Dedication

To soul of my father, my beloved mother, brothers, sisters, wife and daughters.
Acknowledgements

At first I would to thank Allah who gives me the ability to complete this work. I would like to express my deep thanks to my supervisor Prof. Shawgy Hussein Abdalla for his constructive and fruitful help throughout this work.

Also I would like to express my deepest regards to all staff members of department of mathematics. Full thanks to my friends and everyone who helped me to complete this work.
Abstract

We show the equivalence relations, distances between Hilbert frames, ellipsoidal tight frames completions with prescribed norms and projection decompositions of operators. We characterize the generalization of Gram–Schmidt orthogonalization generating all Parseval frames and verify the Schur-Horn theorem for operators and frames. We study the spectra of contractions belonging to spectral classes and the hyperinvariant subspace problem for asymptotically nonvanishing contractions, with invariant subspaces for power-bounded operator of class C_1. We discuss the equal-norm Parseval frames and constructing finite frames of a given spectrum and set of lengths. We show the shift-type invariant subspaces of contractions quasianalytic contractions, function algebras and the compression of quasianalytic spectral sets of cyclic contractions.
الخلاصة

تم إيضاح العلاقات المكافئة واطارات هبرت بين المسافات وتمامات الأطارات المحكمة الناقصة مع النظام الموصوف وتفكيكات الأسقاط للمؤثرات. شخصنا تعميم ناظمية تعامدية جرام – شميت الموحلة لكل اطارات بارسيفال وتحقق مبرهنة سشر – هورن للمؤثرات والأطارات.

درسنا طيف الانكماشات المنتمية إلى العائلات الطيفية ومسألة الفضاء الجزئي الفوقى اللامتميزة لاجل الانكماشات غير المتلاشية التقاربية مع الفضاءات الجزئية اللامتميزة لاجل مؤثر القوى – المحدود للعائلة 1. C1 تمت دراسة تساوي – نظام اطارات بارسيفال والأطارات المنتجة البناة لطيف معنى وفنة الأطوال. اوضحنا الفضاءات الجزئية اللامتميزة نوع – الإزاحة للانكماشات والانكماشات شبه التحليلية وجبريات الدالة وانضغاط للفئات الطيفية شبه التحليلية للانكماشات الدوارة.
Introduction

We study some equivalency relations between Hilbert frames and closed subspaces of $L^2(1)$. We define also a distance between frames and we establish the geometric meaning of this metric. We show the existence of tight frames whose elements lie on an arbitrary ellipsoidal surface within a real or complex separable Hilbert space \mathcal{H}, and we analyze the set of attainable frame bounds. In the case where \mathcal{H} is real and has finite dimension, we give an algorithmic proof.

Given an arbitrary finite sequence of vectors in a finite-dimensional Hilbert space, we describe an algorithm, which computes a Parseval frame for the subspace generated by the input vectors while preserving redundancy exactly.

We compute the minimum $r \in \mathbb{N} \cup \{\infty\}$ with this property. Using recent results on the Schur-Horn theorem, we also obtain a not so optimal but algorithmic computable (in a finite numbers of steps) tight completion sequence G.

Sz.-Nagy and Foia? classified the contractions according to the asymptotic behaviour of their iterates. We obtain new information on the structure of contractions of class C_1, and to develop new ways for obtaining hyperinvariant subspaces for these operators.

Connections with the questions of convergence of T^n to 0 in the strong operator topology and of cyclicity of power-bounded operators of class C_1 are discussed. We introduce a new equivalence relation, ampliation quasisimilarity, on $\mathcal{L}(\mathcal{H})$; more general than quasisimilarity, that preserves the existence of nontrivial hyperinvariant subspaces.

We relate the existence of frames with the Schur-Horn theorem of majorization, and give a reformulation of the extended version of Schur-Horn theorem, due to A. Neumann. We use this to get necessary conditions (and to generalize known sufficient conditions) for a pair (S, c) to be frame admissible. The construction of equal-norm Parseval frames is fundamental for many applications of frame theory. We present a construction method based on a system of ordinary differential equations, which generates a flow on the set of Parseval frames that converges to equal-norm Parseval frames. We developed this method to address a question posed by Vern Paulsen: How close is a nearly equal-norm, nearly Parseval frame to an equal-norm Parseval frame? The distance estimate derived here can be used to substantiate numerically found, approximate constructions of equal-norm Parseval frames. When constructing finite frames for a given application, the most important consideration is the spectrum of the frame operator.

Using the Sz.-Nagy–Foias functional model it was shown that under certain conditions on a contraction T the natural embedding of a Hardy space of vector-valued functions into the corresponding L^2 space can be factored into the product of two transformations, intertwining T with a unilateral shift and with an absolutely continuous unitary operator, respectively. Completing former results the effect of the
Sz.-Nagy–Foias functional calculus on the unitary asymptote of a contraction is described. The hyperinvariant subspace problem for a class of cyclic, quasianalytic C^{10}-contractions is reduced to the particular case, when the quasianalytic spectral set coincides with the unit circle \mathbb{T}. The class $\mathcal{L}_0(\mathcal{H})$ of cyclic quasianalytic contractions was studied in Kérchy. The subclass $\mathcal{L}_1(\mathcal{H})$ consists of those operators T in $\mathcal{L}_0(\mathcal{H})$ whose quasianalytic spectral set $\pi(T)$ covers the unit circle \mathbb{T}. The contractions in $\mathcal{L}_1(\mathcal{H})$ have rich invariant subspace lattices.
The Contents

<table>
<thead>
<tr>
<th>Subject</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>I</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>II</td>
</tr>
<tr>
<td>Abstract</td>
<td>III</td>
</tr>
<tr>
<td>Abstract (Arabic)</td>
<td>IV</td>
</tr>
<tr>
<td>Introduction</td>
<td>V</td>
</tr>
<tr>
<td>The contents</td>
<td>VII</td>
</tr>
</tbody>
</table>

Chapter 1

Equivalence Relations and Ellipsoidal Tight Frames
- Section (1.1): Distances Between Hilbert Frames 1
- Section (1.2): Projection Decompositions of Operator 11

Chapter 2

Parseval Frames and Prescribed Norms
- Section (2.1): A Generalization of Gram–Schmidt Orthogonalization 19
- Section (2.2): Tight Frame Completions 28

Chapter 3

The Spectra of Contractions
- Section (3.1): Spectral Classes 42
- Section (3.2): Asymptotically Nonvanishing Contractions 51

Chapter 4

Power-Bounded Operator of Class C_1 and Hyperinvariant Subspaces
- Section (4.1): Invariant Subspaces 68
- Section (4.2): Hyperinvariant Subspace Problem 71

Chapter 5

The Schur-Horn Theorem for Operators and Constructing Finite Frames
- Section (5.1): The Schur-Horn Theorem for Operators and Frames With Prescribed Norms and Frame Operators 78
- Section (5.2): The Road to Equal-Norm Parseval Frames 94
- Section (5.3): Constructing Finite Frames of a given Spectrum and Set of Lengths 111

Chapter 6

Shift-Type and Quasianalytic with Compression of Contractions
- Section (6.1): Invariant Subspaces of Contractions 139
- Section (6.2): Contractions and Function Algebras 154
- Section (6.3): Quasianalytic Spectral Sets of Cyclic Contractions 168

List of Symbols 189
References 190