
that 

𝑢𝑢𝑗𝑗 �〈𝑓𝑓𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉�  = �〈𝑔𝑔𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉� = 𝑤𝑤𝑘𝑘 ,𝑗𝑗 �〈𝑓𝑓𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉�. 
This implies  𝑤𝑤𝑘𝑘 ,𝑗𝑗 = 𝑢𝑢𝑗𝑗  for all 𝑘𝑘 ∈ {1, . . . , 𝑛𝑛}. Hence, for each 𝑘𝑘 ∈ {1, . . . , 𝑛𝑛} and 
𝑗𝑗 ∈ {1, . . . , 𝑑𝑑}, we obtain the relation 
                                          〈𝑔𝑔𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉 = 𝑢𝑢𝑗𝑗   〈𝑓𝑓𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉.                                            ( 5) 
Since (𝑔𝑔𝑖𝑖 )𝑖𝑖=1

𝑛𝑛  is a Parseval frame for ℋ, we have 
        1 = ∑ �〈𝑔𝑔𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉�2

= 𝑢𝑢𝑗𝑗
2 ∑ �〈𝑓𝑓𝑘𝑘 , 𝑒𝑒𝑗𝑗 〉�2

= 𝑢𝑢𝑗𝑗
2𝜆𝜆𝑗𝑗

𝑛𝑛
𝑘𝑘=1

𝑛𝑛
𝑘𝑘=1 . 

 This shows that 𝑢𝑢𝑗𝑗 = 1

�𝜆𝜆𝑗𝑗
 . Thus, using (5) and the definition of �𝑒𝑒𝑗𝑗 �

𝑗𝑗 =1

𝑑𝑑
 and �𝜆𝜆𝑗𝑗 �

𝑗𝑗 =1

𝑑𝑑
, it 

follows that 𝑔𝑔𝑘𝑘  =  𝑆𝑆−1/2𝑓𝑓𝑘𝑘 for all 𝑘𝑘 ∈ {1, . . . , 𝑛𝑛}.  
This result together with Theorem( 2.1.1) (i) implies the following property of our 
algorithm. 
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Corollary(2.1. 3)[71]: In each iteration of 𝐺𝐺𝐺𝐺𝑆𝑆𝑃𝑃, in which a linearly dependent vector is 
added, the algorithm computes the unique Parseval frame, which is closest to the frame 
consisting of the already computed vectors and the added one. 
Next we characterize those sequences of vectors applied to which the algorithm computes 
an orthonormal basis. The proof will show that this is exactly the case,when only the steps 
of the Gram–Schmidt orthogonalization are carried  out. 
Proposition(2.1.4)[71]: Let (𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 ⊂ ℋ, 𝑛𝑛 ∈ ℕ. The following conditions are equivalent. 
(a) The sequence Φ((𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 ) is an orthonormal basis for span{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛 }. 

(b) The sequence (𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛  is linearly independent. 

Proof. If (b) holds, only line 6–8 of 𝐺𝐺𝐺𝐺𝑆𝑆𝑃𝑃 will be performed and these steps coincide with 
Gram–Schmidt orthogonalization, hence produce an orthonormal system. Now suppose that 
(b) does not hold.This is equivalent to 𝑑𝑑𝑖𝑖𝑚𝑚(𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 } < 𝑛𝑛. 
By Theorem( 2.1.1), we have 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 } = 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{Φ((𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛 )}. This in turn implies 

𝑑𝑑𝑖𝑖𝑚𝑚(𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{Φ((𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛 }) < 𝑛𝑛. Thus Φ((𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 ) cannot form an orthonormal basis for 
𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 }.  
The mapping Φ given by the procedure 𝐺𝐺𝐺𝐺𝑆𝑆𝑃𝑃 of a finite sequence in ℋ to a  Parseval frame 
for a subspace of ℋ is “almost” bijective in the following sense. 
Proposition(2.1.5)[71]: Let Φ be the mapping defined in the previous paragraph. Then Φ  
satisfies the following conditions. 
(a)   Φ is surjective. 
(b) For each Parseval frame (𝑔𝑔𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 ⊂ ℋ, the set Φ−1(𝑔𝑔𝑖𝑖 )𝑖𝑖=1
𝑛𝑛 equals 

⎩
⎪
⎨

⎪
⎧

(𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛 : 𝑓𝑓𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧𝑓𝑓𝑖𝑖     𝑖𝑖𝑓𝑓 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛 ��𝑓𝑓𝑗𝑗 �

𝑗𝑗 =1

𝑖𝑖−1 � = 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛 ��𝑓𝑓𝑗𝑗 �
𝑗𝑗 =1

𝑖𝑖 � ,

𝜆𝜆𝑓𝑓𝑖𝑖 + 𝜑𝜑, 𝜆𝜆 ∈ ℝ+,

𝜑𝜑 ∈ 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛 ��𝑓𝑓𝑗𝑗 �
𝑗𝑗 =1

𝑖𝑖−1 �   𝑜𝑜𝑤𝑤ℎ𝑒𝑒𝑜𝑜𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

�

⎭
⎪
⎬

⎪
⎫

                         (6) 

for some �𝑓𝑓𝑗𝑗 �
𝑗𝑗 =1

𝑛𝑛
∈ Φ−1( (𝑔𝑔𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 ). 
Proof. It is easy to see that each step of the procedure 𝐺𝐺𝐺𝐺𝑆𝑆𝑃𝑃 is reversable which 
implies (a). 
To show (b) we first show that the set (6) is contained in Φ−1((𝑔𝑔𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 ).  For this, let (𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛  

be an element of the set (6). Notice that, by definition of (𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛 , we have 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑘𝑘 }  =
 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{�𝑓𝑓𝑖𝑖 �

𝑖𝑖=1
𝑘𝑘

} for all 𝑘𝑘 ∈ {1, . . . , 𝑛𝑛}. Since  �𝑓𝑓𝑖𝑖 �
𝑖𝑖=1
𝑛𝑛

∈ Φ−1((𝑔𝑔𝑖𝑖 )𝑖𝑖=1
𝑛𝑛 ), we only have to study 

the case 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑘𝑘−1 ≠  𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑘𝑘 } for some 𝑘𝑘 ∈  {1, . . . , 𝑛𝑛}. But then line 8 of 𝐺𝐺𝐺𝐺𝑆𝑆𝑃𝑃 
will be performed. Let Φ(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑘𝑘−1 be denoted by (𝑔𝑔�𝑖𝑖 )𝑖𝑖=1
𝑘𝑘−1 . By Theorem( 2.1.1), the sequence 

(𝑔𝑔�𝑖𝑖 )𝑖𝑖=1
𝑘𝑘−1 forms a Parseval frame for span�(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑘𝑘−1 �. Hence 

               
𝜆𝜆𝑓𝑓𝑘𝑘 +𝜑𝜑−∑ 〈𝜆𝜆𝑓𝑓𝑘𝑘 +𝜑𝜑 ,𝑔𝑔�𝑗𝑗 〉𝑔𝑔�𝑗𝑗

𝑘𝑘−1
𝑗𝑗 =1

�𝜆𝜆𝑓𝑓𝑘𝑘 +𝜑𝜑−∑ 〈𝜆𝜆𝑓𝑓𝑘𝑘 +𝜑𝜑 ,𝑔𝑔�𝑗𝑗 〉𝑔𝑔�𝑗𝑗
𝑘𝑘−1
𝑗𝑗 =1 �

=
𝜆𝜆𝑓𝑓𝑘𝑘 −∑ 〈𝜆𝜆𝑓𝑓𝑘𝑘  ,𝑔𝑔�𝑗𝑗 〉𝑔𝑔�𝑗𝑗

𝑘𝑘−1
𝑗𝑗 =1

�𝜆𝜆𝑓𝑓𝑘𝑘 −∑ 〈𝜆𝜆𝑓𝑓𝑘𝑘  ,𝑔𝑔�𝑗𝑗 〉𝑔𝑔�𝑗𝑗
𝑘𝑘−1
𝑗𝑗 =1 �

 

                                                       =
𝑓𝑓𝑘𝑘 −∑ 〈𝑓𝑓𝑘𝑘  ,𝑔𝑔�𝑗𝑗 〉𝑔𝑔�𝑗𝑗

𝑘𝑘−1
𝑗𝑗 =1

�𝑓𝑓𝑘𝑘 −∑ 〈𝑓𝑓𝑘𝑘  ,𝑔𝑔�𝑗𝑗 〉𝑔𝑔�𝑗𝑗
𝑘𝑘−1
𝑗𝑗 =1 �

,  

which proves the first claim. 
Secondly, suppose (𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛  ⊂ ℋ   is not an element of (6). We claim that Φ((𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛 ) ≠

Φ ��𝑓𝑓𝑖𝑖 �
𝑖𝑖=1
𝑛𝑛 �, which finishes the proof. Let 𝑘𝑘 ∈ {1, . . . , 𝑛𝑛} be the largest number such that 𝑓𝑓𝑘𝑘  

does not satisfy the conditions in (6). We have to study two cases. 
Case 1: Suppose that 𝑓𝑓𝑘𝑘 ≠ 𝑓𝑓𝑘𝑘 , but 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛�(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑘𝑘−1 � = 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑘𝑘 }. Then in the kth iteration 

line 12 will be performed and we obtain 
ℎ𝑘𝑘 ∶= 1

�1+‖𝑓𝑓𝑘𝑘 ‖2 𝑓𝑓𝑘𝑘  ≠ 1

�1+�𝑓𝑓𝑘𝑘 �2
𝑓𝑓𝑘𝑘 =: ℎ�𝑘𝑘 , 
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since  𝑓𝑓𝑘𝑘 ≠ 𝑓𝑓𝑘𝑘 . Thus Φ�(𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑘𝑘 � ≠ Φ ��𝑓𝑓𝑖𝑖  �𝑖𝑖=1

𝑘𝑘 � 
 If in the following iterations the condition in line 7 always applies, we are done, since ℎ𝑘𝑘  
and ℎ�𝑘𝑘 , are not changed anymore. Now suppose that there exists 𝑙𝑙 ∈ {1, . . . , 𝑛𝑛}, 𝑙𝑙 > 𝑘𝑘 with 
span{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑙𝑙−1} = 𝑝𝑝𝑅𝑅𝑛𝑛{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑙𝑙 }. Then in the 𝑙𝑙th iteration ℎ𝑘𝑘  and ℎ�𝑘𝑘  are modified in line 11. 

Since 𝑓𝑓𝑙𝑙  = 𝑓𝑓𝑙𝑙  by choice of k, using a reformulation of line 11, we still have 

ℎ𝑘𝑘 ≔
1

�1 + ‖𝑓𝑓𝑙𝑙 ‖2
𝑃𝑃ℎ𝑘𝑘 + (𝐼𝐼 − 𝑃𝑃)ℎ𝑘𝑘 ≠

1

�1 + �𝑓𝑓𝑙𝑙 �2
𝑃𝑃ℎ�𝑘𝑘 + (𝐼𝐼 − 𝑃𝑃)ℎ�𝑘𝑘 =: ℎ�𝑘𝑘 , 

where 𝑃𝑃 denotes the orthogonal projection onto span{𝑓𝑓𝑙𝑙 }. 
Case 2: Suppose that 𝑓𝑓𝑘𝑘 ≠ 𝜆𝜆𝑓𝑓𝑘𝑘 + 𝜑𝜑 for each 𝜆𝜆 ∈ ℝ+ and   𝜑𝜑 ∈ 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑘𝑘−1}, and also 
𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑘𝑘−1 } ≠ 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑘𝑘 }. Let (ℎ𝑖𝑖 )𝑖𝑖=1

𝑘𝑘−1 and �ℎ�𝑖𝑖 �
𝑖𝑖=1
𝑘𝑘−1

 denote Φ((𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑘𝑘−1 ) and 

Φ(�𝑓𝑓𝑖𝑖 �
𝑖𝑖=1
𝑘𝑘−1

 ), respectively. If (ℎ𝑖𝑖 )𝑖𝑖=1
𝑘𝑘−1 = �ℎ�𝑖𝑖 �

𝑖𝑖=1
𝑘𝑘−1

, the computation in line 8 in the 
𝑘𝑘𝑤𝑤ℎ  iteration yields 

ℎ𝑘𝑘 ≔
𝑓𝑓𝑘𝑘 − ∑ 〈𝑓𝑓𝑘𝑘 , ℎ𝑗𝑗 〉ℎ𝑗𝑗

𝑘𝑘−1
𝑗𝑗 =1

�𝑓𝑓𝑘𝑘 − ∑ 〈𝑓𝑓𝑘𝑘 , ℎ𝑗𝑗 〉ℎ𝑗𝑗
𝑘𝑘−1
𝑗𝑗 =1 �

≠
𝑓𝑓𝑘𝑘 − ∑ 〈𝑓𝑓𝑘𝑘 , ℎ�𝑗𝑗 〉ℎ�𝑗𝑗

𝑘𝑘−1
𝑗𝑗 =1

�𝑓𝑓𝑘𝑘 − ∑ 〈𝑓𝑓𝑘𝑘 , ℎ�𝑗𝑗 〉ℎ�𝑗𝑗
𝑘𝑘−1
𝑗𝑗 =1 �

=: ℎ�𝑘𝑘 . 

If (ℎ𝑖𝑖 )𝑖𝑖=1
𝑘𝑘−1 ≠ �ℎ�𝑖𝑖 �

𝑖𝑖=1
𝑘𝑘−1

 then there exists some 𝑙𝑙 ∈ {1, . . . , 𝑘𝑘 − 1} with ℎ𝑙𝑙 ≠ ℎ�𝑙𝑙 . In both 
situations these inequalities remain valid as it was shown in the preceding paragraph. 
An important aspect of our algorithm is the redundancy of the computed frame. 
Hence it is desirable to know in which way redundancy is preserved throughout the 
algorithm. For this, we introduce a suitable definition of redundancy for sequences in a 
finite–dimensional Hilbert space. 
Definition (2.1.6)[71]: Let (𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 ⊂ ℋ, 𝑛𝑛 ∈ ℕ.Then the redundancy 𝑜𝑜𝑒𝑒𝑑𝑑((𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛 ) of this 

set is defined by 𝑜𝑜𝑒𝑒𝑑𝑑((𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛 ) = 𝑛𝑛

𝑑𝑑𝑖𝑖𝑚𝑚 �𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛 �(𝑓𝑓𝑖𝑖)𝑖𝑖=1
𝑛𝑛 ��

, 

where we set 𝑛𝑛
0

= ∞. 
Indeed in each iteration our algorithm preserves redundancy in an exact way. 
Proposition(2.1.7)[71]: Let (𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 ⊂ ℋ, 𝑛𝑛 ∈ ℕ. Then 
𝑜𝑜𝑒𝑒𝑑𝑑�Φ((𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 )� = 𝑜𝑜𝑒𝑒𝑑𝑑((𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛 ). 

Proof. By Theorem( 2.1.1), we have span{(𝑓𝑓𝑖𝑖 )𝑖𝑖=1
𝑛𝑛 }  =  𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛{Φ(𝑓𝑓𝑖𝑖 )𝑖𝑖=1

𝑛𝑛 )}. From this, the 
claim follows immediately.  
We will first compare the numerical complexities of the Gram–Schmidt orthogonalization 
and of GGSP. In a second part the procedure GGSP will be applied to several numerical 
examples in order to visualize the modifications of the vectors while performing the 
algorithm.  

Only the constants are slightly larger in the new step, which is performed in case of 
linear dependency. Thus both the Gram–Schmidt orthogonalization and GGSP possess the 
same numerical complexity of O(dn2). 
 In order to give further insight into the algorithm, in this subsection we will study the 
different steps of GGSP for three examples. The single steps of each example are illustrated 
by a diagram. In each of these the first image in the uppermost row shows the positions of 
the vectors of the input sequence. Then in the following images the remaining original 
vectors and the modified vectors are displayed after each step of the loop in line 0 of GGSP. 
The original vectors are always marked by a circle and the already computed new vectors 
are indicated by a filled circle. The vector, which will be dealt with in the next step, is 
marked by a square. 
Recall that, by Theorem( 2.1.1), in each step the set of vectors marked with a filled circle 
forms a Parseval frame for their linear span. 
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`Figure 1,[71]. GGSP applied to the sequence of vectors ((1, 0.1), (1, 0.2), (1, 0.3),(1, 0.4), 
(1,−0.1), (1,−0.2), (1,−0.3), (1,−0.4)). 
In the first example we consider the sequence of vectors ((1, 0.1), (1, 0.2), (1, 0.3), (1, 0.4), 
(1,−0.1), (1,−0.2), (1,−0.3), (1,−0.4)). Figure 1 shows the modifications of the vectors while 
performing the GGSP. The Gram–Schmidt orthogonalization, which is performed in line 6–
8 of GGSP, applies twice. In all the following steps the added  vector is linearly dependent 
to the already modified vectors. Therefore we have to go through line 11 and 12, and the 
vectors already dealt with are newly rearranged in each step. 
Figure 2 shows the same example with a different ordering of the vectors. It is no surprise 
that the generated Parseval frame is completely different from the one obtained in Figure 1, 
since already the Gram–Schmidt orthogonalization is sensitive to the ordering of the 
vectors. 
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Figure 2,[71]. GGSP applied to the sequence of vectors ((1,−0.4), 
.(1,−0.3), (1,−0.2), (1,−0.1), (1, 0.1), (1, 0.2), (1, 0.3), (1, 0.4)) 
Both generated Parseval frames have in common that the first components of the vectors are 
almost all positive. Intuitively this is not astonishing, since already all vectors of the input 
sequence possess a positive first component. 
The following example gives further evidence for the claim that the generated Parseval 
frame inherits the geometry of the input sequence in aparticular way. Here the vectors of the 
input sequence are located on the unit circle, in particular we consider the sequence of 
vectors ((1, 0), (√0.5,√0.5), (0, 1), (−√0.5,√0.5), (−1, 0), (−√0.5,−√0.5), (0,−1), 
(√0.5,−√0.5)). While performing the GGSP the vectors almost keep the geometry of a circle 
and the final Parseval frame is located on a slightly 
deformed circle (see Figure 3). Notice that in the second step of the algorithm the second 
vector is moved to the position of the third vector (0,1). Hence in all the following 
computations these two vectors remain indistinguishable. 
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Figure 3,[71]. GGSP applied to the sequence of vectors ((1, 0), (√0.5, √0.5), (0, 1), 
(−√0.5,√0.5), (−1, 0), (−√0.5,−√0.5), (0,−1), (√0.5, 
−√0.5)) 
The graphical examples seem to indicate that to a certain extent output sequences inherit 
their geometry from the input sequence. For applications it would be especially important to 
characterize those input sequences, which generate equal norm Parseval frames or more 
generally “almost” equal norm Parseval frames (compare [2]). 
 
Section(2.2):  Tight Frame Completions  
      In recent years, the study of frames in finite dimensional Hilbert spaces has been 
motivated by a large variety of applications, such as signal processing, multiple antenna 
coding, perfect reconstruction filter banks, and Sampling Theory. 
Some particular frames, called tight frames, are of special interest since they allow simple 
reconstruction formulas. For practical purposes, is often useful to obtain tight frames with 
some extra “structure”, for example with the norms of its elements prescribed (controlled) in 
advance. 
In [180] D. Feng, L. Wang and Y. Wang considered the problem of computing tight 
completions of a given set of vectors. More explicitly, given a finite sequence  ℱ =  {𝑓𝑓𝑖𝑖  }𝑖𝑖=1

𝑝𝑝  
of vectors in ℋ, how many vectors we have to add in order to obtain a tight frame, and how 
to find those vectors? [180] provides a complete answer to this question. But when the 
norms of the additional vectors are required to be one (with the initial set of given vectors of 
norm one) the authors obtained a lower bound for the number of unit norm vectors we have 
to add ([180]; but they showed that their lower bound is not sharp in some cases. 

Note that this problem may not have a positive solution for a given set of initial 
vectors and a fixed sequence of “prescribed norms”. Therefore we first find conditions for 
such a tight frame completion to exist. The main tool used here is Theorem (2.2.5), which 
relates the squared norms of the vectors in a Bessel sequence with the spectrum of its frame 
operator. 
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In order to state the main results, we fix some notation used throughout the section. 
Let  ℋ be a real or complex finite dimensional vector space with dim  ℋ = 𝑛𝑛 ∈  𝑁𝑁. Let 
ℱ =  {𝑓𝑓𝑖𝑖  }𝑖𝑖=1

𝑝𝑝  ⊆ ℋ  be a finite sequence with frame operator 𝑆𝑆ℱ   whose eigenvalues 
(counted with multiplicity) are 𝜆𝜆1  ≥ . . . ≥  𝜆𝜆𝑛𝑛  , and let 𝑅𝑅 =  {𝑅𝑅𝑖𝑖  }𝑖𝑖∈𝑁𝑁 be a non-increasing 
sequence of positive real numbers. Finally, let 𝛼𝛼 =  𝑤𝑤𝑜𝑜(𝑆𝑆ℱ   ). 

Theorem (2.2.1)[54]: Given 𝑜𝑜 ∈ 𝑁𝑁, there exists 𝒢𝒢 =  {𝑔𝑔𝑖𝑖  }𝑖𝑖=1
𝑜𝑜  ⊆ ℋ  such that ℱ ∪ 𝒢𝒢  is a 

tight frame if and only if  1
𝑛𝑛

 ( ∑ (𝑅𝑅𝑖𝑖  +  𝛼𝛼𝑜𝑜
𝑖𝑖=1  )  ≥  𝜆𝜆1 and 

1
𝑛𝑛

�� 𝑅𝑅𝑖𝑖

𝑜𝑜

𝑖𝑖=1

+  𝛼𝛼� ≥
1
𝑘𝑘

�(𝑅𝑅𝑖𝑖 +  𝜆𝜆𝑛𝑛−𝑖𝑖+1)
𝑜𝑜

𝑖𝑖=1

, 1 ≤  𝑘𝑘 ≤  𝑚𝑚𝑖𝑖𝑛𝑛{𝑛𝑛, 𝑜𝑜}.               (7) 

On the other hand, there exists an infinite Bessel sequence  𝒢𝒢 =  {𝑔𝑔𝑖𝑖  }𝑖𝑖=1
∞  in ℋ  such that 

ℱ ∪ 𝒢𝒢 is a tight frame if and only if {𝑅𝑅𝑖𝑖  }𝑖𝑖=1
∞ ∈  ℓ1 (𝑁𝑁), 1

𝑛𝑛
 ( ∑ 𝑅𝑅𝑖𝑖

∞
𝑖𝑖=1 +  𝛼𝛼)  ≥  𝜆𝜆1and          

 1
𝑛𝑛

(∑ (𝑅𝑅𝑖𝑖 + 𝛼𝛼∞
𝑖𝑖=1 ) ≥ 1

𝑘𝑘
∑ (𝑅𝑅𝑖𝑖 + 𝜆𝜆𝑛𝑛−𝑖𝑖+1), 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛.                                          (8)𝑘𝑘

𝑖𝑖=1        
So from Theorem 𝐴𝐴 we get necessary and sufficient conditions for the existence of a 
sequence 𝒢𝒢    = {𝑔𝑔𝑖𝑖  }𝑖𝑖=1

𝑜𝑜  , for some 𝑜𝑜 ∈ 𝑁𝑁 ∪  {∞}, with ‖𝑔𝑔𝑖𝑖 ‖2  =  𝑅𝑅𝑖𝑖  , and such that ℱ ∪
𝒢𝒢     is a tight frame (for some suitable constant). If such a completion exists we say that  ℱ is 
(𝑅𝑅, 𝑜𝑜) −completable. In case  ℱ is (𝑅𝑅, 𝑜𝑜)-completable, we are then interested in computing 
the minimum number  𝑜𝑜0 of vectors we have to add. In order to state our next result we 
introduce the following numbers: let 𝑐𝑐0  =  𝜆𝜆1 and for 1 ≤  𝑘𝑘 ≤  𝑛𝑛 let 
𝑐𝑐𝑘𝑘 =  𝑚𝑚𝑅𝑅𝑥𝑥 �𝑐𝑐𝑘𝑘−1 , 1

𝑘𝑘
∑ (𝑅𝑅𝑖𝑖  + 𝜆𝜆𝑛𝑛−𝑖𝑖+1 )𝑘𝑘

𝑖𝑖=1 �  .                                                           (9)                 
Theorem (2.2.2)[54]: Assume that  ℱ is (𝑅𝑅, 𝑜𝑜) −completable for some 𝑜𝑜 ∈  𝑁𝑁 ∪ {∞} and let 
𝑜𝑜0  ∈  𝑁𝑁 ∪ {∞} be the minimum such that  ℱ is (𝑅𝑅, 𝑜𝑜0)-completable. 
Then 
Case 1: 𝑜𝑜0  <  𝑛𝑛 if and only if 𝑐𝑐𝑜𝑜0  = 1

𝑛𝑛
∑ 𝑅𝑅𝑖𝑖  +  𝛼𝛼𝑜𝑜0

𝑖𝑖=1 ). 

Case2:  𝑛𝑛 ≤  𝑜𝑜0  <  ∞ if and only if 𝑐𝑐𝑘𝑘 ≠ 1
𝑛𝑛

 �∑ 𝑅𝑅𝑖𝑖  +  𝛼𝛼𝑘𝑘
𝑖𝑖=1 � ∀ 1 ≤  𝑘𝑘 ≤  𝑛𝑛 –  1       and 

𝑜𝑜0 𝑖𝑖s the minimum such that 𝑐𝑐𝑛𝑛  ≤ 1
𝑛𝑛

∑ 𝑅𝑅𝑖𝑖
𝑜𝑜0
𝑖𝑖=1  +  𝛼𝛼). 

Case 3: 𝑜𝑜0  =  ∞ if and only if 𝑐𝑐𝑘𝑘 ≠ 1
𝑛𝑛

 �∑ 𝑅𝑅𝑖𝑖  +  𝛼𝛼𝑘𝑘
𝑖𝑖=1 � for all 1 ≤  𝑘𝑘 ≤  𝑛𝑛 − 1 

 
and 

𝑐𝑐𝑛𝑛 =
1
𝑛𝑛

 �� 𝑅𝑅𝑖𝑖  +  𝛼𝛼
∞

𝑖𝑖=1

� 

 We should remark that although Theorems 𝐴𝐴 and 𝐵𝐵 are of practical interest, they are not 
efficiently (fast) algorithmic implementable in a computer (see the discussion at the 
beginning of Section ). In this Section   we deal with the problem of finding a not so optimal 
but efficiently algorithmic computable finite tight completion as follows: 
Theorem (2.2.3)[54]: Assume that a is a divergent sequence. Let 𝑑𝑑 ∈ ℝ be an algorithmic 
computable upper bound for|| 𝑆𝑆 ℱ ||and let 𝑐𝑐 =  𝑚𝑚𝑅𝑅𝑥𝑥(𝑑𝑑 +  1, 𝑑𝑑 +  𝑅𝑅1). If 𝑜𝑜 ∈ 𝑁𝑁 is such that 

� 𝑅𝑅𝑖𝑖

𝑜𝑜−1

𝑖𝑖=1

<  𝑐𝑐 ·  𝑛𝑛 −  𝑤𝑤𝑜𝑜(𝑆𝑆ℱ  )  ≤ � 𝑅𝑅𝑖𝑖

𝑜𝑜

𝑖𝑖=1

 

then there exists an algorithmic computable sequence 𝒢𝒢 = {𝑔𝑔𝑖𝑖 }𝑖𝑖=1
𝑜𝑜  such that ℱ ∪ 𝒢𝒢      is a 

tight frame and such that ‖𝑔𝑔𝑖𝑖 ‖2 =  𝑅𝑅𝑖𝑖  for 1 ≤  𝑖𝑖 ≤  𝑜𝑜 . We also consider particular cases of 
Theorems (2.2.1)and (2.2.2)when 𝑅𝑅𝑖𝑖  =  1 for 𝑖𝑖 ≥  1. 
Throughout the section, ℋ  will be a finite dimensional (real or complex) Hilbert space with 
dim ℋ  = n ∈ N and 𝐿𝐿(ℋ  )+ will denote the cone of bounded positive semi-definite 
operators on ℋ  . Given 𝑚𝑚 ∈ 𝑁𝑁 ∪  {∞}, a sequence ℱ = {𝑓𝑓𝑖𝑖   }𝑖𝑖=1

𝑚𝑚  ⊂ ℋ   is a frame for ℋ   if 
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there exist numbers 𝑅𝑅, 𝑏𝑏 > 0 such that, for every 𝑓𝑓 ∈ ℋ,     
𝛼𝛼‖𝑓𝑓‖2 ≤ ∑ |〈𝑓𝑓, 𝑓𝑓𝑖𝑖 〉|2𝑚𝑚

𝑖𝑖=1 ≤ 𝑏𝑏‖𝑓𝑓‖2                                                                              (10)                                     
The optimal constants in (10) are called the frame bounds. If the frame bounds 𝑅𝑅, 𝑏𝑏 coincide, 
the frame is called a-tight (or simply tight). Finally, tight frames with all its elements having 
the same norm are called equal norm tight frames. 
The sequence  ℱ is Bessel if there exists 𝑏𝑏 > 0 such that the upper bound condition in (10) is 
satisfied. Given a Bessel sequence  ℱ , we define its frame operator by 
𝑆𝑆ℱ 𝑓𝑓 = ∑ 〈𝑓𝑓, 𝑓𝑓𝑖𝑖 〉𝑓𝑓𝑖𝑖 .                                                                                                    𝑚𝑚

𝑖𝑖=1 (11)                                                  
It is easy to see that 𝑆𝑆ℱ  is a positive semi-definite bounded operator on  ℋ    . Moreover, ℱ is 
a frame if and only if its frame operator 𝑆𝑆ℱ  is invertible. Indeed, the optimal frame bounds 
𝑅𝑅, 𝑏𝑏 in (10) are respectively 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛  (𝑆𝑆ℱ  ) and 𝜆𝜆𝑚𝑚𝑅𝑅𝑥𝑥  (𝑆𝑆ℱ  ), the minimum and maximum 
eigenvalues of 𝑆𝑆ℱ  . In particular, a frame  ℱ is a-tight if and only if  𝑆𝑆ℱ   =  𝑅𝑅𝐼𝐼. For an 
introduction to the theory of frames and related topics see the books [74, 182]. 
Given a Bessel sequence  ℱ  , there is a close relationship between the norms of its elements 
and the spectrum of 𝑆𝑆ℱ  that can be expressed in terms of majorization (see [35] for details). 
First, we introduce some definitions. We say that a sequence {𝑅𝑅𝑖𝑖  }𝑖𝑖=1

𝑚𝑚  is summable if 𝑚𝑚 ∈ 𝑁𝑁, 
or if 𝑚𝑚 = ∞ and {𝑅𝑅𝑖𝑖  }𝑖𝑖=1

∞  ∈  ℓ1 (𝑁𝑁). 
   Dentition(2.2.4)[54]: Let 𝑅𝑅 = {𝑅𝑅𝑖𝑖  }𝑖𝑖=1

𝑚𝑚  , 𝑏𝑏 =  {𝑏𝑏𝑖𝑖 }𝑖𝑖=1
𝑠𝑠  be non-increasing summable     

sequences of non-negative numbers, with 𝑠𝑠, 𝑚𝑚 ∈ 𝑁𝑁 ∪ {∞}, and let 𝑤𝑤 = 𝑚𝑚𝑖𝑖𝑛𝑛{𝑠𝑠, 𝑚𝑚}.  We say 
that b majorizes a, noted 𝑏𝑏 ≻  𝑅𝑅, if 

   ∑ 𝑏𝑏𝑖𝑖 ≥ ∑ 𝑅𝑅𝑖𝑖
𝑗𝑗
𝑖𝑖=1  𝑗𝑗

𝑖𝑖=1 for 1 ≤ 𝑗𝑗 ≤ 𝑤𝑤  and   ∑ 𝑏𝑏𝑖𝑖 = ∑                                         (12)𝑚𝑚
𝑖𝑖=1

𝑠𝑠
𝑖𝑖=1            

 If 𝑚𝑚 = 𝑠𝑠 ∈ ℕ  𝑖𝑖𝑛𝑛  Definition( 2.2.1) then this notion coincides with the usual vector 
majorization in ℝ𝑚𝑚 between vectors with non-negative entries which are arranged in non-
increasing order (see [181]). 
On the other hand, as an immediate consequence of Definition(2.2.1) we see that if 𝑠𝑠 ∈  ℕ, 
and then 𝑅𝑅 ≺ 𝑏𝑏 if and only if 𝑅𝑅 ≺ (𝑏𝑏, 0𝑛𝑛 ) for every 𝑛𝑛 ∈ ℕ, where 
(𝑏𝑏, 0𝑛𝑛  ) ∈ ℝ𝑠𝑠+𝑛𝑛   , and similarly (a, 0𝑛𝑛  ) ≺ b if 𝑚𝑚 ∈  𝑀𝑀. 
Now we can state the frame version of the Schur-Horn theorem, which we shall need in the 
sequel. 
Theorem (2.2.5)[54]: Let 𝑅𝑅 = {𝑅𝑅𝑖𝑖 }𝑖𝑖=1

𝑚𝑚  be a non-increasing sequence of positive numbers and 
let 𝑆𝑆 ∈  𝐿𝐿(ℋ)+ with eigenvalues (counted with multiplicity and arranged in non-increasing 
order) 𝛬𝛬 =  {𝜆𝜆𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛  . Then the following statements are equivalent: 
(a) 𝑅𝑅 ≺ 𝛬𝛬. 
(b) There exists a Bessel sequence 𝒢𝒢     = {𝑔𝑔𝑖𝑖 }𝑖𝑖=1

𝑚𝑚  ⊂ ℋ     such that ‖𝑔𝑔𝑖𝑖 ‖2 =  𝑅𝑅𝑖𝑖  for 1 ≤
 𝑖𝑖 ≤  𝑚𝑚 and 𝑆𝑆𝒢𝒢     =  𝑆𝑆. 

Definition( 2.2.6)[54]: We say that  ℱ is (𝑅𝑅, 𝑜𝑜) −completable if there exists 𝑜𝑜 ∈  𝑁𝑁 ∪  {∞} 
and a Bessel sequence 𝒢𝒢 = {𝑔𝑔𝑖𝑖 }𝑖𝑖=1

𝑜𝑜 ⊂ ℋ, with ‖𝑔𝑔𝑖𝑖 ‖2 =  𝑅𝑅𝑖𝑖   for 1 ≤  𝑖𝑖 ≤  𝑜𝑜,and  such that 
ℱ ∪ 𝒢𝒢   is a tight frame. We say that   𝒢𝒢 = {𝑔𝑔𝑖𝑖 }𝑖𝑖=1

𝑜𝑜  is an (𝑅𝑅, 𝑜𝑜) -completion of  ℱ. 
. For the sake of clarity in the exposition, in what follows we consider separately 
the cases where  ℱ is (𝑅𝑅, 𝑜𝑜)-completable for some 𝑜𝑜 ∈  ℕ and the case 𝑜𝑜 = ∞, 
although there is no substantial difference in the arguments involved. 
Theorem(2.2.7)[54]: Let 𝑜𝑜 ∈ ℕ. Then  ℱ is (𝑅𝑅, 𝑜𝑜)-completable if and only if        

1
𝑛𝑛

(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑜𝑜
𝑖𝑖=1 ) ≥ 𝜆𝜆1 𝑅𝑅𝑛𝑛𝑑𝑑 

1
𝑛𝑛

(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑜𝑜
𝑖𝑖=1 ) ≥

1
𝑘𝑘

∑ (𝑅𝑅𝑖𝑖 + 𝜆𝜆𝑛𝑛−𝑖𝑖+1), 1 ≤ 𝑘𝑘 ≤ 𝑚𝑚𝑖𝑖𝑛𝑛{𝑛𝑛, 𝑜𝑜}.                                                             (13)𝑘𝑘
𝑖𝑖=1            

Proof: Assume that there exists 𝑜𝑜 ∈  ℕ and a finite sequence 𝒢𝒢 = {𝑔𝑔𝑖𝑖 }𝑖𝑖=1
𝑜𝑜  such that 

𝑆𝑆ℱ ∪𝒢𝒢   = 𝑆𝑆ℱ + 𝑆𝑆𝒢𝒢   = 𝑐𝑐𝐼𝐼 and ‖𝑔𝑔𝑖𝑖 ‖2 = 𝑅𝑅𝑖𝑖  for 1 ≤  𝑖𝑖 ≤  𝑜𝑜.Then 𝑐𝑐𝐼𝐼 −  𝑆𝑆 ℱ =  𝑆𝑆𝒢𝒢   ≥ 0; in 
particular we have 𝑐𝑐 ≥ ‖𝑆𝑆‖ = 𝜆𝜆1 . On the other hand, we see that the eigenvalues of 
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𝑆𝑆𝒢𝒢   arranged in non-increasing order are 𝑐𝑐 −  𝜆𝜆𝑛𝑛  ≥ . . . ≥  𝑐𝑐 − 𝜆𝜆1   ≥  0. By Theorem (2.2.3)  
we have 

(𝑐𝑐 −  𝜆𝜆𝑛𝑛  , 𝑐𝑐 −  𝜆𝜆𝑛𝑛−1 , . . . , 𝑐𝑐 −  𝜆𝜆1 ) ≻  (𝑅𝑅1 , . . . , 𝑅𝑅𝑜𝑜 ).                                     (14)     
Then, by Definition( 2.2.1) we see that 1

𝑛𝑛
(  ∑ 𝑅𝑅𝑖𝑖  𝑜𝑜

𝑖𝑖=1 +  𝛼𝛼)  ≥ 𝜆𝜆1 and (26) hold, using that 

𝑐𝑐 = 1
𝑛𝑛

(  ∑ 𝑅𝑅𝑖𝑖  𝑜𝑜
𝑖𝑖=1 +  𝛼𝛼)   . 

Conversely assume that 1
𝑛𝑛

(  ∑ 𝑅𝑅𝑖𝑖  𝑜𝑜
𝑖𝑖=1 +  𝛼𝛼)  ≥ 𝜆𝜆1 and (26) hold for 𝑜𝑜 ∈  ℕ. Set 

𝑐𝑐 = 1
𝑛𝑛

(  ∑ 𝑅𝑅𝑖𝑖  𝑜𝑜
𝑖𝑖=1 +  𝛼𝛼) and note that the spectrum of the positive operator 

𝑐𝑐𝐼𝐼 −  𝑆𝑆ℱ  , (𝑐𝑐 −  𝜆𝜆𝑛𝑛  , 𝑐𝑐 −  𝜆𝜆𝑛𝑛−1 , . . . , 𝑐𝑐 −  𝜆𝜆1), majorizes (in the sense of Definition( 2.2.4) 
{𝑅𝑅𝑖𝑖 }𝑖𝑖=1

𝑜𝑜  . By Theorem( 2.2.5) we conclude that there exists a finite sequence  𝒢𝒢   =
 {𝑔𝑔𝑖𝑖 }𝑖𝑖=1

𝑜𝑜 with 𝑆𝑆𝒢𝒢 = 𝑐𝑐𝐼𝐼 − 𝑆𝑆ℱ and ‖𝑔𝑔𝑖𝑖 ‖2 = 𝛼𝛼𝑖𝑖for 1 ≤  𝑖𝑖 ≤  𝑜𝑜 and we are done. 
By inspection of the proof of Theorem(2.2.7), we have the following  corollaries. 
Corollary (2.2.8)[54]: Using the notations of Theorem(2. 2.7),  ℱ is (𝑅𝑅, 𝑜𝑜)-completable with  

𝑜𝑜 < 𝑛𝑛 if and only if, for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 𝑜𝑜 and 1 ≤ 𝑘𝑘 ≤ 𝑜𝑜, 
𝜆𝜆𝑖𝑖 = 1

𝑛𝑛
(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑜𝑜

𝑖𝑖=1 ), and 𝜆𝜆1 ≥ 1
𝐾𝐾

�∑ 𝑅𝑅𝑖𝑖 + 𝜆𝜆𝑛𝑛−𝑖𝑖+1
𝑘𝑘
𝑖𝑖=1 �.                                         (15) 

Corollary(2. 2.9)[54] : Let ℱ be (𝑅𝑅, 𝑜𝑜)- completable for some 𝑜𝑜 ∈ ℕ. Then 
(i)if 𝑜𝑜 < 𝑛𝑛 then ℱ is not (𝑅𝑅, 𝑘𝑘)-completable for any 𝑘𝑘 < 𝑛𝑛 other than 𝑜𝑜, 
(ii)if 𝑜𝑜 ≥ 𝑛𝑛 then ℱ is (𝑅𝑅, 𝑘𝑘)-completable for every 𝑘𝑘 ∈ ℕ  with 𝑘𝑘 ≥ 𝑜𝑜. 

The next result gives different equivalent conditions for a sequence 𝑅𝑅 and vectors  ℱ in order to 
be (𝑅𝑅, 𝑜𝑜)-completable for some 𝑜𝑜 ∈ ℕ. First, we define inductively the  following numbers: let 
𝑐𝑐0 =  𝜆𝜆1 and for 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 let 

𝑐𝑐𝑘𝑘 = 𝑚𝑚𝑅𝑅𝑥𝑥 �𝑐𝑐𝑘𝑘−1,
1
𝑘𝑘

� 𝑅𝑅𝑖𝑖 + 𝜆𝜆𝑛𝑛−𝑖𝑖+1

𝑘𝑘

𝑖𝑖=1

� .                                                    (16) 

It is clear from definition that 𝜆𝜆1 ≤  𝑐𝑐1 ≤ . . . ≤  𝑐𝑐𝑛𝑛 . 
Proposition(2. 2.10)[54]: Let  𝑜𝑜 ∈ ℕ. ℱ is (𝑅𝑅, 𝑜𝑜)-completable if and only if 
1
𝑛𝑛

(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑜𝑜
𝑖𝑖=1 ) = 𝑐𝑐𝑜𝑜   for 𝑜𝑜 < 𝑛𝑛.                                                                    (17) 

Or  Moreover, if 𝑐𝑐𝑜𝑜 = 1
𝑛𝑛

(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑜𝑜
𝑖𝑖=1 )some  for 𝑜𝑜 < 𝑛𝑛, then 𝑐𝑐𝑜𝑜 = 𝜆𝜆1. 

  Poof.   A  ssume that   ℱ is (a,r)- completable 
If 𝑜𝑜 < 𝑛𝑛 note that, by (17) in Corollary (2.2.8), we have  𝜆𝜆1 = 𝑐𝑐0 ≤ ⋯ ≤ 𝑐𝑐𝑜𝑜 = 𝜆𝜆1 and   𝜆𝜆1 =    
1
𝑛𝑛

(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑜𝑜
𝑖𝑖=1 ), 

so (17) holds. If  𝑜𝑜 ≥ 𝑛𝑛 then min {𝑛𝑛, 𝑜𝑜} = 𝑛𝑛  and Theorem (2.2.7) together with the 
definition of 𝑐𝑐𝑛𝑛 imply that 

1
𝑛𝑛

�� 𝑅𝑅𝑖𝑖 + 𝛼𝛼
𝑜𝑜

𝑖𝑖=1

� ≥ 𝑐𝑐𝑛𝑛 . 

1
𝑛𝑛

(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑜𝑜
𝑖𝑖=1 ) ≥ 𝑐𝑐𝑛𝑛  for 𝑜𝑜 ≥ 𝑛𝑛.                                                                    (18) 

So in this case (18) holds. Conversely, if we assume (18), then it is clear ℱ is (𝑅𝑅, 𝑜𝑜)-
completable, by Theorem (2.2.7). Assume now that for some 
𝑜𝑜 < 𝑛𝑛, cn = 1

n
(∑ 𝑅𝑅𝑖𝑖 + αr

i=1 ) . We show that ℱ is (𝑅𝑅, 𝑜𝑜)-completable; indeed, since 𝑛𝑛cn =
∑ 𝑅𝑅𝑖𝑖 + α,r

i=1  then 

𝑜𝑜𝑐𝑐𝑜𝑜 + (𝑛𝑛 − 𝑜𝑜)𝑐𝑐𝑜𝑜 − � 𝜆𝜆𝑖𝑖

𝑛𝑛−𝑜𝑜

𝑖𝑖=1

= � 𝑅𝑅𝑖𝑖 + � 𝜆𝜆𝑛𝑛−𝑖𝑖+1

𝑜𝑜

𝑖𝑖=1

𝑜𝑜

𝑖𝑖=1

 

So by definition of cr we have  
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�(𝑅𝑅𝑖𝑖 +𝜆𝜆𝑛𝑛−𝑖𝑖+1) ≤
𝑜𝑜

𝑖𝑖=1

 𝑜𝑜𝑐𝑐𝑜𝑜 = �(𝑅𝑅𝑖𝑖 + 𝜆𝜆𝑛𝑛−𝑖𝑖+1)
𝑜𝑜

𝑖𝑖=1

− �(𝑐𝑐𝑜𝑜 − 𝜆𝜆𝑖𝑖 )
𝑛𝑛−𝑜𝑜

𝑖𝑖=1

≤ �(𝑅𝑅𝑖𝑖 + 𝜆𝜆𝑛𝑛−𝑖𝑖+1)
𝑜𝑜

𝑖𝑖=1

. 

But then 
𝜆𝜆𝑖𝑖 = 1

𝑛𝑛
(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑜𝑜

𝑖𝑖=1 ) for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 𝑜𝑜 
and 

𝜆𝜆1 ≥ max
1≤𝑘𝑘≤𝑜𝑜

 
1
𝑘𝑘

�(𝑅𝑅𝑖𝑖 + 𝜆𝜆𝑛𝑛−𝑖𝑖+1),
𝑘𝑘

𝑖𝑖=1

 

So ℱ is (𝑅𝑅, 𝑜𝑜)-completable, by Corollary (2.2.8). The last claim of the proposition is clear 
from our previous computations. 
We are now able to give a formula for the minimum   𝑜𝑜 ∈ ℕ  such that ℱ is 
(𝑅𝑅, 𝑜𝑜)-completable, when such an   𝑜𝑜 ∈ ℕ  exists. 
Theorem(2. 2.11)[54]: Let ℱ be a (𝑅𝑅, 𝑜𝑜)-completable for some 𝑜𝑜 ∈ ℕ. Let𝑜𝑜0 ∈ ℕ be the 
minimum such that ℱ is (𝑅𝑅,  𝑜𝑜0)-completable. Then 

Case 1: 𝑜𝑜0 <  𝑛𝑛 if and only if 𝑐𝑐𝑜𝑜 0 = 1
𝑛𝑛

(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑜𝑜0
𝑖𝑖=1 ) 

Case2:  𝑜𝑜0 < ≥ 𝑛𝑛  if and only if 𝑐𝑐𝑘𝑘 ≠ 1
𝑛𝑛

(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼) 𝑓𝑓𝑜𝑜𝑜𝑜 𝑅𝑅𝑙𝑙𝑙𝑙 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 −𝑜𝑜0
𝑖𝑖=1

1 𝑅𝑅𝑛𝑛𝑑𝑑𝑜𝑜0∈ℕ is the minimum such that 𝑐𝑐𝑛𝑛≤1𝑛𝑛𝑖𝑖=1𝑜𝑜0𝑅𝑅𝑖𝑖+𝛼𝛼. 
Proof: Note that, by Proposition(2. 2.10), at least one the cases has to be fulfilled by  some 
𝑜𝑜 ∈ ℕ. If we assume that case 1 holds for some 𝑜𝑜 < 𝑛𝑛 then,by Proposition (2.2.10)   ℱ  is 
(𝑅𝑅, 𝑜𝑜)-completable. By Corollary(2. 2.9)  case 1 does not hold for 𝑘𝑘 < 𝑛𝑛 with 𝑜𝑜 ≠  𝑘𝑘. It is 
clear that in this case 𝑜𝑜0 =  𝑜𝑜. 

Assume now that there is no 𝑜𝑜 < 𝑛𝑛 satisfying case 1 above. Then, there exists 
𝑜𝑜 ∈ ℕ such that𝑐𝑐𝑛𝑛 ≤ 1

𝑛𝑛
(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑜𝑜

𝑖𝑖=1 ) by Proposition(2. 2.10) we see that ℱ is (𝑅𝑅, 𝑜𝑜)- 
completable. It is clear that 𝑜𝑜0 is the minimum natural number 𝑜𝑜 satisfying this condition. 
Finally note that if 𝑜𝑜 ∈ ℕ  is such that𝑐𝑐𝑛𝑛 ≤ 1

𝑛𝑛
(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼)𝑜𝑜

𝑖𝑖=1  then 

1
𝑛𝑛

�� 𝑅𝑅𝑖𝑖 + 𝛼𝛼
𝑛𝑛

𝑖𝑖=1

� ≤ 𝑐𝑐𝑛𝑛 ≤
1
𝑛𝑛

�� 𝑅𝑅𝑖𝑖 + 𝛼𝛼
𝑜𝑜

𝑖𝑖=1

� ⟹ � 𝑅𝑅𝑖𝑖 ≤
𝑛𝑛

𝑖𝑖=1

� 𝑅𝑅𝑖𝑖

𝑜𝑜

𝑖𝑖=1

 

and 𝑜𝑜 ≥ 𝑛𝑛 since for every 𝑖𝑖 ∈ ℕ, 𝑅𝑅𝑖𝑖 > 0. 
The next example shows that it is possible to obtain a set of vectors  ℱ and a sequence a such 

that ℱ is (𝑅𝑅, 𝑜𝑜)-completable for only one   𝑜𝑜 ∈ ℕ (in virtue ofCorollary (2. 2.9) , 𝑜𝑜 < 𝑛𝑛). 
Example(2. 2.12)[54]: Let   ℱ = �√2𝑒𝑒1, √2𝑒𝑒2, 𝑒𝑒3� in ℂ3 where {𝑒𝑒𝑖𝑖 } is the canonical or- 

honormal basis and let  𝑅𝑅 = ��1
4
�

𝑖𝑖−1
�

𝑖𝑖=1

∞
 . Then, easy computations show that the  

eigenvalues of 𝑆𝑆ℱare  𝜆𝜆1 = 2, 𝜆𝜆2 = 2 and  𝜆𝜆3 = 1, so  𝛼𝛼 =  𝑤𝑤𝑜𝑜𝑆𝑆ℱ =  5. By 
Corollary 
(2.2.8)  ℱ is (𝑅𝑅, 1)-completable since 𝜆𝜆1 = 1

3
(𝑅𝑅1  +  𝛼𝛼) and 𝜆𝜆1 ≥ 𝑅𝑅1  +  𝜆𝜆3  Moreover, it is 

clear that if we add the vector  𝑒𝑒3to ℱ we obtain a 2-tight frame. 
On the other hand, it easy to see that 1

3
(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼∞

𝑖𝑖=1 ) = 19
9

< 17
8

= 𝑐𝑐3    so byProposition 
(2.2.10)  ℱ is not (𝑅𝑅, 𝑜𝑜)-completable for any 𝑜𝑜 ≥ 3. 

In fact, as the following proposition shows, if ℱ is (𝑅𝑅, 𝑜𝑜)-completable with 𝑜𝑜 < 𝑛𝑛 
the existence of some 𝑜𝑜1 ≥  𝑛𝑛 such that ℱ is (𝑅𝑅, 𝑜𝑜1)-completable depends only on 
the tail of the sequence {𝑅𝑅𝑖𝑖 }𝑖𝑖=𝑜𝑜+1

∞ . 
Proposition(2. 2.13)[54]:Let ℱ be (𝑅𝑅, 𝑜𝑜)-completable for some 𝑜𝑜 < 𝑛𝑛. There exists 𝑜𝑜1 ∈ ℕ 
with 𝑜𝑜1 ≥ 𝑛𝑛 and such that ℱ is (𝑅𝑅, 𝑜𝑜1)-completable if and only if   
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1
𝑛𝑛

� 𝑅𝑅𝑖𝑖 ≥
𝑜𝑜1

𝑖𝑖=𝑜𝑜+1

𝑚𝑚𝑅𝑅𝑥𝑥
𝑜𝑜+1≤𝑘𝑘≤𝑛𝑛

1
𝑘𝑘

� 𝑅𝑅𝑖𝑖

𝑘𝑘

𝑖𝑖=𝑜𝑜+1

 

Proof:By Theorem(2. 2.7)  ℱ  is (𝑅𝑅, 𝑜𝑜1)-completable if and only if 
1
𝑛𝑛

�∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑜𝑜1
𝑖𝑖=1 � ≥ 𝜆𝜆1 and  1

𝑛𝑛
�∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑜𝑜1

𝑖𝑖=1 � ≥ 1
𝑘𝑘

∑ (𝑅𝑅𝑖𝑖 + 𝜆𝜆𝑛𝑛−𝑖𝑖+1)𝑘𝑘
𝑖𝑖=1 , 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 

By hypothesis and Corollary(2. 2.8), 
𝜆𝜆𝑖𝑖 = 1

𝑛𝑛
(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑜𝑜

𝑖𝑖=1 ), 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 𝑜𝑜  and  𝜆𝜆1 ≥ 1
𝑘𝑘

∑ (𝑅𝑅𝑖𝑖 + 𝜆𝜆𝑛𝑛−𝑖𝑖+1)𝑘𝑘
𝑖𝑖=1 , 1 ≤ 𝑘𝑘 ≤ 𝑜𝑜 

Since ℱ is (𝑅𝑅, 𝑜𝑜)-completable with 𝑜𝑜 < 𝑛𝑛. So ℱ is (𝑅𝑅, 𝑜𝑜1)-completable if and only if 
1
𝑛𝑛

�∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑜𝑜1
𝑖𝑖=1 � ≥ 1

𝑘𝑘
∑ (𝑅𝑅𝑖𝑖 + 𝜆𝜆𝑛𝑛−𝑖𝑖+1), 𝑜𝑜 +𝑘𝑘

𝑖𝑖=1 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 
or equivalently, if for every 𝑜𝑜 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 

� 𝑅𝑅𝑖𝑖 + 𝛼𝛼
𝑜𝑜

𝑖𝑖=1

+ � 𝑅𝑅𝑖𝑖

𝑜𝑜1

𝑖𝑖=𝑜𝑜+1

≥
𝑛𝑛
𝑘𝑘

�� 𝑅𝑅𝑖𝑖 + � 𝑅𝑅𝑖𝑖

𝑘𝑘

𝑖𝑖=𝑜𝑜+1

+ 𝛼𝛼 − (𝑛𝑛 − 𝑘𝑘)𝜆𝜆1

𝑜𝑜

𝑖𝑖=1

� 

� 𝑅𝑅𝑖𝑖 + 𝛼𝛼
𝑜𝑜

𝑖𝑖=1

+ � 𝑅𝑅𝑖𝑖

𝑜𝑜1

𝑖𝑖=𝑜𝑜+1

≥
𝑛𝑛
𝑘𝑘

�� 𝑅𝑅𝑖𝑖 + 𝛼𝛼
𝑜𝑜

𝑖𝑖=1

� +
𝑛𝑛
𝑘𝑘

� 𝑅𝑅𝑖𝑖

𝑘𝑘

𝑖𝑖=𝑜𝑜+1

−
𝑛𝑛 − 𝑘𝑘

𝑘𝑘
�� 𝑅𝑅𝑖𝑖 + 𝛼𝛼

𝑜𝑜

𝑖𝑖=1

� 

� 𝑅𝑅𝑖𝑖 + 𝛼𝛼
𝑜𝑜

𝑖𝑖=1

+ � 𝑅𝑅𝑖𝑖

𝑜𝑜1

𝑖𝑖=𝑜𝑜+1

≥ � 𝑅𝑅𝑖𝑖 + 𝛼𝛼
𝑜𝑜

𝑖𝑖=1

+
𝑛𝑛
𝑘𝑘

� 𝑅𝑅𝑖𝑖

𝑘𝑘

𝑖𝑖=𝑜𝑜+1

 

� 𝑅𝑅𝑖𝑖  ≥
𝑛𝑛
𝑘𝑘

𝑜𝑜1

𝑖𝑖=𝑜𝑜+1

� 𝑅𝑅𝑖𝑖

𝑘𝑘

𝑖𝑖=𝑜𝑜+1

, 

since by hypothesis 𝜆𝜆𝑖𝑖 = 1
𝑛𝑛

(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑜𝑜
𝑖𝑖=1 ) for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 𝑜𝑜. 

In this section we consider some complementary results to those obtained 
in the previous section and prove Theorems (2.2.1)and(2.2.2). 
If    ℱ = {𝑓𝑓𝑖𝑖 }𝑖𝑖=1

𝑝𝑝  𝑅𝑅𝑛𝑛𝑑𝑑 𝑅𝑅  are as before, then a necessary condition for ℱ to be 
(𝑅𝑅, ∞)-completable is that 𝑅𝑅 ∈ ℓ1(ℕ). 
Theorem(2. 2.14)[54]:   ℱ is (𝑅𝑅, ∞)-completable (by a Bessel sequence) if and only if 
𝑅𝑅 ∈ ℓ1 (ℕ), 1

𝑛𝑛
(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼∞

𝑖𝑖=1 ) ≥ 𝜆𝜆1  and 
1
𝑛𝑛

(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼∞
𝑖𝑖=1 ) ≥ 1

𝑘𝑘
∑ (𝑅𝑅𝑖𝑖 + 𝜆𝜆𝑛𝑛−𝑖𝑖+1), 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛𝑘𝑘

𝑖𝑖=1 ,                                        (19) 
or equivalently if (𝑅𝑅 ∈ ℓ1(ℕ) 
1
𝑛𝑛

(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼∞
𝑖𝑖=1 ) ≥ 𝑐𝑐𝑛𝑛  .                                                                                                   (20) 

The proof of Theorem(2. 2.14), which is based on Theorem( 2.2.5), is similar to that of 
Theorem(2. 2.6) and Proposition(2. 2.10).  

Proof of Theorem (2.2.1). The first part of the theorem is Theorem(2. 2.6), while the 
second part is Theorem (2.2.14). 
Proof of Theorem (2.2.2). Assume there exists a natural number  𝑜𝑜 ∈ ℕ such that 
ℱ is (𝑅𝑅, 𝑜𝑜)-completable. Then 𝑜𝑜0 ≤ 𝑜𝑜and in this case the theorem follows from 
Theorem(2. 2.11). If there is no  𝑜𝑜 ∈ ℕ such that ℱ is (𝑅𝑅, 𝑜𝑜)-completable, then ℱ 

is(𝑅𝑅, ∞)-completable so by Theorem (2.2.14)  𝑅𝑅 ∈ ℓ1(ℕ) and 1
𝑛𝑛

(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼∞
𝑖𝑖=1 ) ≥ 𝑐𝑐𝑛𝑛  if 

1
𝑛𝑛

(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼∞
𝑖𝑖=1 ) > 𝑐𝑐𝑛𝑛   then there exists 𝑜𝑜 ∈ ℕ such that1

𝑛𝑛
(∑ 𝑅𝑅𝑖𝑖 + 𝛼𝛼𝑜𝑜

𝑖𝑖=1 ) ≥ 𝑐𝑐𝑛𝑛 . If 
then, by Proposition(2. 2.11) we get that ℱ is (𝑅𝑅, 𝑜𝑜)-completable, a contradiction. 
We finish with the counter-part of Proposition (2.2.13) for the infinite completion case. 
Proposition(2. 2.15)[54]: Let 𝑅𝑅 ∈ ℓ1(ℕ) and let ℱ be (𝑅𝑅, 𝑜𝑜)-completable for 
some 𝑜𝑜 < 𝑛𝑛. Then, ℱ is (𝑅𝑅, ∞) −completable if and only if 1

𝑛𝑛
∑ 𝑅𝑅𝑖𝑖 ≥∞

𝑖𝑖=𝑜𝑜+1
𝑚𝑚𝑅𝑅𝑥𝑥

𝑜𝑜+1≤𝑘𝑘≤𝑛𝑛
1
𝑘𝑘

∑ 𝑅𝑅𝑖𝑖
𝑘𝑘
𝑖𝑖=𝑜𝑜+1 . 

In this section we consider the particular case when 𝑅𝑅 = {𝑅𝑅𝑖𝑖 }𝑖𝑖∈𝑁𝑁 is a constant 
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sequence, 𝑅𝑅𝑖𝑖 = 1 for all 𝑖𝑖 ∈ ℕ(the general case follows in an analogous way). Note that in 
this case ℱ is (a, r)-completable for some 𝑜𝑜 ∈ ℕ; so we shall compute the minimum natural 
number 𝑜𝑜 of vectors with norm one we have to add to ℱ in order 

   t frame. We keep the notation of the previous section forℱ = {𝑓𝑓𝑖𝑖 }𝑖𝑖=1
𝑝𝑝 , 

ℱ , 𝜆𝜆1 ≥ ⋯ ≥ 𝜆𝜆𝑛𝑛  𝑅𝑅𝑛𝑛𝑑𝑑 𝛼𝛼. 
Theorem(2.2.16)[54]:Let ℎ ≔  ∑ 𝜆𝜆1−𝜆𝜆𝑖𝑖

𝑛𝑛
𝑖𝑖=2 , and denote by 𝜏𝜏0 the minimum numbe r of norm 

one vectors we have to add to ℱin order to have a tight frame. 
Case1:Supposeℎ < 𝑛𝑛.Then 𝑜𝑜0 = ℎ 𝑖𝑖𝑓𝑓 ℎ ∈ 𝑁𝑁and 1 + 1

ℎ
∑ 𝜆𝜆𝑛𝑛−𝑖𝑖+1

ℎ
𝑖𝑖=1 ≤ 𝜆𝜆1in particular, 𝑐𝑐ℎ =𝜆𝜆1). 

Otherwise, 𝑜𝑜0 = 𝑛𝑛. 
Case 2:If ℎ ≥ 𝑛𝑛 ,  𝑜𝑜0 is the minimum integer greater than or equal to ℎ . 

Proof. Assume that ℎ< 𝑛𝑛;then, since ℎ = 𝑛𝑛𝜆𝜆1 − 𝛼𝛼, we have that 𝑐𝑐𝑛𝑛 = 1 + 𝛼𝛼
𝑛𝑛
  

RIf in addition  ℎ < 𝑛𝑛 and 1+1
ℎ

∑ 𝜆𝜆𝑛𝑛−𝑖𝑖+1
ℎ
𝑖𝑖=1 < 𝜆𝜆1, ,so  𝑐𝑐ℎ = 1 

𝑛𝑛
(ℎ + α) = 𝜆𝜆1,then 𝑜𝑜0 =

ℎ byTheorem(2.2.11).Otherwise,  𝑐𝑐𝑘𝑘 ≠ 1 
𝑛𝑛

(𝑘𝑘 + α) for all  𝑘𝑘 < 𝑛𝑛 (if 𝑐𝑐𝑘𝑘 = 1 
𝑛𝑛

(𝑘𝑘 + α) for some 
𝑘𝑘 < 𝑛𝑛, then by Proposition(2.2.10)  𝑐𝑐𝑘𝑘 = 𝜆𝜆1,and ℎ would be a natural number); since 𝑐𝑐𝑛𝑛  =
1 + α   

𝑛𝑛
, the minimum integer greater than or equal to 𝑛𝑛𝑐𝑐𝑛𝑛  − α  is 𝑛𝑛 so 𝑜𝑜0 = 𝑛𝑛   by Theorem 

(2.2.11). 
Finally,  ℎ ≥ 𝑛𝑛  implies that𝑐𝑐𝑘𝑘 ≠ 1 

𝑛𝑛
(𝑘𝑘 + α) for all 𝑘𝑘 < 𝑛𝑛 and 𝑐𝑐𝑛𝑛  = 𝜆𝜆1,. Therefore, again by 

Theorem (2.2.11), 𝑜𝑜0 is the minimum integer greater than or equal to   𝑛𝑛𝜆𝜆1, − α = ℎ. 
Example (2.2.17)[54]:This example is taken from [180]. It is interesting because it shows 
the difference between the cases when we can complete   ℱ  to a tight frame with  𝑜𝑜 < 𝑛𝑛 or 𝑜𝑜 
≥ 𝑛𝑛 vectors. Let 𝑓𝑓1 = (1.0) and 𝑓𝑓2 = (𝑐𝑐𝑜𝑜𝑠𝑠θ, sinθ)  in ℝ2, and consider 𝑅𝑅𝑖𝑖 = 1  ∀i. 
It easy to see that the eigenvalues of 𝑆𝑆ℱ  are 1 ±  𝑐𝑐𝑜𝑜𝑠𝑠θ, hence  ℎ =𝜆𝜆1−𝜆𝜆2 = 2|𝑐𝑐𝑜𝑜𝑠𝑠θ|. 
Therefore, by Theorem (2.2.16), the minimum number 𝑜𝑜0 of unit vectors we have to add t 
frame is 2 unless θ = 2

3
π  or θ = 4

3
π  where𝑜𝑜0 = 1 . Note that When 𝑜𝑜0 = 1 the tight frame 

obtained is the well known “Mercedes Benz” (it is–up to rigid rotations, reflections and 
negation of individual vectors– the only unit norm tight frame on ℝ2with three elements 
[47]. 
A consequence of Theorem (2.2.16)  is the characterization of the minimum number of 
vectors that we have to add in order to get a tight frame, in the particular case when ℱ  is a 
unit norm tight frame on its linear span. 
Proposition (2.2.18)[54]:Let ℱ  ={𝑓𝑓𝑖𝑖 }𝑖𝑖=1

𝑝𝑝 be a unit norm 𝑝𝑝
𝑑𝑑

−tight frame on its span, where  𝑑𝑑 
< 𝑛𝑛 is the dimension of span ℱ  . Then, the minimum number  𝑜𝑜0 of unit norm vectors we 
have to add to ℱ  in order to obtain a tight frame inℋis: 

(a)  (𝑛𝑛 − 𝑑𝑑) 𝑝𝑝
𝑑𝑑
 if  (𝑛𝑛 − 𝑑𝑑) 𝑝𝑝

𝑑𝑑
 < 𝑛𝑛 and (𝑛𝑛 − 𝑑𝑑) 𝑝𝑝

𝑑𝑑
 ∈ℕ. 

(b) 𝑛𝑛 if (𝑛𝑛 − 𝑑𝑑) 𝑝𝑝
𝑑𝑑
 < 𝑛𝑛 and (𝑛𝑛 − 𝑑𝑑) 𝑝𝑝

𝑑𝑑
∉  ℕ 

(c) the minimum integer greater than or equal to (𝑛𝑛 − 𝑑𝑑) 𝑝𝑝
𝑑𝑑
 if  (𝑛𝑛 − 𝑑𝑑) 𝑝𝑝

𝑑𝑑
  ≥  𝑛𝑛 . 

Proof. Since ℱis an unit norm tight frame on a subspace of dimension 𝑑𝑑, the eigenvalues of 
𝑆𝑆ℱare: 𝜆𝜆𝑖𝑖  = 𝑝𝑝

𝑑𝑑
≥ 1 for 1≤ 𝑖𝑖 ≤ 𝑑𝑑, and 𝜆𝜆𝑖𝑖 = 0 for 𝑑𝑑 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. Therefore, ℎ = ∑ 𝜆𝜆1 

𝑛𝑛
𝑖𝑖=2 −

 𝜆𝜆𝑖𝑖 = (𝑛𝑛 − 𝑑𝑑) . Moreover, if ℎ < 𝑛𝑛 and  ℎ ∈ℕ, then 1+1
ℎ

∑ 𝜆𝜆𝑛𝑛−𝑖𝑖+1
ℎ
𝑖𝑖=1 = 𝜆𝜆1 . Indeed, 

1+1
ℎ

∑ 𝜆𝜆𝑛𝑛−𝑖𝑖+1
ℎ
𝑖𝑖=1 = 1 +  ℎ−(𝑛𝑛−𝑑𝑑)

ℎ
𝑝𝑝  
𝑑𝑑

 =𝑝𝑝
𝑑𝑑
                                                       (21) 

the proposition is then a consequence of Theorem (2.2.16) 
Let ℱ  ={𝑓𝑓𝑖𝑖 }𝑖𝑖=1

𝑝𝑝 ⊆ ℋ and assume that a is a divergent sequence. Then, by Remark (2.2.8), ℱ  
is (a, r)-completable for some 𝑜𝑜 ∈ℕ. From the proof of Theorem(2.2.7) we see that if                                 
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𝑐𝑐 =
1
𝑛𝑛

�� 𝑅𝑅𝑖𝑖 + 𝛼𝛼
𝑜𝑜

𝑖𝑖=1

� 

then equation (26) holds. Therefore, by theorem (2.2.4),theoretically  there exists a Bessel 
sequence 𝒢𝒢  ={𝑔𝑔𝑖𝑖 }𝑖𝑖=1

𝑝𝑝 ⊆ ℋsuch that ‖𝑔𝑔𝑖𝑖 ‖2= 𝑅𝑅𝑖𝑖  for  1≤ 𝑖𝑖 ≤ 𝑜𝑜 and 𝑆𝑆𝒢𝒢 =𝑐𝑐𝐼𝐼 − 𝑆𝑆ℱ . In this case, 𝒢𝒢  
is a (a,r)-completion of ℱ; moreover, if 𝑜𝑜 ∈ ℕ is obtained as in Theorem (2.2.11) then 𝒢𝒢  
would be (a, r)-tight completion having the minimum number of vectors for which a tight 
completion of ℱ exists. Although constructive, the proof of Theorem (2.2.4) is not 
practicable; it depends on some matrix decompositions which can not be performed 
efficiently by a computer for large values of t = min{n, r}. There are several recent papers 
related to algorithmic construction of frames with additional properties. In [178] Casazza and 
Leon considered the problem of constructing frames with prescribed properties from an 
algorithmic point of view; in particular, they obtained an algorithm for constructing tight 
frames with pre-scribed norms of its elements, under the admissibility conditions of 
Theorem( 2.2.4). In [180] there is a fast algorithm for constructing tight frames with 
prescribed norms of its elements based on Householder transformations; in [44] a fast 
algorithmic proof of some results related to the Schur-Horn theorem is considered and as a 
consequence a generalized one-sided Bendel-Mickey algorithm (see Theorem (2.2.19) 
below) is obtained. Still, as far as we know, the problem of constructing a frame forℋwith 
prescribed general (positive definite) frame operator and norms (that are admissible in the 
sense of Theorem(2.2.4)) using an efficient computable algorithm has not been solved: we 
remark that for the purposes of this discussion, the diagonalization of a positive semi-definite 
matrix is considered as not efficiently computable. If such an algorithm is obtained, then 
optimal tight frame completions can be constructed as described in the first paragraph of this 
section. In what follows we shall consider a not so optimal tight frame completion of a given 
set ℱ  ={𝑓𝑓𝑖𝑖 }𝑖𝑖=1

𝑝𝑝 but that is efficiently algorithmic computable, based on the generalized one-
sided Bendel-Mickey algorithm and the Cholesky’s decomposition. Let us begin with the 
following result from [44]. We remark that our notation is opposite to that in [44] so we 
translate their result into our terminology. 

Theorem (2.2.19) ([44]): Let 𝑅𝑅 = {𝑅𝑅𝑖𝑖 }𝑖𝑖=1,
𝑜𝑜 𝑏𝑏 = {𝑏𝑏𝑖𝑖 }𝑖𝑖=1

𝑜𝑜 be two finite and non-increasing 
sequences of positive numbers such that 𝑅𝑅 ≺ 𝑏𝑏 . Let 𝑋𝑋 be an 𝑛𝑛 × 𝑜𝑜  matrix whose squared 
columns norms are listed by 𝑏𝑏. Then there is a finite sequence of algorithmic computable 
plane rotations 𝛼𝛼1 , … , 𝛼𝛼𝑜𝑜−1 ∈ 𝕄𝕄𝑜𝑜   (ℂ)  such that 𝑋𝑋(𝛼𝛼1 … 𝛼𝛼𝑜𝑜−1) has squared columns norms 
listed by 𝑅𝑅.  

Actually, each plane rotation that appears in the theorem above operates non-trivially in the 
coordinate plane span {𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑗𝑗 }  for some 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑜𝑜 (see[44] for details). Note that the 
initial matrix 𝑋𝑋 and the final matrix 𝑌𝑌 = 𝑋𝑋(𝛼𝛼1 … 𝛼𝛼𝑜𝑜−1) satisfy . 𝑋𝑋𝑋𝑋∗ = 𝑌𝑌𝑌𝑌∗. 
Taking into account Theorem (2.2.19), an strategy to construct a frame with pre-scribed 
frame operator S ∈ 𝕄𝕄r  (ℂ) and norms of its elements listed by a(satisfying the conditions in 
Theorem( 2.2.4)) would be the following: consider a diagonalization 
S = Udiag(λ1 , … , λn )U∗and the factorization XX∗ = S with X = Udiag(�λ1 ,…�λn ). Note 
that the squared norms of the columns of X are listed by (λ1 , … , λn ) so we can apply 
Theorem (2.2.19) and obtain  

Y = X(U1 … Ur−1) 
with YY∗ = S with the squared norms of the columns of Y given by a . Unfortunately, we 
consider this procedure as not an eciently computable one, so we have to find an alternative 
approach. 
Along this section we prove Theorem C; we begin with an informal discussion of the 
algorithm. Assume that the non-increasing sequence of positive numbers {𝑅𝑅𝑖𝑖 }𝑖𝑖=1

∞   forms a 
divergent series, so that ℱis (a, t)-completable for some  𝑤𝑤 ∈ℕ. Let 𝑆𝑆 = 𝑆𝑆ℱ and let 𝑐𝑐 >



36 
 
 

‖𝑆𝑆‖that we shall consider as a variable. We will obtain an algorithmic computable value of 
𝑐𝑐 for which the Cholesky’s decomposition 𝑐𝑐𝐼𝐼𝑛𝑛 − 𝑆𝑆 = 𝑅𝑅𝑅𝑅∗ satisfies that the squared norms 
of the columns of 𝑅𝑅  mayorize{𝑅𝑅𝑖𝑖 }𝑖𝑖=1

r for an integer 𝑜𝑜≥ 𝑛𝑛. Once we have obtained such c, we 
apply Theorem (2.2.19) and get a finite sequence 𝒢𝒢 = {𝑔𝑔𝑖𝑖 }𝑖𝑖=1

r with frame operator 𝑐𝑐𝐼𝐼𝑛𝑛 − 𝑆𝑆  
and ‖𝑔𝑔𝑖𝑖 ‖2

 = 𝑅𝑅𝑖𝑖 , for 1 ≤  𝑖𝑖 ≤ 𝑜𝑜. Let 𝑐𝑐 > ‖𝑆𝑆‖ + 𝛽𝛽 so 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 (𝑐𝑐𝐼𝐼 − 𝑆𝑆) = 𝑐𝑐 − ‖𝑆𝑆‖ ≥  β, where β >
 0 is a fixed number controlling the invertibility of 𝑐𝑐𝐼𝐼 − 𝑆𝑆. Let 𝑅𝑅 = 𝑅𝑅(𝑐𝑐) be the upper 
triangular matrix obtained from the Cholesky’s decomposition of 𝑐𝑐𝐼𝐼 − 𝑆𝑆 (note that the 
hypothesis on 𝑐𝑐 is made in order that the Cholesky’s algorithm becames stable). Then 
𝑅𝑅𝑅𝑅∗ = 𝑐𝑐𝐼𝐼 − 𝑆𝑆 and note that 𝑐𝑐 − ‖𝑆𝑆‖ = 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 ( 𝑅𝑅𝑅𝑅∗) = 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 (𝑅𝑅∗𝑅𝑅)  so, if 𝐶𝐶𝑖𝑖 (𝑅𝑅) denotes the 
𝑖𝑖-th column of 𝑅𝑅 then 

min
1≤𝑖𝑖≤𝑛𝑛

‖𝐶𝐶𝑖𝑖 (𝑅𝑅)‖2 ≥ 𝑐𝑐 − ‖𝑆𝑆‖, 
Since ‖𝐶𝐶𝑖𝑖 (𝑅𝑅)‖2 = (𝑅𝑅∗𝑅𝑅)𝑖𝑖𝑖𝑖  and (𝑅𝑅𝑅𝑅∗)𝑖𝑖𝑖𝑖  ≥ 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 (𝑅𝑅∗𝑅𝑅) for 1 ≤  𝑖𝑖 ≤ 𝑛𝑛  . In particular 
∑ ‖𝐶𝐶𝑖𝑖 (𝑅𝑅)‖2 = ∑ (𝑅𝑅∗𝑅𝑅)𝑖𝑖𝑖𝑖 ≥ 𝑘𝑘. ( 𝑐𝑐 − ‖𝑆𝑆‖)𝑘𝑘

𝑖𝑖=1
𝑘𝑘
𝑖𝑖=1 .Let  𝑐𝑐 ≥ 𝑚𝑚𝑅𝑅𝑥𝑥(‖𝑆𝑆‖ + 𝛽𝛽, ‖𝑆𝑆‖ + 𝑅𝑅1)    

and note that then 
𝑐𝑐 ≥ 1

𝑘𝑘
∑ 𝑅𝑅𝑖𝑖 +𝑘𝑘

𝑖𝑖=1 ‖𝑆𝑆‖,for 1 ≤𝑘𝑘 ≤ 𝑛𝑛                                                                              (22) 

since1
𝑘𝑘

∑ 𝑅𝑅𝑖𝑖 ≥𝑘𝑘
𝑖𝑖=1

1
ℎ

∑ 𝑅𝑅𝑖𝑖
ℎ
𝑖𝑖=1 𝑖𝑖𝑓𝑓 1 ≤  𝑘𝑘 ≤ ℎ ≤ 𝑛𝑛. Let 𝑜𝑜 ∈ℕ be such that 

� 𝑅𝑅𝑖𝑖 <
𝑜𝑜−1

𝑖𝑖=1

�‖𝐶𝐶𝑖𝑖 (𝑅𝑅(𝑐𝑐))‖2 = 𝑐𝑐. 𝑛𝑛 − 𝑤𝑤𝑜𝑜(𝑆𝑆)
𝑛𝑛

𝑖𝑖=1

≤ � 𝑅𝑅𝑖𝑖                                            (23)
𝑜𝑜

𝑖𝑖=1

   

So 𝑜𝑜 ≥ 𝑛𝑛. We define 𝑐𝑐′ = 1
𝑛𝑛

∑ 𝑅𝑅𝑖𝑖 + 𝑤𝑤𝑜𝑜(𝑆𝑆ℱ),𝑜𝑜
𝑖𝑖=1 where 𝑜𝑜 is defined by (23) so that, if  

𝑅𝑅(𝑐𝑐′ )denotes the holesky’Cs decomposition of 𝑐𝑐′ 𝐼𝐼 − 𝑆𝑆ℱ  then we get 
(𝑅𝑅𝑖𝑖 )𝑖𝑖=1

𝑜𝑜 ≺(‖𝐶𝐶𝑖𝑖 (𝑅𝑅(𝑐𝑐′ ))‖2)𝑖𝑖=1
𝑛𝑛 . 

Thus, with this 𝑐𝑐′ ∈ ℝ and 𝑜𝑜 ∈ ℕwe can apply Theorem (2.2.19) to the matrix 
𝑋𝑋 = [𝑅𝑅(𝑐𝑐′ ), 𝑆𝑆𝑛𝑛×(𝑜𝑜−𝑛𝑛)] 

and get the (efficiently algorithmic computable) 𝑛𝑛 × 𝑜𝑜 matrix 𝑌𝑌 such that 𝑌𝑌𝑌𝑌∗ = 𝑆𝑆  
and‖𝐶𝐶𝑖𝑖 (𝑌𝑌)‖2 = 𝑅𝑅𝑖𝑖  for 1 ≤  𝑖𝑖 ≤ 𝑜𝑜 ; setting 𝑔𝑔𝑖𝑖=𝐶𝐶𝑖𝑖 (𝑌𝑌) we get {𝑔𝑔𝑖𝑖 }𝑖𝑖=1

r  with the desired  
properties. We briefly resume the previous considerations in the following pseudo-code 
 implementation: 
(a)Find an algorithmic computable upper bound  𝑑𝑑 for ‖𝑆𝑆‖. 
(b)Compute 𝑐𝑐 = max (𝑑𝑑 + 𝛽𝛽, 𝑑𝑑 + 𝛼𝛼1) (where 𝛽𝛽 > 0 is previously fixed) 
and 𝑜𝑜 ∈ ℕ satisfying (23). 
(c) Redefine 𝑐𝑐 = 1

𝑛𝑛
(∑ 𝑅𝑅𝑖𝑖 + 𝑤𝑤𝑜𝑜(𝑆𝑆ℱ)𝑜𝑜

𝑖𝑖=1 ).  
(d) Compute the Cholesky’s decomposition  𝑐𝑐𝐼𝐼 − 𝑆𝑆= 𝑅𝑅𝑅𝑅∗. 
(e) Apply Theorem(2.2.19)  to the  𝑛𝑛 × 𝑜𝑜  matrix   [𝑅𝑅, 𝑆𝑆𝑛𝑛×(𝑜𝑜−𝑛𝑛)] and get the n × r   
matrix Ysuch that cI − S =  YY∗and ‖Ci(Y)‖2 =  ai for 1 ≤   i ≤  r .  
(f) Definegi = Ci(Y) for 1 ≤   i ≤  r  . 
Example (2.2.20)[54]: Assume that‖fi‖ = 1 for 1 ≤   i ≤  p  and that ‖ai‖ = 1, so we 
are looking for unit norm tight completions of a unit norm family of vectors ℱ. 
In this case, it is shown in [180] that if  d = ⟦‖Sℱ‖ + 1⟧ , where ⟦h⟧ denotes the 
smallest integer greater than or equal to  h, there always exists a unit norm tight 
completion of ℱ with dn − p elements. Our arguments above show that there exists  an 
efficiently algorithmic computable unit norm tight completion with  ⟦n. (‖Sℱ‖ + 1) −
p⟧ (assuming that we can compute efficiently‖Sℱ‖ and seting β = 1). Note that in 
general we have that  

𝑛𝑛. ⟦‖𝑆𝑆ℱ‖ + 1⟧ − 𝑝𝑝 ≥ ⟦𝑛𝑛. (‖𝑆𝑆ℱ‖ + 1) − 𝑝𝑝⟧ . 
Corollary(2.2.21)[202]: Let 𝑅𝑅𝑚𝑚0 = {𝑅𝑅𝑖𝑖

𝑚𝑚0 }𝑖𝑖 ,𝑚𝑚0=1
𝑚𝑚  be a non-increasing power sequence of 

positive numbers and let 𝑆𝑆 ∈  𝐿𝐿(ℋ)+ with eigenvalues (counted with multiplicity and 
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arranged in non-increasing order)  𝛬𝛬 =  {𝜆𝜆𝑗𝑗
𝑚𝑚0 }𝑗𝑗 ,𝑚𝑚0=1

𝑛𝑛  . Then the following statements are 
equivalent: 
(i) 𝑅𝑅𝑚𝑚0 ≺ 𝛬𝛬. 
(ii) There exists a Bessel power sequence 𝒢𝒢𝑚𝑚0 = �𝑔𝑔𝑖𝑖

𝑚𝑚0 �
𝑖𝑖,𝑚𝑚0=1
𝑜𝑜

 ⊆ ℋ    such that �𝑔𝑔𝑖𝑖
𝑚𝑚0 �2

 =

𝑅𝑅𝑖𝑖
𝑚𝑚0  for 1 ≤  𝑖𝑖, 𝑚𝑚0  ≤  𝑚𝑚  and  𝑆𝑆𝒢𝒢𝑚𝑚 0      = 𝑆𝑆𝑚𝑚0  . 

Proof.  If we assume that 𝑆𝑆𝑚𝑚0 > 0 then the case when 𝑚𝑚 ∈  𝑁𝑁 is  in [35], while the case 
when  𝑚𝑚 =  ∞ is Theorem 4.7 in [35]. If the spectrum of 𝑆𝑆𝑚𝑚0  has zeros (note that this is the 
case whenever  𝑚𝑚 <  𝑛𝑛) we can reduce to the invertible case, restricting 𝑆𝑆𝑚𝑚0  to the 
orthogonal complement of ker 𝑆𝑆𝑚𝑚0 . 
 Corollar(2.2.22)[202]: Let 𝑜𝑜 ∈ ℕ. Then ℱ𝑚𝑚0   is (𝑅𝑅𝑚𝑚0 , 𝑜𝑜)-completable if and only if 

1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝐿𝐿
𝑚𝑚0=1   ≥  𝜆𝜆1

𝑚𝑚0  𝑅𝑅𝑛𝑛𝑑𝑑 1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝐿𝐿
𝑚𝑚0=1 ≥

1
𝑘𝑘

∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  +  𝜆𝜆𝑛𝑛−𝑖𝑖+1

𝑚𝑚0𝑘𝑘
𝑖𝑖=1  )𝐿𝐿

𝑚𝑚0=1  , min(𝑛𝑛, 𝑜𝑜) .      (24)         

Proof.  Assume that there exists 𝑜𝑜 ∈  ℕ and a finite power sequence  𝒢𝒢𝑚𝑚0 = �𝑔𝑔𝑖𝑖
𝑚𝑚0 �

𝑖𝑖,𝑚𝑚0=1
𝑜𝑜

 
such that 

𝑆𝑆  ℱ𝑚𝑚 0  ∪ 𝒢𝒢𝑚𝑚 0     = 𝑆𝑆ℱ𝑚𝑚 0   + 𝑆𝑆𝒢𝒢𝑚𝑚 0    = 𝑐𝑐𝑚𝑚0 𝐼𝐼 and  �𝑔𝑔𝑖𝑖
𝑚𝑚0 �2

 = 𝑅𝑅𝑖𝑖
𝑚𝑚0for 1 ≤  𝑖𝑖, 𝑚𝑚0  ≤  𝑜𝑜.Then 

𝑐𝑐𝑚𝑚0 𝐼𝐼 − 𝑆𝑆ℱ𝑚𝑚 0     = 𝑆𝑆𝒢𝒢𝑚𝑚 0     ≥ 0; in particular we have 𝑐𝑐𝑚𝑚0 ≥ ‖𝑆𝑆‖ = 𝜆𝜆1
𝑚𝑚0  . On the other hand, 

we see that the eigenvalues of  𝑆𝑆𝒢𝒢𝑚𝑚 0    arranged in non-increasing order are 𝑐𝑐𝑚𝑚0 −   𝜆𝜆𝑛𝑛
𝑚𝑚0 ≥

 . . . ≥   𝑐𝑐𝑚𝑚0 − 𝜆𝜆1
𝑚𝑚0   ≥  0. By Theorem  (2.2.5)  we have 

�𝑐𝑐𝑚𝑚0  −  𝜆𝜆𝑛𝑛
𝑚𝑚0  , 𝑐𝑐𝑚𝑚0  −  𝜆𝜆𝑛𝑛−1

𝑚𝑚0  , . . . , 𝑐𝑐𝑚𝑚0 − 𝜆𝜆1
𝑚𝑚0   �

≻  �𝑅𝑅1
𝑚𝑚0  , . . . , 𝑅𝑅𝑜𝑜

𝑚𝑚0  �.                                     (25)     
Then, by Definition( 2.2.1) we see that1

𝑛𝑛
 (∑ ∑ (𝑅𝑅𝑖𝑖

𝑚𝑚0  + 𝑜𝑜
𝑖𝑖=1 𝛼𝛼𝑚𝑚0  ))𝐿𝐿

𝑚𝑚0=1   ≥  𝜆𝜆1
𝑚𝑚0   and (7) hold, 

using that 𝑐𝑐𝑚𝑚0 = 1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝐿𝐿
𝑚𝑚0=1   . 

Conversely assume that 1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝐿𝐿
𝑚𝑚0=1   ≥  𝜆𝜆1

𝑚𝑚0  and (7) hold for 𝑜𝑜 ∈  ℕ. Set 

𝑐𝑐𝑚𝑚0 = 1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝐿𝐿
𝑚𝑚0=1  and note that the spectrum of the positive operator 

𝑐𝑐𝑚𝑚0 𝐼𝐼 − 𝑆𝑆ℱ𝑚𝑚 0      , �𝑐𝑐𝑚𝑚0  −  𝜆𝜆𝑛𝑛
𝑚𝑚0  , 𝑐𝑐𝑚𝑚0  −  𝜆𝜆𝑛𝑛−1

𝑚𝑚0  , . . ., 𝑐𝑐𝑚𝑚0 − 𝜆𝜆1
𝑚𝑚0   �, majorizes (in the sense of 

Definition (2.2.4)) �𝑅𝑅𝑖𝑖
𝑚𝑚0 �

𝑖𝑖 ,𝑚𝑚0=1
𝑜𝑜

 . By Theorem (2.2.5) we conclude that there exists a finite 

power sequence 𝒢𝒢𝑚𝑚0 = �𝑔𝑔𝑖𝑖
𝑚𝑚0 �

𝑖𝑖,𝑚𝑚0=1
𝑜𝑜

 with 𝑆𝑆𝒢𝒢𝑚𝑚 0    = 𝑐𝑐𝑚𝑚0 𝐼𝐼 − 𝑆𝑆ℱ𝑚𝑚 0     and �𝑔𝑔𝑖𝑖
𝑚𝑚0 �2

 = 𝑅𝑅𝑖𝑖
𝑚𝑚0for 

1 ≤  𝑖𝑖, 𝑚𝑚0 ≤  𝑜𝑜 and we are done. 
 Corollary (2.2.23)[202]: Let  𝑜𝑜 ∈ ℕ. ℱ𝑚𝑚0  is (𝑅𝑅𝑚𝑚0 , 𝑜𝑜)-completable if and only if 
1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝐿𝐿
𝑚𝑚0=1 ) =  𝑐𝑐𝑜𝑜

𝑚𝑚0for 𝑜𝑜 < 𝑛𝑛                                           (26) 
or  
1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  ))𝐿𝐿
𝑚𝑚0=1 ≥  𝑐𝑐𝑛𝑛

𝑚𝑚0
 for 𝑜𝑜 ≥ 𝑛𝑛.                                                                 

(27)                                                                   
Moreover, if  𝑐𝑐𝑜𝑜

𝑚𝑚0 = 1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝐿𝐿
𝑚𝑚0=1 )  for some 𝑜𝑜 < 𝑛𝑛, then  𝑐𝑐𝑜𝑜

𝑚𝑚0 = 𝜆𝜆1
𝑚𝑚0 . 

  Poof.    A ssume that  ℱ𝑚𝑚0  is (𝑅𝑅𝑚𝑚0 ,r)- completable. If 𝑜𝑜 < 𝑛𝑛 note that, by (9) in Corollary  
(2.2.8), we have  𝜆𝜆1

𝑚𝑚0 =  𝑐𝑐0
𝑚𝑚0 ≤ ⋯ ≤  𝑐𝑐𝑜𝑜

𝑚𝑚0 =  𝜆𝜆1
𝑚𝑚0  and   𝜆𝜆1

𝑚𝑚0 =  1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  +𝑜𝑜

𝑖𝑖=1
𝑜𝑜
𝑚𝑚0=1

 𝛼𝛼𝑚𝑚0  )  , 
so (11) holds. If  𝑜𝑜 ≥ 𝑛𝑛 then min {𝑛𝑛, 𝑜𝑜} = 𝑛𝑛  and Theorem (2.2.7) together with the 
definition of 𝑐𝑐𝑛𝑛 imply that   1

𝑛𝑛
 (∑ ∑ (𝑅𝑅𝑖𝑖

𝑚𝑚0  + 𝑜𝑜
𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝐿𝐿

𝑚𝑚0=1 ≥  𝑐𝑐𝑛𝑛
𝑚𝑚0 . 

So in this case (12) holds. Conversely, if we assume (27), then it is clear ℱ𝑚𝑚0  is (𝑅𝑅𝑚𝑚0 , 𝑜𝑜)-
completable, by Theorem  (2.2.7). Assume now that for some 
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𝑜𝑜 < 𝑛𝑛,  𝑐𝑐𝑛𝑛
𝑚𝑚0 = 1

𝑛𝑛
 (∑ ∑ (𝑅𝑅𝑖𝑖

𝑚𝑚0  + 𝑜𝑜
𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝐿𝐿

𝑚𝑚0=1  . We show that ℱ𝑚𝑚0 is (𝑅𝑅𝑚𝑚0 , 𝑜𝑜)-completable; 
indeed, since 𝑛𝑛 𝑐𝑐𝑛𝑛

𝑚𝑚0 =  (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝐿𝐿
𝑚𝑚0=1  then𝑜𝑜 𝑐𝑐𝑜𝑜

𝑚𝑚0
 + (𝑛𝑛 − 𝑜𝑜) 𝑐𝑐𝑜𝑜

𝑚𝑚0 −
∑ ∑ 𝜆𝜆𝑖𝑖

𝑚𝑚0𝑛𝑛−𝑜𝑜
𝑖𝑖=1

𝐿𝐿
𝑚𝑚0=1 = ∑ ∑ 𝑅𝑅𝑖𝑖

𝑚𝑚0𝑜𝑜
𝑖𝑖=1

𝑜𝑜
𝑚𝑚0=1 ∑ + ∑ ∑ 𝜆𝜆𝑛𝑛−𝑖𝑖+1

𝑚𝑚0𝑜𝑜
𝑖𝑖=1

𝑜𝑜
𝑚𝑚0=1

𝐿𝐿
𝑖𝑖=1  

So by definition of  𝑐𝑐𝑜𝑜
𝑚𝑚0  we have 

 
∑ ∑ (𝑅𝑅𝑖𝑖

𝑚𝑚0  +  𝜆𝜆𝑛𝑛−𝑖𝑖+1
𝑚𝑚0𝑜𝑜

𝑖𝑖=1  ) ≤𝐿𝐿
𝑚𝑚0=1 𝑜𝑜 𝑐𝑐𝑜𝑜

𝑚𝑚0  =
∑ ∑ (𝑅𝑅𝑖𝑖

𝑚𝑚0  +  𝜆𝜆𝑛𝑛−𝑖𝑖+1
𝑚𝑚0𝑜𝑜

𝑖𝑖=1  )𝐿𝐿
𝑚𝑚0=1 − ∑ ∑ (𝑐𝑐𝑜𝑜

𝑚𝑚0  +  𝜆𝜆𝑛𝑛−𝑖𝑖+1
𝑚𝑚0𝑛𝑛−𝑜𝑜

𝑖𝑖=1  )𝐿𝐿
𝑚𝑚0=1 ≤ ∑ ∑ (𝑅𝑅𝑖𝑖

𝑚𝑚0  +𝑜𝑜
𝑖𝑖=1

𝐿𝐿
𝑚𝑚0=1

 𝜆𝜆𝑛𝑛−𝑖𝑖+1𝑚𝑚0 ). 
But then 
𝜆𝜆𝑖𝑖

𝑚𝑚0 = 1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝐿𝐿
𝑚𝑚0=1  for 1 ≤ 𝑖𝑖, 𝑚𝑚0 ≤ 𝑛𝑛 − 𝑜𝑜 

and 

𝜆𝜆1
𝑚𝑚0 ≥ max

1≤𝑘𝑘≤𝑜𝑜
 
1
𝑘𝑘 � � (𝑅𝑅𝑖𝑖

𝑚𝑚 0  + 𝜆𝜆𝑛𝑛 −𝑖𝑖+1
𝑚𝑚 0

𝑘𝑘

𝑖𝑖=1
 )

𝐿𝐿

𝑚𝑚 0=1
. 

So ℱ𝑚𝑚0  is (𝑅𝑅𝑚𝑚0 , 𝑜𝑜)-completable, by Corollary (2.2.8). The last claim of the proposition is 
clear from the computations. 
We  give a formula for the minimum   𝑜𝑜 ∈ ℕ  such that ℱ𝑚𝑚0  is (𝑅𝑅𝑚𝑚0 , 𝑜𝑜)-completable, when 
such an   𝑜𝑜 ∈ ℕ  exists. 
 Corollary (2.2.24)[202]: Letℱ𝑚𝑚0  be a (𝑅𝑅𝑚𝑚0 , 𝑜𝑜)-completable for some 𝑜𝑜 ∈ ℕ. Let  𝑜𝑜0 ∈ ℕ be 
the minimum such that ℱ𝑚𝑚0 is (𝑅𝑅𝑚𝑚0 ,  𝑜𝑜0)-completable. Then 

Case1: 𝑜𝑜0 <  𝑛𝑛 if and only if  𝑐𝑐𝑜𝑜0
𝑚𝑚0 = 1

𝑛𝑛
 (∑ ∑ (𝑅𝑅𝑖𝑖

𝑚𝑚0  + 𝑜𝑜0
𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝐿𝐿

𝑚𝑚0=1  

Case2:  𝑜𝑜0  ≥ 𝑛𝑛  if and only if  𝑐𝑐𝑘𝑘
𝑚𝑚0 ≠ 1

𝑛𝑛
 (∑ ∑ (𝑅𝑅𝑖𝑖

𝑚𝑚0  + 𝑘𝑘
𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝐿𝐿

𝑚𝑚0=1  𝑓𝑓𝑜𝑜𝑜𝑜 𝑅𝑅𝑙𝑙𝑙𝑙 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 −

1 𝑅𝑅𝑛𝑛𝑑𝑑 𝑜𝑜0  ≥∈ ℕ is the minimum such that 𝑐𝑐𝑛𝑛
𝑚𝑚0  ≤ 1

𝑛𝑛
 (∑ ∑ (𝑅𝑅𝑖𝑖

𝑚𝑚0  + 𝑜𝑜0
𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝐿𝐿

𝑚𝑚0=1 . 
Proof. Note that, by Proposition (2.2.10), at least one the cases has to be fulfilled by  some 
𝑜𝑜 ∈ ℕ. If we assume that case 1 holds for some 𝑜𝑜 < 𝑛𝑛 then,by Proposition (2.2.10),  ℱ𝑚𝑚0   is 
(𝛼𝛼𝑚𝑚0 , 𝑜𝑜)-completable. By Corollary (2.2.9) case 1 does not hold for 𝑘𝑘 < 𝑛𝑛 with 𝑜𝑜 ≠  𝑘𝑘. It is 
clear that in this case 𝑜𝑜0 =  𝑜𝑜. 

Assume now that there is no 𝑜𝑜 < 𝑛𝑛 satisfying case 1 above. Then, there exists 
𝑜𝑜 ∈ ℕ such that 𝑐𝑐𝑛𝑛

𝑚𝑚0  ≤ 1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝐿𝐿
𝑚𝑚0=1  by Proposition (2.2.10) we see that 

ℱ𝑚𝑚0  is (𝑅𝑅𝑚𝑚0 , 𝑜𝑜)- completable. It is clear that 𝑜𝑜0 is the minimum natural number 𝑜𝑜 satisfying 
this condition. Finally note that if 𝑜𝑜 ∈ ℕ  is such that 𝑐𝑐𝑛𝑛

𝑚𝑚0  ≤ 1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝑜𝑜
𝑚𝑚0=1 ) 

then 
1
𝑛𝑛

 ( � � (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 

𝑛𝑛

𝑖𝑖=1
𝛼𝛼𝑚𝑚0  ))

𝑛𝑛

𝑚𝑚0=1

≤  𝑐𝑐𝑛𝑛
𝑚𝑚0 ≤

1
𝑛𝑛

 ( � � (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 

𝑜𝑜

𝑖𝑖=1
𝛼𝛼𝑚𝑚0  ))

𝑜𝑜

𝑚𝑚0=1

⟹ � � 𝑅𝑅𝑖𝑖
𝑚𝑚0

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑚𝑚0=1

≤ � �  
𝑜𝑜

𝑖𝑖=1
𝛼𝛼𝑚𝑚0  

𝑜𝑜

𝑚𝑚0=1

 

and 𝑜𝑜 ≥ 𝑛𝑛 since for every 𝑖𝑖, 𝑚𝑚0 ∈ ℕ, 𝑅𝑅𝑖𝑖
𝑚𝑚0 > 0. 

The next example shows that it is possible to obtain a set of vectors ℱ𝑚𝑚0  and a power 
sequence 𝑅𝑅𝑚𝑚0  such that ℱ𝑚𝑚0  is (𝑅𝑅𝑚𝑚0 , 𝑜𝑜)-completable for only one  𝑜𝑜 ∈ ℕ (in virtue of 
Corollary (2.2.9), 𝑜𝑜 < 𝑛𝑛). 

Corollary(2.2.25)[202]:  

Deduce that  

(i)  𝑐𝑐𝑜𝑜
𝑚𝑚0 −  𝑐𝑐𝑛𝑛

𝑚𝑚0 = 𝜖𝜖 
(ii)  𝑐𝑐3

𝑚𝑚0 > 19
9

, 𝑛𝑛 = 3. 
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From (12) we can find  
1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )) 𝑜𝑜
𝑚𝑚0=1 = 𝑐𝑐𝑛𝑛

𝑚𝑚0 + 𝜖𝜖, 𝜖𝜖 > 0 
Divide this equation with (11) we have  𝑐𝑐𝑜𝑜

𝑚𝑚0 −  𝑐𝑐𝑛𝑛
𝑚𝑚0 = 𝜖𝜖     (28) 

In Example (2.2.12), by choosing 𝑛𝑛 = 3, we have that  𝑐𝑐3
𝑚𝑚0 > 19

9
. 

Corollary (2.2.26)[202]: Let ℱ𝑚𝑚0  be (𝑅𝑅𝑚𝑚0 , 𝑜𝑜)-completable for some 𝑜𝑜 < 𝑛𝑛. There exists 
𝑜𝑜1 ∈ ℕ with 𝑜𝑜1 ≥ 𝑛𝑛 and such that ℱ𝑚𝑚0  is (𝑅𝑅𝑚𝑚0 , 𝑜𝑜1)-completable if and only if 

1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜1

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  ))𝑜𝑜1
𝑚𝑚0=1 ≥ 𝑚𝑚𝑅𝑅𝑥𝑥

𝑜𝑜+1≤𝑘𝑘≤𝑛𝑛
1
𝑘𝑘

(∑ ∑ 𝑅𝑅𝑖𝑖
𝑚𝑚0   𝑘𝑘

𝑖𝑖=𝑜𝑜+1
𝑘𝑘
𝑚𝑚0=𝑜𝑜+1 . 

Proof. By Theorem (2.2.7), ℱ𝑚𝑚0   is (𝑅𝑅𝑚𝑚0 , 𝑜𝑜1)-completable if and only if 
(1

𝑘𝑘
∑ ∑ (𝑅𝑅𝑖𝑖

𝑚𝑚0  + 𝑘𝑘
𝑖𝑖=1 𝜆𝜆𝑛𝑛−𝑖𝑖+1

𝑚𝑚0  ))𝑘𝑘
𝑚𝑚0=1 ≥ 𝜆𝜆1

𝑚𝑚0and1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜1

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝑜𝑜1
𝑚𝑚0=1 )≥

1
𝑘𝑘

∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑘𝑘

𝑖𝑖=1 𝜆𝜆𝑛𝑛−𝑖𝑖+1
𝑚𝑚0  )𝑘𝑘

𝑚𝑚0=1 , 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛. 
By hypothesis and Corollary (2.2.8),  
𝜆𝜆𝑖𝑖

𝑚𝑚0 = 1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0   𝑜𝑜

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  ))𝑜𝑜
𝑚𝑚0=1 , 1 ≤ 𝑖𝑖, 𝑚𝑚0 ≤ 𝑛𝑛 − 𝑜𝑜  and 𝜆𝜆1

𝑚𝑚0 1
𝑘𝑘

∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  +𝑘𝑘

𝑖𝑖=1
𝑘𝑘
𝑚𝑚0=1

 𝜆𝜆𝑛𝑛−𝑖𝑖+1𝑚𝑚0 ),1≤𝑘𝑘≤𝑜𝑜 
Since ℱ𝑚𝑚0  is (𝑅𝑅𝑚𝑚0 , 𝑜𝑜)-completable with 𝑜𝑜 < 𝑛𝑛. So ℱ𝑚𝑚0  is (𝑅𝑅𝑚𝑚0 , 𝑜𝑜1)-completable if and only 

if 1
𝑛𝑛

(∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜1

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝑜𝑜1
𝑚𝑚0=1 ≥ 1

𝑘𝑘
∑ ∑ (𝑅𝑅𝑖𝑖

𝑚𝑚0  + 𝑘𝑘
𝑖𝑖=1 𝜆𝜆𝑛𝑛−𝑖𝑖+1

𝑚𝑚0  )𝑘𝑘
𝑚𝑚0=1 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 

or equivalently, if for every 𝑜𝑜 + 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 

� � (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 

𝑜𝑜

𝑖𝑖=𝑜𝑜+1
𝛼𝛼𝑚𝑚0  )

𝑜𝑜

𝑚𝑚0=𝑜𝑜+1

+ � � 𝑅𝑅𝑖𝑖
𝑚𝑚0

𝑜𝑜1

𝑖𝑖=𝑜𝑜+1

𝑜𝑜1

𝑚𝑚0=𝑜𝑜+1

≥
𝑛𝑛
𝑘𝑘

� � � 𝑅𝑅𝑖𝑖
𝑚𝑚0

𝑜𝑜

𝑖𝑖=1

𝑜𝑜

𝑚𝑚0=1

+ � � (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 

𝑘𝑘

𝑖𝑖=𝑜𝑜+1
𝛼𝛼𝑚𝑚0 − (𝑛𝑛 − 𝑘𝑘)𝜆𝜆1

𝑚𝑚0 )
𝑘𝑘

𝑚𝑚0=𝑜𝑜+1

� 

� � 𝑅𝑅𝑖𝑖
𝑚𝑚0  + 

𝑜𝑜

𝑖𝑖=1
𝛼𝛼𝑚𝑚0  

𝑜𝑜

𝑚𝑚0=1

+ � � 𝑅𝑅𝑖𝑖
𝑚𝑚0

𝑜𝑜1

𝑖𝑖=𝑜𝑜+1

𝑜𝑜1

𝑚𝑚0=𝑜𝑜+1

≥
𝑛𝑛
𝑘𝑘

� � � (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 

𝑜𝑜

𝑖𝑖=1
𝛼𝛼𝑚𝑚0  )

𝑜𝑜

𝑚𝑚0=1

� +
𝑛𝑛
𝑘𝑘

� � 𝑅𝑅𝑖𝑖
𝑚𝑚0

𝑘𝑘

𝑖𝑖=𝑜𝑜+1

𝑘𝑘

𝑚𝑚0=𝑜𝑜+1

−
𝑛𝑛 − 𝑘𝑘

𝑘𝑘
( � � (𝑅𝑅𝑖𝑖

𝑚𝑚0  + 
𝑜𝑜

𝑖𝑖=1
𝛼𝛼𝑚𝑚0  )

𝑜𝑜

𝑚𝑚0=1

 

� � 𝑅𝑅𝑖𝑖
𝑚𝑚0  + 

𝑜𝑜

𝑖𝑖=1
𝛼𝛼𝑚𝑚0  

𝑜𝑜

𝑚𝑚0=1

+ � � 𝑅𝑅𝑖𝑖
𝑚𝑚0

𝑜𝑜1

𝑖𝑖=𝑜𝑜+1

𝑜𝑜1

𝑚𝑚0=𝑜𝑜+1

≥ � � 𝑅𝑅𝑖𝑖
𝑚𝑚0  + 

𝑜𝑜

𝑖𝑖=1
𝛼𝛼𝑚𝑚0  

𝑜𝑜

𝑚𝑚0=1

+
𝑛𝑛
𝑘𝑘

� � 𝑅𝑅𝑖𝑖
𝑚𝑚0

𝑘𝑘

𝑖𝑖=𝑜𝑜+1

𝑘𝑘

𝑚𝑚0=𝑜𝑜+1

 

� � 𝑅𝑅𝑖𝑖
𝑚𝑚0

𝑜𝑜1

𝑖𝑖=𝑜𝑜+1

𝑜𝑜1

𝑚𝑚0=𝑜𝑜+1

≥
𝑛𝑛
𝑘𝑘

� � 𝑅𝑅𝑖𝑖
𝑚𝑚0

𝑘𝑘

𝑖𝑖=𝑜𝑜+1

𝑘𝑘

𝑚𝑚0=𝑜𝑜+1

, 

since by hypothesis 𝜆𝜆𝑖𝑖
𝑚𝑚0 = 1

𝑛𝑛
 (∑ ∑ (𝑅𝑅𝑖𝑖

𝑚𝑚0  + 𝑜𝑜
𝑖𝑖=1 𝛼𝛼𝑚𝑚0  ))𝑜𝑜

𝑚𝑚0=1  for 1 ≤ 𝑖𝑖, 𝑚𝑚0 ≤ 𝑛𝑛 − 𝑜𝑜. 
Corollary (2.2.27)[202]:   ℱ𝑚𝑚0  is (𝑅𝑅𝑚𝑚0 , ∞)-completable (by a Bessel power sequence) if and 

only if 𝑅𝑅𝑚𝑚0 ∈ ℓ1 (ℕ), 1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + ∞

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )∞
𝑚𝑚0=1 ≥ 𝜆𝜆1

𝑚𝑚0
   and 

1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + ∞

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )∞
𝑚𝑚0=1 ≥ 1

𝑘𝑘
∑ ∑ (𝑅𝑅𝑖𝑖

𝑚𝑚0  + 𝑘𝑘
𝑖𝑖=1 𝜆𝜆𝑛𝑛−𝑖𝑖+1

𝑚𝑚0  )𝑘𝑘
𝑚𝑚0=1 , 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛     (29)                                        

or equivalently if (𝑅𝑅𝑚𝑚0 ∈ ℓ1(ℕ) 
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1
𝑛𝑛

 ( � � 𝑅𝑅𝑖𝑖
𝑚𝑚0 + 

∞

𝑖𝑖=1
𝛼𝛼𝑚𝑚0  )

∞

𝑚𝑚0=1

𝑐𝑐𝑛𝑛
𝑚𝑚0  .                                                (30)                                               

The proof of Theorem (2.2.14) which is based on Theorem (2.2.5), is similar to that of 
Theorem (2.2.11) and Proposition (2.2.10). 

Proof of Theorem (A). The first part of the theorem is Theorem (2.2.7), while the second part 
is Theorem (2.2.14). 

Proof of Theorem (B). Assume there exists a natural number  𝑜𝑜 ∈ ℕ such that ℱ𝑚𝑚0  is 
(𝑅𝑅𝑚𝑚0 , 𝑜𝑜)-completable. Then 𝑜𝑜0 ≤ 𝑜𝑜and in this case the theorem follows from Theorem 3.8.  
If there is no  𝑜𝑜 ∈ ℕ such that ℱ𝑚𝑚0  is (𝑅𝑅𝑚𝑚0 , 𝑜𝑜)-completable, then ℱ𝑚𝑚0  is(𝑅𝑅𝑚𝑚0 , ∞)-
completable so by Theorem (2.2.14)  𝑅𝑅𝑚𝑚0 ∈ ℓ1(ℕ) and1

𝑛𝑛
 (∑ ∑ (𝑅𝑅𝑖𝑖

𝑚𝑚0  + ∞
𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )∞

𝑚𝑚0=1  

≥ 𝑐𝑐𝑛𝑛
𝑚𝑚0 . If 1

𝑛𝑛
 (∑ ∑ (𝑅𝑅𝑖𝑖

𝑚𝑚0  + ∞
𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )∞

𝑚𝑚0=1 > 𝑐𝑐𝑛𝑛
𝑚𝑚0

   then there exists 𝑜𝑜 ∈ ℕ such 

that 1
𝑛𝑛

 (∑ ∑ (𝑅𝑅𝑖𝑖
𝑚𝑚0  + 𝑜𝑜

𝑖𝑖=1 𝛼𝛼𝑚𝑚0  )𝑜𝑜
𝑚𝑚0=1 ≥ 𝑐𝑐𝑛𝑛

𝑚𝑚0 . But then, by Proposition (2.2.11) we get that 
ℱ𝑚𝑚0  is (𝑅𝑅𝑚𝑚0 , 𝑜𝑜)-completable, a contradiction. 

Corollary (2.2.28)[202]: Let ℎ ≔ ∑ ∑ 𝜆𝜆1
𝑚𝑚0𝑛𝑛

𝑖𝑖=2
𝑛𝑛
𝑚𝑚0=2 − 𝜆𝜆𝑖𝑖

𝑚𝑚0  , and denote by 𝑜𝑜0 the minimum 
number of norm one vectors we have to add to ℱ𝑚𝑚0 in order to have a power tight frame. 

Case1:Suppose ℎ < 𝑛𝑛.Then 𝑜𝑜0 = ℎ 𝑖𝑖𝑓𝑓 ℎ ∈ 𝑁𝑁and 1 + 1
ℎ

∑ ∑ 𝜆𝜆𝑛𝑛−𝑖𝑖+1
𝑚𝑚0ℎ

𝑖𝑖=1
ℎ
𝑚𝑚0=1 ≤ 𝜆𝜆1

𝑚𝑚0(in 
particular, 𝑐𝑐ℎ

𝑚𝑚0=𝜆𝜆1
𝑚𝑚0). Otherwise, 𝑜𝑜0 = 𝑛𝑛. 

Case 2:If ℎ ≥ 𝑛𝑛 ,  𝑜𝑜0 is the minimum integer greater than or equal to ℎ . 
Proof.  Assume that ℎ< 𝑛𝑛;then, since ℎ = 𝑛𝑛𝜆𝜆1

𝑚𝑚0 − 𝛼𝛼𝑚𝑚0 , we have that 𝑐𝑐𝑛𝑛
𝑚𝑚0 = 1 + 𝛼𝛼𝑚𝑚 0

𝑛𝑛
. If in 

addition  ℎ < 𝑛𝑛 and 1+1
ℎ

∑ ∑ 𝜆𝜆𝑛𝑛−𝑖𝑖+1
𝑚𝑚0ℎ

𝑖𝑖=1
ℎ
𝑚𝑚0=1 < 𝜆𝜆1

𝑚𝑚0  ,so    𝑐𝑐ℎ = 1 
𝑛𝑛

(ℎ + 𝛼𝛼𝑚𝑚0 ) = 𝜆𝜆1
𝑚𝑚0 then 𝑜𝑜0 =

ℎ by Theorem (2.2.11) .Otherwise, 𝑐𝑐 𝑘𝑘
𝑚𝑚0 ≠ 1 

𝑛𝑛
(𝑘𝑘 + 𝛼𝛼𝑚𝑚0 ) for all  𝑘𝑘 < 𝑛𝑛 (if 𝑐𝑐𝑘𝑘

𝑚𝑚0 =
1 
𝑛𝑛

(𝑘𝑘 + 𝛼𝛼𝑚𝑚0 ) 
for some 𝑘𝑘 < 𝑛𝑛, then by Proposition (2.2.10)  𝑐𝑐𝑘𝑘

𝑚𝑚0 = 𝜆𝜆1
𝑚𝑚0and ℎ would be a natural number); 

since 𝑐𝑐𝑛𝑛
𝑚𝑚0 = 1 + 𝛼𝛼𝑚𝑚 0   

𝑛𝑛
, the minimum integer greater than or equal to 𝑛𝑛𝑐𝑐𝑛𝑛

𝑚𝑚0 − 𝛼𝛼𝑚𝑚0   is 𝑛𝑛 so 
𝑜𝑜0 = 𝑛𝑛   by Theorem 3.8. 
Finally,  ℎ ≥ 𝑛𝑛  implies that 𝑐𝑐𝑘𝑘

𝑚𝑚0 ≠ 1 
𝑛𝑛

(𝑘𝑘 + 𝛼𝛼𝑚𝑚0 ) for all 𝑘𝑘 < 𝑛𝑛 and 𝑐𝑐𝑛𝑛
𝑚𝑚0 = 𝜆𝜆1

𝑚𝑚0 . Therefore, 
again by Theorem  3.8, 𝑜𝑜0 is the minimum integer greater than or equal to   𝑛𝑛𝜆𝜆1

𝑚𝑚0 − 𝛼𝛼𝑚𝑚0 = 
ℎ. 

Corollary (2.2.29)[202]: Let ℱ𝑚𝑚0   ={𝑓𝑓𝑖𝑖
𝑚𝑚0

𝑖𝑖
}𝑖𝑖,𝑚𝑚0=1

𝑝𝑝 be a unit norm 𝑝𝑝
𝑑𝑑

− 𝑝𝑝𝑜𝑜𝑤𝑤𝑒𝑒𝑜𝑜 tight frame on 
its span, where  𝑑𝑑 < 𝑛𝑛 is the dimension of span  ℱ𝑚𝑚0  . Then, the minimum number  𝑜𝑜0 of 
unit norm vectors we have to add to ℱ𝑚𝑚0   in order to obtain a power  tight frame in ℋis: 

(a)  (𝑛𝑛 − 𝑑𝑑) 𝑝𝑝
𝑑𝑑
 if  (𝑛𝑛 − 𝑑𝑑) 𝑝𝑝

𝑑𝑑
 < 𝑛𝑛 and (𝑛𝑛 − 𝑑𝑑) 𝑝𝑝

𝑑𝑑
 ∈ℕ. 

(b) 𝑛𝑛 if (𝑛𝑛 − 𝑑𝑑) 𝑝𝑝
𝑑𝑑
 < 𝑛𝑛 and (𝑛𝑛 − 𝑑𝑑) 𝑝𝑝

𝑑𝑑
∉  ℕ. 

(c) the minimum integer greater than or equal to (𝑛𝑛 − 𝑑𝑑) 𝑝𝑝
𝑑𝑑
 if  (𝑛𝑛 − 𝑑𝑑) 𝑝𝑝

𝑑𝑑
  ≥  𝑛𝑛 . 

Proof. Since ℱ𝑚𝑚0  is an unit norm power tight frame on a subspace of dimension 𝑑𝑑, the 
eigenvalues of 𝑆𝑆ℱ𝑚𝑚 0 are:𝜆𝜆𝑖𝑖

𝑚𝑚0  = 𝑝𝑝
𝑑𝑑

≥ 1 for 1≤ 𝑖𝑖, 𝑚𝑚0≤ 𝑑𝑑, and𝜆𝜆𝑖𝑖
𝑚𝑚0 = 0 for𝑑𝑑 + 1≤ 𝑖𝑖, 𝑚𝑚0 ≤ 𝑛𝑛. 

Therefore, ℎ = ∑ ∑ 𝜆𝜆1
𝑚𝑚0𝑛𝑛

𝑖𝑖=2
𝑛𝑛
𝑚𝑚0=2 − 𝜆𝜆𝑖𝑖

𝑚𝑚0 = (𝑛𝑛 − 𝑑𝑑) 𝑝𝑝
𝑑𝑑
 . Moreover, if ℎ < 𝑛𝑛 and  ℎ ∈ℕ, then 

1+1
ℎ

∑ ∑ 𝜆𝜆𝑛𝑛−𝑖𝑖+1
𝑚𝑚0ℎ

𝑖𝑖=1
ℎ
𝑚𝑚0=1 = 𝜆𝜆1

𝑚𝑚0 . Indeed, 

1+1
ℎ

∑ ∑ 𝜆𝜆𝑛𝑛−𝑖𝑖+1
𝑚𝑚0ℎ

𝑖𝑖=1
ℎ
𝑚𝑚0=1 = 1 +  ℎ−(𝑛𝑛−𝑑𝑑)

ℎ
𝑝𝑝  
𝑑𝑑

 =𝑝𝑝
𝑑𝑑
                                                       (31) 

the proposition is then a consequence of Theorem (2.2.16). 
 Now we  show the following   
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Corollary(2.2.30)[202]: For  ℱ𝑚𝑚0   ={𝑓𝑓𝑖𝑖
𝑚𝑚0

𝑖𝑖
}𝑖𝑖=1,𝑚𝑚0=1

𝑛𝑛 (𝑛𝑛 −𝜖𝜖)
𝜖𝜖  𝜖𝜖 > 0, 𝑛𝑛 ∈ 𝑁𝑁 be a unit norm 𝑛𝑛

𝜖𝜖
− power 

tight frame on its span, where  𝜖𝜖 > 0 is the dimension of span  ℱ𝑚𝑚0  . Then, the minimum 
number  𝑜𝑜0 of unit norm vectors we have to add to ℱ𝑚𝑚0   in order to get a power tight frame 
in ℋ. 

Proof. Given ℱ𝑚𝑚0  is  unit norm power tight frame on a subspace of dimension 𝑛𝑛 − 𝜖𝜖, the 
eigenvalues of 𝑆𝑆ℱ𝑚𝑚 0 are:𝜆𝜆𝑖𝑖

𝑚𝑚0  = 𝑛𝑛
𝜖𝜖

≥ 1 , ⇒ 0≤ 𝜖𝜖 ≤ 𝑛𝑛,for 1≤ 𝑖𝑖, 𝑚𝑚0 ≤ 𝑛𝑛 − 𝜖𝜖, and 𝜆𝜆𝑖𝑖
𝑚𝑚0 = 0 for 

𝑛𝑛 − 𝜖𝜖 + 1 ≤ 𝑖𝑖, 𝑚𝑚0 ≤ 𝑛𝑛. Therefore, ℎ = ∑ ∑ 𝜆𝜆1
𝑚𝑚0𝑛𝑛

𝑖𝑖=2
𝑛𝑛
𝑚𝑚0=2 − 𝜆𝜆𝑖𝑖

𝑚𝑚0 = 𝜖𝜖 𝑛𝑛
𝜖𝜖

= 𝑛𝑛 . Further, if ℎ<𝑛𝑛 

and  ℎ∈ℕ, then   1+1
ℎ

∑ ∑ 𝜆𝜆𝑛𝑛−𝑖𝑖+1
𝑚𝑚0ℎ

𝑖𝑖=1
ℎ
𝑚𝑚0=1 = 𝜆𝜆1

𝑚𝑚0 . Therefore, 

     1+1
ℎ

∑ ∑ 𝜆𝜆𝑛𝑛−𝑖𝑖+1
𝑚𝑚0ℎ

𝑖𝑖=1
ℎ
𝑚𝑚0=1 =  𝑛𝑛

𝜖𝜖
 .                                                        
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Chapter 3 

                                          The Spectra of Contractions 
 let ℌ  be a complex, separable Hilbert space, and let L (ℌ) denote the set of all 
bounded, linear operators acting on ℌ. A contraction T ∈L  (ℌ), i.e., an operator with 
norm 
 ‖T‖ ≤ 1, belongs to the class 
(a) C1., if limn→x  ‖Tn h‖ ≠ 0, for every 0 ≠ h ∈ ℌ; 
(b) C0., if limn→x  ‖Tn h‖ = 0, for every h ∈ ℌ; 
(cl C1. , if T∗ ∈ C1. ; 
(d) C0., if T∗ ∈ C0., 
Section(3.1):  Spectral Classes 
let ℌ  be a complex, separable Hilbert space, and let L (ℌ) denote the set of all 
bounded, linear operators acting on ℌ. A contraction T ∈L  (ℌ), i.e., an operator with 
norm 
 ‖T‖ ≤ 1, belongs to the class 
(a) C1., if limn→x  ‖Tn h‖ ≠ 0, for every 0 ≠ h ∈ ℌ; 
(b) C0., if limn→x  ‖Tn h‖ = 0, for every h ∈ ℌ; 
(cl C1. , if T∗ ∈ C1. ; 
(d) C0., if T∗ ∈ C0. 
We shall use the terminology and notation of the monograph [29] 
1. First of all we recall some facts from the theory of contractions (cf. [29]) which will be 
needed in the sequel. 
Let 𝑇𝑇 ∈L  (ℌ),  be a contraction, and  let us consider its minimal unitary dilation 𝛼𝛼 ∈L 
 (𝔎𝔎), . It can be proved that the subspace 𝔏𝔏 = ((𝛼𝛼 −  𝑇𝑇)ℌ) 𝑖𝑖s wandering for 𝛼𝛼, and so 
𝑀𝑀(𝔏𝔏)  =⊕𝑛𝑛=.∞

∞ 𝛼𝛼𝑛𝑛 𝔏𝔏 reduces 𝛼𝛼 to a bilateral shift. Then the orthogonal complement 
ℜ∗  = 𝔑𝔑 ⊝ 𝑀𝑀(𝔏𝔏) also reduces 𝛼𝛼, and the restriction 𝑅𝑅∗,𝑇𝑇 ∶= 𝛼𝛼 \ℜ∗ ∈ L (ℜ∗)is called the 
∗-residual part of  𝑇𝑇. 
It is known that if 𝑇𝑇 is completely non-unitary (𝑐𝑐𝑛𝑛𝑢𝑢) then 𝛼𝛼 and so 𝑅𝑅∗,𝑇𝑇  too are 
absolutely continuous unitary operators. Moreover, if 𝑇𝑇 is of class 𝐶𝐶1, _ then 𝑇𝑇 can be 
injected into 𝑅𝑅∗,𝑇𝑇: 𝑇𝑇 <𝑖𝑖 𝑅𝑅∗,𝑇𝑇 ., i.e., there is an injective operator 𝑋𝑋 ∈ L  (ℌ, ℜ∗) which 
intertwines 𝑇𝑇 and  𝑅𝑅∗,𝑇𝑇: 𝑋𝑋𝑇𝑇 =  𝑅𝑅∗,𝑇𝑇𝑋𝑋.. There is in fact a canonical choice fur 𝑋𝑋. Namely, 
the operator 𝑋𝑋 ∈ L  (ℌ, ℜ∗)  defined by 

𝑋𝑋ℎ = lim𝑛𝑛→∞      𝛼𝛼  ′′ 𝑇𝑇′′ ℎ,                       ℎ ∈ ℌ, 
will be an injection, intertwining 𝑇𝑇 and 𝑅𝑅∗,𝑇𝑇  if we assume yet that the point spectrum 
𝜎𝜎𝑝𝑝  (𝑇𝑇∗) of  𝑇𝑇∗ does not  cover the open unit disc 𝔻𝔻 = {𝜆𝜆 ∈ ℂ: |𝜆𝜆| < 1}, then 𝑋𝑋 will be a 
quasi-affinity (i.e., an injection with dense range), hence 𝑇𝑇 will be a quasi-affine 
transform of 𝑅𝑅∗,𝑇𝑇: 𝑇𝑇 ≺ 𝑅𝑅∗,𝑇𝑇 . 
In this  case, i.e., when  𝑇𝑇 ∈  𝐶𝐶1,. and 𝜎𝜎𝑝𝑝 (𝑇𝑇∗) ≯  𝔻𝔻, the ∗-residual part 𝑅𝑅∗,𝑇𝑇  of 𝑇𝑇 can be 
characterized as the unitary extension of 𝑇𝑇. In fact, let us introduce a new scalar product 
on ℌ: 

〈𝑥𝑥, 𝑢𝑢〉~ ≔ lim𝑛𝑛→∞〈𝑇𝑇𝑛𝑛 𝑥𝑥, 𝑇𝑇𝑛𝑛 𝑢𝑢〉 for every 𝑥𝑥, 𝑢𝑢 ∈ ℌ. 
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(Since the limit lim
𝑛𝑛→∞

‖𝑇𝑇𝑛𝑛 𝑥𝑥‖ clearly exists for every .𝑥𝑥, ∈ ℌ, the polar identity guarantees 
the existence of the limit above.) Let ℌ� denote the Hilbert space obtained by completing 
the inner product space (ℌ, ( . , . )~). Then the uperator 𝑇𝑇 can be uniquely extended to an 
isometry 𝑇𝑇� ∈L  (ℌ�). Let us take a point 𝜆𝜆 ∈ 𝔻𝔻\𝜎𝜎𝑝𝑝 ( 𝑇𝑇∗). Since r𝑅𝑅𝑛𝑛( 𝑇𝑇 −  𝜆𝜆𝐼𝐼) is dense in 
ℌ, it follows that 𝑜𝑜𝑅𝑅𝑛𝑛( 𝑇𝑇� −  𝑅𝑅𝐼𝐼) is dense in  ℌ � . Hence  𝑇𝑇�  is a unitary operator, called the 
unitary extension of 𝑇𝑇. It can be easily seen that 𝑇𝑇�  is unitarily equivalent to 

𝑅𝑅∗,𝑇𝑇: 𝑇𝑇� ≅ 𝑅𝑅∗,𝑇𝑇 . 
Finally, we’ shall need the following 
Definition (3.1. 1)[25]: Let M (𝔻𝔻)  denote the system of all nonempty, compact subsets 𝜎𝜎 
of 𝔻𝔻 such that for every nonempty closed and open subset �̀�𝜎 of 𝜎𝜎 we have 𝑚𝑚(�̀�𝜎  ∩ 𝜕𝜕𝔻𝔻) >
0. (Here and in the sequel 𝑚𝑚 stands for the normalized Lebesgue measure on 𝜕𝜕𝔻𝔻.). 
Let 0M (𝔻𝔻) denote the subset 0M (𝔻𝔻) ∶=  {𝛼𝛼 ∈ M (𝔻𝔻): 𝛼𝛼 ⊂ 𝜕𝜕𝔻𝔻}. It is easy to see that a 
compact subset 𝛼𝛼 of 𝜕𝜕𝔻𝔻 belongs to , 0M (𝔻𝔻)if and only if 𝛼𝛼 is regular in the sense that 𝛼𝛼 
coincides with the support of the measure 𝜒𝜒𝛼𝛼 𝑑𝑑𝑚𝑚. (Here 𝜒𝜒𝛼𝛼  is the characteristic function 
of 𝛼𝛼.)  We say that the set 𝛼𝛼 ∈ 0M (𝔻𝔻)is neatly contained in 𝜎𝜎 ∈ M (𝔻𝔻), denoted by 
𝛼𝛼 ⊂(𝑛𝑛) 𝜎𝜎, if 𝛼𝛼 ⊂  𝜎𝜎 and for every closed and open subset �̀�𝜎 of 𝜎𝜎 we have 

𝑚𝑚(𝜎𝜎’ ∩  𝛼𝛼) > 0. 
Applying the Riesz-Dunford functional calculus we can derive from [ 29] the following 
Theorem(3.1.2)[25]:I𝑓𝑓 𝑇𝑇 isa  𝑐𝑐𝑛𝑛𝑢𝑢   𝐶𝐶1,-contraction,then 𝜎𝜎(𝑇𝑇) ∈  M (𝔻𝔻), 𝜎𝜎�𝑅𝑅∗,𝑇𝑇� ∈ 0M
(𝔻𝔻) and 𝜎𝜎(𝑅𝑅∗,𝑇𝑇) is neatly contained in 𝜎𝜎(𝑇𝑇). 
Proof:  Since 𝑅𝑅∗,𝑇𝑇 ,- is absolutely continuous, it follows that 
𝜎𝜎(𝑅𝑅∗,𝑇𝑇) ∈ 0M (𝔻𝔻). Moreover, applying [ 29] for 𝑇𝑇∗ and taking into account that 𝑅𝑅𝑇𝑇∗ =
(𝑅𝑅∗,𝑇𝑇)∗, where 𝑅𝑅𝑇𝑇∗. is the residual part of 𝑇𝑇∗, we obtain 𝜎𝜎(𝑅𝑅∗,𝑇𝑇) ⊂ 𝜎𝜎(𝑇𝑇). 
Let us assume that 𝜎𝜎(𝑇𝑇) is not connected, and let �̀�𝜎 be a non-empty closed and open 
subset of 𝜎𝜎(𝑇𝑇). Then the Rieszz-Dunford functional calculus (cf. [ 175]) provides us a 
subspace ℌ‘, invariant for 𝑇𝑇 such that 𝜎𝜎( 𝑇𝑇�⌈ℌ‘ �〉) = �̀�𝜎. From the preceding part we infer 
that �̀�𝜎 ⊃ 𝜎𝜎(𝑅𝑅∗,𝑇𝑇|ℌ‘ �), and 𝑚𝑚(𝜎𝜎(𝑅𝑅∗,𝑇𝑇|ℌ‘ �)) > 𝑆𝑆, since ℌ‘ ≠ {0}. But 𝑅𝑅∗,𝑇𝑇|ℌ‘ �, is unitarily 
equivalent to ( 𝑇𝑇|ℌ‘ �)~ ≅  𝑇𝑇�|ℌ‘ �~, which implies that 𝜎𝜎(𝑅𝑅∗,𝑇𝑇|ℌ‘ �)  ⊂  𝜎𝜎(𝑅𝑅∗,𝑇𝑇). Therefore 
𝑚𝑚(𝜎𝜎’ ∩ 𝜎𝜎(𝑅𝑅∗,𝑇𝑇)) > 0, and the proof is completed. 
In [6] it was proved that every set in . M (𝔻𝔻) can serve as the spectrum of a 𝐶𝐶11-
contraction. It is natural to ask whether this is the case in connection with 𝐶𝐶10-
contractions too. First we list some examples: 
(a) The simplest 𝐶𝐶10-contraction is the unilateral shift 𝑆𝑆 of multiplicity 
1. Its spectrum is 𝜎𝜎(𝑆𝑆)  = 𝔻𝔻. 
(b) More generally, if the defect index 𝑑𝑑𝑇𝑇, of a contraction 𝑇𝑇 ∈ 𝐶𝐶10  is finite, then 𝑑𝑑𝑇𝑇∗,. 
must be greater than 𝑑𝑑𝑇𝑇, and so again 𝜎𝜎(𝑇𝑇) = 𝔻𝔻. 
(c) Gilfeather has shown (cf. [171]) that the spectrum can be thin. 
Namely, he provided a weighted bilateral shift 𝑇𝑇 ∈ 𝐶𝐶10, such that 𝜎𝜎(𝑇𝑇) = 𝜕𝜕𝔻𝔻. (Cf. also 
Eckstein’s paper [169].) 
(d) The spectrum can be non-circular symmetric. The following example was given by 𝐾𝐾. 
Takahashi. Let 𝑢𝑢 be a non-constant function in the Hardy space 𝐻𝐻∞’ such that ‖𝑢𝑢‖∞ ≤ 1 
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and 𝑚𝑚((𝜆𝜆 ∈ 𝜕𝜕𝔻𝔻: |𝑢𝑢�(𝜆𝜆) = 1) > 0. Then the operator 𝑀𝑀𝑢𝑢 , of multiplication by 𝑢𝑢 in the 
Hardy space 𝐻𝐻2 belongs to 𝐶𝐶10 and its spectrum is 𝜎𝜎(𝑀𝑀𝑢𝑢 ) = 𝑢𝑢(𝔻𝔻). (In connection with 
Hardy spaces we refer to [174].) 
(e) Beauzamy provided an example for a 𝐶𝐶10-contraction 𝑇𝑇 such that 𝜎𝜎(𝑇𝑇)  ∩ 𝜕𝜕𝔻𝔻, 
contains a non-trivial closed arc disjoint from 𝜎𝜎(𝑅𝑅∗,𝑇𝑇  ) (cf. 
[167]).The following theorem together with Theorem(3.1.2)  give a complete 
characterization of the possible spectra of 𝐶𝐶10-contractions and their *-residual parts. 
Propositon(3.1.4)[25]:For every 𝛼𝛼 ∈ 0M (𝔻𝔻)and real number𝐾𝐾 > 0 there exists 𝑅𝑅 𝐶𝐶10-
contruction 𝐴𝐴 such that 𝜎𝜎(𝐴𝐴) = 𝜎𝜎(𝑅𝑅∗,𝐴𝐴) = 𝛼𝛼 and ‖𝐴𝐴 ′ ‖ > 𝐾𝐾. 
The analogous statement in the case of 𝐶𝐶11-contractions could be proved easily. In fact a 
𝐶𝐶11-contraction of defect indeces 1 can be found. The 𝐶𝐶10- case is more difficult, as we 
saw before the spectrum of 𝐶𝐶10contractions with finite defect indices is the closed unit 
disc 𝔻𝔻 .We are looking for a 𝐶𝐶10-contraction with properties above among the restrictions 
of weighted bilateral shifts to their invariant subspaces. 
Let {𝑒𝑒𝑛𝑛 }𝑛𝑛∈ℤ be an orthonormal basis in the Hilbert space  ℌ where ℤ denotes the set of 
integers. Let 𝑤𝑤 ∈ {𝑤𝑤𝑛𝑛 }𝑛𝑛∈ℤ be a sequence of real numbers such that  0 < 𝑤𝑤𝑛𝑛 ≤ 1 for 
every 𝑛𝑛 ∈ ℤ. 
Throughout this section 𝑇𝑇 ∈ L  (ℌ) will denote the weighted bilateral shift with weight 
sequence 𝑤𝑤. i.e. 𝑇𝑇 𝑒𝑒𝑛𝑛 = 𝑤𝑤𝑛𝑛  𝑒𝑒𝑛𝑛+1 for every 𝑛𝑛 ∈ ℤ. 
𝑇𝑇 is clearly a quasi-affine contraction, whose adjoint 𝑇𝑇∗ is also a weighted bilateral shift: 
T∗ en  = wn  | en  | for every n ∈ ℤ. 
An easy computation with weighted shifts (cf. [173, 176]) proves the following 
Lemma (3.1.4)[25]: T is of class C10  and σ(T) = ∂𝔻𝔻 lf and only if 

(a) � wn

∞

n=1
> 0, 

(b)  ∏ wn = 0−1
n=∞ , an  

(c)   lim𝑘𝑘→∞ 𝑖𝑖𝑛𝑛𝑓𝑓𝑛𝑛∈𝐼𝐼 (𝑤𝑤𝑛𝑛 𝑤𝑤𝑛𝑛+1 … 𝑤𝑤𝑛𝑛+𝑘𝑘−1)1\𝑘𝑘  = 1. 
We shall consider special weight sequences.  
Definition(3.1.6)[25]: We call { ri}i∈ℕ a regular ∞-sequenc(ℕ denotes the set of positive 
integers) if 𝑜𝑜1, = 1, 𝑜𝑜𝑖𝑖 ∈ ℕ, 𝑜𝑜𝑖𝑖+1 > 𝑜𝑜𝑖𝑖 , , 𝑜𝑜𝑖𝑖+2 − 𝑜𝑜𝑖𝑖+1 ≥ 𝑜𝑜𝑖𝑖+1 − 𝑜𝑜𝑖𝑖 , for every 𝑖𝑖 ∈ ℕ, and 
{𝑜𝑜𝑖𝑖 }𝑖𝑖∈ℕ  is of density 0, i.e., 

lim𝑘𝑘→∞
𝑚𝑚𝑘𝑘
𝑘𝑘

= 0. 
Here and always in the sequel 𝑚𝑚𝑘𝑘  denotes the frequency of the sequence 

{𝑜𝑜𝑖𝑖 }𝑖𝑖∈ℕ, 𝑖𝑖. 𝑒𝑒. , 𝑚𝑚𝑘𝑘 = max{𝑖𝑖 ∈ ℕ: 𝑜𝑜𝑖𝑖 ≤ 𝑘𝑘}. 
We call {𝛾𝛾𝑖𝑖 }𝑖𝑖∈ℕ a regular O-sequence if  𝛾𝛾𝑖𝑖  ∈ ℝ, 0 < 𝛾𝛾𝑖𝑖 , < 1, 𝛾𝛾𝑖𝑖 ≦ 𝛾𝛾𝑖𝑖+1 , for every 𝑖𝑖 ∈ ℕ, 
and 
                                  ∏  ∞

𝑖𝑖=1 𝛾𝛾𝑖𝑖 = 0. 
We say that 𝑤𝑤 = { 𝑤𝑤𝑛𝑛 }𝑛𝑛∈ℤ is a regular 𝑤𝑤eight sequencec orresponding to the regular ∞- 
and 0-sequences {𝑜𝑜𝑖𝑖 }𝑖𝑖∈ℕ and {𝛾𝛾𝑖𝑖 }𝑖𝑖∈ℕ, respectively, if 𝑤𝑤𝑛𝑛 = 𝛾𝛾𝑖𝑖   when 𝑛𝑛 is not of the form 
– 𝑜𝑜𝑖𝑖 (𝑖𝑖 ∈ ℕ)  =1 when 𝑛𝑛 ∈ ℤ  is not of the above. 
Lemma(3.1.5)[25]:  If  𝑤𝑤 is a regular weight sequence then 𝑇𝑇 ∈ 𝐶𝐶10  and  𝜎𝜎(𝑇𝑇) = 𝜕𝜕𝔻𝔻. 
Proof. We have only to verify property (iii) of Lemma (3.1.3)  However, for every 𝑘𝑘 ∈
ℕ, we have 
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1 ≥ inf
𝑛𝑛∈𝑍𝑍

(𝑤𝑤𝑛𝑛 … 𝑤𝑤𝑛𝑛+𝑘𝑘−1)1/𝑘𝑘 = (𝑤𝑤−1 … 𝑤𝑤−𝑘𝑘 )1/𝑘𝑘 = �� 𝛾𝛾𝑖𝑖

𝑚𝑚𝑘𝑘

𝑖𝑖=1

�

1/𝑘𝑘

≥ 𝛾𝛾1
𝑚𝑚𝑘𝑘 /𝑘𝑘 . 

Hence lim𝑘𝑘→∞ (𝑚𝑚𝑘𝑘 /𝑘𝑘) = 0 implies that (iii) is fulfilled. 
It is wellknown (cf. [173, 176] that the weighted shift 𝑇𝑇 can be considered as a shift 
operator on a weighted sequence space. In fact, let 𝛽𝛽 =  {𝛽𝛽𝑛𝑛 }𝑛𝑛∈𝑧𝑧  be the sequence defined 
by 
𝛽𝛽𝑛𝑛 = (𝑤𝑤0𝑤𝑤1 … 𝑤𝑤𝑛𝑛     1)2 if 𝑛𝑛 > 0,= 1  if 𝑛𝑛 = 0 = (𝑤𝑤−1𝑤𝑤−2 … 𝑤𝑤𝑛𝑛  )−2  if 𝑛𝑛 < 0 
and let 𝑙𝑙2(𝛽𝛽) denote the 𝐿𝐿2-space corresponding to the measure 

𝜇𝜇𝛽𝛽 (𝜔𝜔) = � 𝛽𝛽𝑛𝑛
𝑛𝑛∈𝜔𝜔

(𝜔𝜔 ⊂ ℤ): 

𝑙𝑙2(𝛽𝛽) ≔ 𝐿𝐿2�𝜇𝜇𝛽𝛽 � = �𝑓𝑓 = �𝑓𝑓(𝑛𝑛)�
𝑛𝑛∈ℤ: ‖𝑓𝑓‖𝛽𝛽

2 = � �𝑓𝑓(𝑛𝑛)�2
𝛽𝛽𝑛𝑛 < ∞

∞

𝑛𝑛=−∞

�. 

Then the shift operator 𝑇𝑇𝛽𝛽 ∈ L (𝑙𝑙2(𝛽𝛽)), defined by 
                           𝑇𝑇𝛽𝛽 𝜒𝜒{𝑛𝑛} = 𝜒𝜒{𝑛𝑛+1}   for every 𝑛𝑛 ∈ ℤ, 
is unitarily equivalent to 𝑇𝑇. In what follows 𝛽𝛽 will always denote the sequence defined 
above, and we shall also write 𝑇𝑇 instead of 𝑇𝑇𝛽𝛽 ,. 
To the special sequence 𝛽𝛽(0) = { 𝛽𝛽𝑛𝑛

(0)}𝑛𝑛∈ℤ, where 𝛽𝛽𝑛𝑛
(0) = 1, for every 𝑛𝑛 ∈ ℤ, there 

corresponds the usual sequence space: 
   l2 = l2�β(0)� = �f = �f̂(n)�

n∈ℤ: ‖f‖2 = ‖f‖β(0)
2 = ∑ �f̂(n)�2

< ∞∞
n=∞ �. 

