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Chapter One 

 Introduction 
1.1. Brief history: 

 The phenomenon of superconductivity, in which the electrical 

resistance of certain materials completely vanishes at low temperatures, it is 

one of the most interesting and sophisticated in condensed matter physics. 

The Dutch physicist Heike Kamerlingh Onnes, who was the first to liquefy 

helium (which boils at 4.2 Kelvin at standard pressure), first discovered it. In 

1911, Kamerlingh Onnes and one of his assistants discovered the 

phenomenon of superconductivity while studying the resistance of metals at 

low temperatures. They studied mercury because very pure samples could 

easily prepared by distillation [1]. 

  Low temperature superconductivity accounts for s-wave pairing. 

Unconventional superconductivity has a popular field in condensed matter 

physics. It started with the study of super fluid helium, where the order 

parameter has p-wave symmetry. Later on, several superconducting heavy 

fermions compounds such as 퐶푒퐶푢 푆푖 or 	푈푃푡  found to have an 

unconventional symmetry of the order parameter. In recent years the interest 

has risen again due to the discovery of d-wave superconductivity in hole-

doped high temperature (high-푇 ) superconductors as 푌퐵푎 퐶푢 푂 − (YBCO) 

or	퐵푖푆푟 퐶푎 퐶푢 푂 −	(퐵푆퐶퐶푂). 푆푟 푅푢푂 , discussed to exhibit a p-wave 

or even an f-wave symmetry of the order parameter [2]. 
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1.2. The aim of the study: 

Study the mechanism of d-wave superconducting properties at high 

temperatures. 

1.3. The problem of the study: 

The main problem of d-wave superconductivity there is no generally 

accepted microscopic model to describe this mechanism.  

1.4. Literature review: 

Different attempts used to describe low energy model of a d-wave 

superconductor, and describe how self-energy corrections applied to the 

single-particle and two-particle Green’s functions [3].Some researchers also 

studied the case for 푑  pairing in the cuprate superconductors and 

discussed the pseudogap and pairing mechanisms [4]. 

1.5. The presentation: 

This research consists of four chapters; the first explains the 

introduction, the aim of the research, the research problem and literature 

review and the second chapter basic concepts of superconductivity. While 

the third chapter deals with the theory of high temperature superconductivity 

and shows the last chapter d-wave symmetry. 
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Chapter Two 

 Basic Concept of Superconductivity 
2.1. Introduction: 
 Superconductors have the ability to conduct electricity without losing 

of energy. When current flows in an ordinary conductor (copper wire), some 

energy is lost. As the superconducting electrons travels through the 

conductor they pass unobstructed through the complex lattice, because 

create no friction, they can transmit electricity without loss in the current and 

no loss of energy [5]. 

2.2. Properties of superconductivity: 

• Zero resistance: no resistance is detectable even for high scattering 

rates of conduction electronic. 

• Absence of thermoelectric: no seebeck voltage, no Thomson heat is 

detectable. 

•  Ideal diamagnetism: 푥 = −1  weak magnetic fields are completely 

away from the superconductor [6]. 

2.3. Types of superconductors: 

2.3.1. The first type (Soft superconductors): 

 Type 1 superconductor or superconductor of the first kind, expels the 

magnetic field up to maximum value BCS, the critical field for larger fields 

superconducting break down. The critical field depends on the temperature 

and reaches zero at the transition temperature 푇 ,  example of type – I 

superconductor mercury [7, 8]. 
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2.3.2. The second type (Hard superconductors): 

 Some metallic alloys become superconducting at low temperatures, 

but they show different behaviors in magnetic fields. Materials with this 

behavior called “type II” superconductors. Within the range 퐻 < H <퐻 , 

normal and superconducting states exist in this type of superconductors. 

Type II superconductors normally have much higher critical fields and 

therefore could carry much higher current densities while remaining in the 

superconducting state [7]. 

 2.4. The BCS theory: 

 The understanding of superconductivity advanced in 1957 by three 

American physicist’s john Bardeen, Lean Cooper and John Schrieffer, 

through their theories of superconductivity, known as the BCS theory. The 

BCS theory explains superconductivity at temperatures closed to absolute zero [9]. 

We present below some physical arguments and ideal underlying this theory. 