Since βn ≥ 1, for every n ∈ ℤ, we infer that 
‖f‖β ≥ ‖f‖  for every f ∈ l2(β), 

and so                 
l2(β) ⊂ l2. 

As before, let m be the normalized Lebesgue measure on ∂𝔻𝔻. The trigonometric system 
{gn }n∈ℤ  (where gn  (λ) = λn ,  for every n ∈ ℤ) is an orthonormal basis in the Hilbert 
space L2 = L2(m). Hence, the sequence space l2 can be identified with the function space 
L2 via the unitary transformation 

𝛼𝛼: 𝑙𝑙2 → 𝐿𝐿2,      𝛼𝛼: 𝑓𝑓 = �𝑓𝑓(𝑛𝑛)�
𝑛𝑛∈ℤ ↦ ∑ 𝑓𝑓(𝑛𝑛)𝑔𝑔𝑛𝑛 .∞

𝑛𝑛=−∞  
Therefore, every element 𝑓𝑓 ∈ 𝑙𝑙2 can be considered as an element of 𝐿𝐿2, and conversely. 
We note yet that if 𝑤𝑤 is a regular sequence, then 
                        𝛽𝛽𝑛𝑛 = 1  if 𝑛𝑛 ≥ 0, = �∏ 𝛾𝛾𝑖𝑖

𝑚𝑚{𝑛𝑛 }
𝑖𝑖=1 �

−2
        if   n<0. 

The following lemma plays an essential role in our construction. 
Lemma( 3.1.6)[25]:  Let  {𝑓𝑓𝑘𝑘 }𝑘𝑘∈ℕ be a sequence of functions belonging to 𝐿𝐿2. There 
exists a strictly increasing sequence { 𝑜𝑜𝑖𝑖

(0)}𝑖𝑖∈ℕ of natural numbers such that  if {𝑜𝑜𝑖𝑖 }𝑖𝑖∈ℕ is a 
regular ∞ -sequence satisfying 𝑜𝑜𝑖𝑖 ≥ 𝑜𝑜𝑖𝑖

(0), for every 𝑖𝑖 > 𝑖𝑖0, with some  𝑖𝑖0 ∈ ℕ, {𝛾𝛾𝑖𝑖 }𝑖𝑖∈ℕ  is 
an arbitrary regular 0-sequence, and 𝑤𝑤 is the regular  weight sequence corresponding to 
{𝑜𝑜𝑖𝑖 }𝑖𝑖∈ℕ and {𝛾𝛾𝑖𝑖 }𝑖𝑖∈ℕ,  then 𝑓𝑓𝑘𝑘  ∈ 𝑙𝑙2(𝛽𝛽)  for every 𝑘𝑘 ∈ ℕ. 
Proof: Let us choose inductively strictly increasing sequences { 𝑜𝑜𝑘𝑘 ,𝑖𝑖

(0)}𝑖𝑖∈ℕ of natural 
numbers such tha  𝑜𝑜𝑘𝑘+1,𝑖𝑖

(0) ≥ 𝑜𝑜𝑘𝑘 ,𝑖𝑖
(0), 
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and 
∏ �𝑓𝑓𝑘𝑘 (𝑛𝑛)�−∞

𝑛𝑛=−𝑜𝑜𝑘𝑘 ,𝑖𝑖
(0)

2
< 1

𝑖𝑖!
    for every 𝑘𝑘, 𝑖𝑖 ∈ ℕ. 

Let us define the sequence �𝑜𝑜𝑖𝑖
(0)�

𝑖𝑖∈ℕ by 
𝑜𝑜𝑖𝑖

(0) = 𝑜𝑜𝑖𝑖 ,𝑖𝑖
(0)          �(𝑖𝑖 ∈ ℕ)�. 

Now, let {𝑜𝑜𝑖𝑖 }𝑖𝑖∈ℕ be a regular ∞-sequence such that 𝑜𝑜𝑖𝑖 ≥ 𝑜𝑜𝑖𝑖
(0) for every 𝑖𝑖 > 𝑖𝑖0 with some 

𝑖𝑖0 ∈ ℕ, let {𝛾𝛾𝑖𝑖 }𝑖𝑖∈ℕ be an arbitrary regular 0-sequence, and let us consider the regular 
weight sequence 𝑤𝑤 corresponding to {𝑜𝑜𝑖𝑖 }𝑖𝑖∈ℕ and {𝛾𝛾𝑖𝑖 }𝑖𝑖∈ℕ. We shall show that  

𝑓𝑓𝑘𝑘 ∈ 𝑙𝑙2(𝛽𝛽)       for every 𝑘𝑘 ∈ ℕ. 
In fact, let 𝑘𝑘 be an arbitrary natural number . If 𝑖𝑖 > 𝑘𝑘� = max{𝑘𝑘, 𝑖𝑖0}, then 𝑜𝑜𝑖𝑖 ≥ 𝑜𝑜𝑖𝑖

(0)  =
 𝑜𝑜𝑖𝑖 ,𝑖𝑖

(0) ≥ 𝑜𝑜𝑘𝑘 ,𝑖𝑖
(0) .  Hence, we obtain 

‖𝑓𝑓𝑘𝑘 ‖𝛽𝛽
2 = ∑ �𝑓𝑓𝑘𝑘 (𝑛𝑛)�2

𝛽𝛽𝑛𝑛
∞
𝑛𝑛=−∞ = ∑ ∑ �𝑓𝑓𝑘𝑘 (𝑛𝑛)�2𝑜𝑜𝑖𝑖+1+1

𝑛𝑛=−𝑜𝑜𝑖𝑖
∞
𝑖𝑖=1  �∏ 𝛾𝛾𝑖𝑖

𝑚𝑚{𝑛𝑛 }
𝑖𝑖=1 �

2
+ ∑ �𝑓𝑓𝑘𝑘 (𝑛𝑛)�2∞

𝑛𝑛=0 , 

              = ∑ �∏ 𝛾𝛾𝑖𝑖
𝑖𝑖
𝑗𝑗 =1 �−2 ∑ �𝑓𝑓𝑘𝑘 (𝑛𝑛)�2

+ ∑ �𝑓𝑓𝑘𝑘 (𝑛𝑛)�2∞
𝑛𝑛=0

−𝑜𝑜𝑖𝑖+1+1
𝑛𝑛=−𝑜𝑜𝑖𝑖

∞
𝑖𝑖=1  

               ≤ ∑ 𝛾𝛾1
−2𝑖𝑖 , 1

𝑖𝑖!
+ ∑ 𝛾𝛾1

−2𝑖𝑖𝑘𝑘�
𝑖𝑖=1

∞
𝑖𝑖=𝑘𝑘� +1 ∑ �𝑓𝑓𝑘𝑘 (𝑛𝑛)�2

+ ∑ �𝑓𝑓𝑘𝑘 (𝑛𝑛)�2∞
𝑛𝑛=0

𝑜𝑜𝑖𝑖+1+1
𝑛𝑛=−𝑜𝑜𝑖𝑖

 

                 ≤ 𝑒𝑒1/𝛾𝛾1
2 + ∑ 𝛾𝛾1

−2𝑖𝑖 ∑ �𝑓𝑓𝑘𝑘 (𝑛𝑛)�2
+ ‖𝑓𝑓𝑘𝑘 ‖2 < ∞,𝑜𝑜𝑖𝑖+1+1

𝑛𝑛=−𝑜𝑜0
𝑘𝑘�
𝑖𝑖=1  

and so 𝑓𝑓𝑘𝑘  ∈ 𝑙𝑙2(𝛽𝛽). The proof is finished. 
Propositon(3.1.7)[25]:For every 𝛼𝛼 ∈ 0M (𝔻𝔻)and real number𝐾𝐾 > 0 there exists 𝑅𝑅 𝐶𝐶10-
contruction 𝐴𝐴 such that 𝜎𝜎(𝐴𝐴) = 𝜎𝜎(𝑅𝑅∗,𝐴𝐴) = 𝛼𝛼 and ‖𝐴𝐴 ′ ‖ > 𝐾𝐾. 
The analogous statement in the case of 𝐶𝐶11-contractions could be proved easily. In fact a 
𝐶𝐶11-contraction of defect indeces 1 can be found. The 𝐶𝐶10- case is more difficult, as we 
saw before the spectrum of 𝐶𝐶10contractions with finite defect indices is the closed unit 
disc 𝔻𝔻 .We are looking for a 𝐶𝐶10-contraction with properties above among the restrictions 
of weighted bilateral shifts to their invariant subspaces. 
Proof. Let 𝛼𝛼 ∈ 0M (𝔻𝔻 ) 𝑏𝑏e an arbitrary set. Let �𝑜𝑜𝑖𝑖

(0)�
𝑖𝑖∈ℕ  be the sequence occurring in 

Lemma (3.1.6), corresponding to the sequence{𝑔𝑔−𝑘𝑘 𝜒𝜒𝛼𝛼 }𝑘𝑘∈ℕ, where 𝑔𝑔−𝑘𝑘 ( 𝜆𝜆} = 𝜆𝜆−𝑘𝑘  . Let 
{𝑜𝑜𝑖𝑖 }𝑖𝑖∈ℕbe a regular ∞-sequence such that      

𝑜𝑜𝑖𝑖 ≥ 𝑜𝑜𝑖𝑖
(0)for every 𝑖𝑖 > 𝑖𝑖0, 

with some 𝑖𝑖0 ∈ ℕ, and that 

�
𝑚𝑚𝑛𝑛

1 + 𝑛𝑛2

∞

𝑛𝑛=1

< ∞ 

holds for the frequences 𝑚𝑚𝑛𝑛 =  𝑚𝑚𝑅𝑅𝑥𝑥 { 𝑖𝑖 ∈ ℕ ∶ 𝑜𝑜𝑖𝑖 , ≤ 𝑛𝑛 }. Let {𝛾𝛾𝑖𝑖 }𝑖𝑖∈ℕ be a regular 0-
sequence, and let 𝑤𝑤 be the regular weight sequence corresponding to {𝑜𝑜𝑖𝑖 }𝑖𝑖∈ℕ and {𝛾𝛾𝑖𝑖 }𝑖𝑖∈ℕ. 
Let us consider the shift operator 𝑇𝑇 ∈ L (𝑙𝑙2(𝛽𝛽)).   
Since 𝑔𝑔− 𝑘𝑘 𝜒𝜒𝛼𝛼 ∈ 𝑙𝑙2(𝛽𝛽), for every 𝑘𝑘 ∈ ℕ, and taking into account that 𝑙𝑙2(𝛽𝛽)  is a vector 
space, invariant for the shift, it follows that 

𝑀𝑀0,𝛼𝛼 ≔ {𝑓𝑓𝜒𝜒𝛼𝛼 : 𝑓𝑓 ∈ 𝑀𝑀0} ⊂ 𝑙𝑙2(𝛽𝛽) 
where 𝑀𝑀0, denotes the set of trigonometric polynomials. Let 𝔐𝔐𝛼𝛼 (𝛽𝛽) denote 
the closure of 𝔐𝔐0,𝛼𝛼  in 𝑙𝑙2(𝛽𝛽)  . The subspace 𝔐𝔐𝛼𝛼 (𝛽𝛽)  is clearly invariant for 𝑇𝑇, and we 
define the operator A as the restriction 
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𝐴𝐴 ∶= 𝑇𝑇 |𝔐𝔐𝛼𝛼
�(𝛽𝛽) ∈ L (𝔐𝔐𝛼𝛼 , (𝛽𝛽)). 

In virtue of Lemma(3.1.5) we know that 𝑇𝑇 ∈ 𝐶𝐶10  and 𝜎𝜎(𝑇𝑇) = 𝜕𝜕𝔻𝔻. It immediately follows 
that 𝐴𝐴 ∈ 𝐶𝐶10 and A is bounded from below. Taking into consideration that 𝐴𝐴 𝔐𝔐0,𝛼𝛼 =
𝔐𝔐0,𝛼𝛼  is dense in 𝔐𝔐𝛼𝛼 (𝛽𝛽) we infer that A is invertible. Since 𝜕𝜕𝜎𝜎(𝐴𝐴) ⊂  𝜎𝜎(𝑇𝑇) =  𝜕𝜕𝔻𝔻, it 
follows that 𝜎𝜎(𝐴𝐴) ⊂  𝜕𝜕𝔻𝔻. The estimate 

‖𝐴𝐴−𝑛𝑛 ‖ = ‖𝑇𝑇−𝑛𝑛 |𝔐𝔐𝛼𝛼 (𝛽𝛽) �‖ ≤ ‖𝑇𝑇−𝑛𝑛 ‖ = (𝑤𝑤−1 … 𝑤𝑤−𝑛𝑛 )−1 = �� 𝛾𝛾𝑖𝑖

𝑚𝑚{𝑛𝑛 }

𝑖𝑖=1

�

−1

≤ 𝛾𝛾1
𝑚𝑚𝑛𝑛 , 

being true for every 𝑛𝑛 ∈ ℕ, 𝑖𝑖𝑚𝑚plies that 

�
𝑙𝑙𝑜𝑜𝑔𝑔‖𝐴𝐴−𝑛𝑛 ‖

1 + 𝑛𝑛2

∞

𝑛𝑛=1

≤ �
𝑚𝑚𝑛𝑛 𝑙𝑙𝑜𝑜𝑔𝑔𝛾𝛾1

−1

1 + 𝑛𝑛2 < ∞
∞

𝑛𝑛=1

. 

Now, a result of Beauzamy and Rome (see [ 166]) yields that 
𝜎𝜎(𝐴𝐴) = 𝜎𝜎(𝐴𝐴) ∩ 𝜕𝜕𝔻𝔻 = 𝜎𝜎��̃�𝐴�, 

where �̃�𝐴 is the unitary extension of 𝐴𝐴. However, for every 𝑓𝑓 ∈ 𝔐𝔐𝛼𝛼  (𝛽𝛽) we 
have 

lim
𝑛𝑛→∞

‖𝐴𝐴𝑛𝑛 𝑓𝑓‖𝛽𝛽 =  lim
𝑛𝑛→∞

‖𝑇𝑇𝑛𝑛 𝑓𝑓‖𝛽𝛽 =  ‖𝑓𝑓‖. 
Hence 𝔐𝔐𝛼𝛼 (𝛽𝛽)~  = 𝐿𝐿2(𝛼𝛼) (: = {𝜒𝜒𝛼𝛼 , 𝑓𝑓: 𝑓𝑓 ∈ 𝐿𝐿2}) and �̃�𝐴 ∈ L (𝐿𝐿2(𝛼𝛼)) acts as the operator of 
multiplication by the function 𝑔𝑔1 (𝜆𝜆) = 𝜆𝜆. Consequently, we obtain that 𝜎𝜎(�̃�𝐴) = 𝛼𝛼 and so  
𝜎𝜎( 𝐴𝐴) = 𝛼𝛼. 
We have to show yet that the norm of 𝐴𝐴−1 can be arbitrarily large. Let us consider the 
operator 𝐴𝐴 obtained before. Since 𝐴𝐴 ∈ 𝐶𝐶10 and 𝐴𝐴 is invertible, it follows that the defect 
numbers of 𝐴𝐴 are equal: 𝑑𝑑𝐴𝐴  = 𝑑𝑑𝐴𝐴∗  =  𝑁𝑁0. Let {Θ(λ), 𝔈𝔈, 𝔈𝔈} be a contractive analytic 
function coinciding with the characteristic function of 𝐴𝐴. Then Θ is an inner, *-outer 
function. Moreover, Θ(𝜆𝜆)is invertible for every 𝜆𝜆 ∈  𝔻𝔻, and the set 𝑠𝑠(Θ) = {𝜆𝜆 ∈ 𝜕𝜕𝔻𝔻: 𝜆𝜆 
does not lie on an open arc 𝐼𝐼 ⊂ 𝜕𝜕𝔻𝔻 where Θ is analytic unitary valued} coincides with 𝛼𝛼. 
( (see 29].) It is clear that, for every  𝑛𝑛 ∈ ℕ, {Θ(𝜆𝜆)𝑛𝑛 , 𝔈𝔈, 𝔈𝔈} is also an inner, *-outer function 
which is invertible in every point of 𝔻𝔻 and for which 𝑠𝑠(Θ𝑛𝑛 ) = 𝛼𝛼. We infer that the model 
operator 𝐴𝐴𝑛𝑛 = 𝑆𝑆(Θ𝑛𝑛 ) is of class 𝐶𝐶10 and 𝜎𝜎(𝐴𝐴𝑛𝑛  ) = 𝛼𝛼. Moreover, we have 

‖𝐴𝐴𝑛𝑛
−1‖ = ‖Θ(0)−𝑛𝑛 ‖. 

So the proof will be completed if we show that { ‖Θ(0)−𝑛𝑛 ‖}𝑛𝑛  can be bounded. 
Let us suppose that 𝔈𝔈 =  𝔇𝔇𝐴𝐴 , and let 𝑥𝑥0  ∈ 𝔈𝔈 be an arbitrary unit vector. 
Then 𝑢𝑢0 =  −𝐴𝐴𝑥𝑥0 ∈ 𝔇𝔇𝐴𝐴∗ and ‖𝑢𝑢0‖ = 𝑞𝑞‖𝑥𝑥0‖, where 0 < 𝑞𝑞 < 1. Let 𝑍𝑍 ∈ L (𝔇𝔇𝐴𝐴∗  , 𝔇𝔇𝐴𝐴) be 
a unitary operator such that 𝑍𝑍 𝑢𝑢0 =  𝑞𝑞𝑥𝑥0. Let us define Θ as the product Θ =  𝑍𝑍ΘA  , where 
ΘA , is the characteristic function of 𝐴𝐴. 
Then {Θ(𝜆𝜆), 𝔈𝔈, 𝔈𝔈} coincides with ΘA  and 

Θ(0) 𝑥𝑥0 =  𝑍𝑍 ΘA  (0) 𝑥𝑥0  = 𝑍𝑍( − 𝐴𝐴𝑥𝑥0)  =  𝑍𝑍𝑢𝑢0  =  𝑞𝑞 𝑥𝑥0. 
Hence Θ(0)𝑛𝑛  𝑥𝑥0 = 𝑞𝑞𝑛𝑛 𝑥𝑥0 and so 

||Θ(0)−𝑛𝑛 || ≥ 𝑞𝑞−𝑛𝑛 → ∞                         (𝑛𝑛 → ∞) 
The proof is completed. 
 In virtue of Proposition (3.1.7) we can prove Theorem(3.1.12) applying the technique 
based upon the 𝑆𝑆𝑧𝑧Nagy-FoiaS functional calculus which was used in [6]. We need some 
lemmas. 
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Lemma (3.1.8)[25]: If  𝐴𝐴 is a  𝐶𝐶0-contraction and 𝑢𝑢 ∈ 𝐻𝐻𝛼𝛼  is a non-constant function with 
norm ‖𝑢𝑢‖∞ ≤ 1, then the contraction 𝑢𝑢(𝐴𝐴) is also of‘ class 𝐶𝐶0. 
Proof. Let 𝑤𝑤 ∈ 𝐻𝐻∞  be the function 𝑤𝑤(𝜆𝜆) = (𝜆𝜆 − 𝜇𝜇0)/( 1 − 𝜇𝜇�0𝜆𝜆), where 𝜇𝜇0 = 𝑢𝑢(0) ∈
𝔻𝔻  and 𝑣𝑣: = 𝑤𝑤 ∘ 𝑢𝑢 ∈ 𝐻𝐻∞ .Then  𝑣𝑣(𝐴𝐴) = (𝑢𝑢(𝐴𝐴) − 𝜇𝜇0𝐼𝐼)(𝐼𝐼 − 𝜇𝜇�0𝑢𝑢(𝐴𝐴)) −1, moreover 
𝑢𝑢(𝐴𝐴) ∈ 𝐶𝐶0 if and only if 𝑣𝑣(𝐴𝐴) ∈ 𝐶𝐶0 (see [29]). Since 𝑣𝑣(0) = 0, 𝑣𝑣 is of the form 𝑣𝑣(𝜆𝜆) =
𝜆𝜆𝑣𝑣1(𝜆𝜆), where 𝑣𝑣1 ∈ 𝐻𝐻∞  and 

‖𝑣𝑣1‖∞ =  lim
𝑜𝑜→1−0

sup
⌈𝜆𝜆⌉=𝑜𝑜

|𝑣𝑣1(𝜆𝜆)| =  lim
𝑜𝑜→1−0

sup
⌈𝜆𝜆⌉=𝑜𝑜

|𝑣𝑣(𝜆𝜆)|
𝑜𝑜

= ‖𝑣𝑣‖∞ ≤ 1. 

Now 𝑣𝑣(𝐴𝐴)  =  𝐴𝐴 𝑣𝑣1(𝐴𝐴) implies that 𝑣𝑣(𝐴𝐴)∗𝑛𝑛 = 𝑣𝑣1(𝐴𝐴)∗𝑛𝑛 (𝐴𝐴)∗𝑛𝑛 , for every 𝑛𝑛 ∈ ℕ. Taking 
into account ‖𝑣𝑣1(𝐴𝐴)∗𝑛𝑛 ‖ ≤ ‖𝑣𝑣1(𝐴𝐴)‖𝑛𝑛 ≤ ‖𝑣𝑣1‖∞

𝑛𝑛 ≤ 1, we infer that 
‖𝑣𝑣(𝐴𝐴)∗𝑛𝑛 ℎ‖ ≤ ‖𝑣𝑣1(𝐴𝐴)∗𝑛𝑛 ‖‖𝐴𝐴∗𝑛𝑛 ℎ‖ ≤ ‖𝐴𝐴∗𝑛𝑛 ℎ‖  → 0                 (𝑛𝑛 → ∞) 

Hence 𝑣𝑣(𝐴𝐴) ∈ 𝐶𝐶0, and so 𝑢𝑢(𝐴𝐴) ∈ 𝐶𝐶0. 
Lemma (3.1.9)[25]: If  𝐴𝐴 is a 𝐶𝐶10-contraction and 𝑢𝑢 ∈ 𝐻𝐻∞  𝑖𝑖s a non-constant function 
such that ‖𝑢𝑢‖∞ ≤ 1and | 𝑢𝑢(𝜆𝜆)| = 1 ,f or a.e. ,𝜆𝜆 ∈ 𝜕𝜕𝔻𝔻 ∩ 𝜎𝜎(𝐴𝐴) (with respect to the 
Lebesgue measure), then the contraction 𝑢𝑢(𝐴𝐴) also belongs to  𝐶𝐶10. 
Proof. Since 𝐴𝐴 is of class 𝐶𝐶1,  it follows that 𝐴𝐴 can be injected into 𝑅𝑅∗,𝐴𝐴: 𝐴𝐴 ≺𝑖𝑖  𝑅𝑅∗,𝐴𝐴 . On 
the other hand, 𝐴𝐴 being 𝑐𝑐𝑛𝑛𝑢𝑢, 𝑅𝑅∗,𝐴𝐴 is an absolutely continuous unitary operator. We infer 
that 

𝑢𝑢(𝐴𝐴) ≺𝑖𝑖 𝑢𝑢�𝑅𝑅∗,𝐴𝐴�. 
Taking into consideration that 𝜎𝜎(𝑅𝑅∗,𝐴𝐴) ⊂ (𝜎𝜎(𝐴𝐴) ∩ 𝜕𝜕𝔻𝔻), cf. Theorem(3.1.2) , the spectral 
theorem yields that 𝑢𝑢(𝑅𝑅∗,𝐴𝐴) is unitary, and so 𝑢𝑢(𝑅𝑅∗,𝐴𝐴)  ∈ 𝐶𝐶1 .  
Since 𝑢𝑢(𝐴𝐴) can be injected into 𝑢𝑢(𝑅𝑅∗,𝐴𝐴), we obtain that 𝑢𝑢(𝐴𝐴)  ∈ 𝐶𝐶1. . Now, applying 
Lemma (3.1.8) we conclude that 𝑢𝑢(𝐴𝐴) is of class 𝐶𝐶10. 
The following statement is the basic tool in our construction. 
Proposition (3.1.10)[25]: Let Ω ⊂ 𝔻𝔻 be a simple connected domain whose boundary 
Γ = 𝜕𝜕Ω is a rectifiable Jordan curve containing a closed arc I of 𝜕𝜕𝔻𝔻, 𝑚𝑚(𝐼𝐼) > 0. Let us 
given a .set 𝛽𝛽 ∈ 0M ( 𝔻𝔻), 𝛽𝛽 ⊂ 𝐼𝐼, a point 𝜇𝜇0 ∈ Ω and a real number 𝐾𝐾 > 0. Then there 
exists a contraction 𝐵𝐵 such that  
(a) 𝐵𝐵 ∈ 𝐶𝐶10, 
(b) 𝜎𝜎(𝐵𝐵) =  𝛽𝛽, 
(c) ‖(𝐵𝐵 − 𝜇𝜇0𝐼𝐼)−1‖  > 𝐾𝐾, and 
(d) l‖(𝐵𝐵 − 𝜇𝜇𝐼𝐼)−1‖ < 𝑑𝑑𝑖𝑖𝑠𝑠𝑤𝑤(𝜇𝜇, Ω−)−1for every 𝜇𝜇 ∈ ℂ\Ω. 
Proof. The Riemann mapping theorem and Caratheodory’s theorem ensure us a 
homeomorphism 𝑢𝑢: 𝔻𝔻− → Ω , which is holomorphic on 𝔻𝔻. It can be assumed that 
𝑢𝑢(0)  = 𝜇𝜇0. Since Γ is a rectifiable Jordan curve, it follows that 𝛼𝛼 = 𝑢𝑢−1(𝛽𝛽)  ∈ 0M (𝔻𝔻)  
[169]. 
Because of Proposition(3.1.7) we can find a contraction 𝐴𝐴 ∈ 𝐶𝐶10  such that 𝜎𝜎(𝐴𝐴) =
𝛼𝛼  and ‖𝐴𝐴−1‖ > 2𝑘𝑘. We define B by the aid of the 𝑆𝑆𝑧𝑧.-Nagy-Foias functional calculus, 
namely 𝐵𝐵 ∶= 𝑢𝑢( 𝐴𝐴 ). 
Since 𝑢𝑢(𝜎𝜎(𝐴𝐴)) = 𝑢𝑢(𝛼𝛼)  =  𝛽𝛽 ⊂ 𝜕𝜕𝔻𝔻, we infer by Lemma(3.1.9) that 𝐵𝐵 =  𝑢𝑢(𝐴𝐴)  ∈ 𝐶𝐶10. 
On the other hand, the Foias-Mlak spectral mapping theorem (cf. [170]) yields that 
𝜎𝜎(𝐵𝐵) = 𝑢𝑢(𝛼𝛼) = 𝛽𝛽. 
The relation 𝑢𝑢(0) = 𝜇𝜇0 implies that 𝑢𝑢(𝜆𝜆)  − 𝜇𝜇0 = 𝜆𝜆𝑣𝑣(𝜆𝜆), where 𝑣𝑣 ∈ 𝐻𝐻∞  and 



- 49 - 
 

‖𝑣𝑣‖∞ = lim
𝑜𝑜→1

sup
0|𝜆𝜆|=𝑜𝑜

�
𝑢𝑢(𝜆𝜆) − 𝜇𝜇0

𝜆𝜆
�  ≤ ‖𝑢𝑢‖∞ + |𝜇𝜇0| ≤ 2. 

Since 𝑢𝑢(𝐴𝐴) − 𝜇𝜇0𝐼𝐼 = 𝐴𝐴 𝑣𝑣(𝐴𝐴), it follows 𝐴𝐴−1 = (𝑢𝑢(𝐴𝐴) − 𝜇𝜇0𝐼𝐼)−1𝑣𝑣(𝐴𝐴) and 
2𝐾𝐾 <  ‖𝐴𝐴−1‖ ≤ ‖(𝑢𝑢(𝐴𝐴) − 𝜇𝜇0𝐼𝐼)−1‖ ‖𝑣𝑣(𝐴𝐴)‖ ≤ ‖(𝐵𝐵 − 𝜇𝜇0𝐼𝐼)−1‖‖𝑣𝑣 ‖∞  

≤ 2‖(𝐵𝐵 − 𝜇𝜇0𝐼𝐼)−1‖, 
i.e., 

‖(𝐵𝐵 − 𝜇𝜇0𝐼𝐼)−1‖ > 𝐾𝐾. 
While, if 𝜇𝜇 ∈ ℂ\Ω−, then 𝑣𝑣𝜇𝜇 (𝜆𝜆) =  (𝑢𝑢(𝜆𝜆) − 𝜇𝜇)−1  ∈ 𝐻𝐻∞ ), �𝑣𝑣𝜇𝜇  �

∞
=  𝑑𝑑𝑖𝑖𝑠𝑠𝑤𝑤(𝜇𝜇, Ω− )−1. 

Hence 
 ‖ (𝐵𝐵 − 𝜇𝜇𝐼𝐼)−1‖ = ‖(𝑢𝑢(𝐴𝐴) − 𝜇𝜇𝐼𝐼)−1‖ =  �𝑣𝑣𝜇𝜇 (𝐴𝐴)� ≤ �𝑣𝑣𝜇𝜇 �

∞
 =, 𝑑𝑑𝑖𝑖𝑠𝑠𝑤𝑤(𝜇𝜇, Ω−)−1, 

and the proof is completed. 
Lemma (3.1.11)[25]: Let 𝛼𝛼, 𝜎𝜎 be sets belonging to 0M  (𝔻𝔻)  and , M (𝔻𝔻). 
respectively such that 𝛼𝛼 ⊂(𝑛𝑛) 𝜎𝜎. Let us given a point , 𝜇𝜇0 ∈ 𝜎𝜎 and positive 
numher. 𝐾𝐾, 𝜀𝜀.  There 𝑒𝑒𝑥𝑥𝑖𝑖𝑠𝑠𝑤𝑤𝑠𝑠 𝑅𝑅 contraction 𝑇𝑇 such that 

(a) 𝑇𝑇 ∈ 𝐶𝐶10, 
(b) 𝜎𝜎(𝑇𝑇)  ⊂ 𝛼𝛼, 
(c) ‖(𝑇𝑇 − 𝜇𝜇𝐼𝐼)−1‖ >  𝐾𝐾, ifs” 𝜇𝜇0 ∉ 𝜎𝜎(𝑇𝑇)and 
(d)  ‖(𝑇𝑇 − 𝜇𝜇𝐼𝐼)−1‖ ≤ (𝑑𝑑𝑖𝑖𝑠𝑠𝑤𝑤(𝜇𝜇, 𝜎𝜎) − 𝜀𝜀)−1 if dist(𝜇𝜇, 𝜎𝜎) > 𝜀𝜀. 

Proof. Let us consider the open set (𝜎𝜎𝜀𝜀 = {𝜆𝜆 ∈ ℂ: 𝑑𝑑𝑖𝑖𝑠𝑠𝑤𝑤(𝜆𝜆. , 𝜎𝜎) < 𝜀𝜀}, containing 𝜎𝜎. Let 𝜎𝜎0 
be the component of 𝜎𝜎𝜀𝜀  including 𝜇𝜇0. Since 𝜎𝜎𝜀𝜀 \𝜎𝜎0 is also open, it follows that (�̀�𝜎 = 𝜎𝜎0 ∩
𝜎𝜎 is a non-empty closed and open subset of 𝜎𝜎. In virtue of 𝛼𝛼 ⊂(𝑛𝑛) 𝜎𝜎 we get 𝑚𝑚(�̀�𝜎 ∩ 𝛼𝛼) >
0. The set 𝜎𝜎0 ∩ 𝜕𝜕𝔻𝔻 consists of countably many open arcs, hence there exists a closed arc 
𝐼𝐼 ⊂ (𝜕𝜕𝔻𝔻 ∩ 𝜎𝜎0) such that 𝑚𝑚(𝐼𝐼 ∩  𝛼𝛼) > 0. Let 𝛽𝛽 denote the support of the measure 
𝜒𝜒𝐼𝐼∩𝛼𝛼  𝑑𝑑𝑚𝑚. Since 𝐼𝐼 ∩ 𝛼𝛼  is closed in 𝜕𝜕𝔻𝔻, it follows that 𝛽𝛽 ⊂ 𝐼𝐼 ∩ 𝛼𝛼, moreover 𝛽𝛽 ∈ 0M (𝔻𝔻). 
Let us assume first that 𝜇𝜇0 ∈ 𝔻𝔻. There exists a simply-connected domain Ω such that 
Ω ⊂ 𝜎𝜎0  ∩ 𝔻𝔻 is a rectifiable Jordan curve, 𝜕𝜕Ω ⊃ 𝐼𝐼, and 𝜇𝜇0 ∈ Ω . (Note that 𝜎𝜎0  ∩ 𝔻𝔻 is also 
connected.) Now, Proposition(3.1.10) provides us a contraction 𝑇𝑇 ∈ 𝐶𝐶10   such that 
𝜎𝜎(𝑇𝑇) = 𝛽𝛽( ⊂ 𝛼𝛼), ‖( 𝑇𝑇 − 𝜇𝜇0𝐼𝐼)−1‖ >  𝐾𝐾 and ‖(𝑇𝑇 − 𝜇𝜇𝐼𝐼)−1‖ ≤  𝑑𝑑𝑖𝑖𝑠𝑠𝑤𝑤(𝜇𝜇, Ω−1)−1 for every 
𝜇𝜇 ∈ ℂ\Ω−1. Since Ω ⊂ 𝜎𝜎0 ⊂ 𝜎𝜎𝜀𝜀  it follows that 𝑑𝑑𝑖𝑖𝑠𝑠𝑤𝑤(𝜇𝜇, 𝜎𝜎) > 𝜀𝜀 implies 𝜇𝜇 ∉ Ω−. and so 
‖(𝑇𝑇 − 𝜇𝜇𝐼𝐼)−1‖ ≤ 𝑑𝑑𝑖𝑖𝑠𝑠𝑤𝑤(𝜇𝜇, Ω− )−1 ≤  (𝑑𝑑𝑖𝑖𝑠𝑠𝑤𝑤(𝜇𝜇, 𝜎𝜎)  − 𝜀𝜀)−1. 
Let us assume now that 𝜇𝜇0  ∈ 𝜕𝜕𝔻𝔻.. Let us choose a point �̀�𝜇0  ∈ 𝔻𝔻 such that |�̀�𝜇0 − 𝜇𝜇0| <
𝜌𝜌, where 0 < 𝜌𝜌 < 𝜀𝜀

2
. It is clear that ,�̀�𝜇0 ∈ 𝜎𝜎0. Now let 𝑇𝑇 ∈ 𝐶𝐶10  be a contraction 

corresponding to �̀�𝜇0 and 𝐾𝐾 + 1 by Proposition(3.1.10). We have only to examine the 
inverse of 𝑇𝑇 − 𝜇𝜇0𝐼𝐼 .  Let us suppose that 𝜇𝜇0 ∉ 𝜎𝜎( 𝑇𝑇). Since ‖( 𝑇𝑇 −   �̀�𝜇0𝐼𝐼)−1‖  > 𝐾𝐾 + 1, 
there is a unit vector 𝑥𝑥0 such that ‖(𝑇𝑇 − �̀�𝜇0𝐼𝐼)𝑥𝑥0‖ < (𝐾𝐾 + 1)−1. Hence ‖(𝑇𝑇 − 𝜇𝜇0𝐼𝐼)𝑥𝑥0‖ ≤ 
‖(𝑇𝑇 − �̀�𝜇0 𝐼𝐼)𝑥𝑥0‖ + |𝜇𝜇0 − �̀�𝜇0| < (K + 1)−1 + ρ and so ‖(𝑇𝑇 − 𝜇𝜇0𝐼𝐼)−1)‖ > ((𝐾𝐾 + 1)−1 +
𝜌𝜌)−1. But ((𝐾𝐾 + 1)−1 + 𝜌𝜌)−1 > 𝐾𝐾 if 𝜌𝜌 is small enough, and the proof is finished. 
 Now, we are ready to show Theorem(3.1.12). 
Theorem (3.1.12)[25]: If 𝛼𝛼 ∈ 0M (𝔻𝔻)is neatly contained in 𝜎𝜎 ∈ M (𝔻𝔻) then there exists a 
𝐶𝐶10-contraction 𝑇𝑇 such that 𝜎𝜎(𝑇𝑇) = 𝜎𝜎 and 𝜎𝜎(𝑅𝑅∗,𝑇𝑇) = 𝛼𝛼. 
2. In proving Theorem(3.1.11)  first we show that every element of 0M (𝔻𝔻)can be the 
spectrum of a 𝐶𝐶10,-contraction. 
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Proof. Let us given sets 𝛼𝛼 ∈ 0M (𝔻𝔻) and (𝜎𝜎 ∈ M (𝔻𝔻) such  that 𝛼𝛼 ⊂(𝑛𝑛) 𝜎𝜎. Let {𝜇𝜇𝑛𝑛 }𝑛𝑛∈ℕ be 
a sequence of points of 𝜎𝜎, which is dense in 𝜎𝜎, and in which every term is repeated 
infinitely many times. Let {𝐾𝐾𝑛𝑛 }𝑛𝑛∈ℕ and {𝜀𝜀𝑛𝑛 }𝑛𝑛∈ℕ be sequences of positive numbers such 
that lim𝑛𝑛→∞ 𝐾𝐾𝑛𝑛   = ∞ and lim

𝑛𝑛→∞
𝜀𝜀𝑛𝑛  = 0. For every 𝑛𝑛 ∈ ℕ,  let 𝑇𝑇𝑛𝑛 ,, be a 𝐶𝐶10-contraction 

corresponding to 𝛼𝛼 ∈ 0M (𝔻𝔻), 𝜎𝜎 ∈ M (𝔻𝔻),    𝜇𝜇𝑛𝑛 ∈ 𝜎𝜎, 𝐾𝐾𝑛𝑛 >  0, and 𝜀𝜀𝑛𝑛  > 0 by 
Lemma(3.1.10). Moreover, Proposition(3.1.6) ensures us a contraction 𝑇𝑇0, of class 𝐶𝐶10 
such that (𝜎𝜎( 𝑇𝑇0)  = 𝜎𝜎(𝑅𝑅∗.𝑇𝑇0 )  = 𝛼𝛼. Let us define 𝑇𝑇 as the orthogonal sum 𝑇𝑇 =⊕𝑛𝑛=0

∞ 𝑇𝑇𝑛𝑛 . It 
is easy to verify that 𝑇𝑇 belongs to 𝐶𝐶10 and its spectrum 𝜎𝜎(𝑇𝑇)  = 𝜎𝜎. Finally, the unitary 
extension of 𝑇𝑇 being the orthogonal sum of the unitary extensions of 𝑇𝑇𝑛𝑛 ‘𝑠𝑠, we conclude 
that 𝜎𝜎(𝑅𝑅∗.1) = ⋃ 𝜎𝜎∞

𝑛𝑛=0 � 𝑅𝑅∗.𝑇𝑇𝑛𝑛 � = 𝛼𝛼. The proof is completed. 
First of all we note that if 𝑇𝑇 belongs to C00, then both its residual and its *-residual part: 
𝑅𝑅𝑇𝑇 , and 𝑅𝑅∗.𝑇𝑇 , respectively, act on the trivial space {0}(see[29]). 
An important subclass of C00, denoted by C0 is the system of those cnu contractions 𝑇𝑇 
which are annihilated by a non-constant function 𝑢𝑢 ∈ 𝐻𝐻∞  : 𝑢𝑢(𝑇𝑇) = 0. The spectrum of a 
C0-contraction 𝑇𝑇 can be completely described by the aid of its minimal function 𝑚𝑚𝑇𝑇 ∈
𝐻𝐻∞   e.g. , 𝜎𝜎(𝑇𝑇) ∩ 𝔻𝔻 coincides with the set {𝜆𝜆 ∈ 𝔻𝔻: 𝑚𝑚𝑇𝑇(𝜆𝜆) = 0} [29]. Hence, for a C0- 
contraction 𝑇𝑇, 𝜎𝜎(𝑇𝑇)  ∩ 𝔻𝔻 is always countable, moreover the sum ∑  (1 −  |𝜆𝜆|)𝜆𝜆∈𝜎𝜎(𝑇𝑇)∩𝔻𝔻   is 
finite. The following theorem shows that the spectrum of a countable orthogonal sum of 
C0-contractions, and so the spectrum of a C00-contraction, is already an arbitrary compact 
subset of 𝔻𝔻. 
Theorem ( 3.1.13)[25]: For every non-empty, compact .suhset K of’ 𝔻𝔻 , there exists a 
contraction 𝑇𝑇 ∈ L (ℌ) such that  
(a)  𝑇𝑇 is a countable orthogonal sum of  𝐶𝐶0-contractions, 
(b)  𝜎𝜎(𝑇𝑇) =  𝐾𝐾, and 
(c) 𝑇𝑇 is cyclic, i.e., 𝑉𝑉𝑛𝑛≥0𝑇𝑇𝑛𝑛 ℎ = ℌ holds ,fiw a vector ℎ ∈ ℌ. 
Proof. (a)  Let {𝑅𝑅𝑛𝑛 )𝑛𝑛∈𝐽𝐽  be a dense sequence of different points in 𝐾𝐾 ∩ 𝔻𝔻. (Here 𝐽𝐽 is of the 
for𝑚𝑚 𝐽𝐽 =  {𝑛𝑛 ∈ ℕ: 𝑛𝑛 < 𝑁𝑁), where 𝑛𝑛 ∈ ℕ or 𝑁𝑁 = 𝜔𝜔, the first infinite ordinal. In the case 
𝑁𝑁 = 1 the set 𝐽𝐽 is empty.) Let 𝜇𝜇 be the Borel measure on ℂ defined by 
                       𝜇𝜇(𝜔𝜔) = ∑ 2−𝑛𝑛

𝑅𝑅𝑛𝑛 ∈𝜔𝜔   for every Bore1 set 𝜔𝜔 ⊂ ℂ. 
Let us consider the Hilbert space ℌ1 = 𝐿𝐿2(𝜇𝜇) and the operator 𝑇𝑇1 ∈ L (ℌ1) of 
multiplication by the identity function 𝑓𝑓(𝜆𝜆) = 𝜆𝜆. 𝑇𝑇1, is a normal operator and for its 
spectrum we have 
                    𝐾𝐾 ∩ 𝔻𝔻 ⊂ 𝜎𝜎(𝑇𝑇1) = 𝑐𝑐𝑙𝑙𝑜𝑜𝑠𝑠(𝑅𝑅𝑛𝑛 )𝑛𝑛∈𝐹𝐹 ⊂ 𝐾𝐾. 
Moreover, a theorem of Bram (cf. [195]) states that 𝑇𝑇, has cyclic vectors. 
(b) Let 𝑣𝑣 be a finite, positive, Bore1 measure on 𝜕𝜕𝔻𝔻 singular with respect to the 
Lebesgue measure such that 𝑠𝑠𝑢𝑢𝑝𝑝𝑝𝑝 𝑣𝑣 = 𝐾𝐾 ∩ 𝜕𝜕𝔻𝔻. (E.g., let {𝑏𝑏𝑛𝑛 }𝑛𝑛∈𝐽𝐽   be a dense sequence in 
𝐾𝐾 ∩ 𝜕𝜕𝔻𝔻  and 𝑣𝑣(𝜔𝜔) = ∑ 2−𝑛𝑛

𝑏𝑏𝑛𝑛 ∈𝜔𝜔  , for any Bore1 set 𝜔𝜔 ⊂ 𝜕𝜕𝔻𝔻) Let 𝑢𝑢 ∈ 𝐻𝐻∞  be the singular 
inner function deriving from 𝑣𝑣: 

𝑢𝑢(𝜆𝜆) = 𝑒𝑒𝑥𝑥𝑝𝑝 �− �
𝑒𝑒𝑖𝑖𝑤𝑤 + 𝜆𝜆
𝑒𝑒𝑖𝑖𝑤𝑤 − 𝜆𝜆

2𝜋𝜋

0
𝑑𝑑𝑣𝑣� ,          𝜆𝜆 ∈ 𝔻𝔻. 

Now we define 𝑇𝑇2, acting on the space ℌ2 = 𝐻𝐻2  ⊝ 𝑢𝑢𝐻𝐻2 as the model operator 
corresponding to 𝑢𝑢, i.e., 
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𝑇𝑇2 = 𝑆𝑆(𝑢𝑢) = 𝑃𝑃ℌ2 𝑆𝑆|ℌ2
�, 

where 𝑆𝑆 denotes the multiplication by 𝑓𝑓(𝜆𝜆)  = 𝜆𝜆. on 𝐻𝐻2. Then 𝑇𝑇2 will be a 𝐶𝐶0-contraction 
with minimal function 𝑢𝑢. Moreover, 𝑇𝑇2 is cyclic (since 𝑆𝑆 is cyclic), and  
𝜎𝜎( 𝑇𝑇2)  =  𝑠𝑠𝑢𝑢𝑝𝑝𝑝𝑝 𝑣𝑣 = 𝐾𝐾 ∩ 𝜕𝜕𝔻𝔻. [29]. 
(c) Now 𝑇𝑇 is defined as the orthogonal sum 𝑇𝑇 =  𝑇𝑇1  ⊕  𝑇𝑇2 acting on ℌ = ℌ1  ⊕
ℌ2. Since 𝑇𝑇1 is unitarily equivalent to ⊕𝑛𝑛∈𝐽𝐽 𝑆𝑆(𝑚𝑚𝑛𝑛 ), where 𝑚𝑚𝑛𝑛  is the Blaschke-
factor 𝑚𝑚𝑛𝑛 (𝜆𝜆) = ( 𝑅𝑅�𝑛𝑛

|𝑅𝑅𝑛𝑛 |
)(𝑅𝑅𝑛𝑛 − 𝜆𝜆)/( 1 − 𝑅𝑅�𝑛𝑛 𝜆𝜆) corresponding to 𝑅𝑅𝑛𝑛 , it follows that 𝑇𝑇 is a 

countable orthogonal sum of 𝐶𝐶0-contractions. On the other hand, the spectrum of 𝑇𝑇 is 
𝜎𝜎(𝑇𝑇) = 𝜎𝜎(𝑇𝑇1) ∪ 𝜎𝜎(𝑇𝑇2) = 𝐾𝐾. 

(d) Finally, we show that 𝑇𝑇 is cyclic. Let 𝜁𝜁𝑖𝑖 ∈ ℌ𝑖𝑖 , be a cyclic vector of 𝑇𝑇𝑖𝑖  for 𝑖𝑖 = 1, 2. We 
claim that 𝜁𝜁 = 𝜁𝜁1 ⊕ 𝜁𝜁2 ∈ ℌ will be a cyclic vector for 𝑇𝑇, i.e., the subspace 𝔐𝔐 =
{𝑝𝑝(𝑇𝑇)𝜁𝜁: 𝑝𝑝(𝜆𝜆) 1s a polynomial}− coincides with ℌ. 
Taking into account that 𝑢𝑢(𝑇𝑇) can be approximated by the polynomials of 𝑇𝑇 in the strong 
operator topology, we infer that, for any polynomial 𝑝𝑝(𝜆𝜆), the vector 𝑢𝑢(𝑇𝑇) 𝑝𝑝( 𝑇𝑇)𝜁𝜁  
belongs to 𝔐𝔐. But 

𝑢𝑢(𝑇𝑇)𝑝𝑝(𝑇𝑇)𝜁𝜁 = 𝑢𝑢(𝑇𝑇1)𝑝𝑝(𝑇𝑇1)𝜁𝜁1 ⊕ 𝑝𝑝(𝑇𝑇2)𝑢𝑢(𝑇𝑇2)𝜁𝜁2 = 𝑢𝑢(𝑇𝑇1)𝑝𝑝(𝑇𝑇1)𝜁𝜁1 ⊕ 0. 
If 𝑝𝑝 runs through the set of polynomials, the vectors 𝑝𝑝( 𝑇𝑇1) 𝜁𝜁1  form a dense set, in ℌ1 . 
Since 𝑢𝑢( 𝑇𝑇1) is clearly a quasi-affinity, we obtain that 

𝔚𝔚 ⊃ ℌ1 ⊕ {0}. 
If 𝜂𝜂 ∈ ℌ2 and 𝜀𝜀 > 0 are arbitrarily chosen then, 𝜁𝜁2 being cyclic for 𝑇𝑇2 we can find a 
polynomial 𝑞𝑞 such that ‖𝑞𝑞(𝑇𝑇2)𝜁𝜁2  − 𝜂𝜂 ‖ < 𝜀𝜀. Then 𝑞𝑞(𝑇𝑇)𝜁𝜁 − (𝑞𝑞(𝑇𝑇1)𝜁𝜁1 ⊕ 0) ∈ 𝔐𝔐 and 

‖(𝑞𝑞(𝑇𝑇)𝜁𝜁 − (𝑞𝑞)(𝑇𝑇1)𝜁𝜁1 ⊕ 0)) − (0 ⊕ 𝜂𝜂)‖ = �0 ⊕ �𝑞𝑞(𝑇𝑇2)�𝜁𝜁2 − 𝜂𝜂� < 𝜀𝜀. 
Consequently, {0} ⊕ ℌ2 ⊂ 𝔚𝔚 also holds, and so ℌ = 𝔐𝔐. The proof is completely 
finished. 
Section(3.2):  Asymptotically Nonvanishing Contractions  
  Let ℋ be a complex, separable Hilbert space, and let ℒ(ℋ) stand for the set of all 
bounded, linear operators acting on ℋ.. An operator T ∈ ℒ(ℋ) is a contraction if 
‖T‖  ≤ 1. We say that the contraction T is asymptotically nonvanishing, in notation: 
T ∈ C∗. if there exists a vector x0 ∈ ℋ. such that limn→∞ ‖Tn x0‖ > 0. It is a longstanding 
open problem whether every asymptotically nonvanishing contraction T, which is not 
scalar multiple of the identity, has a nontrivial hyperinvariant subspace Μ. We recall that 
the (closed) subspace Μ of' ℋ. is called nontrivial, if {0} ≠ Μ ≠ ℋ and Μ is 
hyperinvariant for T, if it is invariant for every operator Q belonging to the commutant 
{T}′: = {A ∈ ℒ(ℋ) ∶  AT = TA} of T. The hyperinvariant subspace lattice of T is denoted 
by Hlat T. It is easy to see that for any contraction T ∈ ℒ(ℋ), the subspace ℋ0(T) ∶=
{x ∈ ℋ ∶ lim

n→∞
‖Tn x‖ = 0} belongs to Hlat T. We write T ∈ C0. if  H0(T)  = ℋ and we 

write T ∈ C1. if ℋ0(T)  = {0}. For any j =  0,∗ ,1, by definition T ∈ C.j if T∗  ∈ Cj. (ℋ) is 
true for the adjoint operator. Finally, for any choice of i, j = 0,∗, 1, we consider the set 
Cij : = Ci.∩  C.j  . This classification of contractions, according to the asymptotic behaviour 
of the iterates, was introduced by Bela SzokefalviNagy and Ciprian Foias (see [29]). 
They showed that if T ∈ C∗∗ is nonscalar, then Hlat T is nontrivial, that is Hlat T ≠
{{0}, ℋ} (see [29]). Therefore, addressing the hyperinvariant subspace problem for 
asymptotically nonvanishing contractions, we can assume that T is of class 𝐶𝐶10 . In what 



- 52 - 
 

follows, we shall consider mainly contractions of class C1 ..The advantage of the 
assumption T ∈ C∗. is that a nonzero unitary asymptote T(a) ∈ ℒ(ℋT

(a)) can be associated 
with T. Namely, if (. , . ) stands for the original inner product on ℋ then a new semi-inner 
product can be introduced on ℋ by the formula [x, y]: = limn→∞ 〈Tn  x , Tn y〉  (x, y ∈ ℋ). 
Forming quotient space and taking completion, we arrive at a Hilbert space ℋT,+

(a), where 
T can be continuously extended to an isometry TT

(a)). The natural embedding XT
+: ℋ →

ℋT,+
(a) , x ↦ x + ℋ0(T) is contractive and intertwines T with TT

(a)), in notation: XT
+ ∈

Τ  (T, TT
(a)) ∶= {A ∈ ℒ(ℋ, ℋT,+

(a)) ∶ AT = T+
(a)) A}. The unitary asymptote T(a) ∈ ℒ(TT

(a)) 
is defined as the minimal unitary extension of the isometry T+

(a)), and the canonical 
intertwining mapping XT ∈ Τ  (T, T(a)) is defined by XTx ∶= XT

+x (x ∈ ℋ). Clearly, 
kerXT = ℋ0(T) and (ranXT)− = ℋT,+

(a). Thus, if T ∈ C∗.(ℋ) then the unitary operator 
T(a) is nonzero (i.e. acts on a nonzero space), and if T ∈ C1(ℋ) then the mapping XT  is 
an injection. For more details in connection with these concepts, we refer to [29], [20], 
[10] and [157]. It is well-known that any contraction T ∈ ℒ(ℋ) can be uniquely 
decomposed into the orthogonal sum T = T1 ⊕ T2  ⊕ T3 of a completely nonunitary 
(c. n. u. ) contraction T1 , an absolutely continuous (a.c.) unitary operator T2 and a 
singular unitary operator T3 (see [29] and [152]). Applying the Lifting Theorem of Sz.-
Nagy and Foias it can be easily verified that the hyperinvariant subspace lattice of T 
splits into the direct sum Hlat T =  Hlat(T1  ⊕ T2)  ⊕  Hlat T3 (see [29] and [148]). 
Thus, we can (and shall) assume in the sequel that the singular unitary component T3 is 
zero, that is the contraction T is absolutely continuous. In that case the unitary asymptote 
T(a) is also a.c. (see [29] and [157], or [20]). 
Now, the factorization theorem claims that if T ∈ ℒ(ℋ) is an a.c. contraction such that 
the spectral multiplicity function of the unitary asymptote T(a) dominates the function 
nχω (n ∈ ℕ∞ ) and ω ∈  B1, then the natural embedding Jn,ω : H2(εn ) → χω L2(εn ), f ⟼
χω f can be factorized into the product Jn,ω =  ZY, where Y ∈ ℒ (Sn , T) and Z ∈
ℒ (T, Mn,ω ), and we have a control on the norms of Y and Z. The hyperinvariant subspace 
lattices of the operators Sn  and Mn,ω  are dramatically different. Namely, Hlat Sn  is 
isomorphic to the lattice of (equivalence classes of) inner functions, while Hlat Mn,ω   is 
isomorphic to the Boolean lattice of (equivalence classes of) Borel subsets of ω. (See  
[158].) Now, the question is how the hyperinvariant subspace lattice of the intermediate 
operator T behaves. We are going to examine under what conditions the properties of T 
show similarities with those of Sn  and when the properties of T are closer to those of 
Mn,ω . The concept of the quasianalytical spectral set π(T) of a C1.-contraction T is 
introduced in this  Section . This is a Borel subset of the unit circle, which plays central 
role in our investigations. The connection of π(T) with the support ρ(T) of the spectral 
measure of T(a) called the residual set of T) is examined. One of the main results in this 
section is that Hlat T is nontrivial, if π(T) ≠ ρ(T). We study the transformation laws 
concerning these sets in the Sz.-Nagy~Foias functional calculus. As a result, we obtain an 
abundance of examples for possible pairs of π(T) and ρ(T). It is shown that the 
contraction T exhibits a 'quasianalytic property' on the quasianalytical spectral set π(T). 
We devoted to different intertwining relations. The operators in the commutant of T are 



- 53 - 
 

studied. It is shown that every nonZero operator in {T}′ is injective in the quasianalytic, 
cyclic case. Furthermore, a sufficient condition is given for the existence of an operator 
0 ≠  Q ∈  {T}′ with nondense range. 
Let H∞  denote the Hardy space of bounded, analytic functions, defined on the open unit 
disc𝔻𝔻. We recall that, for any u ∈ H∞ , the radial limit limr→1 u(rz) exists for almost 
every (a.e.) z ∈ 𝕋𝕋 the limit function will be also denoted by u. In connection with the 
basic properties of H∞ , we refer to [9] and [29]. Given any u, v ∈  H∞ , we say that the 

function u is smaller than v in absolute value, in notation: u
a
 v if |u(z)| ≤ |v(z)| holds, 

for every z ∈ 𝔻𝔻. This relation can be characterized in the following way. 
Lemma (3.2.1)[31]: For any functions 𝑢𝑢, 𝑣𝑣 ∈ H∞ , the following conditions are 
equivalent: 

 (a) 𝑢𝑢
a
  𝑣𝑣 ; 

(b) there exists 𝑤𝑤 ∈ H∞  such that 𝑢𝑢 =  𝑣𝑣𝑤𝑤 and ‖𝑤𝑤‖∞  ≤ 1  
(c) ‖𝑢𝑢(𝑧𝑧)‖  ≤ |𝑣𝑣(𝑧𝑧)|1 is true for a.e. 𝑧𝑧 ∈ 𝕋𝕋, and the inner component of 𝑣𝑣 divides the 
inner component of 𝑢𝑢. 
In a similar fashion, given any 𝐴𝐴, 𝐵𝐵 ∈ ℒ(ℋ), we say that the operator A is 

 smaller than 𝐵𝐵 in absolute value, in notation: 𝐴𝐴
a
𝐵𝐵, if ‖𝐴𝐴𝑥𝑥‖ ≤ ‖𝐵𝐵𝑥𝑥‖  is true, for every 

𝑥𝑥 ∈ ℋ. This relation can be also easily characterized. 
Lemma (3.2.2)[31]: For any operators 𝐴𝐴, 𝐵𝐵 ∈ ℒ(ℋ),  the following conditions are 
equivalent: 

 (a)  𝐴𝐴
a
 B; 

(b)  there exists 𝐶𝐶 ∈ ℒ(ℋ) such that 𝐴𝐴 = 𝐶𝐶𝐵𝐵, ‖𝐶𝐶‖ ≤ 1 
(c)  𝐴𝐴∗𝐴𝐴 ≤  𝐵𝐵∗𝐵𝐵. 
Clearly, these relations on 𝐻𝐻∞  and ℒ(ℋ) are reflexive and transitive. We shall consider 
the following sets of decreasing sequences: 

              𝐷𝐷(𝐻𝐻∞ ) ≔ {𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1
∞ : 𝑓𝑓𝑛𝑛 ∈ 𝐻𝐻∞ , 𝑓𝑓𝑛𝑛+1

a
 𝑓𝑓𝑛𝑛  for every 𝑛𝑛 ∈ ℕ} 

and 

     𝐷𝐷(ℋ) ≔ {𝐴𝐴 = {𝐴𝐴𝑛𝑛 }𝑛𝑛=1
∞ : 𝐴𝐴𝑛𝑛 ∈ ℒ(ℋ), 𝐴𝐴𝑛𝑛+1

a
𝐴𝐴𝑛𝑛   for every 𝑛𝑛 ∈ ℕ } . 

To any sequence 𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1
∞ ∈ 𝐷𝐷(𝐻𝐻∞ ) we can associate the limit function 

                                𝜑𝜑𝐹𝐹(𝑧𝑧) ≔ lim𝑛𝑛→∞ |𝑓𝑓𝑛𝑛 (𝑧𝑧)|, 
defined almost everywhere on the unit circle 𝕋𝕋. Similarly, to any sequence 𝐴𝐴 =
 {𝐴𝐴𝑛𝑛 }𝑛𝑛=1

∞  there corresponds the limit operator 

Φ𝐴𝐴 ≔ � lim
𝑛𝑛→∞

𝐴𝐴𝑛𝑛
∗ 𝐴𝐴𝑛𝑛 �

1/2
. 

Here the convergence is meant in the strong operator topology; furthermore, 
‖Φ𝐴𝐴𝑥𝑥‖  = lim

𝑛𝑛→∞
‖𝐴𝐴𝑛𝑛 𝑥𝑥‖  is true, for every 𝑥𝑥 ∈ ℋ. 

Let 𝑇𝑇 ∈ ℒ(ℋ) be an a.c. contraction, and let us consider the 𝑆𝑆𝑧𝑧.-Nagy-Foias functional 
calculus for 𝑇𝑇. We remind the reader that this calculus is a uniquely determined unital 
algebra-homomorphism 𝜓𝜓𝑇𝑇 ∶ 𝐻𝐻∞ → ℒ(ℋ), 𝑓𝑓 ↦ 𝑓𝑓(𝑇𝑇), which assigns 𝑇𝑇 to the identical 
function 𝜒𝜒, and which is continuous in the weak-* topologies (see [29] or [3]). It is easy 
to verify that 𝜓𝜓𝑇𝑇  is monotone with respect to the relations introduced before. Indeed, if   
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𝑢𝑢
a
 v(u, v ∈ H∞ ),  then 𝑢𝑢 =  𝑣𝑣𝑤𝑤 is true with some 𝑤𝑤 ∈ H∞ , ‖𝑤𝑤‖∞  ≤ 1, and since𝜓𝜓𝑇𝑇  is 

contractive, we infer that ‖𝑢𝑢(𝑇𝑇)𝑥𝑥 ‖ = ‖𝑤𝑤(𝑇𝑇)𝑣𝑣(𝑇𝑇)𝑥𝑥‖  ≤ ‖𝑣𝑣(𝑇𝑇)𝑥𝑥‖ (𝑥𝑥 ∈  ℋ), that is 

𝑢𝑢(𝑇𝑇)
a
 v(T). Therefore, given any 𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1

∞ ∈ 𝐷𝐷(𝐻𝐻∞ ), we can form the sequence 
𝐹𝐹(𝑇𝑇) ∶=  {𝑓𝑓𝑛𝑛 (𝑇𝑇)}𝑛𝑛=1

∞ ∈ 𝐷𝐷(𝐻𝐻). The subspace 
ℋ0(𝑇𝑇, 𝐹𝐹) ∶=  𝑘𝑘𝑒𝑒𝑜𝑜 Φ𝐹𝐹(𝑇𝑇) =  {𝑥𝑥 ∈ ℋ: lim

𝑛𝑛→∞
‖𝑓𝑓𝑛𝑛 (𝑇𝑇)𝑥𝑥 ‖ = 0} 

is clearly hyperinvariant for 𝑇𝑇. The following propositions show that under specific 
conditions this subspace is trivial. We note that for a function 𝜑𝜑 ∈ 𝐿𝐿∞  = 𝐿𝐿∞ (𝑚𝑚), the 
notation 𝜑𝜑 = 0 or 𝜑𝜑 > 0 means that 𝜑𝜑(𝑧𝑧) = 0 or 𝜑𝜑(𝑧𝑧) ∈  (0, ∞), respectively, for a.e. 
𝑧𝑧 ∈ 𝑇𝑇. 
Proposition (3.2.3)[31]: Let 𝑇𝑇 ∈ ℒ(ℋ)be an a.c. contraction, and 𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1

∞ ∈
𝐷𝐷(𝐻𝐻∞ ). If  𝜑𝜑𝐹𝐹 = 0 ,then   ℋ0(𝑇𝑇, 𝐹𝐹) = ℋ. 
Proof: By Sz.-Nagy's celebrated dilation theorem, there exists a unitary operator 𝛼𝛼 on a 
larger Hilbert space Κ, such that 𝑇𝑇𝑛𝑛  =  𝑃𝑃ℋ𝛼𝛼𝑛𝑛 |ℋ� is true for every 𝑛𝑛 ∈ ℕ, and Κ =
𝑉𝑉𝑛𝑛=−∞

∞  𝛼𝛼𝑛𝑛 ℋ. Furthermore, this minimal unitary dilation of 𝑇𝑇 is uniquely determined and 
absolutely continuous (see [160] and [29]). Let 𝐸𝐸 denote the spectral measure of 𝛼𝛼, and 
let 𝐸𝐸𝑥𝑥  be the localization of 𝐸𝐸 at the vector 𝑥𝑥 ∈ ℋ. Then applying Lebesgue's dominated 
convergence theorem, we obtain that 

�Φ𝐹𝐹(𝑇𝑇)𝑥𝑥 � = lim
𝑛𝑛→∞

 ‖𝑓𝑓𝑛𝑛 (𝑇𝑇)𝑥𝑥‖ = lim
𝑛𝑛→∞

 ‖ 𝑃𝑃ℋ𝑓𝑓𝑛𝑛 (𝛼𝛼)𝑥𝑥‖ 

≤ lim
𝑛𝑛→∞

‖𝑓𝑓𝑛𝑛 (𝛼𝛼)𝑥𝑥‖ = lim
𝑛𝑛→∞

�� |𝑓𝑓𝑛𝑛 |2𝑑𝑑𝐸𝐸𝑥𝑥

 

𝕋𝕋
�

1/2

= 0 

and so Φ𝐹𝐹(𝑇𝑇) = 0 . 
Proposition (3.2.4)[31]: Given any a. c. contraction 𝑇𝑇 ∈ ℒ(ℋ), the following conditions 
are equivalent: 
(a) 𝑇𝑇 ∈ 𝐶𝐶1.; 
(b) for any 𝐹𝐹 ∈  𝐷𝐷(H∞  ), the relation 𝜑𝜑𝐹𝐹 > 0 implies that 𝐻𝐻0(𝑇𝑇, 𝐹𝐹) = {0}. 
Proof. (𝑏𝑏) ⇒ (𝑅𝑅): This implication is trivial since 𝜑𝜑𝐹𝐹0 =  1 > 0 holds for the 
sequence 𝐹𝐹0 =  {𝜒𝜒𝑛𝑛 }𝑛𝑛=1

∞ ∈ 𝐷𝐷(𝐻𝐻∞ ) and since 𝐻𝐻0(𝑇𝑇, 𝐹𝐹0)  = ℋ0(𝑇𝑇). 
(𝑅𝑅) ⇒ (𝑏𝑏): Let us suppose that 𝑇𝑇 ∈   𝐶𝐶1., and let us consider the unitary asymptote 
𝑇𝑇(𝑅𝑅)  ∈ ℒ(ℋ𝑇𝑇

(𝑅𝑅)) of 𝑇𝑇 and the canonical intertwining mapping 𝑋𝑋𝑇𝑇 ∈ ℒ (𝑇𝑇, 𝑇𝑇(𝑅𝑅)). 
Let 𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1

∞ ∈ 𝐷𝐷(𝐻𝐻∞ ) be a sequence such that 𝜑𝜑𝐹𝐹 > 0. Then, for any vector 𝑥𝑥 ∈ ℋ. 
and for any 𝑛𝑛 ∈ ℕ, we have 

‖𝑓𝑓𝑛𝑛 (𝑇𝑇)𝑥𝑥‖ ≥ ‖𝑋𝑋𝑇𝑇‖−1‖𝑋𝑋𝑇𝑇𝑓𝑓𝑛𝑛 (𝑇𝑇)𝑥𝑥‖  =  ‖𝑋𝑋𝑇𝑇‖−1�𝑓𝑓𝑛𝑛 �𝑇𝑇(𝑅𝑅)�𝑋𝑋𝑇𝑇𝑥𝑥𝑋𝑋� 

= ‖𝑋𝑋𝑇𝑇‖−1 �� |𝑓𝑓𝑛𝑛 |2
 

𝕋𝕋
𝑑𝑑𝐸𝐸𝑋𝑋𝑇𝑇𝑥𝑥 �

1/2

 , 

where 𝐸𝐸 is the spectral measure of the a.c. unitary operator 𝑇𝑇(𝑅𝑅). Lebesgue's Theorem 
yields that 

          �Φ𝐹𝐹(𝑇𝑇)𝑥𝑥� ≥ ‖𝑋𝑋𝑇𝑇‖−1�∫ 𝜑𝜑𝐹𝐹
2 𝑑𝑑𝐸𝐸𝑋𝑋𝑇𝑇𝑥𝑥

 
𝕋𝕋 �

1/2
                      (𝑥𝑥 ∈ ℋ). 

Taking into account that 𝑋𝑋𝑇𝑇  is injective and that the measure 𝐸𝐸𝑋𝑋𝑇𝑇𝑥𝑥  is absolutely 
continuous, it readily follows that 𝑘𝑘𝑒𝑒𝑜𝑜 Φ𝐹𝐹(𝑇𝑇) = {0}. 
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Let 𝑇𝑇 ∈ ℒ(ℋ) be an a.c. contraction. We say that 𝑇𝑇 is asymptotically strongly 
nonvanishing with respect to the Borel set 𝛼𝛼 ∈ 𝐵𝐵1 , in notation: 𝑇𝑇 ∈ 𝐶𝐶1.(𝛼𝛼), if 𝐻𝐻0(𝑇𝑇, 𝐹𝐹) =
{0} is fulfilled for every sequence  𝐹𝐹 ∈ 𝐷𝐷(𝐻𝐻∞ ) satisfying the condition  
𝜒𝜒𝛼𝛼 𝜑𝜑𝐹𝐹 ≠ 0. Since 𝜒𝜒𝛼𝛼 𝜑𝜑𝐹𝐹0 = 𝜒𝜒𝛼𝛼 ≠ 0 is true with 𝐹𝐹0 =  {𝜒𝜒𝑛𝑛 }𝑛𝑛=1

∞ we can see that 𝐶𝐶1.(𝛼𝛼) (𝛼𝛼 ∈
𝐵𝐵1) is a subclass of 𝐶𝐶1.. It also follows immediately from the definition that 𝐶𝐶1.(𝛼𝛼) ⊃
𝐶𝐶1.(𝛽𝛽) holds, whenever  𝛼𝛼 ⊂ 𝛽𝛽(𝑅𝑅, 𝛽𝛽 ∈ 𝐵𝐵1). Furthermore, given any sequence {𝛼𝛼𝑛𝑛 }𝑛𝑛=1

∞  of 
Borel sets in 𝐵𝐵1 , we have 

∩𝑛𝑛=1
∞ 𝐶𝐶1.(𝛼𝛼𝑛𝑛 ) = 𝐶𝐶1.(∪𝑛𝑛=1

∞ 𝛼𝛼𝑛𝑛 ). 
Let 𝐶𝐶1̅. ∶=∪𝛼𝛼∈𝐵𝐵1 𝐶𝐶1̅.(𝛼𝛼) be the set of those a.c. contractions, which are asymptotically 
strongly nonvanishing with respect to some 𝛼𝛼 ∈ 𝐵𝐵1. We make the convention that two 
Borel subsets  𝛼𝛼, 𝛽𝛽 of 𝕋𝕋 are considered equal, if 𝜒𝜒𝛼𝛼  = 𝜒𝜒𝛽𝛽 , that is if the symmetric 
difference 𝛼𝛼 Δ 𝛽𝛽 is of measure zero. 
Proposition (3.2.5)[31]: For any contraction 𝑇𝑇 ∈ �̃�𝐶1., there exists a (unique) largest set 
𝛼𝛼𝑇𝑇  ∈ 𝐵𝐵1 , such that 𝑇𝑇 ∈ 𝐶𝐶1.(𝛼𝛼𝑇𝑇)). 
Proof. Setting 𝛿𝛿 ∶= 𝑠𝑠𝑢𝑢𝑝𝑝{𝑚𝑚(𝛼𝛼): 𝛼𝛼 ∈ 𝐵𝐵1, 𝑇𝑇 ∈ 𝐶𝐶1.(𝛼𝛼 )}, let us consider a sequence 
{𝛼𝛼𝑛𝑛 }𝑛𝑛=1

∞ ⊂ 𝐵𝐵1 such that lim𝑛𝑛→∞ 𝑚𝑚 (𝛼𝛼 𝑛𝑛 ) = 𝛿𝛿, and 𝑇𝑇 ∈ 𝐶𝐶1.(𝛼𝛼𝑛𝑛 ), for every 𝑛𝑛 ∈ ℕ. Since 
𝑇𝑇 ∈∩𝑛𝑛=1

∞ 𝐶𝐶1.(𝛼𝛼𝑛𝑛 ) = 𝐶𝐶1.(∪𝑛𝑛=1
∞ 𝛼𝛼𝑛𝑛 ) we can easily see that 𝛼𝛼𝑇𝑇 =∪𝑛𝑛=1

∞ 𝛼𝛼𝑛𝑛  possesses the 
required properties. 
The Borel set 𝛼𝛼𝑇𝑇 ∈ 𝐵𝐵1 , appearing in the previous proposition, will be called the 
quasianalytical spectral set of the contraction 𝑇𝑇 ∈ �̃�𝐶1., and it will be denoted by 𝜋𝜋(𝑇𝑇). If 
the a.c. contraction 𝑇𝑇 is of class 𝐶𝐶1.\�̃�𝐶1.., then by definition 𝜋𝜋(𝑇𝑇): = 𝜙𝜙. 
Propositon (3.2.6)[31]: 
(a)   If 𝑆𝑆𝑛𝑛 ∈ ℒ(𝐻𝐻2 (ℰ𝑛𝑛 )) is the unilateral shift of multiplicity  𝑛𝑛 ∈ ℕ∞  , then 𝜋𝜋(𝑆𝑆𝑛𝑛 )  = 𝕋𝕋. 
(b)    If 𝛼𝛼 ∈ ℒ(ℋ) is an a.c. unitary operator, then 𝜋𝜋(𝛼𝛼) = 𝜙𝜙. 
Proof. (a): Let us consider a sequence 𝐹𝐹 = {𝑓𝑓𝑘𝑘 }𝑘𝑘=1

∞ ∈ 𝐷𝐷(𝐻𝐻∞ ) such that 𝜑𝜑𝐹𝐹 ≠  0, and a 
vector 0 ≠  𝑥𝑥 ∈ 𝐻𝐻2(ℰ𝑛𝑛 ). Taking into account that 𝑥𝑥(𝑧𝑧)  ≠ 0 for a.e. 𝑧𝑧 ∈ 𝕋𝕋, we obtain 
that 

�Φ𝐹𝐹(𝑆𝑆𝑛𝑛 )𝑥𝑥�2
= lim

𝑘𝑘→∞
‖𝑓𝑓𝑘𝑘 (𝑆𝑆𝑛𝑛 )𝑥𝑥‖2 = lim

𝑘𝑘→∞
� |𝑓𝑓𝑘𝑘 (𝑧𝑧)|2

 

𝕋𝕋
‖𝑥𝑥(𝑧𝑧)‖2dm(z) 

= � 𝜑𝜑𝐹𝐹

 

𝕋𝕋
(𝑧𝑧)2‖𝑥𝑥(𝑧𝑧)‖2𝑑𝑑𝑚𝑚(𝑧𝑧) > 0. 

(b): Let 𝜒𝜒𝜔𝜔 𝑑𝑑𝑚𝑚 (𝜔𝜔 ∈ 𝐵𝐵1)  be a scalar spectral measure of the a.c. unitary operator 𝛼𝛼. 
Given any  𝛼𝛼 ∈ 𝐵𝐵1 , we can find 𝐹𝐹 ∈ 𝐷𝐷(𝐻𝐻∞ ) such that 𝜒𝜒𝛼𝛼 𝜑𝜑𝐹𝐹 ≠ 0 and the set 
 𝜔𝜔0 ∶=  {𝑧𝑧 ∈ 𝜔𝜔 ∶ 𝜑𝜑𝐹𝐹(𝑍𝑍) = 0} is of positive measure. Since 

𝑘𝑘𝑒𝑒𝑜𝑜Φ𝐹𝐹(𝛼𝛼) = 𝑘𝑘𝑒𝑒𝑜𝑜𝜑𝜑𝐹𝐹(𝛼𝛼) = 𝑜𝑜𝑅𝑅𝑛𝑛 𝜒𝜒𝜔𝜔0  (𝛼𝛼)  ≠ {0}, 
it follows that 𝛼𝛼 ∉ 𝐶𝐶1.(𝛼𝛼 ). 
Given any a.c. contraction 𝑇𝑇 ∈ ℒ(ℋ) of class 𝐶𝐶∗., there exists a (unique) Borel set 
𝛽𝛽𝑇𝑇 ∈ 𝐵𝐵1 such that 𝜒𝜒𝛽𝛽𝑇𝑇  dm is a scalar spectral measure of the unitary asymptote 𝑇𝑇(𝑅𝑅). This 
set is called the residual set of the contraction 𝑇𝑇, and is denoted by 𝜌𝜌(𝑇𝑇). We note here 
that 𝑇𝑇(𝑅𝑅) is unitarily equivalent to the *-residual part of the minimal unitary dilation of  𝑇𝑇 
(see [157]) , and that, for 𝑐𝑐. 𝑛𝑛. 𝑢𝑢. 𝐶𝐶11-contractions, 𝜌𝜌(𝑇𝑇) is the smallest Borel set on 
𝕋𝕋which is residual for 𝑇𝑇 in the sense used in [29]. We note also that the residual set 𝜌𝜌(𝑇𝑇)  
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𝑖𝑖s included in the spectrum 𝜎𝜎(𝑇𝑇) of 𝑇𝑇; see e.g. [10]. The description of possible spectra 
of contractions of class 𝐶𝐶1. was given in [143] and [20]. 
We proceed with exploring the connection of the sets 𝜋𝜋(𝑇𝑇) and 𝜌𝜌(𝑇𝑇). 
Theorem (3.2.7)[31]: For any a.c. contraction 𝑇𝑇 ∈ 𝐶𝐶1.(ℋ)  we have 𝜋𝜋(𝑇𝑇) ⊂ 𝜌𝜌(𝑇𝑇). 
Proof. Let us assume that the set  𝛼𝛼 ∶= 𝜎𝜎(𝑇𝑇)\𝜌𝜌(𝑇𝑇) is of positive measure. Let us choose 
a strictly decreasing sequence {𝑐𝑐𝑛𝑛 }𝑛𝑛=1

∞  of real numbers, converging to zero; and, for any 
𝑛𝑛 ∈ ℕ, let 𝑓𝑓𝑛𝑛 ∈ 𝐻𝐻∞  be an outer function such that |𝑓𝑓𝑛𝑛 | = 𝜒𝜒𝛼𝛼 + 𝑐𝑐𝑛𝑛  𝜒𝜒𝑇𝑇\𝛼𝛼 · Now, we 
consider the sequence 𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1

∞ ∈ 𝐷𝐷(𝐻𝐻∞ ), with limit function 𝜑𝜑𝐹𝐹 = 𝜒𝜒𝛼𝛼 · 
In view of the equality 𝜒𝜒𝜌𝜌(𝑇𝑇)|𝑓𝑓𝑛𝑛 | = 𝑐𝑐𝑛𝑛 𝜒𝜒𝜌𝜌(𝑇𝑇), we know that 𝑐𝑐𝑛𝑛

−1𝑓𝑓𝑛𝑛 (𝑇𝑇(𝑅𝑅)) is a unitary 
operator (𝑛𝑛 ∈ ℕ). Thus, given any 0 ≠ 𝑥𝑥0 ∈ ℋ Hand 𝑛𝑛 ∈ ℕ, we have 

lim𝑗𝑗 →∞ �𝑇𝑇𝑗𝑗 𝑓𝑓𝑛𝑛 (𝑇𝑇)𝑥𝑥0� = ‖𝑋𝑋𝑇𝑇𝑓𝑓𝑛𝑛 (𝑇𝑇)𝑥𝑥0‖ = �𝑓𝑓𝑛𝑛 �𝑇𝑇(𝑅𝑅)�𝑋𝑋𝑇𝑇𝑥𝑥0� = 𝑐𝑐𝑛𝑛 ‖𝑋𝑋𝑇𝑇𝑥𝑥0‖  ≤ 𝑐𝑐𝑛𝑛 ‖𝑥𝑥0‖, 
and so there exists 𝑗𝑗(𝑛𝑛) ∈ ℕ such that � 𝑇𝑇𝑗𝑗 𝑓𝑓𝑛𝑛 (𝑇𝑇)𝑥𝑥0� ≤ 2𝑐𝑐𝑛𝑛 ‖𝑥𝑥0‖  holds, whenever 
𝑗𝑗 ≥ 𝑗𝑗(𝑛𝑛). Let 𝑘𝑘: ℕ → ℕ be an increasing mapping such that 𝑘𝑘(𝑛𝑛)  ≥ 𝑗𝑗(𝑛𝑛) is true, for 
every 𝑛𝑛 ∈ ℕ; and let us consider the sequence 𝐺𝐺 = {𝑔𝑔𝑛𝑛 }𝑛𝑛=1

∞ ∈ 𝐷𝐷(𝐻𝐻∞ ), where 𝑔𝑔𝑛𝑛 ∶=
𝜒𝜒𝑘𝑘(𝑛𝑛) 𝑓𝑓𝑛𝑛  (𝑛𝑛 ∈ ℕ). The relations ‖𝑔𝑔𝑛𝑛 (𝑇𝑇)𝑥𝑥0‖ ≤ 2𝑐𝑐𝑛𝑛 ‖𝑥𝑥0‖ (𝑛𝑛 ∈ ℕ) imply that 0 ≠ 𝑥𝑥0 ∈
 𝐻𝐻0(𝑇𝑇, 𝐺𝐺). On the other hand, the limit function 𝜑𝜑𝐺𝐺 = 𝜑𝜑𝐹𝐹  =  𝜒𝜒𝛼𝛼 . 
Therefore, 𝜒𝜒𝜋𝜋(𝑇𝑇)𝜑𝜑𝐺𝐺 = 𝜒𝜒𝛼𝛼 ≠  0 is fulfilled, which yields that ℋ0(𝑇𝑇, 𝐺𝐺) = {0} must hold, 
what is a contradiction. 
It turns out that if the quasianalytical spectral set and the residual set do not coincide, 
then we have affirmative answer for the hyperinvariant subspace problem. 
Theorem (3.2.8)[31]: Let 𝑇𝑇 ∈ ℒ(ℋ) be an a.c. contraction of class 𝐶𝐶1. · If 𝜋𝜋 (𝑇𝑇)  ≠ 𝜌𝜌(𝑇𝑇), 
then 𝑇𝑇 has a nontrivial hyperinvariant subspace. 
Proof. Let us suppose that the set 𝛽𝛽 ∶= 𝜌𝜌(𝑇𝑇)\𝜋𝜋(𝑇𝑇) is of positive measure. We can find a 
sequence 𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1

∞ ∈ 𝐷𝐷(𝐻𝐻∞ ) such that 𝜒𝜒𝛽𝛽 𝜑𝜑𝐹𝐹 ≠ 0 and ℋ0(𝑇𝑇, 𝐹𝐹) ≠ 0. Let us consider 
the Borel set 𝜔𝜔0: =  {𝑧𝑧 ∈ 𝜌𝜌(𝑇𝑇) ∶ 𝜑𝜑𝐹𝐹(𝑍𝑍) = 0}. Since 𝑋𝑋𝑇𝑇𝑓𝑓𝑛𝑛 (𝑇𝑇)  = 𝑓𝑓𝑛𝑛 𝑇𝑇(𝑅𝑅)𝑋𝑋𝑇𝑇 holds for every 
𝑛𝑛 ∈ ℕ, it follows that  

𝑋𝑋𝑇𝑇ℋ0(𝑇𝑇, 𝐹𝐹) ⊂ ℋ0
(𝑅𝑅)�𝑇𝑇(𝑅𝑅), 𝐹𝐹� = 𝑜𝑜𝑅𝑅𝑛𝑛𝜒𝜒𝜔𝜔0 �𝑇𝑇(𝑅𝑅)� ≠ ℋT

(𝑅𝑅). 
Taking into account that the subspace ℋ0

(𝑅𝑅) (𝑇𝑇(𝑅𝑅) , 𝐹𝐹) is reducing for 𝑇𝑇(𝑅𝑅), and applying 
the relation  ⋁𝑛𝑛∈ℕ (𝑇𝑇(𝑅𝑅))−𝑛𝑛 𝑋𝑋𝑇𝑇   ℋ =  ℋ𝑇𝑇

(𝑅𝑅), we infer that ℋ0(𝑇𝑇, 𝐹𝐹) ≠ ℋ, and so ℋ0(𝑇𝑇, 𝐹𝐹) 
is a proper hyperinvariant subspace of 𝑇𝑇. 
Now, we examine how the corresponding quasianalytical spectral and residual sets relate 
if there is some weak similarity connection between two contractions. Let 𝑇𝑇1 ∈ ℒ(ℋ1) 
and 𝑇𝑇2 ∈ ℒ(ℋ2) be arbitrary operators. We say that 𝑇𝑇1 can be  injected into 𝑇𝑇2, in 

notation: 𝑇𝑇1
i
𝑇𝑇2, if ℒ (𝑇𝑇1, 𝑇𝑇2) contains an injection. The  operators 𝑇𝑇1 and 𝑇𝑇2 are called 

injection-similar, in notation: 𝑇𝑇1 ∼
d  𝑇𝑇2, if 𝑇𝑇1 

d
𝑇𝑇2 and 𝑇𝑇2

d
𝑇𝑇1 hold . We say that 𝑇𝑇1 can be 

densely mapped into 𝑇𝑇2, in notation:𝑇𝑇1 
d
 𝑇𝑇2, if  (𝑇𝑇1, 𝑇𝑇2) contains a transformation with 

dense range. The operators 𝑇𝑇1 and 𝑇𝑇2 are densely-similar, in notation: 𝑇𝑇1 ∼
d  𝑇𝑇2 , if 𝑇𝑇1 

d
𝑇𝑇2  

and 𝑇𝑇2
d
 𝑇𝑇1 hold simultaneously. 

The operator 𝑇𝑇1 is called a quasiaffine transform of 𝑇𝑇2 , in notation: 𝑇𝑇1 ≺ 𝑇𝑇2 , if ℒ (𝑇𝑇1, 𝑇𝑇2) 
contains a quasiaffinity, that is an injection with dense range. Finally, 𝑇𝑇1 and 𝑇𝑇2 are 
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quasisimilar, in notation: 𝑇𝑇1 ~ 𝑇𝑇2, if both 𝑇𝑇1  ≺ 𝑇𝑇2  and 𝑇𝑇2 ≺ 𝑇𝑇1 are fulfilled. These 
relations played important role in establishing canonical models for special classes of 
operators; see e.g. [29], [163], [154], [141] or [146]. 
Proposition (3.2.9)[31]: Let 𝑇𝑇1  ∈ ℒ(ℋ1)  and 𝑇𝑇2  ∈ ℒ(ℋ2) be a.c. contractions of class 
𝐶𝐶1.. Then the following statements are true: 

 (a) 𝑇𝑇1
i
 𝑇𝑇2 implies 𝜋𝜋(𝑇𝑇1)  ⊃ 𝜋𝜋(𝑇𝑇2), 

(b) 𝑇𝑇1   ∼
𝑖𝑖 𝑇𝑇2implies 𝜋𝜋(𝑇𝑇1)  =  𝜋𝜋(𝑇𝑇2), 

 (c) 𝑇𝑇1 
d
𝑇𝑇2 implies 𝜌𝜌 (𝑇𝑇1)  ⊃ 𝜌𝜌(𝑇𝑇2), 

(d) 𝑇𝑇1  ∼
d 𝑇𝑇2 implies 𝜌𝜌(𝑇𝑇1 )  =  𝜌𝜌(𝑇𝑇2), 

(e) 𝑇𝑇1 ≺  𝑇𝑇2 implies 𝜋𝜋(𝑇𝑇1) ⊃  𝜋𝜋(𝑇𝑇2) and 𝜌𝜌(𝑇𝑇1)  ⊃ 𝜌𝜌(𝑇𝑇2), 
(f) 𝑇𝑇1  ∼  𝑇𝑇2 implies 𝜋𝜋(𝑇𝑇1)  =  𝜋𝜋(𝑇𝑇2) and 𝜌𝜌(𝑇𝑇1) =  𝜌𝜌(𝑇𝑇2). 
Proof. (a): Let 𝑌𝑌 ∈  ℒ (𝑇𝑇1, 𝑇𝑇2) be an injection. Given any sequence 𝐹𝐹 = 
{𝑓𝑓𝑛𝑛 }𝑛𝑛=1

∞ ∈ 𝐷𝐷(𝐻𝐻∞ ), the relations 𝑌𝑌𝑓𝑓𝑛𝑛 (𝑇𝑇1) = 𝑓𝑓𝑛𝑛 (𝑇𝑇2)𝑌𝑌 (𝑛𝑛 ∈ ℕ) yield that 
𝑌𝑌(ℋ1)0(𝑇𝑇1, 𝐹𝐹) ⊂  (ℋ2)0(𝑇𝑇2, 𝐹𝐹). Thus, if (ℋ2)0(𝑇𝑇2, 𝐹𝐹) = {0} then (ℋ1)0(𝑇𝑇1, 𝐹𝐹)  =
{0} must be also true; whence the inclusion 𝜋𝜋(𝑇𝑇2) ⊂ 𝜋𝜋(𝑇𝑇1) readily follows. 
(c): Let 𝑍𝑍 ∈ ℒ(𝑇𝑇1, 𝑇𝑇2) be a transformation with dense range. Since 𝑋𝑋𝑇𝑇2 𝑍𝑍 ∈   ℒ(𝑇𝑇1, 𝑇𝑇2

(𝑅𝑅)), 
it follows by the universality property of the pair (𝑋𝑋𝑇𝑇1 , 𝑇𝑇2

(𝑅𝑅)) (see [10]) that there exists a 
transformation 𝑊𝑊 ∈ ℒ (𝑇𝑇1

(𝑅𝑅), 𝑇𝑇2
(𝑅𝑅)) such that 𝑋𝑋𝑇𝑇2 𝑍𝑍 = 𝑊𝑊𝑋𝑋𝑇𝑇1  . Taking into account that 𝑍𝑍 

has dense range, we infer that  
                               �𝑊𝑊ℋ𝑇𝑇1

(𝑅𝑅)�
−

= ⋁ �𝑇𝑇2
(𝑅𝑅)�

−𝑛𝑛
𝑊𝑊𝑛𝑛∈ℕ ℋ𝑇𝑇1

(𝑅𝑅) = ℋ𝑇𝑇2
(𝑅𝑅). 

We know that the subspace 𝑘𝑘𝑒𝑒𝑜𝑜 𝑊𝑊 is reducing for 𝑇𝑇1
(𝑅𝑅) , and that the restriction 

𝑇𝑇1
(𝑅𝑅)|(𝑘𝑘𝑒𝑒𝑜𝑜 𝑊𝑊)⊥ � is unitarily equivalent to 𝑇𝑇2

(𝑅𝑅); see [148]. Hence 𝜌𝜌(𝑇𝑇1
(𝑅𝑅)) ⊃  𝜌𝜌(𝑇𝑇2

(𝑅𝑅)) must 
be true; see e.g. [6]. 
The remaining statements are immediate consequences of (a) and (c). 
We note that if 𝜔𝜔, 𝜔𝜔′ ⊂ 𝕋𝕋 are Borel sets such that 𝜙𝜙 ≠ 𝜔𝜔 ≠ 𝑤𝑤′, 𝜔𝜔 ⊂ 𝜔𝜔′, then 

𝑆𝑆1
i
𝑀𝑀1,𝜔𝜔

i
𝑀𝑀1,�̀�𝜔   and 𝜌𝜌(𝑆𝑆1)  = 𝕋𝕋, 𝜌𝜌(𝑀𝑀1,𝜔𝜔 )  = 𝜔𝜔, 𝜌𝜌(𝑀𝑀1,�̀�𝜔 ) = 𝜔𝜔′. Therefore, the relation 

𝑇𝑇1
i
 𝑇𝑇2 does not yield 𝜌𝜌(𝑇𝑇1) ⊂ 𝜌𝜌(𝑇𝑇2) 𝑛𝑛𝑜𝑜𝑜𝑜 𝜌𝜌(𝑇𝑇2) ⊂ 𝜌𝜌(𝑇𝑇1). 

Now, we are able to extend the validity of Proposition(3.2.6). We recall that the defect 
operators of the contraction 𝑇𝑇 ∈ ℒ(ℋ) are defined by 𝐷𝐷𝑇𝑇 ∶= (𝐼𝐼 − 𝑇𝑇∗𝑇𝑇)𝐼𝐼/2 and 𝐷𝐷𝑇𝑇∗ ∶=
 (𝐼𝐼 −  𝑇𝑇𝑇𝑇∗)1/2. The defect spaces of 𝑇𝑇are 𝐷𝐷𝑇𝑇 ∶=  (𝑜𝑜𝑅𝑅𝑛𝑛 𝐷𝐷𝑇𝑇  )− and 𝐷𝐷𝑇𝑇∗ ∶=  (𝑜𝑜𝑅𝑅𝑛𝑛𝐷𝐷𝑇𝑇∗)-; 
and the defect indices of 𝑇𝑇 are given by 𝑑𝑑𝑇𝑇 ∶= 𝑑𝑑𝑖𝑖𝑚𝑚𝐷𝐷𝑇𝑇 and 𝑑𝑑𝑇𝑇∗ ∶=  𝑑𝑑𝑖𝑖𝑚𝑚 𝐷𝐷𝑇𝑇∗. The 
characteristic function Θ𝑇𝑇 of 𝑇𝑇, introduced by 𝑆𝑆𝑧𝑧.-Nagy and Foias in [29], is an 
ℒ(𝐷𝐷𝑇𝑇 , 𝐷𝐷𝑇𝑇∗  )-valued, bounded, analytic function, defined on the open unit disc 𝔻𝔻 by the 
formula Θ𝑇𝑇(𝑧𝑧) ∶=  (−𝑇𝑇 + 𝑍𝑍𝐷𝐷𝑇𝑇∗(1 −  𝑍𝑍𝑇𝑇∗)−1𝐷𝐷𝑇𝑇)𝐷𝐷𝑇𝑇 . 
Corollary  (3.2.10)[31]: Let 𝑇𝑇 ∈ ℒ(ℋ)  be an a.c. contraction of class 𝐶𝐶1 .. 
(a) Let us assume that 𝑇𝑇 ∈ 𝐶𝐶10 . Then 𝜋𝜋(𝑇𝑇) = 𝕋𝕋is true if 𝑑𝑑𝑇𝑇 < ∞, or if Dim 𝑘𝑘𝑒𝑒𝑜𝑜𝑇𝑇∗ <  ∞ 
and there exists a nonzero 𝛿𝛿 ∈ 𝐻𝐻∞  such that ΨΘ𝑇𝑇 = 𝛿𝛿𝐼𝐼 is fulfilled with some ℒ(𝐷𝐷𝑇𝑇∗ , 𝐷𝐷𝑇𝑇) 
-valued, bounded, analytic function Ψ. 
(b) If 𝑇𝑇 ∈ 𝐶𝐶11 , then 𝜋𝜋(𝑇𝑇) = 𝜙𝜙. 
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Proof. (a): Under both conditions 𝑇𝑇 is injection-similar to a unilateral shift; the case 
𝑑𝑑𝑇𝑇 < ∞ was discussed in [161], while the other assumption was considered in [31]. 
Thus, Propositions (3.2.6) and (3.2.9) yield the statement. 
(b): If 𝑇𝑇 ∈ 𝐶𝐶11, then 𝑇𝑇 is quasisimilar to its unitary asymptote 𝑇𝑇(𝑅𝑅); see [29] and [177]. 
Hence, Propositions(3.2.6) and (3.2.9) can be applied again. 
Let 𝑇𝑇 ∈ ℒ(ℋ) be an a.c. contraction of class 𝐶𝐶1.. Let us assume that ℳis a proper 

invariant subspace of 𝑇𝑇, and let 𝑇𝑇 = �𝑇𝑇1      ∗
0      𝑇𝑇2

� be the matrix of 𝑇𝑇 in the decomposition 

ℋ = ℳ ⊕ ℳ⊥ . We know that the unitary asymptote 𝑇𝑇(𝑅𝑅) is unitarily equivalent to the 
orthogonal sum of the corresponding unitary asymptotes of 𝑇𝑇1 and 𝑇𝑇2: 𝑇𝑇(𝑅𝑅) ≅  𝑇𝑇1

(𝑅𝑅) ⊕
𝑇𝑇2

(𝑅𝑅)) ; see [162] and [177]. Hence 𝜌𝜌(𝑇𝑇) = 𝜌𝜌(𝑇𝑇1) ∪  𝜌𝜌(𝑇𝑇2) readily follows. 
On the other hand, it is clear that the a.c. contraction 𝑇𝑇1 ∈ ℒ(ℋ)  is of class 𝐶𝐶1., and that 
𝜋𝜋(𝑇𝑇1) ⊃ 𝜋𝜋(𝑇𝑇) is fulfilled. Furthermore, it can be easily verified that 𝜋𝜋(𝑇𝑇) = 𝜋𝜋(𝑇𝑇1) ∩
𝜋𝜋(𝑇𝑇2) holds, if 𝑇𝑇 = 𝑇𝑇1 ⊕ 𝑇𝑇2. As a consequence, we obtain that if the set 
{𝜋𝜋(𝑇𝑇1), 𝜋𝜋(𝑇𝑇2), 𝜌𝜌(𝑇𝑇1), 𝜌𝜌(𝑇𝑇2)} is not a singleton, and if 𝑇𝑇 =  𝑇𝑇1  ⊕ 𝑇𝑇2, then 𝜋𝜋(𝑇𝑇) ≠ 𝜌𝜌(𝑇𝑇), 
and so 𝑇𝑇 has a nontrivial hyperinvariant subspace by Theorem (3.2.8). 
We note that the contraction 𝑇𝑇2 , occurring in the previous triangulation, need not be of 
class 𝐶𝐶1 .. Of course, the definition of quasianalytical spectral set can be easily extended 
for arbitrary a.c. contractions. Namely, given any a.c. contraction 𝑇𝑇 ∈ ℒ(ℋ) , let us 

consider the matrix 𝑇𝑇 = �𝑇𝑇0      ∗
0      𝑇𝑇1

� of 𝑇𝑇 in the decomposition ℋ = ℋ0(𝑇𝑇)  ⊕ ℋ0(𝑇𝑇)⊥ . 

Then 𝑇𝑇0 ∈  𝐶𝐶0, 𝑇𝑇1  ∈ 𝐶𝐶1., and the unitary asymptote 𝑇𝑇(𝑅𝑅) can be identified with 𝑇𝑇1
(𝑅𝑅). 

Hence 𝜌𝜌(𝑇𝑇) = 𝜌𝜌(𝑇𝑇1) and it is natural to work with the definition 𝜋𝜋(𝑇𝑇) ∶= 𝜋𝜋(𝑇𝑇1) In 
particular, if 𝑇𝑇 ∈ 𝐶𝐶0., then 𝑇𝑇1 acts on the zero space, and then 𝜌𝜌(𝑇𝑇) ∶=  𝜙𝜙 and 𝜋𝜋(𝑇𝑇) ∶=
𝜙𝜙. In the special case, when 𝑇𝑇 = 𝑆𝑆1 ∈ ℒ(𝐻𝐻2) is the simple unilateral shift and Μ =
⋁ 𝜒𝜒𝑛𝑛∞

𝑛𝑛=1   we can infer that 𝜋𝜋(𝑇𝑇) = 𝜋𝜋(𝑇𝑇1) =  𝕋𝕋 and 𝜋𝜋(𝑇𝑇2) = 𝜙𝜙, thus 𝜋𝜋(𝑇𝑇) ≠ 𝜋𝜋(𝑇𝑇1) ∩
𝜋𝜋(𝑇𝑇2). 
Let 𝑇𝑇 ∈ ℒ(ℋ)  be an a.c. contraction, and let us consider a nonconstant function 𝑢𝑢 ∈ 𝐻𝐻⊂ 
with ‖𝑢𝑢‖⊂ ≤ 1. Taking into account that any a.c. unitary operator is similar to a 𝑐𝑐. 𝑛𝑛. 𝑢𝑢. 
contraction (see [156]), we infer by [29] that the operator 𝑢𝑢(𝑇𝑇) is also an a.c. 
contraction. The spectrum of 𝑢𝑢(𝑇𝑇) was characterized in terms of 𝜎𝜎(𝑇𝑇) and u in  [151]. 
Now, we are going to describe the residual and quasianalytical spectral sets of 𝑢𝑢(𝑇𝑇). Let 
us introduce the measurable set Ω(𝑢𝑢) ∶= {𝑧𝑧 ∈ 𝕋𝕋 ∶  |𝑢𝑢( 𝑧𝑧)| = 1}. First of all, we note that 
if 𝑇𝑇 is of class 𝐶𝐶∗. and Ω(𝑢𝑢) ∩ 𝜌𝜌(𝑇𝑇) ≠ 𝜙𝜙 (that is Ω(𝑢𝑢) ∩ 𝜌𝜌(𝑇𝑇) is of positive measure by 
our convention), then 𝑢𝑢(𝑇𝑇) is of class 𝐶𝐶∗., as well. Indeed, the transformation 
𝑄𝑄 ∈ ℒ(ℋ𝑜𝑜𝑅𝑅𝑛𝑛𝜒𝜒𝜔𝜔 ), (𝑇𝑇(𝑅𝑅))), defined by 𝑄𝑄𝑥𝑥 = 𝜒𝜒𝜔𝜔 (𝑇𝑇(𝑅𝑅))𝑋𝑋𝑇𝑇𝑥𝑥  with 𝜔𝜔 ∶=  Ω(𝑢𝑢) ∩ 𝜌𝜌(𝑇𝑇), is 
nonzero and intertwines 𝑇𝑇 with the unitary operator 𝑇𝑇(𝑅𝑅) |𝑜𝑜𝑅𝑅𝑛𝑛�𝜒𝜒𝜔𝜔 (𝑇𝑇(𝑅𝑅)). 
First, we consider the special case, when 𝑢𝑢 is a Mobius transformation. 
Proposition (3.2.11)[31]: If 𝑇𝑇 ∈ ℒ(ℋ) is an a.c. contraction and if we are given 𝑢𝑢(𝑧𝑧) =
𝑘𝑘(𝑧𝑧 − 𝑅𝑅)(1 − 𝑅𝑅�𝑧𝑧)−1 (𝑘𝑘 ∈ 𝕋𝕋, 𝑅𝑅 ∈ 𝔻𝔻), then 𝜋𝜋(𝑢𝑢(𝑇𝑇)) = 𝑢𝑢(𝜋𝜋(𝑇𝑇)) and 𝜌𝜌�𝑢𝑢(𝑇𝑇)� =
 𝑢𝑢�𝜌𝜌(𝑇𝑇)�;furthermore, 𝑢𝑢(𝑇𝑇)(𝑅𝑅) is unitarily equivalent to 𝑢𝑢(𝑇𝑇(𝑅𝑅)). 
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Proof. In view of [29] we know that 𝑇𝑇 is of class 𝐶𝐶0. (𝐶𝐶1.) if and only if 𝑢𝑢(𝑇𝑇) is of class 
𝐶𝐶0. ( 𝐶𝐶1.- respectively). Considering the canonical triangulation of 𝑇𝑇, the proof can be 
easily reduced to the case when 𝑇𝑇 and 𝐴𝐴 ∶=  𝑢𝑢(𝑇𝑇) are of class 𝐶𝐶1 . 
Let us assume that 𝜋𝜋(𝑇𝑇) ≠ 𝜙𝜙 and that 𝜑𝜑𝐹𝐹𝜒𝜒𝑢𝑢 (𝜋𝜋(𝑇𝑇)) ≠ 0 is true, for the sequence 𝐹𝐹 =
{𝑓𝑓𝑛𝑛 }𝑛𝑛=1

∞ ∈ 𝐷𝐷(𝐻𝐻∞ ). Clearly, 𝜑𝜑𝐹𝐹 ∘ 𝑢𝑢 = 𝜑𝜑𝐹𝐹∘𝑢𝑢  is valid, where 𝐹𝐹 ∘ 𝑢𝑢 ∶= {𝑓𝑓𝑛𝑛 ∘ 𝑢𝑢}𝑛𝑛=1
∞ ∈

𝐷𝐷(𝐻𝐻∞ ).  Since 𝜑𝜑𝐹𝐹∘𝑢𝑢 𝜒𝜒𝜋𝜋(𝑇𝑇)  ≠ 0 is fulfilled, it follows that ℋ0(𝑇𝑇, 𝐹𝐹 ∘ 𝑢𝑢) = {0}. 
In virtue of the equations 𝑓𝑓𝑛𝑛 ∘ 𝑢𝑢)(𝑇𝑇) = 𝑓𝑓𝑛𝑛 (𝐴𝐴) (𝑛𝑛 ∈ ℕ), we infer that ℋ0(𝐴𝐴, 𝐹𝐹) =
ℋ0(𝑇𝑇, 𝐹𝐹 ∘ 𝑢𝑢) = {0}. We obtain that 𝜋𝜋(𝐴𝐴) ⊃ 𝑢𝑢(𝜋𝜋(𝑇𝑇)). Taking into account that 𝑇𝑇 =
𝑣𝑣(𝐴𝐴) is true, with the Mobius transformation 𝑣𝑣(𝑧𝑧) = 𝑘𝑘�(𝑧𝑧 + 𝑘𝑘𝑅𝑅)(1 + 𝑘𝑘𝑅𝑅𝑧𝑧�����)−1, the equality  
𝜋𝜋( 𝑢𝑢(𝑇𝑇))  =  𝑢𝑢(𝜋𝜋(𝑇𝑇)) follows. 
As for the residual sets, the equation 𝑋𝑋𝑇𝑇𝑇𝑇 =  𝑇𝑇(𝑅𝑅) 𝑋𝑋𝑇𝑇  implies that 𝑋𝑋𝑇𝑇𝑢𝑢(𝑇𝑇) = 𝑢𝑢(𝑇𝑇(𝑅𝑅))𝑋𝑋𝑇𝑇 . 
Applying the universality property ofthe pair (𝑋𝑋𝐴𝐴 , 𝐴𝐴(𝑅𝑅)), we infer that there exists a 
transformation 𝑌𝑌 ∈   ℒ( 𝐴𝐴(𝑅𝑅) , 𝑢𝑢(𝑇𝑇(𝑅𝑅))) such th;'lt 𝑋𝑋𝑇𝑇 = 𝑌𝑌𝑋𝑋𝐴𝐴. As in the proof of 

Proposition(3.2.9).(iii), we can deduce that 𝑢𝑢(𝑇𝑇(𝑅𝑅))
i
𝐴𝐴(𝑅𝑅). Oonsidering the previous 

inverse function 𝑣𝑣 of 𝑢𝑢, 𝑢𝑢𝑣𝑣𝑒𝑒 obtain in a similar way that 𝑣𝑣�𝐴𝐴(𝑅𝑅)�
i
 𝑣𝑣(𝐴𝐴)(𝑅𝑅) = 𝑇𝑇(𝑅𝑅),  

whence 𝐴𝐴(𝑅𝑅) =  𝑢𝑢(𝑣𝑣(𝐴𝐴(𝑅𝑅)))
i
 𝑢𝑢(𝑇𝑇(𝑅𝑅)) follows. Therefore, the unitary operators 𝑢𝑢(𝑇𝑇(𝑅𝑅)) 

and 𝐴𝐴(𝑅𝑅) are unitarily equivalent (see [173]), and so 𝜌𝜌(𝑢𝑢(𝑇𝑇)) = 𝑢𝑢(𝜌𝜌(𝑇𝑇)). 
We are able to extend the transformation law of the quasianalytical spectral sets for a 
larger class of functions. We shall say that the nonconstant function 𝑢𝑢 ∈ 𝐻𝐻∞  is regular, if 
(i) ‖𝑢𝑢‖∞ = 1, (𝑖𝑖𝑖𝑖) 𝑚𝑚(Ω(𝑢𝑢)) > 0, (𝑖𝑖𝑖𝑖𝑖𝑖) 𝑢𝑢(𝑤𝑤) is measurable, whenever 𝜔𝜔 ⊂ Ω(𝑢𝑢) is 
measurable, and (iv) 𝑚𝑚(𝑢𝑢−1 (𝜔𝜔′)) > 0, provided 𝜔𝜔′ ⊂ 𝑢𝑢(Ω(𝑢𝑢)) is measurable and 
𝑚𝑚(𝜔𝜔′) > 0. (If 𝜔𝜔 Ω(𝑢𝑢) is of positive measure, then 𝑢𝑢(𝑀𝑀1,𝜔𝜔 ) is a nonzero a.c. unitary 
operator, and so 𝑚𝑚(𝑢𝑢(𝜔𝜔)) > 0. ) We note that a function 𝑢𝑢 ∈ 𝐻𝐻∞ , with ‖𝑢𝑢‖∞  =
1, |𝑢𝑢(0) | < 1 and 𝑚𝑚(Ω(𝑢𝑢)) > 0, is regular, if 𝑢𝑢 is of bounded variation on 𝕋𝕋; and that 
this is the case when 𝑢𝑢 is a Riemann map onto a simple Jordan region with rectifiable 
boundary. (See [144] ). 
Theorem (3.2.12)[31]: Let 𝑇𝑇 ∈ ℒ(ℋ)  be an a.c. contraction such that  𝜋𝜋(𝑇𝑇) ≠ 𝜙𝜙. If 
𝑢𝑢 ∈ 𝐻𝐻∞  is a regular function and Ω(𝑢𝑢) ∩ 𝜋𝜋(𝑇𝑇) ≠ 𝜙𝜙, then 𝜋𝜋(𝑢𝑢(𝑇𝑇)) ⊃ 𝑢𝑢(Ω(𝑢𝑢) ∩ 𝜋𝜋(𝑇𝑇)). 
Proof: In view of Proposition (3.2.11), we can assume that 𝑢𝑢(0) =  0, that is 𝑢𝑢 =
𝜒𝜒𝑣𝑣 , with 𝑣𝑣 ∈ 𝐻𝐻∞ , ‖𝑣𝑣‖∞ = 1. Since the quasianalytical spectral set  𝜋𝜋(𝑇𝑇) is nonempty, we 

know that 𝑇𝑇 is of class 𝐶𝐶∗.. Let us consider the triangulation 𝑇𝑇 = �𝑇𝑇0      ∗
0      𝑇𝑇1

� , where 𝑇𝑇0 is of 

class 𝐶𝐶0. and 𝑇𝑇1 belongs to 𝐶𝐶1.. Then 𝑢𝑢(𝑇𝑇) is of the form 𝑢𝑢(𝑇𝑇) = �𝑢𝑢 �𝑢𝑢(𝑇𝑇0)        ∗
0       𝑢𝑢(𝑇𝑇1)��. Since 

𝑢𝑢(𝑇𝑇0)  =  𝑣𝑣(𝑇𝑇0)𝑇𝑇0, we can see that 𝑢𝑢(𝑇𝑇0) ∈ 𝐶𝐶0.. On the other hand, Ω(𝑢𝑢)  ∩ 𝜋𝜋( 𝑇𝑇1) =
Ω(𝑢𝑢)  ∩  𝜋𝜋(𝑇𝑇) ≠ 𝜙𝜙implies that 𝜑𝜑𝐹𝐹𝑢𝑢 𝜒𝜒𝜋𝜋(𝑇𝑇1) ≠ 0 is true for the sequence 𝐹𝐹𝑢𝑢 =  {𝑢𝑢𝑛𝑛 }𝑛𝑛=1

∞ ∈
𝐷𝐷(𝐻𝐻∞ ), and so 𝑢𝑢(𝑇𝑇1) is of class 𝐶𝐶1.. Therefore, we may assume that 𝑇𝑇 and 𝑢𝑢(𝑇𝑇) are a.c. 
contractions belonging to 𝐶𝐶1.. Now, the inclusion 𝑢𝑢(Ω(𝑢𝑢) ∩ 𝜋𝜋(𝑇𝑇)) ⊂ 𝜋𝜋(𝑢𝑢(𝑇𝑇)) can be 
verified as in the proof of (3.2.11). 
We proceed with the description of 𝜌𝜌( 𝑢𝑢(𝑇𝑇)), for an arbitrary  𝑢𝑢 ∈ 𝐻𝐻∞  . We shall need 
the following Lemma. 
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Lemma (3.2.13)[31]: Let 𝑇𝑇 ∈ ℒ(ℋ)be an a.c. contraction of class 𝐶𝐶∗., and let us assume 
that the functions 𝑓𝑓, 𝑔𝑔, ℎ ∈ 𝐻𝐻∞  satisfy the conditions  
‖𝑓𝑓‖∞ =  ‖𝑔𝑔‖∞ = 1, |𝑓𝑓(0)| < 1, ℎ = 𝑓𝑓𝑔𝑔  and Ω(ℎ) ∩ 𝜋𝜋(𝑇𝑇) ≠ 𝜙𝜙. Let us consider the a.c. 
contractions 𝐵𝐵 =  𝑓𝑓(𝑇𝑇) and 𝐶𝐶 =  ℎ(𝑇𝑇) of class 𝐶𝐶∗.. Then, there exists a unique operator 
𝐵𝐵𝐶𝐶 ∈ {𝐶𝐶(𝑅𝑅)}′  such that 𝑋𝑋𝐶𝐶𝐵𝐵 = 𝐵𝐵𝐶𝐶𝑋𝑋𝐶𝐶; furthermore, 𝐵𝐵𝐶𝐶  is an a.c. isometry. 
Proof. The existence of a unique 𝐵𝐵𝐶𝐶 ∈ {𝐶𝐶(𝑅𝑅)}′  satisfying the condition 𝑋𝑋𝐶𝐶𝐵𝐵 = 𝐵𝐵𝐶𝐶𝑋𝑋𝐶𝐶 , 
follows from the universality property of (𝑋𝑋𝐶𝐶 , 𝑐𝑐(𝑅𝑅)); see [10, Section II]. For any 𝑛𝑛 ∈ ℕ, 

the relations ℎ𝑛𝑛+1 a
 ℎ𝑛𝑛  𝑓𝑓

a
 ℎ𝑛𝑛  imply ℎ𝑛𝑛+1(𝑇𝑇)

a
 ℎ𝑛𝑛 (𝑇𝑇)𝑓𝑓(𝑇𝑇)

a
 ℎ𝑛𝑛 (𝑇𝑇).  

Tending 𝑛𝑛 to infinity, we obtain that ‖𝑋𝑋𝐶𝐶𝑥𝑥‖  ≤ ‖𝑋𝑋𝐶𝐶𝐵𝐵𝑥𝑥‖ ≤ ‖𝑋𝑋𝐶𝐶𝑥𝑥‖ is true, for every 
𝑥𝑥 ∈ ℋ. Thus, given any vector 𝑢𝑢 = (𝐶𝐶(𝑅𝑅))−𝑘𝑘 𝑋𝑋𝐶𝐶𝑥𝑥 (𝑘𝑘 ∈ ℕ, 𝑥𝑥 ∈ ℋ), we infer that 
               �𝐵𝐵𝐶𝐶𝑢𝑢 � = ��𝑐𝑐(𝑅𝑅)�𝑘𝑘

𝐵𝐵𝐶𝐶𝑢𝑢 � = ‖𝐵𝐵𝐶𝐶𝑋𝑋𝐶𝐶𝑥𝑥‖ = ‖𝑋𝑋𝐶𝐶𝐵𝐵𝑥𝑥‖ = ‖𝑋𝑋𝐶𝐶𝑥𝑥‖ = ‖𝑢𝑢‖. 

Since the set ∪𝑘𝑘∈ℕ (𝐶𝐶(𝑅𝑅))−𝑘𝑘 𝑋𝑋𝐶𝐶  ℋ is dense in ℋ𝐶𝐶
(𝑅𝑅)), it follows that 𝐵𝐵𝐶𝐶  is an isometry. 

Let us consider the decomposition ℋ𝐶𝐶
(𝑅𝑅) = Μ𝑅𝑅  ⊕ Μ𝑠𝑠 , reducing for 𝐵𝐵𝐶𝐶 , such that 𝐵𝐵𝐶𝐶|Μ𝑅𝑅

�  
is an a.c. isometry and 𝐵𝐵𝐶𝐶|Μ𝑠𝑠

� is a singular unitary operator. Let 𝑃𝑃𝑠𝑠 ∈ ℒ(ℋ𝐶𝐶
(𝑅𝑅)) denote the 

orthogonal projection ontoΜ𝑠𝑠 . Since 𝐵𝐵 is an a.c. contraction and (𝑃𝑃𝑠𝑠𝑋𝑋𝐶𝐶)𝐵𝐵 = 𝑃𝑃𝑠𝑠𝐵𝐵𝐶𝐶𝑋𝑋𝐶𝐶 =
𝐵𝐵𝐶𝐶(𝑃𝑃𝑠𝑠𝑋𝑋𝐶𝐶) , we infer that 𝑃𝑃𝑠𝑠𝑋𝑋𝐶𝐶 = 0, that is Μ𝑅𝑅  contains the subspace ℋ𝐶𝐶,+

(𝑅𝑅). Taking into 
account that Μ𝑅𝑅  is hyperinvariant for 𝐵𝐵𝐶𝐶 , and that the operators 𝑐𝑐(𝑅𝑅), (𝑐𝑐(𝑅𝑅))−1 commute 
with 𝐵𝐵𝐶𝐶 , we obtain that Μ𝑅𝑅 = ℋ𝐶𝐶

(𝑅𝑅), and so the isometry 𝐵𝐵𝐶𝐶  is a.c.  
To formulate the transformation law for the residual sets we introduce some notation. 
Given a set 𝜔𝜔 ∈ 𝕋𝕋 of positive measure and a unimodular measurable function  
ℎ: 𝜔𝜔 → 𝕋𝕋, the properly essential range of ℎ is defined by    𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛ℎ ∶=  {𝑧𝑧 ∈ 𝕋𝕋 ∶
lim𝑜𝑜→0+ 𝑚𝑚  (ℎ−1(𝐷𝐷(𝑧𝑧, 𝑜𝑜)))𝑜𝑜−1 > 0}  where 𝐷𝐷(𝑧𝑧, 𝑜𝑜) ∶=  {( 𝜁𝜁 ∈ 𝕋𝕋 ∶ |𝜁𝜁 − 𝑧𝑧| < 𝑜𝑜}. We note 
that if the Borel measure 𝜇𝜇 on 𝕋𝕋, given by 𝜇𝜇(𝜔𝜔′) ∶=  𝑚𝑚(ℎ−1(𝜔𝜔′)) (𝜔𝜔′ ⊂ 𝕋𝕋), is absolutely 
continuous, then 𝜇𝜇 is equivalent to the measure 𝜒𝜒𝜔𝜔 𝑑𝑑𝑚𝑚, where 𝜔𝜔 =  𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛ℎ; see 
[178]. If 𝑢𝑢 ∈ 𝐻𝐻∞   is a regular function, then 𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(𝑢𝑢|𝜔𝜔�) = 𝑢𝑢(𝜔𝜔) is true, for any 
𝜔𝜔 ∈  𝐵𝐵1, included in Ω(𝑢𝑢). (Note that in the latter case both 𝜒𝜒𝑢𝑢(𝜔𝜔 )𝑑𝑑𝑚𝑚 and 𝑚𝑚 ∘ (𝑢𝑢|𝜔𝜔�)−1 
are scalar spectral measures of the a.c. unitary operator 𝑢𝑢�𝑀𝑀1,𝜔𝜔 �. ) 
Theorem (3.2.14)[31]: Let 𝑇𝑇 ∈ ℒ(ℋ) be an a.c. contraction of class 𝐶𝐶∗., and let 𝑢𝑢 ∈
𝐻𝐻∞  be a function satisfying the conditions ‖𝑢𝑢‖∞  = 1, |𝑢𝑢(0)| < 1 and Ω(𝑢𝑢) ∩ 𝜌𝜌(𝑇𝑇) ≠ 𝜙𝜙 
. Then, the unitary asymptote 𝐴𝐴(𝑅𝑅)  of the a.c. contraction 𝐴𝐴 =  𝑢𝑢(𝑇𝑇) is 
unitarily equivalent to the restriction of the normal operator 𝑢𝑢(𝐴𝐴(𝑅𝑅)) to its 
hyperinvariant subspace 𝑜𝑜𝑅𝑅𝑛𝑛𝜒𝜒𝜔𝜔 (𝑇𝑇(𝑅𝑅)), where 𝜔𝜔 = Ω(𝑢𝑢) ∩ 𝜌𝜌(𝑇𝑇). Therefore, 𝜌𝜌�𝑢𝑢(𝑇𝑇)� =
 𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(𝑢𝑢|𝜔𝜔�);in particular, if 𝑢𝑢 is regular, then 𝜌𝜌( 𝑢𝑢(𝑇𝑇)) =  𝑢𝑢(Ω( 𝑢𝑢) ∩ 𝜌𝜌(𝑇𝑇)). 
Proof. In view of Proposition (3.2.11), we may assume that 𝑢𝑢(0) = 0. Hence 𝑢𝑢 is of the 
form 𝑢𝑢 = 𝜒𝜒𝑣𝑣 , where 𝑣𝑣 ∈ 𝐻𝐻∞  and ‖𝑣𝑣‖∞ = 1. Applying Lemma (3.2.13) with 𝜒𝜒. 𝑣𝑣, 𝑢𝑢 in 
place of 𝑓𝑓, 𝑔𝑔, ℎ, respectively, we obtain that there exists an a.c. isometry 𝑇𝑇𝐴𝐴  ∈ {𝐴𝐴(𝑅𝑅)}′ 
such that 𝑋𝑋𝐴𝐴𝑇𝑇 = 𝑇𝑇𝐴𝐴𝑋𝑋𝐴𝐴. In virtue of the equations 𝐴𝐴(𝑅𝑅)𝑋𝑋𝐴𝐴 = 𝑋𝑋𝐴𝐴𝐴𝐴 = 𝑋𝑋𝐴𝐴𝑢𝑢(𝑇𝑇) = 𝛼𝛼(𝑇𝑇𝐴𝐴)𝑋𝑋𝐴𝐴 
we infer that the subspace 𝑘𝑘𝑒𝑒𝑜𝑜(𝐴𝐴(𝑅𝑅) − 𝑢𝑢(𝑇𝑇𝐴𝐴)) − which is reducing for 𝐴𝐴(𝑅𝑅) - contains the 
subspace ℋ𝐴𝐴,+

(𝑅𝑅). Thus 𝑘𝑘𝑒𝑒𝑜𝑜(𝐴𝐴(𝑅𝑅)  − 𝛼𝛼(𝑇𝑇𝐴𝐴)) = ℋ𝐴𝐴
(𝑅𝑅), and so 𝐴𝐴(𝑅𝑅) = 𝑢𝑢(𝑇𝑇𝐴𝐴). 

Assuming that the isometry 𝑇𝑇𝐴𝐴  is not unitary, the Wold-decomposition of 𝑇𝑇𝐴𝐴  yields that 
𝑇𝑇𝐴𝐴 ≅ 𝛼𝛼 ⊕ 𝑆𝑆𝑛𝑛 , where 𝛼𝛼 is an a.c. unitary operator and 𝑛𝑛 ∈ ℕ∞  . Since 𝐴𝐴(𝑅𝑅) = 𝑢𝑢(𝑇𝑇𝐴𝐴) ≅
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𝑢𝑢(𝛼𝛼) ⊕ 𝑢𝑢(𝑆𝑆𝑛𝑛 ) and since 𝑢𝑢(𝑆𝑆𝑛𝑛 ) is a 𝑐𝑐. 𝑛𝑛. 𝑢𝑢. contraction, we arrive at a contradiction. 
Therefore, 𝑇𝑇𝐴𝐴  must be an a.c. unitary operator. 
In view of the universality of (𝑋𝑋𝐴𝐴 , 𝑇𝑇(𝑅𝑅)), there exists a mapping 𝑌𝑌 ∈ ℒ �𝑇𝑇(𝑅𝑅), 𝑇𝑇𝐴𝐴�such that 
𝑌𝑌 𝑋𝑋𝑇𝑇 = 𝑋𝑋𝐴𝐴. We can easily verify that 𝑌𝑌 has dense range; see the proof of Proposition 
(3.2.9). 
(iii). Furthermore, the equations 𝑌𝑌𝑢𝑢�𝑇𝑇(𝑅𝑅)� = 𝑢𝑢(𝑇𝑇𝐴𝐴)𝑌𝑌 = 𝐴𝐴(𝑅𝑅)𝑌𝑌imply that 𝐴𝐴(𝑅𝑅) ≅
𝑢𝑢(𝑇𝑇(𝑅𝑅)) |𝑘𝑘𝑒𝑒𝑜𝑜� 𝑌𝑌)⊥ . 
Since the restriction 𝑢𝑢(𝑇𝑇(𝑅𝑅)) |𝑘𝑘𝑒𝑒𝑜𝑜� 𝑌𝑌)⊥ . is unitary, we can see that the subspace (𝑘𝑘𝑒𝑒𝑜𝑜 𝑌𝑌)⊥ . 
is contained in the spectral subspace Μ𝜔𝜔 : = 𝑜𝑜𝑅𝑅𝑛𝑛 𝜒𝜒𝜔𝜔  (𝑇𝑇(𝑅𝑅)), where 𝜔𝜔: = Ω(𝑢𝑢) ∩ 𝜌𝜌(𝑇𝑇). Let 
𝑄𝑄 ∈ ℒ(ℋ𝑇𝑇

(𝑅𝑅)) denote the orthogonal projection onto Μ𝜔𝜔  , and let 𝑅𝑅 ∈  ℒ  (𝑇𝑇, 𝑇𝑇(𝑅𝑅)|Μ𝜔𝜔
� ) 

be defined by 𝑅𝑅𝑥𝑥 ∶=  𝑄𝑄𝑋𝑋𝑇𝑇𝑥𝑥  (𝑥𝑥 ∈ ℋ). Taking into account that 𝑢𝑢(𝑇𝑇(𝑅𝑅))|Μ𝜔𝜔
� is unitary and 

that 𝑅𝑅 ∈ ℒ   (𝐴𝐴, 𝑢𝑢(𝑇𝑇(𝑅𝑅))|Μ𝜔𝜔
�), we infer by the universality of (𝑋𝑋𝐴𝐴 , 𝐴𝐴(𝑅𝑅)) that there exists a 

transformation 𝑍𝑍 ∈ ℒ    (𝐴𝐴(𝑅𝑅) , 𝑢𝑢(𝑇𝑇(𝑅𝑅))|Μ𝜔𝜔
�) such that 𝑅𝑅 =  𝑍𝑍𝑋𝑋𝐴𝐴. Clearly, 𝑜𝑜𝑅𝑅𝑛𝑛 𝑍𝑍 ⊃ 𝑜𝑜𝑅𝑅𝑛𝑛 𝑅𝑅 

and 

� �𝑇𝑇(𝑅𝑅)�−𝑛𝑛
𝑅𝑅ℋ =  � 𝑄𝑄�𝑇𝑇(𝑅𝑅)�−𝑛𝑛

𝑋𝑋𝑇𝑇ℋ = �𝑄𝑄ℋ𝑇𝑇
(𝑅𝑅)�

−
= Μ𝜔𝜔

∞

𝑛𝑛=1

∞

𝑛𝑛=1
 

Since (𝑜𝑜𝑅𝑅𝑛𝑛 𝑍𝑍)− is reducing for 𝑢𝑢(𝑇𝑇(𝑅𝑅)|Μ𝜔𝜔
�) = 𝑢𝑢(𝑇𝑇(𝑅𝑅)) |Μ𝜔𝜔

�, so it is for 𝑇𝑇(𝑅𝑅) |Μ𝜔𝜔
� as well. 

Thus, the transformation 𝑍𝑍 must have dense range, and so we conclude that 
𝑢𝑢(𝑇𝑇(𝑅𝑅))|Μ𝜔𝜔

�  ≅  𝐴𝐴(𝑅𝑅)|(𝑘𝑘𝑒𝑒𝑜𝑜 𝑍𝑍)⊥ �. Now, an application of [153] results in that the operators 
𝐴𝐴(𝑅𝑅) and 𝑢𝑢(𝑇𝑇(𝑅𝑅)) |Μ𝜔𝜔

� are unitarily equivalent. 
It is known that the scalar spectral measure of the a.c. unitary operator 𝑢𝑢(𝑇𝑇(𝑅𝑅)) |Μ𝜔𝜔

� is 
𝜇𝜇 ∘ (𝑢𝑢|𝜔𝜔�)−1, where 𝜇𝜇 = 𝜒𝜒𝜔𝜔 𝑑𝑑𝑚𝑚; see e.g. [6]. 
Thus, we conclude that 𝜌𝜌(𝑢𝑢(𝑇𝑇)) = 𝜌𝜌(𝑢𝑢(𝑇𝑇(𝑅𝑅))|Μ𝜔𝜔

�) = 𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(𝑢𝑢|𝜔𝜔�). 
As an immediate consequence of Theorems (3.2.7),(3.2.12), (3.2.14) and 
Proposition(3.2.6), we obtain the following 
Corollary (3.2.15)[31]: If 𝑇𝑇 ∈ ℒ(ℋ)  is an a.c. contraction satisfying the condition 
𝜋𝜋(𝑇𝑇) = 𝜌𝜌(𝑇𝑇) ≠ 𝜙𝜙, then  𝜋𝜋(𝑢𝑢(𝑇𝑇)) = 𝜌𝜌(𝑢𝑢(𝑇𝑇)) =  𝑢𝑢(Ω(𝑢𝑢) ∩ 𝜌𝜌(𝑇𝑇)) is true, for any regular 
function 𝑢𝑢 ∈ 𝐻𝐻∞  such that Ω(𝑢𝑢) ∩ 𝜌𝜌(𝑇𝑇) ≠ 𝜙𝜙. In particular, if 𝑇𝑇𝑢𝑢 =  𝑢𝑢(𝑆𝑆1 ∈ ℒ(𝐻𝐻2) is the 
analytic Toeplitz operator with symbol 𝑢𝑢, and 𝑢𝑢 ∈ 𝐻𝐻∞ is regular, then  𝜋𝜋(𝑇𝑇𝑢𝑢 ) = 𝜌𝜌(𝑇𝑇𝑢𝑢 ) =
𝑢𝑢(Ω(𝑢𝑢)). 
We note here that, in contrast with Proposition(3.2.3), the condition 𝜑𝜑𝐹𝐹𝜒𝜒𝜋𝜋 (𝑇𝑇) =  0 does 
not imply ℋ0(𝑇𝑇, 𝐹𝐹) ≠ {0}. Indeed, in view of Corollary(3.2.15), we can find a.c. 
contractions 𝐴𝐴, 𝐵𝐵 of class 𝐶𝐶1.-, such that the sets 𝜋𝜋(𝐴𝐴) ∩ 𝜋𝜋(𝐵𝐵), 𝜋𝜋(𝐴𝐴)\𝜋𝜋(𝐵𝐵) and 𝜋𝜋(𝐵𝐵)\
𝜋𝜋(𝐴𝐴) are of positive measure. Let us consider the orthogonal sum 𝑇𝑇 = 𝐴𝐴 ⊕ 𝐵𝐵; we know 
that 𝜋𝜋(𝑇𝑇) = 𝜋𝜋(𝐴𝐴)  ∩ 𝜋𝜋(𝐵𝐵) and 𝜌𝜌(𝑇𝑇) = 𝜌𝜌(𝐴𝐴) ∪ 𝜌𝜌(𝐵𝐵). Let 𝑓𝑓 ∈ 𝐻𝐻∞  be an outer function 
such that If |𝑓𝑓| =  (1/2)𝜒𝜒𝜋𝜋(𝑇𝑇) + 𝜒𝜒𝕋𝕋\𝜋𝜋(𝑇𝑇) , and let us form the sequence 
𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1

∞ ∈ 𝐷𝐷(𝐻𝐻∞ ). Since 𝜑𝜑𝐹𝐹 = 𝜒𝜒𝕋𝕋\𝜋𝜋(𝑇𝑇), we obtain that 𝜑𝜑𝐹𝐹𝜒𝜒𝜋𝜋(𝑇𝑇) = 0 and 
ℋ0(𝑇𝑇, 𝐹𝐹) = ℋ0(𝐴𝐴, 𝐹𝐹) ⊕ ℋ0(𝐵𝐵, 𝐹𝐹) = {0}. 

We are going to show that the property of an a.c. contraction 𝑇𝑇 being symptotically 
strongly nonvanishing on a set 𝛼𝛼 ∈ 𝐵𝐵1 is equivalent to a quasianalytic behaviour of  𝑇𝑇 
on 𝛼𝛼 . To be more precise, let us introduce some notation. Given an a.c. unitary operator 
𝛼𝛼 ∈ ℒ(Κ), we know that 𝜒𝜒𝜌𝜌(𝛼𝛼)𝑑𝑑𝑚𝑚 is a scalar spectral measure of 𝛼𝛼. Let 𝐸𝐸 denote the 
spectral measure of 𝛼𝛼. For any vector 𝑥𝑥 ∈ 𝐾𝐾, there exists a unique Borel set 𝜔𝜔(𝛼𝛼, 𝑥𝑥) ⊂ 𝕋𝕋 
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such that the measure 𝜒𝜒𝜌𝜌(𝛼𝛼,𝑥𝑥)𝑑𝑑𝑚𝑚 is equivalent to the localization 𝐸𝐸𝑥𝑥  of  𝐸𝐸 𝑅𝑅𝑤𝑤 𝑥𝑥. Clearly, 
𝜔𝜔(𝛼𝛼, 𝑥𝑥) ≠ 𝜙𝜙 exactly when 𝑥𝑥 ≠ 0. Furthermore, the vector 𝑥𝑥 is cyclic for the commutant 
of the restriction of 𝛼𝛼 to the spectral subspace 𝑜𝑜𝑅𝑅𝑛𝑛𝜒𝜒𝜔𝜔(𝛼𝛼 ,𝑥𝑥)(𝛼𝛼), that is 𝑉𝑉{𝐶𝐶𝑥𝑥: 𝐶𝐶 {𝛼𝛼}′} =
𝑜𝑜𝑅𝑅𝑛𝑛𝜒𝜒𝜔𝜔(𝛼𝛼,𝑥𝑥) (𝛼𝛼). 
Let 𝑇𝑇 ∈ ℒ(ℋ) be an a.c. contraction of class 𝐶𝐶1.,-, and let 𝛼𝛼 ∈ 𝐵𝐵1 . We say that the 
contraction 𝑇𝑇 is quasianalytic on the set 𝛼𝛼, if 𝜔𝜔(𝑇𝑇(𝑅𝑅), 𝑋𝑋𝑇𝑇𝑥𝑥 ) ⊃ 𝛼𝛼 is fulfilled, for any 
nonzero vector 𝑥𝑥 ∈ ℋ. 
Theorem (3.2.16)[31]: Given an a.c. contraction 𝑇𝑇 ∈ ℒ(ℋ) of class 𝐶𝐶1. and a Borel set 
𝛼𝛼 ∈ 𝐵𝐵1, the following conditions are equivalent: 
(a)  𝑇𝑇 ∈  𝐶𝐶1.(𝛼𝛼), 
(b)  𝑇𝑇 is quasianalytic on 𝛼𝛼. 
 Proof. (𝑅𝑅) ⟹ (𝑏𝑏): Let us assume that the contraction 𝑇𝑇 is not quasianalytic on 𝛼𝛼. 
Then, there exists a nonzero vector 𝑥𝑥0 ∈ ℋ such that the set 𝜔𝜔: = 𝛼𝛼\𝜔𝜔�𝑇𝑇(𝑅𝑅), 𝑋𝑋𝑇𝑇𝑥𝑥0� is of 
positive measure. Let us consider a sequence 𝐹𝐹 =  {𝑓𝑓𝑛𝑛 }𝑛𝑛=1

∞ ∈ 𝐷𝐷(𝐻𝐻∞ ), with limit function 
𝜑𝜑𝐹𝐹  = 𝜒𝜒𝜔𝜔 .Since  
      lim𝑛𝑛→∞ ‖𝑋𝑋𝑇𝑇𝑓𝑓𝑛𝑛 (𝑇𝑇)𝑥𝑥0‖ = lim𝑛𝑛→∞�𝑓𝑓𝑛𝑛 𝑇𝑇(𝑅𝑅)𝑋𝑋𝑇𝑇𝑥𝑥0� = �𝜒𝜒𝜔𝜔 �𝑇𝑇(𝑅𝑅)�𝑋𝑋𝑇𝑇𝑥𝑥0� = 0 
we can choose an increasing mapping 𝑘𝑘: ℕ → ℕ such that lim𝑛𝑛→∞ �𝑇𝑇𝑘𝑘(𝑛𝑛)𝑓𝑓𝑛𝑛 (𝑇𝑇)𝑥𝑥0� = 0  
see the proof of Theorem(3.2.7). Taking into account that 𝜑𝜑𝐺𝐺𝜒𝜒𝛼𝛼 = 𝜒𝜒𝜔𝜔 ≠ 0  is true for the 
sequence 𝐺𝐺 = {𝑔𝑔𝑛𝑛 = 𝜒𝜒𝑘𝑘(𝑛𝑛)𝑓𝑓𝑛𝑛 }𝑛𝑛=1

∞  ∈ 𝐷𝐷(𝐻𝐻∞ ), we conclude that the contraction 𝑇𝑇 is not of 
class 𝐶𝐶1.(𝛼𝛼). 
(𝑏𝑏) ⟹ (𝑅𝑅): Assuming that 𝑇𝑇 is quasianalytic on 𝛼𝛼 , let us consider a sequence 𝐹𝐹 =
{𝑓𝑓𝑛𝑛 }𝑛𝑛=1

∞ ∈ 𝐷𝐷(𝐻𝐻∞ ),  such that 𝜑𝜑𝐹𝐹𝜒𝜒𝛼𝛼 ≠ 0. Let 𝐸𝐸 denote the spectral measure of 𝑇𝑇(𝑅𝑅). Given 
any nonzero vector 𝑥𝑥 ∈ ℋ, we know that the measure 𝐸𝐸𝑋𝑋𝑇𝑇𝑥𝑥  is of the form 𝐸𝐸𝑋𝑋𝑇𝑇𝑥𝑥 = 𝑔𝑔𝑥𝑥 𝑑𝑑𝑚𝑚, 
where 𝑔𝑔𝑥𝑥 (𝑧𝑧) > 0 holds for a.e. 𝑧𝑧 ∈ 𝛼𝛼. Thus, we have  
                            �Φ𝐹𝐹(𝑇𝑇)𝑥𝑥�2

≥ ‖𝑋𝑋𝑇𝑇‖−2 ∫ |𝜑𝜑𝐹𝐹|2 
𝕋𝕋 𝑔𝑔𝑥𝑥 𝑑𝑑𝑚𝑚 > 0 

and so 𝑇𝑇 is asymptotically strongly nonvanishing on 𝛼𝛼. 
In view of this theorem, the a.c. 𝐶𝐶1.-contraction 𝑇𝑇 will be called quasianalytic  if   𝜌𝜌(𝑇𝑇) =
𝜋𝜋(𝑇𝑇). 
We note that Theorems ((3.2.7) and(3.2.8) can be also derived from Theorem (3.2.16). 
For example, if 𝜋𝜋(𝑇𝑇) ≠ 𝜌𝜌(𝑇𝑇), then by Theorem(3.2.16) there exists a nonzero vector 
𝑥𝑥0 ∈ ℋ such that the set 𝜔𝜔 ∶= 𝜌𝜌(𝑇𝑇)\𝜔𝜔(𝑇𝑇(𝑅𝑅), 𝑋𝑋𝑇𝑇𝑥𝑥0) is of positive measure. Since the 
nonzero hyperinvariant subspace Μ = {𝐶𝐶𝑥𝑥0: 𝐶𝐶 ∈ {𝑇𝑇}′} - is transformed into the subspace 
𝑜𝑜𝑅𝑅𝑛𝑛𝜒𝜒𝜌𝜌(𝑇𝑇)\𝜔𝜔 (𝑇𝑇(𝑅𝑅)) by 𝑋𝑋𝑇𝑇 , it follows that Μ is a proper hyperinvariant subspace of 𝑇𝑇. We 
mention that if 𝑇𝑇 is of class 𝐶𝐶11, , then to every spectral subspace of  𝑇𝑇(𝑅𝑅) there 
corresponds a hyperinvariant subspace of  𝑇𝑇; see [29] and [10]. Existence of infinitely 
many disjoint nontrivial hyperinvariant subspaces of nonquasianalytic type was proved 
also in [30]. 
We close this section by posing the following problem. 
Question (3.2.17)[31]: Is it true that the unitary asymptote 𝑇𝑇(𝑅𝑅)has uniform spectral 
multiplicity on the quasianalytical spectral set 𝜋𝜋(𝑇𝑇), for any a.c. contraction  𝑇𝑇 of class 
𝐶𝐶1.? Since 𝑇𝑇 is quasianalytic on 𝜋𝜋(𝑇𝑇), we have some evidence to guess that the answer is 
positive. An affirmative answer to Question(3.2.17) would imply that every a.c. 
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contraction 𝑇𝑇 of class 𝐶𝐶1. has a nontrivial hyperinvariant subspace, provided the spectral 
multiplicity function of the unitary asymptote 𝑇𝑇(𝑅𝑅) is not constant on 𝜌𝜌(𝑇𝑇). 
Applying Theorem(3.2.16), we are able to prove the following statement. 
Theorem (3.2.18)[31]: Let 𝐴𝐴 ∈ ℒ(ℋ) and 𝐵𝐵 ∈ ℒ(ℋ) be a.c. contractions of class 𝐶𝐶1.. 
(a)  If  ℒ(𝐴𝐴, 𝐵𝐵)  ≠ {0}, then 𝜌𝜌(𝐴𝐴) ⊃ 𝜋𝜋(𝐵𝐵). 
(b)   If 𝜋𝜋(𝐴𝐴) = 𝜌𝜌(𝐴𝐴) and 𝜋𝜋(𝐵𝐵)\𝜋𝜋(𝐴𝐴)  ≠ 𝜙𝜙, then ℒ(𝐴𝐴, 𝐵𝐵) = {0}. 
Proof. (a): Let 𝑌𝑌 ∈ ℒ (𝐴𝐴, 𝐵𝐵) be a nonzero transformation. By the universality of 
(𝑋𝑋𝐴𝐴 , 𝐴𝐴(𝑅𝑅)), there exists a transformation 𝑍𝑍 ∈ ℒ(𝐴𝐴(𝑅𝑅), 𝐵𝐵(𝑅𝑅)) such that 𝑋𝑋𝐵𝐵𝑌𝑌 =  𝑍𝑍𝑋𝑋𝐴𝐴 . 
Let 𝑥𝑥0 ∈ ℋ be a vector such that 𝑌𝑌𝑥𝑥0 ≠ 0. Since the contraction 𝐵𝐵 is quasianalytic on the 
set 𝜋𝜋(𝐵𝐵), we know that 𝜔𝜔(𝐵𝐵(𝑅𝑅), 𝑋𝑋𝐵𝐵𝑌𝑌𝑥𝑥0) ⊃ 𝜋𝜋(𝐵𝐵). Taking into account that 𝑋𝑋𝐵𝐵𝑌𝑌𝑥𝑥0  =
𝑍𝑍𝑋𝑋𝐴𝐴𝑥𝑥0, we infer by [148] that 𝜌𝜌(𝐴𝐴) ⊃ 𝜔𝜔(𝐵𝐵(𝑅𝑅), 𝑋𝑋𝐵𝐵𝑌𝑌𝑥𝑥0). 
Statement (b) is an immediate consequence of (a). 
 As a first application, we prove the following proposition, establishing connection 
between the commutant of a contraction and its n-th power. 
Proposition (3.2.19)[31]: Let 𝑇𝑇 ∈ ℒ(ℋ) be an a.c. contraction of class 𝐶𝐶1., and let us 
assume that 𝜋𝜋(𝑇𝑇) = 𝜌𝜌(𝑇𝑇) = 𝛼𝛼𝑛𝑛 , where 𝛼𝛼𝑛𝑛 ∶= {𝑒𝑒𝑖𝑖𝑤𝑤 ∶ 0 ≤ 𝑤𝑤 ≤ 2𝜋𝜋/𝑛𝑛}, 𝑛𝑛 ∈ ℕ. Then, for the 
a.c. 𝐶𝐶1. -contraction 𝑇𝑇𝑛𝑛 , we have 𝜋𝜋(𝑇𝑇𝑛𝑛 ) = 𝜌𝜌(𝑇𝑇𝑛𝑛 ) = 𝕋𝕋 and {𝑇𝑇}′ =  {𝑇𝑇𝑛𝑛 }′. 
Proof. The equation 𝜋𝜋(𝑇𝑇𝑛𝑛 )  = 𝜌𝜌(𝑇𝑇𝑛𝑛 ) = 𝕋𝕋 follows from Corollary(3.2.15). Setting 
⋋𝑛𝑛 ∶= 𝑒𝑒𝑖𝑖2𝜋𝜋/𝑛𝑛 , we know that 𝜋𝜋(⋋𝑛𝑛

𝑗𝑗 𝑇𝑇)  =⋋𝑛𝑛
𝑗𝑗 𝜋𝜋(𝑇𝑇)  ≠ 𝜋𝜋(𝑇𝑇) is true, for every 0 < 𝑗𝑗 < 𝑛𝑛, 𝑗𝑗 ∈

ℕ. We infer by Theorem(3.2.18) that ℒ�𝑇𝑇,⋋𝑛𝑛
𝑗𝑗 𝑇𝑇� = ℒ (⋋𝑛𝑛  

𝑗𝑗 𝑇𝑇, 𝑇𝑇) = {0} holds, whenever 
0 < 𝑗𝑗 < 𝑛𝑛. Thus, a result of Cowen yields that {𝑇𝑇𝑛𝑛 }′ =  {𝑇𝑇}′; see [145]. 
In view of Proposition(3.2.19) and Theorem(3.2.8), the hyperinvariant subspace problem 
for a.c. 𝐶𝐶1.-contractions, with an arc on 𝕋𝕋 as a residual set, has an affirmative answer if it 
has positive answer for a.c. 𝐶𝐶1. -contractions satisfying the condition 𝜋𝜋(𝑇𝑇) = 𝜌𝜌(𝑇𝑇) = 𝕋𝕋. 
This latter situation seems to be more tractable, since the assumption 𝜌𝜌(𝑇𝑇) = 𝕋𝕋 implies 
existence in abundance of invariant subspaces, where 𝑇𝑇 is similar to the simple unilateral 
shift 𝑆𝑆1. ; see [28]. Analogous statements of reductive type were proved in [8]. 
Let us assume now that the a.c. 𝐶𝐶1.-contraction 𝑇𝑇 ∈ ℒ(ℋ) is cyclic. We know from [162] 
that the commutant of 𝑇𝑇 is abelian, that is {𝑇𝑇}′ = {𝑇𝑇}", and that the adjoint 𝑇𝑇∗ is cyclic, as 
well. Alternative proofs of these facts can be given in the following way. Since 𝑇𝑇 is 
cyclic and the transformation 𝑋𝑋𝑇𝑇

+ ∈  ℒ(𝑇𝑇, 𝑇𝑇+
(𝑅𝑅)) has dense range, it follows that the 

isometry 𝑇𝑇+
(𝑅𝑅) is cyclic; hence {𝑇𝑇+

(𝑅𝑅)}′ is abelian. 
By the universality of (𝑋𝑋𝑇𝑇

+, 𝑇𝑇+
(𝑅𝑅)) (see [10]), there exists an injective algebra-

homomorphism 𝛾𝛾+: {𝑇𝑇}′ → {𝑇𝑇+
(𝑅𝑅)}′ such that 𝑋𝑋𝑇𝑇

+𝐶𝐶 = 𝛾𝛾+(𝐶𝐶)𝑋𝑋𝑇𝑇
+ is true, for every 𝐶𝐶 ∈ {𝑇𝑇}′. 

Thus, the commutativity of {𝑇𝑇}′ is implied by that of {𝑇𝑇+
(𝑅𝑅)}′. 

On the other hand, if the isometry 𝑇𝑇+
(𝑅𝑅) is cyclic, then so is its adjoint; and since  

(𝑇𝑇+
(𝑅𝑅))∗ ≺ 𝑇𝑇∗, we obtain that 𝑇𝑇∗ is cyclic. For the characterization of cyclic 𝐶𝐶11 - 

contractions, see [155, Theorem 15]. 
It is known that commutativity of {𝑇𝑇}′ does not imply cyclicity, in general; 
see [147]. In view of Theorem (3.2.18) we can easily provide a large class of noncyclic 
𝐶𝐶1.-contractions with abelian commutant. 
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Example  (3.2.20)[31]: Let 𝐴𝐴𝑗𝑗 ∈ ℒ(ℋ𝑗𝑗 ), 𝑗𝑗 ∈ ℕ, be a sequence of cyclic a.c. contractions 
of class 𝐶𝐶1. such that 𝜋𝜋(𝐴𝐴𝑗𝑗 ) = 𝜌𝜌(𝐴𝐴𝑗𝑗 ) is true for every 𝑗𝑗 ∈ ℕ, 𝜋𝜋(𝐴𝐴𝑗𝑗 )\𝜋𝜋(𝐴𝐴𝑘𝑘 ) ≠ 𝜙𝜙 whenever 
𝑗𝑗 ≠ 𝑘𝑘,and ⋂ 𝜌𝜌𝑗𝑗 ∈ℕ �𝐴𝐴𝑗𝑗  � ≠ 𝜙𝜙. (Corollary(3.2.15) ensures the existence of such a 
sequence.) Let us form the orthogonal sum 𝐴𝐴 = ∑ ⊕ 𝐴𝐴𝑗𝑗

∞
𝑗𝑗 =1  . In virtue of Theorem(3.2.18), 

the commutant of 𝐴𝐴 splits into the direct sum of the commutants of the operators 
𝐴𝐴𝑗𝑗 ∶ {𝐴𝐴}′ = ∑ ⊕∞

𝑗𝑗 =1 { 𝐴𝐴𝑗𝑗 }′; thus {𝐴𝐴}′ is abelian. On the other hand, the condition 
⋂ 𝜌𝜌𝑗𝑗 ∈ℕ �𝐴𝐴𝑗𝑗  � ≠ 𝜙𝜙 readily implies that the multiplicity of 𝐴𝐴 is infinite. 
We say that the a.c. 𝐶𝐶1.-contraction 𝑇𝑇 is a quasiunitary operator, if the canonical 
intertwining mapping 𝑋𝑋𝑇𝑇  ∈ ℒ(𝑇𝑇, 𝑇𝑇(𝑅𝑅)) has dense range. These operators are 
characterized in the following proposition. We recall that Θ𝑇𝑇   stands for the characteristic 
function of 𝑇𝑇, and that Θ�𝑇𝑇  (𝑧𝑧) ∶= Θ𝑇𝑇(𝑧𝑧̅)∗ (𝑧𝑧 ∈ 𝔻𝔻). 
Proposition (3.2. 21)[31]: Let 𝑇𝑇 ∈ ℒ(ℋ) be an a.c. contraction of class 𝐶𝐶1.... Then the 
following conditions are equivalent: 
(a) 𝑇𝑇 is quasiunitary, 
(b) 𝑘𝑘𝑒𝑒𝑜𝑜 Θ�𝑇𝑇 ∩ 𝐻𝐻∞ (𝐷𝐷𝑇𝑇∗) = {0}, 
(c) ΦΘ𝑇𝑇 = 0 implies Φ = 0, for any bounded, analytic, ℒ(𝐷𝐷𝑇𝑇∗ , 𝜀𝜀)-valued function Φ, 
(d) ℒ (𝑇𝑇, 𝑆𝑆𝑛𝑛 ) = {0} is true, for every 𝑛𝑛 ∈ ℕ∞  , 
(f)  ℒ (𝑇𝑇, 𝑆𝑆1 = {0}.  
Proof. The implications (𝑏𝑏) ⟹ (𝑐𝑐) and (𝑑𝑑) ⟹ (𝑓𝑓) are trivial. For the equivalenceof (a) 
and (b), see [157]. It was shown in [164] that condition (c) implies (d). Finally, if  𝑇𝑇 is 
not quasiunitary then 𝑇𝑇+

(𝑅𝑅) is a nonunitary isometry containing 𝑆𝑆1 on a reducing subspace, 
and so (f) implies (a). 
We note that the assumption 𝑇𝑇 ∈ 𝐶𝐶1. yields that the characteristic function Θ𝑇𝑇  is *-outer, 
that 𝑖𝑖𝑠𝑠 (Θ�𝑇𝑇𝐻𝐻2(𝐷𝐷𝑇𝑇∗))− = 𝐻𝐻2(𝐷𝐷𝑇𝑇). The conditions (b) and (c) express injectivity 
properties of Θ�𝑇𝑇 . 
If the a.c. 𝐶𝐶1.-contraction 𝑇𝑇 is not quasiunitary, then it follows by Proposition (3.2.21) 
that  ℒ (𝑇𝑇, 𝑆𝑆1 ≠ {0}. Taking into account that the restriction of 𝑆𝑆1 to any of its nonzero 

invariant subspaces is unitarily equivalent to 𝑆𝑆1, we obtain that 𝑇𝑇
d
  𝑆𝑆1. Thus 𝑆𝑆1

∗ i
𝑇𝑇∗, and 

so the point spectrum 𝜎𝜎𝑝𝑝 (𝑇𝑇∗) of  𝑇𝑇∗ covers the open unit 𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐 𝔻𝔻. 
We conclude that (𝑘𝑘𝑒𝑒𝑜𝑜(𝑇𝑇∗ − 𝜆𝜆𝐼𝐼))⊥ is a nontrivial hyperinvariant subspace of 𝑇𝑇, for  
any𝜆𝜆 ∈ 𝔻𝔻. Therefore, the hyperinvariant subspace problem for 𝐶𝐶∗.-contractions can be 
reduced to the case, when 𝑇𝑇 is a quasiunitary operator. 
It can be easily seen that the a.c. 𝐶𝐶1.-contraction 𝑇𝑇 is quasiunitary, if the residual set 𝜌𝜌(𝑇𝑇) 
does not cover the unit circle  𝕋𝕋. Indeed, the condition 𝜌𝜌(𝑇𝑇) ≠ 𝕋𝕋 implies that the unitary 
asymptote 𝑇𝑇(𝑅𝑅) is reductive, that is 𝐿𝐿𝑅𝑅𝑤𝑤𝑇𝑇(𝑅𝑅) =  𝐿𝐿𝑅𝑅𝑤𝑤(𝑇𝑇(𝑅𝑅))∗, and so the transformation 𝑋𝑋𝑇𝑇   
has dense range. It may even happen that such  𝑇𝑇 is of class 𝐶𝐶10; see [25]. Now, we 
exhibit an example for a quasiunitary 𝐶𝐶10-contraction 𝑇𝑇, with the property 𝜋𝜋(𝑇𝑇) =
𝜌𝜌(𝑇𝑇) = 𝜎𝜎(𝑇𝑇) = 𝕋𝕋. 
Example (3.2.22)[31]: Let 𝑤𝑤: ℤ →  [1, ∞) be a dissymetric weight, considered by Esterle 
in [149]; that is w is a decreasing sequence such that 𝑙𝑙𝑖𝑖𝑚𝑚𝑠𝑠𝑢𝑢𝑝𝑝𝑛𝑛→−∞  𝑤𝑤(𝑛𝑛 − 1)/𝑤𝑤(𝑛𝑛) < ∞, 
𝑙𝑙𝑖𝑖𝑚𝑚𝑛𝑛→−∞  𝑤𝑤(𝑛𝑛)1/|𝑛𝑛| = 1 and 𝑤𝑤(𝑛𝑛) = 1, for every 𝑛𝑛 ≥ 0. Let us assume that 𝑤𝑤 is 
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submultiplicative and quasianalytic, the latter meaning that ∑ (1𝑜𝑜𝑔𝑔𝑤𝑤(−𝑛𝑛))∞
𝑛𝑛=1 𝑛𝑛−2 = ∞. 

(For concrete examples, see [149]. 
 Let us consider the Hilbert space 
     𝐿𝐿2(𝑤𝑤) ≔ �𝑓𝑓 ∈ 𝐿𝐿2(𝕋𝕋): ‖𝑓𝑓‖𝑤𝑤

2 ≔ ∑ �𝑓𝑓(𝑛𝑛)�2
𝑤𝑤𝑛𝑛

2 < ∞∞
𝑛𝑛=−∞ �, 

and the operator 𝑇𝑇𝑤𝑤  ∈ ℒ(𝐿𝐿2(𝑤𝑤)), defined by 𝑇𝑇𝑤𝑤 𝑓𝑓 ∶= 𝜒𝜒𝑓𝑓. The equations(𝑇𝑇𝑤𝑤 𝑓𝑓)⋏(𝑛𝑛) =
𝑓𝑓(𝑛𝑛 − 1) (𝑛𝑛 ∈ ℤ) are valid for the Fourier coefficients, so 𝑇𝑇𝑤𝑤  is a weighted bilateral 
shift. It is easy to see that 𝑇𝑇𝑤𝑤  is a contraction of class 𝐶𝐶10. Furthermore, [149]  imply that 
𝜎𝜎(𝑇𝑇𝑤𝑤 ) = 𝕋𝕋 and that 𝑓𝑓(𝑧𝑧) ≠ 0 is true a.e. on 𝕋𝕋 for any function 0 ≠ 𝑓𝑓. ∈ 𝐿𝐿2(𝑤𝑤). 
The pair (𝑋𝑋𝑇𝑇𝑤𝑤 , 𝑇𝑇𝑤𝑤

(𝑅𝑅)) is equivalent to the pair �𝑋𝑋0, 𝑇𝑇𝑤𝑤0  �, where 𝑤𝑤0 ≡ 1 and 
𝑋𝑋0: 𝐿𝐿2(𝑤𝑤) → 𝐿𝐿2, 𝑓𝑓 ↦ 𝑓𝑓 is the natural embedding; that is there exists a unitary 
transformation 𝑍𝑍 ∈ ℒ (𝑇𝑇𝑤𝑤0 , 𝑇𝑇𝑤𝑤

(𝑅𝑅)) such that 𝑋𝑋𝑇𝑇𝑤𝑤  = 𝑍𝑍𝑋𝑋0. Thus, we infer that 𝑇𝑇𝑤𝑤  is 
quasianalytic on 𝕋𝕋, and so 𝜋𝜋(𝑇𝑇𝑤𝑤 ) = 𝕋𝕋 holds by Theorem (3.2.16). Taking into account 
that the trigonometric polynomials are contained in 𝐿𝐿2(𝑤𝑤), we obtain that 𝑇𝑇𝑤𝑤  is a 
quasiunitary operator. 
The invariant subspace problem is open for quasiunitary operators, in general. 
On the other hand, it is known from [165] that if the residual set 𝜌𝜌(𝑇𝑇) covers the unit 
circle, then the quasiunitary operator 𝑇𝑇 has disjoint nontrivial invariant subspace. 
Let us assume that the a.c. C1.-contraction 𝑇𝑇 ∈ ℒ(ℋ) is cyclic. Since the commutant {𝑇𝑇}′ 
is abelian, we know that the subspaces (𝑜𝑜𝑅𝑅𝑛𝑛𝑄𝑄)− and ker 𝑄𝑄 belong to 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇, for every 
operator 𝑄𝑄 ∈ {𝑇𝑇}′. The next proposition claims that the nullspaces are all trivial, if the 
contraction 𝑇𝑇 is quasianalytic. Furthermore, it is sufficient to assume only the cyclicity of 
𝑇𝑇(𝑅𝑅), which is a slighter condition than the cyclicity of 𝑇𝑇; see [163]. 
Proposition (3.2.23)[31] : Let 𝑇𝑇 ∈ ℒ(ℋ) be an a.c. contraction of class C1.-, and let us 
assume that 𝜋𝜋(𝑇𝑇) = 𝜌𝜌(𝑇𝑇) and that the unitary assymptote 𝑇𝑇(𝑅𝑅) is cyclic. Then, every 
nonzero operator 𝑄𝑄 ∈ {𝑇𝑇}′ is injective. 
Proof. Let 𝑄𝑄 ∈ {𝑇𝑇}′ be an operator with 𝑘𝑘𝑒𝑒𝑜𝑜𝑄𝑄 ≠ {0}. Let 𝑅𝑅 ∈ {𝑇𝑇(𝑅𝑅)}′ be the uniquely 
determined operator, satisfying the condition 𝑋𝑋𝑇𝑇  𝑄𝑄 = 𝑅𝑅𝑋𝑋𝑇𝑇 . Since the unitary operator 
𝑇𝑇(𝑅𝑅) is cyclic, there exists a function 𝜓𝜓 ∈ 𝜒𝜒𝜌𝜌(𝑇𝑇)𝐿𝐿∞  such that 𝑅𝑅 = 𝜓𝜓(𝑇𝑇(𝑅𝑅)); see [6]. Taking 
into account that 𝑋𝑋𝑇𝑇   is injective and that 𝑋𝑋𝑇𝑇(𝑘𝑘𝑒𝑒𝑜𝑜𝑄𝑄) ⊂ 𝑘𝑘𝑒𝑒𝑜𝑜 𝑅𝑅, we infer that the set 
𝜔𝜔 ∶=  {𝑧𝑧 ∈ 𝜌𝜌(𝑇𝑇) ∶ 𝜓𝜓(𝑧𝑧) = 0}is of positive measure. Thus, 𝜔𝜔(𝑇𝑇(𝑅𝑅), 𝑋𝑋𝑇𝑇𝑄𝑄𝑥𝑥) =
𝜔𝜔(𝑇𝑇(𝑅𝑅), 𝜓𝜓(𝑇𝑇(𝑅𝑅))𝑋𝑋𝑇𝑇𝑥𝑥) ⊂ 𝜌𝜌(𝑇𝑇)\𝜔𝜔 ≠  𝜌𝜌(𝑇𝑇) is fulfilled, for every vector 𝑥𝑥 ∈ ℋ. Since the 
contraction 𝑇𝑇 is quasianalytic, we conclude that 𝑄𝑄 = 0.  
A. Atzmon posed us his conjecture that there exists a nonzero operator 𝑄𝑄 ∈ {𝑇𝑇}′ with 
nondense range, for every cyclic a.c. contraction 𝑇𝑇 ∈ ℒ(ℋ) of class C10. Verification of 
that statement would solve the hyperinvariant subspace problem for cyclic a.c. 
contractions of class C∗.. It is natural to start the quest for an appropriate 𝑄𝑄 in the set of 
functions of 𝑇𝑇. It is known that if 𝑣𝑣 ∈ 𝐻𝐻∞  is an outer function, then the operator 𝑣𝑣(𝑇𝑇) is a 
quasiaffinity, see [29]. 
Hence, we should concentrate on the class of operators 𝑢𝑢(𝑇𝑇), where 𝑢𝑢 ∈ 𝐻𝐻∞  is an inner 
function. For any operator 𝑄𝑄 ∈ ℒ(ℋ) , let 𝛾𝛾(𝑄𝑄) ∶= 𝑖𝑖𝑛𝑛𝑓𝑓{‖𝑄𝑄𝑥𝑥‖ ∶ 𝑥𝑥 ∈ ℋ, ‖𝑥𝑥‖ = 1} denote 
the lower norm of 𝑄𝑄; in the case ℋ = {0}, let 𝛾𝛾(𝑄𝑄) ∶= 1. It is known that 𝛾𝛾(𝑄𝑄∗) = 0 is 
valid exactly when ran 𝑄𝑄 ≠ ℋ. We are going to give a sufficient condition for 
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𝛾𝛾(𝑢𝑢(𝑇𝑇)∗) = 0 in terms of u and the characteristic function Θ 𝑇𝑇  of  𝑇𝑇. To that end we 
introduce the quantity 𝜂𝜂∗(𝑢𝑢, 𝑇𝑇) ∶= 𝑖𝑖𝑛𝑛𝑓𝑓 {|𝑢𝑢(𝜆𝜆)| + 𝛾𝛾( Θ 𝑇𝑇(𝜆𝜆)∗): 𝜆𝜆 ∈ 𝔻𝔻}. 
Lemma (3.2.24)[31]: Let 𝑇𝑇 ∈ ℒ(ℋ)  be an a.c. contraction of class C∗., and let 𝑢𝑢 ∈ 𝐻𝐻∞  
be an inner function. If 𝜂𝜂∗(𝑢𝑢, 𝑇𝑇) = 0, then 𝛾𝛾(𝑢𝑢(𝑇𝑇)∗) = 0. 
Proof. We shall apply the technique, introduced in [150]. First of all, we may assume 
that the contraction 𝑇𝑇 is 𝑐𝑐. 𝑛𝑛. 𝑢𝑢 .. We know from the Sz.-Nagy-Foias model theory of 
contractions that 𝑇𝑇 is unitarily equivalent to the operator 𝑆𝑆(Θ 𝑇𝑇) defined on the space 
ℋ(Θ 𝑇𝑇) ∶= Κ+  ⊖ {Θ 𝑇𝑇𝑤𝑤 ⊕ ∆𝑇𝑇𝑤𝑤: 𝑤𝑤 ∈ 𝐻𝐻2(𝐷𝐷𝑇𝑇)} as the compression 
𝑆𝑆(Θ 𝑇𝑇) ∶= 𝑃𝑃ℋ(Θ  𝑇𝑇 )𝛼𝛼+|ℋ(Θ 𝑇𝑇) � where Κ+ ∶= 𝐻𝐻2(𝐷𝐷𝑇𝑇∗) ⊕ (∆𝑇𝑇𝐿𝐿2(𝐷𝐷𝑇𝑇))−, ∆𝑇𝑇∶= (𝐼𝐼 −
Θ𝑇𝑇

∗ Θ 𝑇𝑇  )1/2 and 𝛼𝛼+ ∈ ℒ(Κ+) is the operator of multiplication by 𝜒𝜒. Hence, we can work 
with 𝑆𝑆(Θ 𝑇𝑇) instead of 𝑇𝑇. For short, let us write �̂�𝑆 = 𝑆𝑆(Θ 𝑇𝑇), ℋ� = ℋ(Θ 𝑇𝑇), ⊖ = Θ 𝑇𝑇 , ∆ =
∆𝑇𝑇 , 𝐷𝐷 = 𝐷𝐷𝑇𝑇 and 𝐷𝐷∗ = 𝐷𝐷𝑇𝑇 . We note that 𝑇𝑇 ∈ C∗. implies that 𝐷𝐷∗  ≠ {0}. 
Given any𝜆𝜆 ∈ 𝔻𝔻} and 0 ≠ 𝑥𝑥 ∈ 𝐷𝐷∗, let us consider the vector-valued function 𝐸𝐸𝜆𝜆 ,𝑥𝑥 ∈
𝐻𝐻2(𝐷𝐷∗) ⊂ Κ+, defined by 𝐸𝐸𝜆𝜆 ,𝑥𝑥 (𝑧𝑧) ∶= (1 − |𝜆𝜆|2)

1
2(1 − �̅�𝜆𝑍𝑍)−1𝑥𝑥 , 𝑧𝑧 ∈ 𝔻𝔻−.  Forming power 

series expansion, we can see that �𝐸𝐸𝜆𝜆 ,𝑥𝑥 �2
= ‖𝑥𝑥‖2 and 𝛼𝛼+

∗ 𝐸𝐸𝜆𝜆 ,𝑥𝑥  = �̅�𝜆𝐸𝐸𝜆𝜆 ,𝑥𝑥 . Let us introduce 
the projection 𝐹𝐹𝜆𝜆 ,𝑥𝑥 ∶= 𝑃𝑃ℋ� 𝐸𝐸𝜆𝜆 ,𝑥𝑥 ∈  ℋ� . A straightforward computation yields that 𝐹𝐹𝜆𝜆 ,𝑥𝑥 =
𝐸𝐸𝜆𝜆 ,𝑥𝑥 − 𝐺𝐺𝜆𝜆 ,𝑥𝑥 , where 𝐺𝐺𝜆𝜆 ,𝑥𝑥 = ΘΘ(𝜆𝜆)∗ 𝐸𝐸𝜆𝜆 ,𝑥𝑥 ⊕ ∆Θ(𝜆𝜆)∗𝐸𝐸𝜆𝜆 ,𝑥𝑥 . Thus, we have 

𝑢𝑢(�̂�𝑆)∗ 𝐹𝐹𝜆𝜆 ,𝑥𝑥  = 𝑃𝑃ℋ� 𝑢𝑢(𝛼𝛼+)∗ 𝐹𝐹𝜆𝜆 ,𝑥𝑥 =  𝑃𝑃ℋ� 𝑢𝑢�(𝛼𝛼+
∗ ) 𝐸𝐸𝜆𝜆 ,𝑥𝑥 − 𝑃𝑃ℋ� 𝑢𝑢�(𝛼𝛼+

∗ )𝐺𝐺𝜆𝜆 ,𝑥𝑥  
=  𝑃𝑃ℋ� 𝑢𝑢(𝜆𝜆)������ 𝐸𝐸𝜆𝜆 ,𝑥𝑥  − 𝑃𝑃ℋ� 𝑢𝑢�(𝛼𝛼+

∗ )𝐺𝐺𝜆𝜆 ,𝑥𝑥 = 𝑢𝑢(𝜆𝜆)������𝐹𝐹𝜆𝜆 ,𝑥𝑥 − 𝑃𝑃ℋ� 𝑢𝑢�(𝛼𝛼+
∗ )𝐺𝐺𝜆𝜆 ,𝑥𝑥  

whence 
�𝑢𝑢(�̂�𝑆)∗ 𝐹𝐹𝜆𝜆 ,𝑥𝑥 � ≤ |𝑢𝑢(𝜆𝜆)|�𝐹𝐹𝜆𝜆 ,𝑥𝑥 � + �𝐺𝐺𝜆𝜆 ,𝑥𝑥 � = |𝑢𝑢(𝜆𝜆)|�𝐹𝐹𝜆𝜆 ,𝑥𝑥 �  + ‖ Θ(𝜆𝜆)∗𝑥𝑥‖ 

follows. Taking into account that �𝐹𝐹𝜆𝜆 ,𝑥𝑥 )�2
= ‖𝑥𝑥‖2 − ‖Θ(𝜆𝜆)∗𝑥𝑥‖2  > 0, we obtain that 

𝛾𝛾(𝑢𝑢(�̂�𝑆)∗) ≤ |𝑢𝑢(𝜆𝜆)| +
‖ Θ(𝜆𝜆)∗𝑥𝑥‖

(‖𝑥𝑥‖2 − ‖Θ(𝜆𝜆)∗𝑥𝑥‖2)1/2 

In view of this inequality, we can easily verify that 𝜂𝜂∗(𝑢𝑢, 𝑇𝑇) = 0 implies 𝛾𝛾(𝑢𝑢(𝑇𝑇)∗)  =
𝛾𝛾(𝑢𝑢(�̂�𝑆)∗) = 0. The following theorem claims that the range of 𝑢𝑢(𝑇𝑇) is not dense for some 
inner function 𝑢𝑢, if the characteristic function Θ 𝑇𝑇 satisfies some boundary conditions.  
Theorem (3.2.25)[31]: Let 𝑇𝑇 ∈ ℒ(ℋ) be a contraction of class C10,, and let us assume 
that there exist 𝑧𝑧0 ∈ 𝜌𝜌(𝑇𝑇) and {𝜆𝜆𝑛𝑛 }𝑛𝑛=1

∞ ⊂ 𝔻𝔻 such that Θ𝑇𝑇  (𝑧𝑧0) is a nonunitary isometry, 
lim𝑛𝑛→∞ 𝜆𝜆𝑛𝑛 = 𝑧𝑧0, the sequence {Θ𝑇𝑇(𝜆𝜆𝑛𝑛 )∗}𝑛𝑛=1

∞  converges to Θ(𝑧𝑧0)∗ in the strong operator 
topology, and lim𝑛𝑛→∞ 𝛾𝛾 (Θ𝑇𝑇(𝜆𝜆𝑛𝑛 )) = 1. Then, there exits an inner function 𝑢𝑢 ∈ 𝐻𝐻∞   such 
that the nonzero operator 𝑢𝑢(𝑇𝑇) has nondense range. 
We note that the assumption 𝑇𝑇 ∈ 𝐶𝐶10 yields for a.e. 𝑧𝑧 ∈ 𝜌𝜌(𝑇𝑇) that Θ𝑇𝑇(𝑧𝑧) is a nonunitary 
isometry, and that {Θ𝑇𝑇(𝜆𝜆𝑛𝑛 )∗}𝑛𝑛=1

∞  converges strongly to Θ(𝑧𝑧0)∗  whenever 𝜆𝜆𝑛𝑛   tends to 
𝑧𝑧 nontangentially; see [29, Sections 𝑉𝑉. 2, 𝑉𝑉𝐼𝐼. 3]. Furthermore, if Θ𝑇𝑇(𝑧𝑧) is a nonunitary 
isometry, then 𝛾𝛾(Θ𝑇𝑇(𝑧𝑧))  =  1 and 𝛾𝛾(Θ(𝑧𝑧0)∗) = 0. 
Proof. Turning to a suitable subsequence, if necessary, we can assume that 
∑ (1 −  |𝜆𝜆𝑛𝑛 |)∞

𝑛𝑛=1 < ∞ and that 𝜆𝜆𝑛𝑛 ≠ 0, 𝛾𝛾(Θ𝑇𝑇(𝜆𝜆𝑛𝑛 )) > 1 − 2−𝑛𝑛  are true, for every 𝑛𝑛 ∈ ℕ. 
Setting 

𝑢𝑢𝑛𝑛 (𝑧𝑧) ≔
𝜆𝜆𝑛𝑛���

|𝜆𝜆𝑛𝑛 |  
𝜆𝜆𝑛𝑛 − 𝑧𝑧

1 − 𝜆𝜆𝑛𝑛���𝑧𝑧
      (𝑛𝑛 ∈ ℕ), 
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let us form the Blaschke product 𝑢𝑢 = ∏ 𝑢𝑢𝑛𝑛
∞
𝑛𝑛=1  . Let 𝑥𝑥0 be a unit vector in 𝑘𝑘𝑒𝑒𝑜𝑜Θ𝑇𝑇(𝑧𝑧0)∗. 

Since lim𝑛𝑛→∞ ‖Θ𝑇𝑇(𝜆𝜆𝑛𝑛 )∗𝑥𝑥0‖ = ‖Θ𝑇𝑇(𝑧𝑧0)∗𝑥𝑥0‖ = 0 and 𝑢𝑢(𝜆𝜆𝑛𝑛 ) = 0(𝑛𝑛 ∈ ℕ), we can see that 
𝜂𝜂∗(𝑢𝑢, 𝑇𝑇) = 0, and so 𝛾𝛾(𝑢𝑢(𝑇𝑇)∗) = 0 by Lemma (3.2.24). It is clear by [29] that, for any 
𝑛𝑛 ∈ ℕ, we have 

𝛾𝛾�𝑢𝑢𝑛𝑛 (𝑇𝑇)� = 𝛾𝛾(𝑇𝑇 − 𝜆𝜆𝑛𝑛 𝐼𝐼)�𝐼𝐼 − 𝜆𝜆𝑛𝑛���𝑇𝑇�−1
= 𝛾𝛾(Θ𝑇𝑇(𝜆𝜆𝑛𝑛 )) ≥ 1 − 2−𝑛𝑛  

Let us form the partial products 𝑣𝑣𝑁𝑁 ∶= ∏ 𝑢𝑢𝑛𝑛
𝑁𝑁
𝑛𝑛=1 , 𝑁𝑁 ∈ ℕ. Then 

𝛾𝛾(𝑣𝑣𝑁𝑁(𝑇𝑇)) ≥ � 𝛾𝛾
𝑁𝑁

𝑛𝑛=1

(𝑢𝑢𝑛𝑛 (𝑇𝑇)) ≥ �(1 −  2−𝑛𝑛 )
∞

𝑛𝑛=1

= : 𝑐𝑐 > 0 

holds, for every 𝑁𝑁 ∈ ℕ. We can select a subsequence {𝑢𝑢𝑁𝑁𝑘𝑘 }𝑘𝑘=1
∞  such that 

lim𝑘𝑘→∞ 𝑢𝑢𝑁𝑁𝑘𝑘
(𝑧𝑧) = 𝑢𝑢(𝑧𝑧)  is true, for a.e. 𝑧𝑧 ∈ 𝕋𝕋 (see [144]). Now, we infer by [29] that the 

operators {𝑢𝑢𝑁𝑁𝑘𝑘
(𝑇𝑇)}𝑘𝑘=1

∞ converge to 𝑢𝑢(𝑇𝑇) in the strong operator topology, and so 
𝛾𝛾( 𝑢𝑢(𝑇𝑇)) ≥ 𝑐𝑐 > 0 must be also true. 
The relations 𝛾𝛾(𝑢𝑢(𝑇𝑇)) > 0 and 𝛾𝛾(𝑢𝑢(𝑇𝑇)∗) = 0 imply that the nonzero operator 𝑢𝑢(𝑇𝑇) has 
closed range, which is a nontrivial subspace of ℋ. 
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Chaper 4 

Power-Bounded Operator of Class 𝑪𝑪𝟏𝟏and the Hyperinvariant Subspaces 
We show that if 𝑇𝑇 is a power-bounded operator of class 𝐶𝐶∗  on  a Hilbert space 

which commutes  with a nonzero quasinilpotent operator, then 𝑇𝑇 has a nontrival invariant  
subspace. We show that if T does not have nontrivial hyperinvariant subspaces for 
elementary reasons, then T is ampliation quasisimilar to a (BCP)-operator in the class𝐶𝐶00: 
This reduces the hyperinvariant subspace problem for operators in ℓ(ℋ) to a very special 
subcase of itself. 
Section(4.1): On Invariant  Subspaces  
A linear operator 𝑇𝑇 on a Hlibert space ℋ is called power-bound if 𝑠𝑠𝑢𝑢𝑝𝑝𝑛𝑛≥0‖𝑇𝑇𝑛𝑛 ‖ < ∞. A 
power-bounded operator 𝑇𝑇 is said to be of class𝐶𝐶∗. if there exists a nonzero vector 𝑥𝑥 ∈ ℋ 
such that the sequence {‖𝑇𝑇𝑛𝑛 𝑥𝑥‖}𝑛𝑛  does not converge to 0, and T  is of class 𝐶𝐶1.. if 
{‖𝑇𝑇𝑛𝑛 𝑥𝑥‖}𝑛𝑛  does not converge to 0 for every nonzero vector 𝑥𝑥. 𝐼𝐼𝑤𝑤 is still an unsolved 
problem whether every power-bounded operator of class 𝐶𝐶∗. . (in particular, 𝐶𝐶∗..-
contraction) has a nontrivial invariant subspace, i.e.,whether there exists a (closed) 
subspace Μ of ℋ such that {0}  ≠ Μ ≠ ℋ and 𝑇𝑇Μ ⊂ Μ . For partial results on that 
problem, see, e.g., [122] or [134]. In this note we prove the following theorem. 
Theorem(4.1. 1)[121]: Assume  that 𝑇𝑇 is a power-bounded operator of class 𝐶𝐶∗.- on a 
Hilbert space ℋ, which , commutes with a nonzero quasinilpotent operator. Then 𝑇𝑇 has 
a nontrivianvariant subspace. This theorem will follow from the following one. We 
recall that the operator 𝑇𝑇 is called cyclic if it has a cyclic vector, that is, a vector 𝑥𝑥 such 
that the sequence {𝑇𝑇𝑛𝑛 𝑥𝑥}𝑛𝑛≥0 spans the whole space ℋ. 

The proof is base on the following construction of the limit isometric operator associated 
with 𝑇𝑇 (see [10] and [139]). 

Given a power-bounded operator 𝑇𝑇 acting on the Hilbert space ℋ, fix a generalized 
Banach limit glim on ℓ∞ (𝑁𝑁) and consider the sesquilinear form 𝑊𝑊𝑇𝑇on ℋ  defined by  
𝑊𝑊𝑇𝑇(𝑥𝑥, 𝑢𝑢): =  𝑔𝑔 lim𝑛𝑛→∞(𝑇𝑇𝑛𝑛 𝑥𝑥, 𝑇𝑇𝑛𝑛 𝑢𝑢) , 𝑥𝑥, 𝑢𝑢 ∈ ℋ. Since {𝑇𝑇𝑛𝑛 }𝑛𝑛 is bounded , it is easy to see 
that glim𝑛𝑛→∞ ‖𝑇𝑇𝑛𝑛 𝑥𝑥‖ = 0 if and only if infn≥0 ‖𝑇𝑇𝑛𝑛 𝑥𝑥‖ = 0, and this happens if and only if 
lim𝑛𝑛→∞ ‖𝑇𝑇𝑛𝑛 𝑥𝑥‖ = 0. Let  ℋ0 (𝑇𝑇) be the kernel  of  𝑤𝑤𝑇𝑇 , i.e., 

ℋ0(𝑇𝑇) ∶=  {𝑥𝑥 ∈ ℋ: 𝑤𝑤𝑇𝑇(𝑥𝑥, 𝑥𝑥) = 0}  =  {𝑥𝑥 ∈ ℋ: 𝑙𝑙𝑖𝑖𝑚𝑚𝑛𝑛→∞ ‖𝑇𝑇𝑛𝑛 𝑥𝑥‖  = 0}. 
Clearly, ℋ0(𝑇𝑇)  is a subspace which is invariant for any operator 𝐴𝐴 in the commutant 
{𝑇𝑇}′ of the operator 𝑇𝑇. Furthermore, ℋ0(𝑇𝑇) ≠  ℋ  𝑖𝑖f and only if 𝑇𝑇 is of class 𝐶𝐶∗., and, 
ℋ0(𝑇𝑇) =  {0} if and only if 𝑇𝑇 is of class 𝐶𝐶1..Thus, Theorem(4.1.1) is an immediate  
consequence of Theorem (4.1.2). 
Let us form the quotient space ℋ�𝑇𝑇  =  ℋ/ℋ0(𝑇𝑇), and let us consider the canonical 
mapping 1f 𝜋𝜋𝑇𝑇: ℋ → ℋ�𝑇𝑇 ,𝜋𝜋𝑇𝑇(𝑥𝑥) ∶= 𝑥𝑥 + ℋ0(𝑇𝑇)  = : 𝑥𝑥�.The sesquilinear form 
𝑤𝑤�𝑇𝑇(𝑥𝑥�, 𝑢𝑢�) ∶=  𝑤𝑤𝑇𝑇(𝑥𝑥 𝑢𝑢) (𝑥𝑥, 𝑢𝑢 ∈ ℋ) provides an inner product on ℋ�𝑇𝑇, so that ℋ�𝑇𝑇is a 
pre-Hilbert  space. Let 𝑇𝑇�  be the operator on ℋ�𝑇𝑇  which is defined  by 𝑇𝑇�𝑥𝑥� ∶=  𝑇𝑇𝑥𝑥� . It is 
easy to see that 𝑇𝑇�  is an isometry. 
Let ℋ𝑇𝑇  be the comlpletion of ℋ�𝑇𝑇  and let 𝑉𝑉𝑇𝑇 be the continuous extension of 𝑇𝑇� , called 
the isometric asymptote of 𝑇𝑇 in [11]. Any operator 𝐴𝐴 ∈ {𝑇𝑇}′ generates an operatr�̂�𝐴 on 
ℋ𝑇𝑇  by �̂�𝐴𝑥𝑥� ∶= 𝐴𝐴𝑥𝑥�  (𝑥𝑥 ∈ ℋ) (and by continuous extension from ℋ�𝑇𝑇   to ℋ𝑇𝑇  the 
mapping 𝛾𝛾𝑇𝑇: 𝐴𝐴 → �̂�𝐴 is a contractive algebra-homomorphism  from the commutant 
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{𝑇𝑇}′ of 𝑇𝑇 into the commutant {𝑉𝑉𝑇𝑇}′ of the isometI 𝑉𝑉𝑇𝑇. Since 𝛾𝛾𝑇𝑇  is a unital algebra-
homomorphism, we obtain the spectral inclusion 𝜎𝜎(�̂�𝐴)  ⊂ 𝜎𝜎(𝐴𝐴) (𝐴𝐴 ∈ {𝑇𝑇}′). It follows 
that if 𝐴𝐴 is quasinilpotent then so is �̂�𝐴. It is also clear that 𝐴𝐴 = 0 holds if and only if 
ran 𝐴𝐴 ∈ ℋ0(𝑇𝑇). 

For a bounded linear operator 𝑉𝑉 on a Hilbert space Κ, let {𝑉𝑉}" denote the bicommutant 
of 𝑉𝑉. Let 𝑅𝑅(𝑉𝑉) be the set of operators 𝑓𝑓(𝑉𝑉), where 𝑓𝑓 runs through the set of rational 
functions with poles off the spectrum 𝜎𝜎(𝑉𝑉), and let 𝐴𝐴(𝑉𝑉) be the closure  of 𝑅𝑅(𝑉𝑉) in the 
weak operator topology. We will need the following well-known facts on these 
algebras. 
Lemma(4.1.2)[121]: If 𝑉𝑉 is n isometry on a Hilbert space 𝐾𝐾,then the abelian Banach 
algebra {𝑉𝑉}" ismisimple, and {𝑉𝑉}" =  𝐴𝐴(𝑉𝑉). 
Proof.  For the sake of ompleteness, we sketch the proof. The Hilbert space isometry 𝑉𝑉 
splits into tl orthogonal 𝑠𝑠𝑢𝑢𝑚𝑚 𝑉𝑉 =  𝑉𝑉𝑅𝑅  ⊕ 𝛼𝛼𝑠𝑠  where 𝑉𝑉𝑅𝑅  is an absolutely continuous 
isometery and 𝛼𝛼𝑠𝑠  is a singular unitary operator. It is known that {𝑉𝑉}" =  {𝑉𝑉𝑅𝑅 }" ⊕  {𝛼𝛼𝑠𝑠}" 
and 𝐴𝐴(𝑉𝑉) =  𝐴𝐴(𝑉𝑉𝑅𝑅 )  ⊕  𝐴𝐴(𝛼𝛼𝑠𝑠); see [126] and Rudin's theorem in [8]. Let 𝜇𝜇 and 𝜇𝜇𝑠𝑠  denote 
the normalized Lebesgue measure and the scalar spectral measure of 𝛼𝛼𝑠𝑠 , respectively, on 
the unit circle 𝑇𝑇, and let 𝐻𝐻∞  be the Hardy subspace of 𝐿𝐿∞ (𝜇𝜇). It can be easily verified that 
{𝑉𝑉𝑅𝑅 }" =  {𝜑𝜑(𝑉𝑉𝑅𝑅 ) ∶  𝜑𝜑 ∈ 𝐻𝐻∞  } if 𝑉𝑉𝑅𝑅  is nonunitary, {𝑉𝑉𝑅𝑅 }" =  {𝜑𝜑(𝑉𝑉𝑅𝑅 ) ∶ 𝜑𝜑 ∈ 𝐿𝐿∞ (𝜇𝜇)} if 𝑉𝑉𝑅𝑅  is 
unitary, and {𝛼𝛼𝑠𝑠}" =  {𝜓𝜓(𝛼𝛼𝑠𝑠) ∶  𝜓𝜓 ∈ 𝐿𝐿∞ (𝜇𝜇𝑠𝑠)}; see [125]. Classical approximation heorems 
yield that {𝑉𝑉}"  𝐴𝐴(𝑉𝑉). On the other hand, the previous representation shows that every 
operator 𝐴𝐴 ∈ {𝑉𝑉}" is subnormal, and so ‖𝐴𝐴‖ is equal to the spectral radius 𝑜𝑜(𝐴𝐴), which 
means that {𝑉𝑉}"does not contain  nonzero quasinilpotent operators (or equivalently, the 
Gelfand transformation,sociated with {𝑉𝑉}" is injective).  
Lemma(4.1. 3)[121]:  The isometry 𝑉𝑉 acting on the Hilbert space Κ is cyclic if and only 
if its commutant is  abelian, that is, {𝑉𝑉}′ = {𝑉𝑉}". 
Proof. Considering the former decomposition 𝑉𝑉 = 𝑉𝑉𝑅𝑅  ⊕ 𝛼𝛼𝑠𝑠  we obtain that 𝑉𝑉 is cyclic if 
and only if both 𝑉𝑉𝑅𝑅  and 𝛼𝛼𝑠𝑠are cyclic. Let us recall that a unitary operator 𝛼𝛼 is  cyclic if and 
only if 𝛼𝛼 is *-cyclic, which means that the set {𝛼𝛼𝑛𝑛 𝑥𝑥}𝑛𝑛=−∞

∞  spans the whole space with a 
suitable vector 𝑥𝑥; see [124]. Now, the results in [125] imply the statement. 
Theorem(4.1.4)[121]: If T is a power-bounded operator of class 𝐶𝐶1. on a Hilbert space 
ℋ such that 𝑇𝑇 commutes with a nonzero quasinilpotent operator , then 𝑇𝑇 is not cyclic.        
Proof. Let us suppose that 𝑇𝑇 has a cyclic vector 𝑥𝑥. Since ‖𝑢𝑢�‖ ≤ 𝑀𝑀‖𝑢𝑢‖ holds for every 
𝑢𝑢 ∈ ℋ, where 𝑀𝑀 =  𝑠𝑠𝑢𝑢𝑝𝑝{‖𝑇𝑇𝑛𝑛 ‖}𝑛𝑛=0

∞  the vector 𝑥𝑥� is cyclic for the limit isometry  𝑉𝑉𝑇𝑇. Let 
𝐴𝐴 be the nonzero quasinilpotent operator that commutes with 𝑇𝑇. Then �̂�𝐴  = 𝛾𝛾𝑇𝑇(𝐴𝐴) 
commutes with 𝑉𝑉𝑇𝑇, hence we infer by Lemma (4.1.4) that 𝐴𝐴 � ∈ { 𝑉𝑉𝑇𝑇}". Since {𝑉𝑉𝑇𝑇}" is 
semisimple by Lemma(4.1.3), we have �̂�𝐴 = 0, and so ran 𝐴𝐴 ⊂ ℋ0(𝑇𝑇) = {0}. Thus 
𝐴𝐴 =  0, which is a contradiction.  
Applying the Riesz-Dunford functional calculus, Theorem(4.1.1) can be easily extended to 
the following statement. 
Corollary (4.1.5)[121]: Let 𝑇𝑇 be a power-bounded operator of class 𝐶𝐶∗. on the Hilbert 
space ℋ. 1f 𝑇𝑇 commutes with a nonscalar operator 𝐴𝐴 having an isolated spectrum point, 
then 𝑇𝑇 as a nontrivial invariant subspace. In particular, 𝑇𝑇 has a nontrivial invariant 
subspace if 𝑇𝑇 commutes with a nonzero, essentially quasinilpotent operator 𝐴𝐴.The 
following proposition shows how the statement of lemma (4.1.4) can be transferred to 
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power-bounded operators. 
Proposition(4.1. 6)[121]: Let 𝑇𝑇 be a power-bounded operator of class 𝐶𝐶1.on theHilbert 
space ℋ, and let us consider the conditions: (𝑅𝑅)𝑇𝑇 is cyclic, (𝑏𝑏)𝑉𝑉𝑇𝑇 is cyclic, (𝑐𝑐) {𝑇𝑇}′ =
{𝑇𝑇}".Then ( 𝑅𝑅) ⇒ (𝑏𝑏) ⇒ (𝑐𝑐), but the reverse implications are false. 

Proof :  We have already seen that (a) implies (b). If 𝑉𝑉𝑇𝑇 is cyclic then {𝑉𝑉𝑇𝑇}′ is abelian 
by Lemrr( 4.1.3), which implies that {𝑇𝑇}′ is also abelian since the mapping 𝛾𝛾𝑇𝑇T is one-
to-one. In [138], in terms of the 𝑆𝑆𝑧𝑧.-Nagy-Foias functional model of contractions, 
examples are given for the case when 𝑉𝑉𝑇𝑇 is cyclic but 𝑇𝑇 is noncyclic. 
To show that (c) doe not imply (b), let us consider the simply connected domains 
Ω+ ∶=  {𝑧𝑧 ∈ 𝐷𝐷 ∶ 𝑅𝑅𝑒𝑒 𝑧𝑧 >  −1/2} and Ω− ∶=  {𝑧𝑧 ∈ 𝐷𝐷: 𝑅𝑅𝑒𝑒 𝑧𝑧 < 1/2}, where 𝐷𝐷 stands for 
the 0pen unit disc. Let 𝜑𝜑 and  𝜓𝜓 be conformal mappings of D ontoΩ+ and ontoΩ− 
spectively. Let 𝑇𝑇𝜑𝜑  and 𝑇𝑇𝜓𝜓  be the analytic Toeplitz operators with symbols 𝜑𝜑 and 𝜓𝜓, 
respectively, on the Hardy space 𝐻𝐻2, that is𝑇𝑇𝜑𝜑 𝑓𝑓 ∶= 𝜑𝜑𝑓𝑓, 𝑇𝑇𝜓𝜓 𝑓𝑓 ∶= 𝜓𝜓𝑓𝑓 (𝑓𝑓 ∈  𝐻𝐻2), We 
know by [136] that 𝜑𝜑 and 𝜓𝜓 are (sequential) weak-* generators of the algebra 𝐻𝐻∞  and 
so the operators 𝑇𝑇𝜑𝜑  and 𝑇𝑇𝜓𝜓 have the same invariant subspaces as the operator 𝑇𝑇𝜒𝜒  where 
𝜒𝜒(𝑧𝑧) =  𝑧𝑧. Since 𝑇𝑇𝜒𝜒  . cyclic, it follows that the  operators  𝑇𝑇𝜑𝜑 and 𝑇𝑇𝜓𝜓 are cyclic, as well.                                           
It is clear that 𝑇𝑇𝜑𝜑  and 𝑇𝑇𝜓𝜓  are contractions of class 𝐶𝐶1..Furthermore, 𝑉𝑉𝑇𝑇𝜑𝜑  and 𝑉𝑉𝑇𝑇𝜓𝜓  are 
unitarily equivalent to the restrictions 𝑀𝑀𝛼𝛼 ∶=  𝑀𝑀|𝜒𝜒𝛼𝛼

�𝐿𝐿2(𝜇𝜇) and 𝑀𝑀𝛽𝛽 : =  𝑀𝑀�𝜒𝜒𝛽𝛽
�𝐿𝐿2(𝜇𝜇), 

respectively, where                                                          
𝑀𝑀𝑓𝑓 ∶= 𝜒𝜒𝑓𝑓 (𝑓𝑓 ∈ 𝐿𝐿2(𝜇𝜇)), 𝑅𝑅 ∶=  (Ω+)− ∩  𝑇𝑇 and 𝛽𝛽 ∶=  (Ω− ∩ 𝑇𝑇.                      

Let us form the orthogonal sum 𝑇𝑇: = 𝑇𝑇𝜑𝜑 ⊕ 𝑇𝑇𝜓𝜓 . Since 𝑉𝑉𝑇𝑇 is unitarily equivalent to 
𝑀𝑀𝛼𝛼  ⊕ 𝑀𝑀𝛽𝛽   and 𝜇𝜇(𝛼𝛼 ∩ 𝛽𝛽) > 0 , we obtain that 𝑉𝑉𝑇𝑇 is noncyclic. On the other hand, the 
conditions   𝜇𝜇( 𝛽𝛽 \ 𝛼𝛼) > 0 and 𝜇𝜇(𝛼𝛼 \𝛽𝛽 ) >0  imply by [127] that {T}' = {𝑇𝑇𝜑𝜑 }'⊕ {𝑇𝑇𝜓𝜓 }'; 
see also [134]. Taking into account that 𝑇𝑇𝜑𝜑  and 𝑇𝑇𝜓𝜓  are cyclic, we infer that {𝑇𝑇}′ is a 
semisimple abelian Banach algebra. . 
The following examples shows that Lemma(4.1. 2)  cannot be generalized to power-
bounded operators. 
Example(4.1.7)[121]: We recall that the power-bounded operator 𝑇𝑇 is called of class 𝐶𝐶11 
if both 𝑇𝑇 and its djoint 𝑇𝑇∗ are of class 𝐶𝐶1.. The invariant  subspace Μ is called quasi-
𝑜𝑜𝑒𝑒𝑑𝑑𝑢𝑢𝑐𝑐𝑖𝑖𝑛𝑛𝑔𝑔. if the restriction 𝑇𝑇|Μ� is of class  𝐶𝐶11. 

Let 𝑇𝑇 be a cyclic, completely non-unitary contraction of class  𝐶𝐶11. on the Hilbert space 
ℋ such that the spectrum of 𝑇𝑇 is the closed unit disc 𝐷𝐷−, and 𝑉𝑉𝑇𝑇 is a cyclic bilateral shift 
The existence of such operators follows from [123]. For a concrete example we refer to 
[130]. The lattice of the  quasi -reducing invariant subspaces of 𝑇𝑇 is isomorphic to the 
lattice of the spectral subspaces of 𝑉𝑉𝑇𝑇; see [129] and [29]. Thus, we have an abundance of 
quasi-reducing subspaces of  𝑇𝑇. These subspaces are exactly those which can be written 
in the form (𝑜𝑜𝑅𝑅𝑛𝑛 𝐴𝐴)−, where 𝐴𝐴 ∈ {𝑇𝑇}"; see [129]. Hence, there are many nonzero 
operators in {𝑇𝑇}" which have nondense range. 
On the other hand, since  𝜎𝜎(𝑇𝑇) = 𝐷𝐷− and 𝑉𝑉𝑇𝑇;  is a bilateral shift, we infer by Runge's 
theorem and by [131] that 𝐴𝐴(𝑇𝑇) = 𝐻𝐻∞ (𝑇𝑇) ∶=  {u(T): u ∈  H∞ }. However, for any 
nonzero function u ∈ H∞ , the operator u(T) is quasisimilar to u(VT) (see  [29] and 
[137]), and so u(T) has dense range. Therefore, A(T) is a proper subset of {T}". 
Let T be a power-bound operator of class C1. on the Hilbert space ℋ. 
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Let A0(T) denote the norm -closure of the set R(T). The norm-continuity of γT  and the 
condition σ(T) ⊃  σ(VT) imply that γT(A0(T)) ⊂ A0(VT) Since A0(VT)  ⊂  A(VT)  =
 {VT}" and {VT}" is semisimple, we may infer  that. A0(T) is semisimple. This statement 
was previously showed in [135]. 
If γT( {T}") ⊂ {VT}"  holds, then it follows in the same way that {T}" is semisimple. 
However, a look at the operator T = Tφ ⊕ Tψ  occurring in the proof of Proposition(4.2. 
6) shows that the inclusion γT( {T}") ⊂ {VT}" does not hold in general. Indeed, the 
operator I ⊕ 0 belongs to {T}", but γT(I ⊕ 0) = I ⊕ 0 does not belong to {VT}" Thus, 
the following problem remains open. 
Question(4.1. 8)[121]: Is the abelian Banach algebra {𝑇𝑇}" semisimple for every power-
bounded Hilbert Space operator 𝑇𝑇 of class 𝐶𝐶1.? 

 In view of Theorem(4.1. 4) and Proposition (4.1.6), the answer is affirmative if 𝑇𝑇 is 
cyclic. 
As a consequence, we obtain that if the power-bounded operator 𝑇𝑇 of class 𝐶𝐶1. is of finite 
multiplicity then the quasinilpotent operators in the commutant of 𝑇𝑇 are nilpotent. So, if 𝑇𝑇 
is of finite multiplicity then the problem above can be reduced to the quastion whether 
every nilpotent operator 𝐴𝐴 in the bicommutant of 𝑇𝑇 is necessarily zero. 
The following result on the stability of the semigroup {Tn }n≥0 is related to Theorem 
(4.1.1) and has an analogous proof. 
Theorem(4.2.9)[121]:  Suppose  that T is a cyclic power-bounded operator on a Hilbert 
space ℋ. such that T commutes with a quasiinilpotent operator 𝐴𝐴. Then {𝑇𝑇𝑛𝑛 }𝑛𝑛≥0 is stable 
on th, range of 𝐴𝐴, that is, lim𝑛𝑛→∞ ‖𝑇𝑇𝑛𝑛 𝑥𝑥‖ = 0 holds for every x ∈ (ran A)-. 
In connection with Theorem(4.1. 9), let us also note the following related fact contained 
in [140]. 
Theorem(4.1.10)[121]: Let T be a power-bounded operator which commutes with a 
compact operator K with  dense range. Then {Tn }n≥0 is stable 'if and only if T does not 
have a unimodular  eigenvalue. 
We note that most of the previous results can be extended without any difficulty to 
operators T such that the norm-sequence {||Tn ||}n≥0 is regular in the sense of [132]. 
Studying these problems  in  the general Banach space setting, we encounter the  obstacle 
that Lemma(4.1.2) fails, since {V}" is not  necessarily semisimple if V is an isometry on 
an arbitary Banach space, see [128]. 
Section (4,2):  Hyperinvariant Subspace Problem 
In this section H  will always be a fixed separable, infinite dimensional, complex Hilbert 
space, and    ( )HL will denote the algebra of all bounded linear operators on  H  .If 
𝜆𝜆 ∈  ℂ (the complex plane), then the operator .1λ H  will be written simply as λ  , and the 
subset of  ( )HL consisting of all operators that are not scalar multiples of the identity 

operator will be denoted by ( )HL /ℂ If  ( )T ∈ HL   then the commutant of T   denoted 
by {𝑇𝑇}′ , is the algebra of all operators S  in ( )HL such that ST TS=  . 
Recall that a subspace (i.e., closed linear manifold) M ⊂   H    is called a nontrivial 
hyperinvariant subspac ( ). . .n h s  for T  if (0) ≠  M ≠   H   and 𝑆𝑆  M ⊂  M    for each S  
in {𝑇𝑇}′  . The (presently open) hyperinvariant subs pace problem (for operators on Hilbert 
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space) is to establish the truth or falsity of the following proposition: 
( )IP  Every operator in ( )HL  \ℂ has  . .a n h s .  
Below we show that ( )IP is equivalent to a very special case of itself, but first we must 
introduce some additional notation. We denote the spectrum of an operator T  in 
 ( )HL  by ( )Tσ  and the essential (i.e., Calkin) spectrum of T  by ( )e Tσ . The sets 

( )l e Tσ and ( )re Tσ will be, as usual, the left and right essential spectra of T  , 
respectively, and ( )(T) T .( ):lre le re Tσ σ σ=   Moreover we write ( )p Tσ  for the point 
spectrum of T  (i.e., the set of eigenvalues of T  ) and ( )r T  for the spectral radius of 
T  . We write also ℕ0 for the   set of nonnegative integers, 𝔻𝔻 = {𝜉𝜉 ∈ ℂ: |𝜉𝜉| < 1},and 
𝕋𝕋 = 𝜕𝜕𝔻𝔻 . Recall that a subset  𝒟𝒟 of 𝔻𝔻  is said to be dominating for 𝕋𝕋 if almost every 
point of 𝕋𝕋 (with respect to Lebesgue  arclength measure) is a non tangential limit of a 
sequence of points from 𝒟𝒟   Recall also from the theory of dual algebras (cf., e.g., 
[111]) that a completely non unitary contraction T  in  ( )HL   is called a ( )BCP −

operator (notation: if ( )T BCP∈ , if ( )e Tσ D   is dominating for T  . 
The class ( )BCP  has been studied extensively in the theory of dual algebras (cf. 
[111]), and, in particular, it is known that ( .)BCP  operators are reflexive [109], which 
implies that the lattice Lat ( )T  of invariant subspaces of any ( )BCP -operator T  is 
quite large. In fact, it contains a sublattice isomorphic to the lattice of all subspaces  of    
H  [111] and also contains a countably infinite family of cyclic invariant subspaces 
with the property that any two subspaces from the family have intersection on (0) 
[108]. Moreover, the ( )BCP -operators are, in a sense, "universal dilations", meaning 
that every direct sum of strict contractions can be realized as a compression  to some 
semi-invariant subspace of an arbitrary ( )BCP  operator [110]. Recall also from [120] 
that a completely nonunitary contraction T  is said to belong to the class 00C  if both 

sequences { 1{ }n
nT ∞
=   and { }*

1
(

n
T

∞

=
 converge to zero in the strong operator topology and 

for each 0 1θ≤ <  . Finally, define 
   𝔸𝔸0 = {𝜉𝜉 ∈ ℂ: 𝜃𝜃 ≤ |𝜉𝜉| ≤ 1}.                                                                      (1) 
Our principal result in this section  is the following: 
  
As an easy corollary of Theorem(4.2.10) , we obtain, as a consequence of the results in 
this Section  below, that proposition ( )IP  is equivalent to a(perhaps more amenable, in 
view of the above remarks about ( )BCP -operators), subcase of itself, namely ( )2P  Either 
every ( )BCP  -operator 00T C∈  such that ( ) ( )leT Tσ σ −= =D   has  . . a n h s  . ,  or there 
exists 0 1θ< <  such that every ( )BCP -operator 00T C∈ satisfying ( ) ( ) 0=leT Tσ σ= A  and  
‖𝑇𝑇−1‖ = 1

𝜃𝜃�   has  . . .a n h s  In ther words, in  this  Section  we will establish the following: 

Theorem(4.2.1)[104]: Proposition ( )IP  and ( )2P  are quivalent. 
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We introduce a certain equivalence relation on . ( )HL  . If n  is any cardinal number 
satisfying 01 n≤ ≤ℵ  , we will write ( )nH  . for the direct sum of n  copies of . H  indexed by 
the appropriate initial segment of 0N   (i.e.,   ( )

0
n

k n k≤ <= ⊕H H  where each  k =H H  ),  
Moreover, for any T  in ( )HL we will denote by ( )nT  the direct sum (ampliation) of n  
copies of T  acting on the space ( )nH  in the obvious fashion. The following fact is well 
known, so no proof is given. 
Proposition(4.2.2)[104]: Let  T   be any operator in in ( )HL  \ℂ. Then T  has  . . .a n h s  if 

and only if for some (every) cardinal number n satisfying ( )
01 , nn T< ≤ℵ  has  . . .a n h s   

Recall next that if S  and T  are operators in ( )HL , then S  and T  are quasisimilar 
(notation: 𝑆𝑆~𝑇𝑇T ) if there exist  

quasiaffinities X  and Y  in ( )HL  (i.e.,  
( )* * 0ker X kerX kerY kerY= = = = )  such that SX XT=  and YS TY=  .The following 

facts are well-known; for proofs, cf., e.g., [117,119]. 
Proposition(4.2.3)[104]: Suppose that n  is any cardinal number satisfying 01 ,n≤ ≤ℵ

and that 0{ }k k nS ≤ <  and 0{ }k k nT ≤ < , are bounded sequences of operators in ( )HL such that 
for each𝑘𝑘 ∈ ℕ0, 𝑆𝑆𝑘𝑘 ∼ 𝑇𝑇𝑘𝑘  . Then �̂�𝑆 =⊕0≤𝑘𝑘<𝑛𝑛  𝑆𝑆𝑘𝑘 ∼ 𝑇𝑇� =⊕0≤𝑘𝑘<𝑛𝑛  ⊕0≤𝑘𝑘<𝑛𝑛  𝑇𝑇𝑘𝑘  . Moreover, 
S


 has  . . .a n h s  if and only if T


 does; 
We now introduce a relation on ( )HL that may be new. 

Definition(4.2.4)[104]: For 1T  and 2T  in ( )HL , we say that 1T  is ampliation 
quasisimilar to 2T  (notation: 𝑇𝑇1 𝑇𝑇2∼

𝑅𝑅 ) if there exist cardinal numbers m  and n  satisfying 

01 , ,m n≤ ≤ℵ  such that𝑇𝑇1
(𝑚𝑚 ) ∼ 𝑇𝑇2

(𝑛𝑛).   
Proposition(4.2.5)[104]: Ampliation quasisimilarity is an equivalence relation on ( )HL

Furthermore, if 𝑇𝑇1  𝑇𝑇2∼
𝑅𝑅  , then 1T  has  . .a n h s  . if and only if 2T  does. Finally, there are 

operators 1T  and 2T in ( )HL such that𝑇𝑇1  𝑇𝑇2∼
𝑅𝑅  but𝑇𝑇1  𝑇𝑇2∼

 . 
Proof:  It is clear that he relation   ∼

𝑅𝑅  is reflexive and symmetric. As for transitivity, 
if 𝑇𝑇1

(𝑚𝑚 ) ∼ 𝑇𝑇2
(𝑛𝑛) and  𝑇𝑇2

(𝑝𝑝) ∼ 𝑇𝑇3
(𝑞𝑞),then 𝑇𝑇1

(𝑚𝑚𝑝𝑝 ) ∼ 𝑇𝑇2
(𝑛𝑛𝑝𝑝 ) ∼ 𝑇𝑇3

(𝑛𝑛𝑞𝑞 )by proposition(4.2.3)  
so𝑇𝑇1  𝑇𝑇3∼

𝑅𝑅 . 
The fact that if 𝑇𝑇1  𝑇𝑇2∼

𝑅𝑅 , then 1T  has  . .a n h s  . if and only if 2T  does, follows immediately 
from Propositions(4.2.1)  and (4.2.3). Finally, if N  is any normal operator in ( )HL of 
multiplicity one, then 𝑁𝑁    ∼

𝑅𝑅 𝑁𝑁 ⊕ 𝑁𝑁, but 𝑁𝑁 is not quasisimilar to 𝑁𝑁 ⊕ 𝑁𝑁 because, as is well 
known, two normal operators that are quasisimilar are unitarily equivalent.             
 In this section, we  show Theorems (4.2.10) and (4.2.1). Since ( )1P  obviously implies 
( )2 ,P  to show  Theorem (4.2.1) it suffices to show the converse. This follows 
immediately from Proposition (4.2.6), Theorem (4.2.10), and Proposition (4.2.5), applied 
in that order, so it is sufficient to prove Theorem (4.2.10), since the following is well-
known.  
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Proposition (4.2.6)[104]: Let  0 1θ≤ <   be arbitrarily given. If every T  in ( )L H that has 
the properties (a)-(f) set forth  in Theorem (4.2.10) has  . . .,a n h s  then every operator  
in ( )HL  \ℂ has a n.h.s.. 

Proof.  If T  is a given operator in ( )HL  \ℂ, then T  has  . .a n h s  . if and only if some 
(every) operator ( )1/ . Tγ λ+   where 0γ ≠  and 𝜆𝜆 ∈ ℂ  has  . .a n h s  .. The only other 
property above hat needs a word of explanation is ( )f  , and if ( )f  is not satisfied that T  
has  . . .a n h s  follows from Lomonosov's theorem [118]. (Note that if for some

( ), 0nn T µ∈ − =N  , then ( )p Tσ φ≠  ).                             
In order to prove Theorem(4.2.10) , we need some special cases of  theorem of 

Apostol-Herrero-Voiculescu on the closure of similarity orbits of perators [107,106]. (For 
another exposition, see [112],[113].) The first such result that we will need was proved 
almost simultaneously and independently in [105,114] For T  in  ( )L H we write ( )T −

L   
for the norm closure of the set 
                        ( )1{ :STS S− ∈L H  and ( )0 }sσ∉  . 
Theorem (4.2.7)[104]: (Apostol- Herrero). Suppose ( )T ∈L H  is an operator with 
singleton spectrum { }µ  and no (positive, integral) power of T µ−  is a  compact operator. 
Then 

( )T −
L  consists exactly of all ( )A∈L H   such that 
(a)     ( ) ( )e lreA Aσ σ= , 
(b)     ( )e Aσ   and  ( )Aσ   are connected, 
(c)      ( )e Aµ σ∈  , and 
(d)    the Fredholm index of A λ−   is 0  for all λ   in 
( ) ( )\ eA Aσ σ . 

The following was proved  in [114]. For a different proof, see [116]. 
Theorem (4.2.8)[104]:  (Herrero). Suppose ( )T ∈L H and ( )Tσ is a perfect set. Then 

every normal operator ( )A∈L H such that ( ) ( )A Tσ σ=  belongs to ( )T −
L . 

The last such result that we shall need is also from [114]. See also Theorem 5.8 of [116] 
for a different proof. 
Theorem(4 2.9)[104]: (Herrero). Let T   be a normal operator in ( )L H such that ( )Tσ  

is a perfect set. Then ( )T −
L consists exactly of all A  in ( )L H such that 

(a)      ( ) ( )ATσ σ⊂  and ( )Tσ  intersects each component of ( )Aσ , 
(b)    ( ) ( ) ( )ee lreAT Aσ σ σ⊂ =  and ( )e Tσ  intersects each component of ( )e Aσ , and 
(c) the Fredholm index of  A λ−   is 0   for all λ  . in ( ) ( )\ eA Aσ σ . 

We can now complete the  proof of Theorem (4.2.10). 
Theorem(4.2.10)[104]: Let 0 1θ≤ <  be arbitrarily given, and let ( )T ∈ HL   have the 
following properties: 



- 75 - 
 

(a)   ( ) ( )1 / 2 ,Tθ σ+ ∈   
(b) the spectral radius ( )( ) ( )1 / 2 1 /- 4,r T θ θ− + <   
(c)  ( )Tσ  is connected, 
 (d)  ( ) ( )lreT Tσ σ= the point spectrum  ( )p Tσ  is empty, and  
(f) no (positive, integral ) power of ( )( )1 / 2T θ− +  is a compact operator.  
Then T  is ampliation quasisimilar (see Section 2) to a ( )BCP  -operator T


 in the class 

00C  such that ( ) ( ) 0leT Tσ σ= =
 

A  and such that  1 1/T θ− =


 whenever 0θ >  .                          
As an easy corollary of Theorem (4.2.10), we obtain, as a consequence of the results see 
below, that proposition ( )IP  is equivalent to a (perhaps more amenable, in view of the 
above remarks about ( )BCP -operators), subcase of itself, namely ( )2P  Either every 
( )BCP  -operator 00T C∈  such that ( ) ( )leT Tσ σ −= =D   has  . . a n h s  . ,  or there exists 
0 1θ< <  such that every ( )BCP -operator 00T C∈ satisfying ( ) ( ) 0=leT Tσ σ= A  and  

1 1/T θ− =


  has  . . .a n h s   
In other words, in  Section 3 we will establish the following: 

 
Proof. Let  0 1θ≤ <  be arbitrarily given, and let 𝑇𝑇 ∈ ( )HL  \ℂ be given that satisfies 
(a}--(f) of  The Theorem (4.2.10). Let 0A   be the annulus (or disc) in (1), and let 0D  
in ( )HL  \ℂ  be the disc 

               0D = �ξ ∈ ℂ ∶ �ξ − 1+θ
2

� ≤ 1−θ
4

�.                                 (2) 
By (a) and (b), we know that ( ) ( )1 / 2 Tθ σ+ ∈  and ( ) 0Tσ ⊂ D  . Furthermore, by 
( ) ( ) ( ), lrec T Tσ σ=  is either the singleton ( ){ }1 / 2θ+  or is a perfect set. Define the 
sequences { }nr  and { }ns  of positive real numbers by 
                         ( )( ( )4 3 1 / 4 4) ,nr n nθ= + + +   0n∈N                 (3) 
and 
 ( ( )4 3 / 4 4) ,ns n nθ= + + +  0n∈N .                  (4) 
Observe that { }nr is a strictly decreasing sequence satisfying  ( )1 3 / 4nrθ θ< ≤ +   and 
inf nr θ=  , while { }ns is a strictly increasing sequence satisfying ( )1 3 / 4ns θ> ≥ +  and sup

1nS =  . Define next the annuli 

𝔸𝔸𝑛𝑛 = �
�𝜉𝜉 ∈ ℂ: 1+3𝜃𝜃

4
≤ |𝜉𝜉| ≤ 𝑠𝑠𝑛𝑛 � , 𝑛𝑛 𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛  

�𝜉𝜉 ∈ ℂ: 𝑜𝑜𝑛𝑛 ≤ |𝜉𝜉| ≤ 3+𝜃𝜃
4

� ,   𝑛𝑛  𝑜𝑜𝑑𝑑𝑑𝑑
�                           (5) 

Let µ   denote planar Lebesgue measure on ℂ , and for 0n∈N , let zM  be the normal 
operator of multiplication  by the position function on ( )2 ,n n nL µ=H A A . Let also 

( )nN ∈L H   be (a norma operator) unitarily equivalent to ( )z nM ∈L H  . One checks next 
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that for each ( ) ( )0 , n lre n nn N Nσ σ∈ = =N A  which is, of course, a perfect set containing 0D

. Thus we may apply either Theorem(4. 2.8) (if ( ) ( ){ }1 / 2Tσ θ= + ) or Theorems(4. 2.9) 

and (4.2.10)  ( otherwise) to conclude that ( )nN T −∈L  for all 0n∈N . Therefore for each 
nonegative integer n  , there exists an invertible operator nS  in ( )L H such that 

( )1 1 / 2,n n n nS TS N s n even− − < −                                        (6) 
and 

( )1 / 2,n n n nS TS N r n oddθ− − < −                                          (7) 

Define H� =  H (ℵ0), and note that since 
 1 1 ,n n n n n nS TS N S TS N− −− ≤ − and 

 

 
( )

, n even
3 / 4
n

n

s
N

n oddθ
=  +

 , 

 a short calculation using (3), (4), (6), and (7) shows that 
1 1n nS TS − <      0n∈N . 

Thus, the operator 
0

1
n n nT S TS −
∈= ⊕


N  in ( )L H  is a completely nonunitary contraction in 

the class 00C  , which is obviously ampliation quasisimilar toT  , and we begin to study its 
spectral  properties. Note that, for every even n  in 0N  and every x∈H  , we have from 
(6) that 

( )( )1 1 / 2n n n nS TS N x s x− ≥ − −   

            ( ){ }( ( ) )1 3 / 4 1 /2 ,ns xθ≥ + − −   

            ( )( )2 3 1 / 4 ,ns x xθ θ≥≥ + − ≥                               (8) 
which shows, in particular, that if 0θ >  , then for n even we have 

( ) 11 1/n nS TS θ
−− ≤                                                                              (9) 

Similarly, for n  odd we have from (7) that 
                ( )( )1 / 2n n n nS TS x N x r xθ− ≥ − −   

( ){(r / 2} ,n nr x xθ θ≥ − − ≥             (10) 
which shows that if 𝜃𝜃 > 0 then (9) is also valid for n  odd, and thus, in particular if 

0θ >  , that T


  is invertible and 
                       ( ) 11 1sup 1/n nT S TS θ

−− −= ≤


                                         .(11) 

We also conclude from this that whether or not 0θ >  , we have ( ) ( ) 0e T Tσ σ⊂ ⊂
 

A  , as 
desired. 

Next, we will show that  ( ) ( ) 0le T Tσ σ= =
 

A  , and thus that T


is a ( )BCP  -operator. 
To this end (whether or not 0θ > ), let 0 θλ ∈ A   (the interior of 0A  ) be arbitrary. 

Then, since 𝑖𝑖𝑛𝑛𝑓𝑓𝑜𝑜𝑛𝑛 = 𝜃𝜃 and  sup 1ns =  , there exists a positive integer 0K  such that 
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either 
(a)  0 kλ ∈A   for all even 0k K≥  , or  
(b) 0 kλ ∈A  for all odd 0k K≥ . 
Since ( )le n nNσ = A   f( all n  in  0N   by construction, we obtain, in the case that (a) is 

valid, a unit vector nx ∈H   such that ( )0 1/n nN x nλ− <   for all even 0n K≥  , and 
similarly in case (b) is valid. Now define for each even or odd 0n K≥  , depending on 
whether (a) or (b) is valid, the vector 𝑥𝑥𝑛𝑛� ∈ H� =  H (ℵ0) by taking the component of 

nx   in the nth copy of H in H�  to be nx   and all other components to be zero. It is 
obvious that the family{𝑥𝑥𝑛𝑛� ∈ H� : 𝑛𝑛 ≥ 𝐾𝐾0 , n   even or odd depending on whether (a) 
or (b) is valid} is an orthonormal family, and it follows from the inequality 

( ) ( )1
0 0n n n nT x S TS xλ λ−− = −

    

( ) 1
0 0n n n nN x S TS Nλ −≤ − + −   

( )1/ max{(1 ) / 2( ) / 2}n nn s r θ≤ + − −   

that ( )0 0nT xλ− →


  and  thus that ( )0 le Tλ σ∈


 . Since ( )le Tσ


 is closed, 

 ( ) ( )0 0le T Tσ σ⊂ ⊂ ⊂
 

A A .                                (12) 

Finally, we note that if  0θ >  , then 1 1/T θ− =


  by (11) and [115].                              
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Chapter 5 
The Schur-Horn Theorem for Operators and Constructing Finite Frames 
Let ℋ be a Hilbert space. Given a bounded positive definite operator S on ℋ, and 

a bounded sequence 𝑐𝑐 = {𝑐𝑐𝑘𝑘 }𝑘𝑘∈𝒩𝒩 of nonnegative real numbers, the pair (S, c) is frame 
admissible, if there exists a frame {𝑓𝑓𝑘𝑘 }𝑘𝑘∈𝒩𝒩 on ℋ  with frame operator S, such that 
{𝑓𝑓𝑘𝑘 }2 = 𝑐𝑐𝑘𝑘 , 𝑘𝑘 ∈ 𝒩𝒩.  

The estimate is valid for a fairly general class of frames — requiring that the 
dimension of the Hilbert space and the number of frame vectors is relatively prime. In 
addition, we re-phrase our distance estimate to show that certain projection matrices 
which are nearly constant on the diagonal are close in Hilbert–Schmidt norm to ones 
which have a constant diagonal. 

Indeed, the minimum and maximum eigenvalues of the frame operator are the 
optimal frame bounds, and the frame is tight precisely when this spectrum is constant. 
Often, the second-most important design consideration is the lengths of frame vectors: 
Gabor, wavelet, equiangular and Grassmannian frames are all special cases of equal norm 
frames, and unit norm tight frame-based encoding is known to be optimally robust 
against additive noise and erasures. We consider the problem of constructing frames 
whose frame operator has a given spectrum and whose vectors have prescribed lengths. 
For a given spectrum and set of lengths, the existence of such frames is characterized by 
the Schur-Horn Theorem—they exist if and only if the spectrum majorizes the squared 
lengths—the classical proof of which is nonconstructive. Certain construction methods, 
such as harmonic frames and spectral tetris, are known in the special case of unit norm 
tight frames, but even these provide but a few examples from the manifold of all such 
frames, the dimension of which is known and nontrivial. In this paper, we provide a new 
method for explicitly constructing any and all frames whose frame operator has a 
prescribed spectrum and whose vectors have prescribed lengths. The method itself has 
two parts. In the first part, one chooses eigensteps—a sequence of interlacing spectra— 
that transform the trivial spectrum into the desired one. The second part is to explicitly 
compute the frame vectors in terms of these eigensteps; though nontrivial, this process is 
nevertheless straightforward enough to be implemented by hand, involving only 
arithmetic, square roots and matrix multiplication. 
Section(5.1):  Prescribed  Norms and  Frame Operators 
Let ℋ be a separable Hilbert space and let 𝑆𝑆 be a bounded selfadjoint operator on ℋ. In 
the first part of this section, we give a complete characterization of the closure in ℓ∞ (ℕ) 
of the set of possible “diagonals” of 𝑆𝑆, i.e., the set 𝐶𝐶[𝛼𝛼ℋ(𝑆𝑆)] of real sequences 𝑐𝑐 =
(𝑐𝑐𝑛𝑛 )𝑛𝑛∈ℕ such that 
                                     〈𝑆𝑆𝑒𝑒𝑛𝑛 , 𝑒𝑒𝑛𝑛 〉 = 𝑐𝑐𝑛𝑛 ,           𝑛𝑛 ∈ ℕ ,                                 (1) 

for some orthonormal basis 𝐵𝐵 = {𝑒𝑒𝑛𝑛 }  𝑛𝑛∈ℕ of ℋ. 
Note that, if 𝑑𝑑𝑖𝑖𝑚𝑚ℋ = 𝑚𝑚 < ∞, this can be made in terms of majorization theory. 

More precisely, the Schur-Horn theorem ensures that 𝑐𝑐 ∈ ℝ𝑚𝑚  satisfies Eq. (1) for some 
orthonormal basis if and only if 𝑐𝑐 is majorized by the vector of eigenvalues of 𝑆𝑆 (see 
Theorem (5.1.2) for a precise formulation). In the general case, we define an analogous 
form of “the sum of the greatest 𝑘𝑘 eigenvalues” in the following way: given 𝑆𝑆, a 
selfadjoint operator on ℋ, and 𝑘𝑘 ∈ ℕ, we denote 
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𝛼𝛼𝑘𝑘 (𝑆𝑆)  =  𝑠𝑠𝑢𝑢𝑝𝑝{𝑤𝑤𝑜𝑜 𝑆𝑆𝑃𝑃 ∶  𝑃𝑃 ∈ 𝐿𝐿(ℋ) is an orthogonal projection with 𝑤𝑤𝑜𝑜 𝑃𝑃 =  𝑘𝑘}, and 
𝐿𝐿𝑘𝑘 (𝑆𝑆)  = −𝛼𝛼𝑘𝑘 (−𝑆𝑆).  
We prove, based on the results obtained by A. 
Neumann in [101], that c belongs to the ℓ∞ (ℕ) -closure of 𝐶𝐶[𝛼𝛼ℋ(𝑆𝑆)] if and only if 
              𝛼𝛼𝑘𝑘 (𝑐𝑐) ≤ 𝛼𝛼𝑘𝑘 (𝑆𝑆) and 𝐿𝐿𝑘𝑘 (𝑆𝑆) ≤ 𝐿𝐿𝑘𝑘 (𝑐𝑐), 𝑘𝑘 ∈ ℕ,                                (2) 

Where 
                                      𝛼𝛼𝑘𝑘 (𝑐𝑐) = sup|𝐹𝐹|=𝑘𝑘 ∑ 𝑐𝑐𝑖𝑖𝑖𝑖∈𝐹𝐹 ,                
and                 
            𝐿𝐿𝑘𝑘 (𝑐𝑐)  = inf|𝐹𝐹|=𝑘𝑘 ∑ 𝑐𝑐𝑖𝑖 =𝑖𝑖∈𝐹𝐹  -𝛼𝛼𝑘𝑘 (−𝑐𝑐).                                
Similarly, if 𝑆𝑆 is a trace class operator, we show that 𝑐𝑐 belongs to the ℓ1(ℕ)- closure of 
𝐶𝐶[𝛼𝛼ℋ(𝑆𝑆)]  if and only if 𝑐𝑐 satisfies formulas (2) and 

� 𝑐𝑐𝑛𝑛 = 𝑤𝑤𝑜𝑜𝑆𝑆.
𝑛𝑛∈ℕ

 

On the other hand, a somewhat technical characterization of the maps 𝛼𝛼𝑘𝑘  and 𝐿𝐿𝑘𝑘  is 
obtained (see Proposition (5.1.7), which is used to compute these quantities and to prove 
their basic properties. Related results can be found in 𝑅𝑅. Kadison [98], [99], and Arveson 
and Kadison [89] (which appeared during the revision process of this work). 
In the second part of this note, these extended Schur-Horn theorems are used to give 
conditions for the existence of frames with prescribed norms and frame operator. First we 
recall some basic definitions. Let 𝕄𝕄 =  ℕ or 𝕄𝕄 = {1, 2, . . . , 𝑚𝑚} ∶= 𝕀𝕀𝑚𝑚 , for some 𝑚𝑚 ∈  ℕ. 
A sequence {𝑓𝑓𝑘𝑘 }𝑘𝑘∈𝑀𝑀 in ℋ is called a frame for ℋ if there exist constants 𝐴𝐴, 𝐵𝐵 > 0 such 
that 

𝐴𝐴‖𝑥𝑥‖2 ≤ � |〈𝑥𝑥, 𝑓𝑓𝑘𝑘 〉|2

𝑘𝑘∈𝑀𝑀
≤  𝐵𝐵‖𝑥𝑥‖2, 𝑓𝑓𝑜𝑜𝑜𝑜 𝑒𝑒𝑣𝑣𝑒𝑒𝑜𝑜𝑢𝑢 𝑥𝑥 ∈ ℋ. 

For complete descriptions of frame theory and its applications, the reader is referred to 
[94], [96], [97], [90], or the books by Young [103] and Christensen [74]. 
Let ℱ = {𝑓𝑓𝑘𝑘 }𝑘𝑘∈𝑀𝑀, be a frame for ℋ. The operator 

𝑆𝑆 ∶ ℋ → ℋ, given by 𝑆𝑆(𝑥𝑥) = ∑ 〈𝑥𝑥, 𝑓𝑓𝑘𝑘 〉𝑘𝑘∈𝑀𝑀 𝑓𝑓𝑘𝑘  , 𝑥𝑥 ∈ ℋ,                       (3) 
is called the frame operator of ℱ. It is always bounded, positive and invertible (we use 
the notation 𝑆𝑆 ∈ 𝒢𝒢𝑙𝑙 (ℋ)+). 
In recent papers by Casazza and Leon [92], [93], Casazza, Fickus, Leon and 
Tremain [91], Dykema, Freeman, Korleson, Larson, Ordower and Weber [45], Kornelson 
and Larson [100], and Tropp, Dhillon, Heath Jr. and Strohmer [57], the problem of 
existence and (algorithmic) construction of frames with prescribed norms and frame 
operator has been considered.  
Following [92], [93], we say that the pair (𝑆𝑆, 𝑐𝑐) ∈ 𝒢𝒢𝑙𝑙(ℋ)+ × ℓ∞ (𝕄𝕄)+ is frame 
admissible if there exists a frame ℱ = {𝑓𝑓𝑘𝑘 }𝑘𝑘∈𝑀𝑀  on ℋ such that 
(1)   ℱ has frame operator 𝑆𝑆, and 
(2)   ‖𝑓𝑓𝑘𝑘 ‖2 = 𝑐𝑐𝑘𝑘  for every 𝑘𝑘 ∈ 𝕄𝕄. 
In this case, we say that ℱ is a (𝑆𝑆, 𝑐𝑐)-frame. We denote by 𝐹𝐹(𝑆𝑆, 𝑐𝑐) the set of all (𝑆𝑆, 𝑐𝑐)-
frames on ℋ. Hence the pair (𝑆𝑆, 𝑐𝑐) is frame admissible if 𝐹𝐹(𝑆𝑆, 𝑐𝑐)  ≠ ∅ . 
It is known (see [92], [57]) that, in the finite dimensional case, there is a connection 
between frame admissibility and the theory of majorization, in particular, the Schur-Horn 
theorem. We make this connection explicit both in the finite and infinite dimensional 
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context. We use the classical Schur-Horn theorem in the finite dimensional case and its 
extension, developed in the first part of the section, for the infinite dimensional case. 
This presentation of the problem allows us to get equivalent conditions for the frame 
admissibility of a pair (𝑆𝑆, 𝑐𝑐) ∈ 𝒢𝒢𝑙𝑙𝑛𝑛 (ℂ)+ × ℓ∞ (ℕ)+ , and necessary conditions for the 
frame admissibility of a pair (𝑆𝑆, 𝑐𝑐) ∈ 𝒢𝒢𝑙𝑙 (ℋ)+  × ℓ∞ (ℕ)+ . 
We show that, if the pair (𝑆𝑆, 𝑐𝑐) is frame admissible, then  ∑ 𝑐𝑐𝑘𝑘 = ∞.𝑘𝑘∈ℕ  and 𝛼𝛼𝑘𝑘 (𝑐𝑐) ≤
𝛼𝛼𝑘𝑘 (𝑆𝑆) for every 𝑘𝑘 ∈ ℕ. In particular, 𝑙𝑙𝑖𝑖𝑚𝑚 𝑠𝑠𝑢𝑢𝑝𝑝 𝑐𝑐 ≤ ‖𝑆𝑆‖𝑒𝑒 , the essential norm of 𝑆𝑆 (see 
Theorem (5.1.25). Then, by strengthening these conditions we get sufficient conditions 
for the frame admissibility of pairs  (𝑆𝑆, 𝑐𝑐) ∈ 𝒢𝒢𝑙𝑙 (ℋ)+ × ℓ∞ (ℕ)+  (Theorem(5.1.28). 
These conditions are less restrictive than those found by Kornelson and Larson in [100]. 
We briefly describe the contents of the section. In this Section  we fix our notation, and 
we state the classical Schur-Horn theorem. In the Section  we prove the extension of the 
Schur-Horn theorem for general selfadjoint operators. In this Section we give some 
reformulations of the notion of frame admissibility which allow us to apply majorization 
theory to this problem, and we show equivalent conditions for frame admissibility in the 
finite dimensional case (both for finite or infinite sequences 𝑐𝑐). In this Section we study 
the infinite dimensional case, showing separately necessary and sufficient conditions for 
frame admissibility. In  the Section  we give several examples for the boundary cases of 
the conditions studied before. These examples show that, in general, the conditions can 
not be relaxed further. We also study different types of frames in 𝐹𝐹(𝑆𝑆, 𝑐𝑐), in terms of their 
excesses. 
Let ℋbe a separable Hilbert space, and 𝐿𝐿(ℋ) be the algebra of bounded linear operators 
on ℋ. We denote 𝐿𝐿0(ℋ) the ideal of compact operators, 𝒢𝒢𝑙𝑙 (ℋ) the group of invertible 
operators, 𝐿𝐿(ℋ)ℎ  the set of hermitian operators, 𝐿𝐿(ℋ)+ the set of nonnegative definite 
operators, 𝒰𝒰(ℋ) the group of unitary operators, and  𝒢𝒢𝑙𝑙 (ℋ)+ the set of invertible 
positive definite operators. We denote by 𝐿𝐿1(ℋ) the ideal of trace class operators in 
𝐿𝐿(ℋ). We set 𝐿𝐿1(ℋ)ℎ = 𝐿𝐿1(ℋ)  ∩ 𝐿𝐿(ℋ)ℎ  and  𝐿𝐿1(ℋ)+ = 𝐿𝐿1(ℋ)  ∩ 𝐿𝐿(ℋ)+. We denote 
by ℓ1(ℕ) the Banach space of complex absolutely summable sequences. By  
ℓ𝑅𝑅

1  (ℕ) (𝑜𝑜𝑒𝑒𝑠𝑠𝑝𝑝. ℓ1(ℕ)+) we denote the subsets of real (resp. nonnegative) sequences. 
Similarly, we use the notations ℓ∞ (ℕ), ℓ𝑅𝑅

∞ (ℕ) and  ℓ∞ (ℕ)+) for bounded sequences. 
Given an operator 𝐴𝐴 ∈ 𝐿𝐿(ℋ), 𝑅𝑅(𝐴𝐴) denotes the range of 𝐴𝐴, ker𝐴𝐴 the nullspace of 𝐴𝐴, 𝜎𝜎(𝐴𝐴) 
the spectrum of 𝐴𝐴, 𝐴𝐴∗ the adjoint of 𝐴𝐴, 𝜌𝜌(𝐴𝐴) the spectral radius of 𝐴𝐴, and ‖𝐴𝐴‖ the spectral 
norm of 𝐴𝐴. We say that 𝐴𝐴 is an isometry (resp. coisometry) if 𝐴𝐴∗𝐴𝐴 = 𝐼𝐼 (𝑜𝑜𝑒𝑒𝑠𝑠𝑝𝑝. 𝐴𝐴𝐴𝐴∗ = 𝐼𝐼). 
We also consider the quotient 𝐴𝐴(ℋ) = 𝐿𝐿(ℋ)/𝐿𝐿0(ℋ), which is a unital 𝐶𝐶∗ −algebra, 
known as the Calkin algebra. Given 𝑇𝑇 ∈ 𝐿𝐿(ℋ), the essential spectrum of 𝑇𝑇, denoted by 
𝜎𝜎𝑒𝑒 (𝑇𝑇), is the spectrum of the class 𝑇𝑇 + 𝐿𝐿0(ℋ)in the algebra 𝐴𝐴(ℋ). The essential norm 
‖𝑇𝑇‖𝑒𝑒 =  𝑖𝑖𝑛𝑛𝑓𝑓{‖𝑇𝑇 + 𝐾𝐾‖ ∶  𝐾𝐾 ∈ 𝐿𝐿0(ℋ)} of 𝑇𝑇 is the (quotient) norm of 𝑇𝑇 + 𝐿𝐿0(ℋ), also in 
𝐴𝐴(ℋ). Given 𝑆𝑆 ∈  𝐿𝐿(ℋ)ℎ  , we define 

𝑅𝑅+(𝑆𝑆) = 𝑚𝑚𝑅𝑅𝑥𝑥 𝜎𝜎𝑒𝑒 (𝑆𝑆) = ‖𝑆𝑆‖𝑒𝑒  and 𝛼𝛼−(𝑆𝑆) = 𝑚𝑚𝑖𝑖𝑛𝑛 𝜎𝜎𝑒𝑒 (𝑆𝑆).                             (4) 
If  𝑆𝑆 = ∫ 𝑤𝑤𝑑𝑑𝐸𝐸(𝑤𝑤) 

𝜎𝜎(𝑆𝑆)  is the spectral representation of 𝑆𝑆 with respect to the 
spectral measure 𝐸𝐸, we shall often consider the following compact operators: 

𝑆𝑆+ = ∫ �𝑤𝑤 − 𝛼𝛼+(𝑆𝑆)�𝑑𝑑𝐸𝐸(𝑤𝑤) 
[𝑅𝑅+(𝑆𝑆),‖𝑆𝑆‖] , and 

𝑆𝑆− = ∫ �𝑤𝑤 − 𝛼𝛼(𝑆𝑆)�𝑑𝑑𝐸𝐸(𝑤𝑤) 
[−‖𝑆𝑆‖,𝛼𝛼−(𝑆𝑆)]                                                                 (5) 
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Note that 𝑆𝑆− ≤ 0 ≤ 𝑆𝑆+. 
Given a subset Μ of a Banach space (𝜒𝜒, ‖ · ‖), its closure is denoted by Μ�  or 𝑐𝑐𝑙𝑙‖·‖ (Μ), 
and the convex hull of Μ is denoted by 𝑐𝑐𝑜𝑜𝑛𝑛𝑣𝑣(Μ). Also, given a closed subspace 𝑆𝑆 of ℋ, 
we denote by 𝑃𝑃𝑆𝑆  the orthogonal (i.e., selfadjoint) projection onto 𝑆𝑆. 𝐼𝐼𝑓𝑓 𝐵𝐵 ∈ 𝐿𝐿(ℋ) satisfies 
𝑃𝑃𝑆𝑆𝐵𝐵𝑃𝑃𝑆𝑆  =  𝐵𝐵, in some cases we shall use the compression of 𝐵𝐵 to 𝑆𝑆, (i.e., the restriction of 
𝐵𝐵 to 𝑆𝑆 as a linear transformation from 𝑆𝑆 to 𝑆𝑆), and we say that we consider 𝐵𝐵 as acting 
on 𝑆𝑆. 
Finally, when 𝑑𝑑𝑖𝑖𝑚𝑚ℋ = 𝑛𝑛 < ∞, we shall identify ℋ with ℂ𝑛𝑛 , 𝐿𝐿(ℋ) with Μ𝑛𝑛 (ℂ), and we 
use the following notations: Μ𝑛𝑛 (ℂ)ℎ  for 𝐿𝐿(ℋ)ℎ ,Μ𝑛𝑛 (ℂ)+ for 𝐿𝐿(ℋ)+, 𝛼𝛼(𝑛𝑛) for 𝒰𝒰(ℋ), 
and  𝒢𝒢𝑙𝑙𝑛𝑛  (ℂ) for 𝒢𝒢𝑙𝑙  (ℋ). 
Majorization. In this subsection we present some basic aspects of majorization theory. 
For a more detailed treatment of this notion see [51]. Given 𝑏𝑏 = (𝑏𝑏1, . . . , 𝑏𝑏𝑛𝑛 ) ∈  ℝ𝑛𝑛 , 
denote by 𝑏𝑏↓ ∈  ℝ𝑛𝑛  the vector obtained by rearranging the coordinates of 𝑏𝑏 in 
nonincreasing order. If 𝑏𝑏, 𝑐𝑐 ∈  ℝ𝑛𝑛  then we say that 𝑐𝑐 is majorized by 𝑏𝑏, and write 𝑐𝑐 ≺ 𝑏𝑏, 
if 
      ∑ 𝑏𝑏𝑖𝑖

↓ ≥ ∑ 𝑐𝑐𝑖𝑖
↓𝑘𝑘

𝑖𝑖=1
𝑘𝑘
𝑖𝑖=1    𝑘𝑘 = 1, … , 𝑛𝑛 − 1, and ∑ 𝑏𝑏𝑖𝑖 = ∑ 𝑐𝑐𝑖𝑖 .𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1  

Majorization is a preorder relation in ℝ𝑛𝑛 that occurs naturally in matrix analysis. 
Definition (5.1.1)[35]: 𝐿𝐿𝑒𝑒𝑤𝑤 𝕄𝕄 = ℕ 𝑜𝑜𝑜𝑜 𝕄𝕄 =  {1, 2, . . . , 𝑚𝑚} ∶= 𝕀𝕀𝑚𝑚 , for some 𝑚𝑚 ∈ ℕ. Let Κ 
be a Hilbert space with 𝑑𝑑𝑖𝑖𝑚𝑚Κ =  |𝕄𝕄| and let 𝐵𝐵 = {𝑒𝑒𝑛𝑛 }𝑛𝑛∈𝕄𝕄 be an orthonormal basis of Κ. 
 (i) For any 𝑅𝑅 = (𝑅𝑅𝑛𝑛 )𝑛𝑛∈𝑀𝑀 ∈ ℓ∞ (𝕄𝕄), denote by 𝑀𝑀𝐵𝐵,𝑅𝑅  ∈  𝐿𝐿(Κ) the diagonal operator given 
by 𝑀𝑀𝐵𝐵,𝑅𝑅 𝑒𝑒𝑛𝑛 = 𝑅𝑅𝑛𝑛 𝑒𝑒𝑛𝑛 , 𝑛𝑛 ∈ 𝕄𝕄. When it is clear which basis we are using, we abbreviate 
𝑀𝑀𝐵𝐵,𝑅𝑅 =  𝑀𝑀𝑅𝑅 . 
(ii) In particular, for 𝑅𝑅 ∈ ℂ𝑛𝑛 , we denote by 𝑀𝑀𝑅𝑅  ∈ Μ𝑛𝑛 (ℂ) the diagonal matrix (with 
respect to the canonical basis of ℂ𝑛𝑛 ) which has the entries of a on its diagonal. 
(iii) The diagonal pinching 𝐶𝐶𝐵𝐵 ∶ 𝐿𝐿(Κ)  → 𝐿𝐿(Κ) associated to the basis 𝐵𝐵, is defined by 
𝐶𝐶𝐵𝐵(𝑇𝑇) = 𝑀𝑀𝐵𝐵,𝑅𝑅  where 𝑅𝑅 =  (〈𝑇𝑇𝑒𝑒𝑛𝑛 , 𝑒𝑒𝑛𝑛 〉)𝑛𝑛∈𝑀𝑀 . 
Theorem (5.1.2) (Schur-Horn)[35]:  Let 𝑏𝑏, 𝑐𝑐 ∈ ℝ𝑛𝑛 . Then 𝑐𝑐 ≺ 𝑏𝑏 if and only if there 
exists 𝛼𝛼 ∈ 𝒰𝒰(𝑛𝑛) such that 

𝐶𝐶𝜀𝜀 (𝛼𝛼∗𝑀𝑀𝑏𝑏 𝛼𝛼) = 𝑀𝑀𝑐𝑐 , 
where 𝜀𝜀 is the canonical basis of ℂ𝑛𝑛 . 
In this section we present a different version of the “infinite dimensional Schur-Horn 
theorem” given by 𝐴𝐴. Neumann in [101]. Our approach avoids the somewhat technical 
distinction between the diagonalizable and nondiagonalizable case. On the other hand, 
this version can be applied more easily to the problem of frame admissibility in the 
infinite dimensional case. The main tools we use are the Weyl–von Neumann theorem 
and the known properties of approximately unitarily equivalent operators. 
Given a sequence 𝑅𝑅 ∈ ℓ𝑅𝑅

∞  (ℕ), Neumann [101] defines 
𝛼𝛼𝑘𝑘 (𝑅𝑅) = sup|𝐹𝐹|=𝑘𝑘 ∑ 𝑅𝑅𝑖𝑖𝑖𝑖∈𝐹𝐹      and      𝐿𝐿𝑘𝑘 (𝑅𝑅) = inf|𝐹𝐹|=𝑘𝑘 ∑ 𝑅𝑅𝑖𝑖𝑖𝑖∈𝐹𝐹 . 

This generalizes the partial sums which appear in the definition of majorization. 
In the first part of this section we shall extend this definition to arbitrary selfadjoint 
operators on a Hilbert space ℋ. Denote by 𝑃𝑃𝑘𝑘  the set of orthogonal projections onto 𝑘𝑘-
dimensional subspaces of ℋ. 
Definition(5.1.3)[35]: Given 𝑆𝑆 ∈ 𝐿𝐿(ℋ)ℎ , we define, for any 𝑘𝑘 ∈ ℕ, 
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𝛼𝛼𝑘𝑘 (𝑆𝑆)  = sup𝑝𝑝∈𝒫𝒫𝑘𝑘 𝑤𝑤𝑜𝑜(𝑆𝑆𝑃𝑃)   and        𝐿𝐿𝑘𝑘 (𝑆𝑆)  = inf
𝑝𝑝∈𝒫𝒫𝑘𝑘

𝑤𝑤𝑜𝑜(𝑆𝑆𝑃𝑃)  =  −𝛼𝛼𝑘𝑘 (−𝑆𝑆). 

The following result asserts that Definition(5.1.3)  extends the natural extrapolation of 
Neumann’s definition for diagonalizable operators. 
Proposition(5.1.4)[35]:  Let 𝐵𝐵 = {𝑒𝑒𝑛𝑛 }𝑛𝑛∈ℕ be an orthonormal basis of a Hilbert space ℋ. 
If 𝑅𝑅 ∈ ℓ𝑅𝑅

∞ (ℕ), then, for every 𝑘𝑘 ∈ ℕ, 
𝛼𝛼𝑘𝑘 (𝑀𝑀𝐵𝐵,𝑅𝑅 )  = 𝛼𝛼𝑘𝑘 (𝑅𝑅). 

In order to prove this proposition we need the following technical results. 
Lemma(5.1.5)[35]:  Let 𝑆𝑆 ∈ 𝐿𝐿0(ℋ)+, and denote by 𝜆𝜆1 ≥ 𝜆𝜆2  ≥ ⋯ 𝜆𝜆𝑛𝑛 ≥ ⋯ 
the positive eigenvalues of 𝑆𝑆, counted with multiplicity (if 𝑑𝑑𝑖𝑖𝑚𝑚𝑅𝑅(𝑆𝑆) < ∞ we complete 
this sequence with zeros). Then, for every 𝑘𝑘 ∈ ℕ, 

𝛼𝛼𝑘𝑘 (𝑆𝑆)  = � 𝜆𝜆𝑖𝑖 .
𝑘𝑘

𝑖𝑖=1

 

Moreover, if 𝑃𝑃 ∈ 𝒫𝒫𝑘𝑘  is the projection onto the subspace spanned by an orthonormal set of 
eigenvectors of 𝜆𝜆1, . . . , 𝜆𝜆𝑘𝑘  , then 𝛼𝛼𝑘𝑘 (𝑆𝑆) = 𝑤𝑤𝑜𝑜(𝑆𝑆𝑃𝑃). 
Proof. Fix 𝑘𝑘 ∈ ℕ. It suffices to show that 𝑤𝑤𝑜𝑜(𝑆𝑆𝑄𝑄) ≤ 𝑤𝑤𝑜𝑜(𝑆𝑆𝑃𝑃)  = ∑ 𝜆𝜆𝑖𝑖

𝑘𝑘
𝑖𝑖=1  for every 𝑄𝑄 ∈ 𝒫𝒫𝑘𝑘 . 

This follows from Schur’s theorem (the diagonal is majorized by the sequence of 
eigenvalues), which also holds in this setting (see  [102]). _In [101], Neumann proved the 
following result: if 𝑅𝑅 ∈ ℓ𝑅𝑅

∞ (ℕ), 
𝑅𝑅𝑖𝑖

+ = 𝑚𝑚𝑅𝑅𝑥𝑥{𝑅𝑅𝑖𝑖 − 𝑙𝑙𝑖𝑖𝑚𝑚 𝑠𝑠𝑢𝑢𝑝𝑝 𝑅𝑅 , 0}, 𝑅𝑅𝑖𝑖
−𝑚𝑚𝑖𝑖𝑛𝑛{𝑅𝑅𝑖𝑖 − 𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛𝑓𝑓 𝑅𝑅, 0}, 𝑖𝑖 ∈ ℕ,            (6)         

then, for every 𝑘𝑘 ∈ ℕ, 
𝛼𝛼𝑘𝑘 (𝑅𝑅) = 𝛼𝛼𝑘𝑘 (𝑅𝑅+) + 𝑘𝑘 𝑙𝑙𝑖𝑖𝑚𝑚𝑠𝑠𝑢𝑢𝑝𝑝 𝑅𝑅  and 𝐿𝐿𝑘𝑘 (𝑅𝑅)  = 𝐿𝐿𝑘𝑘 (𝑅𝑅−) + 𝑘𝑘 𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛𝑓𝑓 𝑅𝑅.     (7) 
The next result extends Eq. (7) to selfadjoint operators. This fact is necessary for the 
proof of Proposition(5.1.4), but it is also a basic tool in order to deal with the maps 𝛼𝛼𝑘𝑘  
and 𝐿𝐿𝑘𝑘  . 
Proposition (5.1.6)[35]:  Let 𝑆𝑆 ∈ 𝐿𝐿(ℋ)ℎ . Then, for every 𝑘𝑘 ∈ ℕ., 
(i) 𝛼𝛼𝑘𝑘 (𝑆𝑆) = 𝛼𝛼𝑘𝑘 (𝑆𝑆+) + 𝑘𝑘 𝛼𝛼+(𝑆𝑆), 
(ii) 𝐿𝐿𝑘𝑘 (𝑆𝑆) = 𝐿𝐿𝑘𝑘 (𝑆𝑆−) + 𝑘𝑘 𝛼𝛼−(𝑆𝑆), 
where 𝛼𝛼+(𝑆𝑆), 𝛼𝛼−(𝑆𝑆), 𝑆𝑆+, 𝑆𝑆− are defined in (4) and (5). In particular, 
       lim𝑘𝑘→∞

𝛼𝛼𝑘𝑘 (𝑆𝑆)
𝑘𝑘

=  𝛼𝛼+(𝑆𝑆) = ‖𝑆𝑆‖𝑒𝑒and  lim𝑘𝑘→∞
𝐿𝐿𝑘𝑘 (𝑆𝑆)

𝑘𝑘
=  𝛼𝛼−(𝑆𝑆).              (8)      

Proof. Denote 𝛼𝛼+ = 𝛼𝛼+(𝑆𝑆), and 
                 𝑃𝑃2 = 𝑃𝑃2(𝑆𝑆)  =  𝐸𝐸[ ‖𝑆𝑆‖𝑒𝑒 , ‖𝑆𝑆‖ ]  =  𝐸𝐸[ 𝛼𝛼+, ‖𝑆𝑆‖ ],                       (9)           
where 𝐸𝐸 is the spectral measure of 𝑆𝑆. Recall that 

𝑆𝑆+ = � (𝑤𝑤 − 𝛼𝛼+)𝑑𝑑𝐸𝐸(𝑤𝑤)
 

[𝛼𝛼+,‖𝑆𝑆‖]
= (𝑆𝑆 − 𝛼𝛼+)𝑃𝑃2.  

Then   𝑆𝑆 − 𝑆𝑆+ =  𝑆𝑆(𝐼𝐼 − 𝑃𝑃2) + 𝛼𝛼+𝑃𝑃2 ≤  𝛼𝛼+𝐼𝐼. Therefore, for every 𝑘𝑘 ∈ ℕ and 𝑄𝑄 ∈ 𝒫𝒫𝑘𝑘 , 
        𝑤𝑤𝑜𝑜(𝑆𝑆𝑄𝑄) = 𝑤𝑤𝑜𝑜(𝑆𝑆+𝑄𝑄)  +  𝑤𝑤𝑜𝑜((𝑆𝑆 − 𝑆𝑆+)𝑄𝑄) ≤ 𝛼𝛼𝑘𝑘 (𝑆𝑆+)  +  𝑘𝑘𝛼𝛼+,            (10)         
which shows that 𝛼𝛼𝑘𝑘 (𝑆𝑆) ≤ 𝛼𝛼𝑘𝑘 (𝑆𝑆+) +  𝑘𝑘𝛼𝛼+ for every 𝑘𝑘 ∈ ℕ. 
To see the converse inequality, suppse first that 𝑤𝑤𝑜𝑜 𝑃𝑃2 = +∞. Denote by 𝜆𝜆1 ≥ 𝜆𝜆2 ≥
 . . .  𝜆𝜆𝑛𝑛 ≥ · · · the eigenvalues of 𝑆𝑆+, chosen as in Lemma (5.1.5). 
Let 𝑄𝑄𝑘𝑘  ∈  𝒫𝒫𝑘𝑘  be the projection onto the subspace spanned by an orthonormal set of 
eigenvectors of 𝜆𝜆1 . . .  𝜆𝜆𝑘𝑘  . Then 𝑄𝑄𝑘𝑘 ≤  𝑃𝑃2. By Lemma(5.1.5) , 
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𝑤𝑤𝑜𝑜(𝑆𝑆𝑄𝑄𝑘𝑘 ) =  𝑤𝑤𝑜𝑜(𝑆𝑆+𝑄𝑄𝑘𝑘 ) +  𝑤𝑤𝑜𝑜�(𝑆𝑆 − 𝑆𝑆+)𝑄𝑄𝑘𝑘 � = � 𝜆𝜆𝑖𝑖

𝑘𝑘

𝑖𝑖=1

+  𝑘𝑘𝛼𝛼+ = 𝛼𝛼𝑘𝑘 (𝑆𝑆+) +  𝑘𝑘𝛼𝛼+ . 

Hence, 𝛼𝛼𝑘𝑘 (𝑆𝑆)  = 𝛼𝛼𝑘𝑘 (𝑆𝑆+) +  𝑘𝑘𝛼𝛼+. Now, assume that 𝑤𝑤𝑜𝑜 𝑃𝑃2 =  𝑜𝑜 < ∞. If 𝑘𝑘 ≤ 𝑜𝑜, the same 
argument as before shows that 𝛼𝛼𝑘𝑘 (𝑆𝑆)  = 𝛼𝛼𝑘𝑘 (𝑆𝑆+) +  𝑘𝑘𝛼𝛼+. So, let 𝑘𝑘 > 𝑜𝑜 and take 𝜀𝜀 > 0. 
Since𝑃𝑃𝜀𝜀 =  𝐸𝐸[  𝛼𝛼+  − 𝜀𝜀,  𝛼𝛼+) has infinite rank (otherwise ‖𝑆𝑆‖𝑒𝑒 ≤  𝛼𝛼+ − 𝜀𝜀), we can take 
𝑄𝑄 ≤ 𝑃𝑃𝜀𝜀 , a projection of rank 𝑘𝑘 − 𝑜𝑜. 𝐼𝐼𝑓𝑓 𝑄𝑄𝑘𝑘 =  𝑄𝑄 + 𝑃𝑃2, then 
 𝛼𝛼𝑘𝑘 (𝑆𝑆) ≥ 𝑤𝑤𝑜𝑜(𝑆𝑆 𝑄𝑄𝑘𝑘 ) = 𝑤𝑤𝑜𝑜(𝑆𝑆𝑃𝑃2) + 𝑤𝑤𝑜𝑜(𝑆𝑆𝑄𝑄) 
 =  𝑤𝑤𝑜𝑜(𝑆𝑆+) +  𝑜𝑜 𝛼𝛼+ + 𝑤𝑤𝑜𝑜(𝑆𝑆𝑃𝑃𝜀𝜀 𝑄𝑄) 
 ≥  𝑤𝑤𝑜𝑜(𝑆𝑆+)  +  𝑜𝑜 𝛼𝛼+ + (𝑘𝑘 −  𝑜𝑜)( 𝛼𝛼+ − 𝜀𝜀) 
 =  𝛼𝛼𝑘𝑘 (𝑆𝑆+) + 𝑘𝑘 𝛼𝛼+ − 𝜀𝜀(𝑘𝑘 −  𝑜𝑜). 
Since 𝜀𝜀  is arbitrary, 𝛼𝛼𝑘𝑘 (𝑆𝑆)  =  𝛼𝛼𝑘𝑘 (𝑆𝑆+)  + 𝑘𝑘 𝛼𝛼+. The formula for 𝐿𝐿𝑘𝑘 (𝑆𝑆) follows by 
applying item 1 to −𝑆𝑆. Finally, as 𝑆𝑆+ ∈ 𝐿𝐿0(ℋ)+, its eigenvalues converge to zero. 
Hence, by Lemma (5.1.5), we get that 

lim
𝑘𝑘→∞

𝛼𝛼𝑘𝑘 (𝑆𝑆+)
𝑘𝑘

=  0 
and similarly for 𝐿𝐿𝑘𝑘 (𝑆𝑆−). Therefore, Eq. (8) follows.  
Proof of Proposition(5.1.4) . The result follows using Lemma(5.1.5) , Proposition(.5.1.6), 
Eq. (7) and the following obvious identities: if 𝑆𝑆 = 𝑀𝑀𝐵𝐵,𝑅𝑅 , then 
(i)    𝛼𝛼+(𝑆𝑆)  =  𝑙𝑙𝑖𝑖𝑚𝑚 𝑠𝑠𝑢𝑢𝑝𝑝 𝑅𝑅, and 𝛼𝛼−(𝑆𝑆)  =  𝑙𝑙𝑖𝑖𝑚𝑚 𝑖𝑖𝑛𝑛𝑓𝑓 𝑅𝑅, 
(ii)   𝑆𝑆+  =  𝑀𝑀𝐵𝐵,𝑅𝑅+  𝑅𝑅𝑛𝑛𝑑𝑑 𝑆𝑆− = 𝑀𝑀𝐵𝐵,𝑅𝑅−  , 
where 𝑅𝑅+ and 𝑅𝑅− are defined as in Eq. (6).  
𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃 (𝟓𝟓. 𝟏𝟏. 𝟕𝟕)[𝟑𝟑𝟓𝟓]: Let ℋ be a Hilbert space, 𝑆𝑆 ∈ 𝐿𝐿(ℋ) and 𝐵𝐵 an orthonormal 
basis of ℋ. Then: 
(a)     𝒰𝒰ℋ(𝑆𝑆)  =  {𝛼𝛼∗𝑆𝑆𝛼𝛼 ∶  𝛼𝛼 ∈ 𝒰𝒰(ℋ)}. 
(b)      𝐶𝐶[𝒰𝒰ℋ(𝑆𝑆)] = {𝑐𝑐 ∈ ℓ∞ (ℕ): 𝑀𝑀𝐵𝐵,𝑐𝑐 ∈ 𝐶𝐶𝐵𝐵(𝒰𝒰ℋ(𝑆𝑆)}. 
  
Given a diagonal operator 𝑀𝑀𝑅𝑅 ∈ 𝐿𝐿(ℋ)ℎ , Neumann showed that, if 𝑐𝑐 ∈  ℓ𝑅𝑅

∞  (ℕ) the 
following statements are equivalent [101]): 
(i)   𝑐𝑐 ∈ 𝐶𝐶[𝒰𝒰ℋ(𝑀𝑀𝑅𝑅 )]���������������. 
(ii)   𝛼𝛼𝑘𝑘 (𝑅𝑅)  ≥ 𝛼𝛼𝑘𝑘 (𝑐𝑐) 𝑅𝑅𝑛𝑛𝑑𝑑 𝐿𝐿𝑘𝑘 (𝑅𝑅) ≤  𝐿𝐿𝑘𝑘 (𝑐𝑐), 𝑘𝑘 ∈ ℕ. 
Now, our objective is to generalize this equivalence to every operator 𝑆𝑆 ∈ 𝐿𝐿(ℋ)ℎ  (via a 
reduction to the diagonalizable case). We need first the following result about 
approximately unitarily equivalent operators. 
Lemma (5.1.8)[35]: Let 𝑆𝑆, 𝑇𝑇 ∈ 𝐿𝐿(ℋ)ℎ . Then 𝑆𝑆 ∈ 𝑐𝑐𝑙𝑙‖·‖(𝒰𝒰ℋ(𝑇𝑇)) if and only if 

𝑐𝑐𝑙𝑙‖·‖ (𝒰𝒰ℋ(𝑆𝑆))  = 𝑐𝑐𝑙𝑙‖·‖(𝒰𝒰ℋ(𝑇𝑇)) . 
In this case 𝛼𝛼𝑘𝑘 (𝑆𝑆) = 𝛼𝛼𝑘𝑘 (𝑇𝑇) and 𝐿𝐿𝑘𝑘 (𝑆𝑆) = 𝐿𝐿𝑘𝑘 (𝑇𝑇) for every 𝑘𝑘 ∈ ℕ. 
Proof:  If {𝑉𝑉𝑛𝑛 }𝑛𝑛∈ℕ is a sequence in 𝒰𝒰(ℋ) such that ‖𝑉𝑉𝑛𝑛 𝑇𝑇𝑉𝑉𝑛𝑛

∗ −  𝑆𝑆‖ → 0,
                                     𝑛𝑛→∞

 

 then 
‖𝑉𝑉𝑛𝑛

∗ 𝑆𝑆𝑉𝑉𝑛𝑛 −  𝑇𝑇‖ =  ‖𝑉𝑉𝑛𝑛
∗ (𝑆𝑆 −  𝑉𝑉𝑛𝑛 𝑇𝑇𝑉𝑉𝑛𝑛

∗)𝑉𝑉𝑛𝑛 ‖ = ‖𝑉𝑉𝑛𝑛 𝑇𝑇𝑉𝑉𝑛𝑛
∗ − 𝑆𝑆‖ → 0

𝑛𝑛→∞
. 

Hence 𝑐𝑐𝑙𝑙‖·‖ (𝒰𝒰ℋ(𝑆𝑆))  = 𝑙𝑙‖·‖(𝒰𝒰ℋ(𝑇𝑇)). 𝛼𝛼𝑘𝑘 (𝑉𝑉𝑛𝑛 𝑇𝑇𝑉𝑉𝑛𝑛
∗) = 𝛼𝛼𝑘𝑘 (𝑇𝑇)   and 𝐿𝐿𝑘𝑘 ((𝑉𝑉𝑛𝑛 𝑇𝑇𝑉𝑉𝑛𝑛

∗ ) = 𝐿𝐿𝑘𝑘 (𝑇𝑇), 
for 𝑛𝑛, 𝑘𝑘 ∈ ℕ. Fix 𝑘𝑘 ∈ ℕ and take 𝑃𝑃 ∈ 𝒫𝒫𝑘𝑘 . Then 

𝑤𝑤𝑜𝑜 𝑆𝑆𝑃𝑃 = lim
𝑛𝑛→∞

𝑤𝑤𝑜𝑜 𝑉𝑉𝑛𝑛 𝑇𝑇𝑉𝑉𝑛𝑛
∗ 𝑃𝑃 ≤ lim

𝑛𝑛→∞
𝛼𝛼𝑘𝑘 (𝑉𝑉𝑛𝑛 𝑇𝑇𝑉𝑉𝑛𝑛

∗ ) = 𝛼𝛼𝑘𝑘 (𝑇𝑇). 
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Hence 𝛼𝛼𝑘𝑘 (𝑆𝑆) ≤ 𝛼𝛼𝑘𝑘 (𝑇𝑇). Similarly 𝐿𝐿𝑘𝑘 (𝑆𝑆) ≥ 𝐿𝐿𝑘𝑘 (𝑇𝑇). The reverse inequalities follow from 
the fact that 𝑉𝑉𝑛𝑛

∗𝑆𝑆𝑉𝑉𝑛𝑛  → 𝑇𝑇
𝑛𝑛→∞

. 
Theorem (5.1.9)[35]: Let 𝑆𝑆 ∈ 𝐿𝐿(ℋ)ℎ ,  and 𝑐𝑐 ∈ ℓ𝑅𝑅

∞  (ℕ). Then the following conditions 
are equivalent: 
(a)    𝑐𝑐 ∈ 𝐶𝐶[𝒰𝒰ℋ(𝑆𝑆)]�����������. 
(b)    𝛼𝛼𝑘𝑘 (𝑆𝑆) ≥ 𝛼𝛼𝑘𝑘 (𝑐𝑐) 𝑅𝑅𝑛𝑛𝑑𝑑 𝐿𝐿𝑘𝑘 (𝑆𝑆) ≤ 𝐿𝐿𝑘𝑘 (𝑐𝑐) for every  𝑘𝑘 ∈ ℕ.  
If one of these conditions holds, then max 𝜎𝜎𝑒𝑒 (𝑆𝑆) ≥ 𝑙𝑙𝑖𝑖𝑚𝑚 𝑠𝑠𝑢𝑢𝑝𝑝 𝑐𝑐 and min 𝜎𝜎𝑒𝑒 (𝑆𝑆) ≤
𝑙𝑙𝑖𝑖𝑚𝑚 𝑖𝑖𝑛𝑛𝑓𝑓 𝑐𝑐 . 
Proof. The diagonalizable case was proved by Neumann as mentioned before. Note that, 
in order to deduce our formulation from Neumann’s result, we need Proposition(5.1.4). If 
𝑆𝑆 is not diagonalizable, there exists a diagonalizable operator 𝐷𝐷 ∈ 𝑐𝑐𝑙𝑙‖·‖ (𝒰𝒰ℋ(𝑆𝑆)). By 
Lemma (5.1.8), 𝛼𝛼𝑘𝑘 (𝐷𝐷) = 𝛼𝛼𝑘𝑘 (𝑆𝑆) and 𝐿𝐿𝑘𝑘 (𝐷𝐷) = 𝐿𝐿𝑘𝑘 (𝑆𝑆) for every 𝑘𝑘 ∈ ℕ, and 
𝑐𝑐𝑙𝑙‖·‖ (𝒰𝒰ℋ(𝐷𝐷))  = 𝑙𝑙‖·‖(𝒰𝒰ℋ(𝑆𝑆)).. This implies that 

𝑐𝑐𝑙𝑙‖·‖∞  (𝐶𝐶[𝒰𝒰ℋ(𝐷𝐷)])  = 𝑐𝑐𝑙𝑙‖·‖∞ (𝐶𝐶[𝒰𝒰ℋ(𝑆𝑆)]), 
because the map 𝑇𝑇 ↦ 𝐶𝐶𝐵𝐵(𝑇𝑇) is continuous for every orthonormal basis 𝐵𝐵. 
Hence, the general case reduces to the diagonalizable case. The final remark follows from 
the fact that 

𝑙𝑙𝑖𝑖𝑚𝑚 𝑠𝑠𝑢𝑢𝑝𝑝 𝑐𝑐 = lim𝑘𝑘→∞
𝛼𝛼𝑘𝑘 (𝑐𝑐)

𝑘𝑘
    and    𝑙𝑙𝑖𝑖𝑚𝑚 𝑖𝑖𝑛𝑛𝑓𝑓 𝑐𝑐 = lim𝑘𝑘→∞

𝐿𝐿𝑘𝑘 (𝑐𝑐)
𝑘𝑘

,       (11) 
and Eq. (8).  
A similar result can be stated for hermitian operators in 𝐿𝐿1(ℋ) and sequences in ℓ𝑅𝑅

1  (ℕ). 
In this case our result is a slight generalization, using our maps 𝛼𝛼𝑘𝑘  and 𝐿𝐿𝑘𝑘 , of some 
results due to Neumann. 
Definition (5.1.10)[35]: Let ∏, be the set of all bijective maps on ℕ and, for any 𝑘𝑘 ∈ ℕ, 
denote by ∏ ⊆ ∏,𝑘𝑘  the set of permutations 𝜎𝜎 such that 𝜎𝜎(𝑛𝑛) = 𝑛𝑛 for every 𝑛𝑛 > 𝑘𝑘. Given 
𝑅𝑅 ∈  ℓ∞ (ℕ) and  𝜎𝜎 ∈ ∏, we define: 
(a)      a𝜎𝜎 =  (𝑅𝑅𝜎𝜎(1), 𝑅𝑅𝜎𝜎(2), . . . ). 
(b)    𝐼𝐼𝐼𝐼. a =  {a𝜎𝜎 , 𝜎𝜎 ∈ 𝐼𝐼𝐼𝐼}, the orbit of a, under the action of 𝐼𝐼𝐼𝐼.. 
(c)   𝑐𝑐𝑜𝑜𝑛𝑛𝑣𝑣(𝐼𝐼𝐼𝐼 · a), the convex hull of the orbit of a. 
(5.1.11)[35]: If  𝑏𝑏, a are sequences in ℓ𝑅𝑅

1  (ℕ), Neumann [101] proved that the following 
statements are equivalent: 
(a)    𝑏𝑏 ∈  𝑐𝑐𝑙𝑙‖·‖ (𝑐𝑐𝑜𝑜𝑛𝑛𝑣𝑣(𝐼𝐼𝐼𝐼 · a)). 
(b)      ∑ 𝑏𝑏𝑘𝑘 = ∑ 𝑅𝑅𝑘𝑘

∞
𝑘𝑘=1

∞
𝑘𝑘=1   and 𝛼𝛼𝑘𝑘 (𝑅𝑅) ≥ 𝛼𝛼𝑘𝑘 (𝑏𝑏), 𝐿𝐿𝑘𝑘 (𝑅𝑅)  ≤ 𝐿𝐿𝑘𝑘 (𝑏𝑏), 𝑘𝑘 ∈ ℕ. 

Proposition(5.1.12)[35]: Let 𝑆𝑆 ∈ 𝐿𝐿1(ℋ)ℎ , and 𝑏𝑏 ∈ ℓ𝑅𝑅
1  (ℕ). Then the following 

statements are equivalent: 
(i)    𝑏𝑏 ∈ 𝑐𝑐𝑙𝑙‖·‖1

  (𝐶𝐶[𝒰𝒰ℋ(𝑆𝑆)]).   
(ii)    𝛼𝛼𝑘𝑘 (𝑆𝑆) ≥ 𝛼𝛼𝑘𝑘 (𝑏𝑏), 𝐿𝐿𝑘𝑘 (𝑆𝑆)  ≤ 𝐿𝐿𝑘𝑘 (𝑏𝑏) for every 𝑘𝑘 ∈ ℕ, and ∑ 𝑏𝑏𝑘𝑘 = 𝑤𝑤𝑜𝑜𝑆𝑆.∞

𝑘𝑘=1  
Proof. 𝑖𝑖 ⟹ 𝑖𝑖𝑖𝑖. Note that 𝑐𝑐𝑙𝑙‖·‖1

 (𝐶𝐶[𝒰𝒰ℋ(𝑆𝑆)])  ⊆ 𝑐𝑐𝑙𝑙‖·‖∞
(𝐶𝐶[𝒰𝒰ℋ(𝑆𝑆)]). Hence, by Proposition 

(5.1.11), 𝛼𝛼𝑘𝑘 (𝑆𝑆) ≥ 𝛼𝛼𝑘𝑘 (𝑏𝑏) and 𝐿𝐿𝑘𝑘 (𝑆𝑆) ≤ 𝐿𝐿𝑘𝑘 (𝑏𝑏) for every 𝑘𝑘 ∈ ℕ. The equality∑ 𝑏𝑏𝑘𝑘 =∞
𝑘𝑘=1

𝑤𝑤𝑜𝑜𝑆𝑆  clearly holds if 𝑏𝑏 ∈ 𝐶𝐶[𝒰𝒰ℋ(𝑆𝑆)]. The general case follows from the ℓ1(ℕ)-continuity 
of the map 𝑏𝑏 ⟼ ∑ 𝑏𝑏𝑘𝑘 .∞

𝑘𝑘=1  
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𝑖𝑖𝑖𝑖 ⟹ 𝑖𝑖. Let a ∈ ℓ𝑅𝑅
1  (ℕ) and 𝐵𝐵 = {𝑒𝑒𝑘𝑘 }𝑘𝑘∈ℕ an orthonormal basis of ℋ such that 𝑆𝑆 =  𝑀𝑀𝐵𝐵,𝑅𝑅 . 

By Lemma (5.1.8)  and Proposition (5.1.4), it suffices to show that 𝑐𝑐𝑙𝑙‖·‖1
�𝑐𝑐𝑜𝑜𝑛𝑛𝑣𝑣(𝐼𝐼𝐼𝐼 ·

a)� ⊆ 𝑐𝑐𝑙𝑙‖·‖1
 (𝐶𝐶[𝒰𝒰ℋ(𝑆𝑆)]).  

Claim. 𝑐𝑐𝑙𝑙‖·‖1
(𝑐𝑐𝑜𝑜𝑛𝑛𝑣𝑣(𝐼𝐼𝐼𝐼 · a))  = 𝑐𝑐𝑙𝑙‖·‖1

 (𝑐𝑐𝑜𝑜𝑛𝑛𝑣𝑣(∏ · 0 a)), 𝑤𝑤ℎ𝑒𝑒𝑜𝑜𝑒𝑒 ∏ =0 ⋃ ∏ .𝑘𝑘  𝑘𝑘∈ℕ  
Indeed, it is sufficient to prove that ∏· a   ⊆  𝑐𝑐𝑙𝑙‖·‖1

 (𝑐𝑐𝑜𝑜𝑛𝑛𝑣𝑣(∏ · 0 a)). Given 𝜎𝜎 ∈ ∏, a𝜎𝜎 ∈
∏  .  a  and 𝜀𝜀 > 0, take 𝑁𝑁 ∈ ℕ such that∑ |𝑅𝑅𝑘𝑘 |𝑘𝑘>𝑁𝑁 < 𝜀𝜀/2 and 𝑁𝑁0 ∈ ℕ such that 𝜎𝜎−1(𝕀𝕀𝑁𝑁) ⊆
 𝕀𝕀𝑁𝑁0  . There exists 𝜎𝜎0 ∈ ∏ ,𝑁𝑁0  such that  𝜎𝜎(𝑘𝑘) = 𝜎𝜎0(𝑘𝑘) for every 𝑘𝑘 ∈ 𝕀𝕀𝑁𝑁0  such that 
𝜎𝜎(𝑘𝑘) ∈ 𝕀𝕀𝑁𝑁. Therefore, 
�a 𝜎𝜎 − a 𝜎𝜎0 �

1
 = ∑ �𝑅𝑅𝜎𝜎(𝑘𝑘) − 𝑅𝑅𝜎𝜎0(𝑘𝑘)�𝜎𝜎(𝑘𝑘)∉𝕀𝕀𝑁𝑁   

                        ≤ ∑ �𝑅𝑅𝜎𝜎(𝑘𝑘)� +𝜎𝜎(𝑘𝑘)∉𝕀𝕀𝑁𝑁 ∑ �𝑅𝑅𝜎𝜎0(𝑘𝑘)� < 𝜀𝜀𝜎𝜎(𝑘𝑘)∉𝕀𝕀𝑁𝑁 . 
Consider 𝑏𝑏 ∈ 𝑐𝑐𝑜𝑜𝑛𝑛𝑣𝑣(∏ · 0 a). Then there exists 𝑛𝑛 ∈ ℕ such that 𝑏𝑏 ∈ 𝑐𝑐𝑜𝑜𝑛𝑛𝑣𝑣(∏ a 𝑛𝑛 ). 
This means that the first 𝑛𝑛 entries of 𝑏𝑏 form a convex combination of permutations of the 
first n entries of a, and 𝑏𝑏𝑘𝑘 = 𝑅𝑅𝑘𝑘  for every 𝑘𝑘 > 𝑛𝑛 . Hence (𝑏𝑏1, . . . , 𝑏𝑏𝑛𝑛 ) ≺ (𝑅𝑅1, . . . , 𝑅𝑅𝑛𝑛 ). 
Denote 𝐵𝐵𝑛𝑛 =  {𝑒𝑒𝑘𝑘 ∶  𝑘𝑘 ≤ 𝑛𝑛} and ℋ𝑛𝑛  = 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛 {𝐵𝐵𝑛𝑛 }. Then, by the Schur-Horn 
Theorem(5.1.2), there exists a unitary 𝛼𝛼0 ∈  𝐿𝐿(ℋ𝑛𝑛 ) 
such that 

𝑀𝑀𝐵𝐵,𝑏𝑏 |ℋ𝑛𝑛  = 𝐶𝐶𝐵𝐵𝑛𝑛  (𝛼𝛼0
∗𝑀𝑀𝐵𝐵,𝑅𝑅 |ℋ𝑛𝑛 𝛼𝛼0). 

Letting 

𝛼𝛼 = �𝛼𝛼0     0
0      1�

ℋ𝑛𝑛
ℋ𝑛𝑛

⊥  ∈ 𝒰𝒰(ℋ) 

we get that 𝑀𝑀𝐵𝐵,𝑏𝑏 = 𝐶𝐶𝐵𝐵(𝛼𝛼∗𝑀𝑀𝐵𝐵,a𝛼𝛼), and 𝑏𝑏 ∈ 𝐶𝐶[𝒰𝒰ℋ(𝑆𝑆)]. Therefore 

𝑐𝑐𝑙𝑙‖·‖1
(𝑐𝑐𝑜𝑜𝑛𝑛𝑣𝑣(𝐼𝐼𝐼𝐼 · a))  = 𝑐𝑐𝑙𝑙‖·‖1

 (𝑐𝑐𝑜𝑜𝑛𝑛𝑣𝑣(� · 
0

a))  ⊆ 𝑐𝑐𝑙𝑙‖·‖1
 (𝐶𝐶[𝒰𝒰ℋ(𝑆𝑆)]) , 

which completes the proof.  
In particular, 𝑐𝑐𝑙𝑙‖·‖1

(𝐶𝐶[𝒰𝒰ℋ(𝑆𝑆)]) is a convex set. On the other hand, since 
the maps 𝛼𝛼𝑘𝑘  are convex and the maps 𝐿𝐿𝑘𝑘  are concave for all 𝑘𝑘 ∈ ℕ, it can 
be deduced from Theorem (5.1.9)  that 𝑐𝑐𝑙𝑙‖·‖1

(𝐶𝐶[𝒰𝒰ℋ(𝑆𝑆)]) is convex, for every 𝑆𝑆 ∈
𝐿𝐿(ℋ)ℎ . Actually, this fact is known, and can also be deduced from the following results 
of Neumann [101]: 
1. If 𝑆𝑆 =  𝑀𝑀𝐵𝐵,𝑅𝑅  for some a ∈ ℓ𝑅𝑅

∞  (ℕ)  and some orthonormal basis 𝐵𝐵, then 

𝑐𝑐𝑙𝑙‖·‖∞
(𝑐𝑐𝑜𝑜𝑛𝑛𝑣𝑣(�· a))  =  𝑐𝑐𝑙𝑙‖·‖∞

(𝐶𝐶[𝑢𝑢ℋ(𝑆𝑆)]). 
2. If 𝑆𝑆 is not diagonalizable, then 
    𝐶𝐶[𝑢𝑢ℋ(𝑆𝑆)]������������ =  𝐶𝐶[𝑢𝑢ℋ(𝑆𝑆+)]�������������� + [𝛼𝛼 − (𝑆𝑆), 𝛼𝛼+(𝑆𝑆)]𝑁𝑁 + 𝐶𝐶[𝑢𝑢ℋ(𝑆𝑆−)]��������������,            (12) 
where 𝑅𝑅+(𝑆𝑆), 𝑅𝑅−(𝑆𝑆), 𝑆𝑆+, 𝑆𝑆− are defined in (4) and (5). 
Note that formula (12), which holds also for diagonalizable operators, gives another 
complete characterization of 𝐶𝐶[𝑢𝑢ℋ(𝑆𝑆)]������������. It can be used to give an alternative proof of 
Theorem(5.1.9) , but it can also be deduced from the statement of this theorem, and 
Proposition(.5.1.5). 
Preliminaries on frames. We introduce some basic facts about frames in Hilbert spaces. 
For a complete description of frame theory and its applications, the reader is referred to 
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Daubechies, Grossmann and Meyer [94], Aldroubi [88], the review by Heil and Walnut 
[96] or the books by Young [103] and Christensen [74]. 
Definition (5.1.13)[35]: Let ℱ = {𝑓𝑓𝑛𝑛 }𝑛𝑛∈ℕ a sequence in a Hilbert space ℋ. 
(𝑖𝑖) ℱ is called a frame if there exist numbers 𝐴𝐴, 𝐵𝐵 > 0 such that 
         𝐴𝐴‖𝑓𝑓‖2 ≤ ∑ |〈𝑓𝑓, 𝑓𝑓𝑛𝑛 〉|2

𝑛𝑛∈ℕ ≤ 𝐵𝐵‖𝑓𝑓‖2, for every 𝑓𝑓 ∈ ℋ.                    (13)           
 (ii) The optimal constants 𝐴𝐴, 𝐵𝐵 for Eq. (13) are called the frame bounds for ℱ. The frame 
 ℱ is called tight if 𝐴𝐴 =  𝐵𝐵, and Parseval if 𝐴𝐴 = 𝐵𝐵 = 1. Parseval frames are also called 
normalized tight frames. 
Definition(5.1.14)[35]: Let ℱ = {𝑓𝑓𝑛𝑛 }𝑛𝑛∈ℕbe a frame in ℋ. Let Κ be a separable Hilbert 
space. Let 𝐵𝐵 = {𝜑𝜑𝑛𝑛 : 𝑛𝑛 ∈ ℕ} be an orthonormal basis of Κ. From Eq. (13), it follows that 
there exists a unique 𝑇𝑇 ∈ 𝐿𝐿(Κ, ℋ) such that 

𝑇𝑇(𝜑𝜑𝑛𝑛 ) = 𝑓𝑓𝑛𝑛 ,     𝑛𝑛 ∈ ℕ. 
We shall say that the triple (𝑇𝑇,Κ, 𝐵𝐵) is a synthesis (or preframe) operator for ℱ. Another 
consequence of Eq. (13) is that 𝑇𝑇 is surjective. 
Remark (5.1.15)[35]: Let ℱ = {𝑓𝑓𝑛𝑛 }𝑛𝑛∈ℕ be a frame in ℋ and (𝑇𝑇,Κ, 𝐵𝐵) a synthesis 
operator for ℱ, with 𝐵𝐵 = {𝜑𝜑𝑛𝑛 : 𝑛𝑛 ∈ ℕ}. 
(a) The adjoint 𝑇𝑇∗ ∈  𝐿𝐿(ℋ,Κ) of 𝑇𝑇 is given by 

𝑇𝑇∗(𝑥𝑥) = �〈𝑥𝑥, 𝑓𝑓𝑛𝑛 〉𝜑𝜑𝑛𝑛
𝑛𝑛∈ℕ

,   𝑥𝑥 ∈ ℋ 

It is called an analysis operator for ℱ. 
(b) By the previous remarks, the operator 𝑆𝑆 = 𝑇𝑇𝑇𝑇∗ ∈   𝐿𝐿 (ℋ)+, called the 
frame operator of ℱ, satisfies 
            𝑆𝑆𝑓𝑓 = ∑ 〈𝑓𝑓, 𝑓𝑓𝑛𝑛 〉𝑓𝑓𝑛𝑛𝑛𝑛∈ℕ  , for every 𝑓𝑓 ∈ ℋ.                                         (14)      
It follows from (13) that 𝐴𝐴𝐼𝐼 ≤  𝑆𝑆 ≤ 𝐵𝐵1 . So that 𝑆𝑆 ∈ 𝒢𝒢𝑙𝑙(ℋ)+. Note that, by formula (14), 
the frame operator of ℱ does not depend on the chosen synthesis operator. 
Definition(5.1.16)[35]: Let  ℱ = 𝑓𝑓𝑛𝑛 }𝑛𝑛∈ℕ be a frame in ℋ. The cardinal number 

𝑒𝑒(ℱ) = 𝑑𝑑𝑖𝑖𝑚𝑚 �(𝑐𝑐𝑛𝑛 )𝑛𝑛∈ℕ ∈ ℓ2(ℕ): � 𝑐𝑐𝑛𝑛 𝑓𝑓𝑛𝑛 = 0
𝑛𝑛∈ℕ

� 

is called the excess of the frame. Holub [97] and Balan, Casazza, Heil and Landau [3] 
proved that, 𝑒𝑒(ℱ)  =  𝑠𝑠𝑢𝑢𝑝𝑝{ |𝐼𝐼| ∶ 𝐼𝐼 ⊆ ℕ and {𝑓𝑓𝑛𝑛 }𝑛𝑛∉𝐼𝐼 is still a frame on ℋ}. 
This characterization justifies the name “excess of ℱ”. It is easy to see that, for every 
synthesis operator (𝑇𝑇,Κ, 𝐵𝐵) 𝑜𝑜𝑓𝑓 ℱ, 𝑒𝑒(ℱ)  =  𝑑𝑑𝑖𝑖𝑚𝑚 𝑘𝑘𝑒𝑒𝑜𝑜 𝑇𝑇. The frame ℱ is called a Riesz 
basis if 𝑒𝑒(ℱ) = 0, i.e., if the synthesis operators of ℱ are invertible. 
Reformulation of frame admissibility. Recall that, given a sequence 𝑐𝑐 = (𝑐𝑐𝑘𝑘 )𝑘𝑘∈𝑀𝑀  ∈
ℓ∞ (𝑀𝑀)+ and 𝑆𝑆 ∈  𝒢𝒢𝑙𝑙 (ℋ)+, we denote by 𝐹𝐹(𝑆𝑆, 𝑐𝑐) the set of (𝑆𝑆, 𝑐𝑐)-frames, i.e., those 
frames ℱ = {𝑓𝑓𝑘𝑘 }𝑘𝑘∈𝑀𝑀  for ℋ, with frame operator 𝑆𝑆, such that ‖𝑓𝑓𝑘𝑘 ‖2 = 𝑐𝑐𝑘𝑘 , for every 𝑘𝑘 ∈
𝕄𝕄, and we say that the pair (𝑆𝑆, 𝑐𝑐) is frame admissible if 𝐹𝐹(𝑆𝑆, 𝑐𝑐)  ≠ ∅ . We shall consider 
the following equivalent formulation of frame admissibility, which makes clear its 
relationship with the Schur-Horn theorem of majorization theory. 
Proposition(5.1.17)[35]:  Let 𝑐𝑐 ∈ ℓ∞ (𝕄𝕄)+ and let 𝑆𝑆 ∈ 𝒢𝒢𝑙𝑙(ℋ)+. Then the following 
conditions are equivalent: 
(i) The pair (𝑆𝑆, 𝑐𝑐) is frame admissible. 
(ii) There exists a sequence of unit vectors {𝑢𝑢𝑘𝑘 }𝑘𝑘∈𝑀𝑀  in ℋ such that 
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𝑆𝑆 � 𝑐𝑐𝑘𝑘 𝑢𝑢𝑘𝑘 ⊗ 𝑢𝑢𝑘𝑘
𝑘𝑘∈𝑀𝑀

, 

where, if 𝕄𝕄 = ℕ, the sum converges in the strong operator topology. 
(iii) There exists an extension Κ = ℋ ⊕ ℋ𝑑𝑑  of ℋ such that, if we denote 

                                       𝑆𝑆1 = �𝑆𝑆    0
0    0� ℋ

ℋ𝑑𝑑
∈ 𝐿𝐿(Κ)+                           (15)  

Then   𝑐𝑐 ∈ 𝐶𝐶 [𝑢𝑢Κ(𝑆𝑆1)].  
In this case, there exists a frame ℱ ∈ 𝐹𝐹(𝑆𝑆, 𝑐𝑐) with  𝑒𝑒(ℱ) = 𝑑𝑑𝑖𝑖𝑚𝑚ℋ𝑑𝑑  
Proof: The equivalence between conditions 1 and 2 is well known (see, for example, 
[45]). Hence we shall prove 1 ↔3. Assume that ℱ =  {𝑓𝑓𝑘𝑘 }𝑘𝑘∈𝑀𝑀 ∈ 𝐹𝐹(𝑆𝑆, 𝑐𝑐) . Let (𝑇𝑇0, 𝐾𝐾0, 𝐵𝐵0) 
be a synthesis operator for ℱ. Consider the polar decomposition 𝑇𝑇0 = 𝛼𝛼|𝑇𝑇0|, where 
𝛼𝛼 ∶ 𝐾𝐾0  → ℋ is a coisometry with initial space (𝑘𝑘𝑒𝑒𝑜𝑜 𝑇𝑇0)⊥ and range ℋ. Note that 𝛼𝛼∗ 
maps isometrically ℋ onto ker 𝑇𝑇0

⊥ . 
Denote ℋ𝑑𝑑  =  𝑘𝑘𝑒𝑒𝑜𝑜 𝑇𝑇0, and Κ = ℋ ⊕ ℋ𝑑𝑑 . Let 𝑉𝑉: Κ → Κ0 be the unitary operator given 
by 

𝑉𝑉 (𝜉𝜉1, 𝜉𝜉2) = 𝛼𝛼∗𝜉𝜉1 + 𝜉𝜉2 , 𝑓𝑓𝑜𝑜𝑜𝑜 (𝜉𝜉1, 𝜉𝜉2) ∈ ℋ ⊕ ℋ𝑑𝑑 =  Κ. 
Consider the orthonormal basis 𝐵𝐵 =  𝑉𝑉∗(𝐵𝐵0) of Κ, and 𝑇𝑇 = 𝑇𝑇0𝑉𝑉 ∈ 𝐿𝐿(Κ, ℋ). 
Then (𝑇𝑇,Κ, 𝐵𝐵) is another synthesis operator for ℱ, with ker 𝑇𝑇 = ℋ𝑑𝑑 . 
Let 𝑇𝑇1 ∈ 𝐿𝐿(Κ) given by 𝑇𝑇1 𝜉𝜉 =  𝑇𝑇 𝜉𝜉 ⊕ 0ℋ𝑑𝑑  , 𝜉𝜉 ∈ Κ. Then 𝑇𝑇1

∗𝑇𝑇1 =  𝑇𝑇∗𝑇𝑇1 =  𝑇𝑇∗𝑇𝑇, 

|𝑇𝑇1 |  =  |𝑇𝑇|, and 𝑇𝑇1 𝑇𝑇1
∗ = �𝑇𝑇𝑇𝑇∗   0

0       0� ℋ
ℋ𝑑𝑑

= �𝑆𝑆    0
0    0� = 𝑆𝑆1 

If 𝑇𝑇1 =  𝛼𝛼1|𝑇𝑇1 | = 𝛼𝛼1|𝑇𝑇| is the polar decomposition of 𝑇𝑇1 , then 𝛼𝛼1acts on ℋ =
 (𝑘𝑘𝑒𝑒𝑜𝑜 𝑇𝑇1 )⊥ as a unitary operator. Hence 𝑊𝑊 = 𝛼𝛼1 +  𝑃𝑃ℋ𝑑𝑑  𝑢𝑢(Κ). Since 𝑇𝑇1 =  𝑊𝑊|𝑇𝑇|, 

𝑆𝑆1 = 𝑇𝑇1 𝑇𝑇1
∗ =  𝑊𝑊|𝑇𝑇|2𝑊𝑊∗ = 𝑊𝑊( 𝑇𝑇∗𝑇𝑇)𝑊𝑊∗  ⇒ 𝑊𝑊∗𝑆𝑆1𝑊𝑊 =  𝑇𝑇∗𝑇𝑇. 