2.4.1. Cooper pair: 

 Cooper pair is a pair of electrons (or other fermions) bound together at 

low temperature, in a certain way. Cooper pair is quantum effect, the 

electron is repelled from other electrons due to their negatives charge, but it 

also attracts the positive ions that make up the rigid lattice of the metal [10]. 
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2.4.2. Interaction between electrons and phonons in Cooper pairs: 

On collision with a phonon, an electron wave vector 퐾 absorbs the 

phonon takes up its energy ℎ푣  and scattered into a nearby state of wave 

vector	퐾′. The electron has absorbed heat from the lattice and is now in a 

quantized state of different energy. The energy conserved in the process so 

that the new energy 퐸(퐾′) of the electron is the sum of its former energy  

퐸(퐾) and that  ℎ푣  of the absorbed phonon:    

     퐸(퐾′) = 퐸(퐾) + ℎ푣                                                              (2.1) 

 When the electron absorbs the phonon, it also takes up its momentum and 

changes its direction. 

                   ħ퐾 + ħ푞 = ħ퐾 ,				 퐾 + 푞 = 퐾 																																																			(2.2)	

The conservation of momentum leads to 

                   	퐾′ = 퐾 − 푞.																							                                                                     (2.3) 

Indeed an electron moving through a lattice considered as 

continuously emitting and absorbing phonons: it is “clothed” with virtual 

phonons. Virtual states can think about in terms of the Heisenberg 

uncertainty principle in the form  ∆퐸∆푡 ≈ ħ.  Electron-virtual phonon 

processes play a central role in the development of the superconducting 

state. An electron in a state 퐾 	near the Fermi surface emits a virtual phonon 

q and scatters into a state 	퐾′ . The law of conservation of momentum 

requires that for this process: 
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                             퐾′ = 푘 − 푞                                                                (2.4) 

Another electron in a state  퐾  absorbs the virtual phonon and scattered to a 

state 퐾′  that defined as: 

                             퐾′ = 퐾 + 푞					                                                           (2.5) 

From equations (2.4) and (2.5) above: 

                              퐾 + 퐾 = 퐾 + 퐾 = 퐾					                                    (2.6) 

Here 퐾 is the total momentum of the pair. In this principle, the interaction 

between the electrons may be either repulsive or attractive, the determining 

factor being the relative magnitudes of the phonon energy ℎ푣 	 and the 

energy difference between the initial and final states of the electrons. For 

bonding between electron pairs to occur, the net attractive potential 

energy(−푣 ) arising from virtual phonon exchange must be larger than the 

Columbic repulsive energy (푣 ) between the electrons. Therefore, using 

the convention that a negative potential energy gives rise to attractive forces, 

the energy balance being:  

                          −푣 + 푣 < 0																																																																				(2.7) 

2.4.3. Existence of energy gap: 

  Cooper pairs are bound together by a very small energy, and from a 

new ground state which is superconducting and is separated by an energy 

gap,	2∆, from the next lowest excited state above it [11]. 
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2.5. London theory: 

In 1935, Fritz and H. London proposed the following equations to 

govern the microscopic electric field, 	퐸 , and magnetic field, 퐵  in 

superconductors. They postulated that a fraction of electrons 푛  called the 

superconducting fraction, exhibit perfect conductivity, while the reminder-

the normal fraction denoted by a subscription n-exhibited regular ohmic 

dissipation [12]. 

The current density given by: 

                     = ,			퐽 = 휎 퐸                                       (2.8) 

Where 퐸 the electric field and 휎 is the electrical conductivity for metals. 

The electron densities as 

푛 (푇) + 푛 (푇) = 푛 

∇ × 퐽 = − 퐵                                           (2.9) 

Where 푚  mass of electron in superconductor state and 푒 charge of electron 

and 퐵 the magnetic field. 

 Now taking the curl of the Maxwell equation, assume that in 

equilibrium there is no current carried by the normal component as 

∇ × 퐵 = 퐽                                                (2.10) 

∇ 퐵 = 퐵 = 퐵                                      (2.11) 
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When the London penetration depth	(휆 ) defined as: 

휆 = ( )                                                    (2.12) 

퐵(푥 < 0) = 퐵 푒                                           (2.13) 

2.6. The Ginzburg-Landau theory:  

In 1950, Ginzburg and Landau proposed a theory based on Landau’s 

general theory of second order phase transitions. The superconducting 

electrons described by a complex wave function,휓, such that  
	
	푛 = |휓| = 휓∗휓 

by expanding the expression for the free energy, a differential equation derived 

of	휓: 

(−푖ħ∇ + 2eA) 휓 + (훼 + 훽휓휓∗)휓 = 0                    (2.14) 

The super current density given by: 

퐽 = ħ (휓∗∇휓 −휓∇휓∗) − 퐴휓휓∗                          (2.15) 

Where A is the magnetic vector potential such that 퐵 = 	퐶푢푟푙	퐴. 

The Ginzburg-Landau equations lead to two characteristic lengths, the G-L 

penetration depth,	휆  as 

휆 = (푚훽 4휇 푒 훼⁄ )                                     (2.16) 

And the coherence length, 휉 equal 

휉 = (ħ 2푚⁄ 훼)                                        (2.17) 
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Where 훼 is proportional to	(푇 − 푇 )	and 훽 is independent of 푇. 

This penetration depth is, like the London penetration depth. The 

coherence length described as the length scale over which the order 

parameter varies. As both 휆  and 휉  are inversely related to 	훼 , they are 

dependent on temperature and both diverge as 푇 approaches. However, the 

ratio of the parameters as 

퐾 = 휆
휉                                                    (2.18) 

Which was known as the Ginzburg-Landau parameter, does not 

depend on α and therefore approximately independent of temperature [8, 12]. 

2.7. Flux Quantization:  
      London in 1950 speculated that the magnetic flux passing through a 

superconducting ring or a hollow superconducting cylinder can have values 

equal to ( 	  ) where 푛  is integer. The flux Quantization confirmed 

experimentally but the quantum of flux has been found to be (  ) rather than (  ). 

By stock theorem:  

∫퐴. 푑푙 = ∮(∇ × 퐴). 푑푠 = ∫퐵. 푑푠 = ∅                    (2.19) 

Where ∅ is the flux enclosed by s is the area defined by 

∇훿. 푑푙 = ∆훿 = 2휋푛 

        ∅ = 	= 푛∅         푛 = 			 (0,1,2, … )                  (2.20) 

Where ∅ unit of flux called fluxoid and is nearly equal to                                         

2.0676   gauss.푐푚 	[10]. 
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2.8. The Josephson effects and tunneling 

Josephson observed some remarkable effects associated with the tunneling 

of superconducting electrons through a very thin insulator (1-5nm) 

sandwiched between two superconducting, such on insulating layer forms a 

weak link between the superconductors which is referred to as the Josephson 

junction. The Josephson current is proportional to the sin of the phase 

difference ( ∅ − ∅ ) of the macroscopic wave function of the two 

superconductors [10]. We have: 

퐼 = 퐼 푠푖푛훾                                                           (2.21) 

Where 훾 	is the gauge invariant phase different. 

퐼  =	cos 훼 + cos훽 = 2cos (훼 + 훽) cos (훼 − 훽)	Critical current 

훾 = ∅ − ∅ −
∅ ∫ 퐴푑푙                                      (2.22) 

The frequency of which given by: 

푓 =
∅
= 푢                                                         (2.23) 

The second Josephson equation: 

훾 . =
∅
푢                                                                 (2.24) 
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2.9. Meissonier effect: 

Meissonier and Ochsenfeld discovered in 1933 that a superconductor 

expelled the magnetic flux as the former cooled below 푇  in an external 

magnetic field it behaved as a perfect diamagnetism. Such flux exclusion is 

also doing served if the superconductor first cooled below	푇  and then placed 

in the magnetic field, since 퐵 = 0 inside the superconductor [10, 13]. 

퐵 = 휇 (퐻 +푀) = 0                                                   (2.25) 

 Where 휇  the permeability of air and  푀 the magnetization. 

There for, the susceptibility given by: 

푥 = = −1                                                              (2.26) 

That true for a perfect diamagnet. 

∇ × 퐸 = −            B= constant.                                (2.27) 
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Chapter Three 

 High temperature superconductivity 
3.1. Introduction: 

 High temperature superconductors (HTS) are materials with much 

higher transition temperatures than already known superconductors. 

Whereas “ordinary” or metallic superconductors usually have transition 

temperature below 30k (-243.2c˚), HTS have been observed with transition 

temperature as high as (38k (-135c˚)) on the other hand, yield very direct 

information about the magnitude and the momentum dependence of the 

order parameter, as well as its evolution with temperature tunneling. Angle – 

resolved photoemission spectroscopy (ARPES) measurements experiments 

indicate that 푑 order parameter is the most plausible candidate to 

describe the superconducting state in these systems. The first high– 푇  

superconductor discovered in 1986 by IBM researchers Georg Bednorz and K-Alex 

Muller [14, 15]. 