On the other hand, if  𝐵𝐵 = {𝑒𝑒𝑘𝑘 }𝑘𝑘∈ℕ, then 〈 𝑇𝑇∗𝑇𝑇𝑒𝑒𝑘𝑘 , 𝑒𝑒𝑘𝑘 〉  =  〈𝑇𝑇𝑒𝑒𝑘𝑘 , 𝑇𝑇𝑒𝑒𝑘𝑘 〉  = ‖𝑓𝑓𝑘𝑘 ‖2 = 𝑐𝑐𝑘𝑘  for 
every 𝑘𝑘 ∈ 𝕄𝕄. Therefore, 

𝐶𝐶𝐵𝐵  (𝑊𝑊∗𝑆𝑆1𝑊𝑊) = 𝐶𝐶𝐵𝐵( 𝑇𝑇∗𝑇𝑇) = 𝑀𝑀𝐵𝐵,𝑐𝑐  ⇒ 𝑐𝑐 ∈  𝐶𝐶 [𝑢𝑢Κ(𝑆𝑆1)] . 
Conversely, suppose that there exists an extension Κ = ℋ ⊕ ℋ𝑑𝑑  of ℋ and 𝑉𝑉 ∈ 𝑢𝑢(Κ) 
such that 𝑀𝑀𝐵𝐵,𝑐𝑐 = 𝐶𝐶𝐵𝐵(𝑉𝑉∗𝑆𝑆1𝑉𝑉 ), for some orthonormal basis 𝐵𝐵 = {𝑒𝑒𝑘𝑘 }𝑘𝑘∈ℕof  Κ. Let 
𝑇𝑇 = 𝑆𝑆1

1/2𝑉𝑉. Since 𝑆𝑆 is invertible, we have 𝑅𝑅(𝑇𝑇) = ℋ and 𝑑𝑑𝑖𝑖𝑚𝑚 𝑘𝑘𝑒𝑒𝑜𝑜 𝑇𝑇 =  𝑑𝑑𝑖𝑖𝑚𝑚ℋ𝑑𝑑 . Thus 
ℱ = {𝑇𝑇𝑒𝑒𝑘𝑘 }𝑘𝑘∈ℕ is a frame for ℋ, with frame operator  𝑇𝑇 𝑇𝑇∗|ℋ = 𝑆𝑆1|ℋ = 𝑆𝑆 . Since 
 𝑇𝑇∗𝑇𝑇 = 𝑉𝑉∗𝑆𝑆1𝑉𝑉 and 𝐶𝐶𝐵𝐵(𝑉𝑉∗𝑆𝑆1𝑉𝑉 ) = 𝑀𝑀𝐵𝐵,𝑐𝑐  , we have ‖𝑇𝑇𝑒𝑒𝑘𝑘 ‖2 = 〈𝑇𝑇 𝑇𝑇∗𝑒𝑒𝑘𝑘 , 𝑒𝑒𝑘𝑘 〉 = 𝑐𝑐𝑘𝑘 , for every 
𝑘𝑘 ∈ 𝕄𝕄. Hence ℱ ∈  𝐹𝐹(𝑆𝑆, 𝑐𝑐) with 𝑒𝑒(ℱ) = 𝑑𝑑𝑖𝑖𝑚𝑚ℋ𝑑𝑑  .  
The finite-dimensional case. In this section we assume that ℋ is finite dimensional. We 
shall consider separately the cases of frames of finite or infinite length. Suppose that 
𝑆𝑆 ∈ 𝑀𝑀𝑛𝑛 (𝕔𝕔)+ and |𝑀𝑀| = 𝑚𝑚 < ∞. In this case, the classical Schur-Horn Theorem(5.1.2)  
gives a complete characterization of frame admissibility for (𝑆𝑆, 𝑐𝑐). 
Theorem(5.1.18)[35]: Let 𝑐𝑐 ∈ ℝ>0

𝑚𝑚   and let 𝑆𝑆 ∈ 𝒢𝒢𝑙𝑙𝑛𝑛 (ℂ)+, with eigenvalues 𝑏𝑏1 ≥ 𝑏𝑏2 ≥· · ·
 ≥  𝑏𝑏𝑛𝑛  > 0. Then, the pair (𝑆𝑆, 𝑐𝑐) is frame admissible if and only if 
             ∑ 𝑏𝑏𝑖𝑖 ≥ ∑ 𝑐𝑐𝑖𝑖

𝑘𝑘
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1  for   1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1,  and   ∑ 𝑏𝑏𝑖𝑖 = ∑ 𝑐𝑐𝑖𝑖

𝑚𝑚
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1  

In other words, if 𝑐𝑐 ≺ (𝑏𝑏1, . . . , 𝑏𝑏𝑛𝑛 , 0, . . . , 0) ∈ ℝ𝑚𝑚 . 
This result was obtained in [92] and [100], from an operator theoretic point of view. 
Actually the proofs given there can be adapted so as to obtain a proof of the classical 
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Schur-Horn theorem that is quite conceptual and simpler than those in the literature. 
Now, we consider frame admissibility for infinite sequences in finite dimensional Hilbert 
spaces. The case 𝑆𝑆 = 𝐼𝐼 of the next result appeared in [91]. 
Theorem(5.1.19)[35]:  Let 𝑐𝑐 ∈ ℓ∞ (ℕ)+. Let   𝑆𝑆 ∈ 𝒢𝒢𝑙𝑙𝑛𝑛 (ℂ)+,with eigenvalues 𝑏𝑏1 ≥ 𝑏𝑏2 ≥· ·
 · ≥  𝑏𝑏𝑛𝑛  > 0. Then the following conditions are equivalent: 
(a) The pair (𝑆𝑆, 𝑐𝑐) is frame admissible. 
(b)    ∑ 𝑏𝑏𝑖𝑖   ≥ 𝛼𝛼𝑘𝑘 (𝑐𝑐)𝑘𝑘

𝑖𝑖=1  , for every 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1, and    ∑ 𝑏𝑏𝑖𝑖 = ∑ 𝑐𝑐𝑖𝑖𝑖𝑖∈ℕ
𝑛𝑛
𝑖𝑖=1  

Proof.  Let 𝑏𝑏 = (𝑏𝑏1, . . . , 𝑏𝑏𝑛𝑛 , 0, . . . , 0, . . . )  ∈ ℓ∞ (ℕ)+. 
(𝑏𝑏) ⇒ (𝑅𝑅): Let ℋ be a infinite dimensional Hilbert space, and consider 
                          𝑆𝑆1 = �𝑆𝑆    0

0    0� ∈ 𝐿𝐿(ℂ𝑛𝑛 ⊕ ℋ). 
Then there exists an orthonormal basis 𝐵𝐵 = {𝑒𝑒𝑘𝑘 }𝑘𝑘∈ℕ   of 𝒦𝒦 = ℂ𝑛𝑛 ⊕ ℋsuch that 𝑆𝑆1 =
 𝑀𝑀𝐵𝐵,𝑏𝑏  . Hence, by Proposition (5.1.4), 

𝛼𝛼𝑘𝑘 (𝑆𝑆1 ) = � 𝑏𝑏𝑖𝑖

𝑘𝑘

𝑖𝑖=1

𝛼𝛼𝑘𝑘 (𝑐𝑐), 𝑓𝑓𝑜𝑜𝑜𝑜 𝑒𝑒𝑣𝑣𝑒𝑒𝑜𝑜𝑢𝑢 𝑘𝑘 ∈ ℕ. 

On  the other hand, note that 𝐿𝐿𝑘𝑘 (𝑆𝑆1 ) = 0 ≤ 𝐿𝐿𝑘𝑘 (𝑐𝑐) for every 𝑘𝑘 ∈ ℕ and  ∑ 𝑏𝑏𝑖𝑖
𝑛𝑛
𝑖𝑖=1 =

∑ 𝑐𝑐𝑖𝑖𝑖𝑖∈ℕ . Then, by Proposition(5.1.12) , there exists a sequence {𝑉𝑉𝑚𝑚 }𝑚𝑚∈ℕ in 𝑢𝑢(Κ) such that 

𝐶𝐶𝐵𝐵  (𝑉𝑉𝑚𝑚
∗𝑆𝑆1𝑉𝑉𝑚𝑚 )

‖ ‖1��
𝑚𝑚 → ∞

𝑀𝑀𝑐𝑐 , 

where ‖𝐴𝐴‖1 = 𝑤𝑤𝑜𝑜 |𝐴𝐴|. Therefore, by Proposition(5.1.21), there exists a norm bounded 
sequence of epimorphisms 𝑇𝑇𝑚𝑚 ∶ Κ →  ℂ𝑛𝑛  such that 𝑇𝑇𝑚𝑚 𝑇𝑇𝑚𝑚

∗ =  𝑆𝑆 for all 𝑚𝑚 ∈ ℕ, and 

(‖𝑇𝑇𝑚𝑚 (𝑒𝑒𝑖𝑖 )‖2)𝑖𝑖∈ℕ

ℓ1(ℕ)
�⎯⎯�

𝑚𝑚 → ∞
𝑐𝑐. Then, by a standard diagonal argument, we can ensure the 

existence of a subsequence, which we still call {𝑇𝑇𝑚𝑚 }𝑚𝑚∈ℕ, such that 𝑇𝑇𝑚𝑚 (𝑒𝑒𝑖𝑖) 𝑚𝑚→∞
�⎯⎯�  𝑓𝑓𝑖𝑖 ∈  ℂ𝑛𝑛 , 

with ‖𝑓𝑓𝑖𝑖 ‖2 = 𝑐𝑐𝑖𝑖  for every 𝑖𝑖 ∈ ℕ. 
Let 𝑇𝑇0 ∶  𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛 {𝐵𝐵}  →  ℂ𝑛𝑛  be the unique (densely defined) operator such that 𝑇𝑇0(𝑒𝑒𝑖𝑖 )  = 𝑓𝑓𝑖𝑖  
for every 𝑖𝑖 ∈ ℕ. Note that 𝑇𝑇0 is bounded because, if 𝑥𝑥 = ∑ 𝛼𝛼𝑖𝑖 𝑒𝑒𝑖𝑖

𝑜𝑜
𝑖𝑖=1  and 𝐶𝐶 = ∑ 𝑐𝑐𝑖𝑖𝑖𝑖∈ℕ =

 𝑤𝑤𝑜𝑜 𝑆𝑆, then 

 ‖𝑇𝑇0(𝑥𝑥)‖ = �� 𝛼𝛼𝑖𝑖 𝑓𝑓𝑖𝑖

𝑜𝑜

𝑖𝑖=1

� ≤ �|𝛼𝛼𝑖𝑖 |‖𝑓𝑓𝑖𝑖 ‖
𝑜𝑜

𝑖𝑖=1

 

                                                     ≤ (∑ 𝑐𝑐𝑖𝑖
𝑜𝑜
𝑖𝑖=1 )1/2(∑ |𝛼𝛼𝑖𝑖 |2𝑜𝑜

𝑖𝑖=1 )1/2 ≤ 𝐶𝐶1/2‖𝑥𝑥‖ 
The bounded extension of 𝑇𝑇0 to Κ is denoted 𝑇𝑇. 
Claim. ‖𝑇𝑇𝑚𝑚 −  𝑇𝑇‖

𝑚𝑚→∞
�⎯⎯� 0 

Indeed, let   𝜀𝜀 >  0 and 𝑖𝑖0 ∈ ℕ be such that  ∑ 𝑐𝑐𝑖𝑖 < 𝜀𝜀∞
𝑖𝑖=𝑖𝑖0 . Then there exists 𝑚𝑚𝑖𝑖 ∈ ℕ 

such that 
                               ∑ ‖𝑇𝑇𝑚𝑚 (𝑒𝑒𝑖𝑖 )‖∞

𝑖𝑖=𝑖𝑖0
2 ≤ 𝜀𝜀 for every 𝑚𝑚 ≥ 𝑚𝑚1                            (16) 

This is a consequence of the fact that (‖𝑇𝑇𝑚𝑚 (𝑒𝑒𝑖𝑖 )‖2)𝑖𝑖=𝑖𝑖0
∞

ℓ1(ℕ)
�⎯⎯�

𝑚𝑚 → ∞
(𝑐𝑐𝑖𝑖 )𝑖𝑖=𝑖𝑖0

∞ . On the other hand, 

there exists 𝑚𝑚2 ≥  𝑚𝑚1 such that 
∑ ‖𝑇𝑇𝑚𝑚 (𝑒𝑒𝑖𝑖 ) − 𝑓𝑓𝑖𝑖 ‖𝑖𝑖0−1

𝑖𝑖=𝑖𝑖0

2
≤ for every 𝑚𝑚 ≥ 𝑚𝑚2                                         (17) 
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Let 𝑚𝑚 ≥ 𝑚𝑚2  and  𝑥𝑥 = ∑ 𝛼𝛼𝑖𝑖 𝑒𝑒𝑖𝑖 ∈𝑜𝑜
𝑖𝑖=1 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛 {𝐵𝐵}. By equations (16) and (17), 

‖(𝑇𝑇𝑚𝑚  −  𝑇𝑇)(𝑥𝑥)‖2 ≤ ��|𝛼𝛼𝑖𝑖 |2 ��‖(𝑇𝑇𝑚𝑚  −  𝑇𝑇)(𝑒𝑒𝑖𝑖 )‖2
𝑜𝑜

𝑖𝑖=1

�
𝑜𝑜

𝑖𝑖=1

� 

 
          ≤ ‖𝑥𝑥‖2�∑ ‖(𝑇𝑇𝑚𝑚  −  𝑇𝑇)(𝑒𝑒𝑖𝑖 )‖2 + 2 ∑ ‖𝑇𝑇𝑚𝑚 (𝑒𝑒𝑖𝑖 )‖2 + ‖𝑇𝑇(𝑒𝑒𝑖𝑖 )‖2∞

𝑖𝑖=𝑖𝑖0
𝑖𝑖0−1
𝑖𝑖=1 � ≤ 5𝜀𝜀‖𝑥𝑥‖2 

which proves the claim. Therefore 
𝑇𝑇𝑇𝑇∗ = lim

𝑚𝑚 →∞
𝑇𝑇𝑚𝑚 𝑇𝑇𝑚𝑚

∗ =  𝑆𝑆. 
We have proved that the frame ℱ = {𝑓𝑓𝑖𝑖 }𝑖𝑖∈ℕ ∈ 𝐹𝐹(𝑆𝑆, 𝑐𝑐). 
(𝑅𝑅) ⇒ (𝑏𝑏): This follows from Theorem (51.9), applied to 𝑆𝑆1 and 𝑐𝑐, and 
Proposition(.5.1.17). 
Indeed, suppose that 𝑆𝑆1 ≠  0 (the case 𝑆𝑆1 =  0 is trivial). Then there exists a sequence 
𝑏𝑏 = (𝑏𝑏1, . . . , 𝑏𝑏𝑚𝑚 , 0, . . . , 0, . . . )  ∈ ℓ1(ℕ)+, with 𝑏𝑏𝑚𝑚 > 0, and an orthonormal basis 𝐵𝐵 =
{𝑒𝑒𝑛𝑛 }𝑛𝑛∈ℕof Κ such 𝑤𝑤ℎ𝑅𝑅𝑤𝑤 𝑆𝑆1 =  𝑀𝑀𝐵𝐵,𝑏𝑏  . Let 𝑐𝑐 ∈ ℓ1(ℕ)+. By Proposition(5.1.12), Condition 2 
of Theorem(5.1.23)  means that c∈ 𝑐𝑐𝑙𝑙‖∙‖1 (𝐶𝐶[𝑢𝑢Κ(𝑆𝑆1)]) . But, by Proposition(5.1.12), 
Condition 1 of Theorem(5.1.23)  means that 𝑐𝑐 ∈ 𝐶𝐶[𝑢𝑢Κ(𝑆𝑆1)] . 
Note that, although 𝑐𝑐𝑙𝑙‖∙‖1 (conv(∏·  𝑏𝑏))  = 𝑐𝑐𝑙𝑙‖∙‖1  (𝐶𝐶[𝑢𝑢Κ(𝑆𝑆1)]) = 𝐶𝐶[𝑢𝑢Κ(𝑆𝑆1)], it is not true 
that conv(∏·  𝑏𝑏) is closed, as a subset of ℓ1(ℕ)+. For example, if 𝑏𝑏 = (1, 0, 0, . . . ), then, 
by Proposition (5.1.12), 

𝑐𝑐 = �
1

2𝑛𝑛 �
𝑛𝑛∈ℕ

∈ 𝑐𝑐𝑙𝑙‖∙‖1
(𝐶𝐶[𝑢𝑢Κ(𝑒𝑒1 ⊗ 𝑒𝑒1)]) = 𝑐𝑐𝑙𝑙‖∙‖1 conv(�·  𝑏𝑏) 

Nevertheless, 𝑐𝑐 ∉ 𝑐𝑐𝑜𝑜𝑛𝑛𝑣𝑣(∏·  𝑏𝑏), because every sequence in conv(∏·  𝑏𝑏)has finite nonzero 
entries. In this case, 𝑐𝑐 = 𝐶𝐶𝐵𝐵(𝑥𝑥 ⊗ 𝑥𝑥) ∈ 𝐶𝐶[𝑢𝑢Κ(𝑒𝑒1 ⊗ 𝑒𝑒1)], where 

𝑥𝑥 = � 2−𝑛𝑛
2 𝑒𝑒𝑛𝑛

𝑛𝑛∈ℕ
 

 
Throughout this section ℋ denotes a separable infinite dimensional Hilbert space. The 
first result gives necessary conditions for frame admissibility: 
Theorem( 5.1.20)[35]: Let 𝑆𝑆 ∈ 𝒢𝒢𝑙𝑙𝑛𝑛 (ℋ)+ and 𝑐𝑐 ∈ ℓ∞ (ℕ)+. If the pair (𝑆𝑆, 𝑐𝑐) is frame 
admissible, then  

∑ 𝑐𝑐𝑖𝑖 = ∞𝑖𝑖∈ℕ , and 
𝛼𝛼𝑘𝑘 (𝑆𝑆)  ≥ 𝛼𝛼𝑘𝑘 (𝑐𝑐), for every 𝑘𝑘 ∈ ℕ. In particular, 𝑙𝑙𝑖𝑖𝑚𝑚 𝑠𝑠𝑢𝑢𝑝𝑝 𝑐𝑐 ≤ ‖𝑆𝑆‖𝑒𝑒   
Proof. Suppose that there exists a frame ℱ ∈ 𝐹𝐹(𝑆𝑆, 𝑐𝑐). Then, by Proposition (5.1.17), there 
exists an extension Κ = ℋ ⊕ ℋ𝑑𝑑  of ℋ such that, if we denote 

𝑆𝑆1 = �𝑆𝑆     0
0    0 � ℋ

ℋ𝑑𝑑
∈ 𝐿𝐿(Κ)+ 

then 𝑐𝑐 ∈ 𝐶𝐶 [𝑢𝑢Κ(𝑆𝑆1)]. Hence, ∑ 𝑐𝑐𝑖𝑖 =𝑖𝑖∈ℕ 𝑤𝑤𝑜𝑜𝑀𝑀𝑐𝑐  =  𝑤𝑤𝑜𝑜 𝑆𝑆1 = ∞. On the other hand, by 
Proposition(5.1.5), 𝛼𝛼𝑘𝑘 (𝑆𝑆)  = 𝛼𝛼𝑘𝑘 (𝑆𝑆1) for every 𝑘𝑘 ∈ ℕ. Then, applying Theorem(5.1.9) , 
the statement follows.  
In [100] (see also [91]) there is the following result which gives sufficient conditions for 
a pair (𝑆𝑆, 𝑐𝑐) in order to be frame admissible: 
Theorem (5.1.21)[35]: (Kornelson-Larson). Let 𝑆𝑆 ∈ 𝒢𝒢𝑙𝑙𝑛𝑛 (ℋ)+  and 𝑐𝑐 ∈ 𝑙𝑙∞ (ℕ)+. 
Suppose that ∑ 𝑐𝑐𝑖𝑖 = ∞𝑖𝑖∈ℕ  and ‖𝑐𝑐‖∞ < ‖𝑆𝑆‖𝑒𝑒  . Then the pair (𝑆𝑆, 𝑐𝑐) air is frame admissible.  
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The following result, which generalizes Theorem( 5.1.21), strengths slightly the 
necessary conditions for frame admissibility given by Theorem( 5.1.20), to get sufficient 
conditions. A tight frame version of this result appeared in 𝑅𝑅. Kadison [98] and [99]. 
Recall the notation 𝑃𝑃2(𝑆𝑆) = 𝐸𝐸[‖𝑆𝑆‖𝑒𝑒 , ‖𝑆𝑆‖ ], where 𝐸𝐸 is the spectral measure of 𝑆𝑆 ∈
 𝐿𝐿(ℋ)+. 
Theorem(5.1.22)[35]: Let 𝑆𝑆 ∈  𝒢𝒢𝑙𝑙 (ℋ)+and 𝑐𝑐 ∈ 𝑙𝑙∞ (ℕ)+, such that  ∑ 𝑐𝑐𝑖𝑖 = ∞𝑖𝑖∈ℕ . 
Assume one of the following two conditions: 
(i)  (a)  𝑤𝑤𝑜𝑜 𝑃𝑃2(𝑆𝑆) = ∞, 
(b)   𝛼𝛼𝑘𝑘 (𝑆𝑆) ≥ 𝛼𝛼𝑘𝑘 (𝑐𝑐) for every 𝑘𝑘 ∈ ℕ, and 
(c)   ‖𝑆𝑆‖𝑒𝑒  >  𝑙𝑙𝑖𝑖𝑚𝑚 𝑠𝑠𝑢𝑢𝑝𝑝(𝑐𝑐). 
(ii)   (a)   𝑤𝑤𝑜𝑜 𝑃𝑃2(𝑆𝑆)  =  𝑜𝑜 ∈ ℕ, 
(b)   𝛼𝛼𝑘𝑘 (𝑆𝑆) > 𝛼𝛼𝑘𝑘 (𝑐𝑐)𝑓𝑓𝑜𝑜𝑜𝑜 1 ≤  𝑘𝑘 ≤ 𝑜𝑜, 
(c)   𝛼𝛼𝑘𝑘 (𝑆𝑆) > 𝛼𝛼𝑘𝑘 (𝑐𝑐), 𝑓𝑓𝑜𝑜𝑜𝑜 𝑘𝑘 >  𝑜𝑜, and 
(d)   ‖𝑆𝑆‖𝑒𝑒 > 𝑙𝑙𝑖𝑖𝑚𝑚 𝑠𝑠𝑢𝑢𝑝𝑝(𝑐𝑐). 
Then, the pair (𝑆𝑆, 𝑐𝑐) is frame admissible. 
Proof. By Proposition(5.1.13), it suffices to show that there exists a sequence of unit 
vectors {𝑥𝑥𝑘𝑘 }𝑘𝑘∈ℕ such that 𝑆𝑆 = ∑ 𝑐𝑐𝑘𝑘 𝑥𝑥𝑘𝑘𝑘𝑘∈ℕ ⊗ 𝑥𝑥𝑘𝑘 . Assume that the first condition holds. 
Then, since ‖𝑆𝑆‖𝑒𝑒 > 𝑙𝑙𝑖𝑖𝑚𝑚 𝑠𝑠𝑢𝑢𝑝𝑝(𝑐𝑐), there exist 𝑚𝑚0 ∈  ℕ and 𝜀𝜀 >  0 such that 
𝑐𝑐𝑚𝑚 ≤  ‖𝑆𝑆‖𝑒𝑒 − 𝜀𝜀    for 𝑚𝑚 ≥ 𝑚𝑚0. 
Let 𝜇𝜇1  ≥ 𝜇𝜇2  · · ·≥ 𝜇𝜇𝑛𝑛 ≥ · · · be the sequence of eigenvalues of 𝑆𝑆+, chosen as in Lemma 
(5.1.5) Let {𝑢𝑢𝑛𝑛 }𝑛𝑛∈ℕ be an orthonormal system such that 𝑆𝑆+𝑢𝑢𝑛𝑛 = 𝜇𝜇𝑛𝑛 𝑢𝑢𝑛𝑛 . Denote ⋋𝑛𝑛 = 𝜇𝜇𝑛𝑛 +
‖𝑆𝑆‖𝑒𝑒 , 𝑛𝑛 ∈ ℕ. Note that ‖𝑆𝑆‖ ≥⋋𝑛𝑛 ≥ ‖𝑆𝑆‖𝑒𝑒  𝑅𝑅𝑛𝑛𝑑𝑑  𝑆𝑆𝑢𝑢𝑛𝑛 =⋋𝑛𝑛 𝑢𝑢𝑛𝑛 , 𝑛𝑛 ∈ ℕ. By 
Proposition(5.1.6), for every 𝑘𝑘 ∈ ℕ, 
   ∑ ⋋𝑖𝑖 𝑢𝑢𝑖𝑖 ⊗ 𝑢𝑢𝑖𝑖 ≤ 𝑆𝑆𝑘𝑘

𝑖𝑖=1  ,   and     𝛼𝛼𝑘𝑘 (𝑆𝑆) = ∑ ⋋𝑖𝑖
𝑘𝑘
𝑖𝑖=1  

Let 𝑛𝑛0  be the first integer such that∑ 𝑐𝑐𝑖𝑖 > ∑ ⋋𝑛𝑛
𝑚𝑚0
𝑖𝑖=1

𝑛𝑛0
𝑖𝑖=1  

Then 𝑛𝑛0 ≥ 𝑚𝑚0 + 1, and ℎ = ∑ 𝑐𝑐𝑖𝑖 − ∑ ⋋𝑖𝑖 ≤ 𝑐𝑐𝑛𝑛0
𝑚𝑚0
𝑖𝑖=1 < ‖𝑆𝑆‖𝑒𝑒 ≤⋋𝑚𝑚0+1

𝑛𝑛0
𝑖𝑖=1  

Let 𝑐𝑐0  = (𝑐𝑐1, . . . , 𝑐𝑐𝑛𝑛0  ). Since 
                     ∑ ⋋𝑖𝑖 = 𝛼𝛼𝑘𝑘 (𝑆𝑆) ≥ 𝛼𝛼𝑘𝑘 (𝑐𝑐) ≥ 𝛼𝛼𝑘𝑘 (𝑐𝑐0)𝑘𝑘

𝑖𝑖=1 ,         1 ≤ 𝑘𝑘 ≤ 𝑚𝑚0 
we have c0 𝑐𝑐0 ≺ �⋋𝑖𝑖 , … ,⋋𝑚𝑚0 , ℎ, 0, … ,0� ∈ ℝ𝑛𝑛0 . Denote 

𝑆𝑆1 =  ℎ𝑚𝑚0+1 ⊗ 𝑢𝑢𝑚𝑚0+1 +   �⋋𝑖𝑖 𝑢𝑢𝑖𝑖 ⊗
𝑚𝑚0

𝑖𝑖=1

𝑢𝑢𝑖𝑖 ≤ 𝑆𝑆 

and 𝑆𝑆2 =  𝑆𝑆 − 𝑆𝑆1. Then the pair (𝑆𝑆1, 𝑐𝑐0 ), acting on span {𝑢𝑢1, . . . , 𝑢𝑢𝑚𝑚0+1}, satisfies the 
conditions of Theorem (5.1.17). Hence, there exists a set of unit vectors {𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛0 } such 
that ∑ 𝑐𝑐𝑖𝑖 𝑥𝑥𝑖𝑖

𝑛𝑛0
𝑖𝑖=1 ⊗ 𝑥𝑥𝑖𝑖 = 𝑆𝑆1. Note that 𝑆𝑆2 ≥  0, 𝑅𝑅(𝑆𝑆2) is closed (by Fredholm theory), and 

‖𝑆𝑆2‖𝑒𝑒  =  ‖𝑆𝑆‖𝑒𝑒 . Then we can apply Theorem( 5.1.20) to the pair (𝑆𝑆2, {𝑐𝑐𝑖𝑖 }𝑖𝑖>𝑛𝑛0  ), acting on 
𝑅𝑅(𝑆𝑆2).  So, there exist unit vectors 𝑥𝑥𝑘𝑘 , for 𝑘𝑘 > 𝑛𝑛0, such that 

𝑆𝑆2 = � 𝑐𝑐𝑖𝑖 𝑥𝑥𝑖𝑖

∞

𝑖𝑖=𝑛𝑛0+1

⊗ 𝑥𝑥𝑖𝑖 . 

Therefore we obtain the rank-one decomposition 𝑆𝑆 = ∑ 𝑐𝑐𝑖𝑖 𝑥𝑥𝑖𝑖 ⊗ 𝑥𝑥𝑖𝑖𝑖𝑖∈ℕ . 
Assume Condition 2. Note that, by equations (8) and (11), the condition 

‖𝑆𝑆‖𝑒𝑒 >  𝑙𝑙𝑖𝑖𝑚𝑚 𝑠𝑠𝑢𝑢𝑝𝑝(𝑐𝑐) implies that 𝛼𝛼𝑚𝑚 (𝑆𝑆) − 𝛼𝛼𝑚𝑚 (𝑐𝑐)
→∞
�� ∞ 
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(i) Therefore, by item 
(c), we can assume that there exists 𝛿𝛿 >  0 such that 
(i)   𝛼𝛼𝑜𝑜+𝑘𝑘 (𝑆𝑆)  − 𝛿𝛿 > 𝛼𝛼𝑜𝑜+𝑘𝑘 (𝑐𝑐), for every 𝑘𝑘 ∈ ℕ. 
(ii) There exists 𝑚𝑚0 ≥ 1 such that 𝑐𝑐𝑚𝑚 ≤ ‖𝑆𝑆‖𝑒𝑒 − 𝛿𝛿 for 𝑚𝑚 ≥ 𝑚𝑚0. 
Let 𝑚𝑚1 =  𝑚𝑚𝑅𝑅𝑥𝑥{𝑚𝑚0, 𝑜𝑜 +  1}. Let 𝜇𝜇1 ≥ · · · ≥ 𝜇𝜇𝑜𝑜  be the greatest eigenvalues of 𝑆𝑆+, and let 
{𝑢𝑢1, . . . , 𝑢𝑢𝑜𝑜 } be an associated orthonormal set of eigenvectors. 
Denote ⋋𝑖𝑖  = 𝜇𝜇𝑖𝑖 + ‖𝑆𝑆‖𝑒𝑒 ,   1 ≤ 𝑖𝑖 ≤ 𝑜𝑜 and ⋋𝑖𝑖  = ‖𝑆𝑆‖𝑒𝑒 − 𝛿𝛿

2𝑚𝑚1
,   𝑜𝑜 + 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚1 + 1_ Then, 

by Proposition (5.1.6), 
(a)    𝛼𝛼𝑘𝑘 (𝑆𝑆)  = ∑ ⋋𝑖𝑖

𝑘𝑘
𝑖𝑖=1  , for 1 ≤ 𝑘𝑘 ≤  𝑜𝑜, and 

(b) 𝛼𝛼𝑘𝑘 (𝑐𝑐) ≤ 𝛼𝛼𝑘𝑘 (𝑆𝑆) − 𝛿𝛿 ≤ ∑ ⋋𝑖𝑖
𝑘𝑘
𝑖𝑖=1  , for   𝑜𝑜 +  1 ≤ 𝑘𝑘 ≤ 𝑚𝑚1 + 1. 

On the other hand, since 𝑄𝑄 = 𝐸𝐸([‖𝑆𝑆‖𝑒𝑒  – 𝛿𝛿/2𝑚𝑚1, ‖𝑆𝑆‖𝑒𝑒 ) ) has infinite rank, there exists an 
orthonormal set {𝑢𝑢𝑜𝑜+1, . . . , 𝑢𝑢𝑚𝑚1 + 1}𝑅𝑅(𝑄𝑄).  Therefore 

� ⋋𝑖𝑖 𝑢𝑢𝑖𝑖 ⊗
𝑚𝑚1+1

𝑖𝑖=1

𝑢𝑢𝑖𝑖 ≤ 𝑆𝑆 

Let 𝑛𝑛0 be the first integer such that ∑ 𝑐𝑐𝑖𝑖 > ∑ ⋋𝑖𝑖
𝑚𝑚0
𝑖𝑖=1

𝑛𝑛0
𝑖𝑖=1  . Then  𝑛𝑛0 ≥  𝑚𝑚0 + 1 

and 

ℎ = � 𝑐𝑐𝑖𝑖 − �⋋𝑖𝑖 ≤ 𝑐𝑐𝑛𝑛0

𝑚𝑚0

𝑖𝑖=1

≤
𝑛𝑛0

𝑖𝑖=1

‖𝑆𝑆‖𝑒𝑒 ≤⋋𝑚𝑚0 + 1 

∑ ⋋𝑖𝑖 = 𝛼𝛼𝑘𝑘 (𝑆𝑆) ≥ 𝛼𝛼𝑘𝑘 (𝑐𝑐) ≥ 𝛼𝛼𝑘𝑘 (𝑐𝑐0) 𝑘𝑘
𝑖𝑖=1 , 1 ≤  𝑘𝑘 ≤ 𝑚𝑚0 , and 

∑ ⋋𝑖𝑖 ≥ 𝛼𝛼𝑘𝑘 (𝑆𝑆)−𝛿𝛿 ≥ 𝛼𝛼𝑘𝑘 (𝑐𝑐) ≥ 𝛼𝛼𝑘𝑘 (𝑐𝑐0) 𝑘𝑘
𝑖𝑖=1 , 𝑜𝑜 + 1 ≤  𝑘𝑘 ≤ 𝑚𝑚, 

we have 𝑐𝑐0 ≺ (⋋1, . . . ,⋋𝑚𝑚0  , ℎ, 0, . . . , 0)  ∈ ℝ𝑛𝑛0   . Denote 
𝑆𝑆1=ℎ𝑢𝑢𝑚𝑚 0+1⊗𝑢𝑢𝑚𝑚0+1 + ∑ ⋋𝑖𝑖 𝑢𝑢𝑖𝑖 ⊗ 𝑢𝑢𝑖𝑖 ≤ 𝑆𝑆 𝑚𝑚0

𝑖𝑖=1  and 𝑆𝑆2 = 𝑆𝑆 − 𝑆𝑆1 then the pair 
(𝑆𝑆1, 𝑐𝑐0) 𝑅𝑅𝑐𝑐𝑤𝑤𝑖𝑖𝑛𝑛𝑔𝑔 𝑜𝑜𝑛𝑛 𝑠𝑠𝑝𝑝𝑅𝑅𝑛𝑛  {𝑢𝑢1 … . 𝑢𝑢𝑚𝑚0+1} satisfies the conditions of Theorem 
(5.1.18).Hence  there exists a set of unit vectors {𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛0 } ⊆ ℋ such that ∑ 𝑐𝑐𝑖𝑖 𝑥𝑥𝑖𝑖 ⊗𝑛𝑛0

𝑖𝑖=1
𝑥𝑥𝑖𝑖 = 𝑆𝑆1. 𝑁𝑁𝑜𝑜𝑤𝑤𝑒𝑒 𝑤𝑤ℎ𝑅𝑅𝑤𝑤 𝑆𝑆1 ≥ 0, 𝑅𝑅(𝑆𝑆2) is closed (by Fredholm theory),and ‖𝑆𝑆2‖𝑒𝑒 =
‖𝑆𝑆‖𝑒𝑒 .Then we can apply Theorem (5.1.20)to the pair (𝑆𝑆1, {𝑐𝑐𝑖𝑖 }𝑖𝑖>𝑛𝑛0 ), 𝑅𝑅𝑐𝑐𝑤𝑤𝑖𝑖𝑛𝑛𝑔𝑔 𝑜𝑜𝑛𝑛 𝑅𝑅(𝑆𝑆2). So 
there existunit vectors 𝑥𝑥𝑘𝑘 ,for 𝑘𝑘 > 𝑚𝑚0, Such that   𝑆𝑆2 = ∑ 𝑐𝑐𝑖𝑖 𝑥𝑥𝑖𝑖 ⊗ 𝑥𝑥𝑖𝑖 .∞

𝑖𝑖=𝑛𝑛0   
Therefore we obtain the rank-one decomposition 𝑆𝑆 = ∑ 𝑐𝑐𝑖𝑖 𝑥𝑥𝑖𝑖 ⊗ 𝑥𝑥𝑖𝑖𝑖𝑖∈ℕ  
Example (5.1.23)[35]: below shows that the Condition 2 (𝑐𝑐) of Theorem (5.1.28) can not 
be dropped in general. 
Corollary( 5.1.24)[35]: Let  0 < 𝐴𝐴 ∈ ℝ and 𝑐𝑐 ∈ ℓ ∞ (ℕ)+ be such that 0 <  𝑐𝑐𝑖𝑖 ≤  𝐴𝐴, 
𝑖𝑖 ∈ ℕ. Denote 𝐽𝐽 =  {𝑖𝑖 ∈ ℕ ∶ 𝑐𝑐𝑖𝑖  = 𝐴𝐴}. Assume that ∑ 𝑐𝑐𝑖𝑖 = ∞𝑖𝑖∉𝐽𝐽  , and limsup𝑖𝑖∉𝐽𝐽 𝑐𝑐𝑖𝑖 < 𝐴𝐴  
(or, equivalently, sup𝑖𝑖∉𝐽𝐽 𝑐𝑐𝑖𝑖 < 𝐴𝐴). 
Then the pair (𝐴𝐴𝐼𝐼, 𝑐𝑐) is admissible. This means that there exists a tight frame.  Some with 
norms prescribed by c and frame constant 𝐴𝐴.  
In the following example we shall see that 

𝛼𝛼𝑘𝑘 (𝑆𝑆)  > 𝛼𝛼𝑘𝑘 (𝑐𝑐), 𝑘𝑘 ∈ ℕ, 𝑅𝑅𝑛𝑛𝑑𝑑  ‖𝑆𝑆‖𝑒𝑒  =  𝑙𝑙𝑖𝑖𝑚𝑚 𝑠𝑠𝑢𝑢𝑝𝑝(𝑐𝑐)  ⇏ 𝐹𝐹(𝑆𝑆, 𝑐𝑐)  ≠ ∅ . 
Example(5.1.25) [35]: Let  𝑆𝑆 =  𝐼𝐼 ∈  𝐿𝐿(ℋ) and 𝑅𝑅 ∈ (0, 1). Let 𝑐𝑐 ∈ ℓ ∞ (ℕ)+  be given 
by 𝑐𝑐1 =  𝑝𝑝 ∈  (0, 1) and 
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𝑐𝑐𝑘𝑘 = �𝑅𝑅𝑘𝑘           𝑖𝑖𝑓𝑓 𝑘𝑘 ≠ 1 𝑖𝑖𝑠𝑠 𝑜𝑜𝑑𝑑𝑑𝑑
1 − 𝑅𝑅𝑘𝑘   𝑖𝑖𝑓𝑓 𝑘𝑘  𝑖𝑖𝑠𝑠 𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛     

� 

Then 0 < 𝑐𝑐𝑘𝑘  <  1 for 𝑘𝑘 ∈ ℕ,∑ 𝑐𝑐𝑘𝑘 = ∞ = ∑ (1 − 𝑐𝑐𝑘𝑘 ),𝑘𝑘𝑘𝑘  and 𝑙𝑙𝑖𝑖𝑚𝑚 𝑠𝑠𝑢𝑢𝑝𝑝 𝑐𝑐 = 1 = ‖𝑆𝑆‖𝑒𝑒  . 
Suppose that there exists a frame ℱ =  {𝑓𝑓𝑘𝑘 }𝑘𝑘  ∈ℕ 𝐹𝐹(𝑆𝑆, 𝑐𝑐). Then 

‖𝑥𝑥‖2 = ∑ |〈𝑥𝑥, 𝑓𝑓𝑘𝑘 〉|𝑘𝑘∈ℕ
2, for every 𝑥𝑥 ∈ ℋ. 

In particular, we get, for every 𝑗𝑗 ∈ ℕ, 

�𝑓𝑓𝑗𝑗 �2
= ��〈𝑓𝑓𝑗𝑗 , 𝑓𝑓𝑘𝑘 〉�

𝑘𝑘∈ℕ

2
= �𝑓𝑓𝑗𝑗 �4

+ ��〈𝑓𝑓𝑗𝑗 , 𝑓𝑓𝑘𝑘 〉�
𝑘𝑘≠𝑗𝑗

2
 

Thus, if 𝑗𝑗 ≠ 1, we obtain the inequality 

|�𝑓𝑓1, 𝑓𝑓𝑗𝑗 �2
= �𝑓𝑓𝑗𝑗 , 𝑓𝑓1�2

≤ ∑ �〈𝑓𝑓𝑗𝑗 , 𝑓𝑓𝑘𝑘 〉�𝑘𝑘≠𝑗𝑗
2

= �𝑓𝑓𝑗𝑗 �2
= �𝑓𝑓𝑗𝑗 �4

= 𝑐𝑐𝑗𝑗 �1 − 𝑐𝑐𝑗𝑗 � 
Therefore , 

𝑝𝑝 = ‖𝑓𝑓1‖2 ≤ ‖𝑓𝑓1‖4 + ∑ 𝑐𝑐𝑗𝑗 �1 − 𝑐𝑐𝑗𝑗 �𝑘𝑘≠1                           (18) 
Taking 𝑝𝑝 = 1

2  and 𝑅𝑅 ∈ (0, 1) such that 
𝑅𝑅

1 −  𝑅𝑅2 
< 1

4 
we get that 
𝑝𝑝 >  𝑝𝑝2  + 𝑅𝑅

1 − 𝑅𝑅2 
,  

contradicting Eq. (18). Hence, in this case, 𝐹𝐹(𝑆𝑆, 𝑐𝑐)  = ∅. Note that the pair (𝑆𝑆, 𝑐𝑐) satisfies 
all of the necessary conditions of Theorem( 5.1.20), because 𝛼𝛼𝑘𝑘 (𝑆𝑆) = 𝑘𝑘 = 𝛼𝛼𝑘𝑘 (𝑐𝑐) for 
every 𝑘𝑘 ∈ ℕ. 
In the second example we see that, in general, 

𝛼𝛼𝑘𝑘 (𝑆𝑆) ≥ 𝛼𝛼𝑘𝑘 (𝑐𝑐), 𝑘𝑘 ∈ ℕ 𝑅𝑅𝑛𝑛𝑑𝑑 ‖𝑆𝑆‖𝑒𝑒 >  𝑙𝑙𝑖𝑖𝑚𝑚 𝑠𝑠𝑢𝑢𝑝𝑝(𝑐𝑐)  ⇏  𝐹𝐹(𝑆𝑆, 𝑐𝑐)  ≠ ∅ . 
Example (5.1.26)[35]: Let 𝑆𝑆 = 𝑀𝑀𝑠𝑠 be the diagonal operator, with respect to an 
orthonormal basis of ℋ, given by 𝑠𝑠 = {1 − (𝑖𝑖 + 1)−1} 𝑖𝑖∈ℕ, and let (𝑐𝑐𝑖𝑖 ) 𝑖𝑖∈ℕ be given 
by 𝑐𝑐1 = 1 and 𝑐𝑐𝑖𝑖  = 1/2 for every 𝑖𝑖 ≥ 2. Note that 
(i) 1 = ‖𝑆𝑆‖𝑒𝑒 >  1/2 =  𝑙𝑙𝑖𝑖𝑚𝑚 𝑠𝑠𝑢𝑢𝑝𝑝(𝑐𝑐), 
(ii) 𝛼𝛼1(𝑆𝑆)  = 𝛼𝛼1(𝑐𝑐), and 
(iii) 𝛼𝛼𝑘𝑘 (𝑆𝑆)  = 𝑘𝑘 > 1 + (𝑘𝑘 − 1)/2 =  𝛼𝛼𝑘𝑘 (𝑐𝑐) for every 𝑘𝑘 ≥ 2. 
Still, we have 𝐹𝐹(𝑆𝑆, 𝑐𝑐)  = ∅. Indeed, suppose that there exists ℱ ∈  𝐹𝐹(𝑆𝑆, 𝑐𝑐). 
Then, by Proposition (5.1.20) there exists an extension Κ = ℋ ⊕ ℋ𝑑𝑑  of ℋ such that, if 

𝑆𝑆1 = �𝑆𝑆      0
0      0� ℋ

ℋ𝑑𝑑
∈ 𝐿𝐿(Κ)+ , 

then 𝑐𝑐 ∈ 𝐶𝐶 [𝑢𝑢Κ(𝑆𝑆1)]. Let 𝑉𝑉 ∈ 𝑢𝑢(Κ) be such that, in a orthonormal basis 
𝐵𝐵 = {𝑒𝑒𝑘𝑘 }𝑘𝑘∈ℕ  , 𝑀𝑀𝑐𝑐  = 𝐶𝐶𝐵𝐵(𝑉𝑉 ∗𝑆𝑆1𝑉𝑉 ). Take 𝑥𝑥 = 𝑃𝑃ℋ𝑉𝑉 𝑒𝑒1. We have that ‖𝑥𝑥‖ ≤ 1 and 
〈𝑆𝑆𝑥𝑥, 𝑥𝑥〉 = 〈𝑀𝑀𝑐𝑐 𝑒𝑒1, 𝑒𝑒1 〉 =  𝑐𝑐1 = 1, while ‖𝑆𝑆‖ = 1. Then 𝑆𝑆𝑥𝑥 = 𝑥𝑥, and 1 would be an 
eigenvalue of 𝑆𝑆, which is false. In this example, Condition 2 (𝑐𝑐) of Theorem (5.1.22) 
does not hold, because ‖𝑆𝑆‖ = ‖𝑆𝑆‖𝑒𝑒 , which implies that 𝑜𝑜 = 𝑤𝑤𝑜𝑜 𝑃𝑃2(𝑆𝑆) = 0; but 𝛼𝛼1(𝑆𝑆) =
1 = 𝛼𝛼1(𝑐𝑐). Note that   ∑ 𝑐𝑐𝑘𝑘 = ∞ = ∑ (1 − 𝑐𝑐𝑘𝑘 )𝑘𝑘𝑘𝑘  as in the previous example. 
The excess of frames in 𝐹𝐹(𝑆𝑆, 𝑐𝑐). Let 𝑆𝑆 ∈   𝒢𝒢𝑙𝑙(ℋ)+ and 𝑐𝑐 = (𝑐𝑐𝑖𝑖 )𝑖𝑖∈𝕄𝕄 ∈ ℓ∞ (𝕄𝕄)+ be such 
that the pair (𝑆𝑆, 𝑐𝑐) is frame admissible. Then there can be many different types of frames 
 ℱ ∈ 𝐹𝐹(𝑆𝑆, 𝑐𝑐). We consider the set 

𝑁𝑁𝑢𝑢𝑙𝑙𝑙𝑙(𝑆𝑆, 𝑐𝑐) = { 𝑒𝑒(ℱ) ∶  ℱ ∈ 𝐹𝐹(𝑆𝑆, 𝑐𝑐) }. 
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In the example below, we show that this set can be arbitrarily large. Moreover, this 
example shows that there exists an admissible pair (𝑆𝑆, 𝑅𝑅), satisfying just the necessary 
conditions of Theorem( 5.1.20), and in this case 𝛼𝛼𝑘𝑘 (𝑆𝑆)  = 𝛼𝛼𝑘𝑘 (𝑅𝑅), 𝑘𝑘 ∈ ℕ, and 𝑚𝑚 𝑠𝑠𝑢𝑢𝑝𝑝 𝑅𝑅 =
‖𝑆𝑆‖𝑒𝑒  . 
Example(5.1.33)[35]: Let ℋ be a Hilbert space with an orthonormal basis 𝐵𝐵 = {𝑥𝑥𝑛𝑛 }𝑛𝑛∈ℕ. 
Let   
           a = �1

2
, 1, 1

2
, 1, 1

2
, … � ∈ ℓ∞ (ℕ)+, and 𝑆𝑆 = 𝑀𝑀𝐵𝐵,a ∈ 𝒢𝒢𝑙𝑙(ℋ)+  

Then the frame (Riesz basis) ℱ0 = {𝑅𝑅𝑛𝑛

1
2 𝑥𝑥𝑛𝑛 }𝑛𝑛∈ℕ   has frame operator 𝑆𝑆, so that  ℱ0 ∈

𝐹𝐹(𝑆𝑆, 𝑅𝑅). On the other hand, let 

ℱ1 = �
1

√2
𝑥𝑥2, 𝑥𝑥4,

1
√2

𝑥𝑥2, 𝑥𝑥6 ,
1

√2
𝑥𝑥1 , 𝑥𝑥8,

1
√2

𝑥𝑥3, 𝑥𝑥10, … � 

It is easy to see that also ℱ1 ∈ 𝐹𝐹(𝑆𝑆, 𝑅𝑅), but 𝑒𝑒(ℱ1) = 1. Analogously, 

ℱ2 = �
1

√2
𝑥𝑥2, 𝑥𝑥4,

1
√2

𝑥𝑥2, 𝑥𝑥6,
1

√2
𝑥𝑥8, 𝑥𝑥10,

1
√2

𝑥𝑥8, 𝑥𝑥12,
1

√2
𝑥𝑥1, … � ∈ 𝐹𝐹(S, a) 

with 𝑒𝑒(ℱ2) = 2. In a similar way, we can construct frames ℱ𝑘𝑘  ∈  𝐹𝐹(S, a) with  𝑒𝑒(ℱ𝑘𝑘 ) =
𝑘𝑘, for every 𝑘𝑘 ∈ ℕ ∪ {∞}. Note that 

ℱ∞ = �
1

√2
𝑥𝑥1, 𝑥𝑥4,

1
√2

𝑥𝑥2, 𝑥𝑥8,
1

√2
𝑥𝑥2, 𝑥𝑥12 ,

1
√2

𝑥𝑥3, 𝑥𝑥16,
1

√2
𝑥𝑥6, 𝑥𝑥20

1
√2

𝑥𝑥6, … � . 

In other words, ℱ∞  is the frame induced by the bounded operator 𝑇𝑇 ∶ ℓ2(ℕ) → ℋ  given 
by 

              𝑇𝑇(𝑐𝑐𝑛𝑛 ) =

⎩
⎪
⎨

⎪
⎧

𝑥𝑥4𝑘𝑘                    𝑖𝑖𝑓𝑓 𝑛𝑛 = 2𝑘𝑘 ,     
1

√2
𝑥𝑥2𝑘𝑘−1           𝑖𝑖𝑓𝑓 𝑛𝑛 = 6𝑘𝑘 − 5,

1
√2

𝑥𝑥4𝑘𝑘 − 2         𝑖𝑖𝑓𝑓 𝑛𝑛 = 6𝑘𝑘 − 3,
1

√2
𝑥𝑥4𝑘𝑘 − 2            𝑖𝑖𝑓𝑓 𝑛𝑛 = 6𝑘𝑘 − 1.

� 

Therefore Null (𝑆𝑆, 𝑅𝑅) = ℕ ∪ [ {0, ∞} . 
Proposition (5.1.28)[35]: Let  𝑆𝑆 ∈  (ℋ)+ and 𝑐𝑐 ∈ ℓ2(ℕ)+. Assume that the pair (𝑆𝑆, 𝑐𝑐) is 
frame admissible and 𝑙𝑙𝑖𝑖𝑚𝑚 𝑖𝑖𝑛𝑛𝑓𝑓 𝑐𝑐 <  𝑚𝑚𝑖𝑖𝑛𝑛 𝜎𝜎𝑒𝑒 (𝑆𝑆). Then Null (𝑆𝑆, 𝑐𝑐) = {∞}. 
Proof: Let  ℱ = {𝑓𝑓𝑛𝑛 }𝑛𝑛∈ℕ  ∈ 𝐹𝐹(𝑆𝑆, 𝑐𝑐), with 𝑒𝑒(ℱ) = 𝑑𝑑. By Proposition(5.1.16) there exists 
an extension Κ = ℋ ⊕ ℋ𝑑𝑑  of ℋ such that, if we denote 

                  𝑆𝑆1 = �𝑆𝑆      0
0      0� ℋ

ℋ𝑑𝑑
∈ 𝐿𝐿(Κ)+ 

then 𝑐𝑐 ∈ 𝐶𝐶 [𝑢𝑢Κ(𝑆𝑆1)]. By Theorem 3.10, 𝑚𝑚𝑖𝑖𝑛𝑛 𝜎𝜎𝑒𝑒 (𝑆𝑆1) ≤ 𝑙𝑙𝑖𝑖𝑚𝑚 𝑖𝑖𝑛𝑛𝑓𝑓 𝑐𝑐 . But, if 𝑑𝑑𝑖𝑖𝑚𝑚ℋ𝑑𝑑 =
𝑒𝑒(ℱ) < ∞, then 𝜎𝜎𝑒𝑒 (𝑆𝑆1) = 𝜎𝜎𝑒𝑒 (𝑆𝑆), which contradicts the fact that 

𝑙𝑙𝑖𝑖𝑚𝑚 𝑖𝑖𝑛𝑛𝑓𝑓 𝑐𝑐 < 𝑚𝑚𝑖𝑖𝑛𝑛 𝜎𝜎𝑒𝑒 (𝑆𝑆). 
Example (5.1.29)[35]: Let ℋ be a Hilbert space with an orthonormal basis 𝐵𝐵 = {𝑥𝑥𝑖𝑖 }𝑖𝑖∈ℕ. 
Let a =  (1, 2, 1, 2, . . . ), 𝑆𝑆 = 𝑀𝑀𝐵𝐵,𝑅𝑅 ∈ 𝒢𝒢𝑙𝑙(ℋ)+ and 𝑐𝑐 = �3

2
, 3

2
, 3

2
, … �. 

We shall show that also 𝑁𝑁𝑢𝑢𝑙𝑙𝑙𝑙(𝑆𝑆, 𝑐𝑐) =  ℕ ∪  {0, ∞}. Note that, in this case, 

𝛼𝛼−(𝑆𝑆) = 1 < 𝑙𝑙𝑖𝑖𝑚𝑚 𝑖𝑖𝑛𝑛𝑓𝑓 𝑐𝑐 =
3
2

= 𝑙𝑙𝑖𝑖𝑚𝑚 𝑠𝑠𝑢𝑢𝑝𝑝 𝑐𝑐 < 2 = ‖𝑆𝑆‖𝑒𝑒  
Indeed, take the Riesz basis ℱ0 =  {𝑓𝑓𝑛𝑛 }𝑛𝑛∈ℕ given by 
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𝑓𝑓𝑛𝑛 = �
𝑥𝑥𝑛𝑛

√2
+ 𝑥𝑥𝑛𝑛+1      𝑖𝑖𝑓𝑓  𝑛𝑛  𝑖𝑖𝑠𝑠  𝑜𝑜𝑑𝑑𝑑𝑑      

−𝑥𝑥𝑛𝑛 −1

√2
+ 𝑥𝑥𝑛𝑛       𝑖𝑖𝑓𝑓   𝑛𝑛  𝑖𝑖𝑠𝑠  𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛

�  

It is easy to see that ℱ0 ∈ 𝐹𝐹(𝑆𝑆, 𝑐𝑐). Using that 
                        �3

2
, 3

2
, 3

2
, 3

2
� ≺ (2,2,2,0), 

an arbitrary number of packs of four vectors with norm�3/2 associated to packs of three 
even places of the diagonal of 𝑆𝑆 can be interlaced into the previous construction. Each of 
these packs adds excess 1 to the whole system. 
In this way, frames ℱ𝑘𝑘  ∈ 𝐹𝐹(𝑆𝑆, 𝑐𝑐) with 𝑒𝑒(ℱ𝑘𝑘 ) = 𝑘𝑘 can be found for every 

𝑘𝑘 ∈ ℕ ∪ [ {∞}. 
Section(5-2): Equal-Norm Parseval Frames 
A family of vectors {𝑓𝑓𝑗𝑗 }𝑗𝑗 ∈𝐽𝐽  is a frame for a Hilbert space ℋ if it provides a stable 
embedding of ℋ in  ℓ2(𝐽𝐽 ) when each vector in ℋ is mapped to the sequence of its inner 
products with the frame vectors. Frames were defined by Duffin and Schaeffer [75] to 
address some deep questions in non-harmonic Fourier series. Traditionally, frames were 
most popular in signal processing [77], but today, frame theory has an abundance of 
applications in pure mathematics, applied mathematics, engineering, medicine and even 
quantum communication [67,74,77,82,61,64]. 
Many of these applications give rise to design problems in frame theory, the construction 
of frames with certain desired properties. Digital transmissions of analog signals, for 
example, often rely on frames because of their built-in resilience to data loss [48,47], and 
it has been shown that encoding with equal-norm Parseval frames has certain optimality 
properties for this purpose [70] (see also [49,65]). Moreover, the use of frames for 
compensating quantization errors has relied on equal-norm Parseval frames as well 
[63,66]. Despite their popularity, we know only a few ways to construct such frames 
analytically [79,36,68,72], mostly with the help of group actions. Success has been 
claimed for generating a special type of equal-norm Parseval frames with numerical 
methods [57], however, the analytic verification of convergence remains wanting. The 
use of frame potentials [36,69] shows the existence of large numbers of equal-norm 
Parseval frames, but offers little control over additional properties (see [49,72]). Finally, 
there is an algorithm due to Holmes and Paulsen [49] for turning a Parseval frame into an 
equal-norm Parseval frame in finitely many moves. Unfortunately, to the best of the 
authors’ abilities, it cannot be combined with the numerical results to provide the 
existence of an equal-norm Parseval frame in the close vicinity of a nearly equal-norm 
and nearly Parseval frame, because it does not include a distance estimate. Here, the 
metric on the set of frames is induced by the norm on the Hilbert space when frames are 
viewed as vector-valued, square summable functions (see Section 2 for precise 
definitions). 
The closest Parseval frame to a frame {𝑓𝑓𝑗𝑗 }𝑗𝑗 ∈𝐽𝐽  is known [62,68,71,80]. Also, the closest 
equal norm frame to a given frame can be found easily [68]. However, despite a 
significant amount of effort, so far we knew very little about the closest equal-norm 
Parseval frame to a given frame. This question is known in the field as the Paulsen 
problem. The main problem here is that finding a close equal-norm frame to a given 
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frame involves a geometric condition while finding a close Parseval frame involves an 
algebraic or spectral condition. 
We will present the first method for finding an equal-norm Parseval frame in the vicinity 
of a given frame which gives quantitative estimates for the distance. The new technique 
we introduce is a system of vector-valued 𝑆𝑆𝐷𝐷𝐸𝐸𝑠𝑠 which induces a flow on the set of 
Parseval frames that converges to equal-norm Parseval frames. We then bound the arc 
length traversed by a frame by an integral of the so-called frame energy. With an 
exponential bound on the frame energy, we derive a quantitative estimate for the distance 
between our initial, _𝜖𝜖-nearly equal-norm and 𝜖𝜖-nearly Parseval frame 
ℱ =  {𝑓𝑓1, 𝑓𝑓2, . . . , 𝑓𝑓𝑛𝑛 } for a 𝑑𝑑-dimensional real or complex Hilbert space and the equal-
norm Parseval frame 𝒢𝒢 =  {𝑔𝑔1, 𝑔𝑔2, . . . , 𝑔𝑔𝑛𝑛 } obtained as the limit of the flow governed by 
the 𝑆𝑆𝐷𝐷𝐸𝐸 system, 

��  
𝑛𝑛

𝑗𝑗 =1

�𝑓𝑓𝑗𝑗 − 𝑔𝑔𝑗𝑗 �2�

1/2

≤
29
8

𝑑𝑑2𝑛𝑛(𝑛𝑛 − 1)8𝜖𝜖. 

We also show that the order of 𝜖𝜖 in this estimate cannot be improved. 
For our method to work, we must assume that the dimension 𝑑𝑑 of the Hilbert space and 
the number n of frame vectors are relatively prime. We will use a tensor product 
technique to show that if our main goal is to produce equal-norm Parseval frames, this is 
not a serious restriction. 
Finally, we show that the Paulsen problem is equivalent to a fundamental problem in 
matrix theory, and so we find an answer for the corresponding case of this problem. 
We believe that the techniques introduced in this section  will have application to other 
“nearness” questions in frame theory, in particular, to the famous equiangular tight frame 
problem [49,85]. Finding and classifying such frames, or even the easier problem of 
finding equiangular lines through the origin in ℝ𝑛𝑛  or   ℂ𝑛𝑛 , started in 1948 by Haantjes 
[78,73], still leaves a lot to be done. This type of equal-norm Parseval frames is 
particularly important because of their applications to signal processing [60,85,65,86,81] 
and to quantum information theory [87,84,76,64]. 
In this section, we introduce the notation and terminology used throughout the section . 
Definition(5. 2.1)[37]: A family of vectors ℱ = {𝑓𝑓𝑗𝑗 }𝑗𝑗 ∈𝐽𝐽  is a frame for a Hilbert space ℋ 
if there are constants 0 < 𝐴𝐴 ≤ 𝐵𝐵 < ∞ so that 

𝐴𝐴‖𝑥𝑥‖2 ≤ ��𝑥𝑥, 𝑓𝑓𝑗𝑗 �2

𝑗𝑗 ∈𝐽𝐽

≤ 𝐵𝐵‖𝑥𝑥‖2 𝑓𝑓𝑜𝑜𝑜𝑜 𝑅𝑅𝑙𝑙𝑙𝑙 𝑥𝑥 ∈ ℋ. 

We call the largest 𝐴𝐴 and smallest 𝐵𝐵 the lower and upper frame bounds respectively. If 
we can choose 𝐴𝐴 =  𝐵𝐵 then ℱ is a tight frame and if 𝐴𝐴 = 𝐵𝐵 = 1 it is a Parseval frame. If 
all the frame vectors have the same norm, it is an equal-norm frame. The analysis 
operator of the frame is the map 𝑉𝑉 ∶ ℋ → ℓ2(𝐽𝐽) given by  (𝑉𝑉𝑥𝑥)𝑗𝑗 = 〈𝑥𝑥, 𝑓𝑓𝑗𝑗 〉 . Its adjoint is 
the synthesis operator which maps 𝑅𝑅 ∈ ℓ2(𝐽𝐽)  to 𝑉𝑉∗(𝑅𝑅) = ∑ 𝑅𝑅𝑗𝑗 𝑓𝑓𝑗𝑗 .𝑗𝑗 ∈𝐽𝐽  The frame operator is 
the positive, self-adjoint invertible operator 𝑆𝑆 = 𝑉𝑉∗𝑉𝑉  on ℋ and the Grammian is the 
matrix 𝐺𝐺 with entries 𝐺𝐺𝑗𝑗 ,𝑘𝑘  = 〈 𝑓𝑓𝑗𝑗 , 𝑓𝑓𝑘𝑘 〉_ so that 

𝐺𝐺𝑗𝑗 ,𝑘𝑘  =  (𝑉𝑉𝑉𝑉∗)𝑘𝑘 ,𝑗𝑗 , 𝑘𝑘, 𝑗𝑗 ∈ {1,2, . . . , 𝑛𝑛}. 
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Definition(5. 2.2)[37]: (1) A frame {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1
𝑛𝑛  for a d-dimensional real or complex Hilbert 

space ℋ is 𝜖𝜖-nearly equal-norm with constant 𝑐𝑐 if 
(1 − 𝜖𝜖)𝑐𝑐 ≤ �𝑓𝑓𝑗𝑗 �  ≤ (1 + 𝜖𝜖)𝑐𝑐,      for all 𝑗𝑗 ∈ 1, 2, . . . , 𝑛𝑛}. 

(2) The frame is 𝜖𝜖-nearly Parseval if the frame constants can be chosen as 𝐴𝐴 = 1 − 𝜖𝜖 and 
𝐵𝐵 =  1 + 𝜖𝜖 so for all 𝑥𝑥 ∈ ℋ, 
              (1 − 𝜖𝜖)‖𝑥𝑥‖2 ≤ ∑ �〈𝑥𝑥, 𝑓𝑓𝑗𝑗 〉�𝑗𝑗 ∈𝐽𝐽

2
≤ (1 + 𝜖𝜖)‖𝑥𝑥‖2. 

If a frame satisfies either of these properties (1) or (2) with 𝜖𝜖 = 0 then we say that it is an 
equal-norm frame or a Parseval frame, respectively. 
Definition(5. 2.3)[37]: The ℓ2-distance between two frames ℱ =  {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛 and 𝒢𝒢 =
{𝑔𝑔𝑖𝑖 }𝑗𝑗 =1

𝑛𝑛  for a Hilbert space ℋ is defined by  

‖ℱ − 𝒢𝒢‖ = ���𝑓𝑓𝑗𝑗 − 𝑔𝑔𝑗𝑗 �2
𝑛𝑛

𝑗𝑗 =1

�

1/2

 

Two frames ℱ and  𝒢𝒢 are 𝜖𝜖 -close if ‖ℱ − 𝒢𝒢 ‖ ≤ 𝜖𝜖.  
We can now state the main problem we address in this section. 
Problem(5.2.4)[37]:  (𝑉𝑉. Paulsen). Let ℋ be a real or complex Hilbert space of 
dimension 𝑑𝑑. Given 𝜖𝜖 > 0 and an integer 𝑛𝑛 ≥ 𝑑𝑑, find the largest  number 𝛿𝛿 > 0 so that 
whenever {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛  is a 𝛿𝛿-nearly equal-norm, 𝛿𝛿-nearly Parseval frame for a Hilbert space 
ℋ, there is an equal-norm Parseval frame {𝑔𝑔𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛 whose ℓ2-distance to {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1
𝑛𝑛  is less 

than 𝜖𝜖. 
The existence of such a 𝛿𝛿 is assured by an argument of Don Hadwin. 
Proposition(5. 2.5)[37]:  (𝐷𝐷. Hadwin). Given a real or complex Hilbert space ℋ of 
dimension d and an integer 𝑛𝑛 ≥ 𝑑𝑑, then for every 𝜖𝜖 > 0 there is a 𝛿𝛿 > 0 so that whenever 
a frame {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛  for ℋ is 𝛿𝛿-nearly equal-norm and 𝛿𝛿-nearly Parseval, then {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1
𝑛𝑛  is 𝜖𝜖-

close to an equal-norm Parseval frame. 
Proof. We proceed by way of contradiction. If the assertion is false, then there exists 
some 𝜖𝜖 > 0 and a sequence {𝛿𝛿𝑚𝑚 }𝑚𝑚=1

∞    converging to zero and a sequence of frames 
{𝑓𝑓 𝑗𝑗

 (𝑚𝑚) ∶  1 ≤  𝑗𝑗 ≤ 𝑛𝑛, 𝑚𝑚 ∈ {1, 2, . . . }} so that each {𝑓𝑓 𝑗𝑗
 (𝑚𝑚)}𝑗𝑗 =1

𝑛𝑛   is 𝛿𝛿𝑚𝑚 -nearly equal-norm and 
δm-nearly Parseval but for any equal-norm Parseval frame {𝑔𝑔𝑗𝑗 }j=1

𝑛𝑛  we have 

��𝑓𝑓 𝑗𝑗
 (𝑚𝑚) − 𝑔𝑔𝑗𝑗 �

2
≥ 𝜖𝜖2.

𝑛𝑛

𝑗𝑗 =1

 

By compactness and switching to a subsequence we may assume that the sequence of 
frame vectors {𝑓𝑓 𝑗𝑗

 (𝑚𝑚)}𝑚𝑚=1
∞   has a limit for each fixed 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛}, 

lim
𝑚𝑚 →∞

𝑓𝑓 𝑗𝑗
 (𝑚𝑚) = 𝑓𝑓𝑗𝑗 . 

By continuity of the spectrum of 𝑉𝑉∗𝑉𝑉  in the frame vectors and of the entries in 𝑉𝑉𝑉𝑉∗ , it 
follows that {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛   is an equal-norm Parseval frame and that its distance to {𝑓𝑓 𝑗𝑗
 (𝑚𝑚)}𝑗𝑗 =1

𝑛𝑛   
goes to zero as 𝑚𝑚 → ∞ which is in contradiction with the assumption that the distance 
between each  
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{𝑓𝑓 𝑗𝑗
 (𝑚𝑚)}𝑗𝑗 =1

𝑛𝑛 and any equal-norm Parseval frame was bounded below by 𝜖𝜖 > 0.  
The diagonal entries of 𝑉𝑉𝑉𝑉∗ and the operator inequalities for 𝑉𝑉∗𝑉𝑉  are not affected when 
the frame vectors are multiplied by unimodular constants, because then 𝑉𝑉𝑉𝑉∗  is simply 
conjugated by a diagonal unitary, and 𝑉𝑉∗𝑉𝑉 is invariant. Therefore, we can form 
equivalence classes of frames which share the same nearly equal-norm and nearly 
Parseval properties. A similar, coarser equivalence relation has already proven useful in 
the study of frames for erasure coding [47,49]. 
Definition (5.2.6)[37]: We define two frames ℱ = {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛   and 𝒢𝒢 = {𝑔𝑔𝑗𝑗 }𝑗𝑗 =1
𝑛𝑛  for a real or 

complex Hilbert space to be switching equivalent if the frame vectors 𝑓𝑓𝑗𝑗 and 𝑔𝑔𝑗𝑗  are 
collinear and �𝑓𝑓𝑗𝑗 � = �𝑔𝑔𝑗𝑗 � for each 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛}. Accordingly, we speak of switching 
a frame ℱ to a frame 𝒢𝒢, also denoted ℱ(𝑐𝑐), if we multiply each frame vector by an 
unimodular constant, 𝑔𝑔𝑗𝑗 =  𝑐𝑐𝑗𝑗 𝑓𝑓𝑗𝑗  with |𝑐𝑐𝑗𝑗 | = 1 𝑓𝑓𝑜𝑜𝑜𝑜 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛}. 
Note that unlike the (nearly) equal-norm or Parseval properties, the ℓ2-distance between 
two frames is not preserved when one of them is switched. We now define another 
distance for frames which does not depend on which particular representative of an 
equivalence class is chosen. 
Definition(5. 2.7)[37]: The Bures distance between two frames ℱ = {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛 and 𝒢𝒢 =
{𝑔𝑔𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛   for a real or complex Hilbert space ℋ is defined by 

𝑑𝑑𝐵𝐵(ℱ, 𝒢𝒢) = �� ��𝑓𝑓𝑗𝑗 �2
+ �𝑔𝑔𝑗𝑗 �2

− 2�〈𝑓𝑓𝑗𝑗 , 𝑔𝑔𝑗𝑗 〉��
𝑛𝑛

𝑗𝑗 =1

�

1/2

 

Two frames ℱ and  𝒢𝒢 are 𝜖𝜖-close in the Bures distance 𝑖𝑖𝑓𝑓 𝑑𝑑𝐵𝐵(ℱ, 𝒢𝒢) ≤ 𝜖𝜖.  
The Bures distance is only a pseudo-metric on the set of frames, because 𝑑𝑑𝐵𝐵(ℱ, 𝒢𝒢) = 0  
only implies 𝑓𝑓𝑗𝑗  = 𝑐𝑐𝑗𝑗  𝑔𝑔𝑗𝑗  𝑤𝑤𝑖𝑖𝑤𝑤ℎ |𝑐𝑐𝑗𝑗 | = 1 for all 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛}.We have extended its usual 
definition for a pair of normalized vectors 𝑓𝑓 and 𝑔𝑔 in a real or complex Hilbert space, 
which assigns their Bures distance to be�2 − 2|𝑓𝑓, 𝑔𝑔|, to the setting of vector-valued 
functions. This way of extending the Bures distance is natural when it is viewed as the 
solution of a minimization problem. 
Lemma(5. 2.8)[37]: Let ℋ be a Hilbert space over the field of real or complex numbers, 
here after denoted by 𝔽𝔽. The value 𝑑𝑑𝐵𝐵(ℱ, 𝒢𝒢) is the solution of the minimization problem 

        𝑑𝑑𝐵𝐵(ℱ, 𝒢𝒢) = min𝑐𝑐∈𝕋𝕋𝑛𝑛 �∑ �𝑓𝑓𝑗𝑗 − 𝑐𝑐𝑗𝑗 𝑔𝑔𝑗𝑗 �2𝑛𝑛
𝑗𝑗 =1 �

1
2 , 

 where 𝕋𝕋𝑛𝑛 = {𝑐𝑐 ∈ 𝔽𝔽𝑛𝑛 : |𝑐𝑐𝑗𝑗 | = 1 for all 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛}. 
Proof. The equivalence between these two definitions of 𝑑𝑑𝐵𝐵 is seen from the inequality 

�𝑓𝑓𝑗𝑗 − 𝑐𝑐𝑗𝑗 𝑔𝑔𝑗𝑗 �2
= �𝑓𝑓𝑗𝑗  �

2
+ �𝑔𝑔𝑗𝑗  �

2
− 2 𝔑𝔑𝑐𝑐�̅�𝑗  〈𝑓𝑓𝑗𝑗 , 𝑔𝑔𝑗𝑗 〉 ≥ �𝑓𝑓𝑗𝑗  �

2
+ �𝑔𝑔𝑗𝑗  �

2
− 2�〈𝑓𝑓𝑗𝑗 , 𝑔𝑔𝑗𝑗 〉�, 

 which is saturated (i.e. gives equality) when each 𝑐𝑐𝑗𝑗  is chosen so that 𝔑𝔑𝑐𝑐�̅�𝑗 〈𝑓𝑓𝑗𝑗 , 𝑔𝑔𝑗𝑗 〉 =
|〈𝑓𝑓𝑗𝑗 , 𝑔𝑔𝑗𝑗 〉|.  Here, 𝑐𝑐�̅�𝑗  denotes the complex conjugate of 𝑐𝑐𝑗𝑗  .  
The Bures distance is therefore the quotient metric obtained from the ℓ2-metric when 
passing from frames to their equivalence classes. From the fact that equal-norm and 
Parseval properties are switching-invariant, we get an immediate consequence for the 
closeness of frames. 
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Corollary(5. 2.9)[37]: A frame ℱ = {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1
𝑛𝑛  is 𝜖𝜖-close to an equal-norm Parseval frame 

𝒢𝒢 = {𝑔𝑔𝑗𝑗 }𝑗𝑗 =1
𝑛𝑛  in Bures distance if and only if it is 𝜖𝜖-close to an equal-norm Parseval frame 

�̀�𝒢 = {�̀�𝑔𝑗𝑗 }𝑗𝑗 =1
𝑛𝑛  ℓ2-distance. 

Proof. The “only if” part follows from choosing the ℓ2-distance minimizing equal-norm 
Parseval frame  �̀�𝒢 in the equivalence class of  𝒢𝒢. For this frame, 
�ℱ − �̀�𝒢� = 𝑑𝑑𝐵𝐵�ℱ, �̀�𝒢� = 𝑑𝑑𝐵𝐵(ℱ, 𝒢𝒢) ≤ ϵ.   
The “if” part is clear from the inequality 𝑑𝑑𝐵𝐵�ℱ, �̀�𝒢� ≤ �ℱ − �̀�𝒢� . 
As a final remark before the main part of the section, we will see in this Section  that the 
Paulsen problem is equivalent to a problem in matrix theory. 
Problem (5.2.10)[37]: Let the field 𝔽𝔽 be either the real or complex numbers, and assume 
𝔽𝔽𝑛𝑛  is equipped with the canonical inner product. Given 𝜖𝜖 > 0, find the largest 
number 𝛾𝛾 > 0 so that whenever 𝑃𝑃 is an orthogonal rank-𝑑𝑑 projection matrix on 𝔽𝔽𝑛𝑛  with 
nearly constant diagonal, meaning there is 𝑐𝑐 > 0 such that 

(1 − 𝛾𝛾 )𝑐𝑐 ≤ 𝑃𝑃𝑗𝑗 ,𝑗𝑗  ≤ (1 + 𝛾𝛾 )𝑐𝑐,      𝑓𝑓𝑜𝑜𝑜𝑜 𝑅𝑅𝑙𝑙𝑙𝑙 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛}, 
then there exists an orthogonal projection 𝑄𝑄 satisfying 
(𝑅𝑅) 𝑄𝑄𝑗𝑗 ,𝑗𝑗 = 𝑑𝑑

𝑛𝑛
  for all 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛}, and 

(b)  �∑ �𝑃𝑃𝑗𝑗 ,𝑘𝑘 − 𝑄𝑄𝑗𝑗 ,𝑘𝑘 �2𝑛𝑛
𝑗𝑗 ,𝑘𝑘=1 �

1/2
< 𝜖𝜖. 

We begin by first finding the closest Parseval frame to a given nearly equal-norm 
and nearly Parseval frame. 
Proposition(5.2.11)[37]: Let {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛  be an 𝜖𝜖-nearly Parseval frame for a 𝑑𝑑-dimensional 
Hilbert space ℋ, with frame operator 𝑆𝑆 = 𝑉𝑉∗𝑉𝑉 , then {𝑆𝑆−1/2𝑓𝑓𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛  is the closest Parseval 
frame to {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛  and 
      ∑ �𝑆𝑆−1/2𝑓𝑓𝑗𝑗 − 𝑓𝑓𝑗𝑗 �2

≤ 𝑑𝑑�2 − 𝜖𝜖 − 2√1 − 𝜖𝜖� ≤ 𝑑𝑑𝜖𝜖2/4.𝑛𝑛
𝑗𝑗 =1  

Proof. It is known that {𝑆𝑆−1/2𝑓𝑓𝑗𝑗 }𝑗𝑗 =1
𝑛𝑛  is the closest Parseval frame to {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛  
[62,68,71,80]. We summarize the derivation of this fact. 
The squared ℓ2-distance between {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛  and {𝑔𝑔𝑗𝑗 }𝑗𝑗 =1
𝑛𝑛  can be expressed in terms of their 

analysis operators 𝑉𝑉 and 𝑊𝑊 as 
‖ℱ − 𝒢𝒢‖2 =  𝑤𝑤𝑜𝑜[(𝑉𝑉 − 𝑊𝑊)(𝑉𝑉 − 𝑊𝑊)∗] 

= 𝑤𝑤𝑜𝑜[𝑉𝑉𝑉𝑉∗] + 𝑤𝑤𝑜𝑜[𝑊𝑊𝑊𝑊∗] − 2 𝔑𝔑𝑤𝑤𝑜𝑜[𝑉𝑉𝑊𝑊∗]. 
Choosing a Parseval frame  {𝑔𝑔𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛  is equivalent to choosing the isometry 𝑊𝑊. To 
minimize the distance over all choices of 𝑊𝑊, consider the polar decomposition 𝑉𝑉 =
𝛼𝛼𝑃𝑃, where 𝑃𝑃 is positive and 𝛼𝛼 is an isometry. In fact, 𝑆𝑆 = 𝑉𝑉∗𝑉𝑉 implies 𝑃𝑃 = 𝑆𝑆1/2, which 
means its eigenvalues are bounded away from zero. 
Since 𝑃𝑃 is positive and bounded away from zero, the term [𝑉𝑉𝑊𝑊∗] = 𝑤𝑤𝑜𝑜[𝛼𝛼𝑃𝑃𝑊𝑊∗ =
𝑤𝑤𝑜𝑜𝑊𝑊∗𝛼𝛼𝑃𝑃] ] is an inner product between 𝑊𝑊 and 𝛼𝛼. Its magnitude is bounded by the 
Cauchy Schwarz inequality, and thus it has a  maximal real part if 𝑊𝑊 =  𝛼𝛼 which implies 
𝑊𝑊∗𝛼𝛼 = 𝐼𝐼. In this case, 
 𝑉𝑉 =  𝑊𝑊𝑃𝑃 =  𝑊𝑊𝑆𝑆1/2, or equivalently 𝑊𝑊∗ = 𝑆𝑆−1/2𝑉𝑉∗ 
 and we conclude 𝑔𝑔𝑗𝑗 = 𝑆𝑆−1/2𝑓𝑓𝑗𝑗  for all 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛}. 
After choosing  𝑊𝑊 =  𝑉𝑉𝑆𝑆−1/2 , the ℓ2-distance is expressed in terms of the eigenvalues 
{𝜆𝜆𝑘𝑘 }𝑘𝑘=1

𝑑𝑑  of 𝑆𝑆 = 𝑉𝑉∗𝑉𝑉 by 
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                 ‖ ℱ − 𝒢𝒢‖2 = 𝑤𝑤𝑜𝑜[𝑆𝑆] + 𝑤𝑤𝑜𝑜[𝐼𝐼] − 2𝑤𝑤𝑜𝑜[𝑆𝑆1/2] 

= � 𝜆𝜆𝑘𝑘 + 𝑑𝑑 − 2 � �𝜆𝜆𝑘𝑘 .
𝑑𝑑

𝑘𝑘=1

𝑑𝑑

𝑘𝑘=1

 

If 1 − 𝜖𝜖 ≤ 𝜆𝜆 ≤ 1 + 𝜖𝜖 for all 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛}, calculus shows that the maximum of 
𝜆𝜆 − 2√𝜆𝜆  is achieved when 𝜆𝜆 = 1 − 𝜖𝜖. 
Consequently, 
‖ ℱ − 𝒢𝒢‖2 ≤ 2𝑑𝑑 − 𝑑𝑑𝜖𝜖 − 2𝑑𝑑√1 − 𝜖𝜖.  
Estimating√1 − 𝜖𝜖  by the first three terms in its decreasing power series gives the 
inequality ‖ ℱ − 𝒢𝒢‖2 ≤ 𝑑𝑑𝜖𝜖2/4. 
We have an upper bound for the distance between a frame and the closest Parseval frame, 
and for sufficiently small 𝜖𝜖, we have control over how much of the “nearly equal-norm” 
property we lose.  
Proposition(5.2.13)[37]:  Fix 0 ≤ 𝜖𝜖 ≤ 1/2 and let {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛  be an 𝜖𝜖-nearly equal-norm 
frame with constant c which is also an 𝜖𝜖-nearly Parseval frame with frame operator 
𝑆𝑆 = 𝑉𝑉∗𝑉𝑉, then {𝑆𝑆−1/2𝑓𝑓𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛   is a Parseval frame and for all 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛} we have 

(1 − 3𝜖𝜖)𝑐𝑐2 ≤
(1 – 𝜖𝜖)2

1 + 𝜖𝜖
𝑐𝑐2  ≤ �𝑆𝑆−1

2𝑓𝑓𝑗𝑗 �
2

≤
(1 + 𝜖𝜖)2

1 − 𝜖𝜖
𝑐𝑐2 ≤ (1 − 7𝜖𝜖)𝑐𝑐2. 

Proof. Since the frame operator 𝑆𝑆 = 𝑉𝑉∗𝑉𝑉 is by assumption bounded by (1 − 𝜖𝜖)𝐼𝐼 ≤ 𝑆𝑆 ≤
(1 + 𝜖𝜖)𝐼𝐼 
we have via the spectral theorem 
                        1

√1+𝜖𝜖
𝐼𝐼 ≤ 𝑆𝑆−1

2 ≤ 1
√1−𝜖𝜖

𝐼𝐼. 
This means that the image of any unit vector has norm between 1/√1 + 𝜖𝜖                          
and 1/√1 − 𝜖𝜖 , and for the frame vectors with norm bounds (1 − 𝜖𝜖)𝑐𝑐 ≤ �𝑓𝑓𝑗𝑗 � ≤  (1 +
𝜖𝜖)𝑐𝑐, we get 

(1 − 𝜖𝜖)2

1 + 𝜖𝜖
𝑐𝑐2 ≤ �𝑆𝑆−1/2𝑓𝑓𝑗𝑗 �2

≤
(1 + 𝜖𝜖)2

1 − 𝜖𝜖
𝑐𝑐2. 

Further, convexity and elementary estimates give together with the assumption  𝜖𝜖 ≤ 1/2 
the bounds 

(1 −  3𝜖𝜖)𝑐𝑐2 ≤ �𝑆𝑆−1
2𝑓𝑓𝑗𝑗 �

2
≤ (1 + 7𝜖𝜖)𝑐𝑐2. 

Corollary (5.2.13)[37]: Fix 0 ≤ 𝜖𝜖 ≤ 1/2 and let {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1
𝑛𝑛  be an 𝜖𝜖-nearly equal-norm 

frame with constant 𝑐𝑐 which is also an 𝜖𝜖 -nearly Parseval frame with frame operator 
= 𝑉𝑉∗𝑉𝑉 , then the norm of each vector 𝑆𝑆−1/2𝑓𝑓𝑗𝑗 , 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛}, is bounded by 

               (1−𝜖𝜖)3

(1+𝜖𝜖)3
𝑑𝑑
𝑛𝑛

≤ �𝑆𝑆−1/2𝑓𝑓𝑗𝑗 �2
≤ (1+𝜖𝜖)3

(1−𝜖𝜖)3
𝑑𝑑
𝑛𝑛

. 
 Proof. By summing the square-norms of the frame vectors, and using the fact that the 
Grammian and the frame operator have the same eigenvalues, except possibly for zero, 
we obtain 
(1 −  𝜖𝜖)𝑑𝑑 ≤ ∑ �𝑓𝑓𝑗𝑗 �2

≤ (1 + 𝜖𝜖)𝑑𝑑.𝑛𝑛
𝑗𝑗 =1   

The nearly equal-norm condition gives 
(1 − 𝜖𝜖)𝑑𝑑 ≤ (1 + 𝜖𝜖)2𝑐𝑐2𝑛𝑛 
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and 
(1 + 𝜖𝜖)𝑑𝑑 ≥ (1 − 𝜖𝜖)2𝑐𝑐2𝑛𝑛. 

This bounds the value of 𝑐𝑐 by 
(1−𝜖𝜖)𝑑𝑑

(1+𝜖𝜖)2𝑛𝑛
≤ 𝑐𝑐2 ≤ (1+𝜖𝜖)𝑑𝑑

(1−𝜖𝜖)2𝑛𝑛
 . 

Now we combine this with the preceding proposition to obtain 
(1 − 𝜖𝜖)3𝑑𝑑
(1 + 𝜖𝜖)3𝑛𝑛

≤ �𝑆𝑆−1/2𝑓𝑓𝑗𝑗 �2
≤

(1 + 𝜖𝜖)3𝑑𝑑
(1 − 𝜖𝜖)3𝑛𝑛

. 

In the next section, we turn the resulting nearly equal-norm Parseval frame 
�𝑆𝑆−1/2𝑓𝑓𝑗𝑗 �

𝑗𝑗 =1

𝑛𝑛
  Into an equal-norm Parseval frame while measuring the distance between 

them. 
We begin with a dilation argument.We observe that if {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛   is a Parseval frame for a 
real or complex Hilbert space, then the Grammian  𝐺𝐺 = {𝑓𝑓𝑗𝑗 , 𝑓𝑓𝑘𝑘 }𝑗𝑗 ,𝑘𝑘=1

𝑛𝑛  is an orthogonal 
projection matrix and we have the expression 𝐺𝐺𝑗𝑗 ,𝑘𝑘  = 〈𝐺𝐺𝑒𝑒𝑗𝑗 , 𝐺𝐺𝑒𝑒𝑘𝑘 〉 = 〈𝑉𝑉∗𝑒𝑒𝑗𝑗 , 𝑉𝑉∗𝑒𝑒𝑘𝑘 〉  with the 
canonical orthonormal basis {𝑒𝑒𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛   𝑜𝑜𝑛𝑛  ℓ 2({1, 2, . . . , 𝑛𝑛}) and 𝑉𝑉∗, the adjoint of the 
analysis operator of {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛 . 
Proposition(5.2.14)[37]: Let 𝑮𝑮 be the Grammian of a Parseval frame for a real or 
complex Hilbert space ℋ, then the system of 𝑆𝑆𝐷𝐷𝐸𝐸𝑠𝑠 

𝑑𝑑
𝑑𝑑𝑤𝑤

𝑒𝑒𝑗𝑗 (𝑤𝑤) = ∑ ��𝐺𝐺𝑒𝑒𝑗𝑗 (𝑤𝑤)�2
− ‖𝐺𝐺𝑒𝑒𝑘𝑘 (𝑤𝑤)‖2�𝑛𝑛

𝑘𝑘=1 𝑒𝑒𝑘𝑘 (𝑤𝑤),           𝑗𝑗 ∈ {1,2, … , 𝑛𝑛}, (19) 
for the vector-valued functions {𝑒𝑒𝑗𝑗 ∶ ℝ+ →  ℓ 2({1, 2, . . . , 𝑛𝑛})} with the canonical basis 
vectors as initial values {𝑒𝑒𝑗𝑗  (0)}𝑗𝑗 =1

𝑛𝑛  has a unique, global solution on ℝ+. Moreover, there 
exists 𝑤𝑤 ≥ 0 such that �̀�𝑒𝑗𝑗 (𝑤𝑤) = 0 for all 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛} if and only if there is a 𝑐𝑐 > 0 such 
that �𝐺𝐺𝑒𝑒𝑗𝑗  (𝑤𝑤) � = 𝑐𝑐 for all 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛}. 
Proof. To simplify terminology in the proof, we write 𝔽𝔽𝑛𝑛  instead of the Hilbert space 
 ℓ 2({1, 2, . . . , 𝑛𝑛}), where 𝔽𝔽 stands for ℝ or ℂ, depending on whether the Hilbert space ℋ 
is real or complex. Moreover, we identify a family of vectors {𝑒𝑒𝑗𝑗 (𝑤𝑤)}𝑗𝑗 =1

𝑛𝑛  in 𝔽𝔽𝑛𝑛  with a 
vector (𝑒𝑒1(𝑤𝑤 ), 𝑒𝑒2(𝑤𝑤), . . . , 𝑒𝑒𝑛𝑛 (𝑤𝑤)) ∈⊕𝑗𝑗 =1

𝑛𝑛  𝔽𝔽𝑛𝑛  ≡ 𝔽𝔽𝑛𝑛2  . With this identification, the system 
of ODEs for �𝑒𝑒𝑗𝑗 (𝑤𝑤 )�

𝑗𝑗 =1

𝑛𝑛
combines to an 𝑆𝑆𝐷𝐷𝐸𝐸 for a single vector-valued function  𝜀𝜀: ℝ+  →

𝔽𝔽𝑛𝑛2  . Since the velocity vector field of the combined 𝑆𝑆𝐷𝐷𝐸𝐸 is smooth on any bounded set 
in 𝔽𝔽𝑛𝑛2  , we have local existence and uniqueness of the solution in a sufficiently small 
neighborhood of 𝑤𝑤 = 0. 
We first prove that these local solutions preserve orthonormality of �𝑒𝑒𝑗𝑗 (𝑤𝑤 )�

𝑗𝑗 =1

𝑛𝑛
 and then 

conclude the existence of global solutions. 
Since ∑ 𝑒𝑒𝑗𝑗 (0 )𝑛𝑛

𝑗𝑗 =1 ⊗ 𝑒𝑒𝑗𝑗
∗(0) = 𝐼𝐼 we only have to show that 

𝑑𝑑
𝑑𝑑𝑤𝑤

� 𝑒𝑒𝑗𝑗

𝑛𝑛

𝑗𝑗 =1

(𝑤𝑤) ⊗ 𝑒𝑒𝑗𝑗
∗(𝑤𝑤) = 0. 

 Denoting 𝑑𝑑𝑒𝑒𝑗𝑗 (𝑤𝑤)/𝑑𝑑𝑤𝑤 = �̀�𝑒𝑗𝑗 (𝑤𝑤) and dropping the argument of the vector-valued functions, 
we compute 
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𝑑𝑑
𝑑𝑑𝑤𝑤

� 𝑒𝑒𝑗𝑗

𝑛𝑛

𝑗𝑗 =1

⊗ 𝑒𝑒𝑗𝑗
∗ =        ���̀�𝑒𝑗𝑗 ⊗ 𝑒𝑒𝑗𝑗

∗ + 𝑒𝑒𝑗𝑗 ⊗ ��̀�𝑒𝑗𝑗 �∗�
𝑛𝑛

𝑗𝑗 =1

 

    = ∑ ��𝐺𝐺𝑒𝑒𝑗𝑗 �2
− ‖𝐺𝐺𝑒𝑒𝑘𝑘 ‖2� 𝑒𝑒𝑘𝑘

𝑛𝑛
𝑗𝑗 ,𝑘𝑘=1 ⊗ 𝑒𝑒𝑗𝑗

∗ + ��𝐺𝐺𝑒𝑒𝑗𝑗 �2
− ‖𝐺𝐺𝑒𝑒𝑘𝑘 ‖2� 𝑒𝑒𝑗𝑗 ⊗ 𝑒𝑒𝑘𝑘

∗) = 0.            
The last step follows from swapping the summation indices in the second term. 
Now we invoke that these local solutions are uniformly bounded, because {𝑒𝑒𝑗𝑗  (𝑤𝑤)}𝑗𝑗 =1

𝑛𝑛 is 
orthonormal for each 𝑤𝑤 ≥ 0. This implies that the local solution stays inside the compact 
set 𝑆𝑆𝑛𝑛 =  {(𝑒𝑒1, 𝑒𝑒2, . . . , 𝑒𝑒𝑛𝑛 ): �𝑒𝑒𝑗𝑗 � = 1 for all 𝑗𝑗} ⊂ 𝔽𝔽𝑛𝑛2  . The existence of a unique global 
solution now follows from the boundedness of the velocity vector field on the compact 
set 𝑆𝑆𝑛𝑛 , because otherwise the maximal domain [0, 𝑅𝑅) for a solution would yield a limiting 
value at a inside S, which we could again use as initial value to find a local solution in the 
neighborhood of a, and then by the uniqueness of local solutions extend the domain [0, 𝑅𝑅) 
to include a neighborhood of a, contradicting the maximality assumption. For more 
details on this argument, see [83]. 
Finally, we observe that �̀�𝑒 𝑗𝑗  (𝑤𝑤) = 0 for all 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛} implies by orthonormality that 
�𝐺𝐺𝑒𝑒𝑗𝑗 (𝑤𝑤)�2

− ‖𝐺𝐺𝑒𝑒𝑘𝑘 (𝑤𝑤)‖2 = 0 for all 𝑗𝑗 and 𝑘𝑘 and thus the family {𝐺𝐺𝑒𝑒𝑗𝑗 }𝑗𝑗 =1
𝑛𝑛 j=1 is equal-

norm. Conversely, it follows directly from the definition of the 𝑆𝑆𝐷𝐷𝐸𝐸 system that all 
orthonormal bases which 𝐺𝐺 projects to an equal-norm family are fixed points.  
By mapping the evolving orthonormal basis with the synthesis operator of a Parseval 
frame, we obtain a family of Parseval frames which solves a corresponding 𝑆𝑆𝐷𝐷𝐸𝐸 system. 
Proposition(5.2.15)[37]: Let 𝐺𝐺 be the Grammian of a Parseval frame for a real or 
complex Hilbert space ℋ, let 𝑉𝑉 ∶ ℋ → ℓ 2({1, 2, . . . , 𝑛𝑛}) be the analysis operator of the 
frame, and consider the solution {𝑒𝑒𝑗𝑗 ∶ ℝ+ →  ℓ 2({1, 2, . . . , 𝑛𝑛})}𝑗𝑗 =1

𝑛𝑛  of the initial value 
problem given in the preceding proposition, then 𝑓𝑓𝑗𝑗  (𝑤𝑤) = 𝑉𝑉∗𝑒𝑒𝑗𝑗 (𝑤𝑤) defines a family of 
Parseval frames {𝑓𝑓𝑗𝑗 ∶ ℝ+ → ℋ}𝑗𝑗 =1

𝑛𝑛  which satisfies the 𝑆𝑆𝐷𝐷𝐸𝐸 system 
𝑑𝑑
𝑑𝑑𝑤𝑤

𝑓𝑓𝑗𝑗 (𝑤𝑤) = ∑ ��𝑓𝑓𝑗𝑗 (𝑤𝑤)�2
− ‖𝑓𝑓𝑘𝑘 (𝑤𝑤)‖2�𝑛𝑛

𝑘𝑘=1 𝑓𝑓𝑘𝑘 (𝑤𝑤),      𝑗𝑗 ∈ {1,2, … , 𝑛𝑛},         (20) 
and 𝑉𝑉 is the analysis operator of {𝑓𝑓𝑗𝑗 (0)}𝑗𝑗 =1

𝑛𝑛 . Conversely, each solution of this 
𝑆𝑆𝐷𝐷𝐸𝐸 system, with a Parseval frame {𝑓𝑓𝑗𝑗 (0)}𝑗𝑗 =1

𝑛𝑛  having analysis operator 𝑉𝑉 as initial value, 
is globally defined and unique, and to each such solution corresponds a unique solution 
for the 𝑆𝑆𝐷𝐷𝐸𝐸 (19) starting at the canonical basis of ℓ 2({1, 2, . . . , 𝑛𝑛}) such that 𝑉𝑉∗𝑒𝑒𝑗𝑗 (𝑤𝑤) =
𝑓𝑓𝑗𝑗 (𝑤𝑤) for all 𝑤𝑤 ≥ 0. 
Proof.  We use the two facts that (1) the projection of any orthonormal basis  {𝑒𝑒𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛 with 
the Grammian 𝐺𝐺 is a Parseval frame for the range of 𝐺𝐺 and that (2) the analysis operator 
𝑉𝑉 of a Parseval frame is an isometry, which implies by orthonormality of {𝑒𝑒𝑗𝑗 (𝑤𝑤)}𝑗𝑗 =1

𝑛𝑛  that 
for any 𝑤𝑤 ≥ 0, ℱ(𝑤𝑤) =  {𝑉𝑉∗𝑒𝑒𝑗𝑗 (𝑤𝑤)}j=1

𝑛𝑛 is a Parseval frame for ℋ. Moreover, from the 
identity �𝐺𝐺𝑒𝑒𝑗𝑗 (𝑤𝑤)� = �𝑉𝑉∗𝑒𝑒𝑗𝑗 (𝑤𝑤)� = �𝑓𝑓𝑗𝑗 (𝑤𝑤)�  for all 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛} and from applying 𝑉𝑉∗ 
to both sides of the 𝑆𝑆𝐷𝐷𝐸𝐸 system (19), we deduce that  ℱ: ℝ+  →⊕𝑗𝑗 =1

𝑛𝑛 ℋ defines a family 
of Parseval frames which solves the 𝑆𝑆𝐷𝐷𝐸𝐸 system (20). The initial value problem for (20) 
has a unique solution, which is seen by repeating the argument of the preceding 
proposition with the vector-valued function ℱ: ℝ+  →⊕𝑗𝑗 =1

𝑛𝑛 ℋ  instead of 𝜀𝜀 and with the 
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sphere 𝑆𝑆 = {(𝑓𝑓1, 𝑓𝑓2, . . . , 𝑓𝑓𝑛𝑛 ): ∑ �𝑓𝑓𝑗𝑗 �2
= 𝑑𝑑} ⊂⊕𝑗𝑗 =1

𝑛𝑛𝑛𝑛
𝑗𝑗 =1 ℋ  instead of 𝑆𝑆𝑛𝑛 . The set 𝑆𝑆 is 

preserved under the flow because each {𝑓𝑓𝑗𝑗 (𝑤𝑤)}𝑗𝑗 =1
𝑛𝑛  is a Parseval frame, so the trace of its 

Grammian is equal to its rank, ∑ �𝑓𝑓𝑗𝑗 �2
= 𝑑𝑑𝑛𝑛

𝑗𝑗 =1  , independent of the choice of 𝑤𝑤 ≥ 0. Since 
the solution of the initial value problem (20) is unique, and  ℱ(𝑤𝑤) = {𝑉𝑉∗𝑒𝑒𝑗𝑗 (𝑤𝑤)}j=1

𝑛𝑛  
provides a solution when the orthonormal basis evolves under (19), each solution of (20) 
can be lifted to a unique solution of (19) which has as its initial value {𝑒𝑒𝑗𝑗 (0)}j=1

𝑛𝑛 , the 
canonical orthonormal basis of ℓ 2({1, 2, . . . , 𝑛𝑛}). 
The reason for introducing the dilation argument with the 𝑆𝑆𝐷𝐷𝐸𝐸 system for the basis 
vectors is that the fixed points of (19) are as desired, whereas the set of fixed points of 
(20) contains more than all equal-norm Parseval frames, see the example below. 
Proposition(5.2.16)[37]: Given a family of 𝑛𝑛 vector-valued functions{𝑓𝑓𝑗𝑗 : ℝ+ → ℋ}j=1

𝑛𝑛  , 
satisfying (20), with {𝑓𝑓𝑗𝑗 : (0)}j=1

𝑛𝑛 𝑅𝑅 Parseval frame, then �̀�𝑓𝑗𝑗 (0) = 0 for all 𝑗𝑗 ∈  {1, 2, . . . , 𝑛𝑛} 
if and only if the frame is equal-norm or the following zero-summing conditions hold: 

� 𝑓𝑓𝑗𝑗 (0) = ��𝑓𝑓𝑗𝑗 (0)�2
𝑛𝑛

𝑗𝑗 =1

𝑛𝑛

𝑗𝑗 =1

𝑓𝑓𝑗𝑗 (0) = 0. 

Proof. In the proof we again omit the explicit time dependence of the frame vectors. 
From the ODEs system for the frame vectors, we see that if 

𝑑𝑑
𝑑𝑑𝑤𝑤

𝑓𝑓𝑗𝑗 = � ��𝑓𝑓𝑗𝑗 �2
− ‖𝑓𝑓𝑘𝑘 ‖2�

𝑛𝑛

𝑘𝑘=1

𝑓𝑓𝑘𝑘 = 0, 

then 

�𝑓𝑓𝑗𝑗 �2 � 𝑓𝑓𝑘𝑘 = �‖𝑓𝑓𝑘𝑘 ‖2
𝑛𝑛

𝑘𝑘=1

𝑛𝑛

𝑘𝑘=1

𝑓𝑓𝑘𝑘 . 

Hence, if 
𝑑𝑑
𝑑𝑑𝑤𝑤

𝑓𝑓𝑗𝑗 =
𝑑𝑑
𝑑𝑑𝑤𝑤

𝑓𝑓𝑚𝑚 = 0, 
For    𝑗𝑗 ≠ 𝑚𝑚 ∈ {1, 2, . . . , 𝑛𝑛}, then 

�𝑓𝑓𝑗𝑗 �2 � 𝑓𝑓𝑘𝑘 = ‖𝑓𝑓𝑚𝑚 ‖2 � 𝑓𝑓𝑘𝑘 .

𝑛𝑛

𝑘𝑘=1

𝑛𝑛

𝑘𝑘=1

 

  That is,  
�𝑓𝑓𝑗𝑗 � = ‖𝑓𝑓𝑚𝑚 ‖     or     ∑ 𝑓𝑓𝑘𝑘 = 0𝑛𝑛

𝑘𝑘=1 . 
Consequently, if 𝑑𝑑

𝑑𝑑𝑤𝑤
𝑓𝑓𝑗𝑗 = 0  for all 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛} then the frame is equal-norm or 

� 𝑓𝑓𝑘𝑘 = �‖𝑓𝑓𝑘𝑘 ‖2

𝑘𝑘

𝑛𝑛

𝑘𝑘=1

𝑓𝑓
𝑘𝑘

= 0. 

Conversely, if the zero-summing conditions hold, then 𝑑𝑑
𝑑𝑑𝑤𝑤

𝑓𝑓𝑗𝑗 = 0   follows for all 𝑗𝑗 ∈
{1, 2, . . . , 𝑛𝑛} directly from the definition of the 𝑆𝑆𝐷𝐷𝐸𝐸 system (20).  
Example(5.2.17)[37]: Given a real or complex Hilbert space ℋ of dimension d and an 
orthonormal basis {𝑒𝑒1, 𝑒𝑒2, . . . , 𝑒𝑒𝑑𝑑  } for ℋ, we can construct a Parseval frame {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1

2𝑑𝑑+1  by  
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                   𝑓𝑓𝑗𝑗 = �

1
√2

𝑒𝑒𝑗𝑗 ,                1≤𝑗𝑗 ≤𝑑𝑑,

− 1
√2

𝑒𝑒𝑗𝑗 −𝑑𝑑   ,   𝑑𝑑+1≤𝑗𝑗 ≤2𝑑𝑑 ,        

0,                𝑗𝑗 = 2𝑑𝑑 + 1.

�   

It is straightforward to check that this frame satisfies the zero-summing conditions in the 
preceding proposition, and is thus a fixed point for the 𝑆𝑆𝐷𝐷𝐸𝐸 (20), but it is not an equal-
norm Parseval frame. 
It has been observed numerically that using an example of this type as initial value and 
dilating the Parseval frame to an orthonormal basis leads to an oscillating behavior of the 
basis vectors evolving under the ODE system (19). Therefore, one cannot hope to use 
these ODEs alone to achieve convergence to equal-norm Parseval frames. 
Definition(5.2.18)[37]: We define the frame energy of a frame ℱ = {𝑓𝑓𝑗𝑗 }j=1

𝑛𝑛  by 

𝛼𝛼(ℱ)  = � ��𝑓𝑓𝑗𝑗 �2
− ‖𝑓𝑓𝑘𝑘 ‖2�

2
.

𝑛𝑛

𝑗𝑗 ,𝑘𝑘=1

 

We will show below that with an appropriate use of intermittent switching, the energy of 
Parseval frames obtained from piecewise solutions of the 𝑆𝑆𝐷𝐷𝐸𝐸 (20) decreases rapidly (in 
fact, exponentially) in time. Together with the following arc length estimate, this amounts 
to showing a rate of convergence to an equal-norm Parseval frame. 
Definition(5.2.19)[37]: Given a family of differentiable vector-valued functions  ℱ =
{𝑓𝑓𝑗𝑗 : ℝ+ → ℋ}j=1

𝑛𝑛  and 0 ≤ 𝑤𝑤1 ≤ 𝑤𝑤2, the arc length traversed by the family between time 𝑤𝑤1 
and 𝑤𝑤2 is defined by 

                  𝑠𝑠 = ∫ �∑ ��̀�𝑓𝑗𝑗 (𝑤𝑤)�2𝑛𝑛
𝑗𝑗 =1 �𝑤𝑤2

𝑤𝑤1

1/2
𝑑𝑑𝑤𝑤. 

The arc length traversed by the vector-valued function ℱ evolving under (20) is bounded 
by an energy integral. 
Theorem(5.2.20)[37]: The arc length traversed by the solution ℱ: ℝ+ →⊕𝑗𝑗 =1

𝑛𝑛 ℋ of the 
𝑆𝑆𝐷𝐷𝐸𝐸 system (20) between time 𝑤𝑤1 and 𝑤𝑤2 is bounded by the energy integral 

𝑠𝑠 ≤ � �𝛼𝛼�ℱ(𝑤𝑤)��
1/2

𝑑𝑑𝑤𝑤.

𝑤𝑤2

𝑤𝑤1

 

Proof. We pass from the solution of (20) to the orthonormal basis  𝜀𝜀 = {𝑒𝑒𝑗𝑗 : ℝ+ →
𝔽𝔽𝑛𝑛2 }𝑗𝑗 =1

𝑛𝑛   evolving under (19), giving 𝑉𝑉∗𝑒𝑒𝑗𝑗 (𝑤𝑤) = 𝑓𝑓𝑗𝑗  (𝑤𝑤), where 𝑉𝑉∗ is the synthesis operator 
of{𝑓𝑓𝑗𝑗 (0)}j=1

𝑛𝑛 . Denoting by 𝐺𝐺 the Grammian, we have by orthonormality, 

�
𝑑𝑑
𝑑𝑑𝑤𝑤

𝑒𝑒𝑗𝑗 �
2

= � ��𝐺𝐺𝑒𝑒𝑗𝑗 �2
− ‖𝐺𝐺𝑒𝑒𝑘𝑘 ‖2�

2
𝑛𝑛

𝑘𝑘=1

 

where we have suppressed the explicit time dependence of the orthonormal basis vectors. 
Summing over all 𝑗𝑗 gives 

� �
𝑑𝑑
𝑑𝑑𝑤𝑤

𝑒𝑒𝑗𝑗 �
2

= � ��𝐺𝐺𝑒𝑒𝑗𝑗 �2
− ‖𝐺𝐺𝑒𝑒𝑘𝑘 ‖2�

2
𝑛𝑛

𝑗𝑗 ,𝑘𝑘=1

𝑛𝑛

𝑗𝑗 =1

= 𝛼𝛼�ℱ(𝑤𝑤)�. 
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Finally, again using the Parseval property, ‖𝐺𝐺𝑥𝑥‖ = ‖𝑉𝑉∗𝑥𝑥‖ for each 𝑥𝑥 ∈
ℓ2{1, 2, . . . , 𝑛𝑛}), yields   ��̀�𝑓𝑗𝑗 � = � 𝑑𝑑

𝑑𝑑𝑤𝑤 𝑉𝑉∗𝑒𝑒𝑗𝑗 � = � 𝑑𝑑
𝑑𝑑𝑤𝑤

𝐺𝐺𝑒𝑒𝑗𝑗 � ≤ � 𝑑𝑑
𝑑𝑑𝑤𝑤

𝑒𝑒𝑗𝑗 �,and we have 

∑ ��̀�𝑓𝑗𝑗 (𝑤𝑤)�2
≤ 𝛼𝛼�ℱ(𝑤𝑤)�𝑛𝑛

𝑗𝑗 =1  . Now the definition of arc length provides the desired 
estimate. 
Proposition (5.2.21)[37]:  An alternative expression for the frame energy of 𝑅𝑅 Parseval 
frame ℱ = {𝑓𝑓𝑗𝑗 }j=1

𝑛𝑛 ,  

𝛼𝛼(ℱ) = 2𝑛𝑛 ��𝑓𝑓𝑗𝑗 �4
− 2𝑑𝑑2,

𝑛𝑛

𝑗𝑗 =1

 

where 𝑑𝑑 is the dimension of ℋ. 
Proof.  We use the antisymmetry of  �𝑓𝑓𝑗𝑗 �2

− ‖𝑓𝑓𝑘𝑘 ‖2 in 𝑗𝑗 and 𝑘𝑘 to write 

𝛼𝛼(ℱ) = 2 � ��𝑓𝑓𝑗𝑗 �2
− ‖𝑓𝑓𝑘𝑘 ‖2�

𝑛𝑛

𝑗𝑗 ,𝑘𝑘=1

�𝑓𝑓𝑗𝑗 �2
. 

Now we can sum over 𝑘𝑘. Since {𝑓𝑓𝑘𝑘 }k=1
𝑛𝑛  is Parseval, the square-norms sum to 𝑑𝑑 =

𝑑𝑑𝑖𝑖𝑚𝑚(ℋ). The result is 

𝛼𝛼(ℱ) = 2 � �𝑛𝑛�𝑓𝑓𝑗𝑗 �4
− 𝑑𝑑�𝑓𝑓𝑗𝑗 �2�

𝑛𝑛

𝑗𝑗 =1

. 

Again, we can split the two terms into separate sums and carry out the sum over 𝑗𝑗 for the 
second term to get d again.  
Next, we give a closed expression for the time derivative of the frame energy while the 
frame ℱ evolves under (20). 
Lemma(5.2.22)[37]: If ℱ =  {𝑓𝑓𝑗𝑗 ∶ ℝ+ → ℋ} is a solution of (20) with a Parseval frame 
{𝑓𝑓𝑗𝑗 (0)}k=1

𝑛𝑛  as initial value, then 
𝑑𝑑
𝑑𝑑𝑤𝑤

𝛼𝛼�ℱ(𝑤𝑤)� = 4𝑛𝑛 � 〈𝑓𝑓𝑗𝑗 (𝑤𝑤), 𝑓𝑓𝑘𝑘 (𝑤𝑤)〉
𝑛𝑛

𝑗𝑗 ,𝑘𝑘=1

��𝑓𝑓𝑗𝑗 (𝑤𝑤)�2
− ‖𝑓𝑓𝑘𝑘 (𝑤𝑤)‖2�

2
 

Proof. Defining 𝐺𝐺𝑗𝑗 ,𝑘𝑘 (𝑤𝑤) = 〈𝐺𝐺𝑒𝑒𝑗𝑗 (𝑤𝑤), 𝑒𝑒𝑘𝑘 (𝑤𝑤)〉 = 〈𝑓𝑓𝑗𝑗 (𝑤𝑤 ), 𝑓𝑓𝑘𝑘 (𝑤𝑤)〉 and proceeding with the lifted 
𝑆𝑆𝐷𝐷𝐸𝐸 

�̀�𝑒𝑗𝑗 (𝑤𝑤) = � �𝐺𝐺𝑗𝑗 ,𝑗𝑗 (𝑤𝑤) − 𝐺𝐺𝑘𝑘 ,𝑘𝑘 (𝑤𝑤)� 𝑒𝑒𝑘𝑘 (𝑤𝑤)
𝑛𝑛

𝑘𝑘=1

 

we have  
𝑑𝑑
𝑑𝑑𝑤𝑤

�𝐺𝐺𝑗𝑗 ,𝑗𝑗 (𝑤𝑤)�
2

= 2𝐺𝐺𝑗𝑗 ,𝑗𝑗 (𝑤𝑤) � 𝐺𝐺𝑗𝑗 ,𝑗𝑗 (𝑤𝑤) �𝐺𝐺𝑗𝑗 ,𝑗𝑗 (𝑤𝑤) − 𝐺𝐺𝑘𝑘 ,𝑘𝑘 (𝑤𝑤)�
𝑛𝑛

𝑘𝑘=1

. 

Summing over 𝑗𝑗 and antisymmetrizing 𝐺𝐺𝑗𝑗 ,𝑗𝑗 (𝑤𝑤) with 𝐺𝐺𝑘𝑘 ,𝑘𝑘 (𝑤𝑤) gives 
𝑑𝑑
𝑑𝑑𝑤𝑤

𝛼𝛼�ℱ(𝑤𝑤)� = 4𝑛𝑛 � 𝐺𝐺𝑗𝑗 ,𝑘𝑘 (𝑤𝑤)
𝑛𝑛

𝑗𝑗 ,𝑘𝑘=1

�𝐺𝐺𝑗𝑗 ,𝑗𝑗 (𝑤𝑤) − 𝐺𝐺𝑘𝑘 ,𝑘𝑘 (𝑤𝑤)�
2
 

In terms of the frame vectors, this is precisely the claimed expression.  
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Definition(5.2.23)[37]: We define 𝜎𝜎𝑛𝑛  to be the uniform probability measure on the 𝑛𝑛-
torus 𝕋𝕋𝑛𝑛 = {𝑐𝑐 ∈ 𝔽𝔽𝑛𝑛 : |𝑐𝑐𝑗𝑗 | = 1 for all 𝑗𝑗 }, where 𝔽𝔽 is ℝ or ℂ. In the complex case, these are 
all 𝑛𝑛-tuples of unimodular complex numbers and in the real case n-tuples of ±1’𝑠𝑠.We 
also denote diagonal unitaries {𝐷𝐷(𝑐𝑐)}, parametrized by the diagonal entries (𝐷𝐷(𝑐𝑐))𝑗𝑗 ,𝑗𝑗 =
𝑐𝑐𝑗𝑗  , |𝑐𝑐𝑗𝑗 | = 1 for all 𝑗𝑗 ∈ {1, 2, . . ., n}. 
For later notational convenience, we define 

𝑊𝑊(ℱ)  =  4𝑛𝑛 � 〈𝑓𝑓𝑗𝑗 , 𝑓𝑓𝑘𝑘 〉
𝑛𝑛

𝑗𝑗 ,𝑘𝑘=1

��𝑓𝑓𝑗𝑗 �2
− ‖𝑓𝑓𝑘𝑘 ‖2� .2                                (21) 

We recall the definition of two frames being switching equivalent, meaning the two 
families consist of vectors that are pairwise collinear and of the same norm. 
We now use the switching dependence of 𝑊𝑊 to our advantage. 
Proposition(5.2.24)[37]: Given a Parseval frame ℱ = {𝑓𝑓𝑗𝑗 }j=1

𝑛𝑛  , then there is a choice 
𝑐𝑐 ∈ 𝕋𝕋𝑛𝑛  such that 

𝑊𝑊�ℱ(𝑐𝑐)� ≤ 0 
Proof. Let 𝐺𝐺 denote the Grammian of ℱ. For the switched frame ℱ(𝑐𝑐), we have 

𝑊𝑊�ℱ(𝑐𝑐)� = 4𝑛𝑛 � 𝑐𝑐𝑗𝑗 𝑐𝑐𝑘𝑘
∗

𝑛𝑛

𝑗𝑗 ,𝑘𝑘=1

𝐺𝐺𝑗𝑗 ,𝑘𝑘 �𝐺𝐺𝑗𝑗 ,𝑗𝑗 − 𝐺𝐺𝑘𝑘 ,𝑘𝑘 �.2 

Integrating over the torus 𝕋𝕋𝑛𝑛  with respect to the switching-invariant measure 𝜎𝜎𝑛𝑛  gives 

� 𝑐𝑐𝑗𝑗
∗𝑐𝑐𝑘𝑘 𝑑𝑑𝜎𝜎𝑛𝑛 (𝑐𝑐)

 

𝕋𝕋𝑛𝑛

= 𝛿𝛿𝑗𝑗 ,𝑘𝑘 . 

Thus we note, since terms with 𝑗𝑗 = 𝑘𝑘 have a vanishing contribution in 𝑊𝑊(ℱ(𝑐𝑐)), 

� 𝑊𝑊(ℱ(𝑐𝑐))𝑑𝑑𝜎𝜎(𝑐𝑐)
 

𝕋𝕋𝑛𝑛

= 0. 

Since the average is equal to zero, there must be a choice of 𝑐𝑐 which gives 𝑊𝑊(ℱ(𝑐𝑐)) ≤ 0.  
Next, we compute a lower bound for the variance of 𝑊𝑊�ℱ(𝑐𝑐)�. 
Proposition(5.2.25)[37]:  For a fixed Parseval frame ℱ, the variance of 𝑊𝑊�ℱ(𝑐𝑐)� with 
respect to the probability measure σ on the torus {𝑐𝑐 ∈ 𝕋𝕋𝑛𝑛 } is 

��𝑊𝑊(ℱ(𝑐𝑐))�𝑑𝑑𝜎𝜎(𝑐𝑐)
 

𝕋𝕋𝑛𝑛

= 16𝑛𝑛2 ��𝐺𝐺𝑗𝑗 ,𝑗𝑗 �2�𝐺𝐺𝑗𝑗 ,𝑗𝑗 − 𝐺𝐺𝑘𝑘 ,𝑘𝑘 �.4
𝑗𝑗 ,𝑘𝑘

 

Proof.  Similar to the preceding proposition, with the help of 

� 𝑐𝑐𝑗𝑗 𝑐𝑐𝑘𝑘
∗𝑐𝑐𝑙𝑙 𝑐𝑐𝑚𝑚

∗ 𝑑𝑑𝜎𝜎(𝑐𝑐) = 𝛿𝛿𝑗𝑗 ,𝑘𝑘 𝛿𝛿𝑙𝑙 ,𝑚𝑚 + 𝛿𝛿𝑗𝑗 ,𝑚𝑚 𝛿𝛿𝑘𝑘 ,𝑙𝑙

 

𝕋𝕋𝑛𝑛

 

Let 𝑛𝑛, 𝑑𝑑 ∈ ℕ  be relatively prime, and define 

𝜂𝜂 = min
𝑛𝑛1<𝑛𝑛
𝑑𝑑1<𝑑𝑑

�
𝑑𝑑
𝑛𝑛

−
𝑑𝑑1

𝑛𝑛1
� 

then we have a lower bound 

𝜂𝜂 ≥
1

𝑛𝑛(𝑛𝑛 − 1). 
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This follows immediately from the fact that since d, n are relatively prime, 𝑑𝑑𝑛𝑛1  −  𝑑𝑑1𝑛𝑛 is 
a nonzero integer. Since 𝑛𝑛1 < 𝑛𝑛 and 𝑑𝑑1 < 𝑑𝑑 we have 

�
𝑑𝑑
𝑛𝑛

−
𝑑𝑑1

𝑛𝑛1
� = �

𝑑𝑑𝑛𝑛1 − 𝑛𝑛 𝑑𝑑1

𝑛𝑛 𝑛𝑛1
� ≥

1
𝑛𝑛 𝑛𝑛1

≥
1

𝑛𝑛(𝑛𝑛 − 1). 

Lemma(5.2.26)[37]: Let 𝑛𝑛 ≥ 2, 𝜂𝜂 as defined above, and let ℱ = {𝑓𝑓𝑗𝑗 }j=1
𝑛𝑛  be a Parseval 

frame for a 𝑑𝑑-dimensional Hilbert space, then the variance of the random variable 
𝑊𝑊: 𝑐𝑐 → 𝑊𝑊�ℱ(𝑐𝑐)� on the torus 𝕋𝕋𝑛𝑛  equipped with the uniform probability measure 𝜎𝜎𝑛𝑛  is 
bounded below by 

16𝜂𝜂
(𝑛𝑛 − 1)7 (𝛼𝛼(ℱ))2 ≤ � 𝑊𝑊�ℱ(𝑐𝑐)�2

𝑑𝑑𝜎𝜎𝑛𝑛

 

𝕋𝕋𝑛𝑛

. 

Proof.  Without loss of generality we can number the frame vectors so that their norms 
decrease, 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛 − 1 If 𝛼𝛼(ℱ) does not vanish then ‖𝑓𝑓1‖ >  ‖𝑓𝑓𝑛𝑛 ‖ and there is at 
least one 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛 − 1} such that 

�𝑓𝑓𝑗𝑗 �2
>  �𝑓𝑓𝑗𝑗 +1�2

≥ (‖𝑓𝑓1‖2 − ‖𝑓𝑓𝑛𝑛 ‖2)/(𝑛𝑛 − 1)_ 
This means, if  𝑗𝑗̀ ≤ 𝑗𝑗 and j′′ ≥  𝑗𝑗 +  1, then also  

�𝑓𝑓𝑗𝑗 ̀�
2

− �𝑓𝑓 j′′ �
2

≥ (‖𝑓𝑓1‖2 − ‖𝑓𝑓𝑛𝑛 ‖2)/(𝑛𝑛 − 1) 

Thus we have partitioned the frame vectors into two sets, and the difference of square-
norms between any pair of vectors containing one from each of these sets is bounded 
below by (‖𝑓𝑓1‖2 − 𝑓𝑓𝑛𝑛_2)/(𝑛𝑛 − 1). 
Therefore, the matrix A containing entries (‖𝑓𝑓1‖2 − ‖𝑓𝑓𝑛𝑛 ‖2) /(𝑛𝑛 − 1) is entry-wise 
bounded below by a matrix (block notation) 

�̀�𝐴 = � 0      𝜖𝜖𝐽𝐽
𝜖𝜖𝐽𝐽∗      0� 

where 𝐽𝐽 is a block containing all 1’𝑠𝑠 anϵ𝜖𝜖 = (‖𝑓𝑓1‖2 − ‖𝑓𝑓𝑛𝑛 ‖2)4/(𝑛𝑛 − 1)4. 
If we form the corresponding blocks in the Grammian 

𝐺𝐺 = �𝐺𝐺11      𝐺𝐺22
𝐺𝐺21      𝐺𝐺22

� 

then we know 0 ≤ 𝐺𝐺11  ≤ 𝐼𝐼 , meaning the eigenvalues of 𝐺𝐺11 are contained in the closed 
interval [0, 1]. Since 𝐺𝐺 is an orthogonal projection, 𝐺𝐺11 = 𝐺𝐺11

2 + 𝐺𝐺12𝐺𝐺21 which means  
𝑤𝑤𝑜𝑜[𝐺𝐺12𝐺𝐺21] = 𝑤𝑤𝑜𝑜[𝐺𝐺11 − 𝐺𝐺11

2 ]. 
But that is exactly the squared Frobenius norm of the block 𝐺𝐺12. Hence, 

∑ �𝐺𝐺𝑗𝑗 ,𝑘𝑘 �2
𝑗𝑗 ,𝑘𝑘 𝐴𝐴𝑗𝑗 ,𝑘𝑘 ≥ 2𝜖𝜖𝑤𝑤𝑜𝑜[𝐺𝐺11 − 𝐺𝐺11

2 ]. 
The smallest number of non-zero entries in �̀�𝐴  is achieved when 𝐽𝐽 contains only one row. 
If 𝑛𝑛 and d are relatively prime and the vectors are sufficiently near equal-norm, then the 
diagonal entries of 𝐺𝐺11 are close to 𝑑𝑑/𝑛𝑛 and summing them does not give an integer. 
Therefore, not all eigenvalues are 0 or 1. In fact, a lower bound for the Hilbert–Schmidt 
square-norm of 𝐺𝐺12 is  𝑤𝑤𝑜𝑜[𝐺𝐺11 − 𝐺𝐺11

2 ] ≥ 𝜂𝜂/(2𝑛𝑛 − 2)]. This is because at least one of the 
eigenvalues has distance 𝜂𝜂/(𝑛𝑛 −  1) from {0, 1} and the function 𝑥𝑥 ↦  𝑥𝑥(1 −  𝑥𝑥) is 
bounded below by 𝑥𝑥 ⟼  𝑥𝑥/2 on [0, 1/2] and by 𝑥𝑥 ⟼  1/2 −  𝑥𝑥/2 on [1/2, 1]. 
Consequently, 



- 107 - 
 

∑ �𝐺𝐺𝑗𝑗 ,𝑘𝑘 �2
𝑗𝑗 ,𝑘𝑘 𝐴𝐴𝑗𝑗 ,𝑘𝑘 ≥ �‖𝑓𝑓1‖2−‖𝑓𝑓𝑛𝑛 ‖2�4𝜂𝜂

(𝑛𝑛−1)4(𝑛𝑛−1)
. 

Using the equivalence of norms again, 

� ��𝑓𝑓𝑗𝑗 �2
− ‖𝑓𝑓𝑘𝑘 ‖2�

2
𝑛𝑛

𝑗𝑗 ,𝑘𝑘=1

≤ 𝑛𝑛(𝑛𝑛 − 1)(‖𝑓𝑓1‖2 − ‖𝑓𝑓𝑛𝑛 ‖2)2 

and then applying Proposition(5.2.28) 
16𝜂𝜂

(𝑛𝑛 − 1)7 �𝛼𝛼(ℱ)�2
≤ 16𝑛𝑛2 � �𝐺𝐺𝑗𝑗 ,𝑘𝑘 �2

𝑛𝑛

𝑗𝑗 ,𝑘𝑘=1

𝐴𝐴𝑗𝑗 ,𝑘𝑘 � �
𝑑𝑑
𝑑𝑑𝑤𝑤

𝛼𝛼�ℱ(𝑐𝑐)��
2

𝑑𝑑𝜎𝜎(𝑐𝑐)
 

𝕋𝕋𝑛𝑛

. 

Next we will bound |𝑊𝑊(ℱ(𝑐𝑐))| by the frame energy. 
Lemma(5.2.27)[37]:  For a fixed Parseval frame ℱ, the random variable 𝑊𝑊 ∶ 𝑐𝑐 ↦
 𝑊𝑊(ℱ(𝑐𝑐)) on the torus 𝕋𝕋𝑛𝑛  is bounded, 

�𝑊𝑊(ℱ(𝑐𝑐))� ≤ 𝑑𝑑𝛼𝛼(ℱ). 
Proof.  Let 𝐵𝐵 denote the matrix with entries 𝐵𝐵𝑗𝑗 ,𝑘𝑘  = (�𝑓𝑓𝑗𝑗 �2

− ‖𝑓𝑓𝑘𝑘 ‖2)2, and 𝐺𝐺(𝑐𝑐) =
 𝐷𝐷(𝑐𝑐)𝐺𝐺𝐷𝐷∗(𝑐𝑐), then 𝑊𝑊(ℱ(𝑐𝑐))  =  𝑤𝑤𝑜𝑜[𝐺𝐺(𝑐𝑐)𝐵𝐵]. Estimating the inner product between 𝐺𝐺(𝑐𝑐) 
and 𝐵𝐵 gives 

�𝑊𝑊(ℱ(𝑐𝑐))� = �𝑤𝑤𝑜𝑜�𝐺𝐺(𝑐𝑐)𝐵𝐵�� ≤ max
𝑃𝑃

𝑤𝑤𝑜𝑜[𝑃𝑃|𝐵𝐵|] 
where the maximum is over all rank-d orthogonal projections 𝑃𝑃 , and the spectral 
theorem defines |𝐵𝐵| = √𝐵𝐵∗𝐵𝐵. According to Perron–Frobenius, the largest eigenvalue of 
|B| is bounded by max𝑗𝑗 ∑ 𝐵𝐵𝑖𝑖 ,𝑗𝑗

𝑛𝑛
𝑘𝑘=1  . Hence, 

�𝑊𝑊�ℱ(𝑐𝑐)�� ≤ 𝑑𝑑 max
𝑗𝑗

� 𝐵𝐵𝑗𝑗 .𝑘𝑘 ≤ 𝑑𝑑 � 𝐵𝐵𝑗𝑗 .𝑘𝑘 .

𝑛𝑛

𝑗𝑗 ,𝑘𝑘=1

𝑛𝑛

𝑘𝑘=1

 

Finally, we observe that 𝛼𝛼(ℱ)  =  𝛼𝛼(ℱ(𝑐𝑐)) = ∑ 𝐵𝐵𝑗𝑗 ,𝑘𝑘
𝑛𝑛
𝑗𝑗 ,𝑘𝑘=1 .  

To finish the quantitative bound on the distance from our initial Parseval frame to our 
equal norm Parseval frame, we will find an exponential upper bound on the frame energy. 
Theorem (5.2.22) will then give the needed quantitative upper bound on the arc length. 
Lemma(5.2.28)[37]:  Let 𝑊𝑊: 𝛺𝛺 → [−𝑅𝑅, 𝑅𝑅], 𝑅𝑅 > 0 be a bounded random variable on a 
probability space, which induces a normalized Borel measure m on [−𝑅𝑅, 𝑅𝑅]. If the 
expectation and variance of 𝑊𝑊 are 𝔼𝔼[𝑊𝑊] = ∫  𝑥𝑥 𝑑𝑑𝑚𝑚(𝑥𝑥)𝑅𝑅

−𝑅𝑅 = 0 and 𝔼𝔼[𝑊𝑊2] =
∫ 𝑥𝑥2𝑅𝑅

−𝑅𝑅  𝑑𝑑𝑚𝑚(𝑥𝑥) = 𝜎𝜎2  > 0, then the support of 𝑚𝑚 contains a point in the set {𝑥𝑥 ∈
 [−𝑅𝑅, 𝑅𝑅]: 𝑥𝑥 ≤ −𝜎𝜎2/𝑅𝑅}. 
Proof.  We consider the polynomial given by 𝑝𝑝(𝑥𝑥) = (𝑥𝑥 − 𝑅𝑅)(𝑥𝑥 + 𝑏𝑏), then 

𝔼𝔼[𝑝𝑝(𝑊𝑊)] = �(𝑥𝑥2 + (𝑏𝑏 − 𝑅𝑅)𝑥𝑥 − 𝑅𝑅𝑏𝑏)
𝑅𝑅

−𝑅𝑅

𝑑𝑑𝑚𝑚(𝑥𝑥)  = 𝜎𝜎2 − 𝑅𝑅𝑏𝑏. 

Choosing 𝑏𝑏 = 𝜎𝜎2/𝑅𝑅 𝑔𝑔𝑖𝑖𝑣𝑣𝑒𝑒𝑠𝑠 𝔼𝔼[𝑝𝑝(𝑊𝑊)  = 0, and so 
𝑠𝑠𝑢𝑢𝑝𝑝𝑝𝑝𝑚𝑚 ∩ {𝑥𝑥 ∈  [−𝑅𝑅, 𝑅𝑅]: 𝑝𝑝(𝑥𝑥)  ≥ 0} ≠ ∅. 

The subset of [−𝑅𝑅, 𝑅𝑅] where p is non-negative is [−𝑅𝑅, −𝑏𝑏].  
Now we are able to bound 𝑊𝑊(ℱ(𝑐𝑐)) from above by a strictly negative quantity. 
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Theorem (5.2.29)[37]:  Let 𝑛𝑛 ≥  2, 𝜂𝜂 as defined above  and let ℱ = {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1
𝑛𝑛  be a 

Parseval frame for a 𝑑𝑑-dimensional Hilbert space, then there exists 𝑐𝑐 ∈ 𝕋𝕋𝑛𝑛  such that 

𝑊𝑊�ℱ(𝑐𝑐)� ≤ −
16𝜂𝜂

(𝑛𝑛 − 1)7𝑑𝑑
𝛼𝛼(ℱ). 

Proof.  We have that 𝑅𝑅 = 𝑑𝑑𝛼𝛼(ℱ) bounds the magnitude of 𝑊𝑊(ℱ(𝑐𝑐)) and its variance 𝜎𝜎2 
is bounded below by 𝜎𝜎2 ≥ 16𝜂𝜂

(𝑛𝑛−1)7  (𝛼𝛼(ℱ))2. The preceding lemma then establishes that 
there is a choice for {𝑐𝑐𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛   such that 

𝑊𝑊�ℱ(𝑐𝑐)� ≤
𝜎𝜎2

𝑑𝑑𝛼𝛼(ℱ) ≤
16𝜂𝜂

(𝑛𝑛 − 1)7𝑑𝑑
𝛼𝛼(ℱ). 

Theorem(5.2.30)[37]: Let ℋ be a real or complex Hilbert space of dimension d, and let 
ℱ = {𝑓𝑓1, 𝑓𝑓2, . . . , 𝑓𝑓𝑛𝑛 } be an 𝜖𝜖-nearly equal-norm Parseval frame, with 𝑛𝑛 ≥ 2 and 𝑛𝑛 and 𝑑𝑑 
relatively prime, then there exists an equal-norm Parseval frame 𝒢𝒢 at ℓ2-distance 

‖ℱ − 𝒢𝒢 ‖ ≤ 𝛼𝛼(ℱ)
1
2

𝑛𝑛(𝑛𝑛 −  1)8𝑑𝑑
8

. 
Proof. We let the frame ℱ serve as the initial value ℱ(0) for the 𝑆𝑆𝐷𝐷𝐸𝐸 system (20). 
Assuming that for each  𝑤𝑤, we pick 𝑐𝑐(𝑤𝑤) which yields the desired estimate for 𝑊𝑊, then 
naively integrating the differential inequality 

𝑑𝑑
𝑑𝑑𝑤𝑤

𝛼𝛼�ℱ(𝑐𝑐(𝑤𝑤))(𝑤𝑤)� = 𝑊𝑊�ℱ(𝑐𝑐(𝑤𝑤))(𝑤𝑤)� ≤ −  
16𝜂𝜂

(𝑛𝑛 −  1)7𝑑𝑑
𝛼𝛼(ℱ(𝑤𝑤)) 

obtained in the preceding theorem gives 
𝛼𝛼�ℱ(𝑐𝑐(𝑤𝑤))(𝑤𝑤)� ≤ 𝛼𝛼�ℱ(0)�𝑒𝑒−16𝜂𝜂𝑤𝑤 /(𝑛𝑛−1)7𝑑𝑑 . 

However, we note that there is no guarantee that 𝑐𝑐 is a measurable function. To achieve 
this, we relax the constant governing the exponential decay. 
Choose 0 < 𝛼𝛼 < 1.We know that for any Parseval frame there is at least one choice of 𝑐𝑐 
which gives 

𝑑𝑑
𝑑𝑑𝑤𝑤

𝛼𝛼�ℱ(𝑐𝑐)� ≤ − 16𝜂𝜂
(𝑛𝑛  −1)7𝑑𝑑

𝛼𝛼(ℱ) < − 16𝛼𝛼𝜂𝜂
(𝑛𝑛  −1)7𝑑𝑑

𝛼𝛼(ℱ).                            (22) 
By the continuity of 𝛼𝛼 and 𝑑𝑑𝛼𝛼/𝑑𝑑𝑤𝑤 in ℱ, we can cover the space of Parseval frames with 
open sets for which the strict inequality holds with the choice of a corresponding 𝑐𝑐. To 
finish the argument we need to patch together the local flows in each open set. 
We define a global flow by the appropriate choice of 𝑐𝑐 in each subset. Upon exiting a set 
at time 𝑤𝑤  , we choose one of the open sets of which the frame  𝒢𝒢(𝑤𝑤) is an element and 
continue with the respective flow given by the corresponding choice of 𝑐𝑐 in this subset. 
Since the cover is open, 𝑐𝑐 is piecewise constant and right continuous. 
In the complex case, we choose a countable number of 𝑐𝑐’𝑠𝑠 which are dense in the torus. 
By continuity of 𝛼𝛼 and 𝑊𝑊, for any frame there is a choice in this countable set of 𝑐𝑐’𝑠𝑠 such 
that again the strict differential inequality (22) is satisfied. Moreover, the countable 
family of open sets corresponding to all 𝑐𝑐’𝑠𝑠 cover the space of all Parseval frames. By the 
Heine Borel property of the compact set of Parseval frames, there is a finite sub-cover 
and we can repeat the argument as in the real case. 
We recall that switching affects the ℓ2-distance. Piecewise integrating the differential 
inequality, including switching when necessary, gives that the frame energy of  
�ℱ(𝑐𝑐(𝑤𝑤))(𝑤𝑤)�

𝑤𝑤∈ℝ+decays exponentially in time. Then using  the inequality between arc 
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length and frame energy in Theorem(5.2.22) , we obtain that the sequence 
{ℱ(𝑐𝑐(𝑚𝑚 ))(𝑚𝑚)}𝑚𝑚 =0

∞  is Cauchy in the Bures metric, because the series  
∑ 𝑑𝑑𝐵𝐵∞

𝑚𝑚=0 (ℱ�𝑐𝑐(𝑚𝑚)�(𝑚𝑚), ℱ�𝑐𝑐(𝑚𝑚+1)�(𝑚𝑚 + 1)) is dominated by a geometric series, and hence 
summable. 
Passing to a subsequence converging to an accumulation point 𝒢𝒢′ then yields that the 
equalnorm Parseval frame  𝒢𝒢′  𝑖𝑖𝑠𝑠 within Bures distance 

𝑑𝑑𝐵𝐵(ℱ(0), 𝒢𝒢′  ) ≤ � 𝛼𝛼
∞

0

�ℱ�𝑐𝑐(𝑤𝑤)�(𝑤𝑤)�
1/2

𝑑𝑑𝑤𝑤 ≤ � 𝛼𝛼�ℱ(0)�
∞

0

1/2

𝑒𝑒−8𝜂𝜂𝛼𝛼𝑤𝑤 /(𝑛𝑛−1)7𝑑𝑑 𝑑𝑑𝑤𝑤 

= 𝛼𝛼�ℱ(0)�1/2 (𝑛𝑛 − 1)7𝑑𝑑
8𝜂𝜂𝛼𝛼

. 

However, we recall that we can always choose  𝒢𝒢 in the equivalence class of  𝒢𝒢′  which 
minimizes the ℓ2-distance to ℱ, and obtain the same result for the ℓ2-distance. 
To finish the proof, we recall 𝜂𝜂 ≥ 1/𝑛𝑛(𝑛𝑛 −  1) and use the fact that the set of equal-
norm Parseval frames is closed in the compact set of all Parseval frames. Therefore, 
choosing a sequence of values for 𝛼𝛼 converging to one, we obtain a sequence of frames 
with an accumulation point within the desired ℓ2-distance.  
Now, putting together the distances we computed above, and taking into account that in 
the first step we moved from our nearly equal-norm, nearly Parseval frame to the closest 
Parseval frame, we can give the distance estimate for the Paulsen problem. 
Theorem(5.2.31)[37]:  Let 𝑛𝑛, 𝑑𝑑 ∈ ℕ be relatively prime, 𝑛𝑛 ≥ 2, let 0 < 𝜖𝜖 < 1

2
 , and 

assume ℱ =  {𝑓𝑓𝑗𝑗 }𝑗𝑗 =1
𝑛𝑛  is an  𝜖𝜖-nearly equal-norm and  𝜖𝜖-nearly Parseval frame for a real or 

complex Hilbert space of dimension 𝑑𝑑, then there is an equal-norm Parseval frame 
 𝒢𝒢 =  {𝑔𝑔𝑗𝑗 }𝑗𝑗 =1

𝑛𝑛   such that 

‖ℱ − 𝒢𝒢 ‖ ≤
29
8

𝑑𝑑2𝑛𝑛(𝑛𝑛 − 1)8𝜖𝜖. 
Proof. After passing to the closest Parseval frame to the given frame, denoted by 
𝒢𝒢(0) = {𝑆𝑆−1/2𝑓𝑓𝑗𝑗  }, we have by the lower and upper bound for the norms of {𝑆𝑆−1/2𝑓𝑓𝑗𝑗 } in 
Corollary (5.2.13) a bound for the frame energy 

𝛼𝛼�𝒢𝒢(0)� ≤
𝑑𝑑2(𝑛𝑛 − 1)

𝑛𝑛
�

(1 + 𝜖𝜖)3

(1 − 𝜖𝜖)3 −
(1 − 𝜖𝜖)3

(1 + 𝜖𝜖)3�
2

. 

Using convexity and elementary estimates, we infer for  𝜖𝜖 < 1/2 that 
𝛼𝛼�𝒢𝒢(0)� < 272𝑑𝑑2𝜖𝜖2. 

Now using the preceding theorem, we obtain that there is an equal-norm Parseval frame  
 𝒢𝒢 at distance 

‖𝒢𝒢(0) − 𝒢𝒢 ‖ ≤
27
8

𝑑𝑑2𝑛𝑛(𝑛𝑛 − 1)8𝜖𝜖. 
To complete the proof, we use the triangle inequality, 

𝑑𝑑(ℱ, 𝒢𝒢 ) ≤ 𝑑𝑑(ℱ, 𝒢𝒢(0)) + 𝑑𝑑(𝒢𝒢(0), 𝒢𝒢 ) ≤ √𝑑𝑑
2

𝜖𝜖 + 27
8

𝑑𝑑2𝑛𝑛(𝑛𝑛 − 1)8𝜖𝜖, 
and then combine the two contributions after estimating 

�𝑑𝑑/2 ≤  𝑑𝑑2/2 ≤ 𝑑𝑑2𝑛𝑛(𝑛𝑛 − 1)8/4.  
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We conclude with an observation which allows us to reduce the construction of equal-
norm Parseval frames to the special case discussed in the previous section. 
Lemma(5.2.32)[37]:  Given two Hilbert spaces ℋ 1and ℋ2 over the real or complex 
numbers and equal-norm Parseval frames ℱ =  {𝑓𝑓1, . . . , 𝑓𝑓𝑛𝑛1} and  𝒢𝒢 =  {𝑔𝑔1, . . . , 𝑔𝑔𝑛𝑛2 } then 
the family of vectors 
ℱ ⊗ 𝒢𝒢  =  {𝑓𝑓𝑖𝑖  ⊗ 𝑔𝑔𝑗𝑗 : 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛1, 1 ≤ 𝑗𝑗 ≤  𝑛𝑛2} is an equal-norm Parseval frame for 
ℋ 1 ⊗ ℋ2. 
Proof.  The Parseval property of ℱ ⊗ 𝐺𝐺 is equivalent to the identity 

𝑥𝑥 = �〈𝑥𝑥, 𝑓𝑓𝑖𝑖  ⊗ 𝑔𝑔𝑗𝑗 〉𝑓𝑓𝑖𝑖  ⊗ 𝑔𝑔𝑗𝑗
𝑖𝑖 ,𝑗𝑗

 

for all 𝑥𝑥 ∈ ℋ1 ⊗ ℋ2. From the Parseval property of both frames it is clear that this 
identity holds for any 𝑥𝑥 = 𝑅𝑅 ⊗ 𝑏𝑏 with 𝑅𝑅 ∈ ℋ1 and 𝑏𝑏 ∈ ℋ2. Linearity then establishes the 
result for general 𝑥𝑥 ∈ ℋ1 ⊗ ℋ2. 
The equal-norm property follows from 

‖𝑓𝑓 ⊗ 𝑔𝑔‖  = ‖𝑓𝑓‖‖𝑔𝑔‖ 
for any pair (𝑓𝑓, 𝑔𝑔) ∈ ℱ × 𝒢𝒢   and from the equal-norm property of the individual frames.  
Corollary(5.2.33)[37]: The construction of an equal-norm Parseval frame of 𝑛𝑛 vectors in 
a 𝑑𝑑-dimensional real or complex Hilbert space ℋ can be reduced to the case of 𝑑𝑑 and 
𝑛𝑛 being relatively prime. 
Proof. If their greatest common divisor is not one, say 𝑔𝑔𝑐𝑐𝑑𝑑(𝑛𝑛, 𝑑𝑑) = 𝑚𝑚, then we can 
proceed as follows. Consider the Hilbert space ℋ = ℋ1 ⊗ ℋ2, where 𝑑𝑑𝑖𝑖𝑚𝑚(ℋ1)  =
 𝑑𝑑/𝑚𝑚 and 𝑑𝑑𝑖𝑖𝑚𝑚(ℋ2) = 𝑚𝑚. 
Now choose an orthonormal basis {𝑒𝑒1, 𝑒𝑒2, . . . , 𝑒𝑒𝑚𝑚 } for ℋ2 and construct an equal-norm 
Parseval frame of n/m vectors {𝑓𝑓1, 𝑓𝑓2, . . . , 𝑓𝑓𝑛𝑛/𝑚𝑚 } for ℋ1. The resulting family of tensor 
products {𝑓𝑓𝑖𝑖 ⊗ 𝑒𝑒𝑗𝑗 ∶ 1 ≤  𝑖𝑖 ≤  𝑛𝑛/𝑚𝑚, 1 ≤  𝑗𝑗 ≤ 𝑚𝑚} is an equal-norm Parseval frame for ℋ.  
In this section we will show that the estimate for the special case of the Paulsen problem 
provides a partial answer for Problem( 5.2.11) in matrix theory. 
Proposition (5.2.34)[37]:  If {𝑓𝑓𝑗𝑗  }𝑗𝑗 ∈𝐼𝐼  , {𝑔𝑔𝑗𝑗  }𝑗𝑗 ∈𝐼𝐼 are frames for ℋ with analysis operators 
𝑉𝑉1, 𝑉𝑉2 respectively, then 

��𝑉𝑉1𝑓𝑓𝑗𝑗  −  𝑉𝑉2𝑔𝑔𝑗𝑗  �
2

𝑗𝑗 ∈𝐼𝐼

 <  2(‖𝑉𝑉1‖2 + ‖𝑉𝑉2‖2) ��𝑓𝑓𝑗𝑗  − 𝑔𝑔𝑗𝑗  �
2

𝑗𝑗 ∈𝐼𝐼

. 

Proof.  Note that for all 𝑗𝑗 ∈ 𝐼𝐼 ,  
𝑉𝑉1𝑓𝑓𝑗𝑗  = �〈𝑓𝑓𝑗𝑗  , 𝑓𝑓𝑖𝑖  〉𝑒𝑒𝑖𝑖

𝑖𝑖∈𝐼𝐼

 

and  
𝑉𝑉2𝑔𝑔𝑗𝑗 = ∑ 〈𝑔𝑔𝑗𝑗  , 𝑔𝑔𝑖𝑖  〉𝑒𝑒𝑖𝑖𝑖𝑖∈𝐼𝐼 . 

Hence, 

�𝑉𝑉1𝑓𝑓𝑗𝑗  −  𝑉𝑉2𝑔𝑔𝑗𝑗 �2
= ��〈𝑓𝑓𝑗𝑗  , 𝑓𝑓𝑖𝑖  〉 − 〈𝑔𝑔𝑗𝑗  , 𝑔𝑔𝑖𝑖  〉�

𝑖𝑖∈𝐼𝐼

2
= ��〈𝑓𝑓𝑗𝑗  , 𝑓𝑓𝑖𝑖  − 𝑔𝑔𝑖𝑖  〉 + 〈𝑓𝑓𝑗𝑗  − 𝑔𝑔𝑗𝑗  , 𝑔𝑔𝑖𝑖  〉�

𝑖𝑖∈𝐼𝐼

2
 

 

≤ 2 ��〈𝑓𝑓𝑗𝑗  , 𝑓𝑓𝑖𝑖  − 𝑔𝑔𝑖𝑖  〉�
𝑖𝑖∈𝐼𝐼

2
+ 2 ��𝑓𝑓𝑗𝑗  − 𝑔𝑔𝑗𝑗  , 𝑔𝑔𝑖𝑖  �.2

𝑖𝑖∈𝐼𝐼

 



- 111 - 
 

Summing over j gives 

��𝑉𝑉1𝑓𝑓𝑗𝑗  −  𝑉𝑉2𝑔𝑔𝑗𝑗 �2
≤ 2 � ��〈𝑓𝑓𝑗𝑗  , 𝑓𝑓𝑖𝑖  − 𝑔𝑔𝑖𝑖  〉�2

𝑖𝑖∈𝐼𝐼𝑗𝑗 ∈𝐼𝐼𝑖𝑖∈𝐼𝐼

+ 2 � ��〈𝑓𝑓𝑗𝑗  − 𝑔𝑔𝑗𝑗  , 𝑔𝑔𝑖𝑖  〉�
𝑖𝑖∈𝐼𝐼𝑗𝑗 ∈𝐼𝐼

2
 

                                     

= 2 � ��〈𝑓𝑓𝑗𝑗  , 𝑓𝑓𝑖𝑖  − 𝑔𝑔𝑖𝑖  〉�2

𝑗𝑗 ∈𝐼𝐼𝑖𝑖∈𝐼𝐼

+ 2‖𝑉𝑉2‖2 ��𝑓𝑓𝑗𝑗  − 𝑔𝑔𝑗𝑗  �
𝑗𝑗 ∈𝐼𝐼

2
 

= 2‖𝑉𝑉1‖2 �‖𝑓𝑓𝑖𝑖  − 𝑔𝑔𝑖𝑖  ‖
𝑖𝑖∈𝐼𝐼

2
+ 2‖𝑉𝑉2‖2 ��𝑓𝑓𝑗𝑗  − 𝑔𝑔𝑗𝑗  �

𝑗𝑗 ∈𝐼𝐼

2
 

= 2(‖𝑉𝑉1‖2 + ‖𝑉𝑉2‖2) ∑ �𝑓𝑓𝑗𝑗  − 𝑔𝑔𝑗𝑗  �𝑗𝑗 ∈𝐼𝐼
2
 . 

Corollary(5.2.35)[37]: Let {𝑓𝑓𝑗𝑗 }𝑗𝑗 ∈𝐼𝐼 , {𝑔𝑔𝑗𝑗 }𝑗𝑗 ∈𝐼𝐼 be Parseval frames for ℋ with analysis 
operators 𝑉𝑉1, 𝑉𝑉2 respectively. If 

��𝑓𝑓𝑗𝑗  − 𝑔𝑔𝑗𝑗  �
𝑗𝑗 ∈𝐼𝐼

2
< 𝜖𝜖2, 

then 

��𝑉𝑉1𝑓𝑓𝑗𝑗  − 𝑉𝑉2𝑔𝑔𝑗𝑗  �
𝑗𝑗 ∈𝐼𝐼

2
< 4𝜖𝜖2.       

Proof. The analysis operators 𝑉𝑉1 and 𝑉𝑉2 are isometries, so the preceding proposition 
simplifies to the desired estimate.  
Corollary (5.2.36)[37]: Let ℋ be a Hilbert space having two Parseval frames ℱ =
 �𝑓𝑓𝑗𝑗 �

𝑗𝑗 =1

𝑛𝑛
  𝑅𝑅𝑛𝑛𝑑𝑑  𝒢𝒢   =  �𝑔𝑔𝑗𝑗 �

𝑗𝑗 =1

𝑛𝑛
 at  ℓ2-distance‖ℱ − 𝒢𝒢‖ ≤ 𝜖𝜖, then their Grammians 𝐺𝐺 and 

𝑄𝑄 satisfy 

‖𝐺𝐺 − 𝑄𝑄‖𝐻𝐻𝑆𝑆  ≡ � � �𝐺𝐺𝑗𝑗 ,𝑘𝑘 − 𝑄𝑄𝑗𝑗 ,𝑘𝑘 �2
𝑛𝑛

𝑗𝑗 ,𝑘𝑘=1

�

1/2

< 2𝜖𝜖. 

. Corollary(5.2.37)[37]: Let 𝑛𝑛, 𝑑𝑑 ∈ ℕ be relatively prime, 𝑛𝑛 ≥ 2, and let 0 <  𝜖𝜖 < 1/2. 
If 𝐺𝐺 is a rank-𝑑𝑑 orthogonal 𝑛𝑛 × 𝑛𝑛 projection matrix over ℝ or ℂ and there is 𝑐𝑐 > 0 such 
that the diagonal entries satisfy 

(1 − 𝜖𝜖)2𝑐𝑐2 ≤  𝐺𝐺𝑗𝑗 ,𝑗𝑗   (1 + 𝜖𝜖)2𝑐𝑐2 
for all 𝑗𝑗 ∈ {1, 2, . . . , 𝑛𝑛}, then there is an orthogonal rank-𝑑𝑑 projection 𝑄𝑄 with diagonal 
𝑄𝑄𝑗𝑗 ,𝑗𝑗  = 𝑑𝑑

𝑛𝑛
 and 

‖𝐺𝐺 − 𝑄𝑄‖𝐻𝐻𝑆𝑆 ≤
29
4

𝑑𝑑2 𝑛𝑛(𝑛𝑛 − 1)8𝜖𝜖. 
Proof. The matrix 𝐺𝐺 is the Grammian of a nearly equal-norm Parseval frame. Using the 
distance estimate in Theorem (5.2.31)  and the preceding corollary, we obtain the desired 
estimate for the Hilbert–Schmidt distance.  
Section(5.3):  Given Spectrum and Set of Lengths 
Letting 𝕂𝕂 be either the real or complex field, the synthesis operator of a sequence of 
vectors 𝐹𝐹 = { 𝑓𝑓𝑛𝑛 }𝑛𝑛=1

𝑁𝑁  in an 𝑀𝑀-dimensional Hilbert space ℍ𝑀𝑀over 𝕂𝕂 is 𝐹𝐹 ∶ 𝕂𝕂𝑁𝑁 →
 ℍ𝑀𝑀 , 𝐹𝐹𝑔𝑔 ∶=  ∑ 𝑔𝑔(𝑛𝑛)𝑁𝑁

𝑛𝑛=1 𝑓𝑓𝑛𝑛 . Viewing ℍ𝑀𝑀   as 𝕂𝕂𝑀𝑀 , F is the 𝑀𝑀 × 𝑁𝑁 matrix whose columns 
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are the 𝑓𝑓𝑛𝑛 ’𝑠𝑠. Note that here and throughout, we make no notational distinction between 
the vectors themselves and the synthesis operator they induce. The vectors 𝐹𝐹 are said to 
be a frame for ℍ𝑀𝑀    if there exists frame bounds 0 < 𝐴𝐴 ≤ 𝐵𝐵 < ∞ such that 𝐴𝐴‖𝑓𝑓‖2 ≤
 ‖𝐹𝐹∗𝑓𝑓‖2 ≤  𝐵𝐵‖𝑓𝑓‖2  for all 𝑓𝑓 ∈ ℍ𝑀𝑀 . In this finite-dimensional setting, the optimal frame 
bounds 𝐴𝐴 and 𝐵𝐵 of an arbitrary 𝐹𝐹 are the least and greatest eigenvalues of the frame 
operator: 

𝐹𝐹𝐹𝐹∗ = � 𝑓𝑓𝑛𝑛 𝑓𝑓𝑛𝑛
∗

𝑁𝑁

𝑛𝑛=1

 ,                                                       (23) 

Frames provide numerically stable methods for finding over complete decompositions of 
vectors, and as such are useful tools in various signal processing applications [52, 53]. 
Indeed, if 𝐹𝐹 is a frame, then any 𝑓𝑓 ∈ ℍ𝑀𝑀  can be decomposed as  

𝑓𝑓 = 𝐹𝐹𝐹𝐹�∗𝑓𝑓 = �〈𝑓𝑓, 𝑓𝑓𝑛𝑛 〉
𝑁𝑁

𝑛𝑛=1

𝑓𝑓𝑛𝑛 ,                              (24) 

where 𝐹𝐹� = { 𝑓𝑓𝑛𝑛 }𝑛𝑛=1
𝑁𝑁  is a dual frame of 𝐹𝐹, meaning it satisfies 𝐹𝐹𝐹𝐹�∗ = 𝐼𝐼. The most often-

used dual frame is the canonical dual, namely the pseudoinverse 𝐹𝐹� = (𝐹𝐹𝐹𝐹∗)−1𝐹𝐹. Note 
that computing a canonical dual involves the inversion of the frame operator. As such, 
when designing a frame for a given application, it is important to retain control over the 
spectrum {𝜆𝜆𝑚𝑚 }𝑚𝑚=1

𝑀𝑀  of 𝐹𝐹𝐹𝐹∗. Here and throughout, such spectra are arranged in 
nonincreasing order, with the optimal frame bounds 𝐴𝐴 and 𝐵𝐵 being 𝜆𝜆𝑚𝑚  and 𝜆𝜆1, 
respectively. 
Of particular interest are tight frames, namely frames for which 𝐴𝐴 = 𝐵𝐵. Note this occurs 
precisely when 𝜆𝜆𝑚𝑚 = 𝐴𝐴 for all m, meaning  𝐹𝐹𝐹𝐹∗ = 𝐴𝐴𝐼𝐼. In this case, the canonical dual is 
given by 𝑓𝑓𝑛𝑛 = 1

𝐴𝐴
𝑓𝑓𝑛𝑛 , and(24)becomes an over complete generalization of an orthonormal 

basis decomposition. Tight frames are not hard to construct: we simply need the rows 
of 𝐹𝐹 to be orthogonal and have constant squared norm 𝐴𝐴. However, this problem 
becomes significantly more difficult if we further require the 𝑓𝑓𝑛𝑛 ’𝑠𝑠—the columns of 𝐹𝐹 to 
have prescribed lengths. 
In particular, much attention has been paid to the problem of constructing unit norm 
tight frames (𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹𝑠𝑠): tight frames for which  ‖𝑓𝑓𝑛𝑛 ‖ = 1 for all 𝑛𝑛. Here, since  𝑀𝑀𝐴𝐴 =
𝑇𝑇𝑜𝑜(𝐹𝐹𝐹𝐹∗) =  𝑇𝑇𝑜𝑜(𝐹𝐹∗𝐹𝐹) =  𝑁𝑁, we see that 𝐴𝐴 is necessarily 𝑁𝑁

𝑀𝑀  𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹𝑠𝑠 are known to be 
optimally robust with respect to additive noise[48] and erasures [41, 49].    Moreover, all 
unit norm sequences 𝐹𝐹 satisfy the  zeroth-order Welch bound 𝑇𝑇𝑜𝑜[(𝐹𝐹𝐹𝐹∗)2] ≥

𝑁𝑁2

𝑀𝑀  𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹 
[59, 60]; a physics-inspired interpretation of this fact leading to an optimization-based 
proof of existence of UNTFs is given in [36]. We further know that such frames are 
commonplace: when 𝑁𝑁 ≥ 𝑀𝑀 + 1, the manifold of all 𝑀𝑀 × 𝑁𝑁 real 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹𝑠𝑠, modulo 
rotations, is known to have dimension (𝑀𝑀 − 1)(𝑁𝑁 − 𝑀𝑀 − 1) [46].  Essentially, 
when  𝑁𝑁 =  𝑀𝑀 + 1, this manifold is zero-dimensional since the only 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹𝑠𝑠 are regular 
simplices [47]; each additional unit norm vector injects 𝑀𝑀 − 1 additional degrees of 
freedom into this manifold, in accordance with the dimension of the unit sphere in ℝ𝑀𝑀 . 
Local parametrizations of this manifold are given in [56]. The Paulsen problem involves 
projecting a given frame onto this manifold, and differential calculus-based methods for 
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doing so are given in [37, 39]. 
In light of these facts, it is surprising to note how few explicit constructions of 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹𝑠𝑠 
are known. Indeed, a constructive characterization of all 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹𝑠𝑠 is only known for 
𝑀𝑀 = 2 [47]. For arbitrary 𝑀𝑀 and 𝑁𝑁, there are only two known general construction 
techniques: truncations of discrete Fourier transform matrices known as harmonic 
frames [47] and a sparse construction method dubbed spectral tetris [40]. To emphasize 
this point, we note that there are only a small finite number of known constructions of 3 
× 5 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹𝑠𝑠, despite the fact that an infinite number of such frames exist even modulo 
rotations, their manifold being of dimension (𝑀𝑀 − 1)(𝑁𝑁 − 𝑀𝑀 − 1)  = 2. The reason for 
this is that in order to construct a 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹, one must solve a large system of quadratic 
equations in many variables: the columns of  F must have unit norm, and the rows of F 

must be orthogonal with constant norm �𝑁𝑁
𝑀𝑀

�
1
2.   

In this section, we show how to explicitly construct all 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹𝑠𝑠, and moreover, how to 
explicitly construct every frame whose frame operator has a given arbitrary spectrum and 
whose vectors are of given arbitrary lengths. To do so, we build on the existing theory of 
majorization and the Schur-Horn Theorem. To be precise, given two nonnegative 
nonincreasing sequences {𝜆𝜆𝑛𝑛 }𝑛𝑛=1

𝑁𝑁  and {𝜇𝜇𝑛𝑛 }𝑛𝑛=1
𝑁𝑁  we say that {𝜆𝜆𝑛𝑛 }𝑛𝑛=1

𝑁𝑁  majorizes {𝜇𝜇𝑛𝑛 }𝑛𝑛=1
𝑁𝑁 , 

denoted {𝜆𝜆𝑛𝑛 }𝑛𝑛=1
𝑁𝑁 ≥ {𝜇𝜇𝑛𝑛 }𝑛𝑛=1

𝑁𝑁 , if 
                               ∑ 𝜆𝜆�́�𝑛

𝑛𝑛
�́�𝑛=1 ≥ ∑ 𝜇𝜇�́�𝑛

𝑛𝑛
�́�𝑛=1               ⋁𝑛𝑛 = 1, … , 𝑁𝑁 − 1, 

                                 ∑ 𝜆𝜆�́�𝑛
𝑁𝑁
�́�𝑛=1 = ∑ 𝜇𝜇�́�𝑛

𝑁𝑁
�́�𝑛=1 .         

Viewed as discrete functions over the axis {1, . . . , 𝑁𝑁}, having {𝜆𝜆𝑛𝑛 }𝑛𝑛=1
𝑁𝑁 majorize 

{𝜇𝜇𝑛𝑛 }𝑛𝑛=1
𝑁𝑁 means that the total area under both curves is equal, and that the area under 

{𝜆𝜆𝑛𝑛 }𝑛𝑛=1
𝑁𝑁  is distributed more to the left than that of {𝜇𝜇𝑛𝑛 }𝑛𝑛=1

𝑁𝑁 . A classical result of Schur 
[55] states that the spectrum of a self-adjoint positive semidefinite matrix necessarily 
majorizes its diagonal entries. A few decades later, Horn gave a nonconstructive proof of 
a converse result [50], showing that if {𝜆𝜆𝑛𝑛 }𝑛𝑛=1

𝑁𝑁 ≥ {𝜇𝜇𝑛𝑛 }𝑛𝑛=1
𝑁𝑁 , then there exists a self-adjoint 

matrix that has {𝜆𝜆𝑛𝑛 }𝑛𝑛=1
𝑁𝑁  as its spectrum and {𝜇𝜇𝑛𝑛 }𝑛𝑛=1

𝑁𝑁 as its diagonal. 
These two results are collectively known as the Schur-Horn Theorem: 
Schur-Horn Theorem. There exists a positive semidefinite self-adjoint matrix with 
spectrum {𝜆𝜆𝑛𝑛 }𝑛𝑛=1

𝑁𝑁 and diagonal entries {𝜇𝜇𝑛𝑛 }𝑛𝑛=1
𝑁𝑁  if and only if {𝜆𝜆𝑛𝑛 }𝑛𝑛=1

𝑁𝑁 ≥ {𝜇𝜇𝑛𝑛 }𝑛𝑛=1 .
𝑁𝑁 . 

Over the years, several methods for explicitly constructing Horn’s matrices have been 
found; see [44] for a nice overview. Many current methods rely on Givens rotations [42, 
44, 58], while others involve optimization [43]. With regards to frame theory, the 
significance of the Schur-Horn Theorem is that it completely characterizes whether or not 
there exists a frame whose frame operator has a given spectrum and whose vectors have 
given lengths; this follows from applying it to the Gram matrix 𝐹𝐹∗𝐹𝐹, whose diagonal 
entries are the values { ‖𝑓𝑓𝑛𝑛 ‖2}𝑛𝑛=1

𝑁𝑁  and whose spectrum {𝜆𝜆𝑛𝑛 }𝑛𝑛=1
𝑁𝑁   is  a zero-padded version 

of the spectrum {𝜆𝜆𝑚𝑚 }𝑚𝑚=1
𝑀𝑀  of the frame operator 𝐹𝐹𝐹𝐹∗ Indeed, majorization inequalities 

arose during the search for tight frames with given lengths [38, 45], and the explicit 
connection between frames and the Schur-Horn Theorem is noted in [35, 52]. This 
connection was then exploited to solve various frame theory problems, such as frame 
completion [54]. 
In this section, we follow the approach of [51] in which majorization is viewed as the end 
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result of the repeated application of a more basic idea: eigenvalue interlacing. To be 
precise, a nonnegative nonincreasing sequence {𝛾𝛾𝑚𝑚 }𝑚𝑚=1

𝑀𝑀  interlaces on another such 
sequence {𝛽𝛽𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 , denoted {𝛽𝛽𝑚𝑚 }𝑚𝑚 =1
𝑀𝑀 ⊑ {𝛾𝛾𝑚𝑚 }𝑚𝑚=1

𝑀𝑀  provided 
𝛽𝛽𝑀𝑀 ≤  𝛾𝛾𝑀𝑀 ≤  𝛽𝛽𝑀𝑀−1 ≤  𝛾𝛾𝑀𝑀−1 ≤ · · · ≤  𝛽𝛽2 ≤  𝛾𝛾2 ≤  𝛽𝛽1 ≤  𝛾𝛾1.               (25) 

Under the convention 𝛾𝛾𝑀𝑀+1: =  0, we have that {𝛽𝛽𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 ⊑ {𝛾𝛾𝑚𝑚 }𝑚𝑚=1

𝑀𝑀  if and only if 
𝛾𝛾𝑀𝑀+1  ≤ 𝛽𝛽𝑀𝑀 ≤ 𝛾𝛾𝑀𝑀  for all 𝑚𝑚 = 1, . . . , 𝑀𝑀. 
Interlacing arises in the context of frame theory by considering partial sums of the frame 
operator (23). To be precise, given any sequence of vectors 𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1

𝑁𝑁  in ℍ𝑀𝑀 , then for 
every 𝑛𝑛 = 1, . . . , 𝑁𝑁, we consider the partial sequence of vectors 𝐹𝐹𝑛𝑛 = {𝑓𝑓�́�𝑛 }�́�𝑛=1

𝑁𝑁 . Note that 
𝐹𝐹𝑁𝑁 =  𝐹𝐹 and the frame operator of 𝐹𝐹𝑁𝑁is  

𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛
∗ = � 𝑓𝑓�́�𝑛 𝑓𝑓�́�𝑛

∗
𝑛𝑛

�́�𝑛=1

.                                                                     (26) 

Let {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀  denote the spectrum (26). For any 𝑛𝑛 = 1, . . . , 𝑁𝑁 − 1, (26) gives that 

𝐹𝐹𝑛𝑛+1𝐹𝐹𝑛𝑛+1
∗ = 𝐹𝐹𝑁𝑁𝐹𝐹𝑛𝑛

∗ + 𝑓𝑓𝑛𝑛+1𝑓𝑓𝑛𝑛+1
∗  and so a classical result [51] involving the addition of 

rank-one positive operators gives that {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 ⊑ {𝜆𝜆𝑛𝑛+1;𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 . Moreover, if ‖𝑓𝑓𝑛𝑛 ‖2 =
µ𝑛𝑛  for all 𝑛𝑛 = 1, . . . , 𝑁𝑁, then for any such 𝑛𝑛, 

� 𝜆𝜆𝑛𝑛 ;𝑚𝑚 = 𝑇𝑇𝑜𝑜(𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛
∗)

𝑀𝑀

𝑚𝑚 =1

= 𝑇𝑇𝑜𝑜(𝐹𝐹𝑛𝑛
∗𝐹𝐹𝑛𝑛 ) = �‖𝑓𝑓�́�𝑛 ‖2

𝑛𝑛

�́�𝑛=1

� 𝜇𝜇�́�𝑛

𝑛𝑛

�́�𝑛=1

                (27) 

Note that as n  increases, the Gram matrix grows in dimension but the  frame operator 
does not since 𝐹𝐹𝑛𝑛

∗𝐹𝐹𝑛𝑛 : 𝕂𝕂𝑛𝑛 ⟶ 𝕂𝕂𝑛𝑛   but 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛
∗: ℍ𝑀𝑀 ⟶ ℍ𝑀𝑀 . We call a sequence of interlacing 

spectra that satisfy (27) a sequence of eigensteps: 
Definition (5.3.1)[34]: Given nonnegative nonincreasing sequences {𝜆𝜆𝑚𝑚 }𝑚𝑚 =1

𝑀𝑀  and 
{𝜇𝜇𝑛𝑛 }𝑛𝑛=1

𝑁𝑁 , a sequence of eigensteps is a doubly- indexed sequence of sequences 
{{𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 }}𝑛𝑛=0
𝑁𝑁  for which: 

(i) The initial sequence is trivial: 
           𝜆𝜆0;𝑚𝑚 = 0       ∀𝑚𝑚 = 1, . . . , 𝑀𝑀. 
(ii) The final sequence is  {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 : = 𝜆𝜆𝑚𝑚     ∀𝑚𝑚 =  1, . . . , 𝑀𝑀. 
(iii) The sequences interlace: 

�𝜆𝜆𝑛𝑛−1;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀

⊑= {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀     ∀𝑛𝑛 =  1, . . . , 𝑁𝑁. 

 (iv) The trace condition is satisfied: 

� 𝜆𝜆𝑁𝑁;𝑚𝑚 = � 𝜇𝜇
𝑛𝑛

�́�𝑛=1

𝑀𝑀

𝑚𝑚 =1 �́�𝑛

         ∀𝑛𝑛 =  1, . . . , 𝑁𝑁. 

As we have just discussed, every sequence of vectors whose frame operator has the 
spectrum {𝜆𝜆𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 and whose vectors have squared lengths {𝜇𝜇𝑛𝑛 }𝑚𝑚=1
𝑁𝑁  generates a sequence 

of eigensteps. In the next section, we adapt a proof technique of [51] to show the 
converse is true. Specifically, characterizes and proves the existence of sequences of 
vectors that generate a given sequence of eigensteps. In this Section, We then use this 
characterization to provide an algorithm for explicitly constructing all such sequences of 
vectors; see Theorem (5.3.7 ).Though nontrivial, this algorithm is nevertheless 
straightforward enough to be implemented by hand in small-dimensional examples, 
involving only arithmetic, square roots and matrix multiplication. We will see that once 
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the eigensteps have been chosen, the algorithm gives little freedom in picking the frame 
vectors themselves. That is, modulo rotations, the eigensteps are the free parameters 
when designing a frame whose frame operator has a given spectrum and whose vectors 
have given lengths. 
The significance of these methods is that they explicitly construct every possible finite 
frame of a given spectrum and set of lengths. Computing the Gram matrices of such 
frames produces every possible matrix that satisfies the Schur-Horn Theorem; previous 
methods have only constructed a subset of such matrices. Moreover, in the special case 
where the spectrums and lengths are constant, these methods construct every equal norm 
tight frame. This helps narrow the search for frames we want for applications: tight 
Gabor, wavelet, equiangular and Grassmannian frames. 
The purpose of this section is to prove the following result: 
Conversely, any 𝐹𝐹 constructed by this process has {𝜆𝜆𝑚𝑚 }𝑚𝑚=1

𝑀𝑀  as the spectrum of 𝐹𝐹𝐹𝐹∗ and 
‖𝑓𝑓𝑛𝑛 ‖2 = 𝜇𝜇𝑛𝑛 for all 𝑛𝑛. 
Moreover, for any 𝐹𝐹 constructed in this manner, the spectrum of 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛

∗ is {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀  for 

all 𝑛𝑛 = 1, . . . , 𝑁𝑁. 
We note that as it stands, Theorem(5.3.6) is not an easily-implementable algorithm, as 
Step A requires one to select a valid sequence of eigensteps—not an obvious feat—while 
Step B requires one to compute orthonormal eigenbases for each 𝐹𝐹𝑛𝑛 . These concerns will 
be addressed in the following section. We further note that Theorem(5.3.6) only claims to 
construct all possible such  , sidestepping the issue of whether such an 𝐹𝐹  actually exists 
for a given {𝜆𝜆𝑚𝑚 }𝑚𝑚 =1

𝑀𝑀   and {𝜇𝜇𝑛𝑛 }𝑚𝑚=1
𝑁𝑁 . This issue is completely resolved by the Schur-Horn 

Theorem. Indeed, in the case where 𝑀𝑀 ≤ 𝑁𝑁, [35] shows that there exists a sequence of 
vectors 𝐹𝐹 = {𝑓𝑓𝑛𝑛  }𝑛𝑛=1

𝑛𝑛  in ℍ𝑀𝑀whose frame operator 𝐹𝐹𝐹𝐹∗ has spectrum {𝜆𝜆𝑚𝑚 }𝑚𝑚 =1
𝑀𝑀 and which 

satisfies ‖𝑓𝑓𝑛𝑛 ‖2 = 𝜇𝜇𝑛𝑛 for all 𝑛𝑛 if and only if {𝜆𝜆𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 ∪ {0}𝑛𝑛=𝑀𝑀+1

𝑁𝑁 ≥ {𝜇𝜇𝑛𝑛 }𝑛𝑛=1
𝑛𝑛  . In the case 

where 𝑀𝑀 > 𝑁𝑁, a similar argument shows that such a sequence of vectors exists if and 
only if {𝜆𝜆𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 ≥ {𝜇𝜇𝑛𝑛 }𝑛𝑛=1
𝑛𝑛   and 𝜆𝜆𝑚𝑚 = 0 for all 𝑚𝑚 = 𝑁𝑁 + 1, . . . , 𝑀𝑀. As 

Step B of Theorem(5.3.6) can always be completed for any valid sequence of eigensteps, 
these majorization conditions in fact characterize those values {𝜆𝜆𝑚𝑚 }𝑚𝑚=1

𝑀𝑀  and   {𝜇𝜇𝑛𝑛 }𝑛𝑛=1
𝑛𝑛  for 

which Step A can successfully be performed; we leave a deeper exploration of this fact 
for future work. In order to prove Theorem(5.3.6), we first obtain some supporting 
results. The following lemma gives a first taste of the connection between eigensteps 
and our frame construction problem: 
Lemma(5.3.2)[34]: Let {𝜆𝜆𝑚𝑚 }𝑚𝑚 =1

𝑀𝑀   and {𝜇𝜇𝑛𝑛 }𝑛𝑛=1
𝑁𝑁   be nonnegative and nonincreasing, and 

let {{𝜆𝜆𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 }𝑛𝑛=0

𝑁𝑁  be any corresponding sequence of eigensteps as in Definition (5.3.1). 
If a sequence of vectors 𝐹𝐹 = { 𝑓𝑓𝑛𝑛 }𝑛𝑛=1

𝑁𝑁  has the property that the spectrum of  the frame 
operator 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛

∗  of 𝐹𝐹𝑛𝑛  = { 𝑓𝑓𝑛𝑛 }�́�𝑛=1
𝑛𝑛   is {𝜆𝜆𝑚𝑚 }𝑚𝑚 =1

𝑀𝑀  for all 𝑛𝑛 = 1, … , 𝑁𝑁, then the spectrum of 
𝐹𝐹𝐹𝐹∗ is  {𝜆𝜆𝑚𝑚 }𝑚𝑚=1

𝑀𝑀  and ‖𝑓𝑓𝑛𝑛 ‖2 = 𝜇𝜇𝑛𝑛   for all 𝑛𝑛 = 1, … , 𝑁𝑁. 
Proof. Definition(5.3.1) (ii) immediately gives that the spectrum of 

 𝐹𝐹𝐹𝐹∗ = 𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁
∗  

N is indeed {𝜆𝜆𝑛𝑛 }𝑚𝑚=1
𝑀𝑀 = �𝜆𝜆𝑁𝑁;𝑚𝑚 �

𝑚𝑚=1
𝑀𝑀

, as claimed. 
Moreover, for any = 1, … , 𝑁𝑁. , Definition (5.3.1) (iv) gives 
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�‖𝑓𝑓�́�𝑛 ‖2
𝑛𝑛

�́�𝑛=1

= 𝑇𝑇𝑜𝑜(𝐹𝐹𝑛𝑛
∗𝐹𝐹𝑛𝑛 ) = 𝑇𝑇𝑜𝑜(𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛

∗) = � 𝜆𝜆𝑛𝑛 ,𝑚𝑚 = � 𝜇𝜇�́�𝑛

𝑛𝑛

�́�𝑛=1

𝑀𝑀

𝑚𝑚=1

(28) 

Letting 𝑛𝑛 = 1 in (28) gives ‖𝑓𝑓1‖2 = 𝜇𝜇1, while for 𝑛𝑛 = 2, … , 𝑁𝑁, considering (28) at both 
𝑛𝑛 and 𝑛𝑛 −  1 gives 

‖𝑓𝑓𝑛𝑛 ‖2 = �‖𝑓𝑓�́�𝑛 ‖2 − �‖𝑓𝑓�́�𝑛 ‖2 = � 𝜇𝜇�́�𝑛 − � 𝜇𝜇�́�𝑛 = 𝜇𝜇𝑛𝑛

𝑛𝑛−1

𝑛𝑛=1́

𝑛𝑛

𝑛𝑛=1́

𝑛𝑛−1

𝑛𝑛=1́

𝑛𝑛

𝑛𝑛=1́

 

The next result gives conditions that a vector must satisfy in order for it to perturb the 
spectrum of a given frame  operator in a desired way(see [51]). 
Theorem(5.3.3)[34]: Let 𝐹𝐹𝑛𝑛 = {𝑓𝑓�́�𝑛 }�́�𝑛−1

𝑛𝑛   be an arbitrary sequence of vectors in ℍ𝑀𝑀  and 
let �𝜆𝜆𝑛𝑛 ,𝑚𝑚 �

𝑚𝑚 =1
𝑀𝑀

denote the eigenvalues of the corresponding frame operator 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛
∗ . For any 

choice of 𝑓𝑓𝑛𝑛+1in ℍ𝑀𝑀 , let 𝐹𝐹𝑛𝑛+1 = {𝑓𝑓�́�𝑛 }�́�𝑛=1
𝑛𝑛+1. Then for any 𝜆𝜆 ∈ �𝜆𝜆𝑛𝑛 ,𝑚𝑚 �

𝑚𝑚=1
𝑀𝑀

  the norm of  the 
projection of 𝑓𝑓𝑛𝑛+1onto the eigenspace  𝑁𝑁(𝜆𝜆𝐼𝐼 − 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛

∗) is given by 
�𝑃𝑃𝑛𝑛 ;𝜆𝜆 𝑓𝑓𝑛𝑛+1�2

= − lim
𝑥𝑥⟶𝜆𝜆

(𝑥𝑥 − 𝜆𝜆) 𝑃𝑃𝑛𝑛 +1(𝑥𝑥)
𝑃𝑃𝑛𝑛 (𝑥𝑥)  

where 𝑝𝑝𝑛𝑛 (𝑥𝑥) and 𝑝𝑝𝑛𝑛+1(𝑥𝑥) denote the characteristic polynomials of 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛
∗ and 𝐹𝐹𝑛𝑛+1𝐹𝐹𝑛𝑛+1

∗ , 
respectively. 
Proof. For the sake of notational simplicity, let 𝐹𝐹𝑛𝑛  =  𝐹𝐹, 𝑓𝑓𝑛𝑛+1 =  𝑓𝑓 , 𝑓𝑓𝑛𝑛+1 =  𝐺𝐺, 𝑃𝑃𝑛𝑛 ;𝜆𝜆 =
 𝑃𝑃𝜆𝜆 , 𝑝𝑝𝑛𝑛 (𝑥𝑥) = 𝑝𝑝(𝑥𝑥), 𝑝𝑝𝑛𝑛+1(𝑥𝑥) =  𝑞𝑞(𝑥𝑥),nd let 𝜆𝜆𝑛𝑛 ;𝑚𝑚 = 𝛽𝛽𝑚𝑚 for all 𝑚𝑚 = 1, … , 𝑀𝑀. We will also 
use I to denote the identity matrix, and its dimension will be apparent from context. To 
obtain the result, we will express the characteristic polynomial  𝑞𝑞�(𝑥𝑥) of the (𝑛𝑛 +  1) ×
(𝑛𝑛 + 1)Gram matrix 𝐺𝐺∗𝐺𝐺 in terms of the characteristic polynomial 𝑝𝑝�(𝑥𝑥)of the 𝑛𝑛 ×
𝑛𝑛 Gram matrix 𝐹𝐹∗𝐹𝐹. Written in terms of their standard matrix representations, we have 
𝐺𝐺 = [𝐹𝐹  𝑓𝑓] 

𝐺𝐺∗𝐺𝐺 = �𝐹𝐹∗

𝑓𝑓∗� [𝐹𝐹   𝑓𝑓] = �
𝐹𝐹∗𝐹𝐹           𝐹𝐹∗𝑓𝑓
𝑓𝑓∗𝐹𝐹∗        ‖𝑓𝑓‖2�                                                     (29) 

To compute the determinant of 𝑥𝑥1 − 𝐺𝐺∗𝐺𝐺, it is helpful to compute the singular value 
decomposition 𝐹𝐹 = 𝛼𝛼 ∑ 𝑉𝑉∗ and note that for any 𝑥𝑥 not in the diagonal of 𝛴𝛴∗𝛴𝛴∗ the 
following matrix W has unimodular determinant: 

𝑊𝑊 ≔ �𝑉𝑉 0
0 1� �1 (𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)−1𝑉𝑉∗𝐹𝐹∗𝑓𝑓

0 1
� = �𝑉𝑉 𝑉𝑉(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)−1𝑉𝑉∗𝐹𝐹∗𝑓𝑓

0 1
�.     (30) 

Subtracting (29) from 𝑥𝑥𝐼𝐼 and conjugating by (30) yields                                   
𝑊𝑊∗(𝑥𝑥1 − 𝐺𝐺∗𝐺𝐺)𝑊𝑊

= � 𝑉𝑉∗  0
(𝑉𝑉(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)−1𝑉𝑉∗𝐹𝐹∗𝑓𝑓) 1� �

𝑥𝑥1 − 𝐹𝐹∗𝐹𝐹 −𝐹𝐹∗𝑓𝑓
−𝑓𝑓∗𝐹𝐹 𝑥𝑥 − ‖𝑓𝑓‖2� �𝑉𝑉 𝑉𝑉(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)−1𝑉𝑉∗𝐹𝐹∗𝑓𝑓

0 1
� 

= � 𝑉𝑉∗  0
(𝑓𝑓∗𝐹𝐹𝑉𝑉(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)−1𝑉𝑉∗) 1� 

�
(𝑥𝑥1 − 𝐹𝐹∗𝐹𝐹)𝑉𝑉 (𝑥𝑥1 − 𝐹𝐹∗𝐹𝐹)𝑉𝑉(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)−1𝑉𝑉∗𝐹𝐹∗𝑓𝑓 − 𝐹𝐹∗𝑓𝑓

−𝑓𝑓∗𝐹𝐹𝑉𝑉 𝑥𝑥 − ‖𝑓𝑓‖2 − 𝑓𝑓∗𝐹𝐹𝑉𝑉(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)−1𝑉𝑉∗𝐹𝐹∗𝑓𝑓
�                  (31) 

 
Since 𝐹𝐹∗𝐹𝐹 =  𝑉𝑉𝛴𝛴∗𝛴𝛴𝑉𝑉∗ then −𝐹𝐹∗𝐹𝐹 = 𝑥𝑥1 − 𝑉𝑉𝛴𝛴∗𝛴𝛴𝑉𝑉∗ = 𝑉𝑉(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)𝑉𝑉∗ . As such, 
(𝑥𝑥1 − 𝐹𝐹∗𝐹𝐹) 𝑉𝑉(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)−1𝑉𝑉∗𝐹𝐹∗𝑓𝑓 − 𝐹𝐹∗𝑓𝑓 = (𝑉𝑉(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴) 𝑉𝑉∗𝑉𝑉(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)−1𝑉𝑉∗𝐹𝐹∗𝑓𝑓 −
𝐹𝐹∗𝑓𝑓=𝐹𝐹∗𝑓𝑓−𝐹𝐹∗𝑓𝑓=0                                                                            (32) 
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Substituting (32) into (31) and again noting 𝑉𝑉∗(𝑥𝑥𝐼𝐼 −  𝐹𝐹∗𝐹𝐹)𝑉𝑉 = 𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴 gives 

   𝑊𝑊∗(𝑥𝑥1 − 𝐺𝐺∗𝐺𝐺)𝑊𝑊 = � 𝑉𝑉∗ 0
𝑓𝑓∗𝐹𝐹𝑉𝑉(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)−1𝑉𝑉∗ 1� 

�
(𝑥𝑥1 − 𝐹𝐹∗𝐹𝐹)𝑉𝑉 0

−𝑓𝑓∗𝐹𝐹𝑉𝑉 𝑥𝑥 − ‖𝑓𝑓‖2 − 𝑓𝑓∗𝐹𝐹𝑉𝑉(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)−1𝑉𝑉∗𝐹𝐹∗𝑓𝑓� 

�
𝑉𝑉∗(𝑥𝑥1 − 𝐹𝐹∗𝐹𝐹)𝑉𝑉 0

𝑓𝑓∗𝐹𝐹𝑉𝑉(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)−1𝑉𝑉∗(𝑥𝑥1 − 𝐹𝐹∗𝐹𝐹)𝑉𝑉 − 𝑓𝑓∗𝐹𝐹𝑉𝑉 𝑥𝑥 − ‖𝑓𝑓‖2 − 𝑓𝑓∗𝐹𝐹𝑉𝑉(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)−1𝑉𝑉∗𝐹𝐹∗𝑓𝑓� 

= �𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴 0
0 𝑥𝑥 − ‖𝑓𝑓‖2 − 𝑓𝑓∗𝐹𝐹𝑉𝑉(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)−1𝑉𝑉∗𝐹𝐹∗𝑓𝑓�                        (33) 

Since W has unimodular determinant, (33) implies 
𝑞𝑞�(𝑥𝑥) ∶=  𝑑𝑑𝑒𝑒𝑤𝑤(𝑥𝑥𝐼𝐼 −  𝐺𝐺∗𝐺𝐺)  = 𝑑𝑑𝑒𝑒𝑤𝑤 [𝑊𝑊∗(𝑥𝑥𝐼𝐼 −  𝐺𝐺∗𝐺𝐺)𝑊𝑊]  = 𝑑𝑑𝑒𝑒𝑤𝑤(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)(𝑥𝑥 − ‖𝑓𝑓‖2 −
𝑓𝑓∗𝐹𝐹𝑉𝑉𝑥𝑥1−𝛴𝛴∗𝛴𝛴−1𝑉𝑉∗𝐹𝐹∗𝑓𝑓                                                                    (34) 
To simplify (34), note that since V is unitary, 
𝑝𝑝�(𝑥𝑥): =  𝑑𝑑𝑒𝑒𝑤𝑤(𝑥𝑥𝐼𝐼 −  𝐹𝐹∗𝐹𝐹)  =  det[𝑉𝑉∗(𝑥𝑥1 − 𝐹𝐹∗𝐹𝐹)𝑉𝑉] =  𝑑𝑑𝑒𝑒𝑤𝑤(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)(35) 
Moreover, letting (𝛴𝛴∗𝛴𝛴)(�́�𝑛, �́�𝑛) denote the �́�𝑛 th diagonal entry of 𝛴𝛴∗𝛴𝛴 yields 

𝑓𝑓∗𝐹𝐹𝑉𝑉(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)−1𝑉𝑉∗𝐹𝐹∗𝑓𝑓 
=  (𝑉𝑉∗𝐹𝐹∗𝑓𝑓)∗(𝑥𝑥1 − 𝛴𝛴∗𝛴𝛴)−1(𝑉𝑉∗𝐹𝐹∗𝑓𝑓) = ∑ |(𝑉𝑉∗𝐹𝐹∗𝑓𝑓)(�́�𝑛 )|2

𝑥𝑥−(𝛴𝛴∗𝛴𝛴)(�́�𝑛 ,�́�𝑛 )
𝑛𝑛
�́�𝑛=1               (36) 

Substituting (35)and (36)into (34)gives 
𝑞𝑞�(𝑥𝑥) = 𝑝𝑝�(𝑥𝑥)(𝑥𝑥 −   ‖𝑓𝑓‖2 − ∑ |(𝑉𝑉∗𝐹𝐹∗𝑓𝑓)(�́�𝑛 )|2

𝑥𝑥−(𝛴𝛴∗𝛴𝛴)(�́�𝑛 ,�́�𝑛 )
𝑛𝑛
�́�𝑛=1   )                                        (37) 

To continue simplifying (37), let 𝛿𝛿�́�𝑛  denote the �́�𝑛th standard basis element. Then 
𝑉𝑉∗𝐹𝐹∗ = 𝛴𝛴∗𝛼𝛼∗  implies that for any   �́�𝑛 =  1, … , 𝑛𝑛, 

(𝑉𝑉∗𝐹𝐹∗𝑓𝑓)(�́�𝑛) =  〈𝑉𝑉∗𝐹𝐹∗𝑓𝑓, 𝛿𝛿�́�𝑛 〉 = 〈𝛴𝛴∗𝛼𝛼∗𝑓𝑓, 𝛿𝛿�́�𝑛 〉 = 〈𝑓𝑓, 𝛼𝛼𝛴𝛴𝛿𝛿�́�𝑛 〉 = �𝜎𝜎�́�𝑛 〈𝑓𝑓, 𝜇𝜇�́�𝑛 〉,    �́�𝑛 ≤ 𝑀𝑀,
0,                   �́�𝑛 > 𝑀𝑀

� (38)                                                                                                                 

where {𝜎𝜎�́�𝑛 }�́�𝑛=1
𝑚𝑚𝑖𝑖𝑛𝑛 {𝑀𝑀,𝑛𝑛} are the singular values of 𝐹𝐹. Since 𝛴𝛴∗𝛴𝛴(�́�𝑛;  �́�𝑛) = 𝜎𝜎�́�𝑛

2  for any 
�́�𝑛 =  1, … , 𝑚𝑚𝑖𝑖𝑛𝑛{𝑀𝑀, 𝑛𝑛}, (38) implies 

� |(𝑉𝑉∗𝐹𝐹∗𝑓𝑓)(�́�𝑛)|2

𝑥𝑥−(𝛴𝛴∗𝛴𝛴)(�́�𝑛 ,�́�𝑛)

𝑛𝑛

�́�𝑛=1

= � 𝜎𝜎�́�𝑛
2�〈𝑓𝑓 ,𝜇𝜇 �́�𝑛 〉2�

𝑥𝑥−(𝛴𝛴∗𝛴𝛴)(�́�𝑛 ,�́�𝑛)

𝑚𝑚𝑖𝑖𝑛𝑛 {𝑀𝑀,𝑛𝑛}

�́�𝑛=1

= � 𝜎𝜎�́�𝑛
2

𝑥𝑥−𝜎𝜎�́�𝑛
2|𝑓𝑓 ,𝑢𝑢�́�𝑛 |2

𝑚𝑚𝑖𝑖𝑛𝑛 {𝑀𝑀,𝑛𝑛}

�́�𝑛=1

    (39) 

Making the change of variables 𝑚𝑚 = �́�𝑛 in (39) and substituting the result into (37) gives 

𝑞𝑞�(𝑥𝑥) = 𝑝𝑝�(𝑥𝑥)(𝑥𝑥 − ‖𝑓𝑓‖2 − � 𝜎𝜎�́�𝑚
2

𝑥𝑥−𝜎𝜎�́�𝑚
2 |𝑓𝑓 ,𝑢𝑢�́�𝑛 |2

𝑚𝑚𝑖𝑖𝑛𝑛 {𝑀𝑀,𝑛𝑛}

𝑚𝑚 =1

        ∀𝑥𝑥 ≠ 𝜎𝜎1
2, … , 𝜎𝜎min (𝑀𝑀 ,𝑛𝑛)

2 , 0. (40) 

Here, the restriction that 𝑥𝑥 ≠ 𝜎𝜎1
2, … , 𝜎𝜎𝑚𝑚𝑖𝑖𝑛𝑛 {𝑀𝑀,𝑛𝑛}

2 , 0  follows from the previously stated 
assumption that 𝑥𝑥 is not equal to any diagonal entry of 𝛴𝛴∗𝛴𝛴; the set of these entries is 
{𝜎𝜎�́�𝑛

2}�́�𝑛=1
𝑛𝑛  if 𝑀𝑀 ≥ 𝑛𝑛 and is {𝜎𝜎�́�𝑛

2}�́�𝑛=1
𝑀𝑀 ∪ {0}�́�𝑛=1

𝑛𝑛   if 𝑀𝑀 < 𝑛𝑛. Now recall that 𝑝𝑝(𝑥𝑥) and 𝑞𝑞(𝑥𝑥) are 
the 𝑀𝑀th degree characteristic polynomials of 𝐹𝐹𝐹𝐹∗ and 𝐺𝐺𝐺𝐺∗ respectively, while 𝑝𝑝�(𝑥𝑥) is 
the nth degree characteristic polynomial of 𝐹𝐹∗𝐹𝐹 and 𝑞𝑞�(𝑥𝑥) is the (𝑛𝑛 + 1)st degree 
characteristic polynomial of 𝐺𝐺∗G. We now consider these facts along with (40) in two 
distinct cases: 𝑛𝑛 < 𝑀𝑀 and 𝑀𝑀 ≤ 𝑛𝑛. In the case where 𝑛𝑛 < 𝑀𝑀, we have that  𝑝𝑝(𝑥𝑥) =
𝑥𝑥𝑀𝑀−𝑛𝑛  𝑝𝑝�(𝑥𝑥) and 𝑞𝑞(𝑥𝑥) = 𝑥𝑥𝑀𝑀−𝑛𝑛−1 𝑞𝑞�(𝑥𝑥). Moreover, in this case the eigenvalues {𝛽𝛽𝑚𝑚 }𝑚𝑚=1

𝑀𝑀   
of 𝐹𝐹𝐹𝐹∗ = 𝛼𝛼𝛴𝛴𝛴𝛴∗𝛼𝛼∗  are given by 𝛽𝛽𝑚𝑚 = 𝜎𝜎𝑚𝑚

2   for all 𝑚𝑚 = 1, … , 𝑛𝑛 and  𝛽𝛽𝑚𝑚 = 0 for all 
𝑚𝑚 =  𝑛𝑛 + 1, … , 𝑀𝑀,  implying (40) becomes 
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𝑞𝑞(𝑥𝑥)
𝑥𝑥𝑀𝑀 −𝑛𝑛 −1=

𝑝𝑝(𝑥𝑥)
𝑥𝑥𝑀𝑀 −𝑛𝑛 �𝑥𝑥−‖𝑓𝑓‖2− � 𝛽𝛽 𝑚𝑚

𝑥𝑥−𝛽𝛽 𝑚𝑚
|〈𝑓𝑓 ,𝑢𝑢 𝑚𝑚 〉|2

𝑛𝑛

𝑚𝑚 =1
� 

= 𝑝𝑝(𝑥𝑥)
𝑥𝑥𝑀𝑀 −𝑛𝑛 �𝑥𝑥 − ‖𝑓𝑓‖2 − ∑ 𝛽𝛽 𝑚𝑚

𝑥𝑥−𝛽𝛽 𝑚𝑚
|〈𝑓𝑓 ,𝑢𝑢𝑚𝑚 〉|2𝑀𝑀

𝑚𝑚=1 � ∀𝑥𝑥 ≠ 𝛽𝛽1, … , 𝛽𝛽𝑀𝑀 , (41)                      
In the remaining case where 𝑀𝑀 ≤ 𝑛𝑛, we have 𝑝𝑝�(𝑥𝑥) =  𝑥𝑥𝑛𝑛−𝑀𝑀  𝑝𝑝(𝑥𝑥), 𝑞𝑞�(𝑥𝑥) = 𝑥𝑥𝑛𝑛+1−𝑀𝑀𝑞𝑞(𝑥𝑥) 
and 𝛽𝛽𝑚𝑚 = 𝜎𝜎𝑚𝑚

2   for all 𝑚𝑚 = 1, … 𝑀𝑀,implying (42) becomes 

𝑥𝑥𝑛𝑛+1−𝑀𝑀𝑞𝑞(𝑥𝑥) = 𝑥𝑥𝑛𝑛−𝑀𝑀  𝑝𝑝(𝑥𝑥) �𝑥𝑥 − ‖ 𝑓𝑓‖2 − � 𝛽𝛽𝑚𝑚
𝑥𝑥−𝛽𝛽𝑚𝑚

|〈𝑓𝑓 ,𝑢𝑢𝑚𝑚 〉|2

𝑀𝑀

𝑚𝑚=1

�  ∀𝑥𝑥 ≠, … , 𝛽𝛽𝑀𝑀 , 0. (42) 

We now note that (43)and (44) are equivalent. That is, regardless of the relationship 
between 𝑀𝑀 and 𝑛𝑛, we have 

𝑞𝑞(𝑥𝑥)
𝑝𝑝(𝑥𝑥)

= 1
𝑥𝑥

�𝑥𝑥 − ‖ 𝑓𝑓‖2 − � 𝛽𝛽𝑚𝑚
𝑥𝑥−𝛽𝛽𝑚𝑚

|〈𝑓𝑓 ,𝑢𝑢𝑚𝑚 〉|2

𝑀𝑀

𝑚𝑚 =1

� , ∀𝑥𝑥 ≠ 𝛽𝛽1, … , 𝛽𝛽𝑀𝑀 , 0 

Writing ‖ 𝑓𝑓‖2 = ∑ |〈𝑓𝑓 ,𝑢𝑢𝑚𝑚 〉|2𝑀𝑀
𝑚𝑚 =1  and then grouping the eigenvalues  Λ = {𝛽𝛽𝑚𝑚 }𝑚𝑚=1

𝑀𝑀   
according to multiplicity gives 

𝑞𝑞(𝑥𝑥)
𝑝𝑝(𝑥𝑥) = 1

𝑥𝑥 �𝑥𝑥 − � |〈𝑓𝑓 ,𝑢𝑢𝑚𝑚 〉|2

𝑀𝑀

𝑚𝑚 =1

− �
𝛽𝛽𝑚𝑚

𝑥𝑥 − 𝛽𝛽𝑚𝑚
|〈𝑓𝑓 ,𝑢𝑢𝑚𝑚 〉|2

𝑀𝑀

𝑚𝑚 =1

� = 1 − � |〈𝑓𝑓 ,𝜇𝜇 𝑚𝑚 〉|2

𝑥𝑥−𝛽𝛽 𝑚𝑚
= 1− �

�𝑃𝑃 �́�𝜆𝑓𝑓�
2

𝑥𝑥−�́�𝜆
�́�𝜆∈𝐴𝐴

𝑀𝑀

𝑚𝑚 =1
, 

∀𝑥𝑥 ∉ Λ ∪ {0} 
            As such, for any 𝜆𝜆 ∈ Λ. 

lim
𝑥𝑥⟶𝜆𝜆

(𝑥𝑥 − 𝜆𝜆)𝑞𝑞(𝑥𝑥)
𝑝𝑝(𝑥𝑥)

= lim
𝑥𝑥⟶𝜆𝜆

(𝑥𝑥 − 𝜆𝜆)�1−�
�𝑃𝑃�́�𝜆𝑓𝑓�

2

𝑥𝑥−�́�𝜆
=lim

𝑥𝑥→𝜆𝜆
�(𝑥𝑥−𝜆𝜆)−‖𝑃𝑃𝜆𝜆 𝑓𝑓‖2−� �𝑃𝑃�́�𝜆 𝑓𝑓�

2𝑥𝑥−𝜆𝜆
𝑥𝑥−�́�𝜆

�́�𝜆∈𝜆𝜆

�
�́�𝜆∈Λ

�−‖𝑃𝑃𝜆𝜆 𝑓𝑓‖2 

yielding our claim.                                               
Though technical, the proofs of the next two lemmas are nonetheless elementary, 
depending only on basic algebra 
and calculus. As such, these proofs are given in the appendix[34]. 
Lemma(5.3.4)[34]: If {𝛽𝛽𝑚𝑚 }𝑚𝑚=1

𝑀𝑀  and {𝛾𝛾𝑚𝑚 }𝑚𝑚=1
𝑀𝑀  are real and nonincreasing, then 

{𝛽𝛽𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 ⊑ {𝛾𝛾𝑚𝑚 }𝑚𝑚=1

𝑀𝑀   if and only if 
lim𝑥𝑥→𝛽𝛽𝑚𝑚

(𝑥𝑥 − 𝛽𝛽𝑚𝑚 )𝑞𝑞 (𝑥𝑥)
𝑝𝑝 (𝑥𝑥)≤0               ∀𝑚𝑚 = 1, … , 𝑀𝑀 

where 𝑝𝑝(𝑥𝑥) = ∏ (𝑥𝑥 − 𝛽𝛽𝑚𝑚 )𝑀𝑀
𝑚𝑚=1 𝑅𝑅𝑛𝑛𝑑𝑑  𝑞𝑞(𝑥𝑥) = ∏ (𝑥𝑥 − 𝛾𝛾𝑚𝑚 )𝑀𝑀

𝑚𝑚 =1  
Lemma(5.3.5)[34]: If {𝛽𝛽𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 , {𝛾𝛾𝑚𝑚 }𝑚𝑚=1
𝑀𝑀  and {𝛿𝛿𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 are real and nonincreasing and 
lim𝑥𝑥→𝛽𝛽𝑚𝑚

(𝑥𝑥 − 𝛽𝛽𝑚𝑚 )𝑞𝑞 (𝑥𝑥)
𝑝𝑝 (𝑥𝑥)=lim 𝑥𝑥→𝛽𝛽 𝑚𝑚 (𝑥𝑥−𝛽𝛽𝑚𝑚 )𝑜𝑜(𝑥𝑥)

𝑝𝑝 (𝑥𝑥)          ∀𝑚𝑚 = 1, … , 𝑀𝑀 
where 𝑝𝑝(𝑥𝑥) = ∏ (𝑥𝑥 − 𝛽𝛽𝑚𝑚 )𝑀𝑀

𝑚𝑚=1 , 𝑞𝑞(𝑥𝑥) = ∏ (𝑥𝑥 − 𝛾𝛾𝑚𝑚 )𝑀𝑀
𝑚𝑚=1  and  𝑜𝑜(𝑥𝑥) = ∏ (𝑥𝑥 − 𝛿𝛿𝑚𝑚 )𝑀𝑀

𝑚𝑚 =1  then 
𝑞𝑞(𝑥𝑥) = 𝑜𝑜(𝑥𝑥) 
With Theorem(5.3.3)  and Lemmas(5.3.2),(5.3.4) and(5.3.5) in hand, we are ready to 
prove the main result . 
Theorem (5.3.6)[34]: For any nonnegative nonincreasing sequences {𝜆𝜆𝑚𝑚 }𝑚𝑚=1

𝑀𝑀  and 
{𝜇𝜇𝑛𝑛 }𝑛𝑛=1

𝑁𝑁 , every sequence of vectors 𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1
𝑁𝑁  in ℍ𝑀𝑀  whose frame operator 𝐹𝐹𝐹𝐹∗ has 

spectrum {𝜆𝜆𝑚𝑚 }𝑚𝑚=1
𝑀𝑀  and which satisfies ‖𝑓𝑓𝑛𝑛 ‖2 = 𝜇𝜇𝑛𝑛  for all 𝑛𝑛 can be constructed by the 

following process: 
A. Pick eigensteps �{𝜆𝜆𝑛𝑛 ,𝑚𝑚 }𝑚𝑚 =1

𝑀𝑀 �
𝑛𝑛=0
𝑁𝑁

 as in Definition (5.3.1). 
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B. For each 𝑛𝑛 = 1, . . . , 𝑁𝑁, consider the polynomial: 

𝑃𝑃𝑛𝑛 (𝑥𝑥) ≔ ��𝑥𝑥 − 𝜆𝜆𝑛𝑛 ,𝑚𝑚 �.
𝑀𝑀

𝑚𝑚 =1

    (43) 

Take any 𝑓𝑓1 ∈ ℍ𝑀𝑀  such that ‖𝑓𝑓1‖2 = 𝜇𝜇1. For each 𝑛𝑛 = 1, . . . , 𝑁𝑁 − 1, choose any 𝑓𝑓𝑛𝑛+1 
such that 

�𝑃𝑃𝑛𝑛 ;𝜆𝜆𝑓𝑓𝑛𝑛+1�2 = − lim
𝑥𝑥⟶𝜆𝜆

(𝑥𝑥 − 𝜆𝜆)
𝑃𝑃𝑛𝑛+1(𝑥𝑥)

𝑃𝑃𝑛𝑛 (𝑥𝑥) ,   (44) 

for all 𝜆𝜆 ∈ {𝜆𝜆𝑁𝑁;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 , where 𝑃𝑃𝑛𝑛 ;𝜆𝜆  denotes the orthogonal projection operator onto the 

eigenspace 𝑁𝑁(𝜆𝜆𝐼𝐼 − 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛
∗) of the frame operator 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛

∗ of 𝐹𝐹𝑛𝑛 = {𝑓𝑓�́�𝑛  }𝑛𝑛=1́
𝑛𝑛 . The limit in (44) 

exists and is nonpositive. 
Proof. (⟹) Let {𝜆𝜆𝑚𝑚 }𝑚𝑚=1

𝑀𝑀  and {𝜇𝜇𝑚𝑚 }𝑛𝑛=1
𝑁𝑁 n=1 be arbitrary nonnegative nonincreasing 

sequences, and let 
 𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1

𝑁𝑁  be any sequence of vectors such that the spectrum of 𝐹𝐹𝐹𝐹∗is {𝜆𝜆𝑚𝑚 }𝑚𝑚=1
𝑀𝑀   and  

‖𝑓𝑓𝑛𝑛 ‖ = 𝜇𝜇𝑛𝑛  for all 𝑛𝑛 = 1, … , 𝑁𝑁. We claim that this particular 𝐹𝐹 can be constructed by 
following Steps 𝐴𝐴 and 𝐵𝐵. 

In particular, consider the sequence of sequences ��𝜆𝜆𝑛𝑛 ;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀 �

𝑛𝑛=0

𝑁𝑁
  defined by letting  

�𝜆𝜆𝑛𝑛 ;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀

 be the spectrum of the frame operator 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛
∗ of the sequence 𝐹𝐹𝑛𝑛  = {𝑓𝑓�̀�𝑛 }�́�𝑛=1

𝑛𝑛  for 
all 𝑛𝑛 = 1, … , 𝑁𝑁 and letting  𝜆𝜆0;𝑚𝑚 = 0 for all 𝑚𝑚. We claim that {{𝜆𝜆𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 }𝑛𝑛=0
𝑁𝑁    satisfies 

Definition(5.3.1) and therefore is a valid sequence of eigensteps. Note conditions (i) and 
(ii) of Definition (5.3.1) are immediately satisfied. To see that {{𝜆𝜆𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 }𝑛𝑛=0
𝑁𝑁  satisfies 

(iii), consider the polynomials 𝑝𝑝𝑛𝑛 (𝑥𝑥) defined by(43) for all 𝑛𝑛 = 1, … , 𝑁𝑁. In the special 
case where 𝑛𝑛 = 1, the desired property (iii) that  {0}𝑚𝑚=1

𝑀𝑀 ⊑ �𝜆𝜆1;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀

 from the fact that 

the spectrum �𝜆𝜆1;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀

of the scaled rank-one projection 𝐹𝐹1𝐹𝐹1
∗ = 𝑓𝑓1𝑓𝑓1

∗ is the value 
 ‖𝑓𝑓‖2 = 𝜇𝜇1 along with 𝑀𝑀 − 1 repetitions of  0, the eigenspaces being the span of 𝑓𝑓1 and 
its orthogonal complement, respectively.  Meanwhile if n = 2; : : : ; N, Theorem (5.3.3) 
gives that 

lim
𝑥𝑥⟶𝜆𝜆𝑛𝑛 −1;𝑚𝑚

�𝑥𝑥 − 𝜆𝜆𝑛𝑛−1;𝑚𝑚 �  𝑃𝑃𝑛𝑛 (𝑥𝑥)
𝑃𝑃𝑛𝑛 −1(𝑥𝑥)

=−�𝑃𝑃𝑛𝑛 −1;𝜆𝜆𝑛𝑛 −1;𝑚𝑚 𝑓𝑓𝑛𝑛 �
2

≤0, ∀𝑚𝑚 = 1, … , 𝑀𝑀            

implying by Lemma(5.3.4) that �𝜆𝜆𝑛𝑛−1;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀

⊑ �𝜆𝜆𝑛𝑛 ;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀

  as claimed. Finally, (iv) 
holds since for any 𝑛𝑛 = 1, … , 𝑁𝑁 we have 

� 𝜆𝜆𝑛𝑛 ;𝑚𝑚 = 𝑇𝑇𝑜𝑜(𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛
∗)

𝑀𝑀

𝑚𝑚=1

= 𝑇𝑇𝑜𝑜(𝐹𝐹𝑛𝑛
∗𝐹𝐹𝑛𝑛 ) = �‖𝑓𝑓�́�𝑛 ‖2 = � 𝜇𝜇�́�𝑛

𝑛𝑛

�́�𝑛=1

𝑛𝑛

�́�𝑛=1

. 

Having shown that these particular values of ��𝜆𝜆𝑛𝑛 ;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀 �

𝑛𝑛=0

𝑁𝑁
can indeed be chosen in 

Step 𝐴𝐴, we next show that our particular 𝐹𝐹 can be constructed according to Step 𝐵𝐵. As the 
method of Step 𝐵𝐵 is iterative, we use induction to prove that it can yield F. Indeed, the 
only restriction that Step 𝐵𝐵 places on 𝑓𝑓1is that ‖𝑓𝑓1‖2 = 𝜇𝜇1, something our particular 
𝑓𝑓1satisfies by assumption. Now assume that for any  𝑛𝑛 = 1, … , 𝑁𝑁 − 1  we have already 
correctly produced {𝑓𝑓�́�𝑛 }�́�𝑛=1

𝑛𝑛 . 
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By following the method of Step 𝐵𝐵; we show that we can produce the correct 𝑓𝑓𝑛𝑛+1 by 
continuing to follow Step 𝐵𝐵. To be clear, each iteration of Step 𝐵𝐵 does not produce a 
unique vector, but rather presents a family of  𝑓𝑓𝑛𝑛+1 to choose from, and we show that our 
particular choice of 𝑓𝑓𝑛𝑛+1 lies in this family. Specifically, our choice of 𝑓𝑓𝑛𝑛+1must satisfy 
(44) for any choice of 𝜆𝜆 ∈ �𝜆𝜆𝑛𝑛 ;𝑚𝑚 �

𝑚𝑚=1
𝑀𝑀

 the fact that it indeed does so follows immediately 
from Theorem(5.3.3). To summarize, we have shown that by making appropriate choices, 
we can indeed produce our particular 𝐹𝐹 by following Steps 𝐴𝐴 and, concluding this 
direction of the proof. 
(⟸) Now assume that a sequence of vectors 𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1

𝑛𝑛 has been produced according to 

Steps 𝐴𝐴 and 𝐵𝐵. To be precise, letting ��𝜆𝜆𝑛𝑛 ;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀 �

𝑛𝑛=0

𝑁𝑁
be the sequence of eigensteps 

chosen in Step 𝐴𝐴, we claim that any 𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1
𝑛𝑛  constructed according to Step 𝐵𝐵 has the 

property that the spectrum of the frame operator 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛
∗ of 𝐹𝐹𝑛𝑛 = {𝑓𝑓�́�𝑛 }�́�𝑛=1

𝑛𝑛  is�𝜆𝜆𝑛𝑛 ;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀

 for all 
𝑛𝑛 = 1, … , 𝑁𝑁. Note that by Lemma (5.3.2), proving this claim will yield our stated result 
that the spectrum of  𝐹𝐹𝐹𝐹∗is {𝜆𝜆𝑚𝑚 }𝑚𝑚 =1

𝑀𝑀  and that ‖𝑓𝑓𝑛𝑛 ‖2 = 𝜇𝜇𝑛𝑛  for all 𝑛𝑛 = 1, … , 𝑁𝑁. As the 
method of Step 𝐵𝐵 is iterative, we prove this claim by induction. Step 𝐵𝐵 begins by taking 
any 𝑓𝑓1 such that ‖𝑓𝑓1‖2 = 𝜇𝜇1. As noted above in the proof of the other direction, the 
spectrum of 𝐹𝐹1𝐹𝐹1

∗ = 𝑓𝑓1𝑓𝑓1
∗ is the value 𝜇𝜇1 along with 𝑀𝑀 − 1 repetitions of 0. As claimed, 

these values match those of �𝜆𝜆1;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀

  to see this, note that Definition(5.3.1) (i) and (iii) 

give {0}𝑚𝑚=1
𝑀𝑀 = �𝜆𝜆0;𝑚𝑚 �

𝑚𝑚=1
𝑀𝑀

⊑ �𝜆𝜆1;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀

and so 𝜆𝜆1;𝑚𝑚 = 0 for all 𝑚𝑚 = 2, … , 𝑀𝑀, at which 
point Definition (5.3.1) (iv) implies 𝜆𝜆1,1 = 𝜇𝜇1. 
Now assume that for any 𝑛𝑛 = 1, … , 𝑁𝑁 − 1, the Step 𝐵𝐵 process has already produced  
𝐹𝐹𝑛𝑛 = {𝑓𝑓�́�𝑛 }�́�𝑛=1

𝑛𝑛 such that the spectrum of 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛
∗  is �𝜆𝜆𝑛𝑛 ;𝑚𝑚 �

𝑚𝑚=1
𝑀𝑀

 . We show that by following 

Step 𝐵𝐵, we produce an 𝑓𝑓𝑛𝑛+1 such that 𝐹𝐹𝑛𝑛+1 = {𝑓𝑓�́�𝑛 }�́�𝑛=1
𝑛𝑛  has the property that �𝜆𝜆𝑁𝑁+1;𝑚𝑚 �

𝑚𝑚=1
𝑀𝑀

 
is the spectrum of 𝐹𝐹𝑛𝑛+1𝐹𝐹𝑛𝑛+1

∗ . To do this, consider the polynomials 𝑝𝑝𝑛𝑛 (𝑥𝑥) and 𝑝𝑝𝑛𝑛+1(𝑥𝑥), 
defined by (43) and pick any 𝑓𝑓𝑛𝑛+1 that satisfies(44), namely 

lim
𝑥𝑥⟶𝜆𝜆𝑛𝑛 ;𝑚𝑚

�𝑥𝑥 − 𝜆𝜆𝑛𝑛 ;𝑚𝑚 �𝑝𝑝𝑛𝑛 +1(𝑥𝑥)
𝑝𝑝𝑛𝑛 (𝑥𝑥) = −�𝑝𝑝𝑛𝑛 ;𝜆𝜆𝑛𝑛 ;𝑚𝑚 𝑓𝑓𝑛𝑛+1�2     ∀𝑚𝑚 = 1, … , 𝑀𝑀. (45) 

Letting �𝜆𝜆𝑛𝑛+1;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀

  denote the spectrum of 𝐹𝐹𝑛𝑛+1𝐹𝐹𝑛𝑛+1
∗ , our goal is to show that 

��̂�𝜆𝑛𝑛+1;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀

= �𝜆𝜆𝑛𝑛+1;𝑚𝑚 �
𝑚𝑚=1
 

. Equivalently, our goal is to show that 𝑝𝑝𝑛𝑛+1(𝑥𝑥) = �̂�𝑝𝑛𝑛+1(𝑥𝑥) 
where �̂�𝑝𝑛𝑛+1(𝑥𝑥) is the polynomial 
  �̂�𝑝𝑛𝑛+1(𝑥𝑥) ≔ ∏ �𝑥𝑥 − �̂�𝜆𝑛𝑛+1;𝑚𝑚 �.𝑀𝑀

𝑚𝑚 =1  
Since 𝑝𝑝𝑛𝑛 (𝑥𝑥)and �̂�𝑝𝑛𝑛+1 are the characteristic polynomials of 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛

∗ and 𝐹𝐹𝑛𝑛+1𝐹𝐹𝑛𝑛+1
∗ , 

respectively, Theorem(5.3.3)  gives: 
lim𝑥𝑥⟶𝜆𝜆𝑛𝑛 ;𝑚𝑚 �𝑥𝑥 − 𝜆𝜆𝑛𝑛 ;𝑚𝑚 �𝑝𝑝�𝑛𝑛 +1(𝑥𝑥)

𝑝𝑝 𝑛𝑛 (𝑥𝑥) = −�𝑝𝑝𝑛𝑛 ;𝜆𝜆𝑛𝑛 ;𝑚𝑚 𝑓𝑓𝑛𝑛+1�2     ∀𝑚𝑚 = 1, … , 𝑀𝑀:   (46) 
Comparing (45)and (46)gives: 

lim𝑥𝑥⟶𝜆𝜆𝑛𝑛 ;𝑚𝑚 �𝑥𝑥 − 𝜆𝜆𝑛𝑛 ;𝑚𝑚 �𝑝𝑝 𝑛𝑛 +1(𝑥𝑥)
𝑝𝑝 𝑛𝑛 (𝑥𝑥) = lim

𝑥𝑥⟶𝜆𝜆𝑛𝑛 ;𝑚𝑚
 �𝑥𝑥 − 𝜆𝜆𝑛𝑛 ;𝑚𝑚 � 𝑝𝑝�𝑛𝑛 +1(𝑥𝑥)

𝑝𝑝𝑛𝑛 (𝑥𝑥)
        ∀𝑚𝑚 = 1, … , 𝑀𝑀: 

implying by Lemma(5.3.5) that 𝑝𝑝𝑛𝑛+1(𝑥𝑥) = �̂�𝑝𝑛𝑛+1(𝑥𝑥), as desired. 
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As discussed  a two-step process for constructing any and all sequences of vectors 
𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1

𝑁𝑁  in ℍ𝑀𝑀  whose frame operator possesses a given spectrum  {𝜆𝜆𝑚𝑚 }𝑚𝑚 =1
𝑀𝑀 and 

whose vectors have given lengths {𝜇𝜇𝑛𝑛 }𝑛𝑛=1
𝑁𝑁  . In Step 𝐴𝐴, we choose a sequence of 

eigensteps ��𝜆𝜆𝑛𝑛 ;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀 �

𝑛𝑛=0

𝑁𝑁
 . In the end, the nth sequence �𝜆𝜆𝑛𝑛 ;𝑚𝑚 �

𝑚𝑚=1
𝑀𝑀

 will become the 

spectrum of the nth partial frame operator 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛
∗, where  𝐹𝐹𝑛𝑛 = {𝑓𝑓�́�𝑛 }�́�𝑛=1

𝑛𝑛   . Due to the 
complexity of Definition (5.3.1), it is not obvious how to sequentially pick such 
eigensteps. Looking at simple examples of this problem, such as the one discussed in 
Example(5.3.8) below, it appears as though the proof techniques needed to address these 
questions are completely different from those used throughout this section. As such, we 
leave the problem of parametrizing the eigensteps themselves for future work. In this 
section, we thus focus on refining Step 𝐵𝐵. 
To be precise, the purpose of Step 𝐵𝐵 is to explicitly construct any and all sequences of 
vectors whose partial-frame operator spectra match the eigensteps chosen in Step 𝐴𝐴. The 
problem with Step 𝐵𝐵 of Theorem(5.3.6) is that it is not very explicit. Indeed for every 
𝑛𝑛 = 1, … , 𝑁𝑁 − 1, in order to construct 𝑓𝑓𝑛𝑛+1 we must first compute an orthonormal 
eigenbasis for 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛

∗, . This problem is readily doable since the eigenvalues �𝜆𝜆𝑛𝑛 ;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀

 of 
𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛

∗  are already known. It is nevertheless a tedious and inelegant process to do by 
hand, requiring us to, for example, compute 𝑄𝑄𝑅𝑅-factorizations of 𝜆𝜆𝑛𝑛 ;𝑚𝑚 1 − 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛  

∗   for each 
𝑚𝑚 = 1, … , 𝑀𝑀. This section is devoted to the following result, which is a version of 
Theorem(5.3.6) equipped with a more explicit Step 𝐵𝐵; though technical, this new and 
improved Step 𝐵𝐵 is still simple enough to be performed by hand, a fact which will 
hopefully permit its future application to both theoretical and numerical problems. 
Theorem(5.3.7)[34]: For any nonnegative nonincreasing sequences {𝜆𝜆𝑚𝑚 }𝑚𝑚=1

𝑀𝑀  and 
{𝜇𝜇𝑛𝑛 }𝑛𝑛=1

𝑁𝑁  , every sequence of vectors 𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1
𝑁𝑁  in ℍ𝑀𝑀  whose frame operator 𝐹𝐹𝐹𝐹∗ has 

spectrum {𝜆𝜆𝑚𝑚 }𝑚𝑚=1
𝑀𝑀  and which satisfies ‖𝑓𝑓𝑛𝑛 ‖2 = 𝜇𝜇𝑛𝑛  for all 𝑛𝑛 can be constructed by the 

following algorithm: 

A. Pick eigensteps ��𝜆𝜆𝑛𝑛 ;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀 �

𝑛𝑛=0

𝑁𝑁
 as in Definition(5.3.1). 

B. Let 𝛼𝛼1 be any unitary matrix, 𝛼𝛼1 =  �𝑢𝑢1;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀

 , and let 𝑓𝑓1 = √𝜇𝜇1𝑢𝑢1,1 . For each 
𝑛𝑛 = 1, … , 𝑁𝑁 − 1: 
𝐵𝐵. 1 Let 𝑉𝑉𝑛𝑛  be an 𝑀𝑀 × 𝑀𝑀 block-diagonal unitary matrix whose blocks correspond to the 
distinct values of�𝜆𝜆𝑛𝑛 ;𝑚𝑚 �

𝑚𝑚=1
𝑀𝑀

  with the size of each block being the multiplicity of the 
corresponding eigenvalue.  
B.2 Identify those terms which are common to both�𝜆𝜆𝑛𝑛 ;𝑚𝑚 �

𝑚𝑚=1
𝑀𝑀

 and �𝜆𝜆𝑛𝑛+1;𝑚𝑚 �
𝑚𝑚=1
𝑀𝑀

. 
Specifically: 
(i) Let 𝐼𝐼𝑛𝑛   ⊆ {1, . . , 𝑀𝑀} consist of those indices m such that 𝜆𝜆𝑛𝑛 ;𝑚𝑚 < 𝜆𝜆𝑛𝑛 ;�́�𝑚  for all �́�𝑚 < 𝑚𝑚 
and such that the multiplicity of 𝜆𝜆𝑛𝑛 ;𝑚𝑚 as a value in �𝜆𝜆�́�𝑛 ;�́�𝑚 �

�́�𝑚=1
𝑀𝑀

 exceeds its multiplicity as a 

value in �𝜆𝜆𝑛𝑛+1;�́�𝑚 �
�́�𝑚=1
𝑀𝑀
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(ii)  Let 𝓣𝓣𝒏𝒏 ⊆ {1, … , 𝑀𝑀}consist of those indices m such that 𝜆𝜆𝑛𝑛+1;𝑚𝑚 < 𝜆𝜆𝑛𝑛+1;�́�𝑚  for all 
�́�𝑚 < 𝑚𝑚 and such that the multiplicity of 𝜆𝜆𝑛𝑛 ;𝑚𝑚 as a value in �𝜆𝜆𝑛𝑛+1;�́�𝑚 �

�́�𝑚=1
𝑀𝑀

  exceeds its 

multiplicity as a value in �𝜆𝜆𝑛𝑛 ;�́�𝑚 �
�́�𝑚=1
𝑀𝑀

 
The sets 𝐼𝐼𝑛𝑛  and 𝓣𝓣𝒏𝒏 have equal cardinality, which we denote 𝑅𝑅𝑛𝑛 . Next: 
 (iii) Let 𝜋𝜋𝐼𝐼𝑛𝑛  be the unique permutation on {1, … , 𝑀𝑀}  that is increasing on both 𝐼𝐼𝑛𝑛  and 𝐼𝐼𝑛𝑛

𝑐𝑐   
and such that 
𝜋𝜋𝐼𝐼𝑛𝑛 ∈ {1, … , 𝐼𝐼𝑛𝑛 } for all 𝑚𝑚 ∈ 𝐼𝐼𝑛𝑛 . Let ∏ 𝑏𝑏𝑒𝑒𝐼𝐼𝑛𝑛  the associated permutation matrix ∏ 𝛿𝛿𝑚𝑚 =𝐼𝐼𝑛𝑛

𝛿𝛿𝜋𝜋𝐼𝐼𝑛𝑛𝑚𝑚   
 (vi)  Let 𝜋𝜋𝒯𝒯𝑛𝑛  be the unique permutation on {1, … , 𝑀𝑀}that is increasing on both 𝓣𝓣𝒏𝒏 and 
𝓣𝓣𝑛𝑛

𝑐𝑐   and such that 
𝜋𝜋𝐼𝐼𝑛𝑛

(𝑚𝑚) ∈ {1, … , 𝑅𝑅𝑛𝑛 } for all 𝑚𝑚 ∈ 𝒯𝒯𝑛𝑛 . Let ∏ 𝑏𝑏𝑒𝑒𝓣𝓣𝒏𝒏   the associated permutation matrix 
∏ 𝛿𝛿𝑚𝑚 = 𝛿𝛿𝜋𝜋𝐼𝐼𝑛𝑛

(𝑚𝑚)𝓣𝓣𝒏𝒏  
B.3 Let 𝑣𝑣𝑛𝑛 , 𝑤𝑤𝑛𝑛  be the 𝑅𝑅𝑛𝑛  × 1 vectors whose entries are 

𝑣𝑣𝑛𝑛 �𝜋𝜋𝐼𝐼𝑛𝑛
(𝑚𝑚)� = �−

∏ �𝜆𝜆𝑛𝑛 ;𝑚𝑚 −𝜆𝜆𝑛𝑛 +1;�́́�𝑚 ��̈�𝑚 ∈𝒯𝒯𝑛𝑛
∏ �𝜆𝜆𝑛𝑛 ;𝑚𝑚 −𝜆𝜆𝑛𝑛 +1;�́́�𝑚 ��̈�𝑚 ∈𝐼𝐼𝑛𝑛

�
1/2

, 𝑤𝑤𝑛𝑛 �𝜋𝜋𝒯𝒯𝑛𝑛 (�́�𝑚)�=�
∏ �𝜆𝜆𝑛𝑛 +1;𝑚𝑚   −𝜆𝜆𝑛𝑛 +1;�́́�𝑚 ��̈�𝑚 ∈𝐼𝐼𝑛𝑛
∏ �𝜆𝜆𝑛𝑛 +1;𝑚𝑚   −𝜆𝜆𝑛𝑛 +1;�́́�𝑚 ��̈�𝑚 ∈𝒯𝒯𝑛𝑛

�
1/2

 

∀𝑚𝑚 ∈ 𝐼𝐼𝑛𝑛 𝑚𝑚 ∈ 𝓣𝓣𝒏𝒏́ . 
B.4 𝑓𝑓𝑛𝑛+1 = 𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛 ∏ �𝑣𝑣𝑛𝑛

0 �𝑇𝑇
𝐼𝐼𝑛𝑛 , where the 𝑀𝑀 × 1 vector�𝑣𝑣𝑛𝑛

0 � is 𝑣𝑣𝑛𝑛  padded with 𝑀𝑀 − 𝑅𝑅𝑛𝑛  zeros. 

B.5   𝛼𝛼𝑛𝑛+1 = 𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛 ∏ �𝑊𝑊𝑛𝑛 0
0 1�𝑇𝑇

𝐼𝐼𝑛𝑛   ∏ where𝓣𝓣𝒏𝒏  𝑊𝑊𝑛𝑛  𝑖𝑖s the 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛  matrix whose entries 
are: 

𝑊𝑊𝑛𝑛 �𝜋𝜋𝐼𝐼𝑛𝑛 (𝑚𝑚), 𝜋𝜋𝒯𝒯𝑛𝑛 (�́�𝑚)� = 1
𝜆𝜆𝑛𝑛 +1;�́�𝑚 −𝜆𝜆𝑛𝑛 ;𝑚𝑚

𝑣𝑣𝑛𝑛 �𝜋𝜋𝐼𝐼𝑛𝑛 (𝑚𝑚 )𝑤𝑤𝑛𝑛  (𝜋𝜋𝒯𝒯𝑛𝑛 (�́�𝑚 )� 

Conversely, any F constructed by this process has {𝜆𝜆𝑚𝑚 }𝑚𝑚=1
𝑀𝑀  as the spectrum of 𝐹𝐹𝐹𝐹∗and 

  ‖𝑓𝑓𝑛𝑛 ‖2 = 𝜇𝜇𝑛𝑛  for all 𝑛𝑛. 
Moreover, for any 𝐹𝐹 constructed in this manner and any 𝑛𝑛 = 1, … , 𝑁𝑁, the spectrum of the 
frame operator 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛

∗ arising from the partial sequence 𝐹𝐹𝑛𝑛 = {𝑓𝑓�́�𝑛 }�́�𝑛=1
𝑛𝑛  is �𝜆𝜆𝑛𝑛 ;𝑚𝑚 �

𝑚𝑚=1
𝑀𝑀

, and the 
columns of 𝛼𝛼𝑛𝑛  form a corresponding orthonormal eigenbasis for 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛

∗ 
Before proving Theorem(5.3.7), we give an example of its implementation, with the hope 
of conveying the simplicity of the underlying idea, and better explaining the heavy 
notation used in the statement of the result. 
Example(5.3.8)[34]: We now use Theorem (5.3.7) to construct 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹𝑠𝑠 consisting of 5 
vectors in ℝ3. Here, 𝜆𝜆1  =  𝜆𝜆 2 =  𝜆𝜆3 =  5

3 and 𝜇𝜇 1 =  𝜇𝜇2  =  𝜇𝜇3  =  𝜇𝜇 4 =  _𝜇𝜇5  =  1. By 
Step 𝐴𝐴, our first task is to pick a sequence of eigensteps consistent with definition (5.3.1), 
that is, pick �𝜆𝜆1;1 , 𝜆𝜆 1;2, 𝜆𝜆1;3�, �𝜆𝜆2;1 , 𝜆𝜆 2;2, 𝜆𝜆2;3�, �𝜆𝜆3;1 , 𝜆𝜆 3;2, 𝜆𝜆3;3�  and�𝜆𝜆4;1 , 𝜆𝜆 4;2, 𝜆𝜆4;3� that 
satisfy the interlacing conditions: 
       
{0,0,0} ⊑ �𝜆𝜆1;1 , 𝜆𝜆 1;2, 𝜆𝜆1;3� ⊑ �𝜆𝜆2;1 , 𝜆𝜆 2;2, 𝜆𝜆2;3� ⊑ �𝜆𝜆3;1 , 𝜆𝜆 3;2, 𝜆𝜆3;3� ⊑ �𝜆𝜆4;1 , 𝜆𝜆 4;2, 𝜆𝜆4;3� ⊑
�5

3
, 5

3
, 5

3
�                                                                                                   (47) 

as well as the trace conditions: 
 𝜆𝜆1;1 +  𝜆𝜆 1;2 +  𝜆𝜆1;3=1, 𝜆𝜆2;1 , 𝜆𝜆 2;2, 𝜆𝜆2;3 = 2, 𝜆𝜆3;1 , 𝜆𝜆 3;2, 𝜆𝜆3;3 = 3, 𝜆𝜆4;1 , 𝜆𝜆 4;2, 𝜆𝜆4;3. (48)                                                                                                    
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Writing these desired spectra in a table: 
𝑛𝑛          0            1           2          3           4            5

𝜆𝜆𝑛𝑛 ;3
𝜆𝜆𝑛𝑛 ;2
𝜆𝜆𝑛𝑛 ;1

          
0
0
0

         
?
?
?
          

?
?
?
          

?
?
?
          

?
?
?
         

5
3
5
3
5
3

 

the trace condition (48) means that the sum of the values in the nth column is∑ 𝜇𝜇𝑛𝑛′
𝑛𝑛
𝑛𝑛′ =1 = 

n,  while the interlacing condition (47) means that any value 𝜆𝜆𝑛𝑛 ,𝑚𝑚  is at least the neighbor 
to the upper right𝜆𝜆𝑛𝑛+1,𝑚𝑚+1  and no more than its neighbor to the right𝜆𝜆𝑛𝑛+1,𝑚𝑚  . In 
particular, for 𝑛𝑛 = 1, we necessarily have 0 = 𝜆𝜆𝑛𝑛 ,𝑚𝑚  _1;2 _ _0;1 = 0 and 0 = _0;3 _ 
_1;3 _ _0;2 = 0 implying that _1;2 = _1;3 = 0. Similarly, for n = 4, interlacing requires 
that 5 
3 = _5;2 _ _4;1 _ _5;1 = 53 
and 53 
= _5;3 _ _4;2 _ _5;2 = 5 
3 implying that _4;1 = _4;2 = 5 
3 . That is, we necessarily have: 

 
Applying this same idea again for n = 2 and n = 3 gives 0 = _1;3 _ _2;3 _ _1;2 = 0 and 5  
3 = _4;2 _ _3;1 _ _4;1 = 53, 
and so we also necessarily have that _2;3 = 0, and _3;1 = 5 
3 : 

 
Moreover, the trace condition (26) at n = 1 gives 1 = _1;1 + _1;2 + _1;3 = _1;1 + 0 + 0 
and so _1;1 = 1. Similarly, the 
trace condition at n = 4 gives 4 = _4;1 + _4;2 + _4;3 = 5 
3 + 53 
+ _4;3 and so _4;3 = 2 
3 : 
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Figure 1: Pairs of parameters (x; y) that generate a valid sequence of eigensteps when 
substituted into (27). To be precise, in order to satisfy the interlacing requirements of 
Definition 1, x and y must be chosen so as to satisfy the 11 pairwise inequalities 
summarized in (28). Each of these inequalities corresponds to a half-plane (a), and the set 
of (x; y) that satisfy all of them is given by their intersection (b). By Theorem 7, any 
corresponding sequence of eigensteps (27) generates a 3 _ 5 UNTF and conversely, every 
3 _ 5 UNTF is generated in this way. As such, x and y may be viewed as the two 
essential parameters in the set of all such frames. In particular, for (x; y) that do not lie on 
the boundary of the set in (b), applying the algorithm of Theorem 7 to (27) and choosing 
𝛼𝛼1 = 𝑉𝑉1 = 𝑉𝑉2 = 𝑉𝑉3 = 𝑉𝑉4 = I yields the 3 _ 5 UNTF whose elements are given in Table 1. 
The remaining entries are not fixed .Inparticular ,welet 𝜆𝜆3;3be come variable 𝑥𝑥 and note 
that by the trace condition  
3 = 𝜆𝜆3;1 +  𝜆𝜆3;2 +  𝜆𝜆3;3 = 𝑥𝑥 + 𝜆𝜆3;2 +

5
3  and so 𝜆𝜆3;2 = 4

3−𝑥𝑥. Similarly letting 
𝜆𝜆2;2 =  𝑢𝑢 gives 𝜆𝜆2;1 =  2 −  𝑢𝑢: 

𝑛𝑛          0          1          2          3          4          5

𝜆𝜆 𝑛𝑛 ;3
𝜆𝜆 𝑛𝑛 ;2
𝜆𝜆 𝑛𝑛 ;1

          
0
0
0

        
0
0
1

        
0
𝑢𝑢

2−𝑢𝑢
      

𝑥𝑥
4
3−𝑥𝑥

5
3

        

2
3
2
3
2
3

      

5
3
5
3
5
3

                                                                   ( 49)                                                    

We take care to note that x and y in (49) are not arbitrary, but instead must be chosen so 
that the interlacing relations (49) are satisfied. In particular, we have: 
{𝜆𝜆3;1, 𝜆𝜆3;2, 𝜆𝜆3;3}  ⊑ {𝜆𝜆4;1, 𝜆𝜆4;2, 𝜆𝜆4;3} ⇐⇒ 𝑥𝑥 ≤

2
3 ≤

4
3 − 𝑥𝑥 ≤

5
3, 

{𝜆𝜆2;1, 𝜆𝜆2;2, 𝜆𝜆2;3} ⊑  {𝜆𝜆3;1, 𝜆𝜆3;2, 𝜆𝜆3;3}  ⇐⇒ 0 ≤ 𝑥𝑥 ≤ 𝑢𝑢 ≤
4
3 −  𝑥𝑥 ≤ 2 −  𝑢𝑢 ≤

5
3, 

{𝜆𝜆1;1, 𝜆𝜆1;2, 𝜆𝜆1;3}  ⊑ {𝜆𝜆2;1, 𝜆𝜆2;2, 𝜆𝜆2;3} ⇐⇒ 0 ≤ 𝑢𝑢 ≤ 1 ≤ 2 − 𝑢𝑢.              (50) 
By plotting each of the 11 inequalities of (50) as a half-plane (Figure 1(a)), we obtain a 
5-sided convex set (Figure 1(b)) of all (𝑥𝑥, 𝑢𝑢) such that (49) is a valid sequence of 
eigensteps. Specifically, this set is the convex hull of �0, 1

3�, �1
3, 1

3�, �2
3,23�, �1

3
, 1� and �0, 2

3,�. 
We note that though this analysis is straightforward in this case, it does not easily 
generalize to other cases in which 𝑀𝑀 and 𝑁𝑁 are large. 
To complete Step 𝐴𝐴 of Theorem (5.3.7), we pick any particular (𝑥𝑥, 𝑢𝑢) from the set 
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depicted in Figure 1(𝑏𝑏).For example, if we pick (𝑥𝑥, 𝑢𝑢) = (0, 1
3) then (46) becomes: 

𝑛𝑛          0          1          2          3          4          5

𝜆𝜆 𝑛𝑛 ;3
𝜆𝜆 𝑛𝑛 ;2
𝜆𝜆 𝑛𝑛 ;1

          
0
0
0

        
0
0
1

        

0
1
3
5
3

      

0
4
3
5
3

        

2
3
5
3
5
3

      

5
3
5
3
5
3

                                                                          (51) 

We now perform Step B of Theorem 7 for this particular choice of eigensteps. First, we 
must choose a unitary matrix 𝛼𝛼1. Considering the equation for 𝛼𝛼𝑛𝑛+1 along with the fact 
that the columns of 𝛼𝛼𝑁𝑁will form an eigenbasis for 𝐹𝐹, we see that our choice for U1merely 
rotates this eigenbasis, and hence the entire frame 𝐹𝐹, to our liking. We choose  𝛼𝛼1 =  𝐼𝐼 
for the sake of simplicity. Thus 

𝑓𝑓1 = �𝜇𝜇1𝑢𝑢1;1 = �
1
0
0

� 

We now iterate, performing Steps B.1 through B.5 for 𝑛𝑛 = 1 to find f2and 𝛼𝛼2, then 
performing Steps B.1 through B.5 for 𝑛𝑛 = 2 to find f3and 𝛼𝛼3, and so on. Throughout this 
process, the only remaining choices to be made appear in Step B.1. In particular, for 
𝑛𝑛 = 1 Step B.1 asks us to pick a block-diagonal unitary matrix V1whose blocks are sized 
according to the multiplicities of the eigenvalues {𝜆𝜆1;1, 𝜆𝜆1;2, 𝜆𝜆1;3}  = {1, 0, 0}. That 
is, consists of a 1 × 1 unitary block—a unimodular scalar—and a 2 × 2 unitary block. 
There are an infinite number of such 𝑉𝑉1’𝑠𝑠, each leading to a distinct frame. For the sake of 
simplicity, we choose 𝑉𝑉1 =  𝐼𝐼. Having completed Step B.1 for 𝑛𝑛 =  1, we turn to Step 
B.2, which requires us to consider the columns of (51) that correspond to 𝑛𝑛 = 1 and 
𝑛𝑛 = 2:  
                                 𝑛𝑛                      1                      2

𝜆𝜆 𝑛𝑛 ;3
𝜆𝜆 𝑛𝑛 ;2
𝜆𝜆 𝑛𝑛 ;1

                  
0
0
1

                    

0
1
3
5
3

                                                      (52)                  

In particular, we compute a set of indices 𝐼𝐼1 ⊆  {1, 2, 3} that contains the indices m of 
{𝜆𝜆1;1, 𝜆𝜆1;2, 𝜆𝜆1;3} = {1, 0, 0} for which (i) the multiplicity of 𝜆𝜆1;𝑚𝑚  as a value of 
{1, 0, 0} exceeds its multiplicity as a value of {𝜆𝜆2;1, 𝜆𝜆2;2, 𝜆𝜆2;3} =  {5

3, 1
3, 0}and (ii) m 

corresponds to the first occurrence of 𝜆𝜆1;𝑚𝑚  as a value of {1, 0, 0}; by these criteria, we 
find 𝐼𝐼1 = {1, 2}. 
Similarly ℐ1 if and only if 𝑚𝑚 indicates the first occurrence of a value 𝜆𝜆2;𝑚𝑚 whose 
multiplicity as a value of {5

3, 1
3, 0} exceeds its multiplicity as a value of {1, 0, 0}, and 

soℐ1 = {1, 2}. Equivalently, 𝐼𝐼1and ℐ1can be obtained by canceling common terms from 
(52), working top to bottom; an explicit algorithm for doing so is given in Table 2. 
Continuing with Step B.2 for 𝑛𝑛 =  1, we now find the unique permutation 
𝜋𝜋𝐼𝐼1: {1, 2, 3}  →  {1, 2, 3} that is increasing on both 𝐼𝐼1 =  {1, 2} and its complement 
𝐼𝐼1

𝑐𝑐 = {3} and takes 𝐼𝐼1to the first 𝑅𝑅1 = |𝐼𝐼1| = 2 elements of {1, 2, 3}. In this particular 
instance, 𝜋𝜋𝐼𝐼1 happens to be the identity permutation, and so 𝛱𝛱𝐼𝐼1 = 𝐼𝐼. Since ℐ1 =
 {1, 2}  = 𝐼𝐼1, we similarly have that 𝜋𝜋ℐ1  and 𝛱𝛱ℐ1are the identity permutation and matrix, 
respectively. 
For the remaining steps, it is useful to isolate the terms in (52) that correspond to 𝐼𝐼1and 
ℐ1: 

𝛽𝛽2 =  𝜆𝜆1;2 =  0, 𝛾𝛾2 =  𝜆𝜆2;2 = 1
3        



- 126 - 
 

      𝛽𝛽1 =  𝜆𝜆1;1 =  1, 𝛾𝛾1 =  𝜆𝜆2;1 = 5
3.                                                                                    (53)                                                                             

In particular, in Step B.3, we find the 𝑅𝑅1 × 1 =  2 × 1 vector v1by computing quotients 
of products of differences of the values in (53): 

[𝑣𝑣1(1)]2 = (𝛽𝛽 1−𝑢𝑢 1)(𝛽𝛽 1−𝑢𝑢 1)
(𝛽𝛽 1−𝛽𝛽 2) = �1−5

3��1−1
3�

(1−0) = 4
9                                                 (54) 

[𝑣𝑣1(2)]2 = (𝛽𝛽 2−𝑢𝑢 1)(𝛽𝛽 2−𝑢𝑢 2)
(𝛽𝛽 2−𝛽𝛽 1) = �0−5

3��0−1
3�

(0−1) = 5
9                                                   (55) 

        yielding 𝑣𝑣1 = �
2
3

√5
2

� . Similary, we compute 𝑤𝑤1 �
√5
√6
1

√6

� according to the formulas  

      [𝑤𝑤1(1)]2 = (𝛾𝛾 1−𝛽𝛽 1)�𝛾𝛾 1−𝛽𝛽 2 �
(𝛾𝛾 1−𝛾𝛾 2) = �5

3−1��5
3−0�

�5
3−1

3�
= 5

6                                           (56)                                         

                [𝑤𝑤1(2)]2 = (𝛾𝛾 2−𝛽𝛽 1)�𝛾𝛾 2−𝛽𝛽 2 �
(𝛾𝛾 2−𝛾𝛾 1) = �1

3−1��1
3−0�

�1
3−5

3�
= 1

6                                  (57)     

Next, in Step B.4, we form our second frame element 𝑓𝑓2 = 𝛼𝛼1𝑉𝑉1𝛱𝛱𝐼𝐼1
𝑇𝑇 �𝑣𝑣1

0 � 

            𝑓𝑓2 = �
1 0 0
0 1 0
0 0 1

� �
1 0 0
0 1 0
0 0 1

� �
1 0 0
0 1 0
0 0 1

� �

2
3

√5
3

0
� = �

2
3

√5
3

0
�                 

As justified in the proof of Theorem(5.3.7), the resulting partial sequence of vectors 

                𝐹𝐹2 = [𝑓𝑓1   𝑓𝑓2] = �
1     2

3

0    √5
3

0      0
� 

has a frame operator 𝐹𝐹2𝐹𝐹2
∗ whose spectrum is {𝜆𝜆2;1, 𝜆𝜆2;2, 𝜆𝜆2;3} =  {5

3, 1
3, 0}. Moreover, a 

corresponding orthonormal eigenbasis for 𝐹𝐹2𝐹𝐹2
∗is computed in Step B.5; here the first 

step is to compute the 𝑅𝑅1 ×  𝑅𝑅1 = 2 ×  2 matrix 𝑊𝑊1 by computing a pointwise product 
of a certain 2 × 2 matrix with the outer product of 𝑣𝑣1with  𝑤𝑤1:  

  𝑤𝑤1 = �
1

𝛾𝛾1−𝛽𝛽1

1
𝛾𝛾 2−𝛽𝛽 1

1
𝛾𝛾 1−𝛽𝛽 2

1
𝛾𝛾 2−𝛽𝛽 2

� ⨀ � 𝑣𝑣1(1)
 𝑣𝑣1(2)� [𝑤𝑤1(1)   𝑤𝑤1(2)] = �

3
2 −3

2
3
5 3 � ⨀ �

2√5
3√6

2
3√6

5
3√6

√5
3√6

� = �
√5
√6

1
√6

1
√6

√5
√6

� 

Note that 𝑊𝑊1is a real orthogonal matrix whose diagonal and subdiagonal entries are 
strictly positive and whose superdiagonal entries are strictly negative; one can easily 
verify that every 𝑊𝑊𝑛𝑛  has this form. More significantly, the proof of Theorem(5.3.7) 
guarantees that the columns of  

𝛼𝛼2

= 𝛼𝛼1𝑉𝑉1 � �𝑊𝑊1 0
0 1� � = �

0 1 0
1 0 0
0 0 1

� �
1 0 0
0 1 0
0 𝑜𝑜 1

� �
1 0 0
0 1 0
0 𝑜𝑜 1

�

⎣
⎢
⎢
⎡

√5
6 − 1

√6
0

1
√6

√5
√6

0
0 0 1⎦

⎥
⎥
⎤

ℐ1

𝑇𝑇

𝐼𝐼1
�
1 0 0
0 1 0
0 𝑜𝑜 1

�

=

⎣
⎢
⎢
⎡

√5
6 − 1

√6
0

1
√6

√5
√6

0
0 0 1⎦

⎥
⎥
⎤
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form an orthonormal eigenbasis of  𝐹𝐹2𝐹𝐹2
∗. This completes the 𝑛𝑛 = 1 iteration of Step B; 

we now repeat this process for 𝑛𝑛 = 2, 3, 4. For 𝑛𝑛 = 2, in Step B.1 we arbitrarily pick 
some 3 × 3 diagonal unitary matrix 𝑉𝑉2. Note that if we wish our frame to be real, there 
are only 23 =  8 such choices of 𝑉𝑉2. For the sake of simplicity, we choose 𝑉𝑉2 =  𝐼𝐼 in this 
example. Continuing, Step B.2 involves canceling the common terms in 

𝑛𝑛                      1                      2

𝜆𝜆𝑛𝑛 ;3
𝜆𝜆𝑛𝑛 ;2
𝜆𝜆𝑛𝑛 ;1

                  

0
 13
5
3

                    

0
4
3
5
3

 

To find 𝐼𝐼2 = ℐ2 = (2) and so  

� = � =  �
0 1 0
1 0 0
0 0 1

�
ℐ2𝐼𝐼1

 

In step B.3. we find that 𝑣𝑣2 = 𝑤𝑤2 = [1]. Step B.4 and B.5 
Then give that 𝐹𝐹3 = [𝑓𝑓1  𝑓𝑓2   𝑓𝑓3] and 𝛼𝛼3 are  

          𝐹𝐹3 = ��
1      2

3
     − 1

√6

0      √5
3

      √5
√6

0         0          0

�� , 𝛼𝛼3 = ��

√5
√6

     − 1
√6

     0
1

√6
      √5

√6
     0

0         0          1

��. 

The columns of 𝛼𝛼3 form an orthonormal eigenbasis for the partial frame operator 𝐹𝐹3𝐹𝐹3
∗ 

with corresponding eigenval𝑢𝑢𝑒𝑒𝑠𝑠 {𝜆𝜆3;1, 𝜆𝜆3;2, 𝜆𝜆3;3}  =  {
5

3
, 4

3
, 0}. For the 𝑛𝑛 =  3 iteration, 

we pick 𝑉𝑉3 = 1 and cancel the common terms in 
 𝑛𝑛                      3                      4

𝜆𝜆𝑛𝑛 ;3
𝜆𝜆𝑛𝑛 ;2
𝜆𝜆𝑛𝑛 ;1

                  

0
 43
5
3

                    

2
3
5
3
5
3

 

To obtain 𝐼𝐼3 = [2,3]  and 𝒯𝒯3 = [1,3] implying  
                 
 𝐼𝐼𝑛𝑛 𝑠𝑠tep B.3, we then compute the 𝑅𝑅3 × 1 = 2 × 1 vectors 𝑣𝑣3 and 𝑤𝑤3  in a manner 
analogous to 
(54), (55),(56) and (57)  

                      𝑣𝑣3 = �

1
√6
√5
√6

� ,        𝑤𝑤3 = �
√5
3
2
3

�. 

Note that in Step B.4, the role of permutation matrix ∏ is𝑇𝑇
𝐼𝐼3  that it maps the entries of 𝑣𝑣3 

onto the 𝐼𝐼3  indices, meaning that 𝑣𝑣4lies in the span of the corresponding eigenvectors 
{𝑢𝑢3;𝑚𝑚 }𝑚𝑚∈𝐼𝐼3
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𝑓𝑓4 = 𝛼𝛼3𝑉𝑉3 � �
𝑣𝑣3
0 � =

�

�

√5
√6

     −
1

√6
      0

1
√6

      
√5
√6

       0

0         0         1

�

�
�
1      0      0
0      1      0
0     0      1

�
𝑇𝑇

𝐼𝐼3

�
0     0      1
1      0      0
0     1      0

�

⎣
⎢
⎢
⎢
⎢
⎡

1
√6
√5
√6
0 ⎦

⎥
⎥
⎥
⎥
⎤

=
�

�

√5
√6

     −
1

√6
      0

1
√6

      
√5
√6

       0

0         0         1

�

�

⎣
⎢
⎢
⎢
⎢
⎡

0
1

√6
√5
√6⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡−

1
6

√5
6

√5
√6 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

In a similar fashion, the purpose of the permutation matrices in Step B.5 is to embed the 
entries of the 2 × 2 matrix 𝑊𝑊3 into the 𝐼𝐼3 = {2, 3} rows and   𝒯𝒯3 =  {1, 3} columns of a 
3 × 3 matrix: 
    
𝛼𝛼4 = 𝛼𝛼3𝑉𝑉3 ∏ �𝑤𝑤3    0

0      1�𝑇𝑇
𝐼𝐼3

∏   𝒯𝒯3 =

��

√5
√6

     − 1
√6

      0
1

√6
      √5

√6
       0

0         0         1

�� �
1      0      0
0      1      0
0     0      1

� �
0     0      1
1      0      0
0     1      0

� ��

√5
√6

     − 1
√6

      0
1

√6
      √5

√6
       0

0         0         1

�� �
1      0      0
0      0     1
0     1     0

� =

��

√5
√6

     − 1
√6

      0
1

√6
      √5

√6
       0

0         0         1

�� 

�

�

0            1            0
√5
√6

        0      −  
1

√6
1

√6
         0         

√5
√6

�

�
=

�

�

−√5
6

        
√5
√6

        
1
6

5
6

      
1

√6
      −

√5
6

1
√6

           0            
√5
√6

�

�

 

For the last iteration 𝑛𝑛 =  4, we again choose 𝑉𝑉4 =  𝐼𝐼 in Step 𝐵𝐵. 1. For Step 𝐵𝐵. 2, note 
that since 
                            

𝑛𝑛                      4                      5

𝜆𝜆𝑛𝑛 ;3
𝜆𝜆𝑛𝑛 ;2
𝜆𝜆𝑛𝑛 ;1

                  

2
3
 53
5
3

                    

5
3
5
3
5
3

 

 we have 𝐼𝐼4 =  {3} and 𝒯𝒯4 =  {1}, implying 



- 129 - 
 

             ∏ = �
0     0      1
1      0      0
0     1      0

� , ∏ = �
1      0      0
0      1      0
0     0      1

�  𝒯𝒯4𝐼𝐼4  

Working through Steps 𝐵𝐵. 3, 𝐵𝐵. 4 and 𝐵𝐵. 5 yields the 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹: 

         𝐹𝐹 = 𝐹𝐹5 =

⎣
⎢
⎢
⎢
⎡ 1      2

3
     − 1

√6
     − 1

6
      1

6

0      √5
3

         √5
√6

        √5
6

     −  √5
6

0        0         0      √5
√6

        √5
√6 ⎦

⎥
⎥
⎥
⎤

, 𝛼𝛼5 =

⎣
⎢
⎢
⎢
⎡

1
6

     − √5
3

      √5
√6

− √5
6

       5
6

        1
√6

√5
√6

        1
√6

        0 ⎦
⎥
⎥
⎥
⎤

    (58) 

We emphasize that the 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹 𝐹𝐹 given in (58) was based on the particular choice of 
eigensteps given in (51), which arose by choosing (𝑥𝑥, 𝑢𝑢)  =  (0, 1

3
) in (49). Choosing 

other pairs (𝑥𝑥, 𝑢𝑢) from the parameter set depicted in Figure 1(b) yields other 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹𝑠𝑠. 
Indeed, since the eigensteps of a given 𝐹𝐹 are equal to  those of 𝛼𝛼 𝐹𝐹 for any unitary 
operator 𝛼𝛼, we have in fact that each distinct (𝑥𝑥, 𝑢𝑢) yields a 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹 which is not unitarily 
equivalent to any of the others. For example, by following the algorithm of 
Theorem(5.3.7) and choosing 𝛼𝛼1 =  𝐼𝐼 𝑅𝑅𝑛𝑛𝑑𝑑 𝑉𝑉𝑛𝑛 = 1 in each iteration, we obtain the 
following four additional 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹𝑠𝑠, each corresponding to a distinct corner point of the 
parameter set: 

                    𝐹𝐹 =

⎣
⎢
⎢
⎢
⎡ 1      2

3
      0      − 1

3
      − 1

3

0      √5
3

       0        √5
3

           √5
3

0       0       1      1
√3

     − 1
√3

 

 

⎦
⎥
⎥
⎥
⎤
  for (𝑥𝑥, 𝑢𝑢) = �1

3
, 1

3
� 

                       𝐹𝐹 =

⎣
⎢
⎢
⎢
⎡ 1      1

3
      1

3
    − 1

3
      − 1

√3

0      √8
3

       1
3√2

        −1
3√2

           √2
√3

0       0       √5
√6

      √5
√6

          0 

 

⎦
⎥
⎥
⎥
⎤

  for (𝑥𝑥, 𝑢𝑢) = �2
3

, 2
3
� 

                       𝐹𝐹 =

⎣
⎢
⎢
⎢
⎡ 1        0      0    1

√3
      − 1

√3

0        1       2
3

      −  1
3

         −  1
3

0       0       √5
3

      √5
3

          √5
3

 

 

⎦
⎥
⎥
⎥
⎤
  for (𝑥𝑥, 𝑢𝑢) = �1

3
, 1� 

                       𝐹𝐹 =

⎣
⎢
⎢
⎢
⎡ 1      1

3
     − 1

√3
    1

3
      − 1

3

0      √8
3

       √2
√3

        1
3√2

           −1
3√2

0       0         0        √5
√6

          √5
√6

 

 

⎦
⎥
⎥
⎥
⎤

  for (𝑥𝑥, 𝑢𝑢) = �0, 2
3
� 

Notice that, of the four 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹𝑠𝑠 above, the second and fourth are actually the same up to a 
permutation of the frame elements. This is an artifact of our method of construction, 
namely, that our choices for eigensteps, 𝛼𝛼1, and {𝑉𝑉𝑛𝑛 }𝑛𝑛=1

𝑁𝑁−1determine the sequence of frame 
elements. As such, we can recover all permutations of a given frame by modifying these 
choices. 
We emphasize that these four 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹𝑠𝑠 along with that of (58) are but five examples from 
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the continuum of all such frames. Indeed, keeping x and y as variables in (49) and 
applying the algorithm of Theorem (5.3.7)—again choosing 

𝑓𝑓1 = �
1
0
0

� 

 𝑓𝑓2 �
1 − 𝑢𝑢

�𝑢𝑢(2 − 𝑢𝑢)
0

� 

𝑓𝑓3 =
�

�
��3𝑢𝑢−1��2 + 3𝑥𝑥 − 3𝑢𝑢 �(2 − 𝑥𝑥 − 𝑢𝑢)

�1 − 𝑢𝑢6    −
�(5 − 3𝑢𝑢)(4 − 3𝑥𝑥 − 3𝑢𝑢)(𝑢𝑢 − 𝑥𝑥)

�1 − 𝑢𝑢6

�𝑢𝑢(3𝑢𝑢 − 1)(2 + 3𝑥𝑥 − 3𝑢𝑢)(2 − 𝑥𝑥 − 𝑢𝑢)

�(1 − 𝑢𝑢)(2 − 𝑢𝑢)6      +
�(5 − 3𝑢𝑢)(4 − 3𝑥𝑥 − 3𝑢𝑢)(𝑢𝑢 − 𝑥𝑥)

�𝑢𝑢(1 − 𝑢𝑢)6

�

�
 

𝑓𝑓4

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −

�(4 − 3𝑥𝑥)(3𝑢𝑢 − 1)(4 − 3𝑥𝑥 − 3𝑢𝑢)

12�(2 − 3𝑥𝑥)(1 − 𝑢𝑢)
−

�(4 − 3𝑥𝑥)(5 − 3𝑢𝑢)(𝑢𝑢 − 𝑥𝑥)(2 + 3𝑥𝑥 − 3𝑢𝑢)

12�(2 − 3𝑥𝑥)(1 − 𝑢𝑢)

−
�𝑥𝑥(3𝑢𝑢 − 1)(𝑢𝑢 − 𝑥𝑥)(𝑢𝑢 − 𝑥𝑥)(2 + 3𝑥𝑥 − 3𝑢𝑢)

4�3(2 − 3𝑥𝑥)(1 − 𝑢𝑢)
+

�𝑥𝑥(5 − 3𝑢𝑢)(2 − 𝑥𝑥 − 𝑢𝑢)(4 − 3𝑥𝑥 − 3𝑢𝑢)

4�3(2 − 3𝑥𝑥)(1 − 𝑢𝑢)

−
�(4 − 3𝑥𝑥)𝑢𝑢(3𝑥𝑥 − 3𝑢𝑢)(4 − 3𝑥𝑥 − 3𝑢𝑢)

12�(2 − 3𝑥𝑥)(1 − 𝑢𝑢)(2 − 𝑢𝑢)
+

�(4 − 3𝑥𝑥)(2 − 𝑢𝑢)(5 − 3𝑢𝑢)(𝑢𝑢 − 𝑥𝑥)(2 + 3𝑥𝑥 − 3𝑢𝑢)

12�(2 − 3𝑥𝑥)(1 − 𝑢𝑢)(2 − 𝑢𝑢)

−
�𝑥𝑥𝑢𝑢(3𝑢𝑢 − 1)(𝑢𝑢 − 𝑥𝑥)(2 + 3𝑥𝑥 − 3𝑢𝑢)

4�3(2 − 3𝑥𝑥)(1 − 𝑢𝑢)(2 − 𝑢𝑢)
−

�𝑥𝑥(2 − 𝑢𝑢)(5 − 3𝑢𝑢)(2 − 𝑥𝑥 − 𝑢𝑢)

4�3(2 − 3𝑥𝑥)(1 − 𝑢𝑢)
�5𝑥𝑥(2 + 3𝑥𝑥 − 3𝑢𝑢)(4 + 3𝑥𝑥 − 3𝑢𝑢)

6�(2 − 3𝑥𝑥)𝑢𝑢(2 − 𝑢𝑢)
+

�5(4 − 3𝑥𝑥)(𝑢𝑢 − 𝑥𝑥)(2 − 𝑥𝑥 − 𝑢𝑢)

2�3(2 − 3𝑥𝑥)𝑢𝑢(2 − 𝑢𝑢) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

  
𝑓𝑓5

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −

�(4 − 3𝑥𝑥)(3𝑢𝑢 − 1)(2 − 𝑥𝑥 − 𝑢𝑢)(4 − 3𝑥𝑥 − 3𝑢𝑢)

12�(2 − 3𝑥𝑥)(1 − 𝑢𝑢)
−

�(4 − 3𝑥𝑥)(5 − 3𝑢𝑢)(𝑢𝑢 − 𝑥𝑥)(2 + 3𝑥𝑥 − 3𝑢𝑢)

12�(2 − 3𝑥𝑥)(1 − 𝑢𝑢)

−
�𝑥𝑥(3𝑢𝑢 − 1)(𝑢𝑢 − 𝑥𝑥)(2 + 3𝑥𝑥 − 3𝑢𝑢)

4�3(2 − 3𝑥𝑥)(1 − 𝑢𝑢)
+

�𝑥𝑥(5 − 3𝑢𝑢)(2 − 𝑥𝑥 − 𝑢𝑢)(4 − 3𝑥𝑥 − 3𝑢𝑢)

4�3(2 − 3𝑥𝑥)(1 − 𝑢𝑢)

−
�(4 − 3𝑥𝑥)𝑢𝑢(3𝑢𝑢 − 1)(2 − 𝑥𝑥 − 𝑢𝑢)(4 − 3𝑥𝑥 − 3𝑢𝑢)

12�(2 − 3𝑥𝑥)(1 − 𝑢𝑢)(2 − 𝑢𝑢)
+

�(4 − 3𝑥𝑥)(2 − 𝑢𝑢)(5 − 3𝑢𝑢)(𝑢𝑢 − 𝑥𝑥)(2 + 3𝑥𝑥 − 3𝑢𝑢)

12�(2 − 3𝑥𝑥)(1 − 𝑢𝑢)

−
�𝑥𝑥𝑢𝑢(3𝑢𝑢 − 1)(𝑢𝑢 − 𝑥𝑥)(2 + 3𝑥𝑥 − 3𝑢𝑢)

4�3(2 − 3𝑥𝑥)(1 − 𝑢𝑢)(2 − 𝑢𝑢)
−

�𝑥𝑥(2 − 𝑢𝑢)(5 − 3𝑢𝑢)(2 − 𝑥𝑥 − 𝑢𝑢)(4 − 3𝑥𝑥 − 3𝑢𝑢)

4�3(2 − 3𝑥𝑥)(1 − 𝑢𝑢)
�5𝑥𝑥(2 + 3𝑥𝑥 − 3𝑢𝑢)(4 − 3𝑥𝑥 − 3𝑢𝑢)

6�(2 − 3𝑥𝑥)𝑢𝑢(2 − 𝑢𝑢)
+

�5(4 − 3𝑥𝑥)(𝑢𝑢 − 𝑥𝑥)(2 − 𝑥𝑥 − 𝑢𝑢)

2�3(2 − 3𝑥𝑥)𝑢𝑢(2 − 𝑢𝑢) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

   
Table 1: A continuum of 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹𝑠𝑠. To be precise, for each choice of (𝑥𝑥, 𝑢𝑢) that lies in the 
interior of the parameter set depicted in Figure 1(b), these five elements form a 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹 for 
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ℝ3, meaning that its 3 × 5 synthesis matrix 𝐹𝐹 has both unit norm columns and orthogonal 
rows of constant squared norm 

5

3 . These frames were produced by applying the algorithm 
of Theorem 7 to the sequence of eigensteps given in (49), choosing 𝛼𝛼1 =  1 and 𝑉𝑉𝑛𝑛 = 1 
for all n. These formulas give an explicit parametrization for a 2-dimensional manifold 
that lies within the set of all 3 × 5 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹𝑠𝑠. By Theorem(5.3.7), every such 𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹 arises 
in this manner, with the understanding that (𝑥𝑥, 𝑢𝑢) may indeed be chosen from the 
boundary of the parameter set and that the initial eigenbasis 𝛼𝛼1  and the block-diagonal 
unitary matrices 𝑉𝑉𝑛𝑛 are not necessarily the identity. 
 𝛼𝛼1 = 1 and 𝑉𝑉𝑛𝑛 = 1  in each iteration for the sake of simplicity—yields the frame 
elements given in Table 1. Here, we restrict (𝑥𝑥, 𝑢𝑢) so as to not lie on the boundary of the 
parameter set of Figure 1(b). This restriction simplifies the analysis, as it prevents all 
unnecessary repetitions of values in neighboring columns in (49). Table 1 gives an 
explicit parametrization for a two-dimensional manifold that lies within the set of all 
𝛼𝛼𝑁𝑁𝑇𝑇𝐹𝐹𝑠𝑠 consisting of five elements in three-dimensional space. By Theorem(5.3.7), this 
can be generalized so as to yield all such frames, provided we both (i) further consider (x, 
y) that lie on each of the five line segments that constitute the boundary of the parameter 
set and (ii) throughout generalize 𝑉𝑉𝑛𝑛  to an arbitrary block-diagonal unitary matrix, where 
the sizes of the blocks are chosen in accordance with Step B.1. 
Having discussed the utility of Theorem(5.3.7), we turn to its proof. 
Proof of Theorem(5.3.7). 

(⇐) 𝐿𝐿𝑒𝑒𝑤𝑤 {𝜆𝜆𝑚𝑚 }𝑚𝑚=1
𝑀𝑀     𝑅𝑅𝑛𝑛𝑑𝑑   {µ𝑛𝑛 }𝑛𝑛=1

𝑁𝑁
=1 be arbitrary nonnegative nonincreasing sequences 

and take an arbitrary sequence of eigensteps {{𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 }𝑛𝑛=0

𝑁𝑁  in accordance with 
Definition(5.3.1). Note here we do not assume that such a sequence of eigensteps actually 
exists for this particular choice of {𝜆𝜆𝑚𝑚 }𝑚𝑚=1

𝑀𝑀  and {𝜇𝜇𝑛𝑛 }𝑛𝑛=1
𝑁𝑁  if one does not, then this 

direction of the result is vacuously true. 
We claim that any 𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1

𝑁𝑁 constructed according to Step 𝐵𝐵 has the property that for 
all 𝑛𝑛 = 1, . . . , 𝑁𝑁, the spectrum of the frame operator 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛

∗of 𝐹𝐹𝑛𝑛 = {𝑓𝑓�̀�𝑛 }�̀�𝑛=1
𝑁𝑁  is  {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 1, 
and that the columns of 𝛼𝛼𝑛𝑛 form an orthonormal eigenbasis for 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛

∗. Note that by 
Lemma(5. 3.3), proving this claim will yield our stated result that the spectrum of 𝐹𝐹𝐹𝐹∗ is 
{{𝜆𝜆𝑚𝑚 }𝑚𝑚=1

𝑀𝑀  and that ‖𝑓𝑓𝑛𝑛 ‖2 = 𝜇𝜇𝑛𝑛  for all 𝑛𝑛 = 1, . . . , 𝑁𝑁. Since Step B is an iterative 
algorithm, we prove this claim by  induction on 𝑛𝑛. To be precise, Step B begins by letting 
𝛼𝛼1 = �𝑢𝑢1;𝑚𝑚 �

𝑚𝑚=1
𝑀𝑀

 and 𝑓𝑓1 = √𝜇𝜇1𝑢𝑢1;1.The columns of 𝛼𝛼1form an 
 
01 𝐼𝐼𝑛𝑛

(𝑀𝑀) ≔ {1, … , 𝑀𝑀} 
02  𝒯𝒯𝑛𝑛

(𝑀𝑀) ≔ {1, … , 𝑀𝑀} 
03  For 𝑚𝑚 = 𝑀𝑀, … ,1 
04   If 𝜆𝜆𝑛𝑛 ;𝑚𝑚 ∈ �𝜆𝜆𝑛𝑛+1;�̀�𝑚 �

�̀�𝑚∈𝒯𝒯𝑛𝑛
(𝑀𝑀 ) 

05     𝐼𝐼𝑛𝑛
(𝑀𝑀−1) ≔ 𝐼𝐼𝑛𝑛

(𝑀𝑀)\{𝑚𝑚} 
06      𝒯𝒯𝑛𝑛

(𝑀𝑀−1) ≔ 𝒯𝒯𝑛𝑛
(𝑀𝑀)\{�̀�𝑚} Where ( ){ }1 ;max :M

n n n mm m λ λ+′ ′′= ∈ = =I  
07  else  
08 𝐼𝐼𝑛𝑛

(𝑀𝑀−1) ≔ 𝐼𝐼𝑛𝑛
(𝑚𝑚) 
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09  𝒯𝒯𝑛𝑛
(𝑀𝑀−1) ≔ 𝒯𝒯𝑛𝑛

(𝑀𝑀) 
10 end if 
11   end for  
12    𝐼𝐼𝑛𝑛 ≔ 𝐼𝐼𝑛𝑛

(1) 
13     𝒯𝒯𝑛𝑛 ≔ 𝐼𝐼𝑛𝑛

(1) 
Table 2: An explicit algorithm for computing the index sets 𝐼𝐼𝑛𝑛 and 𝒯𝒯𝑛𝑛 in Step B.2 of 
Theorem(5.3.7) orthonormal eigenbasis for 𝐹𝐹1𝐹𝐹1

∗ since 𝛼𝛼1is unitary by assumption and 

𝐹𝐹1𝐹𝐹1
∗𝑢𝑢1;𝑚𝑚 = 〈𝑢𝑢1;𝑚𝑚 ,𝑓𝑓1〉 𝑓𝑓1 = 〈𝑢𝑢1;𝑚𝑚 , �µ1𝑢𝑢1;1〉�µ1𝑢𝑢1;1 = 〈µ1𝑢𝑢1;𝑚𝑚 , 𝑢𝑢1;1〉 �µ1𝑢𝑢1;1           𝑚𝑚 = 1

0                    𝑚𝑚 ≠ 1
� 

for all 𝑚𝑚 = 1, . . . , 𝑀𝑀. As such, the spectrum of 𝐹𝐹1𝐹𝐹1
∗consists of µ1 and 𝑀𝑀 − 1 repetitions 

of 0. To see that this spectrum matches the values of {𝜆𝜆1;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 , note that by 

Definition(5.3.1), we know {𝜆𝜆1;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀  {interlaces on the trivial sequence 

{𝜆𝜆0;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 = {0}𝑚𝑚=1

𝑀𝑀   In  the sense of (3) implying 𝜆𝜆1;𝑚𝑚 = 0 for all 𝑚𝑚 ≥ 2; this in hand, 
note this definition further gives that 𝜆𝜆1;1 = ∑ 𝜆𝜆1;𝑚𝑚 = 𝜇𝜇1

𝑀𝑀
𝑚𝑚=1 . Thus, our claim indeed 

holds for 𝑛𝑛 = 1. 
We now proceed by induction, assuming that for any given 𝑛𝑛 = 1, . . . , 𝑁𝑁 − 1 the process 
of Step 𝐵𝐵 has produced 𝐹𝐹𝑛𝑛 = {𝑓𝑓�̀�𝑛 }�̀�𝑛=1

𝑁𝑁  such that the spectrum of 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛
∗   is {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 and 
that the columns of 𝛼𝛼𝑛𝑛  form an orthonormal eigenbasis for 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛

∗. In particular, we have 
𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛

∗𝛼𝛼𝑛𝑛 = 𝛼𝛼𝑛𝑛 𝐷𝐷𝑛𝑛 where 𝐷𝐷𝑛𝑛+1is the diagonal matrix whose diagonal entries are {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 . 

Defining 𝐷𝐷𝑛𝑛+1analogously from {𝜆𝜆𝑛𝑛+1;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 , we show that constructing 𝑓𝑓𝑛𝑛+1 and 𝛼𝛼𝑛𝑛+1 

according to Step B implies 𝐹𝐹𝑛𝑛+1𝐹𝐹𝑛𝑛+1
∗ 𝛼𝛼𝑛𝑛+1 = 𝛼𝛼𝑛𝑛+1𝐷𝐷𝑛𝑛+1 where 𝛼𝛼𝑛𝑛+1is unitary; doing such 

proves our claim. 
To do so, pick any unitary matrix 𝑉𝑉𝑛𝑛  according to Step B.1. To be precise, let 𝐾𝐾𝑛𝑛  denote 
the number of distinct values in {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 , and for any 𝑘𝑘 = 1, . . . , 𝐾𝐾𝑛𝑛 , let 𝐿𝐿𝑛𝑛 ;𝑘𝑘  denote 
the multiplicity of the kth value. We write the index 𝑚𝑚 as an increasing function of 𝑘𝑘 and 
l, that is, we write {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1

𝑀𝑀   as  {𝜆𝜆𝑛𝑛 ;𝑚𝑚(𝑘𝑘 ,𝑙𝑙)}𝑘𝑘=1  𝑙𝑙=1
𝑘𝑘𝑛𝑛   𝑙𝑙𝑚𝑚 ,𝑘𝑘  k where 𝑚𝑚(𝑘𝑘, 𝑙𝑙) < 𝑚𝑚��̀�𝑘, 𝑙𝑙� if 𝑘𝑘 < �̀�𝑘 or 

if 𝑘𝑘 = �̀�𝑘 and 𝑙𝑙 < 𝑙𝑙. We let 𝑉𝑉𝑛𝑛  be an 𝑀𝑀 × 𝑀𝑀 block-diagonal unitary matrix consisting of 𝐾𝐾 
diagonal blocks, where for any 𝑘𝑘 = 1, . . . , 𝐾𝐾, the kth block is an 𝐿𝐿𝑛𝑛 ;𝑘𝑘 × 𝐿𝐿𝑛𝑛 ;𝑘𝑘unitary 
matrix. In the extreme case where all the values of {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 are distinct, we have that 
𝑉𝑉𝑛𝑛 is a diagonal unitary matrix, meaning it is a diagonal matrix whose diagonal entries are 
unimodular. Even in this case, there is some freedom in how to choose 𝑉𝑉𝑛𝑛 ; this is the only 
freedom that the Step B process provides when determining 𝑓𝑓𝑛𝑛+1. In any case, the crucial 
fact about 𝑉𝑉𝑛𝑛 is that its blocks match those corresponding to distinct multiples of the 
identity that appear along the diagonal of 𝐷𝐷𝑛𝑛 , implying 𝐷𝐷𝑛𝑛 𝑉𝑉𝑛𝑛 = 𝑉𝑉𝑛𝑛 𝐷𝐷𝑛𝑛 . 
Having chosen 𝑉𝑉𝑛𝑛 , we proceed to Step B.2. Here,we produce subsets 𝐼𝐼𝑛𝑛 and 𝒯𝒯𝑛𝑛  of 
{1, . . . , 𝑀𝑀}that are the remnants of the indices of {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 and {𝜆𝜆𝑛𝑛+1;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 , respectively, 

obtained by canceling the values that are common to both sequences, working backwards 
from index 𝑀𝑀 to index 1. An explicit algorithm for doing so is given in Table 2. Note that 
for each 𝑚𝑚 = 𝑀𝑀, . . . , 1 (Line 03), we either remove a single element from both 𝐼𝐼𝑛𝑛

(𝑚𝑚)
    and 

𝒯𝒯𝑛𝑛
(𝑚𝑚 ) (Lines 04–06) or remove nothing from both (Lines 07–09), meaning that 𝐼𝐼𝑛𝑛 : =  𝐼𝐼𝑛𝑛

(1) 

and 𝒯𝒯𝑛𝑛 : = 𝒯𝒯𝑛𝑛
(1) have the same cardinality, which we denote 𝑅𝑅𝑛𝑛 . Moreover, since 

{𝜆𝜆𝑛𝑛+1;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀  interlaces on {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1,

𝑀𝑀  then for any real scalar 𝜆𝜆 whose multiplicity as a 
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value of {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀   is 𝐿𝐿, we have that its multiplicity as a value of {𝜆𝜆𝑛𝑛+1;𝑚𝑚 }𝑚𝑚=1

𝑀𝑀  is either 
𝐿𝐿−, 𝐿𝐿 or 𝐿𝐿 + 1. When these two multiplicities are equal, this algorithm completely 
removes the corresponding indices from both 𝐼𝐼𝑛𝑛 and 𝐽𝐽𝑛𝑛 . On the other hand, if the new 
multiplicity is 𝐿𝐿 − 1 or 𝐿𝐿 + 1, then the least such index in 𝐼𝐼𝑛𝑛 or 𝒯𝒯𝑛𝑛 is left behind, 
respectively, leading to the definitions of 𝐼𝐼𝑛𝑛 or 𝒯𝒯𝑛𝑛  given in Step B.2. Having these sets, it 
is trivial to find the corresponding permutations 𝜋𝜋𝐼𝐼𝑛𝑛  and 𝜋𝜋𝒯𝒯𝑛𝑛  on {1, . . . , 𝑀𝑀}and to 
construct the associated projection matrices ∏ and ∏ .𝒯𝒯𝑛𝑛𝐼𝐼𝑛𝑛  
We now proceed to Step B.3. For the sake of notational simplicity, let {𝛽𝛽𝑜𝑜 }𝑜𝑜=1

𝑅𝑅𝑛𝑛   and 
{𝛾𝛾𝑜𝑜 }𝑜𝑜=1

𝑅𝑅𝑛𝑛 denote the values of {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚∈𝐼𝐼𝑛𝑛
 , and  {𝜆𝜆𝑛𝑛+1;𝑚𝑚 }𝑚𝑚∈𝒯𝒯𝑛𝑛  respectively. That is, let 

𝛽𝛽𝜋𝜋𝐼𝐼𝑛𝑛 (𝑚𝑚 ) = 𝜆𝜆𝑛𝑛 ;𝑚𝑚  for all 𝑚𝑚 ∈ 𝐼𝐼𝑛𝑛 and 𝛾𝛾𝜋𝜋𝐽𝐽𝑛𝑛(𝑚𝑚) = 𝜆𝜆𝑛𝑛+1;m  for all 𝑚𝑚 ∈ 𝒯𝒯𝑛𝑛 . 
Note that due to the way in which 𝐼𝐼𝑛𝑛 and 𝐽𝐽𝑛𝑛 and 𝒯𝒯𝑛𝑛 were defined, we have that the values of 
{𝛽𝛽𝜋𝜋𝐽𝐽𝑛𝑛(𝑚𝑚) = 𝜆𝜆𝑛𝑛 ;m

   
and {𝛾𝛾𝑜𝑜 }𝑜𝑜=1

𝑅𝑅𝑛𝑛  are all distinct, both within each sequence and across the 
two sequences. Moreover, since�𝜆𝜆𝑛𝑛 ;𝑚𝑚 �

𝑚𝑚∈𝐼𝐼𝑛𝑛
 and  {𝜆𝜆𝑛𝑛+1;𝑚𝑚 }𝑚𝑚∈𝒯𝒯𝑛𝑛 are nonincreasing while 

𝜋𝜋𝐼𝐼𝑛𝑛  𝑅𝑅𝑛𝑛𝑑𝑑 𝜋𝜋𝒯𝒯𝑛𝑛 nare increasing on 𝐼𝐼𝑛𝑛   and 𝒯𝒯𝑛𝑛  respectively, then the values {𝛽𝛽𝑜𝑜 }𝑜𝑜=1
𝑅𝑅𝑛𝑛   and  

{𝛾𝛾𝑜𝑜 }𝑜𝑜=1
𝑅𝑅𝑛𝑛   are strictly decreasing. We further claim that {𝛾𝛾𝑜𝑜 }𝑜𝑜=1

𝑅𝑅𝑛𝑛  interlaces on {𝛽𝛽𝑜𝑜 }𝑜𝑜=1
𝑅𝑅𝑛𝑛 . To 

see this, consider the four polynomials: 

𝑝𝑝𝑛𝑛 (𝑥𝑥) = ��𝑥𝑥 − 𝜆𝜆𝑛𝑛 ;𝑚𝑚 �
𝑀𝑀

𝑚𝑚 =1

,      𝑝𝑝𝑛𝑛+1(𝑥𝑥) = ��𝑥𝑥 − 𝜆𝜆𝑛𝑛+1;𝑚𝑚 �
𝑀𝑀

𝑚𝑚 =1

, 𝑏𝑏(𝑥𝑥) = 

 

�(𝑥𝑥 − 𝛽𝛽𝑜𝑜 ), 𝑐𝑐(𝑥𝑥)
𝑅𝑅𝑛𝑛

𝑜𝑜=1

= �(𝑥𝑥 − 𝛾𝛾𝑜𝑜 ).
𝑅𝑅𝑛𝑛

𝑜𝑜=1

                        (59) 

Since {𝛽𝛽𝑜𝑜 }𝑜𝑜=1
𝑅𝑅𝑛𝑛 and{𝛾𝛾𝑜𝑜 }𝑜𝑜=1

𝑅𝑅𝑛𝑛  were obtained by canceling the common terms from 
{𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 and{𝜆𝜆𝑛𝑛+1;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 , we have that 𝑝𝑝𝑛𝑛+1(𝑥𝑥)/𝑝𝑝𝑛𝑛 (𝑥𝑥) = 𝑐𝑐(𝑥𝑥)/𝑏𝑏(𝑥𝑥) for all 𝑥𝑥 ∉

{𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 . Writing any 𝑜𝑜 = 1, . . . , 𝑅𝑅𝑛𝑛  as 𝑜𝑜 =  𝜋𝜋𝐼𝐼𝑛𝑛 (𝑚𝑚) for some 𝑚𝑚 ∈ 𝐼𝐼𝑛𝑛 , we have that 

since {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 ⊑ {𝜆𝜆𝑛𝑛+1;𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 , applying the “only if” direction of Lemma(5.3.5) with 
“𝑝𝑝(𝑥𝑥)” and “𝑞𝑞(𝑥𝑥)” being 𝑝𝑝𝑛𝑛 (𝑥𝑥) and 𝑝𝑝𝑛𝑛+1(𝑥𝑥) gives 

lim
𝑥𝑥→𝛽𝛽𝑜𝑜

(𝑥𝑥 − 𝛽𝛽𝑜𝑜 )
𝑐𝑐(𝑥𝑥)
𝑏𝑏(𝑥𝑥) = lim

𝑥𝑥→𝜆𝜆𝑛𝑛 ;𝑚𝑚
�𝑥𝑥 − 𝜆𝜆𝑛𝑛 ;𝑚𝑚 �

𝑝𝑝𝑛𝑛+1(𝑥𝑥)
𝑝𝑝𝑛𝑛 (𝑥𝑥)

≤ 0, (60) 

Since (60) holds for all 𝑜𝑜 = 1, . . . , 𝑅𝑅𝑛𝑛 , applying “if” direction of Lemma(5.3.5) with 
“𝑝𝑝(𝑥𝑥)” and “𝑞𝑞(𝑥𝑥)” being 𝑏𝑏(𝑥𝑥) and 𝑐𝑐(𝑥𝑥) gives that {𝛾𝛾𝑜𝑜 }𝑜𝑜=1

𝑅𝑅𝑛𝑛 indeed interlaces on {𝛽𝛽𝑜𝑜 }𝑜𝑜=1
𝑅𝑅𝑛𝑛 . 

Taken together, the facts that {𝛽𝛽𝑜𝑜 }𝑜𝑜=1
𝑅𝑅𝑛𝑛 and{𝛾𝛾𝑜𝑜 }𝑜𝑜=1

𝑅𝑅𝑛𝑛  are distinct,strictly decreasing and 
interlacing sequences implies that the 𝑅𝑅𝑛𝑛 × 1 vectors 𝑣𝑣𝑛𝑛 and 𝑤𝑤𝑛𝑛 are well-defined. To be 
precise, Step B.3 may be rewritten as finding  𝑣𝑣𝑛𝑛 (𝑜𝑜), 𝑤𝑤𝑛𝑛 (�̀�𝑜) ≥ 0 for all 𝑜𝑜, �̀�𝑜 =
 1 . . . , 𝑅𝑅𝑛𝑛  such that 

[𝑣𝑣𝑛𝑛 (𝑜𝑜)]2 = −
∏ (𝛽𝛽𝑜𝑜 − 𝛾𝛾�́�𝑜 )𝑅𝑅𝑛𝑛

𝑜𝑜=1̀

∏ (𝛽𝛽𝑜𝑜 − 𝛽𝛽�́�𝑜 ) 
�́�𝑜=1
�́�𝑜≠𝑜𝑜

,    [𝑤𝑤𝑛𝑛 (�̀�𝑜)]2 =
∏ (𝛾𝛾𝑜𝑜̀ − 𝛽𝛽�́�𝑜 )𝑅𝑅𝑛𝑛

𝑜𝑜=1̀

∏ (𝛾𝛾𝑜𝑜̀ − 𝛾𝛾�́�𝑜 ) 
�́�𝑜=1
�́�𝑜≠𝑜𝑜

,     (61) 

Note the fact that the 𝛽𝛽𝑜𝑜 ’𝑠𝑠 and 𝛾𝛾𝑜𝑜 ’𝑠𝑠 are distinct implies that the denominators in (61) are 
nonzero, and moreover that the quotients  themselves are nonzero. In fact, since {𝛽𝛽𝑜𝑜 }𝑜𝑜=1

𝑅𝑅𝑛𝑛 is 
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strictly decreasing, then for any fixed 𝑜𝑜, the values {𝛽𝛽𝑜𝑜 − 𝛽𝛽�́�𝑜 }�́�𝑜 ≠ 𝑜𝑜 can be decomposed 
into 𝑜𝑜 − 1 negative values {𝛽𝛽𝑜𝑜 − 𝛽𝛽�́�𝑜 }�́�𝑜=1

𝑜𝑜−1 and 𝑅𝑅𝑛𝑛 − 𝑜𝑜 positive values {𝛽𝛽𝑜𝑜 −  𝛽𝛽�́�𝑜 }�́�𝑜=𝑜𝑜+1
𝑅𝑅𝑛𝑛 . 

Moreover, since {𝛽𝛽𝑜𝑜 }𝑜𝑜=1
𝑅𝑅𝑛𝑛 ⊑ {𝛾𝛾𝑜𝑜 }𝑜𝑜=1

𝑅𝑅𝑛𝑛 , then for any such 𝑜𝑜, the values {𝛽𝛽𝑜𝑜 − 𝛾𝛾�́�𝑜 }�́�𝑜=1
𝑅𝑅𝑛𝑛  can be 

broken into r negative values{𝛽𝛽𝑜𝑜 − 𝛾𝛾�́�𝑜 }�́�𝑜=1
𝑅𝑅𝑛𝑛  and 𝑅𝑅𝑛𝑛 = 𝑜𝑜 in (39) is indeed   positive values 

{βr− γr00}Rr00n=r+1. With the inclusion of an additional negative sign, we see that the  
quantity defining[𝑣𝑣𝑛𝑛 (𝑜𝑜)]2  in (61)  is indeed positive. Meanwhile, the quantity defining 
[𝑤𝑤𝑛𝑛 (�́�𝑜)]2 has exactly �́�𝑜 − 1 , negative values in both the numerator and denominator, 
namely {𝛾𝛾�́�𝑜 − 𝛽𝛽𝑜𝑜̈ }𝑜𝑜̀̀ =1

�́�𝑜−1  and  {𝛾𝛾�́�𝑜 − 𝛾𝛾𝑜𝑜̈ }�́́�𝑜=1
�́�𝑜−1respectively . 

Having shown that the 𝑣𝑣𝑛𝑛 and 𝑤𝑤𝑛𝑛 of Step B.3 are well-defined, we now take 𝑓𝑓𝑛𝑛+1  and 
𝛼𝛼𝑛𝑛+1as defined in Steps B.4 and B.5. Recall that what remains to be shown in this 
direction of the proof is that 𝛼𝛼𝑛𝑛+1is a unitary matrix and that 𝐹𝐹𝑛𝑛+1 =  𝑓𝑓�́�𝑛 }�́�𝑛=1

𝑛𝑛+1 satisfies 
𝐹𝐹𝑛𝑛+1𝐹𝐹𝑛𝑛+1

∗ 𝛼𝛼𝑛𝑛+1 = 𝛼𝛼𝑛𝑛+1𝐷𝐷𝑛𝑛+1. To do so, consider the definition of 𝛼𝛼𝑛𝑛+1and recall that 𝛼𝛼𝑛𝑛  is 
unitary by the inductive hypothesis, 𝑉𝑉𝑛𝑛   is  unitary by construction, and that the 
permutation matrices ∏ 𝑅𝑅𝑛𝑛𝑑𝑑𝐼𝐼𝑛𝑛

  ∏ 𝑅𝑅𝑜𝑜𝑒𝑒 𝒯𝒯𝑛𝑛  orthogonal, that is, unitary and real. As such, to 
show that 𝛼𝛼𝑛𝑛+1 is unitary, it suffices to show that the 𝑅𝑅𝑛𝑛  × 𝑅𝑅𝑛𝑛  real matrix 𝑊𝑊𝑛𝑛  is 
orthogonal. To do this, recall that eigenvectors corresponding  to distinct eigenvalues of 
selfadjoint operators are necessarily orthogonal. As such, to show that 𝑊𝑊𝑛𝑛  is orthogonal, 
it suffices to show that the columns of 𝑊𝑊𝑛𝑛 are eigenvectors of a real symmetric operator. 
To this end, we claim 
�𝐷𝐷𝑛𝑛 ;𝐼𝐼𝑛𝑛 + 𝑣𝑣𝑛𝑛 𝑣𝑣𝑛𝑛

𝑇𝑇�𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛 𝐷𝐷𝑛𝑛+1;𝒯𝒯𝑛𝑛 ,𝑊𝑊𝑛𝑛
𝑇𝑇𝑊𝑊𝑛𝑛 (𝑜𝑜, 𝑜𝑜) = 1, ∀𝑜𝑜 = 1, … , 𝑅𝑅𝑛𝑛 ,        (62) 

                                                                                        
where 𝐷𝐷𝑛𝑛;𝐼𝐼𝑛𝑛   and  𝐷𝐷𝑛𝑛+1;𝐼𝐼𝑛𝑛 are the 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛   diagonal matrices whose rth diagonal entries 
are given by 𝛽𝛽𝑜𝑜 = 𝜆𝜆𝑛𝑛 ;𝜋𝜋𝐼𝐼𝑛𝑛

−1(𝑜𝑜) and𝛾𝛾𝑜𝑜 = 𝜆𝜆𝑛𝑛+1;𝜋𝜋𝒯𝒯𝑛𝑛
−1(𝑜𝑜) respectively. To prove (62), note that for 

any , �́�𝑜 = 1, … , 𝑅𝑅𝑛𝑛  , 
  ��𝐷𝐷𝑛𝑛;𝐼𝐼𝑛𝑛 + 𝑣𝑣𝑛𝑛 𝑣𝑣𝑛𝑛

𝑇𝑇�𝑊𝑊𝑛𝑛 �(𝑜𝑜, �́�𝑜) = �𝐷𝐷𝑛𝑛 ;I𝑛𝑛 𝑊𝑊𝑛𝑛 �(𝑜𝑜, �́�𝑜) + (𝑣𝑣𝑛𝑛 𝑣𝑣𝑛𝑛
𝑇𝑇𝑊𝑊𝑛𝑛 )(𝑜𝑜, �́�𝑜)𝛽𝛽𝑜𝑜 𝑊𝑊𝑛𝑛 (𝑜𝑜, �̀�𝑜) + 

𝑣𝑣𝑛𝑛 (𝑜𝑜) ∑ 𝑣𝑣𝑛𝑛
𝑅𝑅𝑛𝑛
�́́�𝑜 ��́́�𝑜�𝑊𝑊𝑛𝑛 ��́�𝑜,́ �́�𝑜�                                                                       (63) 

Rewriting the definition of 𝑊𝑊𝑛𝑛 from Step B.5 in terms of {𝛽𝛽𝑜𝑜 }𝑜𝑜=1
𝑅𝑅𝑛𝑛  and {𝛾𝛾𝑜𝑜 }𝑜𝑜=1

𝑅𝑅𝑛𝑛  gives 

                        𝑊𝑊𝑛𝑛 (𝑜𝑜, �́�𝑜) = 𝑣𝑣𝑛𝑛 (𝑜𝑜)𝑊𝑊𝑛𝑛 (�́�𝑜)
𝛾𝛾�́�𝑜 −𝛽𝛽𝑜𝑜

.                                                      (64) 
Substituting (64) into (63) gives 

      ��𝐷𝐷𝑛𝑛 ;𝐼𝐼𝑛𝑛 + 𝑣𝑣𝑛𝑛 𝑣𝑣𝑛𝑛
𝑇𝑇�𝑊𝑊𝑛𝑛 �(�́�𝑜, 𝑜𝑜) = 𝛽𝛽𝑜𝑜

𝑣𝑣𝑛𝑛 (𝑜𝑜)𝑤𝑤𝑛𝑛 (�́�𝑜)
𝛾𝛾�́�𝑜 −𝛽𝛽𝑜𝑜

+ 𝑣𝑣𝑛𝑛 (𝑜𝑜) ∑ 𝑣𝑣𝑛𝑛 ��́́�𝑜�𝑅𝑅𝑛𝑛
�́́�𝑜=1

𝑣𝑣𝑛𝑛 ��́́�𝑜�𝑤𝑤𝑛𝑛

𝛾𝛾�́�𝑜 −𝛽𝛽�́́�𝑜
 

= 𝑣𝑣𝑛𝑛 (𝑜𝑜)𝑤𝑤𝑛𝑛 (�́�𝑜) � 𝛽𝛽𝑜𝑜
𝛾𝛾�́�𝑜 −𝛽𝛽𝑜𝑜

+ ∑ �𝑣𝑣𝑛𝑛 ��́́�𝑜��
2

𝛾𝛾�́�𝑜 −𝛽𝛽�́́�𝑜

𝑅𝑅𝑛𝑛
�́́�𝑜=1 �.                                                    (65) 

Simplifying (65) requires a polynomial identity. Note that the difference ∏ (𝑥𝑥 −𝑅𝑅𝑛𝑛
�́́�𝑜=1

𝛾𝛾�́́�𝑜 ) − ∏ (𝑥𝑥 − 𝛽𝛽�́́�𝑜 )𝑅𝑅𝑛𝑛
�́́�𝑜=1   of two monic polynomials is itself a polynomial of degree at most 

𝑅𝑅𝑛𝑛 −  1, and as such it can be written as the Lagrange interpolating polynomial 
determined by the 𝑅𝑅𝑛𝑛 distinct points {𝛽𝛽𝑜𝑜 }𝑜𝑜=1

𝑅𝑅𝑛𝑛 :  
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�(𝑥𝑥 − 𝛾𝛾�́́�𝑜 ) − �(𝑥𝑥 − 𝛽𝛽�́́�𝑜 ) = � ���𝛽𝛽�́́�𝑜−𝛾𝛾𝑜𝑜 � − 0

𝑅𝑅𝑛𝑛

𝑜𝑜=1

�

𝑅𝑅𝑛𝑛

�́́�𝑜=1

𝑅𝑅𝑛𝑛

�́́�𝑜=1

𝑅𝑅𝑛𝑛

�́́�𝑜=1

�
(𝑥𝑥 − 𝛽𝛽𝑜𝑜 )
(𝛽𝛽�́́�𝑜−𝛽𝛽𝑜𝑜 )

𝑅𝑅𝑛𝑛

𝑜𝑜=1
𝑜𝑜≠�́́�𝑜

 

= �
∏ (𝛽𝛽�́́�𝑜 − 𝛾𝛾𝑜𝑜 )𝑅𝑅𝑛𝑛

𝑜𝑜=1

∏  𝑅𝑅𝑛𝑛
𝑜𝑜=1
𝑜𝑜≠�́́�𝑜

𝑅𝑅𝑛𝑛

�́́�𝑜=1

�(𝑥𝑥 − 𝛽𝛽𝑜𝑜 )
𝑅𝑅𝑛𝑛

𝑜𝑜=1
𝑜𝑜≠�́́�𝑜

,     (66) 

Recalling the expression for [𝑣𝑣𝑛𝑛 (𝑜𝑜)]2given in (61), (66) can be rewritten as  

�(𝑥𝑥 − 𝛽𝛽�́́�𝑜 ) − �(𝑥𝑥 − 𝛾𝛾�́́�𝑜 ) = ��𝑣𝑣𝑛𝑛 ��́́�𝑜��2
�(𝑥𝑥 − 𝛽𝛽𝑜𝑜 ),

𝑅𝑅𝑛𝑛

𝑜𝑜=1
𝑜𝑜≠�́́�𝑜

𝑅𝑅𝑛𝑛

𝑜𝑜=1

𝑅𝑅𝑛𝑛

�́́�𝑜=1

𝑅𝑅𝑛𝑛

�́́�𝑜=1

   (67) 

Dividing both sides of (67) by∏ (𝑥𝑥 − 𝛽𝛽�́́�𝑜 )𝑅𝑅𝑛𝑛
�́́�𝑜=1  gives 

1 − �
(𝑥𝑥 − 𝛾𝛾�́́�𝑜 )
(𝑥𝑥 − 𝛽𝛽�́́�𝑜 )

𝑅𝑅𝑛𝑛

𝑜𝑜=1
𝑜𝑜≠�́́�𝑜

= �
�𝑣𝑣𝑛𝑛 ��́́�𝑜��2

(𝑥𝑥 − 𝛽𝛽�́́�𝑜 )

𝑅𝑅𝑛𝑛

�́́�𝑜=1

, ∀𝑥𝑥 ∉ {𝛽𝛽𝑜𝑜 }𝑜𝑜=1
𝑅𝑅𝑛𝑛 (68) 

For any �́�𝑜 =  1, . . . , 𝑅𝑅𝑛𝑛 , letting 𝑥𝑥 = 𝛾𝛾�́�𝑜  in (68) makes the left-hand product vanish, 
yielding the identity: 

1 = ∑ �𝑣𝑣𝑛𝑛 ��́́�𝑜��
2

�𝛾𝛾�́́�𝑜 −𝛽𝛽�́́�𝑜 �
𝑅𝑅𝑛𝑛
�́́�𝑜=1 , ∀�́�𝑜 = 1, … , 𝑅𝑅𝑛𝑛                     (69) 

Substituting (69) into (65) and then recalling (64) gives 
      ��𝐷𝐷𝑛𝑛;𝐼𝐼𝑛𝑛 + 𝑣𝑣𝑛𝑛 𝑣𝑣𝑛𝑛

𝑇𝑇�𝑊𝑊𝑛𝑛 �(�́�𝑜, 𝑜𝑜) = 𝑣𝑣𝑛𝑛 (𝑜𝑜)𝑤𝑤𝑛𝑛 (�́�𝑜) � 𝛽𝛽𝑜𝑜
𝛾𝛾�́�𝑜 −𝛽𝛽𝑜𝑜

+ 1� = 𝛾𝛾�́�𝑜
𝑣𝑣𝑛𝑛 (𝑜𝑜)𝑤𝑤𝑛𝑛 (�́�𝑜)

𝛾𝛾�́�𝑜 −𝛽𝛽𝑜𝑜
= 𝛾𝛾�́�𝑜 𝑤𝑤𝑛𝑛 (𝑜𝑜, �́�𝑜) =

�𝑤𝑤𝑛𝑛 𝐷𝐷𝑛𝑛+1;𝒯𝒯𝑛𝑛 ,�(𝑜𝑜, �́�𝑜)                                                             (70) 
As (70) holds for all 𝑜𝑜, �́�𝑜 =  1, . . . , 𝑅𝑅𝑛𝑛 we have the first half of our claim (62). In particular, 
we know that the columns of 𝑊𝑊𝑛𝑛  are eigenvectors of the real symmetric operator 𝐷𝐷𝑛𝑛 ;𝐼𝐼𝑛𝑛 +
𝑣𝑣𝑛𝑛 𝑣𝑣𝑛𝑛

𝑇𝑇 which correspond to the distinct eigenvalues {𝛾𝛾𝑜𝑜 }𝑜𝑜=1
𝑅𝑅𝑛𝑛 . 

As such, the columns of 𝑊𝑊𝑛𝑛  are orthogonal. To show that 𝑊𝑊𝑛𝑛  is an orthogonal matrix, we 
must further show that the columns of 𝑊𝑊𝑛𝑛  have unit norm, namely the second half of 
(62). To prove this, at any 𝑥𝑥 ∉ {𝛽𝛽𝑜𝑜 }𝑜𝑜=1

𝑅𝑅𝑛𝑛  we differentiate both sides of (68) with respect to 
𝑥𝑥 to obtain 

∑ �∏ (𝑥𝑥−𝛾𝛾𝑜𝑜 )
(𝑥𝑥−𝛽𝛽𝑜𝑜 )

𝑅𝑅𝑛𝑛
𝑜𝑜=1
𝑜𝑜≠�́́�𝑜

� �𝛾𝛾�́́�𝑜 −𝛽𝛽�́́�𝑜 �
�𝑥𝑥−𝛽𝛽�́́�𝑜 �

𝑅𝑅𝑛𝑛
�́́�𝑜=1 = ∑ �𝑣𝑣𝑛𝑛 ��́́�𝑜��

2

�𝑥𝑥−𝛽𝛽�́́�𝑜 �
𝑅𝑅𝑛𝑛
�́́�𝑜=1       ∀𝑥𝑥 ∉ {𝛽𝛽𝑜𝑜 }𝑜𝑜=1

𝑅𝑅𝑛𝑛            (71) 

For any �́�𝑜 =  1, . . . , 𝑅𝑅𝑛𝑛 , letting 𝑥𝑥 = 𝛾𝛾�́�𝑜  in (71) makes the left-hand summands where �́́�𝑜 ≠ �́�𝑜 
vanish; by (71), the remaining summand where �́́�𝑜 ≠ �́�𝑜can be written as: 

1
𝑤𝑤𝑛𝑛  (�́�𝑜)

=
∏ (𝛾𝛾�́�𝑜 −𝛾𝛾𝑜𝑜 )𝑅𝑅𝑛𝑛

𝑜𝑜=1
𝑜𝑜≠�́́�𝑜

∏ (𝛾𝛾�́�𝑜 −𝛽𝛽𝑜𝑜 )𝑅𝑅𝑛𝑛
𝑜𝑜=1
𝑜𝑜≠�́́�𝑜

= [∏ (𝛾𝛾�́�𝑜 −𝛾𝛾𝑜𝑜 )
(𝛾𝛾�́�𝑜 −𝛽𝛽𝑜𝑜 )

] (𝛾𝛾�́�𝑜 −𝛽𝛽𝑜𝑜 )
(𝛾𝛾�́�𝑜 −𝛽𝛽𝑜𝑜 )

= ∑ �𝑣𝑣𝑛𝑛 ��́́�𝑜��
2

�𝛾𝛾�́�𝑜 −𝛽𝛽�́́�𝑜 �
2

𝑅𝑅𝑛𝑛
�́́�𝑜=1

𝑅𝑅𝑛𝑛
𝑜𝑜=1
𝑜𝑜≠�́́�𝑜

.                         (72) 

       
We now use this identity to show that the columns of 𝑤𝑤𝑛𝑛 have unit norm; for any �́�𝑜 =
 1, . . . , 𝑅𝑅𝑛𝑛 , (64) and (72) give 
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(𝑊𝑊𝑛𝑛
𝑇𝑇𝑊𝑊𝑛𝑛 )(�́�𝑜, �́�𝑜) = ��𝑊𝑊𝑛𝑛 ��́́�𝑜, �́�𝑜��

2
= � �

𝑣𝑣𝑛𝑛 ��́́�𝑜�𝑤𝑤𝑛𝑛 (�́�𝑜)
𝛾𝛾�́�𝑜 − 𝛽𝛽�́́�𝑜

� = [𝑤𝑤𝑛𝑛 (�́�𝑜)]2 1
[𝑤𝑤𝑛𝑛 (�́�𝑜)]2

𝑅𝑅𝑛𝑛

�́́�𝑜=1

𝑅𝑅𝑛𝑛

�́́�𝑜=1

= 1. 

Having shown that 𝑤𝑤𝑛𝑛 is orthogonal, we have that 𝛼𝛼𝑛𝑛+1 is unitary. 
For this direction of the proof, all that remains to be shown is that 𝐹𝐹𝑛𝑛+1 + 𝐹𝐹𝑛𝑛+1

∗ 𝛼𝛼𝑛𝑛+1 =
𝛼𝛼𝑛𝑛+1𝐷𝐷𝑛𝑛+1. To do this, we write 
𝐹𝐹𝑛𝑛+1 + 𝐹𝐹𝑛𝑛+1

∗ = 𝐹𝐹𝑛𝑛 + 𝐹𝐹𝑛𝑛
∗ + 𝑓𝑓𝑛𝑛+1𝑓𝑓𝑛𝑛+1

∗  and recall the definition of 𝛼𝛼𝑛𝑛+1: 

𝐹𝐹𝑛𝑛+1 + 𝐹𝐹𝑛𝑛+1
∗ 𝛼𝛼𝑛𝑛+1 = (𝐹𝐹𝑛𝑛 + 𝐹𝐹𝑛𝑛

∗ +  𝑓𝑓𝑛𝑛+1𝑓𝑓𝑛𝑛+1
∗ )𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛 � �𝑤𝑤𝑛𝑛    0

0      1�
𝑇𝑇

𝐼𝐼𝑛𝑛
� =

𝒯𝒯𝑛𝑛

 

𝐹𝐹𝑛𝑛 + 𝐹𝐹𝑛𝑛
∗𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛 ∏ �𝑤𝑤𝑛𝑛    0

0      1�𝑇𝑇
𝐼𝐼𝑛𝑛 ∏ = +𝑓𝑓𝑛𝑛+1𝑓𝑓𝑛𝑛+1

∗
𝒯𝒯𝑛𝑛

𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛 ∏ �𝑤𝑤𝑛𝑛    0
0      1� ∏ .𝒯𝒯𝑛𝑛

𝑇𝑇
𝐼𝐼𝑛𝑛   (73) 

To simplify the first term in (73), recall that the inductive hypothesis gives 𝐹𝐹𝑛𝑛 + 𝐹𝐹𝑛𝑛
∗𝛼𝛼𝑛𝑛 =

𝛼𝛼𝑛𝑛 𝐷𝐷𝑛𝑛   and that 𝑉𝑉𝑛𝑛  was constructed to satisfy 𝐷𝐷𝑛𝑛 𝑉𝑉𝑛𝑛 = 𝑉𝑉𝑛𝑛 𝐷𝐷𝑛𝑛 , implying 
  𝐹𝐹𝑛𝑛 + 𝐹𝐹𝑛𝑛

∗𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛 ∏ �𝑤𝑤𝑛𝑛    0
0      1� ∏ = 𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛𝒯𝒯𝑛𝑛

𝑇𝑇
𝐼𝐼𝑛𝑛 𝐷𝐷𝑛𝑛 ∏ �𝑤𝑤𝑛𝑛    0

0      1� ∏ = 𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛 ∏ (∏ 𝐷𝐷𝑛𝑛 ∏ )𝑇𝑇
𝐼𝐼𝑛𝑛

𝑇𝑇
𝐼𝐼𝑛𝑛

𝑇𝑇
𝐼𝐼𝑛𝑛𝒯𝒯𝑛𝑛  𝑇𝑇

𝐼𝐼𝑛𝑛
  

�𝑤𝑤𝑛𝑛    0
0      1� ∏ .𝒯𝒯𝑛𝑛                                                                                              (74) 

To continue simplifying (74), note that ∏ 𝐷𝐷𝑛𝑛 ∏ 𝑖𝑖𝑠𝑠𝑇𝑇
𝐼𝐼𝑛𝑛

𝑇𝑇
𝐼𝐼𝑛𝑛  itself a diagonal matrix: for any 

𝑚𝑚, �́�𝑚 =  1, . . . , 𝑀𝑀, the definition of the permutation matrix∏ given 𝑇𝑇
𝐼𝐼𝑛𝑛 in Step B.2 gives 

� 𝐷𝐷𝑛𝑛 � (𝑚𝑚, �́�𝑚)
𝑇𝑇

𝐼𝐼𝑛𝑛

𝑇𝑇

𝐼𝐼𝑛𝑛
=  〈𝐷𝐷𝑛𝑛 � 𝛿𝛿�́�𝑚 � 𝛿𝛿𝑚𝑚

𝑇𝑇

𝐼𝐼𝑛𝑛

𝑇𝑇

𝐼𝐼𝑛𝑛
〉 = 𝐷𝐷𝑛𝑛 δπIn (m )

−1 = �
λn;πIn (m )

−1   m=ḿ

0      m ≠ m.́       
� 

That is, ∏ 𝐷𝐷𝑛𝑛 ∏ 𝑖𝑖𝑠𝑠𝑇𝑇
𝐼𝐼𝑛𝑛

𝑇𝑇
𝐼𝐼𝑛𝑛  the diagonal matrix whose first 𝑅𝑅𝑛𝑛  diagonal entries {𝛽𝛽𝑜𝑜 }𝑜𝑜=1

𝑅𝑅𝑛𝑛 =
{λn;πIn (m )

−1 (𝑜𝑜)}𝑜𝑜=1
𝑅𝑅𝑛𝑛 match those of the aforementioned 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 diagonal matrix ∏ ,𝑇𝑇

𝐼𝐼𝑛𝑛  and 
whose remaining 𝑀𝑀 − 𝑅𝑅𝑛𝑛  diagonal entries {λn;πIn (m )

−1  }m=Rn +1
M  the diagonal of an (𝑀𝑀 −

𝑅𝑅𝑛𝑛 ) × (𝑀𝑀 − 𝑅𝑅𝑛𝑛 ) diagonal matrix ∏ ,𝑇𝑇
𝐼𝐼𝑛𝑛  

                                  ∏ 𝐷𝐷𝑛𝑛𝐼𝐼𝑛𝑛
∏ = �

𝐷𝐷𝑛𝑛;𝐼𝐼𝑛𝑛    0
0      𝐷𝐷𝑛𝑛;𝐼𝐼𝑛𝑛

� 𝑇𝑇
𝐼𝐼𝑛𝑛                                      (75) 

Substituting(75)into(74)   

𝐹𝐹𝑛𝑛 + 𝐹𝐹𝑛𝑛
∗𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛 ∏ �𝑤𝑤𝑛𝑛    0

0      1� ∏ = 𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛𝒯𝒯𝑛𝑛
𝑇𝑇
𝐼𝐼𝑛𝑛 ∏ �

𝐷𝐷𝑛𝑛 ;𝐼𝐼𝑛𝑛    0
0      𝐷𝐷𝑛𝑛 ;𝐼𝐼𝑛𝑛

� �𝑤𝑤𝑛𝑛    0
0      1� ∏ =𝒯𝒯𝑛𝑛

𝑇𝑇
𝐼𝐼𝑛𝑛

𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛 ∏ �
𝐷𝐷𝑛𝑛 ;𝐼𝐼𝑛𝑛 𝑤𝑤𝑛𝑛    0
0      𝐷𝐷𝑛𝑛 ;𝐼𝐼𝑛𝑛

�𝑇𝑇
𝐼𝐼𝑛𝑛 ∏ ,                                                (76) 𝒯𝒯𝑛𝑛   

Meanwhile, to simplify the second term in (73), we recall the definition of 𝑓𝑓𝑛𝑛+1from Step 
B.4: 

𝑓𝑓𝑛𝑛+1𝑓𝑓
𝑛𝑛+1𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛 ∏ �𝑤𝑤𝑛𝑛    0

0      1 � ∏ =𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛 ∏ �
𝑣𝑣𝑛𝑛
0 ��𝑣𝑣𝑛𝑛

𝑇𝑇    0��𝑤𝑤𝑛𝑛    0
0      1 � ∏ =𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛   𝒯𝒯𝑛𝑛 ∏ �

𝐷𝐷𝑛𝑛 ;𝐼𝐼𝑛𝑛    0
0      𝐷𝐷𝑛𝑛 ;𝐼𝐼𝑛𝑛

� ∏ ,    𝒯𝒯𝑛𝑛  𝑇𝑇
𝐼𝐼𝑛𝑛

𝑇𝑇
𝐼𝐼𝑛𝑛𝒯𝒯𝑛𝑛

𝑇𝑇
𝐼𝐼𝑛𝑛

∗   (77) 

Substituting (76) and (77) into (73), simplifying the result, and recalling (62) gives 

𝐹𝐹𝑛𝑛+1 + 𝐹𝐹𝑛𝑛+1
∗ 𝛼𝛼𝑛𝑛+1 �

𝐷𝐷𝑛𝑛 ;𝐼𝐼𝑛𝑛    0
0      𝐷𝐷𝑛𝑛;𝐼𝐼𝑛𝑛

𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛 � �
𝐷𝐷𝑛𝑛;𝐼𝐼𝑛𝑛 𝑤𝑤𝑛𝑛    0
0      𝐷𝐷𝑛𝑛;𝐼𝐼𝑛𝑛

� � ,    
𝒯𝒯𝑛𝑛

𝑇𝑇

𝐼𝐼𝑛𝑛
�. 

By introducing an extra permutation matrix and its inverse and recalling the definition of 
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𝛼𝛼𝑛𝑛+1, this simplifies to  

𝐹𝐹𝑛𝑛+1 + 𝐹𝐹𝑛𝑛+1
∗ 𝛼𝛼𝑛𝑛+1[𝑣𝑣𝑛𝑛

𝑇𝑇    0] �𝑤𝑤𝑛𝑛    0
0      1 ∏ = 𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛   𝒯𝒯𝑛𝑛

∏ �
𝐷𝐷𝑛𝑛;𝐼𝐼𝑛𝑛    0

0      𝐷𝐷𝑛𝑛;𝐼𝐼𝑛𝑛
� ∏ ,    𝒯𝒯𝑛𝑛

 𝑇𝑇
𝐼𝐼𝑛𝑛 �   (78) 

We now partition the {𝜆𝜆𝑛𝑛+1;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀    of  𝐷𝐷𝑛𝑛+1 into 𝒯𝒯𝑛𝑛 and 𝒯𝒯𝑛𝑛

𝑐𝑐
   and mimic the derivation 

(75), writing 𝐷𝐷𝑛𝑛+1in terms of 𝐷𝐷𝑛𝑛+1; 𝒯𝒯𝑛𝑛 and 𝐷𝐷𝑛𝑛+1; 𝒯𝒯𝑛𝑛
𝑐𝑐 . Note here that by the manner in 

which 𝐼𝐼𝑛𝑛  and 𝒯𝒯𝑛𝑛 were constructed, the values of {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚∈𝐼𝐼𝑛𝑛
𝑐𝑐  are equal to those of 

{𝜆𝜆𝑛𝑛+1;𝑚𝑚 }𝒯𝒯𝑛𝑛
𝑐𝑐 , as the two sets represent exactly those values which are common to both  

{𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1a
𝑀𝑀 𝑅𝑅𝑛𝑛𝑑𝑑{𝜆𝜆𝑛𝑛+1;𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 . As these two sequences are also both in nonincreasing 
order, we have 𝐷𝐷𝑛𝑛 ;𝐼𝐼𝑛𝑛

𝑐𝑐 = 𝐷𝐷𝑛𝑛+1;𝒯𝒯𝑛𝑛
𝑐𝑐  and so 

   ∏ 𝐷𝐷𝑛𝑛+1 ∏ = �
𝐷𝐷𝑛𝑛+1𝒯𝒯𝑛𝑛             0
0             𝐷𝐷𝑛𝑛+1𝒯𝒯𝑛𝑛

𝑐𝑐 �𝑇𝑇
𝒯𝒯𝑛𝑛𝒯𝒯𝑛𝑛 = �

𝐷𝐷𝑛𝑛+1𝒯𝒯𝑛𝑛             0
0             𝐷𝐷𝑛𝑛+1𝒯𝒯𝑛𝑛

𝑐𝑐 �.                   (79) 

Substituting (79) into (78) yields 𝐹𝐹𝑛𝑛+1 + 𝐹𝐹𝑛𝑛+1
∗ 𝛼𝛼𝑛𝑛+1 = 𝛼𝛼𝑛𝑛+1𝐷𝐷𝑛𝑛+1, completing this 

direction of the proof. 
(⇒) Let {𝜆𝜆𝑚𝑚 }𝑚𝑚 =1

𝑀𝑀 𝑅𝑅𝑛𝑛𝑑𝑑{µ𝑛𝑛 }𝑛𝑛=1
𝑁𝑁 be any nonnegative nonincreasing sequences, and let 

𝐹𝐹 = { 𝑓𝑓𝑛𝑛 }𝑛𝑛=1
𝑁𝑁  be any sequence of vectors whose frame operator  𝐹𝐹𝐹𝐹∗ℎ𝑅𝑅𝑠𝑠 {𝜆𝜆𝑚𝑚 }𝑚𝑚 =1

𝑀𝑀   as its 
spectrum and has  ‖𝑓𝑓𝑛𝑛 ‖2 = µ𝑛𝑛 for all 𝑛𝑛 = 1, . . . , 𝑁𝑁. We will show that this 𝐹𝐹 can be 
constructed by following Step A and Step B of this result. To see this, for any 𝑛𝑛 =
1, . . . , 𝑁𝑁, let 𝐹𝐹𝑛𝑛 = { 𝑓𝑓�́�𝑛 }�́�𝑛=1

𝑛𝑛  and let {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 be the spectrum of the corresponding frame 

operator 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛
∗. Letting 𝜆𝜆0;𝑚𝑚 : =  0 for all m, the proof of Theorem(5.3.2) demonstrated that 

the sequence of spectra {{𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀 }𝑛𝑛=0

𝑁𝑁  necessarily forms a sequence of eigensteps as 
specified by Definition (5.3.1). This particular set of eigensteps is the one we choose in 
Step A. 
To be precise, let 𝛼𝛼1be any one of the infinite number of unitary matrices whose first 
column  𝑢𝑢1:1satisfies 𝑓𝑓1 = √𝑢𝑢1𝑢𝑢1:1 
We now proceed by induction, assuming that for any given 𝑛𝑛 = 1, . . . , 𝑁𝑁 − 1, we have 
followed. Step B and have made appropriate choices for {𝑉𝑉�́�𝑛 }�́�𝑛=1

𝑛𝑛−1 so as to correctly 
produce 𝐹𝐹𝑛𝑛 = { 𝑓𝑓�́�𝑛 }�́�𝑛=1

𝑛𝑛 ; we show how the appropriate choice of 𝑉𝑉𝑛𝑛  will correctly produce 
𝑓𝑓𝑛𝑛+1. To do so, we again write the nth spectrum {𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1

𝑀𝑀  in terms of its multiplicities 

as {𝜆𝜆𝑛𝑛 ;𝑚𝑚(𝑘𝑘 ,𝑙𝑙)}𝑘𝑘=1   𝑙𝑙=1
𝑘𝑘𝑛𝑛        𝐿𝐿𝑛𝑛 ,𝑘𝑘  . For any 𝑘𝑘 = 1, . . . , 𝐾𝐾𝑛𝑛 , Step B of Theorem (5.3.2) gives that the 

norm of the projection of 𝑓𝑓𝑛𝑛+1 onto the kth eigenspace of 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛
∗ is necessarily given by  

      �𝑃𝑃𝑛𝑛 ;𝜆𝜆𝑛𝑛 ;𝑚𝑚 (𝑘𝑘 ,1)𝑓𝑓𝑛𝑛+1�
2

= − lim𝑥𝑥→𝜆𝜆𝑛𝑛 ;𝑚𝑚 (𝑘𝑘 ,1)�𝑥𝑥 − 𝜆𝜆𝑛𝑛 ;𝑚𝑚 (𝑘𝑘 ,1)� 𝑃𝑃𝑛𝑛 +1(𝑥𝑥)
𝑃𝑃𝑛𝑛 (𝑥𝑥)

,      (80) 
where  𝑃𝑃𝑛𝑛 (𝑥𝑥)and 𝑃𝑃𝑛𝑛+1(𝑥𝑥)are defined by(69).Note that by picking 𝑙𝑙 =
1, 𝜆𝜆𝑛𝑛 ;𝑚𝑚 (𝑘𝑘 ,𝑙𝑙)represents the first appearance of that particular value in  {{𝜆𝜆𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1

𝑀𝑀  . As such, 
these indices are the only ones that are eligible to be members of the set  𝐼𝐼𝑛𝑛 found in Step 
B.2. That is, 𝐼𝐼𝑛𝑛 ⊆  {𝑚𝑚(𝑘𝑘, 1) ∶  𝑘𝑘 =  1, . . . , 𝐾𝐾𝑛𝑛 }. However, these two sets of indices are not 
necessarily equal, since 𝐼𝐼𝑚𝑚  only contains 𝑚𝑚’𝑠𝑠 of the form 𝑚𝑚(𝑘𝑘, 1) that satisfy the 
additional property that the multiplicity of 𝜆𝜆𝑛𝑛 ;𝑚𝑚  as a value in {𝜆𝜆𝑛𝑛 ;�́�𝑚 }�́�𝑚=1

𝑀𝑀  exceeds its 
multiplicity as a value in {𝜆𝜆𝑛𝑛+1;𝑚𝑚 }𝑚𝑚=1

𝑀𝑀 . To be precise, for any given 
𝑘𝑘 = 1, . . . , 𝐾𝐾𝑛𝑛 , 𝑖𝑖𝑓𝑓  𝑚𝑚(𝑘𝑘, 1) ∈ 𝐼𝐼𝑛𝑛

𝑐𝑐  then 𝜆𝜆𝑛𝑛 ;𝑚𝑚(𝑘𝑘 ,1) appears as a root of 𝑝𝑝𝑛𝑛+1(𝑥𝑥) at least as 
many times as it appears as a root of 𝑝𝑝𝑛𝑛 (𝑥𝑥), meaning in this case that the limit in (80) is 
necessarily zero. If, on the other hand, 𝑚𝑚(𝑘𝑘, 1) ∈  𝐼𝐼𝑛𝑛 , then writing 𝜋𝜋𝐼𝐼𝑛𝑛

(𝑚𝑚(𝑘𝑘, 1)) as some 



- 138 - 
 

𝑜𝑜 ∈ {1, . . . , 𝑅𝑅𝑛𝑛 } and recalling the definitions of 𝑏𝑏(𝑥𝑥) and 𝑐𝑐(𝑥𝑥) in (69) and 𝑣𝑣(𝑜𝑜) in (71), we 
can rewrite (80) as 

   �𝑃𝑃𝑛𝑛 ;𝛽𝛽𝑜𝑜 𝑓𝑓𝑛𝑛+1�2
= lim𝑥𝑥→𝛽𝛽𝑜𝑜

(𝑥𝑥 − 𝛽𝛽𝑜𝑜 ) 𝑃𝑃𝑛𝑛 +1(𝑥𝑥)
𝑃𝑃𝑛𝑛 (𝑥𝑥)

= − lim𝑥𝑥→𝛽𝛽𝑜𝑜
(𝑥𝑥 − 𝛽𝛽𝑜𝑜 ) 𝑐𝑐(𝑥𝑥)

𝑏𝑏(𝑥𝑥)
= −

∏ �𝛽𝛽𝑜𝑜 −𝛾𝛾�́́�𝑜 �𝑅𝑅𝑛𝑛
�́́�𝑜=1

∏ �𝛽𝛽𝑜𝑜 −𝛽𝛽�́́�𝑜 �𝑅𝑅
�́́�𝑜=1
�́́�𝑜≠𝑜𝑜

=

[𝑣𝑣𝑛𝑛 (𝑜𝑜)]2                                                                                         (81) 
As such, we can write 𝑓𝑓𝑛𝑛+1where each  
 𝑓𝑓𝑛𝑛+1 = ∑ 𝑃𝑃𝑛𝑛 ;𝜆𝜆𝑛𝑛 ;𝑚𝑚 (𝑘𝑘 ,1)

𝐾𝐾𝑛𝑛
𝑘𝑘=1 𝑓𝑓𝑛𝑛+1 = ∑ 𝑃𝑃𝑛𝑛 ;𝛽𝛽𝑜𝑜

𝑅𝑅𝑛𝑛
𝑜𝑜=1 𝑓𝑓𝑛𝑛+1 = ∑ 𝑣𝑣𝑛𝑛 (𝑜𝑜) 1

𝑣𝑣𝑛𝑛 (𝑜𝑜)
𝑃𝑃𝑛𝑛 ;𝛽𝛽𝑜𝑜

𝑅𝑅𝑛𝑛
𝑜𝑜=1 𝑓𝑓𝑛𝑛+1 =

∑ 𝑣𝑣𝑛𝑛 �𝜋𝜋𝐼𝐼𝑛𝑛 (𝑚𝑚)�𝑚𝑚∈𝐼𝐼𝑛𝑛
1

𝑣𝑣𝑛𝑛 �𝜋𝜋𝐼𝐼𝑛𝑛 (𝑚𝑚)�
𝑃𝑃𝑛𝑛 ;𝛽𝛽𝜋𝜋 𝐼𝐼𝑛𝑛 (𝑚𝑚 )𝑓𝑓𝑛𝑛+1                                  (82) 

1
𝑣𝑣𝑛𝑛 �𝜋𝜋𝐼𝐼𝑛𝑛 (𝑚𝑚)�

𝑃𝑃𝑛𝑛 ;𝛽𝛽𝜋𝜋 𝐼𝐼𝑛𝑛 (𝑚𝑚 )𝑓𝑓𝑛𝑛+1has unit norm by (81). We now pick a new orthonormal 

eigenbasis 𝛼𝛼�𝑛𝑛: = {𝑢𝑢�𝑛𝑛 ;𝑚𝑚 }𝑚𝑚=1
𝑀𝑀  for 𝐹𝐹𝑛𝑛 𝐹𝐹𝑛𝑛

∗ that has the property that for any 𝑘𝑘 = 1, . . . , 𝐾𝐾𝑛𝑛 , 
both {𝑢𝑢𝑛𝑛 ;𝑚𝑚(𝑘𝑘 ,𝑙𝑙)}𝑙𝑙=1

𝐿𝐿𝑛𝑛 :𝑘𝑘 𝑅𝑅𝑛𝑛𝑑𝑑{𝑢𝑢�𝑛𝑛 ;𝑚𝑚(𝑘𝑘 ,𝑙𝑙)}𝑙𝑙=1
𝐿𝐿𝑛𝑛 :𝑘𝑘  span the  same eigenspace and, for every 𝑚𝑚(𝑘𝑘, 1) ∈

 𝐼𝐼𝑛𝑛 , has the additional property that �́�𝑢𝑛𝑛 ;𝑚𝑚 (𝑘𝑘 ,1) = 1

𝑣𝑣𝑛𝑛 �𝜋𝜋𝐼𝐼𝑘𝑘 �𝑚𝑚(𝑘𝑘 ,1)��
𝑃𝑃𝑛𝑛 ;𝛽𝛽𝜋𝜋 𝐼𝐼𝑛𝑛 �𝑚𝑚 (𝑘𝑘 ,1)�

𝑓𝑓𝑛𝑛+1.As such 

becomes 
𝑓𝑓𝑛𝑛+1 ∑ 𝑣𝑣𝑛𝑛 �𝜋𝜋𝐼𝐼𝑛𝑛 (𝑚𝑚)��́�𝑢𝑛𝑛;𝑚𝑚 = 𝛼𝛼�𝑛𝑛𝑚𝑚∈𝐼𝐼𝑛𝑛 ∑ 𝑣𝑣𝑛𝑛 �𝜋𝜋𝐼𝐼𝑛𝑛 (𝑚𝑚)�𝛿𝛿𝑚𝑚 = 𝛼𝛼�𝑛𝑛 ∑ 𝑣𝑣𝑛𝑛 (𝑜𝑜)𝛿𝛿𝜋𝜋𝐼𝐼𝑛𝑛 (𝑜𝑜)

−1 =𝑚𝑚∈𝐼𝐼𝑛𝑛𝑚𝑚∈𝐼𝐼𝑛𝑛

𝛼𝛼𝑛𝑛𝐼𝐼𝑛𝑛𝑇𝑇𝑜𝑜=1𝑅𝑅𝑛𝑛𝑣𝑣𝑛𝑛𝑜𝑜𝛿𝛿𝑜𝑜=𝛼𝛼𝑛𝑛𝐼𝐼𝑛𝑛𝑇𝑇𝑣𝑣𝑛𝑛0.                                                 (83) 

Letting 𝑉𝑉𝑛𝑛be the unitary matrix 𝑉𝑉𝑛𝑛 = 𝛼𝛼𝑛𝑛
∗𝛼𝛼�𝑛𝑛 , the eigenspace spanning condition gives that 

𝑉𝑉𝑛𝑛  is block-diagonal whose kth diagonal block is of size 𝐿𝐿𝑛𝑛 ;𝑘𝑘 × 𝐿𝐿𝑛𝑛 ;𝑘𝑘 . Moreover, with this 
choice of 𝑉𝑉𝑛𝑛 ,(61) becomes 
   𝑓𝑓𝑛𝑛+1 = 𝛼𝛼𝑛𝑛 𝛼𝛼𝑛𝑛

∗𝛼𝛼�𝑛𝑛 ∏ �𝑣𝑣𝑛𝑛
0 �𝑇𝑇

𝐼𝐼𝑛𝑛 = 𝛼𝛼𝑛𝑛 𝑉𝑉𝑛𝑛 ∏ �𝑣𝑣𝑛𝑛
0 �𝑇𝑇

𝐼𝐼𝑛𝑛  
meaning that 𝑓𝑓𝑛𝑛+1 can indeed be constructed by following Step B. 
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Chapter 6 
Shift-Type and Quasianalytic with Compression of Contractions 

The norm estimates in the Factorization Theorem of this paper are sharpened to 
their best possible form by essential improvements in the proof. As a consequence we 
obtain that if the residual set of a contraction covers the whole unit circle then those 
invariant subspaces, where the restriction is similar to the unilateral shift with a similarity 
constant arbitrarily close to 1, span the whole space. Furthermore, the hyperinvariant 
subspace problem for asymptotically non-vanishing contractions is reduced to these 
special circumstances. 

In this setting the commutant {T}′ of T is identified with a quasianalytic 
subalgebra ℱ(T) of L∞ ( 𝕋𝕋)  containing 𝐻𝐻∞ . Conditions are given for the cases when ℱ(T) 
is a Douglas algebra, a pre-Douglas algebra, or a generalized Douglas algebra. 
In this chapter it is shown that for every operator T ∈  ℒ0(ℋ) there exists an operator T1 
∈ ℒ1(ℋ)   commuting with T . Thus, the hyperinvariant subspace problems for the two 
classes are equivalent. The operator T1  is found as an 𝐻𝐻∞ . Function of T .The existence 
of an appropriate function, compressing π(T ) to the whole circle, is proved using 
potential theoretic tools by constructing a suitable regular compact set on 𝕋𝕋 with 
absolutely continuous equilibrium measure.  
Section(6.1): Invariant Subspaces of Contractions 

One of the greatest achievements of the Sz.-Nagy–Foias theory of Hilbert space 
contractions is the functional model constructed in the completely non-unitary case. We 
use this model operator  to prove a factorization theorem for asymptotically non-
vanishing, absolutely continuous  contractions. Namely, it is shown that if the spectral-
multiplicity function of the unitary asymptote of the contraction T is at least n(∈ ℕ ∪
 {ℵ0}) on the Borel set γ ⊂ T, then the natural embedding: J f ↦ χγ  f of the Hardy space 
H2(𝔊𝔊n )over the n-dimensional Hilbert space 𝔊𝔊n  into the function space χγ  L2(𝔊𝔊n ) can 
be factored into the product J =  ZY, where Y intertwines the unilateral shift Sn  on 
H2(𝔊𝔊n ) with T , and Z intertwines T with the unitary operator Mn , γ of multiplication by 
the independent variable on χγ  L2(𝔊𝔊n ). Furthermore, the norms of the linear 
transformations Y and Z can be arbitrarily close to 1. This statement is sharpening of the 
main result in [14], where the norm conditions on Y and Z were weaker. This sharpening 
requires essential improvements in the proof given in [14]. 
In this  Section  we give a brief summary of the unitary asymptotes of contractions, with 
their representation in the functional model. The Factorization Theorem is formulated in 
this Section. The first step in its proof is the construction of a vector-sequence in the 
space 𝔎𝔎 of the minimal unitary dilation, which is pointwise orthonormal, and which is 
transformed by a canonical intertwinerto a sequence which is also pointwise orthonormal. 
This is carried out in this  Section  relying on the connection of the defect fields. The 
results of Section  make possible to approximate the previous vectors in 𝔎𝔎by vectors in 
the space 𝔎𝔎+ of the minimal isometric dilation. The proof of the Factorization Theorem is 
completed in  this Section . 
It turns out in the  Section  that the ranges of the possible intertwiners Y span the whole 
space ℌ of the contraction 𝑇𝑇  . In the particular case n = ℵ0 even the ranges of two 
intertwiners Y and Y� span ℌ. As a consequence we obtain that if the unitary asymptote of 
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T is of infinite spectralmultiplicity on the whole circle 𝕋𝕋, then we can find two invariant 
subspaces of T which span the whole space  ℌ ,and where the restrictions of T are similar 
to the infinite-dimensional unilateral shift; furthermore, the similarity constants can be 
chosen arbitrarily close to 1. Thus in this case we have a lot of information on the 
structure of  , in particular, T has plenty of invariant subspaces. It can be surprising that 
the hyperinvariant subspace problem for asymptotically non-vanishing contractions can 
be reduced to this particular situation, as shown in this Section . 
The Banach space of the bounded linear transformations from the Hilbert space 𝔄𝔄  to the 
Hilbert space 𝔅𝔅 will be denoted byℒ(𝔄𝔄, 𝔅𝔅). The C∗-algebra of bounded linear operators 
acting on 𝔄𝔄 is denoted by ℒ(𝔄𝔄) = ℒ(𝔄𝔄, 𝔄𝔄).  
Let T be a contraction acting on the Hilbert space ℌ (that is T ∈ ℒ(ℌ ) and ‖T‖ ≤ 1). For 
every x ∈ ℌ , the decreasing sequence {Tn x}n  is convergent. Hence, by the polar identity 
the sequence {〈Tn x, Tn y〉}n  is also convergent (x, y ∈ ℌ ). The functional wT (x, y) ∶=
limn 〈Tn x, Tn y〉  is linear in x, conjugate linear in y, and bounded by 1. Thus, there exists 
a unique operator AT  on ℌ  such that AT x, y =  wT (x, y) holds for all x, y ∈ ℌ  . Since 
wT (x, x) ≥  0 (x ∈ ℌ  ), it follows that 0 ≤  AT ≤  I . Furthermore, the relation 
wT (T x, T y) = wT(x, y) yields T∗AT T = AT  , whence �AT

1/2 T x� = �AT
1/2x�(x ∈ ℌ  ) 

follows. Introducing the transformation XT
+ ∶ ℌ   → 𝔎𝔎T

+ ∶=  (AT

1
2  ℌ  )−, x ↦  AT

1
2 x,   we 

obtain that there exists a unique isometry VTon the space 𝔎𝔎T
+ such that XT

+ T = VT XT
+. The 

isometry VT  is called the isometric asymptote of the contraction T . It is clear that the 
canonical intertwining transformation XT

+ has dense range. Let WT  denote the minimal 
unitary extension of VTacting on the Hilbert space  𝔎𝔎T  , determined uniquely up to 
isomorphism (see [19]). The operator WT is the unitary asymptote of the contraction  . 
The transformation XT ∶ ℌ   → 𝔎𝔎T , x ↦ XT

+x  intertwines T with WT ∶  XT T = WT XT . 
Furthermore, 

‖XTh‖2 = ‖XT
+h‖2 = �AT

1∕2h�
2

= 〈ATh, h〉 = lim
n

‖Tn h‖2 
is true, for every h ∈ ℌ   . Thus, the nullspace kerXT  coincides with the set of vectors 
whose orbits converge to zero under the action of T . The contraction T is called 
asymptotically non-vanishing if ker XT ≠ ℌ   . 
The pair (XT, WT ) has an important universal property. For an operator A acting on a 
space 𝔄𝔄 and an operator B acting on a space 𝔅𝔅, the intertwining set 𝒯𝒯(A, B) consists of 
the (bounded linear) transformations Y ∶ 𝔄𝔄 → 𝔅𝔅 satisfying the equation YA = BY. The 
commutant of Á is defined by {A}′ ∶=  𝒯𝒯(A, A). Now, it is true that for any unitary 
operator  G acting on a Hilbert space 𝔊𝔊, and for any transformation Y ∈ 𝒯𝒯(T, G), there 
exists a unique transformation Z ∈ 𝒯𝒯(WT , G) such that Y =  ZXT  . Furthermore, the 
commutants and spectra of T and WT  are closely related. For these properties and their 
extension to larger classes of operators we refer to [13] and [15]. (See also [1] for the 
study of isometric asymptotes, called isometric extensions there. 
The unitary asymptote of the contraction T can be identified with the ∗-residual part of its 
minimal unitary dilation U acting on the Hilbert space 𝔎𝔎. We recall from [19] that the 
subspace 𝔏𝔏 = ((U − T )ℌ)−is wandering, and the orthogonal sum M(𝔏𝔏) ∶=⊕k=−∞

∞ Uk𝔏𝔏 
is reducing for U. The ∗-residual part R∗T is the restriction of U to its reducing subspace 
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ℛ∗T ∶= 𝔎𝔎 ⊖  M(𝔏𝔏). Let us consider the transformation X�T ∶  ℌ   → ℛ∗T , h ⟼ P∗h, 
where P∗ denotes the orthogonal projection in 𝔎𝔎 onto the subspace 𝔎𝔎∗T  . Since R∗TX�T  =
 X�T T and X�Th = limn ‖Tn h‖(h ∈ ℌ )  hold by [19], it can be easily verified that the pair 
(X�T , R∗T) is equivalent to (𝑋𝑋𝑇𝑇  , 𝑊𝑊𝑇𝑇  ), that is there exists a unitary transformation 
𝑍𝑍 ∈ T (𝑊𝑊𝑇𝑇  , 𝑅𝑅∗𝑇𝑇  ) such that X�T = Z𝑋𝑋𝑇𝑇 . 
The unitary asymptote has a particularly useful representation in the 𝑆𝑆𝑧𝑧. −𝑁𝑁𝑅𝑅𝑔𝑔𝑢𝑢–Foias 
functional model of completely non-unitary (𝑐𝑐. 𝑛𝑛. 𝑢𝑢. ) contractions. We recall the 
construction of the model operator given in [19]. Let 𝔈𝔈, 𝔈𝔈∗ be (separable) Hilbert spaces, 
and let {𝔈𝔈, 𝔈𝔈∗, Θ(𝜆𝜆)} be a purely contractive analytic function defined on the open unit 
disc 𝔻𝔻. It is known that the radial 𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑤𝑤Θ(𝜁𝜁) =  𝑙𝑙𝑖𝑖𝑚𝑚𝑜𝑜→1−0 Θ(𝑜𝑜𝜁𝜁) exists in the strong 
operator topology for almost every 𝜁𝜁 on the unit circle 𝕋𝕋. Hence 𝛩𝛩 can be considered also 
as a measurable function defined almost everywhere on 𝕋𝕋, and taking values in ℒ(𝔈𝔈, 𝔈𝔈∗). 
We can extend 𝛩𝛩 to the whole circle 𝕋𝕋 defining its value by 0 on the exceptional set of 
measure zero.The defect operator functions associated with 𝛩𝛩 are defined b                           

𝛥𝛥(𝜁𝜁): = 𝐼𝐼 − Θ(𝜁𝜁 )∗Θ(𝜁𝜁 )1∕2 and  𝛥𝛥∗(𝜁𝜁 ): = �𝐼𝐼 – Θ(𝜁𝜁)Θ(𝜁𝜁)∗�
1
2       (𝜁𝜁 ∈  𝕋𝕋). 

Let us consider the spaces 𝐿𝐿2(𝔈𝔈), 𝐿𝐿2(𝔈𝔈∗) of vector-valued functions, defined with respect 
to the normalized Lebesgue measure 𝑚𝑚 on 𝕋𝕋, and the Hardy subspaces 𝐻𝐻2(𝔈𝔈), 𝐻𝐻2(𝔈𝔈∗). 
Setting 
         𝔎𝔎 ≔ 𝐿𝐿2(𝔈𝔈∗) ⊕ (∆𝐿𝐿2(𝔈𝔈))−      𝔎𝔎+ ≔ 𝐻𝐻2(𝔈𝔈∗) ⊕ (∆𝐿𝐿2(𝔈𝔈))−     
        𝔊𝔊 ≔ {Θ𝑢𝑢 ⊕ Δ𝑢𝑢: 𝑢𝑢 ∈ 𝐿𝐿2(𝔈𝔈)}     𝔊𝔊+ ≔ {Θ𝑢𝑢 ⊕ Δ𝑢𝑢: 𝑢𝑢 ∈ 𝐻𝐻2(𝔈𝔈)} 
the model space ℌ = ℌ (Θ) is given by ℌ ∶= 𝔎𝔎+ ⊖ 𝔊𝔊+ . Let 𝛼𝛼× 
denote the operator of multiplication by 𝜁𝜁 on 𝐿𝐿2(𝔈𝔈∗) ⊕ 𝐿𝐿2(𝔈𝔈). The subspaces 𝔎𝔎, 𝔊𝔊 are 
reducing for 𝛼𝛼×, while 𝔎𝔎+𝔊𝔊+ are invariant for 𝛼𝛼×. 
 The model operator 𝑇𝑇 = 𝑆𝑆(Θ) is defined by 𝑇𝑇 ∶=  𝑃𝑃+𝛼𝛼+|ℌ�, where 𝑃𝑃+ denotes the 
orthogonal projection onto ℌ in 𝔎𝔎+, 𝛼𝛼+, ≔ 𝛼𝛼×|𝔎𝔎+

� is the minimal isometric dilation of 𝑇𝑇 , 
while 𝛼𝛼: = 𝛼𝛼×|𝔎𝔎+

� is the minimal unitary dilation of 𝑇𝑇 . 
Let us consider the restriction 𝑅𝑅�∗𝑇𝑇  of 𝛼𝛼× to the reducing subspace  𝔎𝔎�+𝑇𝑇 ∶=
 (𝛥𝛥∗𝐿𝐿2(𝔈𝔈∗))−and the transformation 𝑋𝑋�𝑇𝑇 ∈ 𝜏𝜏(𝑇𝑇 , 𝑋𝑋�∗𝑇𝑇  ) defined by  

𝑋𝑋�𝑇𝑇  (𝑢𝑢 ⊕ 𝑣𝑣) ∶=  −𝛥𝛥∗𝑢𝑢 + Θ𝑣𝑣 (𝑢𝑢 ⊕ 𝑣𝑣 ∈ ℌ). 
Since multiplication by the unitary operator-valued function 

𝐹𝐹(𝜁𝜁) = �−𝛥𝛥∗(𝜁𝜁 ) Θ(𝜁𝜁)
Θ(𝜁𝜁 )∗ 𝛥𝛥(𝜁𝜁)� ∈ ℒ(𝔈𝔈∗ ⊕ 𝔈𝔈)        (𝜁𝜁 ∈ 𝕋𝕋) 

transfers the subspace 𝔎𝔎+𝑇𝑇  into 𝔎𝔎�+𝑇𝑇 , we obtain that the pair (𝑋𝑋�𝑇𝑇  , 𝑅𝑅�𝑇𝑇  ) is equivalent to the 
pair (𝑋𝑋�𝑇𝑇  , 𝑅𝑅∗𝑇𝑇 ), and so to the pair (𝑋𝑋𝑇𝑇  , 𝑊𝑊𝑇𝑇  ). (See [12] ) The great advantage of this 
representation of the unitary asymptote lies in the fact that the intertwining mapping 𝑋𝑋�𝑇𝑇  is 
multiplication by an operator-valued function. 
Let 𝑇𝑇 be an absolutely continuous (a.c.) contraction on the Hilbert space ℌ, that is we 
assume that the (spectral measure of the) unitary component of 𝑇𝑇 is a.c. with respect to 
the normalized Lebesgue measure 𝑚𝑚 on the unit circle 𝕋𝕋. The minimal unitary dilation 𝛼𝛼 
of 𝑇𝑇 is a.c. by [19]. It follows that the ∗-residual part  𝑅𝑅∗𝑇𝑇 is also a.c., and then so is the 
unitary asymptote 𝑊𝑊𝑇𝑇 of 𝑇𝑇 . The a.c. unitary operator 𝑊𝑊𝑇𝑇 on the (separable) Hilbert space 
𝔎𝔎𝑇𝑇  is uniquely determined—up to unitary equivalence—by its spectral-multiplicity 
function (see [4]), which we will call the asymptotic spectral-multiplicity function of the 
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contraction 𝑇𝑇 , and denote by 𝜇𝜇𝑇𝑇  . We recall that 𝜇𝜇𝑇𝑇  is a measurable function defined on 
the unit circle 𝕋𝕋, and taking values in the set ℕ ∪ {0, ℵ0} of countable cardinals. It is 
determined by the decreasing sequence of Borel sets: 

𝜌𝜌𝑇𝑇,𝑛𝑛 ∶= {𝜁𝜁 ∈ 𝕋𝕋: 𝜇𝜇𝑇𝑇  (𝜁𝜁 ) ≥ 𝑛𝑛} ( 𝑛𝑛 ∈ ℕ ∪ {ℵ0}). 
The set 𝜌𝜌𝑇𝑇 ∶=  𝜌𝜌𝑇𝑇,1 is the support of the spectral measure of 𝑊𝑊𝑇𝑇 and is called the residual 
set of the a.c. contraction 𝑇𝑇 . For its role in the study of 𝑇𝑇 we refer to [17]. 
The Factorization Theorem establishes intertwining relations between the contraction 
𝑇𝑇 and unilateral shifts, exploiting the fine structure of 𝑊𝑊𝑇𝑇 encoded in the spectral-
multiplicity function  𝜇𝜇𝑇𝑇  . 
For any cardinal number 1 ≤ 𝑛𝑛 ≤ ℵ0  , let 𝔊𝔊𝑛𝑛  be a fixed Hilbert space of dimension 𝑛𝑛. 
Let us consider the Hilbert space 𝐿𝐿2(𝔊𝔊𝑛𝑛 ) of vector-valued functions. The 𝜎𝜎-algebra of 
Borel subsets of 𝕋𝕋 will be denoted by 𝐵𝐵𝕋𝕋. For any 𝛼𝛼 ∈ 𝐵𝐵𝕋𝕋, 𝑀𝑀�𝑛𝑛 ,𝛼𝛼   is the multiplication by 
𝜒𝜒(𝜁𝜁) =  𝜁𝜁on the space 𝐿𝐿2(𝔊𝔊𝑛𝑛 , 𝛼𝛼) ∶= 𝜒𝜒𝛼𝛼 𝐿𝐿2(𝔊𝔊𝑛𝑛 ). Clearly, 𝑀𝑀�𝑛𝑛 ,𝛼𝛼  is an a.c. unitary operator 
with spectral multiplicity function 𝑛𝑛𝜒𝜒𝛼𝛼 . (Here and in the sequel 𝜒𝜒𝜔𝜔  stands for the 
characteristic function of the set 𝜔𝜔. 
It is known that the Hardy space 𝐻𝐻2(𝔊𝔊𝑛𝑛 ) of analytic vector-valued functions, defined on 
𝔻𝔻, can be identified with the subspace 𝐿𝐿+

2 (𝔊𝔊𝑛𝑛 ) of 𝐿𝐿2(𝔊𝔊𝑛𝑛 ), consisting of the functions 
with zero Fourier coefficients of negative indices (see [19, Section V.1]). Let 𝑆𝑆𝑛𝑛  be the 
multiplication by 𝜒𝜒(𝜁𝜁) = 𝜁𝜁 𝑜𝑜𝑛𝑛 𝐻𝐻2(𝔊𝔊𝑛𝑛 );  𝑆𝑆𝑛𝑛  is clearly a unilateral shift of multiplicity 
𝑛𝑛.For any 𝛼𝛼 ∈ 𝐵𝐵𝕋𝕋, let us consider the natural embedding  
𝐽𝐽𝑛𝑛 ,𝛼𝛼 ∶ 𝐻𝐻2(𝔊𝔊𝑛𝑛 ) → 𝐿𝐿2(𝔊𝔊𝑛𝑛 , 𝛼𝛼),        𝑓𝑓 ↦ 𝜒𝜒𝛼𝛼 𝑓𝑓, of 𝐻𝐻2(𝔊𝔊𝑛𝑛 )  into 𝐿𝐿2(𝔊𝔊𝑛𝑛 , 𝛼𝛼). If 𝑚𝑚(𝛼𝛼) = 0 then 
𝐿𝐿2(𝔊𝔊𝑛𝑛 , 𝛼𝛼) and 𝐽𝐽𝑛𝑛 ,𝛼𝛼  reduce to zero. If 𝑚𝑚(𝛼𝛼) > 0 then 𝐽𝐽𝑛𝑛 ,𝛼𝛼  is one-to-one, �𝐽𝐽𝑛𝑛 ,𝛼𝛼 � = 1, and 
𝐽𝐽𝑛𝑛 ,𝛼𝛼 𝑆𝑆𝑛𝑛 = 𝑀𝑀�𝑛𝑛 ,𝛼𝛼 𝐽𝐽𝑛𝑛 ,𝛼𝛼  . (See [9]. For the sake of brevity, we introduce the notation 

𝑀𝑀𝑇𝑇,𝑛𝑛 ∶= 𝑀𝑀�𝑛𝑛 ,𝜌𝜌𝑇𝑇 ,𝑛𝑛  𝑅𝑅𝑛𝑛𝑑𝑑 𝐽𝐽𝑇𝑇,𝑛𝑛 ∶=  𝐽𝐽𝑛𝑛 ,𝜌𝜌𝑇𝑇 ,𝑛𝑛          (1 ≤  𝑛𝑛 ≤ ℵ0 ) 
in connection with the a.c. contraction 𝑇𝑇 . The Factorization Theorem states that 𝐽𝐽𝑇𝑇,𝑛𝑛 can 
be factored into the product of two mappings intertwining 𝑆𝑆𝑛𝑛  and 𝑀𝑀𝑇𝑇,𝑛𝑛  with  , with a 
control on the norms of the intertwiners. 
The core of the proof of the Factorization Theorem (Theorem(6.1. 1)) is its verification in 
the functional model. So let us give a purely contractive analytic function {𝔈𝔈, 𝔈𝔈∗, 𝛩𝛩(𝜆𝜆)}, 
and let us consider the model operator 𝑇𝑇 = 𝑆𝑆(𝛩𝛩) ∈ ℒ(ℌ = ℌ(𝛩𝛩))  constructed at the end 
of this Section . 
Since 𝑊𝑊𝑇𝑇 is unitarily equivalent to 𝑅𝑅�∗𝑇𝑇  , we obtain that the asymptotic spectral-
multiplicity function 
𝜇𝜇𝑇𝑇  of 𝑇𝑇 coincides with the function rank 𝛥𝛥∗(𝜁𝜁 ) (𝜁𝜁 ∈ 𝕋𝕋). Thus 

� 𝜌𝜌𝑇𝑇,𝑛𝑛 = {𝜁𝜁 ∈  𝕋𝕋: 𝑜𝑜𝑅𝑅𝑛𝑛𝑘𝑘 𝛥𝛥∗(𝜁𝜁 ) ≥  𝑛𝑛� 
holds for every 1 ≤ 𝑛𝑛 ≤ ℵ0 . 
First we want to show that there exists a sequence {𝑢𝑢𝑖𝑖 ⊕ 𝑣𝑣𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛 in the dilation space 𝔎𝔎, 
which is pointwise orthonormal on the set 𝜌𝜌𝑇𝑇,𝑛𝑛 ,and whose transformed sequence 
{−𝛥𝛥∗𝑢𝑢𝑖𝑖 + 𝛩𝛩𝑣𝑣𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛  in ℜ� ∗𝑇𝑇 is also pointwise orthonormal on 𝜌𝜌𝑇𝑇,𝑛𝑛 . In order to do so we 
have to make a closer look at the defect functions. 
We recall from [19] that the defect operator 𝐷𝐷𝐴𝐴 of a contractive transformation 𝐴𝐴 ∈
ℒ(𝔊𝔊, 𝔊𝔊∗) is the positive contraction defined by 𝐷𝐷𝐴𝐴 ∶=  (𝐼𝐼 −  𝐴𝐴∗𝐴𝐴)1/2  ∈ ℒ(𝔊𝔊). The 
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closure of its range is the defect space 𝔇𝔇𝐴𝐴 of 𝐴𝐴. Let 𝐷𝐷𝐴𝐴∗ and 𝔇𝔇𝐴𝐴∗  be the analogous 
objects connected with the adjoint 𝐴𝐴. It is easy to check that    𝐴𝐴∗𝐷𝐷𝐴𝐴∗  =  𝐷𝐷𝐴𝐴𝐴𝐴∗. 
For any 𝜁𝜁 ∈ 𝕋𝕋, let 𝛥𝛥(𝜁𝜁) and 𝔇𝔇(𝜁𝜁) be the defect operator and the defect space of 𝛩𝛩(𝜁𝜁), 
respectively. Let 𝛥𝛥∗(𝜁𝜁) and 𝐷𝐷∗(𝜁𝜁) stand for the analogous objects connected with the 
adjoint transformation 𝛩𝛩(𝜁𝜁)∗. All these operator fields and subspace fields are 
measurable; see [14]. Notice that the direct integrals 
∫ (𝔇𝔇∗(𝜁𝜁))⊕

𝜔𝜔  ⊕ 𝔇𝔇(𝜁𝜁) 𝑑𝑑𝑚𝑚(𝜁𝜁) and ∫ 𝔇𝔇∗(𝜁𝜁)⊕
𝜔𝜔 𝑑𝑑𝑚𝑚(𝜁𝜁) can be viewed as subspaces in the 

space 𝔎𝔎 of the minimal unitary dilation 𝛼𝛼, and in 𝑅𝑅∗𝑇𝑇  , respectively. 
The following statement is an improvement of [14]. (Its version formulated in the more 
general setting considered in [14] can be proved in a similar way. We note that only the 
pointwise orthogonality of the system {𝑘𝑘𝑖𝑖 }𝑖𝑖  below was shown in [14].) 
Proposition(6.1.1)[12]: For every cardinal number 1 ≤  𝑛𝑛 ≤ ℵ0 , there exist sequences 
{𝑢𝑢𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛  and {𝑣𝑣𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛  of measurable vector fields in 
∏ 𝔇𝔇∗(𝜁𝜁)𝜁𝜁∈𝜌𝜌𝑇𝑇 ,𝑛𝑛  and∏ 𝔇𝔇(𝜁𝜁)𝜁𝜁∈𝜌𝜌𝑇𝑇 ,𝑛𝑛 , respectively, such that 
(i)  {𝑢𝑢𝑖𝑖 (𝜁𝜁) ⊕ 𝑣𝑣𝑖𝑖 (𝜁𝜁)}0≤𝑖𝑖<𝑛𝑛  forms an orthonormal system in 𝔇𝔇∗(𝜁𝜁)  ⊕ 𝔇𝔇(𝜁𝜁) for every 
𝜁𝜁 ∈ 𝜌𝜌𝑇𝑇,𝑛𝑛 , and 
(ii)  {𝑘𝑘𝑖𝑖 (𝜁𝜁): = −𝛥𝛥∗(𝜁𝜁)𝑢𝑢𝑖𝑖 (𝜁𝜁) + 𝛩𝛩(𝜁𝜁)𝑣𝑣𝑖𝑖 (𝜁𝜁)}0≤𝑖𝑖<𝑛𝑛  is also an orthonormal system in 
𝔇𝔇∗(𝜁𝜁)for every 𝜁𝜁 ∈ 𝜌𝜌𝑇𝑇,𝑛𝑛  . 
Proof. Let  𝐹𝐹 ∶ 𝕋𝕋 → ℒ(𝔈𝔈∗  ⊕ ℭ) be the unitary operator-valued, measurable function 
introduced in Section 2. The equation 𝛩𝛩(𝜁𝜁)∗∆∗(𝜁𝜁) = ∆(𝜁𝜁)Θ(𝜁𝜁)∗  yields 𝐹𝐹(𝜁𝜁)𝔇𝔇∗(𝜁𝜁) ⊂
𝔇𝔇∗(𝜁𝜁) ⊕ 𝔇𝔇(𝜁𝜁) (𝜁𝜁 ∈ 𝕋𝕋). Let us consider the isometry-valued, measurable transformation 
field 𝐹𝐹0(𝜁𝜁): 𝔇𝔇∗(𝜁𝜁) ↦ 𝔇𝔇∗(𝜁𝜁 ) ⊕ 𝔇𝔇(𝜁𝜁) defined by 𝐹𝐹0(𝜁𝜁)𝑤𝑤: = 𝐹𝐹(𝜁𝜁)𝑤𝑤 = −𝛥𝛥∗(𝜁𝜁)𝑤𝑤 ⊕ 𝛩𝛩(𝜁𝜁) 
𝑤𝑤(𝜁𝜁 ∈ 𝕋𝕋, 𝑤𝑤 ∈ 𝔇𝔇∗(𝜁𝜁 )). It is easy to see that the adjoint transformation field 𝐹𝐹0(𝜁𝜁)∗ ∶
𝔇𝔇∗(𝜁𝜁 ) 𝔇𝔇(𝜁𝜁) → 𝔇𝔇∗(𝜁𝜁 ) is defined by 𝐹𝐹0(𝜁𝜁)(𝑢𝑢 ⊕ 𝑣𝑣) = −𝛥𝛥∗(𝜁𝜁 )𝑢𝑢 + 𝛩𝛩(𝜁𝜁)𝑣𝑣. 
Since 𝑑𝑑𝑖𝑖𝑚𝑚𝔇𝔇∗(𝜁𝜁) ≥ 𝑛𝑛 holds for every 𝜁𝜁 ∈ 𝜌𝜌𝑇𝑇,𝑛𝑛  , we can give measurable vector fields 
{𝑘𝑘𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛 in ∏ 𝔇𝔇(𝜁𝜁)𝜁𝜁∈𝜌𝜌𝑇𝑇 ,𝑛𝑛  so that {𝑘𝑘𝑖𝑖 (𝜁𝜁)}0≤𝑖𝑖<𝑛𝑛 forms an orthonormal system for each 
𝜁𝜁 ∈ 𝜌𝜌𝑇𝑇,𝑛𝑛  (see [5]). Then the measurable vector fields {𝑢𝑢𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛 and {𝑣𝑣𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛 , defined by 

𝑢𝑢𝑖𝑖 (𝜁𝜁) ⊕ 𝑣𝑣𝑖𝑖 (𝜁𝜁) ∶= 𝐹𝐹0(𝜁𝜁 )𝑘𝑘𝑖𝑖 (𝜁𝜁) (0 ≤ 𝑖𝑖 < 𝑛𝑛, 𝜁𝜁 ∈ 𝜌𝜌𝑇𝑇,𝑛𝑛  ), 
satisfy all the required conditions. 
The vector functions (or vector fields) {𝑢𝑢𝑖𝑖 ⊕ 𝑣𝑣𝑖𝑖 }𝑖𝑖   provided by Proposition (6.1.1) are 
contained in the space 𝔎𝔎 of the minimal unitary dilation. We want to approximate them 
with functions from the space 𝔎𝔎+ of the minimal isometric dilation 𝛼𝛼+. Hence we have to 
approximate measurable vector-valued functions by analytic ones. For any 𝑢𝑢, �́�𝑢  ∈
 𝐿𝐿2(𝔈𝔈∗) the measurable function [𝑢𝑢, 𝑢𝑢�] is defined by [𝑢𝑢, 𝑢𝑢�](𝜁𝜁): = � 𝑢𝑢(𝜁𝜁), 𝑢𝑢�(𝜁𝜁)�  (𝜁𝜁 ∈ 𝕋𝕋). 
The norm-function of 𝑢𝑢 ∈  𝐿𝐿2(𝔈𝔈∗) is denoted by [𝑢𝑢], that is [𝑢𝑢](𝜁𝜁) ∶=  ‖𝑢𝑢(𝜁𝜁)‖ (𝜁𝜁 ∈  𝕋𝕋). 
We recall from [14] that if 𝑢𝑢 ∈ 𝐿𝐿2(𝔈𝔈∗) is a unimodular function, that is [𝑢𝑢]  ≡  1, then for 
every 0 < 𝜂𝜂 < 1 there exists a function 𝑢𝑢#  ∈ 𝐿𝐿2(𝔈𝔈∗)such that [ 𝑢𝑢#]  ≡  1 and [𝑢𝑢#, 𝑢𝑢] ≥ 𝜂𝜂 
For the approximating purposes, mentioned above, we need the following lemma. 
Lemma(6.1.2)[12]: Let 𝑢𝑢 ⊕  𝑣𝑣 ∈  𝐿𝐿2(𝔈𝔈∗) ⊕ 𝐿𝐿2(ℭ) ≡ 𝐿𝐿2(𝔈𝔈∗  ⊕ ℭ) be a function with 
the property that its norm-function [𝑢𝑢 ⊕ 𝑣𝑣]  ≡  1. Then, for every 0 < 𝜂𝜂 < 1, there exist 
a function 𝑢𝑢#  ∈  𝐻𝐻2(𝔈𝔈∗) and a measurable complex function 𝜓𝜓 on 𝕋𝕋 such that 𝑢𝑢# ⊕
𝜓𝜓𝑣𝑣 ≡ 1 and |[𝑢𝑢# ⊕ 𝜓𝜓𝑣𝑣, 𝑢𝑢 ⊕ 𝑣𝑣]| ≥ 𝜂𝜂. 
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Proof. Let us give an arbitrary 0 < 𝜂𝜂 < 1, and let us choose positive numbers 𝜂𝜂1 and 𝜀𝜀 
satisfying the conditions 
𝜂𝜂 < 𝜂𝜂1

2 < 𝜂𝜂1 < 1 and 𝜂𝜂1
2 −  2𝜀𝜀(1 + 2𝜀𝜀)−1  > 𝜂𝜂.                           (1) 

Let us consider the decomposition 𝕋𝕋 =  𝛽𝛽1 ∪  𝛽𝛽2, where 
𝛽𝛽1 ∶= {𝜁𝜁 ∈ 𝕋𝕋: ‖𝑢𝑢(𝜁𝜁)‖ ≥ 𝜂𝜂1} and 𝛽𝛽2 ∶= 𝕋𝕋 \ 𝛽𝛽1. 

Given any 𝑒𝑒∗ ∈ 𝔈𝔈∗ with  ‖𝑒𝑒∗‖ = 1, the function 𝑢𝑢1 ∈ 𝐿𝐿2(𝔈𝔈∗) is defined by 

              𝑢𝑢1(𝜁𝜁) ∶= �𝑢𝑢(𝜁𝜁)/‖𝑢𝑢(𝜁𝜁)‖    𝑖𝑖𝑓𝑓 𝜁𝜁 ∈ 𝛽𝛽1
𝑒𝑒∗                       𝑖𝑖𝑓𝑓 𝜁𝜁 ∈ 𝛽𝛽2 

�                                     (2) 

Since [𝑢𝑢1] ≡  1, by [14] there exists a function 𝑢𝑢1
# ∈ 𝐿𝐿2(𝔈𝔈∗) such that 

                                  𝜂𝜂1 ≤ |[𝑢𝑢1
#, 𝑢𝑢1]| ≤ [𝑢𝑢1

#] ≡  1.                            (3) 
Let us give a positive 𝜂𝜂2 so that 𝜂𝜂1 < 𝜂𝜂2 < 1. Applying [14] for 𝑢𝑢 ⊕ 𝑣𝑣, we obtain a 
function 𝑢𝑢2

# ⊕ 𝑣𝑣2
# ∈  𝐻𝐻2(𝔈𝔈∗ ⊕ ℭ)  ≡ 𝐻𝐻2(𝔈𝔈∗) ⊕ 𝐻𝐻2(ℭ) with the properties 

                       𝜂𝜂2 ≤ |[𝑢𝑢2
# ⊕ 𝑣𝑣2

#, 𝑢𝑢 ⊕ 𝑣𝑣]| ≤ 𝑢𝑢2
# ⊕ 𝑣𝑣2

# ≡  1.                        (4) 
For every 𝜁𝜁 ∈ 𝛽𝛽2, we have 
‖𝑣𝑣(𝜁𝜁)‖ = (1 − ‖𝑢𝑢(𝜁𝜁)‖2)1∕2 ≥ (1 − 𝜂𝜂1

2)1∕2 > 0                                       (5) 
Let us consider the decomposition 
𝑣𝑣2

#(𝜁𝜁) = 𝜓𝜓2(𝜁𝜁)𝑣𝑣(𝜁𝜁) + 𝑤𝑤(𝜁𝜁), where 𝑤𝑤(𝜁𝜁) ⊥  𝑣𝑣(𝜁𝜁) (𝜁𝜁 ∈ 𝛽𝛽2).                    (6) 
It is clear that the function 
               𝜓𝜓2(𝜁𝜁) = ‖𝑣𝑣(𝜁𝜁)‖−2〈𝑣𝑣2

#(𝜁𝜁), 𝑣𝑣(𝜁𝜁)〉 (𝜁𝜁 ∈  𝛽𝛽2)                                 (7) 
is measurable. We want to show that the norm of 𝑤𝑤(𝜁𝜁) is as small as we wish if 𝜂𝜂2 is 
sufficiently close to 1. 
In view of (4) and applying the Cauchy–Schwarz inequality we infer that.  
𝜂𝜂2 ≤ | 〈𝑢𝑢2

#(𝜁𝜁) ⊕ 𝑢𝑢2
#(𝜁𝜁), 𝑢𝑢(𝜁𝜁) ⊕ 𝑣𝑣(𝜁𝜁)〉| ≤ |〈𝑢𝑢2

#(𝜁𝜁), 𝑢𝑢(𝜁𝜁)〉| + ⌈𝑢𝑢2
#(𝜁𝜁), 𝑣𝑣(𝜁𝜁)⌉ 

≤ ‖𝑢𝑢2
# (𝜁𝜁)‖ ‖𝑢𝑢(𝜁𝜁)‖ + ‖𝑢𝑢2

# (𝜁𝜁)‖‖𝑣𝑣(𝜁𝜁)‖ =: k(𝜁𝜁) 
≤ (‖𝑢𝑢2

# (𝜁𝜁)‖2 + ‖𝑣𝑣2
#(𝜁𝜁)‖2)1/2(‖𝑢𝑢(𝜁𝜁)‖2 + ‖𝑣𝑣(𝜁𝜁)‖2)1/2  = 1                  (8) 

holds for every 𝜁𝜁 ∈ 𝕋𝕋. Taking the decomposition of the ordered pairs 
(‖𝑢𝑢2

# (𝜁𝜁)‖, ‖𝑣𝑣2
#(𝜁𝜁)‖) = k(𝜁𝜁)(‖𝑢𝑢(𝜁𝜁)‖, ‖𝑣𝑣(𝜁𝜁)‖) + �(𝑅𝑅)(𝜁𝜁), 𝑏𝑏(𝜁𝜁), � 

we obtain that 
              |𝑏𝑏(𝜁𝜁)|2 ≤ ‖𝑅𝑅(𝜁𝜁), 𝑏𝑏(𝜁𝜁)‖2 = 1 − 𝑘𝑘(𝜁𝜁)2 ≤ 1 − 𝜂𝜂2

2,                 
whence 
‖𝑢𝑢2

# (𝜁𝜁)‖ = k(𝜁𝜁)‖𝑣𝑣(𝜁𝜁)‖ + 𝑏𝑏(𝜁𝜁) ≥ 𝜂𝜂2‖𝑣𝑣(𝜁𝜁)‖ − (1 − 𝜂𝜂2
2)1/2     (𝜁𝜁 ∈ 𝕋𝕋) 

follows. Applying (5) we conclude that 
             ‖𝑣𝑣2

#(𝜁𝜁)‖ ≥ 𝜂𝜂2(1 − 𝜂𝜂1
2)1/2 − (1 − 𝜂𝜂2

2)1/2                                      (9) 
is true for every 𝜁𝜁 ∈ 𝛽𝛽2. Let us assume that 𝜂𝜂2 is so close to 1 that 
                  𝜂𝜂2(1 − 𝜂𝜂21

2 )1/2 − (1 − 𝜂𝜂2
2)1/2 > 0                                         (10) 

is fulfilled. One can easily derive from (8) that 
        ‖𝑣𝑣2

#(𝜁𝜁)‖‖𝑣𝑣(𝜁𝜁)‖ − |〈𝑣𝑣2
#(𝜁𝜁), 𝑣𝑣(𝜁𝜁)〉| ≤ 1 − 𝜂𝜂2            (𝜁𝜁 ∈ 𝕋𝕋). 

It follows by (5)–(7) and (9) that 
      ‖𝜓𝜓2(𝜁𝜁)𝑣𝑣(𝜁𝜁)‖ = |〈𝑣𝑣2

#(𝜁𝜁), 𝑣𝑣(𝜁𝜁)/‖𝑣𝑣(𝜁𝜁)‖〉| ≥ ‖𝑣𝑣2
#(𝜁𝜁)‖ − (1 − 𝜂𝜂2)(1 − 𝜂𝜂1

2)−1/2 
≥ 𝜂𝜂2(1 − 𝜂𝜂1

2)1/2 − (1 − 𝜂𝜂2
2)1/2 − (1 − 𝜂𝜂2)(1 − 𝜂𝜂1

2)−1/2                        (11) 
holds for every 𝜁𝜁 ∈ 𝛽𝛽2. Choosing 𝜂𝜂2 sufficiently close to 1 we can ensure that 
𝜂𝜂2(1 − 𝜂𝜂1

2)1/2 − (1 − 𝜂𝜂2
2)1/2 − (1 − 𝜂𝜂2)(1 − 𝜂𝜂1

2)−1/2 > 0                    (12) 
Applying (6), (11) and (12) we obtain 
            ‖𝑣𝑣2

#(𝜁𝜁) − 𝜓𝜓2(𝜁𝜁)𝑣𝑣(𝜁𝜁)‖2 = ‖𝑣𝑣2
# (𝜁𝜁)‖2 − ‖𝜓𝜓2(𝜁𝜁)𝑣𝑣(𝜁𝜁)‖2   
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                       ≤ ‖𝑣𝑣2
# (𝜁𝜁)‖2 − (‖𝑣𝑣2

#(𝜁𝜁)‖ − (1 − 𝜂𝜂2)(1 − 𝜂𝜂1
2)−1/2)2 

                       ≤ ‖𝑣𝑣2
#(𝜁𝜁)‖(1 − 𝜂𝜂2)(1 − 𝜂𝜂1

2)−1/2 
                        ≤ 2(1 − 𝜂𝜂2)(1 − 𝜂𝜂1

2)−1/2                (𝜁𝜁 ∈ 𝛽𝛽2)                  (13) 
 Therefore, assuming that the positive number 𝜂𝜂2 satisfies the conditions 𝜂𝜂1 <  𝜂𝜂2 <
 1, (10), (12) and 
2(1 − 𝜂𝜂2)(1 − 𝜂𝜂1

2)−1/2 < 𝜀𝜀2                                                                 (14) 
we conclude by (13) that 
  ‖𝑣𝑣2

#(𝜁𝜁) − 𝜓𝜓2(𝜁𝜁)𝑣𝑣(𝜁𝜁)‖ < 𝜀𝜀                                                                  (15) 
holds for every 𝜁𝜁 ∈ 𝛽𝛽2. 
Let us give 𝜑𝜑1, 𝜑𝜑2 ∈  𝐻𝐻∞  with absolute value 
|𝜑𝜑1| =  𝜒𝜒𝛽𝛽1 + 𝜀𝜀𝜒𝜒𝛽𝛽2,                           |𝜑𝜑2| =  𝜀𝜀𝜒𝜒𝛽𝛽1 + 𝜒𝜒𝛽𝛽2                   (16) 
and let us introduce the functions 

 𝑢𝑢� ∶=  𝜑𝜑1𝑢𝑢1
# + 𝜑𝜑2𝑢𝑢2

# ∈  𝐻𝐻2(𝔈𝔈∗)and  𝜓𝜓�(𝜁𝜁): = �
0                   𝑓𝑓𝑜𝑜𝑜𝑜 𝜁𝜁 ∈ 𝛽𝛽1,

𝜑𝜑2(𝜁𝜁)𝜓𝜓2(𝜁𝜁)  𝑓𝑓𝑜𝑜𝑜𝑜 𝜁𝜁 ∈ 𝛽𝛽2.
� 

For every 𝜁𝜁 ∈ 𝛽𝛽1,, we have 
 𝑢𝑢�(𝜁𝜁) ⊕ 𝜓𝜓�(𝜁𝜁)𝑣𝑣(𝜁𝜁) = �𝜑𝜑1(𝜁𝜁 )𝑢𝑢1

# (𝜁𝜁 ) + 𝜑𝜑2(𝜁𝜁 )𝑢𝑢2
#(𝜁𝜁 )� ⊕ 0, 

and so 
 1 − 𝜀𝜀 ≤ �𝑢𝑢�(𝜁𝜁 ) ⊕ 𝜓𝜓�(𝜁𝜁)𝑣𝑣(𝜁𝜁)� ≤ 1 + 𝜀𝜀         (𝜁𝜁 ∈  𝛽𝛽1)                (17) 
readily follows by (3), (4) and (16). Furthermore, 
�〈𝑢𝑢�(𝜁𝜁) ⊕ 𝜓𝜓�(𝜁𝜁)𝑣𝑣(𝜁𝜁), 𝑢𝑢(𝜁𝜁) ⊕ 𝑣𝑣(𝜁𝜁 )〉� =
|𝜑𝜑1(𝜁𝜁)〈𝑢𝑢1

#(𝜁𝜁), ‖𝑢𝑢(𝜁𝜁)‖𝑢𝑢1(𝜁𝜁)〉 + 𝜑𝜑2(𝜁𝜁)〈𝑢𝑢2
#(𝜁𝜁), 𝑢𝑢(𝜁𝜁)〉| ≥ 𝜂𝜂1

2 − 𝜀𝜀           (𝜁𝜁 ∈  𝛽𝛽1)                                         
(18) 
is clearly true by (2)–(4) and (16). On the other hand, for every 𝜁𝜁 ∈ 𝛽𝛽2., we have 
 �𝑢𝑢�(𝜁𝜁) ⊕ 𝜓𝜓�(𝜁𝜁)𝑣𝑣(𝜁𝜁) = 𝜑𝜑1(𝜁𝜁 )𝑢𝑢1

#(𝜁𝜁 ) ⊕ 0� + 𝜑𝜑2(𝜁𝜁)�𝑢𝑢2
#(𝜁𝜁) ⊕ 𝑣𝑣2

#(𝜁𝜁)� 

                                       + �0 ⊕ 𝜑𝜑2(𝜁𝜁)�𝜓𝜓2(𝜁𝜁)𝑣𝑣(𝜁𝜁) − 𝑢𝑢2
#(𝜁𝜁)�� 

Hence, applying (15) together with (3), (4) and (16), one can easily verify that 
1 − 2𝜀𝜀 ≤ �𝑢𝑢�(𝜁𝜁) ⊕ 𝜓𝜓�(𝜁𝜁)𝑣𝑣(𝜁𝜁)� ≤ 1 + 2𝜀𝜀              (𝜁𝜁 ∈  𝛽𝛽2)                (19) 
and 
�〈𝑢𝑢�(𝜁𝜁) ⊕ 𝜓𝜓�(𝜁𝜁)𝑣𝑣(𝜁𝜁), 𝑢𝑢(𝜁𝜁) ⊕ 𝑣𝑣(𝜁𝜁)〉� ≥ 𝜂𝜂2 − 2𝜀𝜀 ≥ 𝜂𝜂1

2 − 2𝜀𝜀   (𝜁𝜁 ∈  𝛽𝛽2)  (20) 
Notice that 1 −  2𝜀𝜀 >  𝜂𝜂1

2 −  2𝜀𝜀 >  0 by (1). In virtue of (17) and (19) there exists an 
outer function 𝜑𝜑 ∈ 𝐻𝐻∞  with the property 

|𝜑𝜑| = [𝑢𝑢� ⊕  𝜓𝜓�𝑣𝑣]. 
Defining 𝑢𝑢#  ∈  𝐻𝐻2(𝔈𝔈∗) and the measurable function 𝜓𝜓 by 𝑢𝑢# ∶=  𝜑𝜑−1𝑢𝑢�  and 𝜓𝜓 ∶=  𝜑𝜑−1𝜓𝜓�, 
the equation [𝑢𝑢# ⊕  𝜓𝜓𝑣𝑣]  ≡  1 is clearly fulfilled. Finally, the relations (17)–(20) and (1) 
readily imply that 

|〈𝑢𝑢#(𝜁𝜁) ⊕ 𝜓𝜓(𝜁𝜁)𝑣𝑣(𝜁𝜁), 𝑢𝑢(𝜁𝜁) ⊕ 𝑣𝑣(𝜁𝜁)〉| ≥ (𝜂𝜂2 − 2𝜀𝜀)|𝜑𝜑(𝜁𝜁)|−1 
≥ (𝜂𝜂1

2 − 2𝜀𝜀)(1 + 2𝜀𝜀)−1 ≥ 𝜂𝜂 
is true for every 𝜁𝜁 ∈ 𝕋𝕋. Thus the proof is complete.  
Since we shall work with vectors approximating an orthonormal system, we need a 
statement which describes how perturbation of an isometry on elements of an 
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orthonormal basis affects the norm and the lower bound of the operator. Such a statement 
is the content of the following lemma taken from [14]. 
Lemma (6.1.3)[12]: Let 1 ≤ 𝑛𝑛 ≤ ℵ0 . be a cardinal number, let {𝑔𝑔𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛  be an 
orthonormal basis in the Hilbert space 𝔊𝔊𝑛𝑛 , and let { 𝑓𝑓𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛  be an orthonormal system in 
a Hilbert space ℑ. Let us give constants 0 <  𝛿𝛿 <  𝑐𝑐 < 1 and  𝑅𝑅 sequence {𝛿𝛿𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛 of 
positive numbers satisfying the condition ∑ 𝛿𝛿𝑖𝑖

2
0≤𝑖𝑖<𝑛𝑛 ≤ 𝛿𝛿2 For any 0 ≤  𝑖𝑖 < 𝑛𝑛, let 𝑓𝑓𝑖𝑖

# ∈ ℑ  
be a vector of the form 𝑓𝑓𝑖𝑖

# = 𝑐𝑐𝑖𝑖 𝑓𝑓𝑖𝑖 + 𝑠𝑠𝑖𝑖 , where 𝑐𝑐 ≤ |𝑐𝑐𝑖𝑖 | ≤ 1 and  ‖𝑠𝑠𝑖𝑖 ‖ ≤ 𝛿𝛿𝑖𝑖  . 
Then there exists a uniquely determined transformation 𝐴𝐴 ∈ ℒ(𝔊𝔊𝑛𝑛 , ℑ) such that 𝐴𝐴𝑔𝑔𝑖𝑖  =
𝑓𝑓𝑖𝑖

# holds, for every 0 ≤ 𝑖𝑖 <  𝑛𝑛. Furthermore, for this transformation 𝐴𝐴 we have 
𝑐𝑐 −  𝛿𝛿 ≤ 𝛬𝛬(𝐴𝐴) ≤  ‖𝐴𝐴 ‖ ≤ 1 + 𝛿𝛿. 

Now we are ready to prove Theorem (6.1.1) for the model operator 𝑇𝑇 =  𝑆𝑆(𝛩𝛩). 
Proposition(6.1. 4)[12]: The statement of Theorem(6.1.5) is true for the c.n.u. 
contraction 𝑇𝑇 = 𝑆𝑆(𝛩𝛩). 
Proof: Let us fix a cardinal number 1 ≤ 𝑛𝑛 ≤ ℵ0,. , 𝑅𝑅𝑛𝑛d let us assume that 𝑚𝑚(𝜌𝜌𝑇𝑇, 𝑛𝑛) >  0. 
Recall that 𝜌𝜌𝑇𝑇, 𝑛𝑛 = {𝜁𝜁 ∈  𝕋𝕋: 𝑜𝑜𝑅𝑅𝑛𝑛𝑘𝑘𝛥𝛥∗(𝜁𝜁)  ≥  𝑛𝑛}. For simplicity, we shall use the notation 
𝛾𝛾 ∶=  𝜌𝜌𝑇𝑇, 𝑛𝑛. Let us give an arbitrary 𝜀𝜀 > 0. 
Let {𝑢𝑢𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛  and {𝑣𝑣𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛  be measurable vector-valued functions obtained by applying 
Proposition(6.1.1). We extend these functions to the whole circle T in the following way. 
Given any orthonormal system {𝑒𝑒∗𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛 in 𝔊𝔊∗, let 𝑢𝑢𝑖𝑖 (𝜁𝜁) ∶= 𝑒𝑒∗𝑖𝑖  and 𝑣𝑣𝑖𝑖 (𝜁𝜁) ∶=  0, for 
every 𝜁𝜁 ∈  𝕋𝕋 \ 𝛾𝛾 and 0 ≤  𝑖𝑖 <  𝑛𝑛.  It is clear that 𝑢𝑢𝑖𝑖 ⊕  𝑣𝑣𝑖𝑖 ∈ 𝔎𝔎  for every 0 ≤  𝑖𝑖 < 𝑛𝑛. 
Furthermore, {𝑢𝑢𝑖𝑖 (𝜁𝜁)  ⊕ 𝑣𝑣𝑖𝑖 (𝜁𝜁)}0≤𝑖𝑖<𝑛𝑛  forms an orthonormal system for every 𝜁𝜁 ∈  𝕋𝕋, and 
              {𝑘𝑘𝑖𝑖 (𝜁𝜁) ∶=  −𝛥𝛥∗(𝜁𝜁)𝑢𝑢𝑖𝑖 (𝜁𝜁) +  𝛩𝛩(𝜁𝜁)𝑣𝑣𝑖𝑖 (𝜁𝜁)}0≤𝑖𝑖<𝑛𝑛 ⊂ 𝔇𝔇∗(𝜁𝜁)              (21) 
is also an orthonormal system for every 𝜁𝜁 ∈ 𝛾𝛾 . 
Let us give constants 0 <  𝛿𝛿 <  𝑐𝑐 < 1 and a sequence {𝛿𝛿𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛  of positive numbers with 
the property∑ 𝛿𝛿𝑖𝑖

2 ≤ 𝛿𝛿2
0≤𝑖𝑖<𝑛𝑛 . Applying Lemma (6.1.2) we obtain  that, for every  0 ≤ 𝑖𝑖 <

𝑛𝑛, there exist 𝑢𝑢𝑖𝑖
# ∈ 𝐻𝐻2(𝔈𝔈∗) and a measurable complex function 𝜓𝜓𝑖𝑖  on 𝕋𝕋 such that 

𝜂𝜂𝑖𝑖 ≤  ��𝑢𝑢𝑖𝑖
# ⊕ 𝜓𝜓𝑖𝑖 𝑣𝑣𝑖𝑖 , 𝑢𝑢𝑖𝑖  ⊕ 𝑣𝑣𝑖𝑖 �� ≤ �𝑢𝑢𝑖𝑖

# ⊕ 𝜓𝜓𝑖𝑖 𝑣𝑣𝑖𝑖 � ≡ 1                                 (22) 
holds with 𝜂𝜂𝑖𝑖 ∶= 𝑚𝑚𝑅𝑅𝑥𝑥(𝑐𝑐, (1 −  𝛿𝛿𝑖𝑖

2)1/2). Then 𝑢𝑢𝑖𝑖
# ⊕ 𝜓𝜓𝑖𝑖 𝑣𝑣𝑖𝑖 ∈ 𝔎𝔎+ is clearly true for every 

0 ≤ 𝑖𝑖 < 𝑛𝑛. In view of (22), these functions can be written in the form 
𝑢𝑢𝑖𝑖

#(𝜁𝜁) ⊕ 𝜓𝜓𝑖𝑖 (𝜁𝜁)𝑣𝑣𝑖𝑖 (𝜁𝜁) = 𝑐𝑐𝑖𝑖 (𝜁𝜁)𝑢𝑢𝑖𝑖 (𝜁𝜁) ⊕ 𝑣𝑣𝑖𝑖 (𝜁𝜁) + 𝑜𝑜𝑖𝑖 (𝜁𝜁) ⊕ 𝑠𝑠𝑖𝑖 (𝜁𝜁)                 (23) 
where 

𝑐𝑐 ≤ 𝜂𝜂𝑖𝑖 ≤ |𝑐𝑐𝑖𝑖 (𝜁𝜁)|  ≤ (𝜁𝜁 ∈ 𝕋𝕋, 0 ≤ 𝑖𝑖 < 𝑛𝑛)                                                 (24) 
and 

‖𝑜𝑜𝑖𝑖 (𝜁𝜁) ⊕ 𝑠𝑠𝑖𝑖 (𝜁𝜁 )‖2  =  1 −  |𝑐𝑐𝑖𝑖 (𝜁𝜁)|2 ≤ 1 −  𝜂𝜂𝑖𝑖
2 ≤  𝛿𝛿𝑖𝑖

2 (𝜁𝜁 ∈ 𝕋𝕋, 0 ≤ 𝑖𝑖 < 𝑛𝑛). (25) 
Let us fix an orthonormal basis {𝑔𝑔𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛  in 𝔊𝔊𝑛𝑛 . Given any 𝜁𝜁 ∈ 𝕋𝕋, in virte of (23)–
(25),Lemma (6.1.3) implies the existence of a uniquely determined transformation 
𝛷𝛷(𝜁𝜁) ∈ ℒ(𝔊𝔊𝑛𝑛 , 𝔈𝔈∗  ⊕ 𝔈𝔈) satisfying the condition 

𝛷𝛷(𝜁𝜁)𝑔𝑔𝑖𝑖 = 𝑢𝑢𝑖𝑖
#(𝜁𝜁) ⊕ 𝜓𝜓𝑖𝑖 (𝜁𝜁)𝑣𝑣𝑖𝑖 (𝜁𝜁) for every 0 ≤ 𝑖𝑖 < 𝑛𝑛; 

furthermore, 
𝑐𝑐 − 𝛿𝛿 ≤ 𝛬𝛬(𝛷𝛷(𝜁𝜁 )) ≤ ‖𝛷𝛷(𝜁𝜁)‖ ≤  1 +  𝛿𝛿.                                                (26) 

We shall write 𝜒𝜒𝕋𝕋𝑔𝑔𝑖𝑖  for the constant function in 𝐻𝐻2(𝔊𝔊𝑛𝑛 ) with value 𝑔𝑔𝑖𝑖  . Since 
𝛷𝛷(𝜒𝜒𝕋𝕋𝑔𝑔𝑖𝑖  ) = 𝑢𝑢𝑖𝑖

# ⊕ 𝜓𝜓𝑖𝑖 𝑣𝑣𝑖𝑖  is a measurable vector-valued function for every 0 ≤ 𝑖𝑖 < 𝑛𝑛, it 
follows that the bounded transformation-valued function 𝛷𝛷 is measurable (see [5]). The 
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transformation 𝑀𝑀(𝛷𝛷) of multiplication by 𝛷𝛷 maps 𝐿𝐿2(𝔊𝔊𝑛𝑛 ) into 𝔎𝔎, and clearly 
𝑀𝑀(𝛷𝛷)𝐻𝐻2(𝔊𝔊𝑛𝑛 )  ⊂  𝔎𝔎+. Let us consider the restriction 

𝑌𝑌+ ∶=  𝑀𝑀(𝛷𝛷)\𝐻𝐻2(𝔊𝔊𝑛𝑛 ) ∈ ℒ(𝐻𝐻2(𝔊𝔊𝑛𝑛 ), 𝔎𝔎+). 
It is evident that 

𝑌𝑌+𝑆𝑆𝑛𝑛  =  𝛼𝛼+𝑌𝑌+ 𝑅𝑅𝑛𝑛𝑑𝑑 𝑌𝑌+(𝜒𝜒𝕋𝕋𝑔𝑔𝑖𝑖  )  = 𝑢𝑢𝑖𝑖
# ⊕ 𝜓𝜓𝑖𝑖 𝑣𝑣𝑖𝑖 (0 ≤  𝑖𝑖 < 𝑛𝑛).        (27) 

Let  𝑃𝑃�+ ∈ ℒ(𝔎𝔎+, ℌ) stand for the transformation defined by  𝑃𝑃�+𝑥𝑥 ∶=  𝑃𝑃+𝑥𝑥 (𝑥𝑥 ∈  𝔎𝔎+), 
where 𝑃𝑃+ is the orthogonal projection onto ℌ in 𝔎𝔎+. We know from [19] that 

𝑃𝑃�+𝛼𝛼+  =  𝑇𝑇 𝑃𝑃�+.                                                                       (28) 
Now the transformation 𝑌𝑌 ∈ ℒ(𝐻𝐻2(𝔊𝔊𝑛𝑛 ), ℌ) is defined by 

𝑌𝑌 ∶=  𝑃𝑃�+𝑌𝑌+.                                                                             (29) 
The relations (27)–(29) result in that  

𝑌𝑌𝑆𝑆𝑛𝑛  = 𝑇𝑇 𝑌𝑌.                                                                             (30) 
Furthermore, in view of (26) we obtain that 

‖𝑌𝑌‖ ≤ ‖𝑌𝑌+‖  ≤ ‖𝛷𝛷‖∞  ≤ 1 + 𝛿𝛿.                                              (31) 
Let us consider the vector-valued functions 

ℎ𝑖𝑖 ∶=  𝑌𝑌(𝜒𝜒𝕋𝕋𝑔𝑔𝑖𝑖 ) ∈ ℌ 𝑅𝑅𝑛𝑛𝑑𝑑 𝑘𝑘𝑖𝑖
#: = 𝑋𝑋�𝑇𝑇  ℎ𝑖𝑖 ∈ 𝔎𝔎�∗𝑇𝑇  (0 ≤ 𝑖𝑖 < 𝑛𝑛).        (32) 

Let 𝔎𝔎�∗+ be the reducing subspace of  𝔎𝔎�∗𝑇𝑇  generated by the vectors {𝜒𝜒𝛾𝛾  𝑘𝑘𝑖𝑖
#}0≤𝑖𝑖<𝑛𝑛 , and 

let us consider the restriction 𝔎𝔎�∗+ ∶= 𝑅𝑅�∗𝑇𝑇  |𝔎𝔎�∗+. Let 𝑄𝑄�+ ∈ ℒ(𝔎𝔎�∗𝑇𝑇  , 𝔎𝔎�∗+) stand for the 
transformation defined by 𝑄𝑄�+𝑥𝑥 ∶=  𝑄𝑄+𝑥𝑥 (𝑥𝑥 ∈ 𝔎𝔎�∗𝑇𝑇), where 𝑄𝑄+ is the orthogonal 
projection onto  𝔎𝔎�∗+ in 𝔎𝔎�∗𝑇𝑇 . 
Then clearly 
     

𝑄𝑄�+𝔎𝔎�∗𝑇𝑇  =  𝑅𝑅�∗+𝑄𝑄�+ and  𝑄𝑄�+𝑘𝑘𝑖𝑖
# =  𝜒𝜒𝛾𝛾  𝑘𝑘𝑖𝑖

# (0 ≤ 𝑖𝑖 < 𝑛𝑛).      (33) 
Introducing the transformation  𝑋𝑋�+ ∶ 𝔎𝔎+ → 𝔎𝔎�∗𝑇𝑇  defined by 

𝑋𝑋�+(𝑢𝑢 ⊕ 𝑣𝑣): =  −𝛥𝛥∗𝑢𝑢 + 𝛩𝛩𝑣𝑣       (𝑢𝑢 ⊕ 𝑣𝑣 ∈  𝔎𝔎+), 
we can see from the equation 𝛩𝛩𝛥𝛥 = 𝛥𝛥∗𝛩𝛩 that ker 𝑋𝑋�+ ⊃ 𝔊𝔊+. Consequently 

𝑘𝑘𝑖𝑖
# =  𝑋𝑋�𝑇𝑇  𝑃𝑃�+�𝑢𝑢𝑖𝑖

# ⊕ 𝜓𝜓𝑖𝑖 𝑣𝑣𝑖𝑖 � = 𝑋𝑋�+�𝑢𝑢𝑖𝑖
# ⊕ 𝜓𝜓𝑖𝑖 𝑣𝑣𝑖𝑖 � 

                                      = −𝛥𝛥∗𝑢𝑢𝑖𝑖
# +  𝛩𝛩(𝜓𝜓𝑖𝑖 𝑣𝑣𝑖𝑖 ) (0 ≤ 𝑖𝑖 < 𝑛𝑛).                         (34) 

We infer by (21) and (23) that for any 0 ≤ 𝑖𝑖 < 𝑛𝑛 the function 𝑘𝑘𝑖𝑖
# is of the following form 

on the set γ : 
𝑘𝑘𝑖𝑖

# (𝜁𝜁)  =  𝑐𝑐𝑖𝑖 (𝜁𝜁)𝑘𝑘𝑖𝑖 (𝜁𝜁) + 𝑢𝑢𝑖𝑖 (𝜁𝜁), where 𝑢𝑢𝑖𝑖(𝜁𝜁 ) ∶=  −𝛥𝛥 ∗ (𝜁𝜁 )𝑜𝑜𝑖𝑖(𝜁𝜁 ) +  𝛩𝛩(𝜁𝜁)𝑠𝑠𝑖𝑖(𝜁𝜁 ) (𝜁𝜁 ∈  𝛾𝛾 ).                                                              
(35) 
Recalling that the operator 𝐹𝐹(𝜁𝜁) in this Section  is an isometry, it follows by (25) that 

‖𝑢𝑢𝑖𝑖 (𝜁𝜁)‖ ≤ ‖𝑜𝑜𝑖𝑖 (𝜁𝜁 ) ⊕ 𝑠𝑠𝑖𝑖 (𝜁𝜁)‖ ≤  𝛿𝛿𝑖𝑖  (𝜁𝜁 ∈  𝛾𝛾, 0 ≤  𝑖𝑖 < 𝑛𝑛).                    (36) 
Taking into account that {𝑘𝑘𝑖𝑖 (𝜁𝜁)}0≤𝑖𝑖<𝑛𝑛  is an orthonormal system for  𝜁𝜁 ∈ 𝛾𝛾 , Lemma 
(6.1.3) yields by (35), (36) and (24) that, for any 𝜁𝜁 ∈ 𝛾𝛾 , there exists a (unique) 
transformation 𝛹𝛹(𝜁𝜁)  ∈ ℒ(𝔊𝔊𝑛𝑛 , 𝔈𝔈∗)such that 

𝛹𝛹(𝜁𝜁)𝑔𝑔𝑖𝑖  = 𝑘𝑘𝑖𝑖
# (𝜁𝜁) for every 0 ≤ 𝑖𝑖 < 𝑛𝑛;                                                (37) 

furthermore, 
𝑐𝑐 −  𝛿𝛿 ≤ 𝛬𝛬(𝛹𝛹(𝜁𝜁)) ≤ ‖𝛹𝛹(𝜁𝜁)‖ ≤ 1 +  𝛿𝛿.                                                  (38) 

For any 𝜁𝜁 ∈ 𝕋𝕋 \ 𝛾𝛾 let us set 𝛹𝛹(𝜁𝜁) ∶=  0 ∈ ℒ(𝔊𝔊𝑛𝑛 , 𝔈𝔈∗). It can be easily verified, as before 
for 𝛷𝛷,that the bounded function 𝛹𝛹 is measurable. The transformation 𝑀𝑀(𝛹𝛹) of 
multiplication by 𝛹𝛹 maps 𝐿𝐿2(𝔊𝔊𝑛𝑛 , 𝛾𝛾 ) into 𝔎𝔎�∗+; let us consider the mapping 
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𝑍𝑍+ ∶=  𝑀𝑀(𝛹𝛹)\𝐿𝐿2(𝔊𝔊𝑛𝑛 , 𝛾𝛾 )  ∈  ℒ𝐿𝐿2(𝔊𝔊𝑛𝑛 , 𝛾𝛾 ), 𝔎𝔎�∗+ 
It is evident that 
𝑍𝑍+(𝜒𝜒𝛾𝛾  𝑔𝑔𝑖𝑖  ) = 𝜒𝜒𝛾𝛾  𝑘𝑘𝑖𝑖

#      for every 0 ≤ 𝑖𝑖 < 𝑛𝑛.                               (39) 
We infer by (38) that 
𝑐𝑐 − 𝛿𝛿 ≤  𝛬𝛬(𝑍𝑍+) ≤ ‖𝑍𝑍+‖  ≤ 1 + 𝛿𝛿.                                               (40) 
Since 𝑍𝑍+ has dense range by (39), we obtain that 𝑍𝑍+ is invertible, and so (40) yields 
                                                 ‖𝑍𝑍+

−1‖ ≤ (𝑐𝑐 − 𝛿𝛿)−1.                                 (41) 
Taking into account that 𝑀𝑀𝑇𝑇,𝑛𝑛  = 𝑀𝑀�𝑛𝑛 ,𝛾𝛾  , we can see that 
                                  𝑍𝑍+𝑀𝑀𝑇𝑇,𝑛𝑛  =  𝑅𝑅�∗+𝑍𝑍+.                                                  (42) 
Now, the transformation 𝑍𝑍 ∈ ℒ(ℌ, 𝐿𝐿2(𝔊𝔊𝑛𝑛 , 𝛾𝛾 )) is defined by 
                              𝑍𝑍 ∶= 𝑍𝑍+

−1𝑄𝑄�+𝑋𝑋�𝑇𝑇  .                                                          (43) 
The intertwining relations 𝑋𝑋�𝑇𝑇  𝑇𝑇 =  𝑅𝑅�∗𝑇𝑇  𝑋𝑋�𝑇𝑇 , (33) and (42) yield that 
                             𝑍𝑍𝑇𝑇 = 𝑀𝑀𝑇𝑇,𝑛𝑛 𝑍𝑍.                                                                (44) 
Taking into account that the mappings  𝑄𝑄�+ and 𝑋𝑋�𝑇𝑇  are contractions, it follows from (41) 
that 
                  ‖𝑍𝑍‖  ≤ (𝑐𝑐 − 𝛿𝛿)−1.                                                              (45) 
Choosing the constants 𝛿𝛿 and 𝑐𝑐 sufficiently close to 0 and 1, respectively, it can be 
achieved that 1 +  𝛿𝛿 <  1 + 𝜀𝜀 and (𝑐𝑐 −  𝛿𝛿)−1  < 1 +  𝜀𝜀 hold. Hence, by the inequalities 
(31) and (45) we conclude that 

‖𝑌𝑌 ‖ <  1 +  𝜀𝜀 and  ‖𝑍𝑍‖ < 1 + 𝜀𝜀.                                            (46) 
 Finally, in view of (32), (33), (39) and (43) we have for any 0 ≤ 𝑖𝑖 < 𝑛𝑛 that 

𝑍𝑍𝑌𝑌(𝜒𝜒𝕋𝕋𝑔𝑔𝑖𝑖  ) = 𝑍𝑍ℎ𝑖𝑖  =  𝑍𝑍+
−1 𝑄𝑄�+𝑋𝑋𝑇𝑇  ℎ𝑖𝑖 = 𝑍𝑍+

−1 𝑄𝑄�+𝑘𝑘𝑖𝑖
# = 𝑍𝑍+

−1 𝜒𝜒𝛾𝛾 𝑘𝑘𝑖𝑖
# 

= 𝜒𝜒𝛾𝛾 𝑔𝑔𝑖𝑖 = 𝐽𝐽𝑛𝑛 ,𝛾𝛾 (𝜒𝜒𝕋𝕋𝑔𝑔𝑖𝑖  ) = 𝐽𝐽𝑇𝑇,𝑛𝑛 (𝜒𝜒𝕋𝕋𝑔𝑔𝑖𝑖  ).                                        (47) 
Since 𝑍𝑍𝑌𝑌 and 𝐽𝐽𝑇𝑇,𝑛𝑛  intertwine 𝑆𝑆𝑛𝑛  with 𝑀𝑀𝑇𝑇,𝑛𝑛 , equalities (47) imply 

𝑍𝑍𝑌𝑌 = 𝐽𝐽𝑇𝑇,𝑛𝑛                                                                                      (48) 
The relations (46) and (48) show that the mappings 𝑌𝑌 and 𝑍𝑍 possess all the required 
properties. 
Now we complete the proof of the main result. 
Theorem(6.1.5)[12]: Let 𝑇𝑇 be an 𝑅𝑅. 𝑐𝑐. contraction on the Hilbert space ℌ. For every 
cardinal number 
1 ≤ 𝑛𝑛 ≤ ℵ0 , and for every 𝜀𝜀 > 0, there exist transformations 𝑌𝑌 ∈ 𝒯𝒯(𝑆𝑆𝑛𝑛 , 𝑇𝑇 ) and 
𝑍𝑍 ∈ 𝒯𝒯(𝑇𝑇, 𝑀𝑀𝑇𝑇,𝑛𝑛 ) satisfying the conditions: 
(i)     𝑍𝑍𝑌𝑌 = 𝐽𝐽𝑇𝑇,𝑛𝑛 , and 
(ii)  ‖𝑌𝑌‖ < 1 + 𝜀𝜀, ‖𝑍𝑍‖ <  1 + 𝜀𝜀. 
Notice that if 𝑚𝑚(𝜌𝜌𝑇𝑇,𝑛𝑛 ) = 0 then 𝐽𝐽𝑇𝑇,𝑛𝑛 = 0, and so the transformations 𝑌𝑌 = 0 and 𝑍𝑍 = 0 
evidently possess the required properties. The statement of the previous theorem becomes 
nontrivial when 𝑚𝑚(𝜌𝜌𝑇𝑇,𝑛𝑛 ) > 0. 
Proof.  Let 𝑇𝑇 be an a.c. contraction on the Hilbert space ℌ. Let us give a cardinal number 
1 ≤ 𝑛𝑛 ≤ ℵ0,. and a positive 𝜀𝜀. 
The contraction 𝑇𝑇 can be decomposed into the orthogonal sum 𝑇𝑇 = 𝑇𝑇𝑢𝑢  ⊕  𝑇𝑇𝑐𝑐 , where 𝑇𝑇𝑢𝑢  is 
an a.c. unitary operator and 𝑇𝑇𝑐𝑐  is a 𝑐𝑐. 𝑛𝑛. 𝑢𝑢. contraction. It is known (see e.g. [4]) that 
𝑇𝑇𝑢𝑢  =  𝑊𝑊𝑇𝑇𝑢𝑢  is unitarily equivalent to the orthogonal ⨁𝑘𝑘∈ℕ𝑀𝑀𝛼𝛼𝑘𝑘  , where 𝛼𝛼𝑘𝑘 ∶=  𝜌𝜌𝑇𝑇𝑢𝑢 ,𝑘𝑘  
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and𝑀𝑀𝛼𝛼𝑘𝑘 = 𝑀𝑀�1,𝛼𝛼𝑘𝑘
(𝑘𝑘 ∈ ℕ). Let 𝑄𝑄𝑢𝑢 ∈  Τ (⨁𝑘𝑘∈ℕ𝑁𝑁𝑀𝑀𝛼𝛼𝑘𝑘, 𝑇𝑇𝑢𝑢) be a unitary transformation; 

then 

𝑄𝑄� : = 𝑄𝑄𝑢𝑢 ⊕ 𝐼𝐼 ∈ Τ  ,
k c u c

k
M T T Tα

∈

  ⊕ ⊕  
  
⊕

N
 

is also unitary. Given an arbitrary 0 < 𝑐𝑐 < 1, for every 𝑘𝑘 ∈ ℕ, 𝑙𝑙𝑒𝑒𝑤𝑤 𝜗𝜗𝑘𝑘  ∈  𝐻𝐻∞  be an outer 
function with absolute value |𝜗𝜗𝑘𝑘 | = 𝑐𝑐𝜒𝜒𝛼𝛼𝑘𝑘 +  𝜒𝜒𝕋𝕋\𝛼𝛼𝑘𝑘  , and let us consider the 𝑐𝑐. 𝑛𝑛. 𝑢𝑢. 
contraction 𝑇𝑇𝑘𝑘  = 𝑆𝑆(𝜗𝜗𝑘𝑘 ). 
 
 
By [19] there exists an affinity 𝑄𝑄𝑘𝑘 ∈ Τ (𝑇𝑇𝑘𝑘 , 𝑀𝑀𝛼𝛼𝑘𝑘  ) satisfying the conditions 

1 = ‖𝑄𝑄𝑘𝑘 ‖ ≤ (𝑄𝑄𝑘𝑘
−1) ≤ 𝑐𝑐−1     (𝑘𝑘 ∈ ℕ). 

The 𝑐𝑐. 𝑛𝑛. 𝑢𝑢. contraction 𝑇𝑇� ∶= (⨁𝑘𝑘∈ℕ𝑇𝑇𝑘𝑘 ) ⊕ 𝑇𝑇𝑐𝑐  is unitarily equivalent to a model 
operator 𝑇𝑇 =S(Θ) by [19], let �̀�𝑄  ∈ Τ (𝑇𝑇,̀ 𝑇𝑇� , 𝑇𝑇) be a unitary transformation. Then the 
affinity                                  

  

has the properties 
𝑄𝑄�̀�𝑇  = 𝑇𝑇𝑄𝑄 and 1 = ‖𝑄𝑄‖ ≤ ‖𝑄𝑄−1‖ ≤  𝑐𝑐−1.                                          (49) 

Clearly, 𝜇𝜇𝑇𝑇𝑘𝑘 =  𝜒𝜒𝛼𝛼𝑘𝑘  holds for every 𝑘𝑘 ∈ ℕ, and so the asymptotic spectral-multiplicity 
functions of the contractions 𝑇𝑇 and �̀�𝑇  coincide: 𝜇𝜇𝑇𝑇  = 𝜇𝜇�̀�𝑇 . 
Therefore 

𝑀𝑀𝑇𝑇,𝑛𝑛  = 𝑀𝑀�̀�𝑇,𝑛𝑛 𝑅𝑅𝑛𝑛𝑑𝑑 𝐽𝐽𝑇𝑇,𝑛𝑛  = 𝐽𝐽�̀�𝑇,𝑛𝑛                                          (50) 
Given an arbitrary 0 <  𝛿𝛿 < 1, Proposition(6.1.4) provides us with mappings �̀�𝑌 ∈
 Τ (𝑆𝑆𝑛𝑛 , �̀�𝑇 ) and �̀�𝑍 ∈ Τ  (�̀�𝑇, 𝑀𝑀T̀,n) satisfying the conditions 
�̀�𝑍�̀�𝑌  =  𝐽𝐽�̀�𝑇,𝑛𝑛  and  ��̀�𝑌� < 1 + 𝛿𝛿, �𝑍𝑍 ̀ � < 1 + 𝛿𝛿.                                  (51) 
Then 𝑌𝑌 ∶=  𝑄𝑄�̀�𝑌  ∈ Τ (𝑆𝑆𝑛𝑛 , 𝑇𝑇 ), 𝑍𝑍 ∶=  �̀�𝑍𝑄𝑄−1  ∈ Τ(𝑇𝑇 , 𝑀𝑀𝑇𝑇,𝑛𝑛 ), and we conclude by (49)–(51) 
that 

𝑍𝑍𝑌𝑌 =  �̀�𝑍�̀�𝑌  =  𝐽𝐽�̀�𝑇,𝑛𝑛  =  𝐽𝐽𝑇𝑇,𝑛𝑛  
and 
 ‖𝑌𝑌 ‖ <  1 +  𝛿𝛿,                      ‖𝑍𝑍‖ < (1 + 𝛿𝛿)𝑐𝑐−1 
Choosing 𝛿𝛿 and 𝑐𝑐 sufficiently close to 0 and 1, respectively, we can ensure that 1 + 𝛿𝛿 <
1 + 𝜀𝜀 and (1 +  𝛿𝛿)𝑐𝑐−1 < 1 + 𝜀𝜀. 
The proof is complete.  
We supplement the statement of Theorem (6.1.5) by showing that every factorization of 
any embedding  𝐽𝐽𝑛𝑛 ,𝛼𝛼  through intertwining mappings with the contraction 𝑇𝑇 is necessarily 
attached to the set  𝜌𝜌𝑇𝑇,𝑛𝑛 . 
Proposition (6.1.6)[12]: Let 𝑇𝑇 be an a.c. contraction on the Hilbert space ℌ. Let us give a 
cardinal number 1 ≤  𝑛𝑛 ≤ ℵ0 and a Borel set 𝛼𝛼 on the unit circle 𝕋𝕋. If there exist 
transformations 𝑌𝑌 ∈ ℒ (𝑆𝑆𝑛𝑛 , 𝑇𝑇 ) and 𝑍𝑍 ∈ ℒ (𝑇𝑇 , 𝑀𝑀�𝑛𝑛 ,𝛼𝛼 ) with the property 𝑍𝑍𝑌𝑌 = 𝐽𝐽𝑛𝑛 ,𝛼𝛼 , then 𝛼𝛼 
is a.e. contained in   𝜌𝜌𝑇𝑇,𝑛𝑛  , that in 𝑚𝑚(𝛼𝛼 \𝜌𝜌𝑇𝑇,𝑛𝑛  ) = 0. 
Proof. By the universal property of (𝑋𝑋𝑇𝑇  , 𝑊𝑊𝑇𝑇) there exists a unique transformation 
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𝐿𝐿 ∈ ℒ  (𝑊𝑊𝑇𝑇  , 𝑀𝑀�𝑛𝑛 ,𝛼𝛼 ) such that 𝑍𝑍 =  𝐿𝐿𝑋𝑋𝑇𝑇  . Since 𝑊𝑊𝑇𝑇  and  𝑀𝑀�𝑛𝑛 ,𝛼𝛼  are unitaries it follows that 
𝐿𝐿 ∈ ℒ (𝑊𝑊𝑇𝑇

∗ , 𝑀𝑀�𝑛𝑛 ,𝛼𝛼
∗ ) is also true. Hence the subspace 𝔎𝔎1 ∶=  𝑘𝑘𝑒𝑒𝑜𝑜𝐿𝐿 is reducing for 𝑊𝑊𝑇𝑇 , that 

is 𝑊𝑊𝑇𝑇  =  𝑊𝑊0  ⊕  𝑊𝑊1 in the decomposition 𝔎𝔎𝑇𝑇  = 𝔎𝔎0  ⊕  𝔎𝔎1. Taking into account that 
𝐿𝐿𝔎𝔎𝑇𝑇  ⊃  𝑍𝑍ℌ ⊃ 𝐽𝐽𝑛𝑛 ,𝛼𝛼 𝐻𝐻2(𝔊𝔊𝑛𝑛 ) and that (𝐿𝐿𝔎𝔎𝑇𝑇  )− reduces  𝑀𝑀�𝑛𝑛 ,𝛼𝛼 , we infer that 𝐿𝐿 has dense 
range. Considering the polar decomposition 𝐿𝐿 = 𝑉𝑉𝐿𝐿|𝐿𝐿| of 𝐿𝐿, one can easily check that the 
unitary transformation 𝑉𝑉0 ∶= 𝑉𝑉𝐿𝐿|𝔎𝔎0  ∈ ℒ(𝔎𝔎0, 𝐿𝐿2(𝔊𝔊𝑛𝑛 , 𝛼𝛼)) intertwines 𝑊𝑊0 with 𝑀𝑀�𝑛𝑛 ,𝛼𝛼  (see 
the proof of [19]). 
Let us assume that 𝑊𝑊1 is unitarily equivalent to the model operator 
⊕𝑘𝑘∈ℕ 𝑀𝑀𝛽𝛽𝑘𝑘  , where {𝛽𝛽𝑘𝑘 }𝑘𝑘∈ℕ  is a decreasing sequence of Borel subsets of 𝕋𝕋. Then it is 
easy to verify the following unitary equivalence relations: 

𝑊𝑊𝑇𝑇  ≃ 𝑀𝑀�𝑛𝑛 ,𝛼𝛼  ⊕
k

k
M β

∈

 
 
 ⊕

N
 ≃

k
k

M β
∈
⊕

N
 , 

where the decreasing sequence {𝛼𝛼𝑘𝑘 }𝑘𝑘∈ℕ ⊂  𝐵𝐵𝕋𝕋 is defined by 𝛼𝛼𝑘𝑘 ∶=  𝛼𝛼 ∪ 𝛽𝛽𝑘𝑘  for all 𝑘𝑘 ∈
ℕ if 𝑛𝑛 = ℵ0, while in the case 𝑛𝑛 < ℵ0 we have 

𝛼𝛼𝑘𝑘 ∶= �
𝛼𝛼 ∪ 𝛽𝛽𝑘𝑘                  𝑓𝑓𝑜𝑜𝑜𝑜 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛,
𝛽𝛽𝑘𝑘 ∪ (𝛽𝛽𝑘𝑘−𝑛𝑛 ⋂𝛼𝛼)      𝑓𝑓𝑜𝑜𝑜𝑜 𝑛𝑛 < 𝑘𝑘.

� 

 (See e.g. the proof of [19].) We conclude that 𝜇𝜇𝑇𝑇  (𝜁𝜁) ≥ 𝑛𝑛 holds for a.e. 𝜁𝜁 ∈ 𝛼𝛼, and so 
𝑚𝑚(𝛼𝛼 \𝜌𝜌𝑇𝑇,𝑛𝑛  )  =  0.  
If 𝑇𝑇 is an a.c. contraction then, for any 1 ≤  𝑛𝑛 ≤ ℵ0 and 𝜀𝜀 > 0, let 𝑢𝑢(𝑇𝑇, 𝑛𝑛, 𝜀𝜀) stand for the 
set of those mappings 𝑌𝑌 ∈ ℒ (𝑆𝑆𝑛𝑛 , 𝑇𝑇 ) which satisfy the conditions 

𝑍𝑍𝑌𝑌 =  𝐽𝐽𝑇𝑇,𝑛𝑛  ,          ‖𝑌𝑌‖ < 1 + 𝜀𝜀, ‖𝑍𝑍‖ < 1 + 𝜀𝜀 
with an appropriate 𝑍𝑍 ∈  ℒ (𝑇𝑇 , 𝑀𝑀𝑇𝑇,𝑛𝑛 ) (depending on 𝑌𝑌). We know that 𝐽𝐽𝑇𝑇,𝑛𝑛  is one-to-one, 
and then so is every 𝑌𝑌 ∈ 𝑢𝑢(𝑇𝑇, 𝑛𝑛, 𝜀𝜀), whenever 𝑚𝑚(𝜌𝜌𝑇𝑇,𝑛𝑛 ) > 0. The following proposition 
states that the ranges of the transformations in 𝑢𝑢(𝑇𝑇, 𝑛𝑛, 𝜀𝜀) together span the whole space of 
𝑇𝑇 . (Though a modified version of this section is contained in [14], we present here a 
more streamlined discussion for the sake of completeness.) 
Proposition (6.1.7)[12]: Let 𝑇𝑇 be an a.c. contraction on the Hilbert space ℌ, and let us 
assume that 𝑚𝑚(𝜌𝜌𝑇𝑇,𝑛𝑛 ) > 0 holds for a cardinal number 1 ≤  𝑛𝑛 ≤ ℵ0. 
(a) For every 𝜀𝜀 > 0 we have 

�{𝑌𝑌 𝐻𝐻2(𝔊𝔊𝑛𝑛 ): 𝑌𝑌 ∈ 𝑢𝑢(𝑇𝑇, 𝑛𝑛, 𝜀𝜀)} =  ℌ 

 (b) If 𝑛𝑛 = ℵ0 then, for every 𝜀𝜀 > 0, there exist 𝑌𝑌, 𝑌𝑌�  ∈  𝑢𝑢(𝑇𝑇, 𝑛𝑛, 𝜀𝜀) such that 
𝑌𝑌𝐻𝐻2(𝔊𝔊𝑛𝑛 ) ∨ 𝑌𝑌�𝐻𝐻2(𝔊𝔊𝑛𝑛 )  =  ℌ. 

Proof. It is sufficient to verify the statement for the model operator 𝑇𝑇 =  𝑆𝑆(𝛩𝛩). (See the 
analogous reduction in the proof of Theorem(6.1.1).) 
For every 0 ≤ 𝑖𝑖 < 𝑛𝑛, setting an arbitrary vector 𝑒𝑒∗𝑖𝑖 ∈ 𝔈𝔈∗ with ‖𝑒𝑒∗𝑖𝑖 ‖ ≤ √2/2 a vector-
valued function 𝑣𝑣𝑖𝑖 ∈ (𝛥𝛥𝐿𝐿2(𝔈𝔈))  with [𝑣𝑣𝑖𝑖  ]  ≤ √2/2 , a non-negative integer 𝑘𝑘𝑖𝑖  and an 
integer 𝐿𝐿𝑖𝑖 , let us consider the vectors 

𝑢𝑢�𝑖𝑖 : =  𝜒𝜒𝑘𝑘𝑖𝑖  𝑒𝑒∗𝑖𝑖 ∈ 𝐻𝐻2(𝔈𝔈∗) and 𝑣𝑣�𝑖𝑖 ∶=  𝜒𝜒𝑙𝑙𝑖𝑖  𝑣𝑣𝑖𝑖  ∈ (𝛥𝛥𝐿𝐿2(𝔈𝔈))−, 
where 𝜒𝜒(𝜁𝜁) =  𝜁𝜁 (𝜁𝜁 ∈ 𝕋𝕋). It is clear that 𝑢𝑢�𝑖𝑖  ⊕  𝑣𝑣�𝑖𝑖 ∈  𝔎𝔎+ and [ 𝑢𝑢�𝑖𝑖  ⊕  𝑣𝑣�𝑖𝑖 ] ≤ 1 (0 ≤ 𝑖𝑖 <
𝑛𝑛). 
Fixing a positive 𝜀𝜀, let us give the constants 0 < 𝛿𝛿 < 𝑐𝑐 < 1 and the sequences {𝛿𝛿𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛 , 
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{𝜂𝜂𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛 as in the proof of Proposition(6.1.4). For every 0 ≤ 𝑖𝑖 < 𝑛𝑛, one can choose 
positive numbers �̂�𝜂𝑖𝑖  and 𝜀𝜀𝑖𝑖  so that 

𝜂𝜂𝑖𝑖 < �̂�𝜂𝑖𝑖 <  1 and 𝜂𝜂𝑖𝑖 <  (1 − 𝜀𝜀𝑖𝑖  )�̂�𝜂𝑖𝑖 − 𝜀𝜀𝑖𝑖  . 
Let {𝑢𝑢𝑖𝑖

# ⊕ 𝜓𝜓𝑖𝑖 𝑣𝑣𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛 ⊂  𝔎𝔎+ be a sequence satisfying the condition 
(𝜂𝜂𝑖𝑖 <) �̂�𝜂𝑖𝑖 ≤  ��𝑢𝑢𝑖𝑖

# ⊕ 𝜓𝜓𝑖𝑖 𝑣𝑣𝑖𝑖 , 𝑢𝑢𝑖𝑖  ⊕ 𝑣𝑣𝑖𝑖 �� ≤ �𝑢𝑢𝑖𝑖
# ⊕ 𝜓𝜓𝑖𝑖 𝑣𝑣𝑖𝑖 � ≡ 1        (0 ≤ 𝑖𝑖 < 𝑛𝑛) 

instead of (22). Since    [ (1 − 𝜀𝜀𝑖𝑖  )�𝑢𝑢𝑖𝑖
# ⊕ 𝜓𝜓𝑖𝑖 𝑣𝑣𝑖𝑖 � + 𝜀𝜀𝑖𝑖 (𝑢𝑢�𝑖𝑖 ⊕ 𝑣𝑣�𝑖𝑖  )] ≤ 1 

and 
𝜂𝜂𝑖𝑖 <  (1 − 𝜀𝜀𝑖𝑖 )�̂�𝜂𝑖𝑖 − 𝜀𝜀𝑖𝑖 ≤ |�(1 − 𝜀𝜀𝑖𝑖  )(𝑢𝑢𝑖𝑖

# ⊕ 𝜓𝜓𝑖𝑖 𝑣𝑣𝑖𝑖 ) + 𝜀𝜀𝑖𝑖 (𝑢𝑢�𝑖𝑖 ⊕ 𝑣𝑣�𝑖𝑖 ), 𝑢𝑢𝑖𝑖 ⊕ 𝑣𝑣𝑖𝑖 �| ≤ 1 
we infer that 

(1 − 𝜀𝜀𝑖𝑖 )(𝑢𝑢𝑖𝑖
#(𝜁𝜁) ⊕ 𝜓𝜓𝑖𝑖 (𝜁𝜁)𝑣𝑣𝑖𝑖 (𝜁𝜁)) + 𝜀𝜀𝑖𝑖 (𝑢𝑢�𝑖𝑖 (𝜁𝜁) ⊕ 𝑣𝑣�𝑖𝑖 (𝜁𝜁 ))

= �̂�𝑐𝑖𝑖 (𝜁𝜁)𝑢𝑢𝑖𝑖 (𝜁𝜁 ) ⊕ 𝑣𝑣𝑖𝑖 (𝜁𝜁) + �̂�𝑜𝑖𝑖 (𝜁𝜁) ⊕ �̂�𝑠𝑖𝑖 (𝜁𝜁) 
holds for every 𝜁𝜁 ∈ 𝕋𝕋 and 0 ≤ 𝑖𝑖 < 𝑛𝑛, where 
𝑐𝑐 ≤ 𝜂𝜂𝑖𝑖 ≤  |�̂�𝑐𝑖𝑖 (𝜁𝜁)| ≤ 1 and 

‖�̂�𝑜𝑖𝑖 (𝜁𝜁) ⊕ �̂�𝑠𝑖𝑖 (𝜁𝜁)‖ ≤ (1 − 𝜂𝜂𝑖𝑖
2)1/2 ≤ δi  

We note that the relations (22)–(25) are also valid. The procedure described in the proof 
of Proposition (6.1.4) yields transformations 𝑌𝑌 and 𝑌𝑌�  in 𝑢𝑢(𝑇𝑇, 𝑛𝑛, 𝜀𝜀) such that 

𝑌𝑌(𝜒𝜒𝕋𝕋𝑔𝑔𝑖𝑖  ) = 𝑃𝑃+�𝑢𝑢𝑖𝑖
# ⊕ 𝜓𝜓𝑖𝑖 𝑣𝑣𝑖𝑖 � 

and 
𝑌𝑌�(𝜒𝜒𝕋𝕋𝑔𝑔𝑖𝑖  ) = (1 −  𝜀𝜀𝑖𝑖 )𝑃𝑃+�𝑢𝑢𝑖𝑖

# ⊕ 𝜓𝜓𝑖𝑖 𝑣𝑣𝑖𝑖 � + 𝜀𝜀𝑖𝑖 𝑃𝑃+(𝑢𝑢�𝑖𝑖 ⊕ 𝑣𝑣�𝑖𝑖 ) 
are true for every 0 ≤ 𝑖𝑖 < 𝑛𝑛. Thus 

𝑌𝑌�(𝜒𝜒𝕋𝕋𝑔𝑔𝑖𝑖 ) − (1 − 𝜀𝜀𝑖𝑖 )𝑌𝑌 (𝜒𝜒𝕋𝕋𝑔𝑔𝑖𝑖 ) = 𝜀𝜀𝑖𝑖 𝑃𝑃+(𝑢𝑢�𝑖𝑖 ⊕ 𝑣𝑣�𝑖𝑖 )      (0 ≤ 𝑖𝑖 < 𝑛𝑛). 
If 𝑛𝑛 = ℵ0 𝑤𝑤hen we can choose the sequence {𝑢𝑢�𝑖𝑖 ⊕ 𝑣𝑣�𝑖𝑖 }0≤𝑖𝑖<𝑛𝑛  to be total in 𝔎𝔎+, and so (b) is 
obviously fulfilled. If 𝑛𝑛 < ℵ0  then a sequence of finite sequences 

��𝑢𝑢�𝑖𝑖
(𝑘𝑘) ⊕ 𝑣𝑣�𝑖𝑖

(𝑘𝑘)�
0≤𝑖𝑖<𝑛𝑛 : 𝑘𝑘 ∈ ℕ� 

 
can be chosen to be total in 𝔎𝔎+,. Denoting by 𝑌𝑌�𝑘𝑘  (𝑘𝑘 ∈ ℕ) the resulting transformations in 
𝑢𝑢(𝑇𝑇, 𝑛𝑛, 𝜀𝜀), we obtain that the subspaces {𝑌𝑌�𝐻𝐻2(𝔊𝔊𝑛𝑛 ) ∨  𝑌𝑌�𝑘𝑘 𝐻𝐻2(𝔊𝔊𝑛𝑛 )}𝑘𝑘∈ℕ together span the 
whole space ℌ, which proves (a).   
If 𝜌𝜌𝑇𝑇,𝑛𝑛   coincides with the whole circle 𝕋𝕋, or more precisely, if 𝑚𝑚(𝜌𝜌𝑇𝑇,𝑛𝑛 )  =  1(=  𝑚𝑚(𝕋𝕋)) 
then the embedding 𝐽𝐽𝑇𝑇,𝑛𝑛  is an isometry, and so the conditions 

𝑍𝑍𝑌𝑌 =  𝐽𝐽𝑇𝑇,𝑛𝑛 ,        ‖𝑌𝑌‖ < 1 +  𝜀𝜀,            ‖𝑍𝑍‖  <  1 + 𝜀𝜀 
imply that 

𝛬𝛬(𝑌𝑌) > (1 + 𝜀𝜀)−1 
Therefore, the restriction 𝑇𝑇 |𝑌𝑌𝐻𝐻2(𝔊𝔊𝑛𝑛 ) is similar to the unilateral shift 𝑆𝑆𝑛𝑛 , and the 
intertwining affinity 𝑌𝑌0 ∈ ℒ(𝑆𝑆𝑛𝑛 , 𝑇𝑇 |𝑌𝑌𝐻𝐻2(𝔊𝔊𝑛𝑛 )), defined by 𝑌𝑌0𝑔𝑔 ∶= 𝑌𝑌𝑔𝑔, is close to unitary 
if 𝜀𝜀 is small. For an a.c. contraction 𝑇𝑇  , for any 1 ≤ 𝑛𝑛 ≤ ℵ0 and 𝜀𝜀 > 0, Lat(𝑇𝑇, 𝑛𝑛, 𝜀𝜀) 
stands for the set of those invariant subspaces 𝔐𝔐 of 𝑇𝑇 , where the restriction 𝑇𝑇 |𝔐𝔐 is 
similar to 𝑆𝑆𝑛𝑛 , and the similarity can be implemented by an affinity 𝑄𝑄 ∈  ℒ (𝑆𝑆𝑛𝑛 , 𝑇𝑇 |𝔐𝔐) 
with the properties 

(1 + 𝜀𝜀)−1  < 𝛬𝛬(𝑄𝑄)  ≤  ‖𝑄𝑄‖ < 1 + 𝜀𝜀. 
We have seen that 
         { 𝑌𝑌𝐻𝐻2(𝔊𝔊𝑛𝑛 ): 𝑌𝑌 ∈ 𝑢𝑢(𝑇𝑇, 𝑛𝑛, 𝜀𝜀)} ⊂ 𝐿𝐿𝑅𝑅𝑤𝑤(𝑇𝑇, 𝑛𝑛, 𝜀𝜀)                               (52) 
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provided 𝑚𝑚(𝜌𝜌𝑇𝑇,𝑛𝑛 ) = 1. In view of Proposition(6.1.7) and (52) we obtain the following 
statement. 
Theorem (6.1.8)[12]:  Let 𝑇𝑇 be an a.c. contraction on the Hilbert space ℌ, and let us 
assume that 𝑚𝑚(𝜌𝜌𝑇𝑇,𝑛𝑛 ) = 1 holds for a cardinal number 1 ≤ 𝑛𝑛 ≤ ℵ0. 
(a) For every 𝜀𝜀 > 0, the subspaces in Lat(𝑇𝑇, 𝑛𝑛, 𝜀𝜀) span the whole space ℌ: 

� 𝐿𝐿 𝑅𝑅𝑤𝑤(𝑇𝑇, 𝑛𝑛, 𝜀𝜀) = ℌ. 

(b) If n=ℵ0 then, for every 𝜀𝜀 > 0, there exist two subspaces 𝔐𝔐, 𝔐𝔐�  ∈ 𝐿𝐿𝑅𝑅𝑤𝑤(𝑇𝑇, 𝑛𝑛, 𝜀𝜀) such 
that 

𝔐𝔐 ∨  𝔐𝔐�  = ℌ. 
We recall that the hyperinvariant subspace lattice Hlat𝐴𝐴 of an operator 𝐴𝐴 ∈
 ℒ(𝔄𝔄) consists of those subspaces which are invariant for every operator in the 
commutant {𝐴𝐴}′  of 𝐴𝐴. The hyperinvariant subspace problem asks whether every Hilbert 
space operator 𝐴𝐴 ∈  ℒ(𝔄𝔄) , which is not scalar multiple of the identity, has a proper 
hyperinvariant subspace, that is 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤𝐴𝐴 ≠ {{0}, 𝔄𝔄} holds. The positive answer is known 
only under additional assumptions, for example, in the class of normal operators because 
of the Spectral Theorem, or in the class of compact operators by the celebrated 
Lomonosov theorem (see e.g. [4]). Existence of proper hyperinvariant subspaces was 
proved in [16] under an orbit condition for asymptotically non-vanishing operators of 
regular norm-sequence. 
Let 𝑇𝑇 be an arbitrary asymptotically non-vanishing contraction on the Hilbert space ℌ. It 
is known that 𝑇𝑇 can be decomposed into the orthogonal sum 𝑇𝑇 = 𝑇𝑇𝑅𝑅  ⊕  𝛼𝛼𝑠𝑠  of an a.c. 
contraction 𝑇𝑇𝑅𝑅  and a singular unitary operator 𝛼𝛼𝑠𝑠  . Taking into account that the minimal 
unitary dilation of 𝑇𝑇𝑅𝑅  is a.c., we infer by the Lifting theorem (see [19]) that the 
intertwining sets ℒ  (𝑇𝑇𝑅𝑅 , 𝛼𝛼𝑠𝑠  ) and ℒ (𝛼𝛼𝑠𝑠 , 𝑇𝑇𝑅𝑅 ) consist only of the zero transformation. 
Hence the commutant of 𝑇𝑇 splits into the direct sum of the commutants of 𝑇𝑇𝑅𝑅 and 𝛼𝛼𝑠𝑠: 
{𝑇𝑇}′ = {𝑇𝑇𝑅𝑅 }′  ⊕ {𝛼𝛼𝑠𝑠}′  , and then the same is true for the hyperinvariant subspace lattices 
too: 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇 = 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇𝑅𝑅 ⊕ 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤𝛼𝛼𝑠𝑠  . Thus, in the quest for proper hyperinvariant 
subspaces we may assume that the asymptotically non-vanishing contraction T is 
absolutely continuous.  
Let us consider the residual set 𝜌𝜌𝑇𝑇  =  𝜌𝜌𝑇𝑇,1 of  𝑇𝑇 . Since 𝜌𝜌𝑇𝑇is of positive Lebesgue 
measure, there exists a point 𝜁𝜁0 ∈ 𝕋𝕋 which is of full density for 𝜌𝜌𝑇𝑇 . Replacing 𝑇𝑇 by 𝜁𝜁0̅𝑇𝑇 , 
we may assume that 𝜁𝜁0 =  1. (We recall that 𝑙𝑙𝑖𝑖𝑚𝑚𝑛𝑛→∞ 𝑚𝑚(𝐸𝐸𝑛𝑛  ∩ 𝜌𝜌𝑇𝑇)/𝑚𝑚(𝐸𝐸𝑛𝑛 ) =  1 holds 
whenever the sequence {𝐸𝐸𝑛𝑛 }𝑛𝑛=1

∞ ⊂  𝐵𝐵𝕋𝕋 shrinks to 1 nicely, see [18].) Let us consider the 
singular inner function 𝜗𝜗 ∈  𝐻𝐻∞  defined by 

𝜗𝜗(𝜆𝜆) = 𝑒𝑒𝑥𝑥𝑝𝑝(𝜆𝜆 + 1)/(𝜆𝜆 − 1)                (𝜆𝜆 ∈ 𝔻𝔻), 
and let us form the operator 𝐴𝐴 ∶=  𝜗𝜗(𝑇𝑇). We know from [19] that A is also an a.c. 
contraction. Furthermore, by [17] the residual set of 𝐴𝐴 is 𝜌𝜌𝐴𝐴 =  𝜗𝜗(𝜌𝜌𝑇𝑇 ). The following 
lemma ensures us that 𝜌𝜌𝐴𝐴  essentially covers the whole circle 𝕋𝕋. 
Lemma (6.1.9)[12]: If the point 1 ∈  𝕋𝕋 is of full density for the set 𝛼𝛼 ∈  𝐵𝐵𝕋𝕋, then 
𝑚𝑚(𝜗𝜗(𝛼𝛼)) =  1. 
Proof. Notice that 𝜗𝜗 is analytic on ℂ\ {1} and 
 

𝜗𝜗(𝑒𝑒𝑖𝑖𝑤𝑤  ) =  𝑒𝑒𝑥𝑥𝑝𝑝[−𝑖𝑖 𝑐𝑐𝑜𝑜𝑤𝑤(𝑤𝑤/2)],         𝑤𝑤 ∈ (0, 2𝜋𝜋). 
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For any integer 𝑛𝑛 ∈ ℤ, let 𝑤𝑤𝑛𝑛 ∈ (0, 2𝜋𝜋) be defined by 𝑐𝑐𝑜𝑜𝑤𝑤 �𝑤𝑤𝑛𝑛
2

� = 1 + 𝑛𝑛. 2𝜋𝜋. It is clear that 
𝕋𝕋\ {1} is the union of the disjoint arcs 𝜔𝜔𝑛𝑛 ∶=  {𝑒𝑒𝑖𝑖𝑤𝑤 ∶  𝑤𝑤𝑛𝑛+1 <  𝑤𝑤 ≤ 𝑤𝑤𝑛𝑛 } (𝑛𝑛 ∈ ℤ), and that 
𝜗𝜗𝑛𝑛 ∶=  𝜗𝜗|𝜔𝜔𝑛𝑛 ∶ 𝜔𝜔𝑛𝑛 → 𝕋𝕋 is a continuous bijection for every 𝑛𝑛 ∈ ℤ. So the set 𝜗𝜗(𝛼𝛼) =
⋃ 𝜗𝜗𝑛𝑛𝑛𝑛∈ℤ (𝛼𝛼 ∩ 𝜔𝜔𝑛𝑛 ) is measurable. 
Let us consider the complement 𝛾𝛾 = 𝑇𝑇\𝜗𝜗(𝛼𝛼) and the Borel sets 𝛽𝛽𝑛𝑛  = 𝜗𝜗𝑛𝑛

−1 (𝛾𝛾 )   (𝑛𝑛 ∈
ℕ). Taking into account that for any (0 <)𝑤𝑤𝑛𝑛+1  <  𝑠𝑠1 < 𝑠𝑠2  ≤ 𝑤𝑤𝑛𝑛 (< 𝑤𝑤0 = 𝜋𝜋/2) the 
inequality 

𝑐𝑐𝑜𝑜𝑤𝑤( 𝑠𝑠1/2) − 𝑐𝑐𝑜𝑜𝑤𝑤(𝑠𝑠2/2)  =  (𝑠𝑠𝑖𝑖𝑛𝑛 𝑠𝑠∗)−2(𝑠𝑠2/2 −  𝑠𝑠1/2) ≤ 8𝑤𝑤𝑛𝑛+1
−2 (𝑠𝑠2 −   𝑠𝑠1) 

is valid, we can easily infer that 
                   𝑚𝑚(𝛽𝛽𝑛𝑛 )  ≥ (𝑚𝑚(𝛾𝛾 )/8)𝑤𝑤𝑛𝑛+1

2          (𝑛𝑛 ∈  ℕ).                   (53) 
Since the arcs  𝜔𝜔�𝑛𝑛 ∶= ⋃ 𝜔𝜔𝑘𝑘

∞  
𝑘𝑘=𝑛𝑛 = {𝑒𝑒𝑖𝑖𝑤𝑤 : 0 <  𝑤𝑤 ≤ 𝑤𝑤𝑛𝑛 }  (𝑛𝑛 ∈  ℕ) shrink to 1 nicely,  

lim𝑛𝑛→∞
𝑚𝑚 (𝜔𝜔� 𝑛𝑛  ∩ 𝛼𝛼)

𝑚𝑚 (𝜔𝜔� 𝑛𝑛 )
= 1                                                     (54) 

must hold by the assumption. On the other hand, in view of (53) we have 
𝑚𝑚(𝜔𝜔� 𝑛𝑛 ∩ 𝛼𝛼)

𝑚𝑚(𝜔𝜔� 𝑛𝑛 )
=  1

𝑚𝑚(𝜔𝜔� 𝑛𝑛 )
∑ 𝑚𝑚∞

𝑘𝑘=𝑛𝑛 (𝜔𝜔𝑘𝑘 ∩ 𝛼𝛼) ≤ 1 − 1
𝑚𝑚 (𝜔𝜔� 𝑛𝑛 )

∑ 𝑚𝑚∞
𝑘𝑘=𝑛𝑛 (𝛽𝛽𝑘𝑘 ) ≤

1 −  𝑚𝑚(𝛾𝛾  )
2𝑤𝑤𝑛𝑛

∑ 𝑤𝑤𝑘𝑘
2 ∞

𝑘𝑘=𝑛𝑛+1          (𝑛𝑛 ∈  ℕ)  .                                                              (55) 
Starting from the inequalities 1/(2𝑠𝑠) ≤ 𝑐𝑐𝑜𝑜𝑤𝑤 𝑠𝑠 ≤ 2/𝑠𝑠 (𝑠𝑠 ∈  (0, 𝜋𝜋/4)), one can easily 
derive that 
                                  1/(8𝑛𝑛)  ≤ 𝑤𝑤𝑛𝑛  ≤ 1/𝑛𝑛         (𝑛𝑛 ∈  ℕ)                        (56) 
The relations (55) and (56) together imply 
     
 𝑚𝑚(𝜔𝜔� 𝑛𝑛 ∩ 𝛼𝛼)

𝑚𝑚(𝜔𝜔� 𝑛𝑛 )
≤ 1 −  𝑚𝑚(𝛾𝛾  )

128
・ 𝑛𝑛 ∑ 𝑘𝑘−2 ≤ 1∞

𝑘𝑘=𝑛𝑛+1 − 𝑚𝑚(𝛾𝛾  )
128

𝑛𝑛
𝑛𝑛+1

      (𝑛𝑛 ∈        (57) 
Tending 𝑛𝑛 to infinity in (57), we conclude that 𝑚𝑚(𝛾𝛾) ≤ 0, that is 𝑚𝑚(𝛾𝛾) =  0. Thus 
Lemma(6.1.9) yields that 𝑚𝑚(𝜌𝜌𝐴𝐴) = 1. For every 𝑜𝑜 ∈ (0, 1), we set 𝜗𝜗𝑜𝑜  (𝜆𝜆) ∶=  𝜗𝜗(𝑜𝑜𝜆𝜆) (𝜆𝜆 ∈
𝔻𝔻). 
Since 𝜗𝜗𝑜𝑜 (𝑇𝑇) is the norm-limit of polynomials of  𝑇𝑇 , and 𝜗𝜗𝑜𝑜 (𝑇𝑇) converges to 𝜗𝜗(𝑇𝑇) in the 
strong operator topology as 𝑜𝑜 tends to 1, we obtain that every operator commuting with 𝑇𝑇 
will commute with 𝐴𝐴 =  𝜗𝜗(𝑇𝑇) as well. Therefore {𝑇𝑇}′ ⊂, w{𝐴𝐴}′ hence 

𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇 ⊃ 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤𝐴𝐴 
follows. Let us form the inflation 𝐵𝐵 = 𝐴𝐴(ℵ0) of 𝐴𝐴 acting on the orthogonal sum ℌ(ℵ0) of 
infinitely many copies of ℌ. Clearly, 𝐵𝐵 is an a.c. contraction with 𝑚𝑚(𝜌𝜌𝐵𝐵 , ℵ0 )  =
 1. Furthermore, it can be easily verified that 

𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤𝐵𝐵 = �𝔐𝔐(ℵ0): 𝔐𝔐 ∈  𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤𝐴𝐴�. 
Thus 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇 contains a sublattice which is isomorphic to 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤𝐵𝐵, and so we have arrived 
at the following reduction theorem. 
Theorem (6.1.10)[12]: If every absolutely continuous contraction 𝐵𝐵 with 𝑚𝑚(𝜌𝜌𝐵𝐵 , ℵ0 )  =
 1 has a proper hyperinvariant subspace, then so does every asymptotically non-vanishing 
(non-scalar) contraction 𝑇𝑇 too. 
     We note that the subspace 𝑘𝑘𝑒𝑒𝑜𝑜 𝑋𝑋𝑇𝑇  of vectors with vanishing orbits is clearly 
hyperinvariant for the asymptotically non-vanishing contraction 𝑇𝑇 on ℌ. Hence we may 
assume that 𝑘𝑘𝑒𝑒𝑜𝑜𝑋𝑋𝑇𝑇  , and 𝑘𝑘𝑒𝑒𝑜𝑜𝑋𝑋𝑇𝑇∗  as well, are trivial subspaces. Since 𝑘𝑘𝑒𝑒𝑜𝑜𝑋𝑋𝑇𝑇 ≠= ℌ we 
obtain that 𝑘𝑘𝑒𝑒𝑜𝑜𝑋𝑋𝑇𝑇 =  {0}, and so 𝑇𝑇 is a 𝐶𝐶1.-contraction according to the classification in 
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[19, Section II.4]. If 𝑘𝑘𝑒𝑒𝑜𝑜𝑋𝑋𝑇𝑇∗ =  {0} holds true also, that is when 𝑇𝑇 is a 𝐶𝐶11-contraction, 
then a subset of Hlat 𝑇𝑇 is isomorphic to 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤𝑊𝑊𝑇𝑇 by [19]. (For a more complete 
description of the hyperinvariant subspace lattices of 𝐶𝐶11-contractions we refer to [19], 
[10],[13].) Thus we may assume that 𝑘𝑘𝑒𝑒𝑜𝑜𝑋𝑋𝑇𝑇∗ = ℌ, and so 𝑇𝑇 is a 𝐶𝐶10-contraction. Then 
𝐴𝐴 =  𝜗𝜗(𝑇𝑇) is also a 𝐶𝐶10-contraction (see[11]), and so is 𝐵𝐵 =  𝐴𝐴(ℵ0)  too. Therefore, we 
can concentrate on 𝐶𝐶10-contractions. 
Section(6.2):  Contractions and Function Algebras 
   Let ℋ be an infinite dimensional, separable, complex Hilbert space, and let ℒ(ℋ)stand 
for the algebra of bounded, linear operators acting on ℋ. With an operator 𝑇𝑇 ∈ ℒ(ℋ) the 
following operator algebras can be naturally associated. The set of (analytic) polynomials 
𝑝𝑝(𝑇𝑇) of 𝑇𝑇 is denoted by 𝑊𝑊0(𝑇𝑇), while the set of rational functions 𝑞𝑞(𝑇𝑇) of 𝑇𝑇 with poles 
off the spectrum 𝜎𝜎(𝑇𝑇) is denoted by 𝑅𝑅0(𝑇𝑇). The closures of these unital algebras in the 
weak operator topology (coinciding with the closures in the strong operator topology) are 
𝑊𝑊(𝑇𝑇) and ℜ(𝑇𝑇), respectively. The commutant {𝑇𝑇}′ of 𝑇𝑇 consists of those operators 𝐶𝐶 in 
ℒ(ℋ), which commute with 𝑇𝑇: 𝑇𝑇𝐶𝐶 =  𝐶𝐶𝑇𝑇. A subspace (i.e., closed linear manifold) ℳ of 
ℋ is invariant for 𝑇𝑇, if 𝑇𝑇𝑥𝑥 ∈ ℳ holds for every 𝑥𝑥 ∈ ℳ. The set Lat 𝑇𝑇 of all invariant 
subspaces of 𝑇𝑇 forms a complete lattice. The trivial subspaces {0} and ℋ clearly belong 
to Lat 𝑇𝑇. For a non-empty set 𝐴𝐴 ⊂ ℒ(ℋ)f operators, Lat 𝐴𝐴 ∶= 𝑇𝑇{𝐿𝐿𝑅𝑅𝑤𝑤𝐴𝐴 ∶  𝐴𝐴 ∈ 𝒜𝒜} is the 
lattice of common invariant subspaces. Since the operator algebras 𝑊𝑊(𝑇𝑇), ℛ(𝑇𝑇), {𝑇𝑇}′ 
form an increasing sequence, the corresponding invariant subspace 

𝐿𝐿𝑅𝑅𝑤𝑤 𝑇𝑇 = 𝐿𝐿𝑅𝑅𝑤𝑤𝑊𝑊(𝑇𝑇), ℛ𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇 ∶= 𝐿𝐿𝑅𝑅𝑤𝑤ℛ(𝑇𝑇), 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇 ∶= 𝐿𝐿𝑅𝑅𝑤𝑤{𝑇𝑇}′ 
form a decreasing sequence. The invariant subspace problem (𝐼𝐼𝑆𝑆𝑃𝑃) asks whether Lat 𝑇𝑇 is 
non-trivial (i.e., different from {{0}, ℋ}) for every operator 𝑇𝑇 ∈ ℒ(ℋ). The 
hyperinvariant subspace problem (𝐻𝐻𝑆𝑆𝑃𝑃) asks whether 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇 is non-trivial for every 
operator 𝑇𝑇 ∈ ℒ(ℋ) which is not scalar multiple of the identity. These are arguably the 
most challenging open questions in operator theory. Since multiplication of 𝑇𝑇 by a non-
zero scalar does not alter the associated algebras, studying these questions we may 
assume that the operator 𝑇𝑇 is a contraction: ‖𝑇𝑇 ‖ ≤ 1. We recall that contractions can be 
classified according to the asymptotic behaviour of their iterates and the iterates of  
their adjoints. Namely, 𝑇𝑇 is of class 𝐶𝐶0· if 𝑇𝑇 is stable, that is 𝑙𝑙𝑖𝑖𝑚𝑚𝑛𝑛→∞  ‖𝑇𝑇𝑛𝑛 𝑥𝑥‖ = 0 for 
every 𝑥𝑥 ∈ ℋ. 
The contraction 𝑇𝑇 is of class 𝐶𝐶1· if, on the contrary, 𝑇𝑇 is asymptotically nonvanishing, 
that is 𝑙𝑙𝑖𝑖𝑚𝑚𝑛𝑛→∞  ‖𝑇𝑇𝑛𝑛 𝑥𝑥 ‖ > 0 for every 𝑥𝑥 ∈ ℋ \ {0}. We say that 𝑇𝑇 is of class 𝐶𝐶·𝑗𝑗  , if the 
adjoint 𝑇𝑇∗ of 𝑇𝑇 is of class 𝐶𝐶𝑗𝑗 ·  (𝑗𝑗 =  0, 1). Finally, 𝑇𝑇 is of class 𝐶𝐶𝑖𝑖𝑗𝑗  if T simultaneously 
belongs to the classes 𝐶𝐶𝑖𝑖· and 𝐶𝐶·𝑗𝑗  (𝑖𝑖, 𝑗𝑗 =  0, 1). 
Every operator 𝑇𝑇 with ‖𝑇𝑇‖ < 1 is obviously a 𝐶𝐶00-contraction. Hence (𝐼𝐼𝑆𝑆𝑃𝑃)and (𝐻𝐻𝑆𝑆𝑃𝑃) 
in the class of 𝐶𝐶00-contractions are equivalent to the general problems. 
On the other hand, (𝐻𝐻𝑆𝑆𝑃𝑃) has been settled affirmatively in the class of 𝐶𝐶11-contractions 
(see [15]). Taking into account that the subspace {ℋ0(𝑇𝑇) ∶= 𝑥𝑥 ∈ ℋ ∶  𝑙𝑙𝑖𝑖𝑚𝑚𝑛𝑛→∞  ‖𝑇𝑇𝑛𝑛 𝑥𝑥‖ =
 0} is hyperinvariant for 𝑇𝑇 (i.e., ℋ0 (𝑇𝑇) belongs to Hlat 𝑇𝑇), we can reduce (𝐼𝐼𝑆𝑆𝑃𝑃) and 
(𝐻𝐻𝑆𝑆𝑃𝑃) concerning non-𝐶𝐶00- contractions to the class of 𝐶𝐶10-contractions. Our aim in this 
note is to get closer to the solution of the (𝐻𝐻𝑆𝑆𝑃𝑃) for 𝐶𝐶10-contractions in the cyclic case. 
We recall that the operator 𝑇𝑇 ∈ ℒ(ℋ) is cyclic if there exists a vector 𝑥𝑥 ∈ ℋ such that 
its orbit {𝑇𝑇𝑛𝑛 𝑥𝑥}𝑛𝑛=0

∞  spans the whole space ℋ. 
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The advantage of considering 𝐶𝐶10-contractions is shown by their connection with unitary 
operators, described below. If 𝐴𝐴 and 𝐵𝐵 are operators on the Hilbert spaces ℋ and Κ, 
respectively, then the intertwining set  ℒ(𝐴𝐴, 𝐵𝐵) consists of those bounded, linear 
transformations 𝑌𝑌 ∈ ℒ(ℋ,Κ) which satisfy the condition 𝑌𝑌𝐴𝐴 = 𝐵𝐵𝑌𝑌. Setting a 
contraction 𝑇𝑇 ∈ ℒ(ℋ) , we say that (𝑋𝑋, 𝑉𝑉) is an intertwining pair for 𝑇𝑇, if 𝑉𝑉 is a unitary 
operator on a separable Hilbert space Κ and 𝑋𝑋 ∈ ℒ (𝑇𝑇, 𝑉𝑉). The pair (𝑋𝑋, 𝑉𝑉) is called 
contractive, if ‖𝑋𝑋‖ ≤ 1. There exists a contractive intertwining pair (𝑋𝑋, 𝑉𝑉) for 𝑇𝑇, which is 
universal in the sense that given any contractive intertwining pair (𝑋𝑋′, 𝑉𝑉′) there exists a 
unique contractive 𝑌𝑌 ∈ ℒ  (𝑉𝑉, 𝑉𝑉′) such that 𝑋𝑋′ =  𝑌𝑌𝑋𝑋. Such a universal contractive pair 
(𝑋𝑋, 𝑉𝑉) is called a unitary asymptote of 𝑇𝑇. (Sometimes plainly V is called a unitary 
asymptote of 𝑇𝑇, when the existence of 𝑋𝑋 is tacitly meant.) This pair is uniquely 
determined up to isomorphism. Namely, if (𝑋𝑋1, 𝑉𝑉1) and (𝑋𝑋2, 𝑉𝑉2) are unitary asymptotes of 
𝑇𝑇, then there exists a unitary transformation 𝑍𝑍 ∈ ℒ (𝑉𝑉1, 𝑉𝑉2) such that 𝑍𝑍𝑋𝑋1 =  𝑋𝑋2. 
Let us assume that (𝑋𝑋, 𝑉𝑉) is a unitary asymptote of 𝑇𝑇. Then, given any intertwining 
pair (𝑋𝑋′, 𝑉𝑉′) for 𝑇𝑇, there exists a unique mapping 𝑌𝑌 ∈ ℒ (𝑉𝑉, 𝑉𝑉′) such that 𝑋𝑋′ =  𝑌𝑌𝑋𝑋; in 
addition ‖𝑌𝑌 ‖ = ‖𝑋𝑋′‖ Furthermore, for every 𝐶𝐶 ∈ {𝑇𝑇}′ there exists a unique 𝐷𝐷 ∈ {𝑉𝑉}′ 
satisfying the condition 𝑋𝑋𝐶𝐶 = 𝐷𝐷𝑋𝑋. The transformation   𝛾𝛾: {𝑇𝑇}′ → {𝑉𝑉}′, 𝐶𝐶 ↦ 𝐷𝐷 is a 
contractive, unital algebra-homomorphism. 
We know that ‖𝑋𝑋ℎ‖  =  𝑙𝑙𝑖𝑖𝑚𝑚𝑛𝑛→∞  ‖𝑇𝑇𝑛𝑛 ℎ‖ holds for every ℎ ∈ ℋ; hence 𝑘𝑘𝑒𝑒𝑜𝑜𝑋𝑋 =  ℋ0(𝑇𝑇). 
Furthermore, we have ⋁ 𝑉𝑉−𝑛𝑛 𝑋𝑋ℋ𝑛𝑛∈ℕ  = Κ. 𝑇𝑇ℎ𝑢𝑢𝑠𝑠 Κ =  {0} exactly when 𝑋𝑋 = 0, and this 
happens if and only if 𝑇𝑇 is a 𝐶𝐶0·-contraction. On the other hand, 𝑋𝑋 is injective precisely 
when 𝑇𝑇 is of class 𝐶𝐶1·. (For details we refer to [4] and [24].) 
The contraction 𝑇𝑇 can be uniquely decomposed into the orthogonal sum 𝑇𝑇 = 𝑇𝑇0 ⊕  𝑇𝑇1, 
where 𝑇𝑇0  is a completely non-unitary (𝑐𝑐. 𝑛𝑛. 𝑢𝑢. ) contraction and 𝑇𝑇1 is a unitary operator. 
We assume in the sequel that the contraction 𝑇𝑇 is absolutely continuous (a.c.), that is, its 
unitary part 𝑇𝑇1is an a.c. unitary operator. The latter means that the spectral measure of 𝑇𝑇1 
is a.c. with respect to the normalized Lebesgue measure 𝑚𝑚 on the unit circle 𝕋𝕋. Since the 
unitary asymptote 𝑉𝑉 is unitarily equivalent to the ∗-residual part of the minimal unitary 
dilation of 𝑇𝑇, we infer that 𝑉𝑉 is an a.c. unitary operator. (See [29], or [1] for a direct 
proof.) Therefore 𝑉𝑉 is determined up to unitary equivalence by its spectral multiplicity 
function 𝛿𝛿𝑉𝑉 ∶  𝕋𝕋 → ℕ ∪ {0, ∞}. For any 𝑛𝑛 ∈ ℕ, we consider the measurable set 
𝜔𝜔(𝑉𝑉, 𝑛𝑛) ∶= {𝜁𝜁 ∈  𝕋𝕋 ∶ 𝛿𝛿𝑉𝑉 (𝜁𝜁) ≥ 𝑛𝑛}. The Borel set 𝜔𝜔(𝑉𝑉) ∶= 𝜔𝜔(𝑉𝑉, 1) supports the spectral 
measure of 𝑉𝑉. The residual set of 𝑇𝑇 is defined by 𝜔𝜔(𝑇𝑇) ∶= 𝜔𝜔(𝑉𝑉), and is determined up to 
sets of zero Lebesgue measure. 
We note that (𝐼𝐼𝑆𝑆𝑃𝑃) is answered affirmatively, actually Lat 𝑇𝑇 has a rich structure with 
infinitely many invariant subspaces, if 𝜔𝜔(𝑇𝑇)  = 𝕋𝕋 (see [13]). 
The definition of another characteristic set associated with the a.c. contraction 𝑇𝑇 ∈ ℒ(ℋ) 
relies on the 𝑆𝑆𝑧𝑧.-Nagy–Foias functional calculus. For any 𝑝𝑝 ∈ [1, ∞], the Hardy space 𝐻𝐻𝑝𝑝  
can be identified with the subspace of functions with vanishing Fourier coefficients of 
negative indices in 𝐿𝐿𝑝𝑝 ∶= 𝐿𝐿𝑝𝑝 (𝑚𝑚) (see [9]). The aforementioned calculus for 𝑇𝑇 is the 
uniquely determined contractive, unital algebra homomorphism 

𝛷𝛷𝑇𝑇 ∶  𝐻𝐻∞  → ℒ(ℋ), 𝑓𝑓 ⟼   𝑓𝑓 (𝑇𝑇), 
which is continuous in the weak- * topologies, and which transforms the identical 
function  𝜒𝜒(𝜉𝜉) = 𝜉𝜉  into 𝑇𝑇 (see [34]). We can introduce partial ordering relations on 𝐻𝐻∞  
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and ℒ(ℋ)in the following way. For 𝑓𝑓, 𝑔𝑔 ∈ 𝐻𝐻∞ , the relation 𝑓𝑓 ≺ 𝑔𝑔 holds if |𝑓𝑓 (𝑧𝑧)| ≤
 |𝑔𝑔(𝑧𝑧)| for every 𝑧𝑧 in the open unit disc 𝔻𝔻. For 𝐴𝐴, 𝐵𝐵 ∈ ℒ(ℋ) the relation 𝐴𝐴 ≺ 𝐵𝐵 holds if 
‖𝐴𝐴𝑥𝑥‖ ≤ ‖ 𝐵𝐵𝑥𝑥‖ for every 𝑥𝑥 ∈ ℋ. 
It is easy to see that 𝛷𝛷𝑇𝑇  is monotone with respect to these relations. (Note that 𝑓𝑓 ≺ 𝑔𝑔 
yields 𝑓𝑓 =  𝑔𝑔ℎ with ℎ ∈ 𝐻𝐻∞ , ‖ℎ‖∞ ≤ 1. ) Setting any decreasing sequence 𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1

∞  
in 𝐻𝐻∞ , let us consider the limit function 𝜑𝜑𝐹𝐹 (𝜉𝜉) ∶=  𝑙𝑙𝑖𝑖𝑚𝑚𝑛𝑛→∞  |𝑓𝑓𝑛𝑛 (𝜉𝜉)| defined for almost 
every𝜁𝜁 ∈ 𝕋𝕋,and the hyperinvariant subspaceℋ0(𝑇𝑇, 𝐹𝐹) ∶=  {𝑥𝑥 ∈ ℋ ∶  lim𝑛𝑛→∞‖𝑓𝑓𝑛𝑛 (𝑇𝑇)𝑥𝑥‖ =
0. 
We say that the a.c. contraction 𝑇𝑇 is non-vanishing on the Borel set 𝛼𝛼 of 𝕋𝕋, if ℋ0(𝑇𝑇, 𝐹𝐹) =
{0} whenever the decreasing sequence 𝐹𝐹 is non-vanishing on 𝛼𝛼, i.e., whenever { 𝜁𝜁 ∈
𝛼𝛼: 𝜑𝜑𝐹𝐹  (𝜉𝜉) > 0} is of positive Lebesgue measure. There exists a largest Borel set with this 
property, called the quasianalytic  spectral set of 𝑇𝑇, and denoted by 𝜋𝜋(𝑇𝑇). Notice that 
𝜋𝜋(𝑇𝑇) is determined up to sets of measure zero. 
For any Borel subsets 𝛼𝛼, 𝛽𝛽 of 𝕋𝕋, it is reasonable to use the notation 𝛼𝛼 ⊂ 𝛽𝛽, 𝛼𝛼 = 𝛽𝛽 or 
𝛼𝛼 ≠ 𝛽𝛽 subsequently in the broader sense that 𝑚𝑚(𝛼𝛼\𝛽𝛽) = 0, 𝑚𝑚(𝛼𝛼 △ 𝛽𝛽) =  0 or 𝑚𝑚(𝛼𝛼 △
𝛽𝛽) > 0, respectively (reflecting the corresponding relations between the characteristic 
functions 𝜒𝜒𝛼𝛼  and  𝜒𝜒𝛽𝛽 , as elements of 𝐿𝐿∞). If  𝜋𝜋(𝑇𝑇) ≠  ∅, then considering the decreasing 
sequence {𝜒𝜒𝑛𝑛 }𝑛𝑛=1

∞  it can be seen that 𝑇𝑇 is a 𝐶𝐶1·-contraction. It was shown in [25] that 
𝜋𝜋(𝑇𝑇) ⊂ 𝜔𝜔(𝑇𝑇) always holds; furthermore, 𝜋𝜋(𝑇𝑇)  ≠ 𝜔𝜔(𝑇𝑇) implies that 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇 is non-
trivial. The a.c. contraction 𝑇𝑇 is called quasianalytic, if  𝜋𝜋(𝑇𝑇) = 𝜔𝜔(𝑇𝑇). We conclude that 
(𝐻𝐻𝑆𝑆𝑃𝑃) in 𝐶𝐶10 can be reduced to the quasianalytic case. In this section we study cyclic, 
quasianalytic 𝐶𝐶10contractions. 
Our work is organized as follows. In this Section  spectral mapping theorems for the 
residual set and for the quasianalytic spectral set are proved, extending and sharpening 
earlier results in [25]. The question concerning uniform spectral multiplicity on the 
quasianalytic spectral set, posed in [25], is answered negatively. 
  Cyclic, quasianalytic 𝐶𝐶10-contractions are related to the particular ones, where the 
quasianalytic spectral set covers the whole circle 𝕋𝕋. This special class is the subject of 
study in the remaining sections. The commutant {𝑇𝑇}′ is connected with a quasianalytic 
function algebra ℱ(𝑇𝑇), located between 𝐻𝐻∞  and 𝐿𝐿∞ . The functional calculus 𝛷𝛷𝑇𝑇  is 
extended from 𝐻𝐻∞  to the broader set ℱ(𝑇𝑇). The effect of M¨obius transformation is 
examined, and spectral relations are proved. Finally, Section  deals with characterization 
of the cases, when ℱ(𝑇𝑇) is a certain kind of generalized Douglas algebra. 
Let ℬ𝕋𝕋 denote the 𝜎𝜎-algebra of Borel sets on 𝕋𝕋. Assume that 𝜔𝜔0 ∈ ℬ𝕋𝕋 is of positive 
measure and ℎ: 𝜔𝜔0 → 𝕋𝕋 is a Borel measurable function. Consider the Lebesgue 
decomposition 𝜇𝜇ℎ =  𝜇𝜇ℎ ,𝑅𝑅  +  𝜇𝜇ℎ ,𝑠𝑠 of the induced measure 𝜇𝜇ℎ (𝜔𝜔) ∶= 𝑚𝑚(ℎ−1(𝜔𝜔)) (𝜔𝜔 ∈
ℬ𝕋𝕋). Taking the Radon–Nikodym derivative 𝑔𝑔ℎ =  𝑑𝑑𝜇𝜇ℎ ,𝑅𝑅 /𝑑𝑑𝑚𝑚 of the a.c. component, the 
Borel set 𝜔𝜔ℎ  is defined by 𝜔𝜔ℎ ∶=  {𝜁𝜁 ∈ 𝕋𝕋 ∶  𝑔𝑔ℎ (𝜁𝜁) > 0}. 
The set 𝜔𝜔ℎ  is determined up to sets of zero Lebesgue measure, and is called the properly 
essential range of ℎ. We also use the notation 𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛ℎ ∶= 𝜔𝜔ℎ .It is known that  
𝑙𝑙𝑖𝑖𝑚𝑚𝑜𝑜→0+𝑚𝑚(ℎ−1(𝐷𝐷(𝜁𝜁, 𝑜𝑜 ))/𝑜𝑜 >  0 for almos every 𝜁𝜁 ∈  𝜔𝜔ℎ ,and 𝑙𝑙𝑖𝑖𝑚𝑚𝑜𝑜→0+𝑚𝑚(ℎ−1(𝐷𝐷(𝜁𝜁, 𝑜𝑜 ))/
𝑜𝑜 =  0 for almost every 𝜁𝜁 ∈ 𝕋𝕋 \ 𝜔𝜔ℎ . (Here 𝐷𝐷(𝜁𝜁, 𝑜𝑜 ) ∶=  {𝜁𝜁 ·  𝑒𝑒2𝜋𝜋𝑖𝑖𝑤𝑤 ∶  𝑤𝑤 ∈ ℝ, |𝑤𝑤| ≤ 𝑜𝑜 /2}. ) 
Clearly, 𝜔𝜔ℎ  is contained in the essential range of ℎ, which is the complement of the 



- 157 - 
 

largest open set 𝛬𝛬 on 𝕋𝕋 satisfying the condition 𝜇𝜇ℎ (𝛬𝛬)  =  0.  If 𝜔𝜔0  =  ∅ (in the broader 
sense), then pe-ran ℎ = ∅. 
Let 𝑉𝑉 be an a.c. unitary operator acting on the infinite dimensional, separable Hilbert 
space Κ. Notice that (𝐼𝐼, 𝑉𝑉) is a unitary asymptote of 𝑉𝑉, and so the residual set 𝜔𝜔(𝑉𝑉) is the 
support of the spectral measure of 𝑉𝑉. The Borel set 𝜔𝜔(𝑉𝑉) has positive measure, since the 
space Κ is non-zero. 
The function ℎ ∈ 𝐻𝐻∞  is called partially inner, if ‖ℎ‖∞ =  1, |ℎ(0)| < 1, and if the Borel 
set 𝛺𝛺(ℎ) ∶= {𝜁𝜁 ∈ 𝕋𝕋 ∶ |ℎ(𝜁𝜁)| = 1} is of positive measure. 
Lemma(6. 2.1)[13]: Setting 𝑉𝑉 and h as above, and assuming 𝜔𝜔(𝑉𝑉) ⊂ 𝛺𝛺(ℎ), let us 
consider the operator 𝑊𝑊 ∶= ℎ(𝑉𝑉). 
(a) W is an a.c. unitary operator with 𝜔𝜔(𝑊𝑊) =  𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(ℎ|𝜔𝜔(𝑉𝑉)). 
(b) If ℳ ∈ 𝐿𝐿𝑅𝑅𝑤𝑤𝑉𝑉 and ⋁𝑛𝑛∈ℕ 𝑉𝑉−𝑛𝑛 ℳ =  Κ, then  
ℳ ∈  𝐿𝐿𝑅𝑅𝑤𝑤𝑊𝑊 and ⋁ 𝑊𝑊−𝑛𝑛

𝑛𝑛∈ℕ ℳ = Κ. 
Proof. (a): Recall that the operator ℎ(𝑉𝑉) given by the 𝑆𝑆𝑧𝑧. −𝑁𝑁𝑅𝑅𝑔𝑔𝑢𝑢– 𝐹𝐹𝑜𝑜𝑖𝑖𝑅𝑅𝑠𝑠 calculus 
coincides with the operator yielded by the spectral measure 𝐸𝐸: ℬ𝕋𝕋 → 𝒫𝒫(Κ) of 𝑉𝑉:  
ℎ(𝑉𝑉) = ∫ ℎ𝑑𝑑𝐸𝐸 

𝜔𝜔 (𝑉𝑉) . 
(Here 𝒫𝒫(Κ) stands for the set of orthogonal projections acting on Κ.) Since h is 
unimodular on 𝜔𝜔(𝑉𝑉), it follows that 𝑊𝑊 is unitary. The a.c. unitary operator 𝑉𝑉 is similar to 
a 𝑐𝑐. 𝑛𝑛. 𝑢𝑢. contraction 𝑄𝑄 (see [29]). Hence 𝑊𝑊 is similar to ℎ(𝑄𝑄). Since the contraction 
ℎ(𝑄𝑄) is also 𝑐𝑐. 𝑛𝑛. 𝑢𝑢., we conclude that 𝑊𝑊 is an a.c. unitary operator (see [29]). 
Setting  ℎ0 ∶=  ℎ|𝜔𝜔(𝑉𝑉), the formula �̀�𝐸(𝜔𝜔) ∶=  𝐸𝐸(ℎ0

−1(𝜔𝜔)) (𝜔𝜔 ∈ ℬ𝕋𝕋) clearly defines a 
spectral measure. Since 

∫ 𝜒𝜒 
𝕋𝕋 𝑑𝑑𝐸𝐸′ = ∫ ℎ𝑑𝑑𝐸𝐸 

𝕋𝕋  = 𝑊𝑊, 
we infer that 𝐸𝐸′ must be the spectral measure of 𝑊𝑊. The measure  𝜒𝜒𝜔𝜔 (𝑊𝑊)dm is obviously 
equivalent (mutually 𝑅𝑅. 𝑐𝑐.) to 𝜇𝜇ℎ0  . Hence 𝜇𝜇ℎ0  is 𝑅𝑅. 𝑐𝑐., and so it is equivalent to 𝜒𝜒𝜔𝜔ℎ0 𝑑𝑑𝑚𝑚. 
Therefore 𝜔𝜔(𝑊𝑊) = 𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛ℎ0. 
(b): It is evident that 𝐿𝐿𝑅𝑅𝑤𝑤𝑉𝑉 is contained in 𝐿𝐿𝑅𝑅𝑤𝑤𝑊𝑊. Suppose that the subspace ℳ is 
invariant for 𝑉𝑉, and the smallest reducing subspace of 𝑉𝑉 containingℳis Κ. If 𝑉𝑉|ℳ is 
unitary, then ℳ is reducing for 𝑉𝑉, and so ℳ =  Κ. Thus, we may assume that the 
restriction 𝑉𝑉|ℳ is a non-unitary isometry. Let us consider the Wold decomposition 
ℳ = ℳ0  ⊕ ℳ1, where 𝑉𝑉0 ∶=  𝑉𝑉|ℳ0 is a unilateral shift and 𝑉𝑉1 := 𝑉𝑉|ℳ1 is unitary. 
Since ℳ0 is non-zero, we infer that 𝕋𝕋 =  𝜔𝜔(𝑉𝑉) ⊂ 𝛺𝛺(ℎ), and so ℎ is a non-constant inner 
function. By the assumption, Κ = ⋁ 𝑉𝑉−𝑛𝑛

𝑛𝑛∈ℕ  ℳ = 𝑀𝑀�0 ⊕ ℳ1, 𝑤𝑤ℎ𝑒𝑒𝑜𝑜𝑒𝑒 𝑀𝑀�0  =
⋁ 𝑉𝑉−𝑛𝑛

𝑛𝑛∈ℕ ℳ0. Taking the corresponding decomposition for 𝑊𝑊, we obtain that 𝑊𝑊|ℳ =
 𝑊𝑊0  ⊕  𝑊𝑊1, where 𝑊𝑊0 = ℎ(𝑉𝑉0) and 𝑊𝑊1  =  ℎ(𝑉𝑉1) is unitary; hence ⋁ 𝑊𝑊−𝑛𝑛

𝑛𝑛∈ℕ ℳ =
 (⋁ 𝑊𝑊−𝑛𝑛

𝑛𝑛∈ℕ ℳ0) ⊕ 𝑀𝑀1. We have to show that ⋁ 𝑊𝑊−𝑛𝑛
𝑛𝑛∈ℕ ℳ0  = ℳ�0. Considering the 

functional model of the unilateral shifts, it is enough to verify that ⋁ ℎ�𝑛𝑛
𝑛𝑛∈ℕ 𝐻𝐻𝑛𝑛 2 = 𝐿𝐿2. 

Setting 𝑅𝑅: =  ℎ(0) ∈ 𝔻𝔻, let us form the inner function 𝑢𝑢 ∶= 𝑏𝑏𝑅𝑅 ∘ ℎ, where 𝑏𝑏𝑅𝑅 (𝑧𝑧) =  (𝑧𝑧 −
𝑅𝑅)/(1 −   𝑅𝑅�𝑧𝑧) (𝑧𝑧 ∈ 𝔻𝔻) is the M¨obius function, corresponding to 𝑅𝑅. Let 𝑀𝑀�𝑢𝑢  and 𝑀𝑀�ℎ  
denote the unitary operators of multiplication by 𝑢𝑢 and ℎ, respectively, on the space 𝐿𝐿2. 
In view of the relations 𝑀𝑀�𝑢𝑢 = 𝑏𝑏𝑅𝑅 ( 𝑀𝑀�ℎ ) 𝑅𝑅𝑛𝑛𝑑𝑑 𝑀𝑀�ℎ =  𝑏𝑏−𝑅𝑅 ( 𝑀𝑀�𝑢𝑢 ) we can see that Lat 𝑀𝑀�ℎ =
 𝐿𝐿𝑅𝑅𝑤𝑤 𝑀𝑀�𝑢𝑢 . Taking into account that the subspace 𝐿𝐿2 ⊖ (⋁ ℎ�𝑛𝑛

𝑛𝑛∈ℕ 𝐻𝐻2) is invariant for 𝑀𝑀�ℎ  
and orthogonal to 𝐻𝐻2, we can reduce the proof to show that ⋁ 𝑢𝑢�𝑛𝑛

𝑛𝑛∈ℕ 𝐻𝐻2 = 𝐿𝐿2. However, 
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𝑢𝑢 has the form 𝑢𝑢 = 𝜒𝜒𝑣𝑣, where 𝑣𝑣 ∈ 𝐻𝐻∞  is an inner function. Thus  
𝑢𝑢�𝑛𝑛 𝐻𝐻2 ⊃ �̅�𝜒𝑛𝑛  �̅�𝑣𝑛𝑛 𝑣𝑣𝑛𝑛 𝐻𝐻2 = �̅�𝜒𝑛𝑛 𝐻𝐻2 holds for every 𝑛𝑛 ∈ ℕ, and so ⋁ 𝑢𝑢�𝑛𝑛

𝑛𝑛∈ℕ 𝐻𝐻2 = 𝐿𝐿2  ⊃
⋁ �̅�𝜒𝑛𝑛

𝑛𝑛∈ℕ 𝐻𝐻2 = 𝐿𝐿2 .                                      
The previous proof yields that the measure 𝜇𝜇ℎ |𝛺𝛺(ℎ) 𝑖𝑖𝑠𝑠 𝑅𝑅. 𝑐𝑐. Thus we obtain the following 
statement, which can be considered as an extension of the 𝐹𝐹. &𝑀𝑀. Riesz Theorem (see 
[9]). 
Corollary(6 2.2)[13]: If ℎ ∈ 𝐻𝐻∞  is partially inner, then for every Borel set 𝜔𝜔 ∈ ℬ𝕋𝕋 the 
condition 𝑚𝑚(𝜔𝜔) = 0 implies 𝑚𝑚(ℎ−1(𝜔𝜔) ∩ 𝕋𝕋) = 0. 
We say that the partially inner function ℎ ∈ 𝐻𝐻∞   is regular, if for every Borel subset 𝛺𝛺 of 
𝛺𝛺(ℎ) the image ℎ(𝛺𝛺) is also a Borel set on 𝕋𝕋, and for every Borel subset �̀�𝜔of ℎ(𝛺𝛺) the 
condition 𝑚𝑚(�̀�𝜔) > 0 implies 𝑚𝑚((ℎ|𝛺𝛺)−1(�̀�𝜔))  >  0. It is easy to check that in that case 
𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(ℎ|𝛺𝛺) =  ℎ(𝛺𝛺). 
Let 𝑇𝑇 ∈  ℒ(ℋ) be an a.c. contraction. Let (𝑋𝑋𝑇𝑇  , 𝑉𝑉𝑇𝑇  ) be a unitary asymptote of 𝑇𝑇, the a.c. 
unitary operator 𝑉𝑉𝑇𝑇acting on the Hilbert space Κ𝑇𝑇  . The spectral measure of 𝑉𝑉𝑇𝑇 is denoted 
by 𝐸𝐸𝑇𝑇  . Given a partially inner function ℎ ∈ 𝐻𝐻∞we set 𝜔𝜔(𝑇𝑇, ℎ) ∶= 𝜔𝜔(𝑇𝑇) ∩ 𝛺𝛺(ℎ). Taking 
the spectral subspace Κ𝑇𝑇,ℎ ∶= 𝐸𝐸𝑇𝑇  (𝜔𝜔(𝑇𝑇, ℎ))Κ𝑇𝑇  , we consider the unitary operator 
𝑉𝑉𝑇𝑇,ℎ ∶= 𝑉𝑉𝑇𝑇  |Κ𝑇𝑇,ℎ  and the intertwining mapping 𝑋𝑋𝑇𝑇,ℎ  ∈ ℒ (𝑇𝑇, 𝑉𝑉𝑇𝑇,ℎ ) defined by 𝑋𝑋𝑇𝑇,ℎ , 𝜒𝜒 ∶=
 𝐸𝐸𝑇𝑇(𝜔𝜔(𝑇𝑇, ℎ))𝑋𝑋𝑇𝑇 , 𝜒𝜒 (𝑥𝑥 ∈ ℋ). The operator ℎ(𝑇𝑇) is also an a.c. contraction (see the proof 
of Lemma (6.2.1). 
Theorem(6.2.3)[13]: Under the previous conditions the pair (𝑋𝑋𝑇𝑇,ℎ , ℎ(𝑉𝑉𝑇𝑇,ℎ )) is a unitary 
asymptote of ℎ(𝑇𝑇), and so  𝜔𝜔(ℎ(𝑇𝑇)) =  𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(ℎ|𝜔𝜔(𝑇𝑇, ℎ)). 
Proof.  For convenience we introduce the notation 𝐴𝐴 ∶=  ℎ(𝑇𝑇). 𝐿𝐿𝑒𝑒𝑤𝑤 (𝑋𝑋𝐴𝐴 , 𝑉𝑉𝐴𝐴) be a unitary 
asymptote of the a.c. contraction 𝐴𝐴, 𝑉𝑉𝐴𝐴 acting on the Hilbert space Κ𝐴𝐴. Since 𝑇𝑇 ∈ {𝐴𝐴}′, 
there exists a unique operator 𝑇𝑇𝐴𝐴 ∈ {𝑉𝑉𝐴𝐴}′ such that 𝑋𝑋𝐴𝐴𝑇𝑇 =  𝑇𝑇𝐴𝐴𝑋𝑋𝐴𝐴; in addition: ‖𝑇𝑇𝐴𝐴‖ ≤
‖𝑇𝑇‖ ≤ 1. The space Κ𝐴𝐴 splits into the orthogonal sum Κ𝐴𝐴 =  Κ0 ⊕  Κ1 reducing for 𝑇𝑇𝐴𝐴 , 
where 𝑇𝑇𝐴𝐴,0 ∶=  𝑇𝑇𝐴𝐴|Κ0 is an a.c. contraction and 𝑇𝑇𝐴𝐴,1 ∶= 𝑇𝑇𝐴𝐴|Κ1 is a singular unitary 
operator. Let 𝑃𝑃1 denote the orthogonal projection onto Κ1 in Κ𝐴𝐴. Since the mapping 
𝑋𝑋𝐴𝐴,1 𝑥𝑥: = 𝑃𝑃1𝑋𝑋𝐴𝐴  𝑥𝑥 (𝑥𝑥 ∈ ℋ) intertwines the a.c. contraction 𝑇𝑇 with the singular unitary 
operator 𝑇𝑇𝐴𝐴,1, it follows that 𝑋𝑋𝐴𝐴,1 =  0. Hence 𝑋𝑋𝐴𝐴ℋ is contained in Κ0. Taking into 
account that Κ0 is hyperinvariant for 𝑇𝑇𝐴𝐴 , we infer that Κ𝐴𝐴  = ⋁ 𝑉𝑉𝐴𝐴

−𝑛𝑛
𝑛𝑛∈ℕ 𝑋𝑋𝐴𝐴ℋ is included 

in Κ0. Thus Κ𝐴𝐴 =  Κ0, and so 𝑇𝑇𝐴𝐴  is an a.c. contraction. 
The equation 𝑋𝑋𝐴𝐴𝑇𝑇 =  𝑇𝑇𝐴𝐴𝑋𝑋𝐴𝐴 yields 𝑋𝑋𝐴𝐴𝐴𝐴 =  𝑋𝑋𝐴𝐴ℎ(𝑇𝑇)  =  ℎ(𝑇𝑇𝐴𝐴)𝑋𝑋𝐴𝐴. Since ℎ(𝑇𝑇𝐴𝐴)  ∈  {𝑉𝑉𝐴𝐴}′, 𝑖𝑖t 
follows that ℎ(𝑇𝑇𝐴𝐴)  = 𝑉𝑉𝐴𝐴. Regarding the decomposition 𝑇𝑇𝐴𝐴  =  𝑇𝑇′𝐴𝐴  ⊕ 𝑇𝑇′′𝐴𝐴   , where 𝑇𝑇′𝐴𝐴 is 
a c.n.u. contraction and 𝑇𝑇′′𝐴𝐴  is an a.c. unitary operator, we obtain that ℎ(𝑇𝑇𝐴𝐴)  =
 ℎ(𝑇𝑇′𝐴𝐴)  ⊕  ℎ(𝑇𝑇′′𝐴𝐴  ), where ℎ(𝑇𝑇′𝐴𝐴  ) is a 𝑐𝑐. 𝑛𝑛. 𝑢𝑢. contraction. Taking into account that 
ℎ(𝑇𝑇𝐴𝐴)  = 𝑉𝑉𝐴𝐴 is unitary, we conclude that 𝑇𝑇𝐴𝐴  is an a.c. unitary operator. 
Since (𝑋𝑋𝑇𝑇  , 𝑉𝑉𝑇𝑇  ) is a unitary asymptote of 𝑇𝑇 and since the contractive mapping 𝑋𝑋𝐴𝐴 
intertwines 𝑇𝑇 with the unitary operator 𝑇𝑇𝐴𝐴 , there exists a unique contraction 𝑌𝑌 ∈
 ℒ (𝑉𝑉𝑇𝑇  , 𝑇𝑇𝐴𝐴) such that 𝑋𝑋𝐴𝐴  =  𝑌𝑌𝑋𝑋𝑇𝑇 . With respect to the decomposition Κ𝑇𝑇  = Κ𝑇𝑇,ℎ ,⊕
Κ′𝑇𝑇 ,ℎ  the a.c. unitary operator 𝑉𝑉𝑇𝑇has the form 𝑉𝑉𝑇𝑇  =  𝑉𝑉𝑇𝑇,ℎ  ⊕  𝑉𝑉′𝑇𝑇 ,ℎ . Then ℎ(𝑉𝑉𝑇𝑇)  =
 ℎ(𝑉𝑉𝑇𝑇,ℎ )  ⊕  ℎ(𝑉𝑉′𝑇𝑇 ,ℎ ), where ℎ(𝑉𝑉𝑇𝑇,ℎ ) is unitary and ℎ(𝑉𝑉′𝑇𝑇 ,ℎ ) is a C0·- contraction. Since 
𝑌𝑌|Κ′𝑇𝑇 ,ℎ  intertwines ℎ(𝑉𝑉′𝑇𝑇 ,ℎ ) with the unitary operator ℎ(𝑇𝑇𝐴𝐴), it follows that 𝑌𝑌|𝐾𝐾′𝑇𝑇 ,ℎ  =
 0. Clearly  
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𝑌𝑌ℎ ∶=  𝑌𝑌|𝐾𝐾′
𝑇𝑇 ,ℎ ∈ ℒ (ℎ(𝑉𝑉𝑇𝑇,ℎ ), ℎ(𝑇𝑇𝐴𝐴)). 

The contractive mapping 𝑋𝑋𝑇𝑇,ℎ , intertwines 𝐴𝐴 with ℎ(𝑉𝑉𝑇𝑇,ℎ ), and (𝑋𝑋𝐴𝐴 , 𝑉𝑉𝐴𝐴) is a unitary 
asymptote of 𝐴𝐴, thus there exists a unique contraction 𝑍𝑍 ∈ ℒ (𝑉𝑉𝐴𝐴 , ℎ(𝑉𝑉𝑇𝑇,ℎ )) such that 
𝑋𝑋𝑇𝑇,ℎ  = 𝑍𝑍𝑋𝑋𝐴𝐴. Since 𝑌𝑌ℎ 𝑍𝑍 ∈  {𝑉𝑉𝐴𝐴}′ and 

𝑋𝑋𝐴𝐴 =  𝑌𝑌𝑋𝑋𝑇𝑇 =  𝑌𝑌𝐸𝐸𝑇𝑇  (𝜔𝜔(𝑇𝑇, ℎ))𝑋𝑋𝑇𝑇  =  𝑌𝑌ℎ 𝑋𝑋𝑇𝑇,ℎ  =  𝑌𝑌ℎ 𝑍𝑍𝑋𝑋𝐴𝐴 , 
it follows that 𝑌𝑌ℎ 𝑍𝑍 = 𝐼𝐼. The transformations 𝑌𝑌ℎ  and 𝑍𝑍 being contractive, the equation 
𝑌𝑌ℎ 𝑍𝑍 = 𝐼𝐼 yields that 𝑍𝑍 is an isometry. 
We know also 𝑋𝑋𝑇𝑇,ℎ  =  𝑍𝑍𝑋𝑋𝐴𝐴  =  𝑍𝑍𝑌𝑌𝑋𝑋𝑇𝑇  , whence 𝑜𝑜𝑅𝑅𝑛𝑛𝑋𝑋𝑇𝑇,ℎ ⊂ 𝑜𝑜𝑅𝑅𝑛𝑛 𝑍𝑍. The subspace ℳ ∶=
 (𝑋𝑋𝑇𝑇,ℎ  ℋ) − is invariant for the a.c. unitary operator 𝑉𝑉𝑇𝑇,ℎ . The spectral subspaceΚ𝑇𝑇,ℎ is 
hyperinvariant for 𝑉𝑉𝑇𝑇 , hence ℳ� ∶= ⋁ 𝑉𝑉𝐴𝐴

−𝑛𝑛
𝑛𝑛∈ℕ ℳ is contained in Κ𝑇𝑇,ℎ . Since the 

subspace ℳ�  ⊕ 𝐾𝐾′𝑇𝑇 ,ℎ  is reducing for 𝑉𝑉𝑇𝑇 and contains the range of 𝑋𝑋𝑇𝑇  , it follows that 
ℳ�  =  Κ𝑇𝑇,ℎ . 𝐼𝐼𝑓𝑓 𝜔𝜔(𝑇𝑇, ℎ) =  ∅, then Κ𝑇𝑇,ℎ =  {0} and so 𝑍𝑍Κ𝐴𝐴  =  Κ𝑇𝑇,ℎ . 𝐼𝐼𝑓𝑓 𝜔𝜔(𝑇𝑇, ℎ) , ∅, then 
Lemma (6. 2.1) yields that 

Κ𝑇𝑇,ℎ  = ⋁ ℎ𝑛𝑛∈ℕ (𝑉𝑉𝑇𝑇,ℎ )−𝑛𝑛 ℳ. 
Since 𝑍𝑍 intertwines the unitaries 𝑉𝑉𝐴𝐴 and ℎ(𝑉𝑉𝑇𝑇,ℎ ), it follows that the subspace 𝑍𝑍Κ𝐴𝐴 is 
reducing for ℎ(𝑉𝑉𝑇𝑇,ℎ ). Taking into account that 𝑍𝑍Κ𝐴𝐴 contains ℳ, we conclude that 
𝑍𝑍Κ𝐴𝐴  =  Κ𝑇𝑇,ℎ  . Therefore 𝑍𝑍 and 𝑌𝑌ℎ  are unitary transformations, and so the pair 
(𝑋𝑋𝑇𝑇,ℎ  , ℎ(𝑉𝑉𝑇𝑇,ℎ ))—being equivalent to (𝑋𝑋𝐴𝐴 , 𝑉𝑉𝐴𝐴) is a unitary asymptote of 𝐴𝐴. Applying 
Lemma(6. 2.1) we obtain that 

𝜔𝜔(𝐴𝐴) = 𝜔𝜔(ℎ(𝑉𝑉𝑇𝑇,ℎ ))  =  𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(ℎ|𝜔𝜔(𝑇𝑇, ℎ)). 
Notice that if  𝜔𝜔(𝑇𝑇, ℎ)  =  ∅, then Κ𝑇𝑇,ℎ =  {0}, and since 𝑉𝑉𝑇𝑇,ℎ is a unitary asymptote of 
ℎ(𝑇𝑇), it follows that ℎ(𝑇𝑇) is of class 𝐶𝐶0.. In particular, we obtain that ℎ(𝑇𝑇) is a 𝐶𝐶0·-
contraction, whenever 𝑇𝑇 is a 𝐶𝐶0.-contraction. 
Theorem(6. 2.3) is an improvement of [25], with a streamlined proof, completely 
identifying the unitary asymptote (𝑋𝑋𝐴𝐴 , 𝑉𝑉𝐴𝐴). The following results extend the statements  in 
[25]. 
Theorem(6.2.4)[13]: Under the conditions of the previous theorem we have 
  𝜋𝜋(ℎ(𝑇𝑇)) ⊃  𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(ℎ|𝜋𝜋(𝑇𝑇, ℎ)), 
where 𝜋𝜋(𝑇𝑇, ℎ) ∶= 𝜋𝜋(𝑇𝑇) ∩ 𝛺𝛺(ℎ). 
Proof: We may assume that  𝜋𝜋(𝑇𝑇, ℎ) , ∅; then 𝑇𝑇 must be a 𝐶𝐶1·-contraction. 
For convenience let us use the notation  𝜔𝜔0 ∶= 𝜋𝜋(𝑇𝑇, ℎ), ℎ0 ∶=  ℎ|𝜔𝜔0, and �̀�𝜔0 ∶= 𝑝𝑝𝑒𝑒 −
𝑜𝑜𝑅𝑅𝑛𝑛ℎ0. Assume that the decreasing sequence  𝐹𝐹 =  {𝑓𝑓𝑛𝑛 }𝑛𝑛=1

∞  𝑜𝑜𝑓𝑓 𝐻𝐻∞ -functions is non-
vanishing on �̀�𝜔0, that is, the 𝑠𝑠𝑒𝑒𝑤𝑤 �̀�𝜔1 ∶= {𝜁𝜁 ∈ �̀�𝜔0 ∶ 𝜑𝜑𝐹𝐹  (𝜉𝜉) > 0} is of positive measure. By 
Corollary (6.2.2) the measure 𝜇𝜇ℎ0 (𝜔𝜔)  =  𝑚𝑚(ℎ0

−1 (𝜔𝜔)) (𝜔𝜔 ∈  ℬ𝕋𝕋) is a.c., and so it is 
equivalent to𝜒𝜒�̀�𝜔0dm. Hence 𝜔𝜔1 ≔ ℎ0

−1(�̀�𝜔0) is a subset of  𝜋𝜋(𝑇𝑇) with positive measure. 
The decreasing sequence 𝐹𝐹 ∘  ℎ =  {𝑓𝑓𝑛𝑛 ∘ ℎ}𝑛𝑛=1

∞  does not vanish on 𝜋𝜋(𝑇𝑇), namely 
𝜑𝜑𝐹𝐹∘ℎ (𝜁𝜁) > 0 for almost every 𝜁𝜁 ∈  𝜔𝜔1. We conclude that 

ℋ0(ℎ(𝑇𝑇), 𝐹𝐹) = ℋ0(𝑇𝑇, 𝐹𝐹 ∘  ℎ) = {0}, 
and so  𝜋𝜋(ℎ(𝑇𝑇)) contains �̀�𝜔0.                              
Combining the previous theorems with the fact that the quasianalytic spectral set is 
always included in the residual set, we obtain the following result. 
Corollary (6.2.5)[13]:  Let 𝑇𝑇 ∈ ℒ(ℋ) be an a.c. contraction, and let ℎ ∈ 𝐻𝐻∞  be a 
partially inner function. If 𝜔𝜔(𝑇𝑇, ℎ)  = 𝜋𝜋(𝑇𝑇, ℎ), then 
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𝜔𝜔(ℎ(𝑇𝑇))  = 𝜋𝜋(ℎ(𝑇𝑇)) = 𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(ℎ|𝜔𝜔(𝑇𝑇, ℎ)). 
This statement provides a tool for the construction of quasianalytic contractions, starting 
with some a.c. contractions with non-vanishing quasianalytic spectral sets. Notice also 
that if 𝑇𝑇 is quasianalytic and ℳ is a non-zero invariant subspace of 𝑇𝑇, then the relations 
𝜋𝜋(𝑇𝑇|𝑀𝑀)  ⊃ 𝜋𝜋(𝑇𝑇) =  𝜔𝜔(𝑇𝑇) ⊃ 𝜔𝜔(𝑇𝑇|ℳ) yield that the restriction 𝑇𝑇|ℳ is also 
quasianalytic, with the same quasianalytic spectral set as 𝑇𝑇. Taking cyclic subspaces, we 
can get examples for cyclic quasianalytic contractions. 
We present example for a quasianalytic contraction with non-uniform spectral 
multiplicity function. (see [25].  
Example(6 2.6)[13]: Let 𝑆𝑆 ∈ ℒ(ℋ2)  be the unilateral shift, defined by 𝑆𝑆𝑓𝑓 ∶= 𝜒𝜒𝑓𝑓 . 
The 𝐹𝐹. &𝑀𝑀. Riesz Theorem yields that 𝜋𝜋(𝑆𝑆) = 𝕋𝕋. Let ℎ be a conformal Riemann 
mapping of the open unit disc 𝔻𝔻 onto the simply connected open set 𝐺𝐺 ∶= �𝑜𝑜𝑒𝑒𝑖𝑖𝑤𝑤 ∶  0 <

 𝑜𝑜 <  1, 0 <  𝑤𝑤 < 3𝜋𝜋
2

 �. 
Since the boundary 𝜕𝜕𝐺𝐺 of 𝐺𝐺 is a Jordan curve, we may infer, by a theorem of 
Charath´eodory, that ℎ extends to a homeomorphism from the closed unit disc 𝔻𝔻− onto 
the closure 𝐺𝐺− of 𝐺𝐺 (see [21]). Clearly 𝛺𝛺(ℎ) = ℎ−1(𝛼𝛼), where 𝛼𝛼 =  {𝑒𝑒𝑖𝑖𝑤𝑤 ∶ 0 ≤ 𝑤𝑤 ≤
3𝜋𝜋/2}. Since 𝜕𝜕𝐺𝐺 is rectifiable, we obtain that ℎ is a regular partially inner function (see 
[21]), and so 𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(ℎ|𝛺𝛺(ℎ)) = ℎ(𝛺𝛺(ℎ)) = 𝛼𝛼 By Corollary (6.2.5) the analytic 
Toeplitz operator ℎ(𝑆𝑆) is quasianalytic with 𝜋𝜋(ℎ(𝑆𝑆)) = 𝛼𝛼. Considering restriction of 
ℎ(𝑆𝑆) to a cyclic subspace ℋ, we obtain a cyclic a.c. contraction 𝑄𝑄 ∈ ℒ(ℋ) such that 
𝜋𝜋(𝑄𝑄)  = 𝜔𝜔(𝑄𝑄) = 𝛼𝛼 _. Let (𝑋𝑋𝑄𝑄 , 𝑉𝑉𝑄𝑄) be a unitary asymptote of 𝑄𝑄, where 𝑉𝑉𝑄𝑄 ∈ ℒ(Κ𝑄𝑄). 
Since ⋁ 𝑉𝑉𝑄𝑄

−𝑛𝑛
𝑛𝑛∈ℕ 𝑋𝑋𝑄𝑄ℋ = Κ𝑄𝑄 , it follows that the a.c. unitary operator 𝑉𝑉𝑄𝑄  is also cyclic. 

Hence 𝑉𝑉𝑄𝑄 is unitarily equivalent to the operator 𝑀𝑀𝛼𝛼  of multiplication by 𝜒𝜒 on the space 
𝐿𝐿2(𝛼𝛼) ∶= 𝜒𝜒𝛼𝛼 𝐿𝐿2. 
We know by Corollary(6.2.5) that the a.c. contraction 𝑇𝑇 ∶=  𝑄𝑄2 is quasianalytic with  
𝜋𝜋(𝑇𝑇) = 𝕋𝕋. 𝐿𝐿𝑒𝑒𝑤𝑤 (𝑋𝑋𝑇𝑇  , 𝑉𝑉𝑇𝑇  ) be a unitary asymptote of 𝑇𝑇. We conclude by Theorem(6.2.3) 
that 𝑉𝑉𝑇𝑇 is unitarily equivalent to 𝑀𝑀𝛼𝛼

2: 𝑉𝑉𝑇𝑇  ≃ 𝑀𝑀𝛼𝛼
2. On the other hand, it is easy to verify that 

𝑀𝑀𝛼𝛼
2  ≃  𝑀𝑀𝕋𝕋 ⊕  𝑀𝑀𝛼𝛼1  , where 𝛼𝛼1 =  {𝑒𝑒𝑖𝑖𝑤𝑤 ∶  0 ≤ 𝑤𝑤 ≤ 𝜋𝜋}. 

Therefore 𝑉𝑉𝑇𝑇  ≃  𝑀𝑀𝕋𝕋 ⊕ 𝑀𝑀𝛼𝛼1  , and so the spectral multiplicity function 𝛿𝛿𝑉𝑉𝑇𝑇 = 1 + 𝜒𝜒𝛼𝛼1  is 
not constant on 𝜋𝜋(𝑇𝑇) =  𝕋𝕋. 
Let 𝑇𝑇 ∈ ℒ(ℋ) be a 𝐶𝐶10-contraction. Then 𝑇𝑇 is clearly 𝑐𝑐. 𝑛𝑛. 𝑢𝑢., and so it is an a.c. 
contraction. Let (𝑋𝑋, 𝑉𝑉) be a unitary asymptote of 𝑇𝑇, 𝑉𝑉 ∈ ℒ(𝒦𝒦). We say that 𝑇𝑇 belongs to 
the class ℒ0(ℋ) if it is also quasianalytic, and if the unitary operator 𝑉𝑉 is cyclic. 
Assuming 𝑇𝑇 ∈ ℒ0(ℋ), the cyclicity of 𝑉𝑉 implies that the commutant {𝑉𝑉}′ is abelian. 
Furthermore, the canonical algebra-homomorphism  𝛾𝛾: {𝑇𝑇}′ → {𝑉𝑉}′, defined by 𝛾𝛾(𝐶𝐶)𝑋𝑋 =
 𝑋𝑋𝐶𝐶, is one-to-one since 𝑋𝑋 is injective. 
Hence the commutant {𝑇𝑇}′ is necessarily abelian too. 
We note that 𝑉𝑉 is evidently cyclic when 𝑇𝑇 is. However, 𝑉𝑉 can be cyclic even when 𝑇𝑇 is 
not cyclic. Indeed, example was given in [30] for a non-cyclic 𝐶𝐶10- contraction 𝑇𝑇 with 
defect indices 𝑑𝑑𝑇𝑇 = 1 and 𝑑𝑑𝑇𝑇∗ =  2 (yielding 𝑇𝑇 ∈ ℒ0(ℋ) by Proposition (6.2.8)). 
Let ℒ1(ℋ) denote the subclass, consisting of those operators 𝑇𝑇 ∈ ℒ0(ℋ) which satisfy 
the condition  𝜋𝜋(𝑇𝑇) = 𝑇𝑇. Recall that the contractions in ℒ1(ℋ)have many invariant 
subspaces, while the (𝐼𝐼𝑆𝑆𝑃𝑃) is still open in the class ℒ0(ℋ). 
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The following result shows that the (𝐻𝐻𝑆𝑆𝑃𝑃) in ℒ0(ℋ) is strongly related to the (𝐻𝐻𝑆𝑆𝑃𝑃) in 
ℒ1(ℋ). 
Theorem(6.2.7) [13]: If 𝑇𝑇 ∈ ℒ0(ℋ) and 𝜔𝜔(𝑇𝑇) contains a non-trivial closed arc 𝛼𝛼, then 
there exists a contraction 𝑇𝑇� ∈  ℒ1(ℋ) such that {𝑇𝑇}′ =  { 𝑇𝑇�˜}′, and so 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇 = 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇�  . 
Proof. Let 𝜗𝜗0 be a Riemann mapping from 𝔻𝔻 onto the upper half disc 𝔻𝔻+ ∶=  {𝑧𝑧 ∈  𝔻𝔻 ∶
 𝐼𝐼𝑚𝑚𝑧𝑧 > 0}. By Charath´eodory’s theorem, 𝜗𝜗0 can be extended to a homeomorphism 
between 𝔻𝔻− and 𝔻𝔻+

− . Setting 𝜆𝜆1  = 𝜗𝜗0
−1 (1), 𝜆𝜆2 = 𝜗𝜗0

−1(𝑖𝑖), and 𝜆𝜆3 = 𝜗𝜗0
−1 (−1), let us 

pick𝜁𝜁1, 𝜁𝜁2, 𝜁𝜁3  ∈ 𝕋𝕋 so that 𝜁𝜁1, 𝜁𝜁3 are the two end points of 𝛼𝛼, 𝜁𝜁2 is an inner point of 𝛼𝛼, and 
the orientation of the triples (𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3) and (𝜁𝜁1, 𝜁𝜁2, 𝜁𝜁3) are the same on 𝕋𝕋. There exists a 
unique linear fractional mapping 𝜓𝜓   such that  𝜓𝜓(𝜉𝜉𝑗𝑗 ) = 𝜆𝜆𝑗𝑗  for 𝑗𝑗 =  1, 2, 3. Clearly  
𝜓𝜓(𝕋𝕋)  = 𝕋𝕋 and  𝜓𝜓(𝔻𝔻)  = 𝔻𝔻. The function 𝜗𝜗 ∶= 𝜗𝜗0 ∘ ( 𝜓𝜓|𝔻𝔻−) ∈ 𝐻𝐻∞  is a homeomorphism 
between 𝔻𝔻−and 𝔻𝔻+

− furthermore, 𝛺𝛺(𝜗𝜗) = 𝛼𝛼. 
By Corollary (6.2.5), we have 

𝜋𝜋(𝐴𝐴) = 𝜔𝜔(𝐴𝐴) = 𝜗𝜗(𝛼𝛼) = 𝕋𝕋+: = {𝑒𝑒𝑖𝑖𝑤𝑤 ∶  0 ≤ 𝑤𝑤 ≤ 𝜋𝜋} 
for the a.c. contraction 𝐴𝐴 ∶= 𝜗𝜗(𝑇𝑇). Since 𝜋𝜋(𝐴𝐴) ≠ ∅ it follows that 𝐴𝐴 is a 𝐶𝐶1·- contraction. 
Furthermore, applying Theorem(6. 2.3) for the adjoint of 𝑇𝑇 we obtain that 𝐴𝐴∗ = �̃�𝜗(𝑇𝑇∗) is 
a 𝐶𝐶0·-contraction. (We recall that by definition �̃�𝜗(𝑧𝑧): = 𝜗𝜗( �̃�𝑧�����). ) Hence the contraction 𝐴𝐴 
is of class 𝐶𝐶10. Since the Ces`aro means of the Fourier series of 𝜗𝜗 converge uniformly to 
𝜗𝜗 by Fej’er’s theorem, by the norm-continuity of the functional calculus 𝛷𝛷𝑇𝑇  we infer that 
𝐴𝐴 ∈ 𝑊𝑊(𝑇𝑇). On the other hand, 𝜗𝜗 is univalent and 𝜗𝜗(𝔻𝔻)  = 𝔻𝔻+ is a Charath´eodory 
domain (i.e., a simply connected bounded open set whose boundary coincides with the 
boundary of the unbounded component of the complement of its closure). Thus 𝜗𝜗 is a 
sequential weak-∗ generator in 𝐻𝐻∞  by a result of Sarason (see [14]). Hence there exists a 
sequence {𝑝𝑝𝑛𝑛 }𝑛𝑛=1

∞  of polynomials such that {𝑝𝑝𝑛𝑛 ∘ 𝜗𝜗}𝑛𝑛=1
∞  converges to the identical 

function 𝜒𝜒 in the weak-∗ topology. By the weak-∗ continuity of 𝛷𝛷𝑇𝑇  the operators 
𝑝𝑝𝑛𝑛 (𝐴𝐴)  =  (𝑝𝑝𝑛𝑛 ∘ 𝜗𝜗)(𝑇𝑇) (𝑛𝑛 ∈ ℕ) weak-∗ converge to 𝜒𝜒(𝑇𝑇)  =  𝑇𝑇, and so 𝑇𝑇 ∈ 𝑊𝑊(𝐴𝐴). 
Therefore 𝑊𝑊(𝑇𝑇) = 𝑊𝑊(𝐴𝐴), which yields coincidence of the commutants: {𝑇𝑇}′ = {𝐴𝐴}′. 
Because of the cyclicity assumption, 𝑀𝑀𝜔𝜔 (𝑇𝑇) is a unitary asymptote of 𝑇𝑇 (with an 
appropriate 𝑋𝑋 ∈ ℒ (𝑇𝑇, 𝑀𝑀𝜔𝜔 (𝑇𝑇))). By Theorem(6 2.3) the operator 𝜗𝜗(𝑀𝑀𝛼𝛼 ) will be a unitary 
asymptote of 𝐴𝐴. Repeating the preceding argument for 𝑀𝑀𝛼𝛼  in place of 𝑇𝑇, we obtain 
𝑊𝑊(𝑀𝑀𝛼𝛼 )  =  𝑊𝑊(𝜗𝜗(𝑀𝑀𝛼𝛼 )). Thus 𝜗𝜗(𝑀𝑀𝛼𝛼 ) is cyclic together with 𝑀𝑀𝛼𝛼 . We conclude that 
𝐴𝐴 ∈ ℒ0(ℋ)with 𝜋𝜋(𝐴𝐴) = 𝕋𝕋+. 
Let us define the 𝐶𝐶10-contraction 𝑇𝑇�  ∈ ℒ(ℋ) 𝑏𝑏𝑢𝑢 𝑇𝑇� ∶=  𝐴𝐴2. By Corollary (6.2.5) we have 
𝜋𝜋(𝑇𝑇�) = 𝜔𝜔( 𝑇𝑇�) = 𝕋𝕋. By virtue of Theorem(6. 2.3) we know that 𝑀𝑀𝕋𝕋 ≃ 𝑀𝑀𝕋𝕋+

2 + is a unitary 
asymptote of 𝑇𝑇�  . Hence 𝑇𝑇� is of class ℒ1(ℋ). Moreover, we conclude by [25] that {𝑇𝑇�}′ =
 {𝐴𝐴}′ = {𝑇𝑇}′.                                   
It remains open whether the assumption on the existence of an arc in the residual set can 
be removed in the previous theorem. We note that in [27] the (𝐻𝐻𝑆𝑆𝑃𝑃) for arbitrary 𝐶𝐶10-
contractions was reduced to the case where 𝜋𝜋(𝑇𝑇) = 𝕋𝕋. Now we have concentrated on the 
cyclic case, establishing exact coincidence for the commutants. Analogous reductions 
were made also in [6] and [3]. 
Now we exhibit examples of operators belonging to the class ℒ1(ℋ). We recall that the 
defect operator of a contraction 𝑇𝑇 is 𝐷𝐷𝑇𝑇 ∶=  (𝐼𝐼 −  𝑇𝑇∗𝑇𝑇)1/2, the defect subspace of 𝑇𝑇 is 
𝐷𝐷𝑇𝑇 = (𝐷𝐷𝑇𝑇ℋ)− and the characteristic function 𝛩𝛩𝑇𝑇 : 𝔻𝔻 → ℒ(𝐷𝐷𝑇𝑇  , 𝒟𝒟𝑇𝑇∗) of 𝑇𝑇 is defined by 
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𝛩𝛩𝑇𝑇  (𝑧𝑧) ∶= [−𝑇𝑇 + 𝑧𝑧𝐷𝐷𝑇𝑇∗(𝐼𝐼 − 𝑧𝑧𝑇𝑇∗)−1𝐷𝐷𝑇𝑇  ]|𝒟𝒟𝑇𝑇  . The defect index 𝑑𝑑𝑇𝑇 is the dimension of the 
defect space 𝒟𝒟𝑇𝑇  (see [29]). 
Proposition(6.2.8)[13]: Let 𝑇𝑇 ∈ ℒ(ℋ) be a 𝐶𝐶10-contraction with defect indices satisfying 
the condition 𝑑𝑑𝑇𝑇∗  = 𝑑𝑑𝑇𝑇 + 1 < ∞.Then 𝑇𝑇 ∈ ℒ1(ℋ), and for any unitary asymptote (𝑋𝑋, 𝑉𝑉) 
of 𝑇𝑇, the restriction 𝑉𝑉|(𝑋𝑋ℋ)− is a simple unilateral shift. 
Proof. Since 𝑇𝑇 is a 𝐶𝐶10-contraction,  Θ𝑇𝑇 is an inner and ∗-outer function, that is  Θ𝑇𝑇(𝜁𝜁) is 
an isometry for almost every 𝜁𝜁 ∈ 𝕋𝕋 and ( 𝛩𝛩�𝑇𝑇𝐻𝐻2(𝒟𝒟𝑇𝑇∗))−  = 𝐻𝐻2(𝒟𝒟𝑇𝑇  ). Let us consider the 
functional model of 𝑇𝑇. Let 𝛼𝛼 denote the unitary operator of multiplication by the identical 
function 𝜒𝜒(𝜉𝜉)  = 𝜉𝜉 on the space 𝐿𝐿2(𝒟𝒟𝑇𝑇∗) of vector-valued functions. The model operator 
𝑆𝑆(𝛩𝛩𝑇𝑇  ) is defined on the space ℋ(𝛩𝛩𝑇𝑇  )  = 𝐻𝐻2(𝒟𝒟𝑇𝑇∗)  ⊖  𝛩𝛩𝑇𝑇𝐻𝐻2(𝒟𝒟𝑇𝑇  ) by 𝑆𝑆(𝛩𝛩𝑇𝑇  ) ∶=
 𝑃𝑃ℋ(𝛩𝛩𝑇𝑇  )𝛼𝛼|ℋ(𝛩𝛩𝑇𝑇), where 𝑃𝑃ℋ(𝛩𝛩𝑇𝑇  ) is the orthogonal projection onto ℋ(𝛩𝛩𝑇𝑇) in 𝐻𝐻2(𝒟𝒟𝑇𝑇∗). 
The contraction 𝑇𝑇 is unitarily equivalent to 𝑆𝑆(𝛩𝛩𝑇𝑇), that is there exists a unitary 
transformation 𝑊𝑊 ∈ ℒ  (𝑇𝑇, 𝑆𝑆(𝛩𝛩𝑇𝑇  )). (See [29] for details.) The assumption on the defect 
numbers yields that  
𝛥𝛥∗𝑇𝑇  (𝜁𝜁) ∶= 𝐼𝐼 − 𝛩𝛩𝑇𝑇(𝜁𝜁)𝛩𝛩𝑇𝑇  (𝜁𝜁)∗ is a projection of rank 1 for almost every 𝜁𝜁 ∈ 𝕋𝕋. Setting 
theunitary operator 𝑅𝑅∗,𝑇𝑇 ∶=  𝛼𝛼|ℛ∗,𝑇𝑇 on the space 𝑅𝑅∗,𝑇𝑇 =  𝛥𝛥∗,𝑇𝑇  𝐿𝐿2(𝒟𝒟𝑇𝑇∗), and the 
transformation 𝑋𝑋∗,𝑇𝑇 ∈ ℒ(ℋ(𝛩𝛩𝑇𝑇  ), ℛ∗,𝑇𝑇  ) defined by 𝑋𝑋∗,𝑇𝑇ℎ ∶= 𝛥𝛥∗,𝑇𝑇ℎ, the pair (𝑋𝑋∗,𝑇𝑇𝑊𝑊, ℛ∗,𝑇𝑇  ) 
will be a unitary asymptote of 𝑇𝑇 (see [27]). Since the spectral multiplicity function of 
ℛ∗,𝑇𝑇is constant 1 on 𝕋𝕋, it follows that ℛ∗,𝑇𝑇  is cyclic and 𝜔𝜔(𝑇𝑇)  = 𝕋𝕋. 
By a result of 𝑆𝑆𝑧𝑧. −𝑁𝑁𝑅𝑅𝑔𝑔𝑢𝑢– 𝐹𝐹𝑜𝑜𝑖𝑖𝑅𝑅𝑠𝑠, the assumptions imply that 𝑇𝑇 is a quasiaffine 
transform of the unilateral shift 𝑆𝑆 ∈ ℒ(𝐻𝐻2), defined by  𝑆𝑆𝑓𝑓 = 𝜒𝜒𝑓𝑓 (see [30]). 
Thus there exists a quasiaffinity 𝑌𝑌 ∈ ℒ(𝑇𝑇, 𝑆𝑆); we recall that 𝑌𝑌 is injective and has dense 
range. Given any decreasing sequence 𝐹𝐹 = {𝑓𝑓𝑛𝑛 }𝑛𝑛=1

∞  in 𝐻𝐻∞ , which is nonvanishing on 𝕋𝕋, 
the relation ℋ0(𝑆𝑆, 𝐹𝐹) = {0} readily yields ℋ0(𝑇𝑇, 𝐹𝐹) = {0} since 𝑓𝑓𝑛𝑛 (𝑆𝑆)𝑌𝑌 =  𝑌𝑌𝑓𝑓𝑛𝑛 (𝑇𝑇) (𝑛𝑛 ∈
ℕ). Therefore 𝜋𝜋(𝑇𝑇)  = 𝕋𝕋, and so 𝑇𝑇 ∈ ℒ1(ℋ). 
Let �̃�𝑆 ∈  ℒ(𝐿𝐿2) stand for the bilateral shift defined by �̃�𝑆𝑓𝑓 ∶= 𝜒𝜒𝑓𝑓 ;  �̃�𝑆 is the minimal unitary 
extension of 𝑆𝑆. Clearly 𝑌𝑌� ∈ ℒ (𝑇𝑇, �̃�𝑆), where 𝑌𝑌�  ℎ ∶=  𝑌𝑌ℎ (ℎ ∈ ℋ). 
If (𝑋𝑋, 𝑉𝑉) is a unitary asymptote of 𝑇𝑇, then there exists a unique 𝑍𝑍 ∈ ℒ (𝑉𝑉, �̃�𝑆) such that 
𝑍𝑍𝑋𝑋 = 𝑌𝑌�  . Since 𝑉𝑉 ≃ �̃�𝑆, we can easily conclude that 𝑉𝑉|(𝑋𝑋ℋ)−  ≃  𝑆𝑆.  
We note that the previous statement can be extended to 𝐶𝐶10-contractions 𝑇𝑇 with 𝑑𝑑𝑇𝑇 = ∞, 
assuming that 𝛥𝛥∗,𝑇𝑇  (𝜁𝜁) is of rank 1 for almost every 𝜁𝜁 ∈ 𝕋𝕋., dim 𝑘𝑘𝑒𝑒𝑜𝑜 𝑇𝑇∗ < ∞, and that 
there exists a non-zero 𝛿𝛿 ∈  𝐻𝐻∞  such that 𝛹𝛹𝛩𝛩𝑇𝑇  =  𝛿𝛿𝐼𝐼 holds with some bounded, analytic 
function 𝛹𝛹 ∶ 𝔻𝔻 →  ℒ(𝒟𝒟𝑇𝑇∗ , 𝒟𝒟𝑇𝑇). Under these conditions 𝑇𝑇 is a quasiaffine transform of 𝑆𝑆 
by a result of Takahashi in [31]. 
Further examples for operators in ℒ1(ℋ) can be given by taking cyclic subspaces of 
countable orthogonal sums of operators belonging to ℒ1(ℋ). 
From now on we assume that 𝑇𝑇 ∈ ℒ1(ℋ). Let (𝑋𝑋, 𝑉𝑉) be a unitary asymptote of 𝑇𝑇, where 
𝑉𝑉 ∈ ℒ(Κ) is a cyclic a.c. unitary operator with 𝜔𝜔(𝑉𝑉)  = 𝕋𝕋. The functional calculus for 𝑉𝑉, 
resulting from the spectral decomposition, is the uniquely determined isometric, unital ∗-
homomorphism 𝜙𝜙: 𝐿𝐿∞  → ℒ(Κ), 𝑓𝑓 ⟼  𝑓𝑓 (𝑉𝑉) which is continuous with respect to the 
weak-∗ and weak operator topologies, and which sends the identity function 𝜒𝜒 into 𝑉𝑉. 
The range of 𝜙𝜙 is the abelian commutant {𝑉𝑉}′. (See e.g. [5].) Taking the ∗-isomorphism 
𝜑𝜑: {𝑉𝑉}′ → 𝐿𝐿∞ , 𝑓𝑓 (𝑉𝑉) ⟼  𝑓𝑓 ,let us consider the contractive, unital algebra-homomorphism 
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𝛾𝛾�  ∶= 𝜑𝜑𝜑𝜑𝛾𝛾 ∶ {𝑇𝑇}′ → 𝐿𝐿∞  
satisfying the condition   𝛾𝛾�(𝜗𝜗(𝑇𝑇))  = 𝜗𝜗 for every 𝜗𝜗 ∈  𝐻𝐻∞ . 
Lemma (6.2.9)[13]: The map 𝛾𝛾� is independent of the particular choice of the unitary 
asymptote (𝑋𝑋, 𝑉𝑉). 
Proof.  The straightforward proof is left as an exercise.             
We use the notation 𝛾𝛾�T  for the uniquely determined mapping 𝛾𝛾� introduced above. 
Notice that 𝛾𝛾�T  is injective, since 𝑇𝑇 is of class 𝐶𝐶1·. The range ℱ(𝑇𝑇) of 𝛾𝛾�T  is a subalgebra of 
𝐿𝐿∞ , containing 𝐻𝐻∞ , which we call the functional commutant of the contraction 𝑇𝑇. We say 
that a subalgebra 𝐴𝐴 of 𝐿𝐿∞  is a quasianalytic function algebra, if A contains 𝐻𝐻∞ , and if 
𝑓𝑓 (𝜁𝜁)  ≠  0 for almost every 𝜁𝜁 ∈ 𝕋𝕋, whenever 𝑓𝑓 ∈ 𝐴𝐴\{0}. 
Proposition (6.2.10)1[3]: For any 𝑇𝑇 ∈ ℒ1(ℋ), the function algebra ℱ(𝑇𝑇) is 
quasianalytic. 
Proof. Given 𝑓𝑓 ∈ ℱ(𝑇𝑇) \ {0}, consider the non-zero operator 𝐶𝐶 ∈ {𝑇𝑇}′ with 𝛾𝛾�T (𝐶𝐶)  =
𝑓𝑓 . Let 𝑣𝑣 ∈ ℋ be an arbitrary non-zero vector. Since 𝑇𝑇 is quasianalytic, the vector 𝑋𝑋𝑣𝑣 is 
cyclic for the algebra {𝑉𝑉}′; that is, the set {𝐷𝐷𝑋𝑋𝑣𝑣 ∶ 𝐷𝐷 ∈ {𝑉𝑉}′} is dense in Κ (see [25]). 
Taking into account that 𝑉𝑉 is a cyclic unitary, we infer that 𝑋𝑋𝑣𝑣 must be separating for 
{𝑉𝑉}′. Thus 𝑋𝑋𝐶𝐶𝑣𝑣 = 𝑓𝑓 (𝑉𝑉)𝑋𝑋𝑣𝑣 ≠  0, whence 𝐶𝐶𝑣𝑣 ≠  0 follows. Then 𝑓𝑓(𝑉𝑉)𝑋𝑋𝑣𝑣 = 𝑋𝑋𝐶𝐶𝑣𝑣 is also 
cyclic for {𝑉𝑉}′, and so 𝑓𝑓 (𝜁𝜁)  ≠  0 for almost every 𝜁𝜁 ∈ 𝕋𝕋 on account of 𝜔𝜔(𝑉𝑉) = 𝑇𝑇.                   
Taking the inverse of 𝛾𝛾�T  , we obtain the unital algebra-homomorphism 𝛷𝛷�𝑇𝑇 ∶ ℱ(𝑇𝑇) →
ℒ(ℋ), defined by 𝛷𝛷�𝑇𝑇  (𝑓𝑓 ) =  𝐶𝐶 whenever 𝛾𝛾�T (𝐶𝐶) = 𝑓𝑓 . The mapping 𝛷𝛷�𝑇𝑇is an extension 
of the Sz.-Nagy–Foias calculus 𝛷𝛷𝑇𝑇  , with range coinciding with the commutant {𝑇𝑇}′. It is 
expansive: ‖𝑓𝑓(𝑇𝑇)‖ ≥ ‖𝑓𝑓 ‖∞  for every 𝑓𝑓 ∈ ℱ(𝑇𝑇), since 𝛾𝛾�T  is contractive. Taking into 
account that 𝛷𝛷𝑇𝑇   is contractive, we deduce that ‖𝜗𝜗(𝑇𝑇)‖ = ‖𝜗𝜗 ‖∞  holds for every 𝜗𝜗 ∈ 𝐻𝐻∞ . 
Let us examine the effect of the M¨obius transformation on the extended functional 
calculus. Given 𝑅𝑅 ∈ 𝔻𝔻, the formula 𝑏𝑏𝑅𝑅 (𝑧𝑧) ∶=  (𝑧𝑧 −  𝑅𝑅)(1 − 𝑅𝑅�𝑧𝑧)−1 defines a regular 
inner function in 𝐻𝐻∞ , called the M¨obius function corresponding to 𝑅𝑅. Let us consider the 
𝑐𝑐. 𝑛𝑛. 𝑢𝑢. contraction 𝑇𝑇𝑅𝑅 ∶=  𝑏𝑏𝑅𝑅 (𝑇𝑇) and the a.c. unitary operator 𝑉𝑉𝑅𝑅 ∶=  𝑏𝑏𝑅𝑅 (𝑉𝑉). Since 
𝑇𝑇 =  𝑏𝑏−𝑅𝑅 (𝑇𝑇𝑅𝑅 ) and 𝑉𝑉 = 𝑏𝑏−𝑅𝑅 (𝑉𝑉𝑅𝑅 ), it follows that 𝑊𝑊(𝑇𝑇)  =  𝑊𝑊(𝑇𝑇𝑅𝑅 ) and W(V) = W(𝑉𝑉𝑅𝑅 ). We 
can see that 𝑉𝑉𝑅𝑅  is also cyclic. 
Applying Theorems(6. 2.3) and(6. 2.4) we obtain that (𝑋𝑋, 𝑉𝑉𝑅𝑅 ) is a unitary asymptote of 
the contraction 𝑇𝑇𝑅𝑅  belonging to ℒ1(ℋ),. It is evident that {𝑇𝑇}′ = {𝑇𝑇𝑅𝑅}′, {𝑉𝑉}′ = {𝑉𝑉𝑅𝑅}′, and 
the mapping 𝛾𝛾 is the same for 𝑇𝑇 as for 𝑇𝑇𝑅𝑅 . The weak- ∗ continuous ∗-homomorphism 
𝜏𝜏𝑅𝑅 ∶ 𝐿𝐿∞  → 𝐿𝐿∞  , 𝑓𝑓 ⟼  𝑓𝑓 ∘ 𝑏𝑏𝑅𝑅  transforms the identical function 𝜒𝜒 into 𝑏𝑏𝑅𝑅 . By the 
uniqueness of the functional calculus 𝜙𝜙𝑅𝑅  for 𝑉𝑉𝑅𝑅 , we infer that 𝜙𝜙 ∘ 𝜏𝜏𝑅𝑅  = 𝜙𝜙𝑅𝑅 , whence 
𝜑𝜑𝑅𝑅 =  𝜏𝜏−𝑅𝑅 ∘ 𝜑𝜑 follows. Thus 𝛾𝛾�Ta = 𝜑𝜑𝑅𝑅 ∘ 𝛾𝛾 =  𝜏𝜏−𝑅𝑅 ∘ 𝜑𝜑 ∘ 𝛾𝛾 = 𝜏𝜏−𝑅𝑅 ∘ 𝛾𝛾�T  , and we arrive at 
the following statement. 
Proposition(6.2.11)[13]:If 𝑇𝑇 ∈ ℒ1(ℋ),then 𝑇𝑇𝑅𝑅 = 𝑏𝑏𝑅𝑅 (𝑇𝑇) ∈ ℒ1(ℋ)(𝑅𝑅 ∈ 𝔻𝔻). Furthermore, 
ℱ(𝑇𝑇𝑅𝑅 )  =  {𝑓𝑓 ∘ 𝑏𝑏−𝑅𝑅 : 𝑓𝑓 ∈ ℱ(𝑇𝑇)}, 𝛾𝛾�Ta = 𝜏𝜏−𝑅𝑅 ∘ 𝛾𝛾�T  and Φ� Ta  =  Φ� 𝑇𝑇 ∘ 𝜏𝜏𝑅𝑅 ; that is, 𝑓𝑓 (𝑇𝑇𝑅𝑅 )  =
 (𝑓𝑓 ∘ 𝑏𝑏𝑅𝑅 )(𝑇𝑇) holds for every 𝑓𝑓 ∈ ℱ(𝑇𝑇𝑅𝑅 ). 
The following statement relates the spectrum of T to the function algebra ℱ(𝑇𝑇). 
Proposition(6.2.12) [13]: Let us assume that 𝑇𝑇 ∈ ℒ1(ℋ). 
(a) The point 𝑅𝑅 ∈ 𝔻𝔻 is in the spectrum 𝜎𝜎(𝑇𝑇) of 𝑇𝑇 exactly when the conjugate 𝑏𝑏𝑅𝑅��� of the 
M¨obius function 𝑏𝑏𝑅𝑅  does not belong to ℱ(𝑇𝑇). 
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(b) The spectrum 𝜎𝜎(𝑇𝑇) covers the closed unit disc 𝔻𝔻− if and only if ℱ(𝑇𝑇) does not 
contain the conjugate of any non-constant inner function. 
Proof. (a): If 𝑅𝑅 ∈ 𝔻𝔻 \ 𝜎𝜎(𝑇𝑇), then 𝑏𝑏𝑅𝑅 (𝑇𝑇) is invertible and 𝑏𝑏𝑅𝑅 (𝑇𝑇)−1  ∈ {𝑇𝑇}′. 
Hence 𝑏𝑏𝑅𝑅��� = 1

𝑏𝑏𝑅𝑅
= 𝛾𝛾�T(𝑏𝑏𝑅𝑅 (𝑇𝑇)−1)  ∈ ℱ(𝑇𝑇). Conversely, if 𝑏𝑏𝑅𝑅���  ∈ ℱ(𝑇𝑇), then there exists 

𝐶𝐶 ∈ {𝑇𝑇}′ such that 𝛾𝛾�T (𝐶𝐶)  = 𝑏𝑏𝑅𝑅���. Since 
 𝛾𝛾�T(𝐶𝐶𝑏𝑏𝑅𝑅 (𝑇𝑇))  = 𝛾𝛾�T(𝐶𝐶) 𝛾𝛾�T(𝑏𝑏𝑅𝑅 (𝑇𝑇))  = 𝑏𝑏𝑅𝑅���𝑏𝑏𝑅𝑅 = 1 

and 𝛾𝛾�T  is injective, it follows that 𝐶𝐶𝑏𝑏𝑅𝑅 (𝑇𝑇) = 𝐼𝐼. Hence 𝑏𝑏𝑅𝑅 (𝑇𝑇) is invertible, and so 
𝑅𝑅 ∈ 𝔻𝔻 \ 𝜎𝜎(𝑇𝑇). 
(b): In view of (𝑅𝑅), it is enough to show that if �̅�𝜗 ∈ ℱ(𝑇𝑇) holds for some nonconstant 
inner function 𝜗𝜗 ∈ 𝐻𝐻∞ , then 𝑏𝑏𝑅𝑅��� ∈ ℱ(𝑇𝑇) is also true for some 𝑅𝑅 ∈ 𝔻𝔻. 
Let 𝐶𝐶 ∈ {𝑇𝑇}′ be the operator with 𝛾𝛾�T (𝐶𝐶)  = �̅�𝜗. By Frostman’s theorem we can find a non-
zero 𝜆𝜆 ∈ 𝔻𝔻 such that |𝜆𝜆| < ‖𝐶𝐶‖−1 and the composition 𝑏𝑏 =  𝑏𝑏𝜆𝜆 ∘ 𝜗𝜗 is a Blaschke product 
(see [7]). The function 

𝑏𝑏� =  𝑏𝑏𝜆𝜆 ∘ 𝜗𝜗�������� = (¯�̅�𝜗  − �̅�𝜆)(1 −  𝜆𝜆�̅�𝜗)−1  =  𝛾𝛾�T(𝐶𝐶𝜆𝜆�) 
belongs to ℱ(𝑇𝑇), since 𝐶𝐶𝜆𝜆� ∶=  𝑏𝑏𝜆𝜆�(𝐶𝐶) is in {𝑇𝑇}′. Clearly, b has the form 𝑏𝑏 = 𝑏𝑏𝑅𝑅 𝜂𝜂 where 
𝑅𝑅 ∈ 𝔻𝔻 and 𝜂𝜂 ∈ 𝐻𝐻∞  is inner. We conclude that  𝑏𝑏�𝑅𝑅 = 𝑏𝑏�𝜂𝜂 ∈ ℱ(𝑇𝑇).  
By the 𝐹𝐹. & 𝑀𝑀. Riesz Theorem, the Hardy space 𝐻𝐻∞  itself is a quasianalytic function 
algebra. Further examples for quasianalytic algebras can be given by the aid of inner 
functions. We recall that a function 𝜂𝜂 ∈  𝐻𝐻∞  is inner, if |𝜂𝜂(𝜁𝜁)| = 1 for almost every 
𝜁𝜁 ∈ 𝕋𝕋. Let 𝐻𝐻𝑖𝑖

∞  stand for the set of all inner functions. Given any  non-empty subset 
ℬ ⊂ 𝐻𝐻𝑖𝑖

∞  , the algebra 

[ ℬ�, 𝐻𝐻∞ ]0 ∶= �𝜗𝜗 � 𝜂𝜂𝑗𝑗�
𝑘𝑘

𝑗𝑗 =1

: 𝜗𝜗 ∈ 𝐻𝐻∞ , �𝜂𝜂𝑗𝑗 �
𝑗𝑗 =1

𝑘𝑘
 ⊂ ℬ, 𝑘𝑘 ∈ ℕ� , 

generated by ℬ� ∪ 𝐻𝐻∞ ,is clearly quasianalytic. Its norm closure 
 [ ℬ�, 𝐻𝐻∞ ] ∶=  ([ ℬ�, 𝐻𝐻∞ ]0)− 
is called the Douglas algebra, associated with ℬ. By the celebrated Chang–Marshall 
Theorem, every closed subalgebra A  of 𝐿𝐿∞  containing 𝐻𝐻∞  is a Douglas algebra (see 
[7]). We shall call [ℬ�, 𝐻𝐻∞ ]0 the pre-Douglas algebra corresponding to ℬ. While all pre-
Douglas algebras are quasianalytic, the non-trivial Douglas algebras don’t have this 
property. 
Lemma(6.2.13)[13] :The only quasianalytic Douglas algebra is 𝐻𝐻∞ . 
Proof. Let A  be a closed subalgebra of 𝐿𝐿∞ , which properly contains 𝐻𝐻∞  : 𝐴𝐴 ⊃ 𝐻𝐻∞ , A ≠
 𝐻𝐻∞ . Then A ⊃ [ �̅�𝜒_, 𝐻𝐻∞ ]  =  𝐶𝐶(𝕋𝕋)  + 𝐻𝐻∞ , 
where 𝐶𝐶(𝕋𝕋) stands for the space of continuous functions on 𝕋𝕋 (see  [22]). Thus A  is not 
quasianalytic.                       
The following theorem characterizes the case when the functional commutant is a 
Douglas algebra. We need some notation. Given a contraction 𝑇𝑇 ∈ ℒ(ℋ), let (𝑋𝑋, 𝑉𝑉) be a 
unitary asymptote of 𝑇𝑇. The definition of the positive contraction 
𝐴𝐴𝑇𝑇 ∶=  𝑋𝑋∗𝑋𝑋 ∈ ℒ(ℋ) is independent of the special choice of (𝑋𝑋, 𝑉𝑉); in particular, the 
equations 
〈𝑋𝑋∗𝑋𝑋ℎ, ℎ 〉 =  ‖𝑋𝑋ℎ‖2  =  lim𝑛𝑛→∞ ‖𝑇𝑇𝑛𝑛 ℎ‖2 =  lim𝑛𝑛→∞〈𝑇𝑇∗𝑇𝑇𝑛𝑛 ℎ, ℎ〉      ℎ ∈ ℋ 
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show that 𝐴𝐴𝑇𝑇  = lim
𝑛𝑛→∞

 𝑇𝑇∗𝑛𝑛 𝑇𝑇𝑛𝑛  in the strong operator topology. (Notice that 
the sequence {𝑇𝑇∗𝑛𝑛 𝑇𝑇𝑛𝑛 }𝑛𝑛=1 

∞ is decreasing.) The mapping 𝐿𝐿𝑇𝑇 ∶  {𝑇𝑇}′ →  ℒ(ℋ), 𝐶𝐶 ↦  𝐴𝐴𝑇𝑇𝐶𝐶 is a 
bounded, linear transformation. If the contraction 𝑇𝑇 is a.c., then 

𝐻𝐻∞ (𝑇𝑇) ∶=  𝑜𝑜𝑅𝑅𝑛𝑛𝛷𝛷𝑇𝑇  ⊂ 𝑊𝑊(𝑇𝑇). 
Theorem( 6.2.14)[13]: For any contraction 𝑇𝑇 ∈ ℒ1(ℋ), the following conditions are  
equivalent: 
(a)   ℱ(𝑇𝑇) is a Douglas algebra, 
(b)   𝛷𝛷�𝑇𝑇  is bounded, 
(c)   𝛷𝛷�𝑇𝑇 is an isometry, 
(d)   𝐿𝐿𝑇𝑇  is bounded from below,  
(e)   𝐿𝐿𝑇𝑇  is an isometry, 
(f ) ℱ(𝑇𝑇) =  𝐻𝐻∞ , 
(g)   {𝑇𝑇}′ =  𝐻𝐻∞ (𝑇𝑇).  
Proof. We know that 𝛾𝛾�T: {𝑇𝑇}′ → 𝐿𝐿∞  is an injective, bounded, linear transformation, with 
ran 𝛾𝛾�T = ℱ(𝑇𝑇). By the Closed Graph Theorem, ℱ(𝑇𝑇) 𝑖𝑖s closed if and only if 𝛷𝛷�𝑇𝑇  is 
bounded. 
Let (𝑋𝑋, 𝑉𝑉) be a unitary asymptote of 𝑇𝑇, and let us consider the algebra homomorphism 
𝛾𝛾: {𝑇𝑇}′ →  {𝑉𝑉}′. For any 𝐹𝐹 ∈ {𝑉𝑉}′, the operator  𝐵𝐵 = 𝑋𝑋∗𝐹𝐹𝑋𝑋 ∈ ℒ(ℋ) is 𝑇𝑇-Toeplitz: 
𝑇𝑇∗𝐵𝐵𝑇𝑇 = 𝐵𝐵. Given any 𝑥𝑥, 𝑢𝑢 ∈ ℋ and 𝑛𝑛, 𝑘𝑘 ∈ ℕ, we have 

|〈𝐹𝐹𝑉𝑉−𝑛𝑛 𝑋𝑋𝑥𝑥, 𝑉𝑉−𝑛𝑛 𝑋𝑋𝑢𝑢〉| = |〈𝐵𝐵𝑥𝑥, 𝑢𝑢〉| = |〈𝐵𝐵𝑇𝑇𝑘𝑘 𝑥𝑥, 𝑇𝑇𝑘𝑘 𝑢𝑢〉| ≤ ‖𝐵𝐵‖ · ‖𝑇𝑇𝑘𝑘 𝑥𝑥 ‖ · ‖𝑇𝑇𝑘𝑘 𝑢𝑢‖. 
Running k to infinity, it follows that 

|〈𝐹𝐹𝑉𝑉−𝑛𝑛 𝑋𝑋𝑥𝑥, 𝑉𝑉−𝑛𝑛 𝑋𝑋𝑢𝑢〉| ≤ ‖𝐵𝐵‖. ‖𝑋𝑋𝑥𝑥 ‖ · ‖𝑋𝑋𝑢𝑢‖ =  ‖𝐵𝐵‖ · ‖𝑉𝑉−𝑛𝑛 𝑋𝑋𝑥𝑥‖ . ‖𝑉𝑉−𝑛𝑛 𝑋𝑋𝑢𝑢‖. 
Hence ‖𝐹𝐹‖ = ‖𝐵𝐵‖, and so the mapping 𝛤𝛤: {𝑉𝑉}′ → ℒ(ℋ), 𝐹𝐹 ↦  𝑋𝑋∗𝐹𝐹𝑋𝑋 is a linear 
isometry. It can be shown that the range of 𝛤𝛤 coincides with the set of all 𝑇𝑇-Toeplitz 
operators (see [26]). Since Γ ∘ γ = 𝐿𝐿𝑇𝑇  , we conclude that 𝛷𝛷�𝑇𝑇  is bounded (respectively an 
isometry) if and only if 𝐿𝐿𝑇𝑇  is bounded from below (respectively an isometry). (We note 
that the previous discussions can be carried out for any 𝐶𝐶1· −contractions.) 
Taking into account that the 𝑆𝑆𝑧𝑧.-Nagy–Foias functional calculus, 𝛷𝛷𝑇𝑇  is an isometry for a 
contraction 𝑇𝑇 ∈ ℒ1(ℋ), the remaining implications follow from Lemma (6.2.13).                        
We obtain that if ℱ(𝑇𝑇) is a Douglas algebra, then 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇 = 𝐿𝐿𝑅𝑅𝑤𝑤 𝑇𝑇 has an abundant 
supply of subspaces. The following sufficient condition can be frequently checked easily. 
Proposition(6.2.15) [13]: If 𝑇𝑇 ∈ ℒ1(ℋ)is a quasiaffine transform of the simple unilateral 
shift 𝑆𝑆 ∈ ℒ(𝐻𝐻2), then ℱ(𝑇𝑇) is a Douglas algebra. 
Proof. From the proof of Proposition(6 .2.8) we can see that a unitary asymptote of 𝑇𝑇 can 
be given in the form (𝑋𝑋, �̃�𝑆), where �̃�𝑆 ∈ ℒ(𝐿𝐿2) is the bilateral shift, 𝑋𝑋 ∈ ℒ (𝑇𝑇, �̃�𝑆) and 
(𝑋𝑋ℋ)−  = 𝐻𝐻2. Given any 𝑓𝑓 ∈ ℱ(𝑇𝑇), let us consider the operator 𝑓𝑓(𝑇𝑇) ∈ {𝑇𝑇}′. The 
equation 𝑋𝑋𝑓𝑓(𝑇𝑇) = 𝑓𝑓(�̃�𝑆)𝑋𝑋 implies 

𝑓𝑓𝐻𝐻2  = 𝑓𝑓(�̃�𝑆)(𝑋𝑋ℋ)−  ⊂ (𝑋𝑋𝑓𝑓 (𝑇𝑇)ℋ)− ⊂ (𝑋𝑋ℋ)− = 𝐻𝐻2. 
Hence 𝑓𝑓 ∈ 𝐻𝐻2, and so ℱ(𝑇𝑇) =  𝐻𝐻∞  is a Douglas algebra.   
Proposition (6.2.8) provides contractions satisfying the conditions of the previous 
proposition. Now we turn to pre-Douglas algebras. 
Theorem(6.2.16) [13]: Let 𝑇𝑇 ∈ ℒ1(ℋ). If ℱ(𝑇𝑇) is a pre-Douglas algebra, then 𝑅𝑅(𝑇𝑇)  =
{𝑇𝑇}′, and so 𝑅𝑅𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇 = 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇. 
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Proof.  We may assume that the pre-Douglas algebra ℱ(𝑇𝑇) is different from 𝐻𝐻∞ . Setting 
ℬ ∶=  {𝜂𝜂 ∈ 𝐻𝐻𝑖𝑖

∞ ∶ 𝜂𝜂� ∈ ℱ(𝑇𝑇)}, we have [ ℬ, 𝐻𝐻∞ ]0  = ℱ(𝑇𝑇), and 𝜂𝜂�(𝑇𝑇) = 𝜂𝜂(𝑇𝑇)−1  ∈
{𝑇𝑇}′ whenever 𝜂𝜂 ∈ ℬ. We have to show that  𝜂𝜂�(𝑇𝑇)  ∈ ℛ(𝑇𝑇), for every non-constant 𝜂𝜂 ∈
ℬ. 
If 𝜂𝜂is a 𝑀𝑀¨obius function of the form 

𝜂𝜂(𝑧𝑧) =
𝑘𝑘(𝑧𝑧 −  𝑅𝑅)
1 −  𝑅𝑅�𝑧𝑧

(𝑘𝑘 ∈ 𝕋𝕋, 𝑅𝑅 ∈ 𝔻𝔻), 

then 𝑅𝑅 ∉ 𝜎𝜎(𝑇𝑇) by Proposition(6.2.12) . Exploiting the fact that 𝛷𝛷�𝑇𝑇  is a unital algebra-
homomorphism, we obtain 

𝜂𝜂�(𝑇𝑇)  = 𝜂𝜂(𝑇𝑇)−1  = 𝑘𝑘�(𝑇𝑇 −  𝑅𝑅𝐼𝐼)−1(𝐼𝐼 −  𝑅𝑅�𝑇𝑇) ∈ ℛ0(𝑇𝑇)  ⊂ ℛ(𝑇𝑇). 
Observe that  𝜂𝜂 ∈  𝐵𝐵, 𝜂𝜂 = 𝜂𝜂1𝜂𝜂2 (𝜂𝜂1, 𝜂𝜂2 ∈ 𝐻𝐻𝑖𝑖

∞  ) implies 𝜂𝜂1� = �̅�𝜂𝜂𝜂2 ∈ ℱ(𝑇𝑇). Thus �̅�𝜂(𝑇𝑇) ∈
ℛ0(𝑇𝑇), whenever 𝜂𝜂 ∈ ℬ is a finite Blaschke product. 
Let us assume now that  𝜂𝜂 ∈  ℬ is an infinite Blaschke product:  𝜂𝜂 = ∏ 𝑏𝑏𝑅𝑅𝑛𝑛

∞
𝑛𝑛=1 , where 

{𝑅𝑅𝑛𝑛 }𝑛𝑛=1
∞ ⊂ 𝔻𝔻 and ∑ (1 − |𝑅𝑅𝑛𝑛 |)∞

𝑛𝑛=1 < ∞. Here we use the notation 𝑏𝑏0(𝑧𝑧) ∶=  𝑧𝑧 and 
𝑏𝑏𝑅𝑅 (𝑧𝑧) ∶= −( 𝑅𝑅�/|𝑅𝑅|)(𝑧𝑧 − 𝑅𝑅)/(1 − 𝑅𝑅�𝑧𝑧) 𝑓𝑓𝑜𝑜𝑜𝑜 𝑅𝑅 ∈ 𝔻𝔻\ {0}. For any 𝑁𝑁 ∈ ℕ, we set 𝐵𝐵𝑁𝑁 ∶=
∏ 𝑏𝑏𝑅𝑅𝑛𝑛

𝑁𝑁
𝑛𝑛=1   . We know that 𝐵𝐵𝑁𝑁���� ∈ ℱ(𝑇𝑇) and 𝐵𝐵𝑁𝑁����(𝑇𝑇) = 𝐵𝐵𝑁𝑁(𝑇𝑇)−1 ∈ ℛ0(𝑇𝑇). The operator 

𝜂𝜂(𝑇𝑇) is invertible with 𝜂𝜂(𝑇𝑇)−1 = �̅�𝜂(𝑇𝑇), hence  𝛿𝛿: =  𝑖𝑖𝑛𝑛𝑓𝑓{‖𝜂𝜂(𝑇𝑇)𝑥𝑥‖ ∶ 𝑥𝑥 ∈ ℋ, ‖𝑥𝑥‖ = 1} >
0. Since the sequence {𝐵𝐵𝑁𝑁}𝑛𝑛=1

∞  is bounded and 𝑙𝑙𝑖𝑖𝑚𝑚𝑁𝑁→∞  𝐵𝐵𝑁𝑁(𝑧𝑧) = 𝜂𝜂(𝑧𝑧) for every 𝑧𝑧 ∈ 𝔻𝔻, it 
follows that 𝐵𝐵𝑁𝑁(𝑇𝑇) converges to 𝜂𝜂(𝑇𝑇) in the weak operator topology, as 𝑁𝑁 tends to 
infinity (see [29]). Given any 𝑥𝑥 ∈ ℋ, ‖𝑥𝑥‖ = 1, and setting  𝑢𝑢 = ‖𝜂𝜂(𝑇𝑇)𝑥𝑥‖−1𝜂𝜂(𝑇𝑇)𝑥𝑥, we 
infer  
 Liminf𝑁𝑁→∞ ‖ 𝐵𝐵𝑁𝑁(𝑇𝑇)𝑥𝑥‖ ≥ lim𝑁𝑁→∞|〈𝐵𝐵𝑁𝑁(𝑇𝑇)𝑥𝑥, 𝑢𝑢〉| 

 = |〈𝜂𝜂(𝑇𝑇)𝑥𝑥, 𝑢𝑢〉| = ‖𝜂𝜂(𝑇𝑇)𝑥𝑥‖ ≥  𝛿𝛿. 
Taking into account that ‖ 𝐵𝐵𝑁𝑁+1(𝑇𝑇)𝑥𝑥‖ ≤ ‖𝑏𝑏𝑁𝑁+1(𝑇𝑇)‖ ‖𝐵𝐵𝑁𝑁(𝑇𝑇)𝑥𝑥‖ ≤ ‖𝐵𝐵𝑁𝑁(𝑇𝑇)𝑥𝑥‖ (𝑁𝑁 ∈ ℕ), 
we obtain that ‖𝐵𝐵𝑁𝑁(𝑇𝑇)𝑥𝑥‖  ≥ 𝛿𝛿 for every 𝑁𝑁 ∈ ℕ. Thus {𝐵𝐵𝑁𝑁(𝑇𝑇)−1}𝑁𝑁=1

∞  is a bounded 
sequence. 
There exists a subsequence {𝐵𝐵𝑁𝑁𝑗𝑗  }𝑗𝑗  =1

∞  such that 𝐵𝐵𝑁𝑁𝑗𝑗  (𝑇𝑇)−1 converges to an operator 
𝐶𝐶 ∈ ℒ(ℋ) in the weak operator topology, and 𝑙𝑙𝑖𝑖𝑚𝑚𝑗𝑗 →∞  𝐵𝐵𝑁𝑁𝑗𝑗  (𝜁𝜁) = 𝜂𝜂(𝜁𝜁) holds for almost 
every 𝜁𝜁 ∈ 𝕋𝕋 (see, e.g., [5]). Then 𝐶𝐶 is necessarily in ℛ(𝑇𝑇). Furthermore, 𝐵𝐵𝑁𝑁𝑗𝑗 (𝑇𝑇) 
converges to 𝜂𝜂(𝑇𝑇) in the strong operator topology (see [15]), and so the product 𝐼𝐼 =
𝐵𝐵𝑁𝑁𝑗𝑗 (𝑇𝑇)−1𝐵𝐵𝑁𝑁𝑗𝑗 (𝑇𝑇) converges to 𝐶𝐶𝜂𝜂(𝑇𝑇) in the weak operator topology, as 𝑗𝑗 → ∞. Thus 
𝐶𝐶𝜂𝜂(𝑇𝑇) = 𝐼𝐼, whence  �̅�𝜂(𝑇𝑇)  = 𝜂𝜂(𝑇𝑇)−1 = 𝐶𝐶 ∈  𝑅𝑅(𝑇𝑇) follows.Now let 𝜂𝜂 ∈ 𝐵𝐵 be an arbitrary 
non-constant inner function. For convenience, we use the notation 𝐴𝐴 ∶= 𝜂𝜂(𝑇𝑇). By 
Frostman’s theorem we can find 𝑅𝑅 ∈ 𝔻𝔻 so that 0 < |𝑅𝑅| < 4−1‖𝐴𝐴−1‖−1, and ba ◦  𝑏𝑏𝑅𝑅 ∘
𝜂𝜂 = 𝑏𝑏 is a Blaschke product. (Here 𝑏𝑏𝑅𝑅 (𝑧𝑧) : = (𝑧𝑧 − 𝑅𝑅)/(1 − 𝑅𝑅�𝑧𝑧). ) Since 𝑏𝑏(𝑇𝑇) = 𝑏𝑏𝑅𝑅 (𝐴𝐴) ∈
{𝑇𝑇}′ is invertible, it follows that 𝑏𝑏 ∈ ℬ, and so 𝐷𝐷 ∶= 𝑏𝑏𝑅𝑅 (𝐴𝐴)−1  = 𝑏𝑏�(𝑇𝑇)  ∈ ℛ(𝑇𝑇). The 
equation 𝐷𝐷 = (𝐴𝐴 −  𝑅𝑅𝐼𝐼)−1(𝐼𝐼 −  𝑅𝑅�𝐴𝐴) readily yields 𝐷𝐷 + 𝑅𝑅�𝐼𝐼 = 𝐴𝐴−1(𝐼𝐼 +  𝑅𝑅𝐷𝐷). Taking 
into account that 

‖𝑅𝑅𝐷𝐷‖ ≤ |𝑅𝑅|‖ 𝐴𝐴−1‖ ‖(𝐼𝐼 −  𝑅𝑅𝐴𝐴−1)‖−1  ‖𝐼𝐼 − 𝑅𝑅�𝐴𝐴 ‖ < 1, 
we conclude that (𝐼𝐼 +  𝑅𝑅𝐷𝐷)−1  = ∑ 𝒂𝒂𝒏𝒏∞

𝑛𝑛=0 𝐷𝐷𝑛𝑛  ∈ ℛ(𝑇𝑇), and so we obtain that  �̅�𝜂(𝑇𝑇)  =
 𝐴𝐴−1 = (𝐷𝐷 + 𝑅𝑅�𝐼𝐼)(𝐼𝐼 +  𝑅𝑅𝐷𝐷)−1  ∈  ℛ(𝑇𝑇) holds too.    
The following type of function algebras were studied by Tolokonnikov in [32]. 
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A subalgebra 𝒜𝒜 of 𝐿𝐿∞ , containing 𝐻𝐻∞ , is called a generalized Douglas algebra, if 
𝑓𝑓 ∈  𝒜𝒜, 𝜆𝜆 ∈ ℂ and |𝜆𝜆| > ‖ 𝑓𝑓‖∞  imply 1/(𝑓𝑓 − 𝜆𝜆)  ∈ 𝒜𝒜. We proceed with a spectral 
characterization of the case when the functional commutant is of this kind. 
Theorem(6.2.17)[13]:  Let 𝑇𝑇 ∈ ℒ1(ℋ). Then ℱ(𝑇𝑇) is a generalized Douglas algebra if 
and only if 𝛷𝛷�𝑇𝑇 preserves the spectral radius: 𝑜𝑜 (𝑓𝑓 (𝑇𝑇))   𝑜𝑜 (𝑓𝑓 ) = ‖ 𝑓𝑓‖∞  for every 
𝑓𝑓 ∈ ℱ(𝑇𝑇). 
Proof.  The commutant {𝑇𝑇}′ is a Banach algebra, and for any 𝐶𝐶 ∈ {𝑇𝑇}′, the spectrum of 𝐶𝐶 
in {𝑇𝑇}′ is the same as the spectrum of 𝐶𝐶 in ℒ(ℋ). Since 𝛾𝛾�𝑇𝑇: {𝑇𝑇}′ → 𝐿𝐿∞  is a unital 
algebra-homomorphism, we infer that 𝜎𝜎(𝑓𝑓 (𝑇𝑇)) contains 𝜎𝜎(𝑓𝑓), which is the essential 
range of  𝑓𝑓 , for every 𝑓𝑓 ∈ ℱ(𝑇𝑇). Hence  𝑜𝑜 (𝑓𝑓 (𝑇𝑇)) ≥  𝑜𝑜 (𝑓𝑓 ) = ‖ 𝑓𝑓‖∞  always holds. 
Let us assume that ℱ(𝑇𝑇) is a generalized Douglas algebra. Setting 𝑓𝑓 ∈ ℱ(𝑇𝑇), 
𝜆𝜆 ∈ ℂ, |𝜆𝜆| > ‖ 𝑓𝑓‖∞ , we know that 𝑔𝑔 = 1/(𝑓𝑓 − 𝜆𝜆)  ∈ ℱ(𝑇𝑇). Then  
𝑔𝑔(𝑓𝑓 − 𝜆𝜆) =  1 implies 𝑔𝑔(𝑇𝑇)(𝑓𝑓 (𝑇𝑇) − 𝜆𝜆𝐼𝐼) = 𝐼𝐼, and so 𝜆𝜆 is in the resolvent set of 𝑓𝑓(𝑇𝑇). 
Thus  𝑜𝑜 (𝑓𝑓 (𝑇𝑇)) ≤ ‖ 𝑓𝑓‖∞ . 
Let us assume now that 𝛷𝛷�𝑇𝑇  preserves the spectral radius. Setting 𝑓𝑓 ∈ ℱ(𝑇𝑇), 
𝜆𝜆 ∈ ℂ, |𝜆𝜆| > ‖ 𝑓𝑓‖∞ , the relation ‖ 𝑓𝑓‖∞ =  𝑜𝑜 (𝑓𝑓) =  𝑜𝑜 (𝑓𝑓 (𝑇𝑇)) yields that 𝑓𝑓 (𝑇𝑇) –  𝜆𝜆𝐼𝐼 is 
invertible. Its inverse 𝐶𝐶 necessarily belongs to {𝑇𝑇}′, and so 𝐶𝐶 =  𝑔𝑔(𝑇𝑇) for some 𝑔𝑔 ∈
ℱ(𝑇𝑇). Since 𝛷𝛷�𝑇𝑇  is injective, the equality (𝑓𝑓 (𝑇𝑇)  −   𝜆𝜆𝐼𝐼)𝑔𝑔(𝑇𝑇) = 𝐼𝐼 implies  (𝑓𝑓 − 𝜆𝜆)𝑔𝑔 = 1. 
Hence 1/(𝑓𝑓 − 𝜆𝜆) = 𝑔𝑔 ∈ ℱ(𝑇𝑇).                     
In view of Proposition(6.2.12)  and Theorem(6.2.14) , the spectrum 𝜎𝜎(𝑇𝑇) is the closed 
unit disc 𝔻𝔻− when 𝛷𝛷�𝑇𝑇  𝑖𝑖s an isometry, or equivalently, when ℱ(𝑇𝑇) is a Douglas algebra. 
The next theorem describes the spectrum, when ℱ(𝑇𝑇) is a generalized Douglas algebra, 
but not a Douglas algebra. 
Theorem (6.2.18)[13]: Let 𝑇𝑇 ∈ ℒ1(ℋ). . 𝐼𝐼𝑓𝑓 ℱ(𝑇𝑇) is a generalized Douglas algebra, 
different from 𝐻𝐻∞ , then 𝜎𝜎(𝑇𝑇)  = 𝕋𝕋. 
Proof.  For any 𝑅𝑅 ∈ 𝔻𝔻, let us consider the operator 𝑇𝑇𝑅𝑅 =  𝑏𝑏𝑅𝑅 (𝑇𝑇), where 𝑏𝑏𝑅𝑅 (𝑧𝑧)  =  (𝑧𝑧 −
 𝑅𝑅)/(1 − 𝑅𝑅�𝑧𝑧). By Proposition (6.2.11)  we know that 𝑇𝑇𝑅𝑅 ∈ ℒ1(ℋ)and ℱ(𝑏𝑏𝑅𝑅 )  =  {𝑓𝑓 ∘
 𝑏𝑏−𝑅𝑅 ∶  𝑓𝑓 ∈ ℱ(𝑇𝑇)}. We conclude that ℱ(𝑇𝑇𝑅𝑅 ) is also a generalized  Douglas algebra, 
different from 𝐻𝐻∞ . We infer by [32] that  �̅�𝜒 ∈ ℱ(𝑇𝑇𝑅𝑅 ), whence 𝑏𝑏�𝑅𝑅 = �̅�𝜒 ∘ 𝑏𝑏𝑅𝑅 ∈
ℱ(𝑇𝑇) follows. Thus a is in the resolvent set of 𝑇𝑇 in view of Proposition (6.2.12), and so 
𝜎𝜎(𝑇𝑇) ⊂ 𝕋𝕋. On the other hand, 𝛾𝛾�𝑇𝑇   shrinks the spectrum, as we have seen in the proof of 
Theorem (6.2.17). Therefore  𝜎𝜎(𝑇𝑇) ⊃ 𝜎𝜎(𝜒𝜒) = 𝕋𝕋.                              
Example(6.2.19)[13]: Given 0 < 𝛿𝛿 < 1, let us consider the simply connected domain  
𝐺𝐺 = {𝑜𝑜𝑒𝑒𝑖𝑖𝑤𝑤 ∶  √𝛿𝛿  < 𝑜𝑜 < 1, 0 <  𝑤𝑤 < 𝜋𝜋} 
 Let 𝜗𝜗0 be a conformal mapping of 𝔻𝔻 onto 𝐺𝐺, satisfying the condition 𝜗𝜗0(𝜁𝜁) = 𝜁𝜁 for 𝜁𝜁 =
1, 𝑖𝑖, −1. Then 𝜗𝜗 ∶= 𝜗𝜗0

2  will be a regular partially inner function with 𝛺𝛺(𝜗𝜗) = 𝕋𝕋+ ∶=
 {𝑒𝑒𝑖𝑖𝑤𝑤 ∶  0 ≤  𝑤𝑤 ≤ 𝜋𝜋} and  𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(𝜗𝜗|𝕋𝕋+)  =  𝜗𝜗(𝕋𝕋+)  = 𝕋𝕋. 
The simple unilateral shift 𝑆𝑆 ∈ ℒ(𝐻𝐻2), 𝑆𝑆𝑓𝑓 = 𝜒𝜒𝑓𝑓 belongs to ℒ1(𝐻𝐻2). Furthermore, 
(𝐽𝐽, 𝑆𝑆̅) is a unitary asymptote of 𝑆𝑆, where 𝐽𝐽 ∶  𝐻𝐻2  → 𝐿𝐿2, 𝑓𝑓 ↦ 𝑓𝑓 is the natural embedding, 
and 𝑆𝑆̅ ∈ ℒ(𝐿𝐿2), 𝑆𝑆̅𝑓𝑓 = 𝜒𝜒𝑓𝑓 is the simple bilateral shift. Clearly 𝜔𝜔(𝑆𝑆, 𝜗𝜗)  = 𝕋𝕋+. Let us 
consider the analytic Toeplitz operator 𝑇𝑇 ∶=  𝜗𝜗(𝑆𝑆)  =  𝑇𝑇𝜗𝜗 ∈ ℒ(𝐻𝐻2). By Theorem (6.2.3) 
the pair (𝐽𝐽+, 𝜗𝜗(𝑆𝑆+̅)) is a unitary asymptote of 𝑇𝑇, where 𝑆𝑆+̅ ∶= 𝑆𝑆̅|𝐿𝐿2(𝕋𝕋+) and 𝐽𝐽+ ∶  𝐻𝐻2  →
𝐿𝐿2(𝕋𝕋+), 𝑓𝑓 ↦ 𝜒𝜒𝕋𝕋+𝑓𝑓 . 
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In virtue of Theorem(6. 2.4) we can also see that 𝜋𝜋(𝑇𝑇) = 𝕋𝕋. 
Set 𝜗𝜗1 ∶=  𝜗𝜗|𝕋𝕋+. Since the boundary of 𝐺𝐺 is a rectifiable Jordan curve, the mapping 
𝑍𝑍 ∶ 𝐿𝐿2 → 𝐿𝐿2(𝕋𝕋+), 𝑓𝑓 ↦  (𝑓𝑓 ∘ 𝜗𝜗1)|�̀�𝜗1 |1/2 is a unitary transformation, intertwining 𝑆𝑆̅ with 
𝜗𝜗(𝑆𝑆+̅) (see [5] or [23]). Thus 𝜗𝜗(𝑆𝑆+̅) is cyclic, and so 𝑇𝑇 ∈ ℒ1(𝐻𝐻2).. As in the proof of 
Theorem (6.2.7), we obtain that {𝑇𝑇}′ =  {𝑆𝑆}′ = {𝑇𝑇ℎ ∶  ℎ ∈ 𝐻𝐻∞ }. Therefore, for every 
𝜆𝜆 ∈ ℂ\𝜎𝜎(𝑇𝑇), the inverse  (𝑇𝑇 − 𝜆𝜆𝐼𝐼)−1 is an analytic Toeplitz operator, whence 

𝜎𝜎(𝑇𝑇) = 𝜗𝜗(𝔻𝔻)−  = {𝑜𝑜𝑒𝑒𝑖𝑖𝑤𝑤 ∶ 𝛿𝛿 ≤  𝑜𝑜 ≤  1, 0 ≤  𝑤𝑤 ≤  2𝜋𝜋} 
can be easily derived. 
To identify the functional commutant ℱ(𝑇𝑇), let us consider the mapping 
 𝛾𝛾: {𝑇𝑇}′ →  {𝜗𝜗(𝑆𝑆̅+)}′, 𝐶𝐶 ↦ 𝐷𝐷, where 𝐽𝐽+𝐶𝐶 =  𝐷𝐷𝐽𝐽+. We know that {𝑇𝑇}′ =  {𝑆𝑆}′. 
Furthermore, for any ℎ ∈ 𝐻𝐻∞ , we have ℎ(𝑆𝑆) ∈ {𝑇𝑇}′, ℎ(𝑆𝑆+̅)  ∈  {𝜗𝜗(˜𝑆𝑆+̅)}′ and 𝐽𝐽+ℎ(𝑆𝑆) =
ℎ(𝑆𝑆+̅)𝐽𝐽+, hence 𝛾𝛾(ℎ(𝑆𝑆)) = ℎ(𝑆𝑆+̅). Since 𝜙𝜙: 𝐿𝐿∞ →  {𝜗𝜗(𝑆𝑆+̅)}′, 𝑓𝑓 ↦  𝑍𝑍𝑓𝑓 (𝑆𝑆̅)𝑍𝑍∗ is the 
functional calculus for 𝜗𝜗(𝑆𝑆+̅), we infer that 𝑔𝑔 ∈ ℱ(𝑇𝑇) holds exactly when there exists a 
function ℎ ∈  𝐻𝐻∞  such that 𝑍𝑍𝑔𝑔(𝑆𝑆̅)𝑍𝑍∗  =  ℎ(𝑆𝑆+̅); and then 𝛷𝛷�𝑇𝑇  (𝑔𝑔) = 𝑇𝑇ℎ . For any 𝑓𝑓 ∈
𝐿𝐿∞  we have 𝑍𝑍𝑔𝑔( 𝑆𝑆̅)𝑓𝑓 =  (𝑔𝑔 ∘ 𝜗𝜗1)(𝑓𝑓 ∘ 𝜗𝜗1) |�̀�𝜗1 |1/2 and ℎ(𝑆𝑆+̅)𝑍𝑍𝑓𝑓 =  (ℎ|𝕋𝕋+)(𝑓𝑓 ∘
𝜗𝜗1)|�̀�𝜗1 |1/2. Thus ℱ(𝑇𝑇) = 𝑔𝑔 ∈  𝐿𝐿∞ ∶ {𝑔𝑔 ∘ 𝜗𝜗1 = ℎ|𝕋𝕋+ for some ℎ ∈  𝐻𝐻∞ }  
We can get further examples by choosing 𝐺𝐺 to be any simply connected domain in 𝔻𝔻, 
whose boundary 𝜕𝜕𝐺𝐺 is a rectifiable Jordan curve, satisfying the condition 𝜕𝜕𝐺𝐺 ∩ 𝕋𝕋 = 𝕋𝕋+. 
Section(6.3):  Quasianalytic Spectral Sets of Cyclic Contractions 
Let ℋ  be an infinite dimensional separable complex Hilbert space and let  ℒ (ℋ) 
denote the set of bounded, linear operators acting on ℋ. For an operator 𝑇𝑇 ∈  ℒ (ℋ) let 
{𝑇𝑇}′  = {𝐶𝐶 ∈ ℒ (ℋ): 𝐶𝐶𝑇𝑇 =  𝑇𝑇𝐶𝐶} denote the commutant of 𝑇𝑇, and let Hlat 𝑇𝑇 =  𝐿𝐿𝑅𝑅𝑤𝑤{𝑇𝑇}′ 
stand for the hyperinvariant subspace lattice of 𝑇𝑇. The Invariant Subspace Problem 
(𝐼𝐼𝑆𝑆𝑃𝑃) asks whether every operator 𝑇𝑇 ℒ (ℋ) has a non-trivial invariant subspace, that is 
if Lat 𝑇𝑇 ≠ {{0}, ℋ}. In a similar fashion, the Hyperinvariant Subspace Problem (𝐻𝐻𝑆𝑆𝑃𝑃) is 
whether every operator 𝑇𝑇 ∈  ℒ (ℋ)\ℂ𝐼𝐼  has a non-trivial hyperinvariant subspace. These 
problems are arguably the most challenging open questions in operator theory. From the 
point of view of subspaces one can normalize the operators to have norm at most 1, 
hence in what follows we shall only consider contractions. In the present work we shall 
show that for a relatively large class of contractions  ℒ0 (ℋ), see its definition below) 
the problem (𝐻𝐻𝑆𝑆𝑃𝑃) is equivalent to (𝐻𝐻𝑆𝑆𝑃𝑃) for a special subclass (ℒ1 (ℋ)), the members 
of which have rich invariant subspace lattice. The reduction will be achieved by 
establishing that for every  𝑇𝑇 ∈ ℒ0 (ℋ) there is a 𝑇𝑇1 ∈ ℒ1 (ℋ) which commutes with 𝑇𝑇 
.This𝑇𝑇1 will be obtained as a function 𝑓𝑓(𝑇𝑇) of 𝑇𝑇 , where 𝑓𝑓 is a special conformal map 
lying in the disk algebra. 
The existence of 𝑓𝑓 will be proven via potential theory. 
We define some classes of contractions. These concepts were introduced (in the non-
cyclic case too) in [11], where it was shown, among others, that non-quasianalytic 
contractions (to be defined below) do have proper hyperinvariant subspaces. Thus, in the 
quest for such subspaces one should concentrate on quasianalytic contractions. 
Let 𝑇𝑇 ∈ ℒ (ℋ) be a contraction:‖𝑇𝑇‖ ≤ 1 We recall that the pair (𝑋𝑋, 𝑉𝑉) is a unitary 
asymptote of 𝑇𝑇 ,if 
(i) 𝑉𝑉 is a unitary operator acting on a Hilbert space 𝜅𝜅, 
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(ii)  𝑋𝑋 ∈ ℒ (ℋ, 𝜅𝜅) is a contractive mapping intertwining 𝑇𝑇 with 𝑉𝑉 ∶  ‖𝑋𝑋‖  ≤ 1, , 𝑋𝑋𝑇𝑇 =
𝑉𝑉𝑋𝑋 and 
(iii) for any similar contractive intertwining pair (�́�𝑋 , �́�𝑉) there exists a unique 
contractive transformation 𝑌𝑌 ∈  ℒ (𝜅𝜅, �́�𝜅) such that 𝑌𝑌𝑉𝑉 = �́�𝑉 𝑌𝑌 and �́�𝑋 = 𝑌𝑌𝑋𝑋. 

For the existence and uniqueness of unitary asymptotes we refer to [4] (see also [10]). 
We assume that 𝑇𝑇 is of class 𝐶𝐶10, which means that 
(a) 𝑇𝑇 is asymptotically non-vanishing: lim𝑛𝑛→∞‖𝑇𝑇𝑛𝑛 ‖ > 0 for every 
 0 ≠  𝑥𝑥 ∈ ℋ and 
(b) the adjoint 𝑇𝑇∗   is stable: lim𝑛𝑛→∞‖(𝑇𝑇∗)𝑛𝑛 𝑥𝑥‖ = 0  for every 𝑥𝑥 ∈ ℋ. 

Then the intertwining mapping 𝑋𝑋 is injective, and the unitary operator 𝑉𝑉 is absolutely 
continuous. Let us also assume that 𝑉𝑉 is cyclic:   
⋁ 𝑉𝑉𝑛𝑛  𝑢𝑢∞

𝑛𝑛=0  
  = 𝜅𝜅 for some 𝑢𝑢 ∈  𝜅𝜅. Then, for some measurable subset 𝛼𝛼 ⊂ 𝕋𝕋 of the unit 

circle, 𝑉𝑉 is unitarily equivalent to the multiplication operator 𝑀𝑀𝛼𝛼   on the Hilbert space 
𝐿𝐿2 (𝛼𝛼 ) by the identity function  𝝌𝝌(𝜁𝜁 ) =   𝜁𝜁: 𝑀𝑀𝛼𝛼  𝑓𝑓 = 𝝌𝝌 𝑓𝑓 , 𝑓𝑓 ∈  𝐿𝐿2(𝛼𝛼 ). 

So from now on we may assume 𝜅𝜅 = 𝐿𝐿2(𝛼𝛼 ) and 𝑉𝑉𝑓𝑓 =   𝝌𝝌𝑓𝑓 , 𝑓𝑓 ∈ 𝐿𝐿2(𝛼𝛼 ).The  set 𝛼𝛼 is 
uniquely determined up to sets of zero Lebesgue measure, and is called the residual set 
of 𝑇𝑇 , denoted by  𝜔𝜔(𝑇𝑇). 
We say that 𝑇𝑇 is quasianalytic on a measurable subset 𝛽𝛽 of 𝕋𝕋,if (𝑋𝑋ℎ)(𝜁𝜁)  ≠  0 for a.e. 
𝜁𝜁 ∈ 𝛽𝛽 whenever 0 ≠  ℎ ∈ ℋ. Taking the union of a sequence of quasianalytic sets, 
whose measures converge to the supremum (of measures of all quasianalytic sets), we 
obtain that there exists a largest quasianalytic set for 𝑇𝑇 , denoted by  𝜋𝜋(𝑇𝑇).Theset 𝜋𝜋(𝑇𝑇) 
is determined up to sets of zero Lebesgue measure, and is called the quasianalytic 
spectral set of 𝑇𝑇 . Clearly,  𝜋𝜋(𝑇𝑇). is included in  𝜔𝜔(𝑇𝑇). The contraction 𝑇𝑇 is 
quasianalytic, if  𝜋𝜋(𝑇𝑇) = 𝜔𝜔(𝑇𝑇). 
in [13] introduced distinctive classes of quasianalytic contractions. The class ℒ0(ℋ) 
consists of the operators 𝑇𝑇 ∈ ℒ(ℋ) satisfying the conditions: 
(i) 𝑇𝑇 is a 𝐶𝐶10-contraction, 
(ii) the unitary operator 𝑉𝑉 is cyclic, and 
(iii) 𝑇𝑇 is quasianalytic. 

The subclass ℒ1(ℋ) consists of those operators 𝑇𝑇 ∈ ℒ0(ℋ), which satisfy also the 
additional condition: 
(iv)  𝜋𝜋(𝑇𝑇) = 𝕋𝕋 

Every operator 𝑇𝑇 ∈ ℒ1(ℋ) has a rich invariant subspace lattice Lat T ;see[11]. Let us 
consider  also the class ℒ̃(ℋ) of those (non-scalar) contractions 𝑇𝑇 ∈ ℒ(ℋ), which are 
non-stable (i.e., lim𝑛𝑛→∞‖Tn x‖ > 0  for some 𝑥𝑥 ∈ ℋ), and where the unitary asymptote 
𝑉𝑉 is cyclic. Clearly 

ℒ1(ℋ) ⊂ ℒ0(ℋ) ⊂ ℒ̃(ℋ). 
We emphasize that from the point of view of invariant subspaces these classes are very 
natural. 
Namely, we know from [11] that the (𝐻𝐻𝑆𝑆𝑃𝑃) in the class ℒ̃(ℋ)is equivalent to the (𝐻𝐻𝑆𝑆𝑃𝑃) 
in the class ℒ0(ℋ). Furthermore, if the (𝐻𝐻𝑆𝑆𝑃𝑃) has positive answer in ℒ̃(ℋ), then the 
(𝐼𝐼𝑆𝑆𝑃𝑃) has an affirmative answer in the large class of contractions 𝑇𝑇 , where 𝑇𝑇 or 𝑇𝑇∗   is 
non-stable. As was mentioned earlier, the (𝐼𝐼𝑆𝑆𝑃𝑃) in ℒ1(ℋ) is answered affirmatively. 
Actually, a lot of information is at our disposal on the structure of operators in ℒ1(ℋ), 
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which may be helpful in the study of the (𝐻𝐻𝑆𝑆𝑃𝑃) in this class; see [12]. It was proved in 
[13] that if 𝑇𝑇 ∈ ℒ0(ℋ) and  𝜋𝜋(𝑇𝑇) contains an arc then there exists 𝑇𝑇1  ∈ ℒ1(ℋ)such that 
{𝑇𝑇}′  = {𝑇𝑇1}′and so  𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤𝑇𝑇 = 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇1 .  
Therefore, we obtain the following corollary. 
Corollary (6.3.1)[1]: The (𝐻𝐻𝑆𝑆𝑃𝑃) in the class ℒ0(ℋ) is equivalent to the (𝐻𝐻𝑆𝑆𝑃𝑃) in the 
class ℒ1(ℋ). 
These results are related to those in [7,6,3,12]. 
We provide an operator 𝑇𝑇1 in ℒ1(ℋ) ∩ {𝑇𝑇}′ as a function of  , using the 𝑆𝑆𝑧𝑧.-Nagy–Foias 
functional calculus; see  [19]. We shall apply the spectral mapping theorem established 
in [13]. The existence of a function 𝑓𝑓 ∈  𝐻𝐻∞   , satisfying the conditions 𝑓𝑓(𝑇𝑇) ∈ ℒ0(ℋ) 
and 𝜋𝜋(𝑓𝑓(𝑇𝑇)) = 𝑓𝑓(𝜋𝜋(𝑇𝑇)) = 𝕋𝕋, is based on Theorem(6.3.3) below. 
Let m denote the linear Lebesgue measure both on the real line and on the unit circle. 𝐴𝐴 
domain 𝐺𝐺 ∈ 𝕔𝕔 is called a circular comb domain if it is obtained from the open unit disc 
𝔻𝔻 by deleting countably many radial segments of the form {𝑜𝑜 𝜁𝜁: 𝜌𝜌 < 𝑜𝑜 < 1} with some 
0 <  𝜌𝜌 < 1 and 𝜁𝜁 ∈ 𝕋𝕋. 
Theorems(6.3.7) and(6.3.2) should be compared to [15]. Here the additional absolute 
continuity of the extremal measure is the key to our results. 
In this Section the functional calculus within the class ℒ0 (ℋ) is discussed, and 
Theorem(6.3.1) is proved relying on Theorem (6.3.7). The proofs of Theorems(6.3.7) 
and (6.3.2) are given in this Section . 
In order to get 𝐶𝐶10 -contractions, we consider functions in the Hardy class 𝐻𝐻∞   with 
specific boundary behavior. 
Let 𝑀𝑀 be the   𝜎𝜎-algebra of Lebesgue measurable sets on 𝕋𝕋. For a complex function 𝑓𝑓 
defined on the open unit disc 𝔻𝔻, let 𝛺𝛺(𝑓𝑓) be the set of those points     𝜁𝜁 ∊ 𝕋𝕋, where the 
radial limit           lim𝑜𝑜→1−0 𝑓𝑓(𝑜𝑜𝜁𝜁) =: 𝑓𝑓(𝜁𝜁) exists and is of modulus 1: |𝑓𝑓(𝜁𝜁 )| = 1. It can 
be easily seen that if 𝑓𝑓 is continuous on 𝔻𝔻, then 𝛺𝛺(𝑓𝑓) ∊ 𝑴𝑴. 
For any 𝑓𝑓 ∊ 𝐻𝐻∞    the radial limit exists almost everywhere on 𝕋𝕋 by Fatou’s theorem; 
see [9]. 
We recall from [12] that 𝑓𝑓 ∊ 𝐻𝐻∞  is a partially inner function, if 
(i)  |𝑓𝑓(0)| < 1 = ‖𝑓𝑓‖∞    , and 
(ii)  𝑚𝑚(𝛺𝛺 (𝑓𝑓)) > 0. 

Note that (i) implies 𝑓𝑓 [𝔻𝔻] ⊂  𝔻𝔻 by the Maximum Principle. Furthermore, Corollary 
(6.3.2) of [13] states that 𝑚𝑚(𝑓𝑓−1[𝜔𝜔 ]) = 0 for every 𝜔𝜔 ∈ 𝑀𝑀 with 𝑚𝑚(𝜔𝜔 ) = 0 (recall also 
that every set of measure 0 is included in a Borel set of measure zero). Hence, for any     
𝛺𝛺 ∊ 𝑀𝑀, 𝛺𝛺 ⊂ 𝛺𝛺(𝑓𝑓), the measure   𝜇𝜇: 𝑀𝑀 → [0, 2𝜋𝜋], 𝜇𝜇(𝜔𝜔) =  𝑚𝑚(𝑓𝑓−1 [ 𝜔𝜔] ∩ 𝛺𝛺 ) is 
absolutely continuous with respect to m. 
The properly essential range of the restriction 𝑓𝑓|𝛺𝛺   is defined by 

𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(𝑓𝑓|𝛺𝛺  ) ∶= {𝜁𝜁 ∊ 𝕋𝕋: (𝑑𝑑𝜇𝜇 /𝑑𝑑 𝑚𝑚)( 𝜁𝜁 ) >  0} . 
Note that the Radon–Nikodym derivative 𝑑𝑑𝜇𝜇 /𝑑𝑑𝑚𝑚, and so the Lebesgue measurable set 
𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(𝑓𝑓|𝛺𝛺  ) too, is determined up to sets of measure zero. The spectral mapping 
theorems in this Section  of [13] are formulated in terms of this kind of range. 
The properly essential range is just the range of the function under some regularity 
conditions. 
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We introduce this regularity property of a partially inner function in a somewhat 
different (and simpler) manner than in [13]. We say that a function  𝑔𝑔: 𝛺𝛺 → 𝕋𝕋, where  
𝛺𝛺 ⊂ 𝕋𝕋 is a measurable subset of 𝕋𝕋, is weakly absolutely continuous, if , 𝜔𝜔 ⊂
𝛺𝛺, 𝑚𝑚( 𝜔𝜔) =  0, implies 𝑚𝑚(𝑔𝑔[𝜔𝜔]) = 0. The partially inner function 𝑓𝑓 ∊ 𝐻𝐻∞    is called 
regular, if 𝑓𝑓|𝛺𝛺(𝑓𝑓) is a weakly absolutely continuous function. The following lemma 
shows that this definition is essentially the same as the one given in [11] and [13], 
replacing Borel sets occurring there by Lebesgue measurable sets. 
Lemma(6.3.2)[1]: Let 𝑓𝑓 ∊ 𝐻𝐻∞   be a partially inner function. 
(a) Then 𝑓𝑓 is regular if and only if for every measurable set  𝛺𝛺 ⊂ 𝛺𝛺(𝑓𝑓) the image set 
𝑓𝑓 [ 𝛺𝛺] is also measurable. 
(b) If 𝑓𝑓 is regular and 𝛺𝛺 ∊ 𝑀𝑀, 𝛺𝛺 ⊂ 𝛺𝛺(𝑓𝑓), then 𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(𝑓𝑓|𝛺𝛺 ) = 𝑓𝑓(𝛺𝛺 ). 
Recall that 𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(𝑓𝑓|𝛺𝛺  ) is determined only up to measure zero, so the equality 
𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(𝑓𝑓|𝛺𝛺  ) = 𝑓𝑓(𝛺𝛺 )is also understood up to measure zero. 
Proof. (a): We sketch the proof of this known equivalence. Suppose that f is regular, and 
let     𝛺𝛺 ∈ 𝑀𝑀, 𝛺𝛺 ⊂ 𝛺𝛺(𝑓𝑓). Since 𝑓𝑓|𝛺𝛺  is the pointwise limit of a sequence of continuous 
functions, it follows from Egorov’s theorem that 𝛺𝛺 = 𝛺𝛺1 ∪ 𝛺𝛺2, where  𝛺𝛺1 and 𝑓𝑓 [ 𝛺𝛺1] 
are 𝐹𝐹𝜎𝜎 -sets and 𝑚𝑚( 𝛺𝛺2) = 0. Hence, by assumption, 𝑚𝑚(𝑓𝑓 [ 𝛺𝛺2 ]) = 0 and thus 𝑓𝑓 [𝛺𝛺 ] ∊
 𝑀𝑀 . 
Conversely, if 𝑓𝑓 is non-regular, then 𝑚𝑚(𝑓𝑓 [𝜔𝜔 ]) = 0 fails for some 𝜔𝜔 ⊂ 𝛺𝛺(𝑓𝑓) with 
𝑚𝑚(𝜔𝜔 ) = 0. 
There is a non-measurable subset  �́�𝛺 of 𝑓𝑓[𝜔𝜔]. Thus   𝛺𝛺 = 𝑓𝑓−1[ �́�𝛺 ]⋂𝜔𝜔 ∊ 𝑀𝑀 , while 
𝑓𝑓 [𝛺𝛺] = �́�𝛺 ∉  𝑀𝑀. 
(b): The sets  𝜔𝜔1 = 𝑓𝑓 [𝛺𝛺] and  𝜔𝜔2 =  𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(𝑓𝑓|𝛺𝛺 ) are in 𝑀𝑀. Let us consider the 
measure 𝜇𝜇  occurring in the definition of  𝜔𝜔2, and let 𝑔𝑔 = 𝑑𝑑𝜇𝜇 /𝑑𝑑𝑚𝑚. Since 
      ∫ 𝑔𝑔𝑑𝑑𝑚𝑚 = 𝜇𝜇(𝜔𝜔2\𝜔𝜔1) = 𝑚𝑚((𝑓𝑓|𝛺𝛺 )−1[𝜔𝜔2\𝜔𝜔1]) = 𝑚𝑚𝜙𝜙 = 0 

𝜔𝜔2\𝜔𝜔1
 

and 𝑔𝑔(𝜁𝜁)  > 0 for 𝜁𝜁 ∈ 𝜔𝜔2\𝜔𝜔1 , it follows that 𝑚𝑚(𝜔𝜔2\𝜔𝜔1) =  0. On the other hand, we 
have 

 𝑚𝑚((𝑓𝑓|𝛺𝛺 )−1[𝜔𝜔1\𝜔𝜔2]) = 𝜇𝜇(𝜔𝜔1\𝜔𝜔2) =  � 𝑔𝑔𝑑𝑑𝑚𝑚 = 0
 

𝜔𝜔1\𝜔𝜔2

 

since 𝑔𝑔(𝜁𝜁) =  0 for (almost all) 𝜁𝜁 ∊ 𝜔𝜔1\𝜔𝜔2; thus 𝑚𝑚(𝜔𝜔1\𝜔𝜔2) = 0 by the regularity 
condition.  
Applying the functional calculus, for an operator in ℒ0(ℋ) we want to get another 
operator in ℒ0(ℋ), which means that the cyclic property should be preserved. Hence, 
univalent functions will be considered in the sequel. We recall that 𝑓𝑓 ∶ 𝔻𝔻 → 𝕔𝕔 is called a 
univalent function (or a conformal map) if it is analytic and injective. The range 
𝐺𝐺 = 𝑓𝑓 [𝔻𝔻] of 𝑓𝑓 is a simply connected domain, different from 𝕔𝕔. The boundary  𝜕𝜕𝐺𝐺 of 𝐺𝐺 
is a non-empty closed set. It is known that the geometric properties of 𝜕𝜕𝐺𝐺 are reflected in 
the analytic properties of  𝑓𝑓 . For example  𝜕𝜕𝐺𝐺  is a curve (i.e. a continuous image of the 
unit circle) exactly when 𝑓𝑓 belongs to the disk algebra 𝐴𝐴, and then  𝜕𝜕𝐺𝐺 = 𝑓𝑓 [𝕋𝕋] (see 
[15]). We recall that the disk algebra 𝐴𝐴 consists of those analytic complex functions on 
𝔻𝔻, which can be continuously extended to the closure 𝔻𝔻�  of 𝔻𝔻. We focus our attention to 
the class 
                     𝐴𝐴1 ≔ {𝑓𝑓 ∈ 𝐴𝐴: 𝑓𝑓|𝔻𝔻 𝑖𝑖𝑠𝑠 𝑢𝑢𝑛𝑛𝑖𝑖𝑣𝑣𝑅𝑅𝑙𝑙𝑒𝑒𝑛𝑛𝑤𝑤 } 
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The following proposition shows that every partially inner function in 𝐴𝐴1 has an almost 
injective unimodular component. The cardinality of a set 𝐻𝐻 is denoted by |𝐻𝐻|. For 
distinct points 
 𝜁𝜁1 , 𝜁𝜁2 ∈ 𝕋𝕋, the open arc determined by  𝜁𝜁1and 𝜁𝜁2is defined by  𝜁𝜁1𝜁𝜁2� = {𝑒𝑒𝑖𝑖𝑤𝑤 : 𝑤𝑤1 < 𝑤𝑤 < 𝑤𝑤2}, 
where 𝑤𝑤1 < 𝑤𝑤2 < 𝑤𝑤1 + 2𝜋𝜋 and  𝜁𝜁1 = 𝑒𝑒𝑖𝑖𝑤𝑤1 , 𝜁𝜁2 = 𝑒𝑒𝑖𝑖𝑤𝑤2 . 
Proposition(6.3.3)[1]: Let f   𝐴𝐴1 be a partially inner function. 
(a) If 𝑓𝑓(𝜁𝜁1)  = 𝑓𝑓(𝜁𝜁2) = 𝑤𝑤 holds for distinct points   𝜁𝜁1, 𝜁𝜁2  ∊ 𝛺𝛺(𝑓𝑓), then for one of the 
arcs 𝐼𝐼 = 𝜁𝜁1𝜁𝜁2�   or 𝐼𝐼 = 𝜁𝜁2𝜁𝜁1� we have 𝑚𝑚(𝐼𝐼 ∩  𝛺𝛺(𝑓𝑓)) =  0 and 𝑓𝑓( 𝜁𝜁) = 𝑤𝑤 for every    𝜁𝜁 ∈
 𝐼𝐼⋂ 𝛺𝛺(𝑓𝑓). 
(b) The set 𝑀𝑀 = {𝑤𝑤 ∈ 𝕋𝕋 ∶ |𝑓𝑓−1 [𝑤𝑤]| > 1} of multiple image points on 𝕋𝕋 is countable. 
(c) For any Borel subset 𝛺𝛺  of  𝛺𝛺(𝑓𝑓) with 𝑚𝑚(𝛺𝛺 ) >  0 we have  𝑓𝑓[𝛺𝛺] = 𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(𝑓𝑓 |𝛺𝛺  ) 
if and only if 𝑓𝑓 |𝛺𝛺 is weakly absolutely continuous. 
Proof. Statement (b) is an easy consequence of statement (a). 
We sketch the proof of (a), which is based on ideas taken from the proof of the related in 
[15].Let 𝑆𝑆 denote the segment joining 𝜁𝜁1   with 𝜁𝜁2. Then 𝐽𝐽 =  𝑓𝑓 [𝑆𝑆] is a (closed) Jordan 
curve in 𝔻𝔻 ∪{w}. Let us consider the open sets 𝐺𝐺1  = 𝐺𝐺 ∩ 𝑖𝑖𝑛𝑛𝑤𝑤 𝐽𝐽    and 𝐺𝐺2  =  𝐺𝐺 ∩ ext J   , 
where 𝐺𝐺 = 𝑓𝑓 [𝔻𝔻]. It is easy to check that 𝐷𝐷1  =  𝑓𝑓−1  [𝐺𝐺1], 𝐷𝐷2  =  𝑓𝑓−1 [𝐺𝐺2] are the 
connected components of 𝔻𝔻 \ 𝑆𝑆, and 𝐺𝐺1 = 𝑓𝑓 [𝐷𝐷1], 𝐺𝐺2 = 𝑓𝑓 [𝐷𝐷2 ]. We may assume that  
𝜕𝜕𝐷𝐷1 =  𝑆𝑆 ∪ 𝜉𝜉1𝜉𝜉2�  ; the other case  𝜕𝜕𝐷𝐷1  = 𝑆𝑆 ∪ 𝜉𝜉2𝜉𝜉1�  can be treated similarly. For every 
𝜁𝜁 ∈ 𝜉𝜉1𝜉𝜉2� ∩ 𝛺𝛺(𝑓𝑓)     we have 

𝑓𝑓( 𝜁𝜁) ∈ 𝐺𝐺1 ∩ 𝕋𝕋 = {𝑤𝑤}. Since 𝑚𝑚(𝑓𝑓−1 [𝑤𝑤]) = 0, the statement follows. 
Turning to the proof of (𝑐𝑐) notice first that  𝛺𝛺(𝑓𝑓) is a compact set on 𝕋𝕋. In view of (𝑏𝑏) 
the system 𝑆𝑆 = {𝜔𝜔; 𝜔𝜔 ⊂ (𝑓𝑓), 𝜔𝜔, 𝑓𝑓(𝜔𝜔 ) are Borel measurable} is a   𝜎𝜎-algebra on 𝛺𝛺(𝑓𝑓) 
containing compact sets; hence S consists of the Borel subsets of 𝛺𝛺(𝑓𝑓). 
Setting  𝜔𝜔1 = 𝑓𝑓 [𝛺𝛺 ] and  𝜔𝜔2 =  𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(𝑓𝑓|𝛺𝛺  ) we know that 𝑚𝑚( 𝜔𝜔2 \  𝜔𝜔1)  = 0 
always holds, and  𝑚𝑚( 𝜔𝜔1\ 𝜔𝜔2 ) = 0 whenever 𝑓𝑓|𝛺𝛺 is weakly absolutely continuous; see 
the proof of Lemma (6.3.2). Assuming that 𝑓𝑓|𝛺𝛺 is not weakly absolutely continuous, 
there exists a Borel set 𝜔𝜔 ⊂ 𝛺𝛺 such that  𝑚𝑚(𝜔𝜔 ) = 0 and 𝑚𝑚(�́�𝜔 ) > 0 for  �́�𝜔 = 𝑓𝑓 [𝜔𝜔 ]. 
Applying (𝑏𝑏) again, we can see that   𝑓𝑓�́�𝜔 𝑔𝑔𝑑𝑑𝑚𝑚 = 𝜇𝜇 ( �́�𝜔)  = 𝑚𝑚((𝑓𝑓 |𝛺𝛺 )−1 [ �́�𝜔 ]) = 0 holds 
for 𝑔𝑔 =  𝑑𝑑𝜇𝜇 /𝑑𝑑𝑚𝑚, and so 𝑚𝑚(𝜔𝜔2 ∩ �́�𝜔 )  =  0, whence 𝑚𝑚( 𝜔𝜔1\𝜔𝜔2 ) ≥ 𝑚𝑚(�́�𝜔) > 0 follows.  
The following theorem describes the functional calculus within the class ℒ0(ℋ). It 
plays crucial role in the proof of Theorem (6.3.5). 
Theorem(6.3.4)[1]: Setting 𝑇𝑇 ∈  ℒ0(ℋ), let 𝑓𝑓 ∈ 𝐴𝐴1 be a regular partially inner function 
such that 𝑚𝑚(𝜋𝜋 (𝑇𝑇 ) ∩ 𝛺𝛺 (𝑓𝑓)) > 0. Then 𝑇𝑇0 = 𝑓𝑓(𝑇𝑇) ∈  ℒ0(ℋ) and we have  𝜋𝜋(𝑇𝑇0) =
 𝑓𝑓 [ 𝜋𝜋(𝑇𝑇) ∩ 𝛺𝛺 (𝑓𝑓)]. 
Proof. By Proposition(6.3.9) the set 𝑀𝑀 = {𝑤𝑤 ∈ 𝕋𝕋: |𝑓𝑓 −1 [𝑤𝑤]| > 1} is countable, hence 
𝑚𝑚(𝑀𝑀) = 0 yields 𝑚𝑚(𝑓𝑓 −1[𝑀𝑀]) = 0. Deleting 𝑓𝑓 −1[𝑀𝑀] from the quasianalytic spectral set 
(which is determined up to sets of measure zero), we may assume that 𝑓𝑓 is injective on 
the 𝑠𝑠𝑒𝑒𝑤𝑤 𝛼𝛼 =  𝜋𝜋 (𝑇𝑇)𝛺𝛺 (𝑓𝑓)  ∈  𝑀𝑀 . We know also that  𝛽𝛽 =  𝑓𝑓 [ 𝛼𝛼]  ∈ 𝑀𝑀, and 𝑚𝑚(𝛼𝛼 ) >
 0, 𝑚𝑚(𝛽𝛽 ) > 0. Furthermore,the restriction   𝜙𝜙 = 𝑓𝑓 |𝛼𝛼 → 𝛽𝛽  is a bijection, and for 
any 𝜔𝜔 ⊂ 𝛼𝛼  we have     𝜔𝜔 ∈ 𝑀𝑀 if and only if   𝜙𝜙[𝜔𝜔 ]  ∈ 𝑀𝑀, and 𝑚𝑚(𝜔𝜔)  =  0 exactly when 
𝑚𝑚( 𝜙𝜙[𝜔𝜔 ]) = 0. We use the notation    𝛼𝛼� = 𝜋𝜋 (𝑇𝑇) = 𝜔𝜔 (𝑇𝑇). 
Let (𝑋𝑋, 𝑀𝑀𝛼𝛼� ) be a unitary asymptote of  , with a properly chosen contractive intertwining 
mapping 𝑋𝑋: 𝑋𝑋𝑇𝑇 = 𝑀𝑀𝛼𝛼�  𝑋𝑋.Since 𝑇𝑇 is a completely non-unitary contraction, it follows that 
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𝑇𝑇0  =  𝑓𝑓(𝑇𝑇)is also a completely non-unitary contraction (see Chapter III in [19]). We 
know that 𝑇𝑇0 is quasianalytic and  𝜋𝜋(𝑇𝑇0)  =  𝛽𝛽 (see Corollary 5 in [13] and Proposition 
6). The condition 𝑚𝑚( 𝜋𝜋(𝑇𝑇0 )) > 0 yields 𝑇𝑇0  ∈   𝐶𝐶1, and 𝑇𝑇 ∈  𝐶𝐶0 readily implies 𝑇𝑇0 ∈ 𝐶𝐶0. 
Furthermore, in [13] the pair (𝑋𝑋0 , 𝜙𝜙(𝑀𝑀𝛼𝛼  )) is a unitary asymptote of 𝑇𝑇0, where 𝑋𝑋0𝑣𝑣 =
𝜒𝜒𝛼𝛼  𝑋𝑋𝑣𝑣 (𝑣𝑣 ∈ ℋ) (here  𝜒𝜒𝛼𝛼   is the characteristic function of the set  𝛼𝛼 ). We know that  
𝜙𝜙(𝑀𝑀𝛼𝛼  ) is an absolutely continuous unitary operator because 𝑇𝑇0 is an absolutely 
continuous contraction. It remains to show that 𝜙𝜙(𝑀𝑀𝛼𝛼  ) is cyclic. 
Let us introduce the measure 𝑣𝑣  on 
                                       𝑀𝑀( 𝛽𝛽 )  = {𝜔𝜔 ∈  𝑀𝑀: 𝜔𝜔 ⊂ 𝛽𝛽 }  
via 

  𝑣𝑣(𝜔𝜔 ) = 𝑚𝑚( 𝜙𝜙−1)[ 𝜔𝜔] . 
The properties of  𝜙𝜙   imply that 𝑣𝑣  is equivalent to (mutually absolutely continuous 
with) the Lebesgue measure on 𝛽𝛽. Let us consider the unitary operator 
𝑁𝑁𝑣𝑣  ℒ(𝐿𝐿2 (𝑣𝑣 )), 𝑁𝑁𝑣𝑣  𝑔𝑔 = 𝜒𝜒 𝑔𝑔, which is unitarily equivalent to 𝑀𝑀𝛽𝛽   (see [5]). It is easy to 
verify that 𝑍𝑍 ∶ 𝐿𝐿2(𝑣𝑣), 𝑔𝑔 ⟼ 𝑔𝑔 ∘ 𝜙𝜙   is a unitary transformation, intertwining 𝑁𝑁𝑣𝑣   with  
𝜙𝜙(𝑀𝑀 𝛼𝛼 ) ∶  𝑍𝑍𝑁𝑁𝑣𝑣   = 𝜙𝜙  (𝑀𝑀 𝛼𝛼  )𝑍𝑍. 
Therefore,  𝜙𝜙(𝑀𝑀 𝛼𝛼 )is unitarily equivalent to 𝑀𝑀𝛽𝛽   , and so it is cyclic.   
Now we proceed with the proof of Theorem (6.3.5) relying on the statement of Theorem 
(6.3.6). 
Theorem (6.3.5)[1]: For every operator 𝑇𝑇 ∈ ℒ0(ℋ)  there exists 𝑇𝑇1 ∈  ℒ1(ℋ) 
commuting with  𝑇𝑇 ∶ 𝑇𝑇𝑇𝑇1  =  𝑇𝑇1𝑇𝑇 . 
Since the commutants{𝑇𝑇}′ and{𝑇𝑇1}′  are abelian (see e.g.this Section  in [13]), the 
relation 𝑇𝑇𝑇𝑇1  =  𝑇𝑇1𝑇𝑇 implies{𝑇𝑇}′  = {𝑇𝑇1}′, and so 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇 =  𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇1. 
Proof. Let 𝑇𝑇 be a contraction in the class ℒ0 (ℋ), and let us consider the quasianalytic 
spectral set   𝛺𝛺 = 𝜋𝜋 (𝑇𝑇) of positive measure. By Theorem (6.3.6) there exist a compact 
set  𝛺𝛺� ⊂ 𝛺𝛺 and a function 𝑓𝑓 ∈ 𝐴𝐴1 such that 𝑓𝑓[𝔻𝔻] is a circular comb domain, 𝑓𝑓−1 [𝕋𝕋] =
𝛺𝛺�  , and  𝑓𝑓 |𝛺𝛺�   is weakly absolutely continuous. In other words, 𝑓𝑓 is a regular partially 
inner function with  𝛺𝛺(𝑓𝑓) = 𝛺𝛺�    𝑅𝑅𝑛𝑛𝑑𝑑 𝑓𝑓 [𝛺𝛺�  ] = 𝕋𝕋. Applying Theorem (6.3.6) we 
conclude that 𝑇𝑇1 = 𝑓𝑓(𝑇𝑇) ∈ ℒ0 (ℋ) and  𝜋𝜋(𝑇𝑇1) = 𝑓𝑓 [ 𝜋𝜋(𝑇𝑇)⋂𝛺𝛺 (𝑓𝑓)] = 𝑓𝑓 [𝛺𝛺�  ] = 𝕋𝕋, 
whence 𝑇𝑇1  ∈   ℒ1 (ℋ)  follows. Being norm-limit of polynomials of  , the operator 
𝑇𝑇1commutes with 𝑇𝑇 .  
First we prove Theorem(6.3.6) applying Theorem(6.3.9). 
Theorem (6.3.6)[1]: If 𝛺𝛺  is a measurable subset of the unit circle 𝕋𝕋 of positive (linear) 
measure, then there are a compact set 𝛺𝛺� ⊂ 𝛺𝛺  and a conformal map 𝑓𝑓 from 𝔻𝔻 onto a 
circular comb domain such that 𝑓𝑓 can be extended to a continuous function on the closed 
unit disc 𝔻𝔻� , 𝑓𝑓−1[𝕋𝕋] = 𝛺𝛺�  , and 𝑚𝑚(𝑓𝑓 [𝜔𝜔 ]) = 0 for every Borel subset  𝜔𝜔 of  𝛺𝛺�  of zero 
measure. 
Here, and in what follows, 𝑓𝑓[𝐴𝐴]: = {𝑓𝑓(𝑅𝑅): 𝑅𝑅 ∊ 𝐴𝐴} is the range of 𝑓𝑓 when restricted to 𝐴𝐴, 
and 𝑓𝑓−1[𝐵𝐵 ]: = {𝑏𝑏 ∶ 𝑓𝑓(𝑏𝑏) ∊ 𝐵𝐵} is the complete inverse image of the set 𝐵𝐵 under the map 
𝑓𝑓 . When 𝐵𝐵 = {𝑏𝑏} has only one element, then we write 𝑓𝑓−1[𝑏𝑏]instead of 𝑓𝑓−1[{𝑏𝑏}]. 
Theorem (6.3.6) will be derived from the subsequent Theorem (6.3.9). To formulate it 
wee need some potential theoretical preliminaries. For all these facts see [16,8] or 
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[17].Let 𝐾𝐾 be a compact set on 𝕔𝕔, and let 𝒫𝒫(𝐾𝐾) be the system of all probability (Borel) 
measures supported on 𝐾𝐾 .The potential 
                     𝑝𝑝𝑣𝑣(𝑧𝑧) = ∫ 𝑙𝑙𝑜𝑜𝑔𝑔 

𝐾𝐾  |𝑧𝑧 − 𝑤𝑤| 𝑑𝑑𝑣𝑣 (𝑤𝑤)   
of a measure 𝑣𝑣 ∊ 𝒫𝒫(𝐾𝐾) is a subharmonic function on 𝕔𝕔, which is harmonic on 𝕔𝕔 \ 𝐾𝐾 .The 
(logarithmic) capacity of 𝐾𝐾 is defined by cap(𝐾𝐾) = 𝑒𝑒𝑥𝑥𝑝𝑝(𝑀𝑀(𝐾𝐾)), where 

𝑀𝑀(𝐾𝐾) = 𝑠𝑠𝑢𝑢𝑝𝑝  �� 𝑝𝑝𝑣𝑣𝑑𝑑𝑣𝑣: 𝑣𝑣
 

𝐾𝐾

∊ 𝒫𝒫(𝐾𝐾)� 

If cap (𝐾𝐾) > 0, then there exists a unique measure  𝜇𝜇𝐾𝐾  ∊ 𝒫𝒫(𝐾𝐾), called the equilibrium 
measure of 𝐾𝐾, which is maximizing the energy integral: 

 � 𝑝𝑝𝜇𝜇𝐾𝐾 𝑑𝑑𝜇𝜇𝐾𝐾

 

𝐾𝐾

=  𝑀𝑀(𝐾𝐾); 

we write 𝑝𝑝𝐾𝐾  = 𝑝𝑝𝜌𝜌𝐾𝐾  for short. By Frostman’s theorem there is an 𝐹𝐹𝜎𝜎  -subset 𝐹𝐹 of 𝐾𝐾 with 
cap(F)=0  such that 𝑝𝑝𝐾𝐾  (𝑧𝑧) = 𝑀𝑀(𝐾𝐾) for all 𝑧𝑧 = 𝐾𝐾 \ 𝐹𝐹 , and 𝑝𝑝𝐾𝐾  (𝑧𝑧) > 𝑀𝑀(𝐾𝐾 ) for all 
𝑧𝑧 ∊ 𝐹𝐹 ∪ (𝕔𝕔 \ 𝐾𝐾). The compact set 𝐾𝐾 is called regular, if the potential 𝑝𝑝𝐾𝐾  is continuous 
on 𝕔𝕔, or equivalently, if the previous exceptional set 𝐹𝐹 is empty. 
Proof. Let  𝛺𝛺 ⊂ 𝕋𝕋 be a set of positive Lebesgue measure, and let  𝛺𝛺1 ⊂ 𝛺𝛺     be a 
compact subset of positive measure. Applying rotation we may assume that 1 is a 
density point of  𝛺𝛺1 ; let �́�𝛺1 be its reflection onto the real axis. The compact set  𝛺𝛺2 =
𝛺𝛺1⋂�́�𝛺 1is of positive measure and symmetric with respect to ℝ. Let us consider the 
bijective Joukovskii map  𝜑𝜑: 𝔻𝔻 → ℂ�\[−1,1], defined by  𝜑𝜑(𝑧𝑧) =  (𝑧𝑧 + 1/𝑧𝑧)/2; the 
continuous extension to 𝔻𝔻�  is also denoted by 𝜑𝜑. Then 𝐸𝐸 = 𝜑𝜑 [ 𝛺𝛺2 ] is a compact subset 
of [−1,1] with positive measure, and  𝛺𝛺2  = 𝜑𝜑−1[𝜑𝜑 [ 𝛺𝛺2]] because of the symmetry of 
𝛺𝛺2 . 
By Theorem (6.3.9) there is a regular compact subset 𝐾𝐾 of 𝐸𝐸 with an absolutely 
continuous equilibrium measure  𝜇𝜇𝐾𝐾  .Let [𝑅𝑅, 𝑏𝑏] be the smallest interval containing 𝐾𝐾. 
Consider the analytic function 

  Φ(𝑧𝑧) =  exp(− � 𝑙𝑙𝑜𝑜𝑔𝑔
 

𝐾𝐾

 (𝑧𝑧 − 𝑤𝑤)𝑑𝑑𝜇𝜇𝐾𝐾  (𝑤𝑤 )  +  𝑙𝑙𝑜𝑜𝑔𝑔 𝑐𝑐𝑅𝑅𝑝𝑝(𝐾𝐾)) 

on the upper half plane ℍ+ = {𝑧𝑧 ∈ ℂ: ℑ 𝑧𝑧 > 0} with that branch of log which is positive 
on (0, ∞). It is easy to see that for every 𝑥𝑥 ∈ ℝ the function ratio  Φ(𝑧𝑧)/|Φ (𝑧𝑧)| 
converges to 𝑒𝑒𝑥𝑥𝑝𝑝[ −𝑖𝑖𝜋𝜋𝜇𝜇𝐾𝐾  ((𝑥𝑥 , ∞))] as 𝑧𝑧 → 𝑥𝑥 from the upper half plane. Since 
| Φ(𝑧𝑧)| = 𝑒𝑒𝑥𝑥𝑝𝑝(− 𝑃𝑃𝐾𝐾  (𝑧𝑧)) · cap(𝐾𝐾) and 𝐾𝐾 is regular, it follows that Φ  can be 
continuously extended to the closure of ℍ+ in ℂ�;  Φ( ∞) = 0. We can see that  Φ(𝐾𝐾) 
coincides with the lower circle 𝕋𝕋−   = {𝑧𝑧 ∈  𝕋𝕋: ℑ𝑧𝑧 ≤ 0}, Φ(ℝ�  \ (𝑅𝑅, 𝑏𝑏))  = [ −1, 1], and 
each component I of (𝑅𝑅 , 𝑏𝑏 ) \ 𝐾𝐾 is mapped by Φ  onto a radial segment of the form 
{𝑜𝑜𝜁𝜁 ∶  𝜌𝜌 < 𝑜𝑜 < 1} with some 0 <  𝜌𝜌 < 1 and     𝜁𝜁 ∈ 𝕋𝕋−  . It can be shown also that Φ    
is univalent; see [1]. Since  Φ(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑝𝑝[ −𝑖𝑖𝜋𝜋𝜇𝜇𝐾𝐾  ((𝑥𝑥, ∞ ))] for 𝑥𝑥 ∈ 𝐾𝐾 and 𝜇𝜇𝐾𝐾   is 
absolutely continuous, it follows that sets of measure zero on 𝐾𝐾 are mapped by Φ    into 
sets of measure zero. 
Let 𝐺𝐺+ be the domain  Φ(𝐻𝐻+), and 𝐺𝐺−  its reflection onto the real axis. Since  Φ(𝑧𝑧) is 
real for 𝑧𝑧 ∈ ℝ\[a, b],  using the reflection principle we can extend Φ  via the definition  
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Φ(𝑧𝑧) = Φ (𝑧𝑧)�������, ℑ𝑧𝑧 < 0 to a conformal map of the domain ℂ� \[𝑅𝑅, 𝑏𝑏] onto the circular 
comb domain 𝐺𝐺 = 𝐺𝐺+ ∪  𝐺𝐺− ∪  (−1,1). Then 𝑓𝑓 = Φ ∘ 𝜑𝜑 is a conformal map from 𝔻𝔻 onto 
𝐺𝐺, it belongs to the disk algebra, and we have 𝑓𝑓 [𝛺𝛺�  ] = 𝕋𝕋, 𝑓𝑓 [𝕋𝕋\𝛺𝛺�  ] ⊂ 𝔻𝔻 for the compact 
set   𝛺𝛺� = 𝜑𝜑−1[𝐾𝐾] ⊂ 𝛺𝛺  .If 𝜔𝜔 ⊂ 𝛺𝛺�   is of zero linear measure, then 𝑓𝑓 [𝜔𝜔] is also of zero 
linear measure. Thus  𝛺𝛺�   and 𝑓𝑓 have all the properties set forth in the theorem. 
Note also that for compact, symmetric 𝛺𝛺   the measure of 𝛺𝛺\𝛺𝛺 � can be  made as small as 
we wish.  
To show Theorem (6.3.9) we need two lemmas. 
Lemma(6.3.7)[1]: Let 1 ≤ 𝜁𝜁1 <  𝛼𝛼1 < 𝜁𝜁2  < 𝛼𝛼2 < ···< 𝜁𝜁1 <  𝛼𝛼1. Then for 𝑥𝑥, 𝑢𝑢 ∈
[ −1, 0] we have 
               1

2
≤ ∏ �𝜁𝜁𝑠𝑠−𝑥𝑥

𝛼𝛼𝑠𝑠−𝑥𝑥
/ 𝜁𝜁𝑠𝑠−𝑢𝑢

𝛼𝛼𝑠𝑠−𝑢𝑢
�𝑙𝑙

𝑠𝑠=1 ≤ 2.                                                  (58) 
In a similar manner, if 1 ≤ 𝛽𝛽1 < 𝜁𝜁1 < 𝛽𝛽2 < ⋯ < 𝛽𝛽1 < 𝜁𝜁1then for 𝑥𝑥, 𝑢𝑢 ∈ [−1,0] we have  
                          1

2
≤ ∏ �𝜁𝜁𝑠𝑠−𝑥𝑥

𝛽𝛽𝑠𝑠−𝑥𝑥
/ 𝜁𝜁𝑠𝑠−𝑢𝑢

𝛽𝛽𝑠𝑠−𝑢𝑢
�𝑙𝑙

𝑠𝑠=1 ≤ 2.                                       (59)  
Proof. The inequalities (59) are obtained by taking reciprocal in (58) and switching the 
role of 𝛽𝛽𝑠𝑠  , 𝜁𝜁𝑠𝑠 and  𝜁𝜁𝑠𝑠 , 𝛼𝛼𝑠𝑠. Similarly, in proving (58) we may assume without loss of 
generality that 𝑢𝑢 ≤  𝑥𝑥. 
The product in (58) can be written as 
     ∏ �𝜁𝜁𝑠𝑠−𝑥𝑥

𝛽𝛽𝑠𝑠−𝑢𝑢
/ 𝛼𝛼𝑠𝑠−𝑥𝑥

𝛼𝛼𝑠𝑠−𝑢𝑢
�𝑙𝑙

𝑠𝑠=1 = �𝜁𝜁1−𝑥𝑥
𝜁𝜁1−𝑢𝑢

/ 𝛼𝛼1−𝑥𝑥
𝛼𝛼1−𝑢𝑢

� ∏ �𝜁𝜁𝑠𝑠+1−𝑥𝑥
𝜁𝜁𝑠𝑠+1−𝑢𝑢

/ 𝛼𝛼𝑠𝑠−𝑥𝑥
𝛼𝛼𝑠𝑠−𝑢𝑢

�𝑙𝑙−1
𝑠𝑠=1  

(𝑙𝑙 ≥ 2 can be assumed). Since (𝑤𝑤 − 𝑥𝑥)/(𝑤𝑤 − 𝑢𝑢) is increasing on (0, ∞ ), it immediately 
follows from the left hand side that the product in question is at most 1. On the other 
hand, by the same token the second factor on the right is at least 1, so the product is at 
least as large as 
           𝜁𝜁1−𝑥𝑥

𝜁𝜁1−𝑢𝑢
/ 𝛼𝛼1−𝑥𝑥

𝛼𝛼1−𝑢𝑢
≥ 𝜁𝜁1−𝑥𝑥

𝜁𝜁1−𝑢𝑢
≥ 1

2
 .              

Let  𝛽𝛽 1 <  𝛼𝛼 1 < ···< 𝛽𝛽 𝑙𝑙 <  𝛼𝛼𝑙𝑙  be positive integers, and let  𝜁𝜁𝑠𝑠 ∈ ( 𝛽𝛽𝑠𝑠  , 𝛼𝛼𝑠𝑠  ) for every 
1 ≤ 𝑠𝑠 ≤  𝑙𝑙. 
Taking the geometric mean of the products in (58) and (59) of Lemma (6.3.7) it follows 
that 

    1
2

≤ ∏ � |𝑥𝑥−𝜁𝜁𝑠𝑠|
�|𝑥𝑥−𝛼𝛼𝑠𝑠||𝑥𝑥− 𝛽𝛽𝑠𝑠|

/ |𝑢𝑢 −𝜁𝜁𝑠𝑠|
�|𝑢𝑢−𝛼𝛼𝑠𝑠||𝑢𝑢−𝛽𝛽𝑠𝑠|

�𝑙𝑙
𝑠𝑠=1 ≤ 2                                     (60) 

for every 𝑥𝑥, 𝑢𝑢 ∈ [−1, 0]. Multiplying everything by (−1), and changing the notation it 
follows that (60) holds also, when 𝛼𝛼𝑠𝑠 , 𝛽𝛽𝑠𝑠   are negative integers and 𝑥𝑥, 𝑢𝑢 ∈ [0,1].Let 𝕫𝕫 
denote the set of integers. Via scaling (multiplying everything by 2−𝑁𝑁  (𝑁𝑁 ∈ ℕ) and 
applying translation), we  obtain that (60) is true if  𝛼𝛼𝑠𝑠 , 𝛽𝛽𝑠𝑠 ∈ 2−𝑁𝑁  𝕫𝕫 for every 1 ≤  𝑠𝑠 ≤ 𝑙𝑙 
and 𝑥𝑥, 𝑢𝑢 ∈ [𝑗𝑗 −1

2𝑁𝑁 , 𝑗𝑗
2𝑁𝑁 ] with some 𝑗𝑗 ∈ 𝕫𝕫 satisfying  the condition 

                  𝑗𝑗/2𝑁𝑁  < 𝛽𝛽1  𝑜𝑜𝑜𝑜 (𝑗𝑗 − 1)/2𝑁𝑁  > 𝛼𝛼𝑙𝑙 .                                  (61) 
Given 𝑁𝑁 ∈ ℕ let 𝐼𝐼𝑁𝑁,𝑗𝑗  = [(𝑗𝑗 − 1)2−𝑁𝑁  , 𝑗𝑗2−𝑁𝑁  ] for any 𝑗𝑗 ∈  𝕫𝕫. Setting a non-empty set 
𝑆𝑆 ⊂ {𝑘𝑘 ∈ ℕ: 𝑘𝑘 ≤ 2𝑁𝑁  } of non-consecutive indexes, let us consider the compact set 
 𝐹𝐹 = ⋃ 𝐼𝐼𝑁𝑁,𝑗𝑗𝑗𝑗 ∈𝑠𝑠  , which can be written in the form 𝐹𝐹 = ⋃ [𝑅𝑅𝑠𝑠 , 𝑏𝑏𝑠𝑠]𝑛𝑛

𝑠𝑠=1  with 𝑅𝑅1 < 𝑏𝑏1 < 𝑅𝑅2  <
𝑏𝑏2 < ···< 𝑏𝑏𝑛𝑛  (𝑛𝑛 ≥ 2). The equilibrium measure 𝜇𝜇𝐹𝐹  of 𝐹𝐹 is absolutely continuous with 



- 176 - 
 

respect to the Lebesgue measure 𝑚𝑚 on ℝ, and its density function is given by the 
formula 

                𝜓𝜓(𝑤𝑤) = (𝑑𝑑𝜇𝜇𝐹𝐹/𝑑𝑑𝑚𝑚)(𝑤𝑤) = 1
𝜋𝜋

∏ |𝑤𝑤−𝜏𝜏𝑠𝑠|𝑛𝑛 −1
𝑠𝑠=1

∏ �|𝑤𝑤−𝛼𝛼𝑠𝑠||𝑤𝑤−𝑏𝑏𝑠𝑠|𝑛𝑛
𝑠𝑠=1

𝑑𝑑𝑤𝑤,       𝑤𝑤 ∈ 𝐹𝐹,      (62) 
where the numbers  𝜏𝜏𝑠𝑠 ∈ (𝑏𝑏𝑠𝑠  , 𝑅𝑅𝑠𝑠+1) (1 ≤ 𝑠𝑠 ≤  𝑛𝑛 − 1) are the unique solution of the 
system of equations 

                  ∫
∏ |𝑤𝑤−𝜏𝜏𝑠𝑠|𝑛𝑛 −1

𝑠𝑠=1
∏ �|𝑤𝑤−𝑅𝑅𝑠𝑠||𝑤𝑤−𝑏𝑏𝑠𝑠|𝑛𝑛

𝑠𝑠=1

𝑅𝑅𝑘𝑘+1
𝑏𝑏𝑘𝑘

𝑑𝑑𝑤𝑤 = 0,         1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1.           (63) 
This is a linear system in the coefficients of the polynomial ∏ |𝑤𝑤 − 𝜏𝜏𝑠𝑠|𝑛𝑛−1

𝑠𝑠=1 . 
When 𝑛𝑛 = 1 then the product in the numerator (62) is replaced by 1. For all these see 
[18] and [17]. 
Lemma (6.3.8)[1]: Let 0 < 𝜂𝜂 < 1/2, 𝑗𝑗 ∈ 𝑆𝑆, and 𝐻𝐻 a measurable subset of 
𝐼𝐼𝑁𝑁,𝑗𝑗  (𝑁𝑁, 𝑆𝑆, 𝐹𝐹 and 𝐼𝐼𝑁𝑁,𝑗𝑗  are as before). If 
                                       𝑚𝑚(𝐻𝐻) ≥ (1 − 2𝜂𝜂)𝑚𝑚�𝐼𝐼𝑁𝑁,𝑗𝑗  �,                              (64) 
 then 
   𝜇𝜇𝐹𝐹  (𝐻𝐻 ) ≥ �1 − 229𝜂𝜂

1
2� 𝜇𝜇𝐹𝐹�𝐼𝐼𝑁𝑁,𝑗𝑗  �.                                                      (65) 

Proof. We shall give an estimate of the density function 𝜓𝜓 on 𝐼𝐼𝑁𝑁,𝑗𝑗 . Assuming that 
𝐼𝐼𝑁𝑁,𝑗𝑗 ⊆ [𝑅𝑅𝑜𝑜  , 𝑏𝑏𝑜𝑜  ], this estimate depends on the position of 𝐼𝐼𝑁𝑁,𝑗𝑗  inside [𝑅𝑅𝑜𝑜  , 𝑏𝑏𝑜𝑜  ]. 
Case I. 𝑅𝑅𝑜𝑜  , 𝑏𝑏𝑜𝑜 ∉ 𝐼𝐼𝑁𝑁,𝑗𝑗  ,i.e 𝐼𝐼𝑁𝑁,𝑗𝑗   lies inside (𝑅𝑅𝑜𝑜  , 𝑏𝑏𝑜𝑜  ).For 𝑥𝑥, 𝑢𝑢 ∈ 𝐼𝐼𝑁𝑁,𝑗𝑗  we can write 

    𝜓𝜓(𝑥𝑥)
𝜓𝜓(𝑢𝑢)

= �|𝑢𝑢−𝑅𝑅1|
|𝑥𝑥−𝑅𝑅1|

/ |𝑥𝑥−𝑏𝑏𝑛𝑛 |
|𝑢𝑢−𝑏𝑏𝑛𝑛 |

. 𝜃𝜃1,𝑜𝑜−1(𝑥𝑥)
𝜃𝜃1,𝑜𝑜−1(𝑢𝑢)

. 𝜃𝜃1,𝑛𝑛 −1(𝑥𝑥)
𝜃𝜃1,𝑛𝑛 −1(𝑢𝑢)

,                                  (66)  

where 

  𝜃𝜃𝑘𝑘 ,𝑙𝑙 (𝑥𝑥) =
∏ |𝑥𝑥 − 𝜏𝜏𝑠𝑠|𝑙𝑙

𝑠𝑠=𝑘𝑘

∏ �|𝑥𝑥 − 𝑅𝑅𝑠𝑠+1||𝑥𝑥 − 𝑏𝑏𝑠𝑠|𝑙𝑙
𝑠𝑠=𝑘𝑘

 

(θ1,0  = θn,n 1 = 1 by definition). Since each factor in this decomposition (66) of 
ψ(x)/ψ (y) lies between 1/2 and 2 by (61), it follows that 
                           1

8
 ψ (y) ≤ ψ(x) ≤  8ψ(y).                                               (67) 

Case II. Precisely one of ar , br  belongs to IN,j. Then either j2 −N  = br  or (j − 1)2−N =
ar  , say j2−N  = br  . We shall consider only the situation when 1 < 𝑜𝑜 < 𝑛𝑛, for the other 
options (i.e. when r = 1 or r =  n) are simpler. In this case 
                 πψ(x)  = |x−τr |

�|x−br ||x−ar  +1|
· θ1(x )θ2(x),         (68) 

where 
                           θ1(x ) = 1

�|x−�a1|
. θ1.r−1(x) 

and 
θ2(x ) = 1

�|x−�bn |
. θr+1,n−1(x). 

Next we prove that here 
τr − br ≥ 2−82−N.          (69)                                                                                          

If  τr − br ≥ 2−N  then there is nothing to prove, so let us assume that τr ∈ [br , br +
2−N ].For t ∈ [br , br  + 2−N  ] the claim (61) gives the bounds 
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θi (br )
4

≤ θi(t) ≤ 4θi(br), i = 1,2.                  (70) 
For k = r Eq. (63) can be written as 

�
𝑤𝑤 − 𝜏𝜏𝑜𝑜

�(𝑤𝑤 − 𝑏𝑏𝑜𝑜  )(𝑅𝑅𝑜𝑜+1 − 𝑤𝑤)

𝑅𝑅𝑜𝑜+1

𝑏𝑏𝑜𝑜

 . 𝜃𝜃1(𝑤𝑤)𝜃𝜃2(𝑤𝑤)𝑑𝑑𝑤𝑤 = 0, 

So 
∫ 𝜏𝜏𝑜𝑜 −𝑤𝑤

�(𝑤𝑤−𝑏𝑏𝑜𝑜 )(𝑅𝑅𝑜𝑜+1−𝑤𝑤)
𝜃𝜃1(𝑤𝑤)𝜃𝜃2(𝑤𝑤)𝑑𝑑𝑤𝑤 = ∫ 𝑤𝑤−𝜏𝜏𝑜𝑜

�(𝑤𝑤−𝑏𝑏𝑜𝑜 )(𝑅𝑅𝑜𝑜+1−𝑤𝑤)
𝑅𝑅𝑜𝑜+1

𝜏𝜏𝑜𝑜

𝜏𝜏𝑜𝑜
𝑏𝑏𝑜𝑜

𝜃𝜃1(𝑤𝑤)𝜃𝜃2(𝑤𝑤)𝑑𝑑𝑤𝑤  

               ≥ ∫ 𝑤𝑤−𝜏𝜏𝑜𝑜
�(𝑤𝑤−𝑏𝑏𝑜𝑜  )(𝑅𝑅𝑜𝑜+1−𝑤𝑤)

𝜃𝜃1(𝑤𝑤)𝜃𝜃2(𝑤𝑤)𝑑𝑑𝑤𝑤.𝑏𝑏𝑜𝑜 +2−𝑁𝑁

𝜏𝜏𝑜𝑜
 

In view of (70) this gives after division by  𝜃𝜃1(𝑏𝑏𝑜𝑜  )𝜃𝜃2 (𝑏𝑏𝑜𝑜 ) the inequality 

�
𝜏𝜏𝑜𝑜 − 𝑤𝑤

�(𝑤𝑤 − 𝑏𝑏𝑜𝑜 )(𝑅𝑅𝑜𝑜+1 − 𝑤𝑤)
16𝑑𝑑𝑤𝑤 ≥ �

𝑤𝑤 − 𝜏𝜏𝑜𝑜

�(𝑤𝑤 − 𝑏𝑏𝑜𝑜 )(𝑅𝑅𝑜𝑜+1 − 𝑤𝑤)
1

16

𝑏𝑏𝑜𝑜 +2−𝑁𝑁

𝜏𝜏𝑜𝑜

𝜏𝜏𝑜𝑜

𝑏𝑏𝑜𝑜

𝑑𝑑𝑤𝑤. 

If we make a linear substitution so that [𝑏𝑏𝑜𝑜  , 𝑏𝑏𝑜𝑜 + 2 −𝑁𝑁  ] becomes [0,1] and make use 
that for 0 ≤ 𝜏𝜏 ≤ 2−8  and 𝑙𝑙 ∈ ℕ the inequality 
                     ∫ 𝜏𝜏−𝑢𝑢

�𝑢𝑢(𝑙𝑙−𝑢𝑢)
16𝑑𝑑𝑢𝑢 < ∫ 𝑢𝑢−𝜏𝜏

�𝑢𝑢(𝑙𝑙−𝑢𝑢)
1

𝜏𝜏
𝜏𝜏

0
1

16
𝑑𝑑𝑢𝑢  

holds, we can conclude (69). 
Now (69)immediately gives that for 𝑥𝑥, 𝑢𝑢 ∈ 𝐼𝐼𝑁𝑁,𝑗𝑗  
            |𝑥𝑥−𝜏𝜏𝑜𝑜 |

|𝑢𝑢−𝜏𝜏𝑜𝑜 |
 ≤ 29.                                                                  (71) 

Next note that along with (70) the bounds 
         𝜃𝜃𝑖𝑖(𝑢𝑢)

4
≤ 𝜃𝜃𝑖𝑖 (𝑥𝑥) ≤ 4𝜃𝜃𝑖𝑖 (𝑢𝑢)     (𝑖𝑖 = 1,2)                                 (72) 

are also true for 𝑥𝑥, 𝑢𝑢 ∈ 𝐼𝐼𝑁𝑁,𝑗𝑗  (since (𝑗𝑗 − 1)2−𝑁𝑁 is not an endpoint of a subinterval of 𝐹𝐹  ), 
so (68), (71) and (72) yield for 𝑥𝑥, 𝑢𝑢 ∈ 𝐼𝐼𝑁𝑁,𝑗𝑗  

𝜓𝜓(𝑥𝑥) �|𝑥𝑥 − 𝑏𝑏𝑜𝑜 |
𝜓𝜓(𝑢𝑢)�|�𝑢𝑢 − 𝑏𝑏𝑜𝑜 |

≤ 16
|𝑥𝑥 − 𝜏𝜏𝑜𝑜 |
|𝑢𝑢 − 𝜏𝜏𝑜𝑜 |

�
|𝑢𝑢 − 𝑅𝑅𝑜𝑜+1|
|𝑥𝑥 − 𝑅𝑅𝑜𝑜+1| ≤ 214. 

By reversing the role of 𝑥𝑥 and 𝑢𝑢 and then fixing 𝑢𝑢 to be the center of 𝐼𝐼𝑁𝑁,𝑗𝑗  we can 
conclude with  𝑐𝑐 = �|𝑏𝑏𝑜𝑜 − 𝑢𝑢 | 𝜓𝜓(𝑢𝑢) 

𝑐𝑐2−14  
1

�𝑏𝑏𝑜𝑜 − 𝑥𝑥
≤ 𝜓𝜓(𝑥𝑥) ≤ 𝑐𝑐214  

1
�𝑏𝑏𝑜𝑜 − 𝑥𝑥 

, 𝑥𝑥 ∈ 𝐼𝐼𝑁𝑁,𝑗𝑗  .   (73) 

Case III. 𝑅𝑅𝑜𝑜  , 𝑏𝑏𝑜𝑜 ∈ 𝐼𝐼𝑁𝑁,𝑗𝑗 . Then 𝐼𝐼𝑁𝑁,𝑗𝑗 = [𝑅𝑅𝑜𝑜  , 𝑏𝑏𝑜𝑜 ]. In this case (72) holds only on the right half 
𝐼𝐼𝑁𝑁,𝑗𝑗

+  of 𝐼𝐼𝑁𝑁,𝑗𝑗 , so we can conclude (73) (with 𝑢𝑢 =  (𝑅𝑅𝑜𝑜 + 𝑏𝑏𝑜𝑜  )/2) only there. However, an 
analogous argument gives that on the left half 𝐼𝐼𝑁𝑁,𝑗𝑗

−  of 𝐼𝐼𝑁𝑁,𝑗𝑗  we have 

𝑐𝑐2−14  
1

√𝑥𝑥 − 𝑅𝑅𝑜𝑜
≤ 𝜓𝜓(𝑥𝑥) ≤ 𝑐𝑐214 1

√𝑥𝑥 − 𝑅𝑅𝑜𝑜
.      (74) 

Thus, we have the estimates (68), (73)or(74) for 𝜓𝜓  on 𝐼𝐼𝑁𝑁,𝑗𝑗  , depending on the position 
of the interval 𝐼𝐼𝑁𝑁,𝑗𝑗  in the set 𝐹𝐹 . 
Let now 𝐻𝐻 be a measurable subset of 𝐼𝐼𝑁𝑁,𝑗𝑗  with measure  𝑚𝑚(𝐻𝐻) ≥ (1 − 2𝜂𝜂)𝑚𝑚(𝐼𝐼𝑁𝑁,𝑗𝑗 ) and 
let  𝐻𝐻0 =  𝐼𝐼𝑁𝑁,𝑗𝑗  \ 𝐻𝐻 . Assume that Case III holds for the interval 𝐼𝐼𝑁𝑁,𝑗𝑗 . (In Case II the same 
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argument can be applied, and in Case I the computations based on (67) are actually 
much simpler, giving a better estimate.) Let 𝐼𝐼+and 𝐼𝐼−  denote the right half and the left 
half of the interval 𝐼𝐼𝑁𝑁,𝑗𝑗 , respectively. Then, using (73) on 𝐼𝐼+, we can see that 
 ∫ 𝜓𝜓 

𝐻𝐻0∩𝐼𝐼+ (𝑥𝑥)𝑑𝑑𝑥𝑥 ≤ ∫ 𝑐𝑐214 1
�𝑏𝑏𝑜𝑜 −𝑥𝑥

𝑑𝑑𝑥𝑥  
𝐻𝐻0∩𝐼𝐼+   

                               ≤ 𝑐𝑐2142𝑚𝑚(𝐻𝐻0)1∕2 ≤ 𝑐𝑐215(2𝜂𝜂)1∕2𝑚𝑚�𝐼𝐼𝑁𝑁,𝑗𝑗 �1∕2
 

                        ≤ 𝑐𝑐215𝜂𝜂1∕22𝑚𝑚(𝐼𝐼+)1∕2 = 𝜂𝜂1∕2215𝑐𝑐 ∫ 1
�𝑏𝑏𝑜𝑜 −𝑥𝑥

 
𝐼𝐼+ 𝑑𝑑𝑥𝑥               

                    = 𝜂𝜂1∕2229 ∫ 𝑐𝑐2−14

�𝑏𝑏𝑜𝑜 −𝑥𝑥
 

𝐼𝐼+ 𝑑𝑑𝑥𝑥 ≤ 𝜂𝜂1∕2229 ∫ 𝜓𝜓(𝑥𝑥) 
𝐼𝐼+ 𝑑𝑑𝑥𝑥.  

Since a similar bound can be given for the integral over 𝐻𝐻0 ∩ 𝐼𝐼−   using (74), it follows 
that  𝜇𝜇𝐹𝐹(𝐻𝐻0 ≤)229𝜂𝜂1∕2𝜇𝜇𝐹𝐹�𝐼𝐼𝑁𝑁,𝑗𝑗 �. Then we conclude that  𝜇𝜇𝐹𝐹(𝐻𝐻 ) ≥  (1 −
229𝜂𝜂1∕2 𝜇𝜇𝐹𝐹�𝐼𝐼𝑁𝑁,𝑗𝑗 �) as was to be proved.  
Now we are ready to show Theorem (6.3.9). 
Theorem(6.3.9)[1]: Let 𝐸𝐸 ⊂ ℝ be a compact set of positive Lebesgue measure. Then for 
every  𝜺𝜺 > 0, there is a regular compact set 𝐾𝐾 ⊂  𝐸𝐸 such that 𝑚𝑚(𝐸𝐸 \ 𝐾𝐾) < 𝜺𝜺  , and 𝜇𝜇𝐾𝐾  is 
absolutely continuous with respect to the Lebesgue measure on the real line ℝ. 
Proof. Without loss of generality we may assume that the compact set 𝐸𝐸 of positive 
Lebesgue measure is contained in [0,1]. For an 𝑁𝑁 ∈ ℕ and  𝛿𝛿 > 0 let us consider the 
finite set 

𝑆𝑆(𝐸𝐸, 𝑁𝑁, 𝛿𝛿): = �𝑗𝑗 ∈ ℕ: 𝑚𝑚�𝐸𝐸 ∩ 𝐼𝐼𝑁𝑁,𝑗𝑗 � ≥ (1 − 𝛿𝛿)𝑚𝑚�𝐼𝐼𝑁𝑁,𝑗𝑗 ��, 
and let 

 𝐸𝐸(𝑁𝑁, 𝛿𝛿 ): =∪  �𝐼𝐼𝑁𝑁,𝑗𝑗 ∶  𝑗𝑗 ∈ 𝑆𝑆(𝐸𝐸, 𝑁𝑁, 𝛿𝛿 )� . 
By Lebesgue’s density theorem almost all 𝑥𝑥 ∈ 𝐸𝐸 belongs to all 𝐸𝐸(𝑁𝑁 , 𝛿𝛿 ) for sufficiently 
large 𝑁𝑁,i.e. to 
                 ⋃ ⋂ (𝐸𝐸 ∩ 𝐸𝐸(𝑁𝑁, 𝛿𝛿))∞

𝑁𝑁=𝑀𝑀
∞
𝑀𝑀=1 . 

  Thus 
                   lim𝑀𝑀→∞ 𝑚𝑚(⋂ �𝐸𝐸 ∩ 𝐸𝐸(𝑁𝑁, 𝛿𝛿)�) = 𝑚𝑚(𝐸𝐸).∞

𝑁𝑁=𝑀𝑀  
Whence 
                         lim𝑁𝑁→∞ 𝑚𝑚�𝐸𝐸 ∩ 𝐸𝐸(𝑁𝑁, 𝛿𝛿)� = 𝑚𝑚(𝐸𝐸) 
follows. 

Let there be given an 𝜀𝜀 ∈ (0, 𝑚𝑚(𝐸𝐸)/4). Set  𝜀𝜀𝑛𝑛  =  𝜀𝜀 /2𝑛𝑛  for 𝑛𝑛 ∈ ℕ, and recursively 
define the positive integers 𝑁𝑁1 < 𝑁𝑁2  < ···and the closed sets 𝐸𝐸 ⊃ 𝐸𝐸1 ⊃ 𝐸𝐸2 ⊃  ···in the 
following manner. 
Let 𝑁𝑁1 be so large that 
                               𝑚𝑚( 𝐸𝐸 \ 𝐸𝐸(𝑁𝑁1, 𝜀𝜀1)) < 𝜀𝜀1, 

and set 𝐸𝐸1 = 𝐸𝐸⋂𝐸𝐸(𝑁𝑁1, 𝜀𝜀1 ). In general, if 𝑁𝑁𝑛𝑛 , 𝐸𝐸𝑛𝑛  have already been defined, then select 
a large 𝑁𝑁𝑛𝑛+1 > 𝑁𝑁𝑛𝑛  so that 

𝑚𝑚 (𝐸𝐸𝑛𝑛  \ 𝐸𝐸𝑛𝑛 (𝑁𝑁𝑛𝑛+1, 𝜀𝜀𝑛𝑛+1 ) <  𝜀𝜀𝑛𝑛+1/2𝑁𝑁𝑛𝑛  , 
and let 𝐸𝐸𝑛𝑛+1 = 𝐸𝐸𝑛𝑛 ∩ 𝐸𝐸𝑛𝑛 (𝑁𝑁𝑛𝑛+1, 𝜀𝜀𝑛𝑛+1 ). We obtain the sequences {𝑁𝑁𝑛𝑛 }𝑛𝑛=1

∞   and{𝐸𝐸𝑛𝑛 }𝑛𝑛=1
∞  

The compact subset 𝐾𝐾 of 𝐸𝐸 is defined by 𝐾𝐾 = ⋂ 𝐸𝐸𝑛𝑛
∞
𝑛𝑛=1 .   

Setting 𝑁𝑁0 =  0 and 𝐸𝐸0 = 𝐸𝐸,we have m(𝐸𝐸𝑛𝑛  \ 𝐸𝐸𝑛𝑛+1 ) < 𝜀𝜀𝑛𝑛+11/2𝑁𝑁𝑛𝑛  for every 𝑛𝑛 ≥ 0, 
hence 
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𝑚𝑚(𝐸𝐸 \ 𝐾𝐾) < � 𝜀𝜀𝑛𝑛+1  2⁄ 𝑁𝑁𝑛𝑛 = � 𝜀𝜀
∞

𝑛𝑛=0

∞

𝑛𝑛=0

2n+1+Nn� < 𝜀𝜀, 

 in particular 𝑚𝑚(𝐾𝐾 ) > 3𝑚𝑚(𝐸𝐸)/4 > 0. Furthermore, given 𝑛𝑛 ∈ ℕ for every 𝑗𝑗 ∈
𝑆𝑆(𝐸𝐸𝑛𝑛−1, 𝑁𝑁𝑛𝑛 , 𝜀𝜀𝑛𝑛 ) we have 𝐸𝐸𝑛𝑛−1 ∩ 𝐼𝐼𝑁𝑁𝑛𝑛  ,𝑗𝑗 = 𝐸𝐸𝑛𝑛 ∩ 𝐼𝐼𝑁𝑁𝑛𝑛  ,𝑗𝑗  and so, by the definition of 
𝑆𝑆(𝐸𝐸𝑛𝑛−1, 𝑁𝑁𝑛𝑛 , 𝜀𝜀𝑛𝑛  ),we have 𝑚𝑚(𝐸𝐸𝑛𝑛 ∩ 𝐼𝐼𝑁𝑁𝑛𝑛  ,𝑗𝑗 ) ≥ (1 − 𝜀𝜀𝑛𝑛 )𝑚𝑚(𝐼𝐼𝑁𝑁𝑛𝑛  ,𝑗𝑗 ). Since for 𝑘𝑘 ≥ 0  

𝑚𝑚(𝐸𝐸𝑛𝑛+𝑘𝑘  \ 𝐸𝐸𝑛𝑛+𝑘𝑘+1) ≤ 𝜀𝜀𝑛𝑛+𝑘𝑘+1 /2𝑁𝑁𝑛𝑛 + 𝑘𝑘 ≤ 𝜀𝜀𝑛𝑛 /2𝑁𝑁𝑛𝑛 +𝑘𝑘+1 =
𝜀𝜀𝑛𝑛

2𝑘𝑘+1 𝑚𝑚(𝐼𝐼𝑁𝑁𝑛𝑛  ,𝑗𝑗 ) 
it follows 
   𝑚𝑚 �𝐾𝐾 ∩ 𝐼𝐼𝑁𝑁𝑛𝑛  ,𝑗𝑗 � ≥ 𝑚𝑚 �𝐸𝐸𝑛𝑛 ∩ 𝐼𝐼𝑁𝑁𝑛𝑛  ,𝑗𝑗 � − ∑ 𝑚𝑚(𝐸𝐸𝑛𝑛+𝑘𝑘 \𝐸𝐸𝑛𝑛+𝑘𝑘+1)∞

𝑘𝑘=0   

                                 ≥ (1 − 2𝜀𝜀𝑛𝑛 )𝑚𝑚 �𝐼𝐼𝑁𝑁𝑛𝑛  ,𝑗𝑗 �.                                           (75)                                                                           
Set 𝑧𝑧0 ∈ 𝐾𝐾 , and for any 𝑘𝑘 ∈ ℕ let 

𝐾𝐾𝑘𝑘 =  𝐾𝐾 ∩ {𝑧𝑧 ∈ ℂ: 2−𝑘𝑘−1  ≤  |𝑧𝑧 − 𝑧𝑧0| ≤ 2−𝑘𝑘 } . 
For every 𝑛𝑛 ∈ ℕ there is an index 𝑗𝑗𝑛𝑛 ∈ 𝑆𝑆(𝐸𝐸𝑛𝑛−1, 𝑁𝑁𝑛𝑛 , 𝜀𝜀𝑛𝑛 ) such that 𝑧𝑧0 ∈ 𝐼𝐼𝑁𝑁𝑛𝑛 𝑗𝑗𝑛𝑛 , . Since 
𝑐𝑐𝑅𝑅𝑝𝑝(𝐻𝐻 ) ≥ 𝑚𝑚(𝐻𝐻 )/4 for any Borel subset of the real line, applying (75) we obtain   

𝑐𝑐𝑅𝑅𝑝𝑝�𝐾𝐾𝑁𝑁𝑛𝑛 +1  � ≥
𝑚𝑚�𝐾𝐾𝑁𝑁𝑛𝑛 +1 �

4
≥

1
4

�
1
4

− 2𝜀𝜀𝑛𝑛 � m�𝐼𝐼𝑁𝑁𝑛𝑛 𝑗𝑗𝑛𝑛 ,� ≥ 2−Nn −1. 2−4, 
Whence 

N𝑛𝑛  + 1
𝑙𝑙𝑜𝑜𝑔𝑔(1/ 𝑐𝑐𝑅𝑅𝑝𝑝(𝐾𝐾𝑁𝑁𝑛𝑛 +1 ))

≥
1
2

 

follows (provided 𝑛𝑛 ≥ 3). Thus   
∑ k

𝑙𝑙𝑜𝑜𝑔𝑔 (1/ 𝑐𝑐𝑅𝑅𝑝𝑝 (𝐾𝐾𝑘𝑘 ))
∞
𝐾𝐾=1  =∞ 

and so Wiener’s criterion (see [16, Theorem 5.4.1]) yields that the compact set 𝐾𝐾 is 
regular. 
It remains to show that the measure 𝜇𝜇𝐾𝐾   is absolutely continuous. Let 𝑉𝑉 ⊂  𝐾𝐾 be a set of 
measure zero, and let 𝛼𝛼 =  𝐾𝐾 \ 𝑉𝑉 .Forn 𝑛𝑛 ∈ ℕ, let us consider the set 

𝐹𝐹𝑛𝑛 = 𝐸𝐸𝑛𝑛−1(𝑁𝑁𝑛𝑛 , 𝜀𝜀𝑛𝑛 ) = �{𝐼𝐼𝑁𝑁𝑛𝑛  ,𝑗𝑗 ∶  𝑗𝑗 ∈  𝑆𝑆𝑛𝑛 }, 
where 𝑆𝑆𝑛𝑛  =  𝑆𝑆(𝐸𝐸𝑛𝑛−1 , 𝑁𝑁𝑛𝑛 , 𝜀𝜀𝑛𝑛 ). We know from (75) that 

𝑚𝑚(𝛼𝛼 ∩ 𝐼𝐼𝑁𝑁𝑛𝑛  ,𝑗𝑗  ) =  𝑚𝑚(𝐾𝐾 ∩  𝐼𝐼𝑁𝑁𝑛𝑛  ,𝑗𝑗  ) ≥  (1 − 2𝜀𝜀𝑛𝑛 )𝑚𝑚(𝐼𝐼𝑁𝑁𝑛𝑛  ,𝑗𝑗  ) 
holds for every 𝑗𝑗 ∈ 𝑆𝑆𝑛𝑛 . Then Lemma(6.3.9) implies 

 𝜇𝜇𝐹𝐹 𝑛𝑛  (𝛼𝛼 ∩ 𝐼𝐼𝑁𝑁𝑛𝑛  ,𝑗𝑗 ) ≥ �1 − 229𝜀𝜀𝑛𝑛
1/2�𝜇𝜇𝐹𝐹 𝑛𝑛 �𝐼𝐼𝑁𝑁𝑛𝑛  ,𝑗𝑗 � . 

Summing up for 𝑗𝑗 ∈ 𝑆𝑆𝑛𝑛  we get 

  𝜇𝜇𝐹𝐹 𝑛𝑛  (𝛼𝛼) ≥ 1 − 229𝜀𝜀𝑛𝑛

1
2 

Since 𝐾𝐾 ⊂ 𝐹𝐹𝑛𝑛 ⊂ ℝ  the measure  𝜇𝜇𝐾𝐾  is obtained by adding to the restriction 𝜇𝜇𝐹𝐹 𝑛𝑛  |𝐾𝐾� the 
so called balayage   𝜇𝜇𝐹𝐹 𝑛𝑛 |(𝐹𝐹𝑛𝑛 \𝐾𝐾) onto 𝐾𝐾 (see [17]). Therefore 

𝜇𝜇𝐾𝐾(𝛼𝛼) ≥  𝜇𝜇𝐹𝐹 𝑛𝑛  (𝛼𝛼) ≥ 1 − 229𝜀𝜀𝑛𝑛

1
2 , 

and so 

𝜇𝜇𝐾𝐾  (𝑉𝑉 ) =  1 − 𝜇𝜇𝐾𝐾(𝛼𝛼) ≤ 229𝜀𝜀𝑛𝑛

1
2 
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hold for every 𝑛𝑛 ∈ ℕ. By letting n tend to infinity we conclude that  𝜇𝜇𝐾𝐾  (𝑉𝑉 ) = 0. 
Corollary(6.3.10)[202]:  Let∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 ∊ 𝐻𝐻∞   be a partially inner function. 

(a)Then ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 is regular if and only if for every measurable set  𝛺𝛺𝑘𝑘−1 ⊂ 𝛺𝛺𝑘𝑘−1(∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 ) 

the image set ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚
𝑘𝑘=1  [ 𝛺𝛺𝑘𝑘−1] is also measurable. 

(b)If ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  is regular and 𝛺𝛺𝑘𝑘−1 ∊ 𝑀𝑀, 𝛺𝛺𝑘𝑘−1 ⊂ 𝛺𝛺𝑘𝑘−1(∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 ), then 

𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 |𝛺𝛺𝑘𝑘−1 ) = 𝑓𝑓 ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 (𝛺𝛺𝑘𝑘−1 ). 

Recall that 𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 |𝛺𝛺𝑘𝑘−1  ) is determined only up to measure zero, so the 

equality 𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 |𝛺𝛺𝑘𝑘−1  ) = ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 (𝛺𝛺𝑘𝑘−1 ) is also understood up to measure 

zero. 
Proof. (a): We sketch the proof of this known equivalence. Suppose that ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  is 

regular, and let  𝛺𝛺𝑘𝑘−1 ∈ 𝑀𝑀, 𝛺𝛺𝑘𝑘−1 ⊂ 𝛺𝛺𝑘𝑘−1(∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 ). Since 𝑓𝑓 ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 |𝛺𝛺𝑘𝑘−1  is the 

pointwise limit of a sequence of continuous functions, it follows from Egorov’s 
theorem that 𝛺𝛺𝑘𝑘−1 = 𝛺𝛺𝑘𝑘 ∪ 𝛺𝛺𝑘𝑘+1, where  𝛺𝛺𝑘𝑘  and ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  [ 𝛺𝛺𝑘𝑘 ] are 𝐹𝐹𝜎𝜎 -sets and 

𝑚𝑚( 𝛺𝛺𝑘𝑘+1) = 0. Hence, by assumption, 𝑚𝑚(∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  [ 𝛺𝛺𝑘𝑘+1 ]) = 0 and thus 

∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  [𝛺𝛺𝑘𝑘−1 ] ∊  𝑀𝑀 . 

Conversely, if ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  is non-regular, then 𝑚𝑚(∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  [𝜔𝜔 ]) = 0 fails for some 𝜔𝜔 ⊂

𝛺𝛺𝑘𝑘−1(∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 ) with 𝑚𝑚(𝜔𝜔 ) = 0. 

There is a non-measurable subset  𝛺𝛺𝑘𝑘−1́  of ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 [𝜔𝜔]. Thus   

𝛺𝛺𝑘𝑘−1 = ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1

−1
[ 𝛺𝛺𝑘𝑘−1́  ]⋂𝜔𝜔 ∊ 𝑀𝑀 , while ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  [𝛺𝛺𝑘𝑘−1] = 𝛺𝛺𝑘𝑘−1́ ∉  𝑀𝑀. 

(b): The sets  𝜔𝜔𝑘𝑘 = ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  [𝛺𝛺𝑘𝑘−1] and  𝜔𝜔𝑘𝑘+1 =  𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 |𝛺𝛺𝑘𝑘−1 ) are in 𝑀𝑀. Let 

us consider the measure 𝜇𝜇  occurring in the definition of  𝜔𝜔𝑘𝑘+1, and let ∑ 𝑔𝑔𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 =

𝑑𝑑𝜇𝜇 /𝑑𝑑𝑚𝑚. Since 

� � 𝑔𝑔𝑘𝑘

𝑚𝑚 ′

𝑘𝑘=1

𝑑𝑑𝑚𝑚 = 𝜇𝜇(𝜔𝜔𝑘𝑘+1\𝜔𝜔𝑘𝑘 ) = 𝑚𝑚 �(� 𝑓𝑓𝑘𝑘

𝑚𝑚 ′

𝑘𝑘=1

|𝛺𝛺𝑘𝑘−1 )−1[𝜔𝜔𝑘𝑘+1\𝜔𝜔𝑘𝑘 ]� = 𝑚𝑚𝜙𝜙 = 0
 

𝜔𝜔𝑘𝑘+1\𝜔𝜔𝑘𝑘

 

and ∑ 𝑔𝑔𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 (𝜁𝜁) > 0 for 𝜁𝜁 ∈ 𝜔𝜔𝑘𝑘+1\𝜔𝜔𝑘𝑘  , it follows that 𝑚𝑚(𝜔𝜔𝑘𝑘+1\𝜔𝜔𝑘𝑘 ) =  0. On the other 

hand,we have 
    𝑚𝑚 ��∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 |𝛺𝛺𝑘𝑘−1 �

−1
[𝜔𝜔𝑘𝑘 \𝜔𝜔𝑘𝑘+1]� = 𝜇𝜇(𝜔𝜔𝑘𝑘 \𝜔𝜔𝑘𝑘+1) =  ∫ ∑ 𝑔𝑔𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 𝑑𝑑𝑚𝑚 = 0 

𝜔𝜔𝑘𝑘 \𝜔𝜔𝑘𝑘+1
 

since ∑ 𝑔𝑔𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 (𝜁𝜁) =  0 for (almost all) 𝜁𝜁 ∊ 𝜔𝜔𝑘𝑘 \𝜔𝜔𝑘𝑘+1; thus 𝑚𝑚(𝜔𝜔𝑘𝑘 \𝜔𝜔𝑘𝑘+1) = 0 by the 

regularity condition.  
Applying the functional calculus, for the power  operator in ℒ𝑛𝑛−1(ℋ) we want to get 
another power operator in ℒ𝑛𝑛−1(ℋ), which means that the cyclic property should be 
preserved. Hence, univalent functions will be considered in the sequel. We recall that 
∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 ∶ 𝔻𝔻 → 𝕔𝕔 is called a univalent function (or a conformal map) if it is analytic and 

injective. The range 𝐺𝐺𝑘𝑘 = ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  [𝔻𝔻] of ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  is a simply connected domain, 

different from 𝕔𝕔. The boundary  𝜕𝜕𝐺𝐺𝑘𝑘  of 𝐺𝐺𝑘𝑘  is a non-empty closed set. It is known that the 
geometric properties of 𝜕𝜕𝐺𝐺𝑘𝑘  are reflected in the analytic properties of  ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  . For 

example  𝜕𝜕𝐺𝐺𝑘𝑘   is a curve (i.e. a continuous image of the unit circle) exactly when∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  

belongs to the disk algebra 𝐴𝐴, and then  𝜕𝜕𝐺𝐺𝑘𝑘 = ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚
𝑘𝑘=1  [𝕋𝕋] (see [15]). We recall that the 
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disk algebra 𝐴𝐴 consis𝐺𝐺𝑘𝑘 ts of those analytic complex functions on 𝔻𝔻, which can be 
continuously extended to the closure 𝔻𝔻�  of 𝔻𝔻. We focus our attention to the class 
                     𝐴𝐴𝑘𝑘 ≔ �∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 ∈ 𝐴𝐴: ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 |𝔻𝔻 𝑖𝑖𝑠𝑠 𝑢𝑢𝑛𝑛𝑖𝑖𝑣𝑣𝑅𝑅𝑙𝑙𝑒𝑒𝑛𝑛𝑤𝑤 �. 

The following proposition (see [1]) shows that every partially inner function in 𝐴𝐴𝑘𝑘  has 
an almost injective unimodular component. The cardinality of a set 𝐻𝐻 is denoted by |𝐻𝐻|. 
For distinct points 𝜁𝜁𝑘𝑘  , 𝜁𝜁𝑘𝑘+1 ∈ 𝕋𝕋, the open arc determined by  𝜁𝜁𝑘𝑘and 𝜁𝜁𝑘𝑘+1is defined by  
𝜁𝜁𝑘𝑘 𝜁𝜁𝑘𝑘+1� = {𝑒𝑒𝑖𝑖𝑤𝑤 : 𝑤𝑤𝑘𝑘 < 𝑤𝑤 < 𝑤𝑤𝑘𝑘+1}, where 𝑤𝑤𝑘𝑘 < 𝑤𝑤𝑘𝑘+1 < 𝑤𝑤𝑘𝑘 + 2𝜋𝜋 and  𝜁𝜁𝑘𝑘 = 𝑒𝑒𝑖𝑖𝑤𝑤𝑘𝑘 , 𝜁𝜁𝑘𝑘+1 = 𝑒𝑒𝑖𝑖𝑤𝑤𝑘𝑘+1 . 
Corollary(6.3.11)[202]:  Let  ∑ 𝑓𝑓𝑘𝑘

m ′
𝑘𝑘=1 ∈ 𝐴𝐴𝑘𝑘  be a partially inner function. 

(a) If ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 (𝜁𝜁1)  = ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 (𝜁𝜁2) = 𝑤𝑤 holds for distinct points   𝜁𝜁𝑘𝑘 , 𝜁𝜁𝑘𝑘+1  ∊

𝛺𝛺𝑘𝑘−1�∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 �, then for one of the arcs 𝐼𝐼 = 𝜁𝜁𝑘𝑘 𝜁𝜁𝑘𝑘+1�   or 𝐼𝐼 = 𝜁𝜁𝑘𝑘+1𝜁𝜁𝑘𝑘� we have 𝑚𝑚(𝐼𝐼 ∩

 𝛺𝛺𝑘𝑘−1(∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 )) =  0 and ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 ( 𝜁𝜁) = 𝑤𝑤𝑘𝑘  for every    𝜁𝜁 ∈  𝐼𝐼⋂ 𝛺𝛺𝑘𝑘−1(∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 ). 

(b) The set 𝑀𝑀 = {𝑤𝑤𝑘𝑘  ∈ 𝕋𝕋 ∶ | ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1

−1
 [𝑤𝑤𝑘𝑘 ]| > 1} of multiple image points on 𝕋𝕋 is 

countable. 
(c) For any Borel subset 𝛺𝛺𝑘𝑘−1  of  𝛺𝛺𝑘𝑘−1(∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 ) with 𝑚𝑚(𝛺𝛺𝑘𝑘−1 ) >  0 we have  

∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 [𝛺𝛺𝑘𝑘−1] = 𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  |𝛺𝛺𝑘𝑘−1  ) if and only if ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  |𝛺𝛺𝑘𝑘−1 is weakly 

absolutely continuous. 
Proof. Statement (b) is an easy consequence of statement (a). 
We sketch the proof of (a), which is based on ideas taken from the proof in [16]. Let 
𝑆𝑆 denote the segment joining 𝜁𝜁1 with 𝜁𝜁2. Then 𝐽𝐽 =  ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  [𝑆𝑆] is a (closed) Jordan 

curve in 𝔻𝔻 ∪{w}. Let us consider the open sets 𝐺𝐺𝑘𝑘  = 𝐺𝐺𝑘𝑘−1 ∩ 𝑖𝑖𝑛𝑛𝑤𝑤 𝐽𝐽 and 𝐺𝐺𝑘𝑘+1  =  𝐺𝐺𝑘𝑘−1 ∩
ext J, where 𝐺𝐺𝑘𝑘−1 = ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  [𝔻𝔻]. It is easy to check that 𝐷𝐷𝑘𝑘  =  ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1

−1
  [𝐺𝐺𝑘𝑘 ],

𝐷𝐷𝑘𝑘+1  =  ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1

−1
 [𝐺𝐺𝑘𝑘+1] are the connected components of 𝔻𝔻 \ 𝑆𝑆, and 𝐺𝐺𝑘𝑘 =

∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  [𝐷𝐷𝑘𝑘 ], 𝐺𝐺𝑘𝑘+1 = ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  [𝐷𝐷𝑘𝑘+1 ]. We may assume that  𝜕𝜕𝐷𝐷𝑘𝑘 =  𝑆𝑆 ∪ 𝜉𝜉𝑘𝑘 𝜉𝜉𝑘𝑘+1�  ; the 

other case  𝜕𝜕𝐷𝐷𝑘𝑘  = 𝑆𝑆 ∪ 𝜉𝜉𝑘𝑘+1𝜉𝜉𝑘𝑘�  can be treated similarly. For every 𝜁𝜁 ∈ 𝜉𝜉𝑘𝑘 𝜉𝜉𝑘𝑘+1� ∩
𝛺𝛺𝑘𝑘−1(∑ 𝑓𝑓𝑘𝑘

𝑚𝑚
𝑘𝑘=1 ) we have ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 ( 𝜁𝜁) ∈ 𝐺𝐺𝑘𝑘 ∩ 𝕋𝕋 = {𝑤𝑤𝑘𝑘 }. Since 𝑚𝑚(∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1

−1
 [𝑤𝑤𝑘𝑘 ]) = 0, 

the statement follows. 
Turning to the proof of (𝑐𝑐) notice first that  𝛺𝛺𝑘𝑘−1(∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 ) is a compact set on 𝕋𝕋. In 

view of (𝑏𝑏) the system 
 𝑆𝑆 = {𝜔𝜔; 𝜔𝜔 ⊂ �∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 �, 𝜔𝜔, ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚
𝑘𝑘=1 (𝜔𝜔 ) are Borel measurable} 

is a 𝜎𝜎-algebra on 𝛺𝛺𝑘𝑘−1(∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 ) containing compact sets; hence S consists of the Borel 

subsets of  𝛺𝛺𝑘𝑘−1(∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 ). 

Setting  𝜔𝜔𝑘𝑘 = ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  [𝛺𝛺𝑘𝑘−1 ] and  𝜔𝜔𝑘𝑘+1 =  𝑝𝑝𝑒𝑒 − 𝑜𝑜𝑅𝑅𝑛𝑛(∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 |𝛺𝛺𝑘𝑘−1  ) we know that 

𝑚𝑚( 𝜔𝜔𝑘𝑘+1 \  𝜔𝜔𝑘𝑘 )  = 0 always holds, and  𝑚𝑚( 𝜔𝜔𝑘𝑘 \ 𝜔𝜔𝑘𝑘+1 ) = 0 whenever ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 |𝛺𝛺𝑘𝑘−1 is 

weakly absolutely continuous; see the proof of Lemma (6.3.2). Assuming that 
∑ 𝑓𝑓𝑘𝑘

𝑚𝑚
𝑘𝑘=1 |𝛺𝛺𝑘𝑘−1   is not weakly absolutely continuous, there exists a Borel set 𝜔𝜔 ⊂ 𝛺𝛺𝑘𝑘−1 

such that  𝑚𝑚(𝜔𝜔 ) = 0 and 𝑚𝑚(�́�𝜔 ) > 0 for  �́�𝜔 = ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  [𝜔𝜔 ]. Applying (𝑏𝑏) again, we 

can see that  ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 𝑓𝑓�́�𝜔 ∑ 𝑔𝑔𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 𝑑𝑑𝑚𝑚 = 𝜇𝜇 ( �́�𝜔)  = 𝑚𝑚((∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  |𝛺𝛺𝑘𝑘−1 )−1 [ �́�𝜔 ]) =

0 holds for ∑ 𝑔𝑔𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 =  𝑑𝑑𝜇𝜇 /𝑑𝑑𝑚𝑚, and so 𝑚𝑚(𝜔𝜔𝑘𝑘+1 ∩ �́�𝜔 )  =  0, whence 𝑚𝑚( 𝜔𝜔𝑘𝑘 \𝜔𝜔𝑘𝑘+1 ) ≥

𝑚𝑚(�́�𝜔) > 0 follows.  
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The following theorem describes the functional calculus within the class ℒ𝑛𝑛−1(ℋ). It 
plays crucial role in the proof of Theorem (6.3.5). 
Corollary(6.3.12)[202]:Setting 𝑇𝑇 

2𝑛𝑛−1 ∈  ℒ𝑛𝑛−1(ℋ), let ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 ∈ 𝐴𝐴𝑘𝑘  be a regular partially 

inner function such that 𝑚𝑚(𝜋𝜋 (𝑇𝑇 
2𝑛𝑛−1 ) ∩ 𝛺𝛺𝑘𝑘−1(∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 )) > 0.Then 

𝑇𝑇𝑛𝑛−1
2𝑛𝑛−1 = ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 (𝑇𝑇 

2𝑛𝑛−1) ∈  ℒ𝑛𝑛−1(ℋ) and we have  𝜋𝜋(𝑇𝑇𝑛𝑛−1
2𝑛𝑛−1) =  ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  [ 𝜋𝜋(𝑇𝑇 

2𝑛𝑛−1) ∩
𝛺𝛺𝑘𝑘−1 (∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 )]. 

Proof. By Proposition 6 the set 𝑀𝑀 = {𝑤𝑤𝑘𝑘 ∈ 𝕋𝕋: | ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  −1 [𝑤𝑤𝑘𝑘 ]| > 1} is countable, 

hence 𝑚𝑚(𝑀𝑀) = 0 yields 𝑚𝑚(∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  −1[𝑀𝑀]) = 0. Deleting ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  −1[𝑀𝑀] from the 

quasianalytic spectral set (which is determined up to sets of measure zero), we may 
assume that ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  is injective on the 𝑠𝑠𝑒𝑒𝑤𝑤 𝛼𝛼 =  𝜋𝜋 (𝑇𝑇2𝑛𝑛−1) ∩  𝛺𝛺𝑘𝑘−1(∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 )  ∈  𝑀𝑀 . We 

know also that  𝛽𝛽 =  ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  [ 𝛼𝛼]  ∈ 𝑀𝑀, and 𝑚𝑚(𝛼𝛼 ) >  0, 𝑚𝑚(𝛽𝛽 ) > 0. Furthermore, the 

restriction   𝜙𝜙 = ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  |𝛼𝛼 → 𝛽𝛽  is a bijection, and for any 𝜔𝜔 ⊂ 𝛼𝛼  we have     𝜔𝜔 ∈ 𝑀𝑀 if 

and only if   𝜙𝜙[𝜔𝜔 ]  ∈ 𝑀𝑀, and 𝑚𝑚(𝜔𝜔)  =  0 exactly when 𝑚𝑚( 𝜙𝜙[𝜔𝜔 ]) = 0. We use the 
notation    𝛼𝛼� = 𝜋𝜋 (𝑇𝑇 

2𝑛𝑛−1) = 𝜔𝜔 (𝑇𝑇 
2𝑛𝑛−1). 

Let (𝑋𝑋, 𝑀𝑀𝛼𝛼� ) be a unitary asymptote of  , with a properly chosen contractive intertwining 
mapping 𝑋𝑋: 𝑋𝑋𝑇𝑇 

2𝑛𝑛−1  = 𝑀𝑀𝛼𝛼�  𝑋𝑋. 
Since 𝑇𝑇 

2𝑛𝑛−1 is a completely non-unitary power contraction, it follows that 𝑇𝑇𝑛𝑛−1
2𝑛𝑛−1  =

 ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 (𝑇𝑇 

2𝑛𝑛−1)is also a completely non-unitary power contraction (see [19]). We 
know that𝑇𝑇𝑛𝑛−1

2𝑛𝑛−1 is quasianalytic and  𝜋𝜋(𝑇𝑇𝑛𝑛−1
2𝑛𝑛−1)  =  𝛽𝛽 (see [13]). The condition 

𝑚𝑚( 𝜋𝜋(𝑇𝑇𝑛𝑛−1
2𝑛𝑛−1 )) > 0 yields 𝑇𝑇𝑛𝑛−1

2𝑛𝑛−1  ∈   𝐶𝐶𝑘𝑘 , and 𝑇𝑇 
2𝑛𝑛−1 ∈  𝐶𝐶𝑘𝑘−1 readily implies 𝑇𝑇𝑛𝑛−1

2𝑛𝑛−1 ∈
𝐶𝐶𝑘𝑘−1. Furthermore, by [13] the pair (𝑋𝑋0 , 𝜙𝜙(𝑀𝑀𝛼𝛼  )) is a unitary asymptote of 𝑇𝑇𝑛𝑛−1

2𝑛𝑛−1, 
where 𝑋𝑋0𝑣𝑣 = 𝜒𝜒𝛼𝛼  𝑋𝑋𝑣𝑣 (𝑣𝑣 ∈ ℋ) (here  𝜒𝜒𝛼𝛼   is the characteristic function of the set  𝛼𝛼 ). We 
know that  𝜙𝜙(𝑀𝑀𝛼𝛼  ) is an absolutely continuous unitary power operator because 𝑇𝑇𝑛𝑛−1

2𝑛𝑛−1is 
an absolutely continuous power contraction. It remains to show that 𝜙𝜙(𝑀𝑀𝛼𝛼  ) is cyclic. 
Let us introduce the measure 𝑣𝑣  on 
                                       𝑀𝑀( 𝛽𝛽 )  = {𝜔𝜔 ∈  𝑀𝑀: 𝜔𝜔 ⊂ 𝛽𝛽 }  
via 

  𝑣𝑣(𝜔𝜔 ) = 𝑚𝑚( 𝜙𝜙−1)[ 𝜔𝜔] . 

The properties of  𝜙𝜙   imply that 𝑣𝑣  is equivalent to (mutually absolutely continuous 
with) the Lebesgue measure on 𝛽𝛽  . Let us consider the unitary operator 𝑁𝑁𝑣𝑣 ∈
 ℒ(𝐿𝐿2 (𝑣𝑣 )), 𝑁𝑁𝑣𝑣𝑔𝑔𝑘𝑘   = 𝜒𝜒𝑔𝑔𝑘𝑘  , which is unitarily equivalent to 𝑀𝑀𝛽𝛽   (see [4]). It is easy to 
verify that 𝑍𝑍 ∶ 𝐿𝐿2(𝑣𝑣) → 𝐿𝐿2(𝛼𝛼), 𝑔𝑔𝑘𝑘 ⟼ 𝑔𝑔𝑘𝑘 ∘ 𝜙𝜙   is a unitary transformation, intertwining 
𝑁𝑁𝑣𝑣   with  𝜙𝜙(𝑀𝑀 𝛼𝛼 ) ∶  𝑍𝑍𝑁𝑁𝑣𝑣   = 𝜙𝜙  (𝑀𝑀 𝛼𝛼  )𝑍𝑍.Therefore,  𝜙𝜙(𝑀𝑀 𝛼𝛼 )is unitarily equivalent to 𝑀𝑀𝛽𝛽  
[1] , and so it is cyclic.   
Now we show the following: 
Corollary(6.3.13)[202]:  For every power operator 𝑇𝑇 

2𝑛𝑛−1 ∈ ℒn−1(ℋ)  there exists 
𝑇𝑇𝑛𝑛

2𝑛𝑛−1 ∈  ℒn (ℋ) commuting with  𝑇𝑇 
2𝑛𝑛−1 ∶ 𝑇𝑇 

2𝑛𝑛−1𝑇𝑇𝑛𝑛
2𝑛𝑛−1

  =  𝑇𝑇𝑛𝑛
2𝑛𝑛−1𝑇𝑇 

2𝑛𝑛−1 . 
Since the commutants{𝑇𝑇2𝑛𝑛−1}′  and{𝑇𝑇𝑛𝑛

2𝑛𝑛−1}′   are abelian (see [13]), the relation 
𝑇𝑇 

2𝑛𝑛−1𝑇𝑇𝑛𝑛
2𝑛𝑛−1

  =  𝑇𝑇𝑛𝑛
2𝑛𝑛−1𝑇𝑇 

2𝑛𝑛−1 implies{𝑇𝑇 
2𝑛𝑛−1}′  = {𝑇𝑇𝑛𝑛

2𝑛𝑛−1}′ , and so 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇2𝑛𝑛−1  =
 𝐻𝐻𝑙𝑙𝑅𝑅𝑤𝑤 𝑇𝑇𝑛𝑛

2𝑛𝑛−1. 
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Proof. Let 𝑇𝑇 
2𝑛𝑛−1 be a power contraction in the class ℒ𝑛𝑛−1 (ℋ), and let us consider the 

quasianalytic spectral set   𝛺𝛺𝑘𝑘−1 = 𝜋𝜋 (𝑇𝑇 
2𝑛𝑛−1) of positive measure. By Theorem (6.3.6) 

there exist a compact set 𝛺𝛺�𝑘𝑘−1  ⊂ 𝛺𝛺𝑘𝑘−1 and a function 𝑓𝑓𝑘𝑘 ∈ 𝐴𝐴𝑘𝑘  such that ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 [𝔻𝔻] is a 

circular comb domain, ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1

−1
 [𝕋𝕋] =  𝛺𝛺�𝑘𝑘−1 , and  ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  | 𝛺𝛺�𝑘𝑘−1   is weakly absolutely 

continuous. In other words, ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚
𝑘𝑘=1  is a regular partially inner function with  

𝛺𝛺𝑘𝑘−1(∑ 𝑓𝑓𝑘𝑘
𝑚𝑚
𝑘𝑘=1 ) =  𝛺𝛺�𝑘𝑘−1   𝑅𝑅𝑛𝑛𝑑𝑑 ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚
𝑘𝑘=1  [ 𝛺𝛺�𝑘𝑘−1 ] = 𝕋𝕋. Applying Theorem (6.3.6) we 

conclude that 𝑇𝑇𝑛𝑛
2𝑛𝑛−1 = ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 (𝑇𝑇 

2𝑛𝑛−1) ∈ ℒ𝑛𝑛−1 (ℋ) and 
𝜋𝜋(𝑇𝑇𝑛𝑛

2𝑛𝑛−1) = ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚
𝑘𝑘=1  [ 𝜋𝜋(𝑇𝑇 

2𝑛𝑛−1)⋂𝛺𝛺𝑘𝑘−1 (∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 )] = ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  [ 𝛺𝛺�𝑘𝑘−1 ] = 𝕋𝕋, whence 

𝑇𝑇𝑛𝑛
2𝑛𝑛−1  ∈   ℒ ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 𝑛𝑛  (ℋ)  follows. Being norm-limit of polynomials of 𝑇𝑇 

2𝑛𝑛−1 , the 
power operator 𝑇𝑇𝑛𝑛

2𝑛𝑛−1commutes with 𝑇𝑇 
2𝑛𝑛−1 .  

Corollary(6.3.14)[202]:  If 𝛺𝛺𝑘𝑘−1  is a measurable subset of the unit circle 𝕋𝕋 of positive 
(linear) measure, then there are a compact set 𝛺𝛺𝑘𝑘−1� ⊂ 𝛺𝛺𝑘𝑘−1  and a conformal map 
∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  from 𝔻𝔻 onto a circular comb domain such that ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  can be extended to a 

continuous function on the closed unit disc 𝔻𝔻� , ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1

−1
[𝕋𝕋] = 𝛺𝛺𝑘𝑘−1�  , and 

𝑚𝑚(∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  [𝜔𝜔 ]) = 0 for every Borel subset  𝜔𝜔 of  𝛺𝛺𝑘𝑘−1�  of zero measure. 

Here, and in what follows,∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1 [𝐴𝐴]: = {∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 (𝑅𝑅): 𝑅𝑅 ∊ 𝐴𝐴} is the range of 

∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  when restricted to 𝐴𝐴, and ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1

−1
[𝐵𝐵 ]: = {𝑏𝑏 ∶ ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 (𝑏𝑏) ∊ 𝐵𝐵} is the 

complete inverse image of the set 𝐵𝐵 under the map ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  . When 𝐵𝐵 = {𝑏𝑏} has only 

one element, then we write ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1

−1
[𝑏𝑏] instead of ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1

−1
[{𝑏𝑏}]. 

Proof .  Let  𝛺𝛺𝑘𝑘−1 ⊂ 𝕋𝕋 be a set of positive Lebesgue measure, and let  𝛺𝛺𝑘𝑘 ⊂ 𝛺𝛺𝑘𝑘−1     be 
a compact subset of positive measure. Applying rotation we may assume that 1 is a 
density point of  𝛺𝛺𝑘𝑘  ; let �́�𝛺𝑘𝑘  be its reflection onto the real axis. The compact set  
𝛺𝛺𝑘𝑘+1 = 𝛺𝛺𝑘𝑘 ⋂�́�𝛺 𝑘𝑘   is of positive measure and symmetric with respect to ℝ. Let us 
consider the bijective Joukovskii map  𝜑𝜑: 𝔻𝔻 → ℂ�\[−1,1], defined by  𝜑𝜑(𝑧𝑧) =  (𝑧𝑧 +
1/𝑧𝑧)/2; the continuous extension to 𝔻𝔻�  is also denoted by 𝜑𝜑.  
Then 𝐸𝐸 = 𝜑𝜑 [ 𝛺𝛺𝑘𝑘+1 ] is a compact subset of [−1,1] with positive measure, and  
𝛺𝛺𝑘𝑘+1  = 𝜑𝜑−1[𝜑𝜑 [ 𝛺𝛺𝑘𝑘+1]] because of the symmetry of 𝛺𝛺𝑘𝑘+1 . 
By Theorem 4 there is a regular compact subset 𝐾𝐾 of 𝐸𝐸 with an absolutely continuous 
equilibrium measure  𝜇𝜇𝐾𝐾  .Let [𝑅𝑅, 𝑏𝑏] be the smallest interval containing 𝐾𝐾. Consider the 
analytic function 

  Φ(𝑧𝑧) =  exp(− � 𝑙𝑙𝑜𝑜𝑔𝑔
 

𝐾𝐾

 (𝑧𝑧 − 𝑤𝑤)𝑑𝑑𝜇𝜇𝐾𝐾  (𝑤𝑤 )  +  𝑙𝑙𝑜𝑜𝑔𝑔 𝑐𝑐𝑅𝑅p(𝐾𝐾)) 

on the upper half plane ℍ+ = {𝑧𝑧 ∈ ℂ: ℑ 𝑧𝑧 > 0} with that branch of log which is 
positive on (0, ∞). It is easy to see that for every 𝑥𝑥 ∈ ℝ the function ratio  Φ(𝑧𝑧)/
|Φ (𝑧𝑧)| converges to 𝑒𝑒𝑥𝑥𝑝𝑝[ −𝑖𝑖𝜋𝜋𝜇𝜇𝐾𝐾  ((𝑥𝑥 , ∞))] as 𝑧𝑧 → 𝑥𝑥 from the upper half plane. Since 
| Φ(𝑧𝑧)| = 𝑒𝑒𝑥𝑥𝑝𝑝(− 𝑃𝑃𝐾𝐾  (𝑧𝑧)) · cap(𝐾𝐾) and 𝐾𝐾 is regular, it follows that Φ  can be 
continuously extended to the closure of ℍ+ in ℂ�;  Φ( ∞) = 0. We can see that  Φ(𝐾𝐾) 
coincides with the lower circle 𝕋𝕋−   = {𝑧𝑧 ∈  𝕋𝕋: ℑ𝑧𝑧 ≤ 0}, Φ(ℝ�  \ (𝑅𝑅, 𝑏𝑏))  = [ −1, 1], 
and each component I of (𝑅𝑅 , 𝑏𝑏 ) \ 𝐾𝐾 is mapped by Φ  onto a radial segment of the form 
{𝑜𝑜𝜁𝜁 ∶  𝜌𝜌 < 𝑜𝑜 < 1} with some 0 <  𝜌𝜌 < 1 and     𝜁𝜁 ∈ 𝕋𝕋−  . It can be shown also that Φ    
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is univalent; see [2]. Since  Φ(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑝𝑝[ −i𝜋𝜋𝜇𝜇𝐾𝐾  ((𝑥𝑥, ∞ ))] for 𝑥𝑥 ∈ 𝐾𝐾 and 𝜇𝜇𝐾𝐾   is 
absolutely continuous, it follows that sets of measure zero on 𝐾𝐾 are mapped by Φ   into 
sets of measure zero. 
Let 𝐺𝐺𝑘𝑘−1+ be the domain  Φ(𝐻𝐻+), and 𝐺𝐺𝑘𝑘−1−  its reflection onto the real axis. Since  
Φ(𝑧𝑧) is real for 𝑧𝑧 ∈ ℝ\[a, b],  using the reflection principle we can extend Φ  via the 
definition  Φ(𝑧𝑧) = Φ (𝑧𝑧)�������,  ℑ𝑧𝑧 < 0 to a conformal map of the domain ℂ� \[𝑅𝑅, 𝑏𝑏] onto the 
circular comb domain 𝐺𝐺𝑘𝑘−1 = 𝐺𝐺𝑘𝑘−1+ ∪  𝐺𝐺𝑘𝑘−1− ∪  (−1,1). Then ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 = Φ ∘ 𝜑𝜑 is a 

conformal map from 𝔻𝔻 onto 𝐺𝐺𝑘𝑘−1, it belongs to the disk algebra, and we have 
∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  [ 𝛺𝛺�𝑘𝑘−1 ] = 𝕋𝕋, ∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1  [𝕋𝕋\ 𝛺𝛺�𝑘𝑘−1 ] ⊂ 𝔻𝔻 for the compact set    𝛺𝛺�𝑘𝑘−1 = 𝜑𝜑−1[𝐾𝐾] ⊂

𝛺𝛺𝑘𝑘−1  .If 𝜔𝜔 ⊂  𝛺𝛺�𝑘𝑘−1  is of zero linear measure, then ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚
𝑘𝑘=1  [𝜔𝜔] is also of zero linear 

measure. Thus   𝛺𝛺�𝑘𝑘−1  and ∑ 𝑓𝑓𝑘𝑘
𝑚𝑚 ′
𝑘𝑘=1  h∑ 𝑓𝑓𝑘𝑘

𝑚𝑚 ′
𝑘𝑘=1 ave all the properties set forth in the 

theorem. 
Note also that for compact, symmetric 𝛺𝛺𝑘𝑘−1   the measure of 𝛺𝛺𝑘𝑘−1\ 𝛺𝛺�𝑘𝑘−1can be  made 
as small as we wish.  
Corollary(6.3.15)[202]:  Let 1 ≤ 𝜁𝜁𝑛𝑛 <  𝛼𝛼𝑛𝑛 < 𝜁𝜁𝑛𝑛+1  < 𝛼𝛼𝑛𝑛+1 < ···< 𝜁𝜁𝑛𝑛 <  𝛼𝛼𝑛𝑛 . Then for 
𝑥𝑥, 𝑢𝑢 ∈ [ −1, 0] we have 
               1

2
≤ ∏ �𝜁𝜁𝑠𝑠+𝑛𝑛 −1−𝑥𝑥

𝛼𝛼𝑠𝑠+𝑛𝑛 −1−𝑥𝑥
/ 𝜁𝜁𝑠𝑠+𝑛𝑛 −1−𝑢𝑢

𝛼𝛼𝑠𝑠+𝑛𝑛 −1−𝑢𝑢
�𝑙𝑙+𝑛𝑛−1

𝑠𝑠+𝑛𝑛=2 ≤ 2.                                              (76) 
In a similar manner, if 1 ≤ 𝛽𝛽𝑛𝑛 < 𝜁𝜁𝑛𝑛 < 𝛽𝛽𝑛𝑛+1 < ⋯ < 𝛽𝛽𝑛𝑛 < 𝜁𝜁𝑛𝑛  then for 𝑥𝑥, 𝑢𝑢 ∈ [−1,0] we 
have  
                          1

2
≤ ∏ �𝜁𝜁𝑠𝑠+𝑛𝑛 −1−𝑥𝑥

𝛽𝛽𝑠𝑠+𝑛𝑛 −1−𝑥𝑥
/ 𝜁𝜁𝑠𝑠+𝑛𝑛 −1−𝑢𝑢

𝛽𝛽𝑠𝑠+𝑛𝑛 −1−𝑢𝑢
�𝑙𝑙+𝑛𝑛−1

𝑠𝑠+𝑛𝑛=2 ≤ 2.                                   (77)  
Proof. The inequalities (77) are obtained by taking reciprocal in (76) and switching the 
role of 𝛽𝛽𝑠𝑠+𝑛𝑛−1 , 𝜁𝜁𝑠𝑠+𝑛𝑛−1 and  𝜁𝜁𝑠𝑠+𝑛𝑛−1, 𝛼𝛼𝑠𝑠+𝑛𝑛−1. Similarly, in proving (76) we may assume 
without loss of generality that 𝑢𝑢 ≤  𝑥𝑥. 
The product in (76) can be written as 
     ∏ �𝜁𝜁𝑠𝑠+𝑛𝑛 −1−𝑥𝑥

𝜁𝜁𝑠𝑠+𝑛𝑛 −1−𝑢𝑢
/ 𝛼𝛼𝑠𝑠+𝑛𝑛 −1−𝑥𝑥

𝛼𝛼𝑠𝑠+𝑛𝑛 −1−𝑢𝑢
�𝑙𝑙+𝑛𝑛−1

𝑠𝑠+𝑛𝑛=2 = �𝜁𝜁𝑛𝑛 −𝑥𝑥
𝜁𝜁𝑛𝑛 −𝑢𝑢

/ 𝛼𝛼𝑛𝑛 −𝑥𝑥
𝛼𝛼𝑛𝑛 −𝑢𝑢

� ∏ �𝜁𝜁𝑠𝑠+𝑛𝑛 +2−𝑥𝑥
𝜁𝜁𝑠𝑠+𝑛𝑛 +2−𝑢𝑢

/ 𝛼𝛼𝑠𝑠+𝑛𝑛 −1−𝑥𝑥
𝛼𝛼𝑠𝑠+𝑛𝑛 −1−𝑢𝑢

�𝑙𝑙+𝑛𝑛−2
𝑠𝑠+𝑛𝑛=2  

(𝑙𝑙 ≥ 2 can be assumed). Since (𝑤𝑤 − 𝑥𝑥)/(𝑤𝑤 − 𝑢𝑢) is increasing on (0, ∞ ), it immediately 
follows from the left hand side that the product in question is at most 1. On the other 
hand, by the same token the second factor on the right is at least 1, so the product is at 
least as large as 

𝜁𝜁𝑛𝑛 −𝑥𝑥
𝜁𝜁𝑛𝑛 −𝑢𝑢

/ 𝛼𝛼𝑛𝑛 −𝑥𝑥
𝛼𝛼𝑛𝑛 −𝑢𝑢

≥ 𝜁𝜁𝑛𝑛 −𝑥𝑥
𝜁𝜁𝑛𝑛 −𝑢𝑢

≥ 1
2
 . 

Let  𝛽𝛽 𝑛𝑛 <  𝛼𝛼 𝑛𝑛 < ···< 𝛽𝛽 𝑙𝑙+𝑛𝑛−1 <  𝛼𝛼𝑙𝑙+𝑛𝑛−1 be positive integers, and let  𝜁𝜁𝑠𝑠+𝑛𝑛−1 ∈
( 𝛽𝛽𝑠𝑠+𝑛𝑛−1 , 𝛼𝛼𝑠𝑠+𝑛𝑛−1 ) for every 𝑛𝑛 ≤ 𝑠𝑠 + 𝑛𝑛 − 1 ≤  𝑙𝑙 + 𝑛𝑛 − 1. 
Taking the geometric mean of the products in (76) and 77) of Lemma 8 it follows that 

    1
2

≤ ∏ � |𝑥𝑥−𝜁𝜁𝑠𝑠+𝑛𝑛 −1|
�|𝑥𝑥−𝛼𝛼𝑠𝑠+𝑛𝑛 −1||𝑥𝑥− 𝛽𝛽𝑠𝑠+𝑛𝑛 −1|

/ |𝑢𝑢−𝜁𝜁𝑠𝑠+𝑛𝑛 −1|
�|𝑢𝑢−𝛼𝛼𝑠𝑠+𝑛𝑛 −1||𝑢𝑢−𝛽𝛽𝑠𝑠+𝑛𝑛 −1|

�𝑙𝑙+𝑛𝑛−1
𝑠𝑠+𝑛𝑛=1 ≤ 2                       (78) 

for every 𝑥𝑥, 𝑢𝑢 ∈ [−1, 0]. Multiplying everything by (−1), and changing the notation it 
follows that (78) holds also, when 𝛼𝛼𝑠𝑠 , 𝛽𝛽𝑠𝑠   are negative integers and 𝑥𝑥, 𝑢𝑢 ∈ [0,1].Let 𝕫𝕫 
denote the set of integers. Via scaling (multiplying everything by 2−𝑁𝑁  (𝑁𝑁 ∈ ℕ) and 
applying translation), we  obtain that (78) is true if  𝛼𝛼𝑠𝑠+𝑛𝑛−1 , 𝛽𝛽𝑠𝑠+𝑛𝑛−1 ∈ 2−𝑁𝑁  𝕫𝕫 for every 
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 𝑛𝑛 ≤  𝑠𝑠 + 𝑛𝑛 − 1 ≤ 𝑙𝑙 + 𝑛𝑛 − 1 and 𝑥𝑥, 𝑢𝑢 ∈ [𝑗𝑗 −1
2𝑁𝑁 , 𝑗𝑗

2𝑁𝑁 ] with some 𝑗𝑗 ∈ 𝕫𝕫 satisfying  the 
condition 
                  𝑗𝑗/2𝑁𝑁  < 𝛽𝛽𝑛𝑛   𝑜𝑜𝑜𝑜 (𝑗𝑗 − 1)/2𝑁𝑁  > 𝛼𝛼𝑙𝑙+𝑛𝑛−1.                                         (79) 
Given 𝑁𝑁 ∈ ℕ let 𝐼𝐼𝑁𝑁,𝑗𝑗  = [(𝑗𝑗 − 1)2−𝑁𝑁  , 𝑗𝑗2−𝑁𝑁  ] for any 𝑗𝑗 ∈  𝕫𝕫. Setting a non-empty set 
𝑆𝑆 ⊂ {k ∈ ℕ: 𝑘𝑘 ≤ 2𝑁𝑁  } of non-consecutive indexes, let us consider the compact set 
 𝐹𝐹 = ⋃ 𝐼𝐼𝑁𝑁,𝑗𝑗𝑗𝑗 ∈𝑠𝑠  , which can be written in the form 𝐹𝐹 = ⋃ [𝑅𝑅𝑠𝑠+𝑛𝑛−1, 𝑏𝑏𝑠𝑠+𝑛𝑛−1]2𝑛𝑛

𝑠𝑠+𝑛𝑛=2  with 
𝑅𝑅𝑛𝑛 < 𝑏𝑏𝑛𝑛 < 𝑅𝑅𝑛𝑛+1  < 𝑏𝑏𝑛𝑛+1 < ···< 𝑏𝑏2𝑛𝑛  (𝑛𝑛 ≥ 2). The equilibrium measure 𝜇𝜇𝐹𝐹  of 𝐹𝐹 is 
absolutely continuous with respect to the Lebesgue measure 𝑚𝑚 on ℝ, and its density 
function is given by the formula 

                𝜓𝜓(𝑤𝑤) = (𝑑𝑑𝜇𝜇𝐹𝐹/𝑑𝑑𝑚𝑚)(𝑤𝑤) = 1
𝜋𝜋

∏ |𝑤𝑤−𝜏𝜏𝑠𝑠+𝑛𝑛 −1|2(𝑛𝑛 −1)
𝑠𝑠+𝑛𝑛 =2

∏ �|𝑤𝑤−𝑅𝑅𝑠𝑠+𝑛𝑛 −1||𝑤𝑤−𝑏𝑏𝑠𝑠+𝑛𝑛 −1|2𝑛𝑛
𝑠𝑠+𝑛𝑛 =2

𝑑𝑑𝑤𝑤,       𝑤𝑤 ∈ 𝐹𝐹,   (80) 
where the numbers  𝜏𝜏𝑠𝑠+𝑛𝑛−1 ∈ (𝑏𝑏𝑠𝑠+𝑛𝑛−1 , 𝑅𝑅𝑠𝑠+𝑛𝑛 ) (𝑛𝑛 ≤ 𝑠𝑠 + 𝑛𝑛 ≤ 2 𝑛𝑛) are the unique solution 
of the system of equations 

          ∫
∏ |𝑤𝑤−𝜏𝜏𝑠𝑠+𝑛𝑛 −1|2(𝑛𝑛 −1)

𝑠𝑠+𝑛𝑛 =2
∏ �|𝑤𝑤−𝑅𝑅𝑠𝑠+𝑛𝑛 −1||𝑤𝑤−𝑏𝑏𝑠𝑠+𝑛𝑛 −1|𝑛𝑛

𝑠𝑠+𝑛𝑛 =2

𝑅𝑅𝑘𝑘+1
𝑏𝑏𝑘𝑘

𝑑𝑑𝑤𝑤 = 0,      𝑛𝑛 ≤ 𝑘𝑘 + 𝑛𝑛 ≤ 2𝑛𝑛 − 1.          (81) 

This is a linear system in the coefficients of the polynomial ∏ |𝑤𝑤 − 𝜏𝜏𝑠𝑠+𝑛𝑛−1|2(𝑛𝑛−1)
𝑠𝑠+𝑛𝑛=2 . 

When 𝑛𝑛 = 1 then the product in the numerator (81) is replaced by 1. For all these see 
[17] and [16]. 
Corollary(6.3.16)[202]:  Let 𝜖𝜖 > 0 , 𝑗𝑗 ∈ 𝑆𝑆, and 𝐻𝐻 a measurable subset of 
𝐼𝐼𝑁𝑁,𝑗𝑗  (𝑁𝑁, 𝑆𝑆, 𝐹𝐹 and 𝐼𝐼𝑁𝑁,𝑗𝑗  are as before).If 
                                       𝑚𝑚(𝐻𝐻) ≥ �1 − 2(1

2
− 𝜖𝜖)� 𝑚𝑚�𝐼𝐼𝑁𝑁,𝑗𝑗  �,                              (82) 

 then 
   𝜇𝜇𝐹𝐹  (𝐻𝐻 ) ≥ �1 − 229(1

2
− 𝜖𝜖)

1
2� 𝜇𝜇𝐹𝐹�𝐼𝐼𝑁𝑁,𝑗𝑗  �.                                               (83) 

Proof. We shall give an estimate of the density function 𝜓𝜓 on 𝐼𝐼𝑁𝑁,𝑗𝑗 . Assuming that 
𝐼𝐼𝑁𝑁,𝑗𝑗 ⊆ [𝑅𝑅𝑜𝑜  , 𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜  ], this estimate depends on the position of 𝐼𝐼𝑁𝑁,𝑗𝑗  inside [𝑅𝑅𝑜𝑜  , 𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜  ]. 
Case I. 𝑅𝑅𝑜𝑜  , 𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 ∉ 𝐼𝐼𝑁𝑁,𝑗𝑗  ,i.e 𝐼𝐼𝑁𝑁,𝑗𝑗   lies inside (𝑅𝑅𝑜𝑜  , 𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜  ).For 𝑥𝑥, 𝑢𝑢 ∈ 𝐼𝐼𝑁𝑁,𝑗𝑗  we can write 

      𝜓𝜓(𝑥𝑥)
𝜓𝜓(𝑢𝑢)

= �|𝑢𝑢−𝑅𝑅1|
|𝑥𝑥−𝑅𝑅1|

/ |𝑥𝑥−𝑏𝑏𝑛𝑛 |
|𝑢𝑢−𝑏𝑏𝑛𝑛 |

. 𝜃𝜃1,𝑜𝑜−1(𝑥𝑥)
𝜃𝜃1,𝑜𝑜−1(𝑢𝑢)

. 𝜃𝜃1,𝑛𝑛 −1(𝑥𝑥)
𝜃𝜃1,𝑛𝑛 −1(𝑢𝑢)

,                                  (84) 

 where 

  𝜃𝜃𝑘𝑘 ,𝑙𝑙 (𝑥𝑥) =
∏ |𝑥𝑥 − 𝜏𝜏𝑠𝑠|𝑙𝑙

𝑠𝑠=𝑘𝑘

∏ �|𝑥𝑥 − 𝑅𝑅𝑠𝑠+1||𝑥𝑥 − 𝑏𝑏𝑠𝑠|𝑙𝑙
𝑠𝑠=𝑘𝑘

 

 (θ1,0  = θn,n−1 = 1 by definition). Since each factor in this decomposition (84) of 
ψ(x)/ψ (y) lies between 1/2 and 2 by (79), it follows that 
                           1

8
 ψ (y) ≤ ψ(x) ≤  8ψ(y).                                                     (85) 

Case II. Precisely one of 𝑅𝑅𝑜𝑜  , 𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜  belongs to IN,j. Then either j2 −N  = 𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜  or 
(j − 1)2−N = 𝑅𝑅𝑜𝑜  , say j2−N  = 𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜  . We shall consider only the situation when 
1 < 𝑜𝑜 < 𝑛𝑛, for the other options (i.e. when r = 1 or r =  n) are simpler. In this case 
                 πψ(x)  = |x−τr |

�|x−(𝑅𝑅𝑜𝑜 +𝜖𝜖𝑜𝑜 )||x−ar  +1|
· θ1(x )θ2(x),                                         (86) 

where 
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                           θ1(x ) = 1
�|x−�a1|

. θ1.r−1(x) 
 and 
  θ2(x ) = 1

�|x−(�𝑅𝑅𝑜𝑜 +𝜖𝜖𝑜𝑜 )|
. θr+1,n−1(x). 

Next we prove that here 
τr − (𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 ) ≥ 2−82−N.                           (87) 

If  τr − (𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 ) ≥ 2−N then there is nothing to prove, so let us assume that τr ∈ [𝑅𝑅𝑜𝑜 +
𝜖𝜖𝑜𝑜  , 𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 + 2−N ].For t ∈ [𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜  , 𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜  + 2−N  ] the claim (79) gives the bounds 

θi (𝑅𝑅𝑜𝑜 +𝜖𝜖𝑜𝑜 )
4

≤ θi(t) ≤ 4θi(𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 ), i = 1,2.         (88) 
For k = r Eq. (81) can be written as 

�
𝑤𝑤 − 𝜏𝜏𝑜𝑜

�(𝑤𝑤 − (𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 ) )(𝑅𝑅𝑜𝑜+1 − 𝑤𝑤)

𝑅𝑅𝑜𝑜+1

𝑏𝑏𝑜𝑜

 . 𝜃𝜃1(𝑤𝑤)𝜃𝜃2(𝑤𝑤)𝑑𝑑𝑤𝑤 = 0, 

So 

�
𝜏𝜏𝑜𝑜 − 𝑤𝑤

�(𝑤𝑤 − (𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 ))(𝑅𝑅𝑜𝑜+1 − 𝑤𝑤)
𝜃𝜃1(𝑤𝑤)𝜃𝜃2(𝑤𝑤)𝑑𝑑𝑤𝑤

𝜏𝜏𝑜𝑜

𝑏𝑏𝑜𝑜

= �
𝑤𝑤 − 𝜏𝜏𝑜𝑜

�(𝑤𝑤 − (𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 ))(𝑅𝑅𝑜𝑜+1 − 𝑤𝑤)

𝑅𝑅𝑜𝑜+1

𝜏𝜏𝑜𝑜

𝜃𝜃1(𝑤𝑤)𝜃𝜃2(𝑤𝑤)𝑑𝑑𝑤𝑤 

≥ �
𝑤𝑤 − 𝜏𝜏𝑜𝑜

�(𝑤𝑤 − (𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 ) )(𝑅𝑅𝑜𝑜+1 − 𝑤𝑤)
𝜃𝜃1(𝑤𝑤)𝜃𝜃2(𝑤𝑤)𝑑𝑑𝑤𝑤.

𝑅𝑅𝑜𝑜 +𝜖𝜖𝑜𝑜 +2−𝑁𝑁

𝜏𝜏𝑜𝑜

 

In view of (88) this gives after division by  𝜃𝜃1(𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜  )𝜃𝜃2 (𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 ) the inequality 

�
𝜏𝜏𝑜𝑜 − 𝑤𝑤

�(𝑤𝑤 − (𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 ))(𝑅𝑅𝑜𝑜+1 − 𝑤𝑤)
16𝑑𝑑𝑤𝑤 ≥ �

𝑤𝑤 − 𝜏𝜏𝑜𝑜

�(𝑤𝑤 − (𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 ))(𝑅𝑅𝑜𝑜+1 − 𝑤𝑤)
1

16

𝑅𝑅𝑜𝑜 +𝜖𝜖𝑜𝑜 +2−𝑁𝑁

𝜏𝜏𝑜𝑜

𝜏𝜏𝑜𝑜

𝑅𝑅𝑜𝑜 +𝜖𝜖𝑜𝑜

𝑑𝑑𝑤𝑤. 

If we make a linear substitution so that [𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜  , 𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 + 2 −𝑁𝑁  ] becomes [0,1] and 
make use that for 0 ≤ 𝜏𝜏 ≤ 2−8  and 𝑙𝑙 ∈ ℕ the inequality  
∫ 𝜏𝜏−𝑢𝑢

�𝑢𝑢(𝑙𝑙−𝑢𝑢)
16𝑑𝑑𝑢𝑢 < ∫ 𝑢𝑢−𝜏𝜏

�𝑢𝑢(𝑙𝑙−𝑢𝑢)
1

𝜏𝜏
𝜏𝜏

0
1

16
𝑑𝑑𝑢𝑢 holds, we can conclude.          (87) 

Now (87)immediately gives that for 𝑥𝑥, 𝑢𝑢 ∈ 𝐼𝐼𝑁𝑁,𝑗𝑗  
|𝑥𝑥−𝜏𝜏𝑜𝑜 |
|𝑢𝑢−𝜏𝜏𝑜𝑜 |

 ≤ 29.                                                                     (89) 
Next note that along with (88) the bounds 

𝜃𝜃𝑖𝑖(𝑢𝑢)
4

≤ 𝜃𝜃𝑖𝑖 (𝑥𝑥) ≤ 4𝜃𝜃𝑖𝑖 (𝑢𝑢)     (𝑖𝑖 = 1,2)                                 (90) 
are also true for 𝑥𝑥, 𝑢𝑢 ∈ 𝐼𝐼𝑁𝑁,𝑗𝑗  (since (𝑗𝑗 − 1)2−𝑁𝑁 is not an endpoint of a subinterval of 𝐹𝐹  ), 
so (86), (89) and (90) yield for 𝑥𝑥, 𝑢𝑢 ∈ 𝐼𝐼𝑁𝑁,𝑗𝑗  

𝜓𝜓(𝑥𝑥) �|𝑥𝑥 − (𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 )|
𝜓𝜓(𝑢𝑢)�|�𝑢𝑢 − (𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 )|

≤ 16
|𝑥𝑥 − 𝜏𝜏𝑜𝑜 |
|𝑢𝑢 − 𝜏𝜏𝑜𝑜 |

�
|𝑢𝑢 − 𝑅𝑅𝑜𝑜+1|
|𝑥𝑥 − 𝑅𝑅𝑜𝑜+1| ≤ 214. 
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By reversing the role of 𝑥𝑥 and 𝑢𝑢 and then fixing 𝑢𝑢 to be the center of 𝐼𝐼𝑁𝑁,𝑗𝑗  we can 
conclude with  𝑐𝑐 = �|𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 − 𝑢𝑢 | 𝜓𝜓(𝑢𝑢) 

𝑐𝑐2−14  1

√𝑅𝑅𝑜𝑜 +𝜖𝜖𝑜𝑜 −𝑥𝑥
≤ 𝜓𝜓(𝑥𝑥) ≤ 𝑐𝑐214  1

√𝑅𝑅𝑜𝑜 +𝜖𝜖𝑜𝑜 −𝑥𝑥  
,    𝑥𝑥 ∈ 𝐼𝐼𝑁𝑁,𝑗𝑗  .      (91)                    

Case III. 𝑅𝑅𝑜𝑜  , 𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 ∈ 𝐼𝐼𝑁𝑁,𝑗𝑗 . Then 𝐼𝐼𝑁𝑁,𝑗𝑗 = [𝑅𝑅𝑜𝑜  , 𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 ]. In this case (15) holds only on 
the right half 𝐼𝐼𝑁𝑁,𝑗𝑗

+  of 𝐼𝐼𝑁𝑁,𝑗𝑗 , so we can conclude (91) (with 𝑢𝑢 =  (𝑅𝑅𝑜𝑜 + 𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜  )/2) only 
there. However, an analogous argument gives that on the left half 𝐼𝐼𝑁𝑁,𝑗𝑗

−  of 𝐼𝐼𝑁𝑁,𝑗𝑗  we have 
𝑐𝑐2−14  1

√𝑥𝑥−𝑅𝑅𝑜𝑜
≤ 𝜓𝜓(𝑥𝑥) ≤ 𝑐𝑐214 1

√𝑥𝑥−𝑅𝑅𝑜𝑜
.                                     (92)                               

Thus, we have the estimates (85), (91)or(92) for 𝜓𝜓  on 𝐼𝐼𝑁𝑁,𝑗𝑗  , depending on the position 
of the interval 𝐼𝐼𝑁𝑁,𝑗𝑗  in the set 𝐹𝐹. 
Corollary(6.3.17)[202]:  Show that  𝑥𝑥 ≤ 𝑅𝑅𝑜𝑜 + 221𝜖𝜖𝑜𝑜 . 
Proof. 
From equations (85) and(92) we have   𝜓𝜓(𝑥𝑥) ≤ 𝑐𝑐211 1

√𝑥𝑥−𝑅𝑅𝑜𝑜
. 

Since 𝑐𝑐 = �|𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 − 𝑢𝑢 | 𝜓𝜓(𝑢𝑢) we get √𝑥𝑥 − 𝑅𝑅𝑜𝑜 ≤ 211�|𝜖𝜖𝑜𝑜 |
2

. 

Squaring  we obtain  𝑥𝑥 ≤ 𝑅𝑅𝑜𝑜 + 221𝜖𝜖𝑜𝑜 . 
Which satisfy the assumption in the proof of Lemma (6.3.7). 
Let now 𝐻𝐻 be a measurable subset of 𝐼𝐼𝑁𝑁,𝑗𝑗  with measure 𝑚𝑚(𝐻𝐻) ≥ (1 − 2(1

2
− 𝜖𝜖))𝑚𝑚(𝐼𝐼𝑁𝑁,𝑗𝑗 ) 

and let  𝐻𝐻0 =  𝐼𝐼𝑁𝑁,𝑗𝑗  \ 𝐻𝐻 . Assume that Case III holds for the interval 𝐼𝐼𝑁𝑁,𝑗𝑗 . (In Case II the 
same argument can be applied, and in Case I the computations based on (85) are 
actually much simpler, giving a better estimate.) Let 𝐼𝐼+and 𝐼𝐼−  denote the right half and 
the left half of the interval 𝐼𝐼𝑁𝑁,𝑗𝑗 , respectively. Then, using (91) on 𝐼𝐼+, we can see that 

� 𝜓𝜓
 

𝐻𝐻0∩𝐼𝐼+

(𝑥𝑥)𝑑𝑑𝑥𝑥 ≤ � 𝑐𝑐214 1
�𝑏𝑏𝑜𝑜 − 𝑥𝑥

𝑑𝑑𝑥𝑥 
 

𝐻𝐻0∩𝐼𝐼+

 

≤ 𝑐𝑐2142𝑚𝑚(𝐻𝐻0)1∕2 ≤ 𝑐𝑐215 �2(
1
2

− 𝜖𝜖)�
1∕2

𝑚𝑚�𝐼𝐼𝑁𝑁,𝑗𝑗 �1∕2
 

≤ 𝑐𝑐215(
1
2

− 𝜖𝜖)1∕22𝑚𝑚(𝐼𝐼+)1∕2 = (
1
2

− 𝜖𝜖)1∕2215𝑐𝑐 �
1

√𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 − 𝑥𝑥

 

𝐼𝐼+

𝑑𝑑𝑥𝑥 

= 𝜂𝜂1∕2229 �
𝑐𝑐2−14

√𝑅𝑅𝑜𝑜 + 𝜖𝜖𝑜𝑜 − 𝑥𝑥

 

𝐼𝐼+

𝑑𝑑𝑥𝑥 ≤ (
1
2

− 𝜖𝜖)1∕2229 � 𝜓𝜓(𝑥𝑥)
 

𝐼𝐼+

𝑑𝑑𝑥𝑥. 

Since a similar bound can be given for the integral over 𝐻𝐻0 ∩ 𝐼𝐼−   using (92), it follows 
that 𝜇𝜇𝐹𝐹(𝐻𝐻0 ≤)229(1

2
− 𝜖𝜖)1∕2𝜇𝜇𝐹𝐹�𝐼𝐼𝑁𝑁,𝑗𝑗 �. 

Then we conclude that  𝜇𝜇𝐹𝐹(𝐻𝐻 ) ≥  (1 − 229(1
2

− 𝜖𝜖)1∕2 𝜇𝜇𝐹𝐹�𝐼𝐼𝑁𝑁,𝑗𝑗 �) as was to be proved.  
Corollary(6.3.18)[202]:  Show that  

(i) 
�1−229 �1

2−𝜖𝜖�
1
2�𝜇𝜇 𝐹𝐹�𝐼𝐼𝑁𝑁 ,𝑗𝑗  �

1−229 𝜀𝜀𝑛𝑛

1
2

≤ 1 
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(ii) 𝜇𝜇𝐹𝐹�𝐼𝐼𝑁𝑁,𝑗𝑗  � ≤ 1
1−229 √2

 
(iii) 𝜇𝜇𝑘𝑘 (𝛼𝛼) ≥ 1 ) 
Proof.  (i) In Lemma (6.3.8) and Theorem (6.3.9) if we set 𝐹𝐹 = 𝐾𝐾 and  𝐻𝐻 = 𝛼𝛼 we can 
get (i) by devision, 

(ii) Since 𝜀𝜀𝑛𝑛 = 𝜖𝜖
2𝑛𝑛  → 0, 𝑛𝑛 →  ∞ 𝑜𝑜𝑜𝑜 𝜖𝜖 = 0, We have that 𝜇𝜇𝐹𝐹�𝐼𝐼𝑁𝑁,𝑗𝑗  � ≤ 1

1−229 √2
 

(iii)   Since  𝜀𝜀𝑛𝑛 → 0 , 𝑅𝑅𝑠𝑠  𝑛𝑛 →  ∞  then 𝜇𝜇𝐾𝐾(𝛼𝛼 ) ≥ 1. 
The analogue of Theorem (6.3.9) is true for sets of positive measure on the unit circle.  
 
 

 
 
. 
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