3.2. The Chemistry structure of Superconductors: 

The high-temperature superconductors (Perovskites) are a mixture of 

metal oxides, which display the mechanical and physical properties of 

ceramics. (푌퐵퐶푂) is a very common Type II superconductor. A key element 

to the behavior of these materials is the presence of planes containing copper 

and oxygen atoms chemically bonded to each other. The special nature of 

the copper-oxygen chemical bond permits materials to conduct electricity 

very well in some directions. Most ceramic materials considered good 

electrical insulators. 푌퐵퐶푂  Compounds, also known as 1 − 2 − 3 

compounds, are very sensitive to oxygen content. They change from 
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semiconductors at 푌퐵푎	퐶푢	푂		2	3	6.5  to superconductors at 푌퐵푎	퐶푢	푂	2	3	7 

without losing their crystalline structure, as in figure (3.1). The high 

sensitivity of superconductors to oxygen content is due to the apparent ease 

to which oxygen can move in and out of the molecular lattice. Using the 

standard valance charges for the metallic elements, one would expect a 

formula of			푌퐵푎	퐶푢	푂. However, 2	3	6.5 found that these superconductors 

usually have more oxygen atoms than predicted. According to the 

formula,	푌퐵푎	퐶푢	푂, the 2 3 7 metals are in a mole ratio of 1 − 2 − 3	[7]. 

 푌퐵푎퐶푢푂	 is the first material found to be superconducting above 

liquid nitrogen 237c0 temperature. It exhibits a very interesting and complex 

relationship between its chemistry crystal structure and physical properties. 

In oxygen deficient	푌퐵푎퐶푢푂, oxygen removed from the 퐶푢푂 chains. A 90 K 

2 3 7푥  superconductor is obtained for 	0 < 푥 < 0.2 , a 60 K superconductor for 

0.3 < 푥 < 0.55, and an antiferromagnetic semiconductor for 0.55 < 푥 < 1.0  [16]. 

 

 

 

 

 

 

 

Figure (3.1) the crystal structure of 푌퐵퐶푂 
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3.3. d-orbitals 

For the d-orbital 퐿 = 2 and 푚 can take values -2, -1, 0, +1 and +2. 

The orbital named as dxy, dyz, dxz, dx
2

-y
2 and dz

2 as shown in figure (3.2). All 

the 	푑 ,푑 , 푑  and 푑  orbitals have four lobes alternating in sign,  

opposing pairs being of the same sign. In the absence of the magnetic and 

electrical fields they are all equivalent in energy and are said to be fivefold 

degenerate. Three out of the five d-orbital,	푑 , 푑  and , 푑  have lobes 

symmetrically between the axial directions, namely, between 푥 and 푦 axes, 

푦	and 푧  axes and 푥  and 푧  axes respectively. When the lobes of  푑  

orbital lie along  푥 and 푦-axes, while those of the 푑  lie on the 푧-axis. Thus 

the d-orbital can be divided in to two groups; one group comprises the 

푑  and the 푑  orbitals which point along the axial directions, and the 

second group consists of the	푑 , 푑  and, 푑  orbitals which point along 

45°  to the axial directions. The energy of the orbital was increase in the 

order 	푠 < 푝 < 푑	[16]. 

Figure (3.2) the shapes of the d-orbital 
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3.4. Hubbard Model and band structure: 
The electronic configurations of several atoms occur at high 

temperature superconductors. The notation used is 	푛푙 , where 푛  is the 

principal quantum number, the orbital quantum number 푙 = 0	for an s state, 

푙 = 1 for a p state, 푙 = 2 for a d wave, and 푁 is the number of electrons in 

each 푙 state. A full 푙 state contains 2(2푙 + 1) electrons. Correspond to 2,6,10 

for s, p and d state, respectively. The 푐푢  ion (3푑 ) may be looked upon as 

filled d–shell, (3푑 	) plus one 3푑 hole, and in the cuprates, this hole is a 

푑  orbital in the 퐶푢푂  plane. The various 푠, 푝	 and 푑  wavefunctions 

called orbitals have the unnormalized analytical forms, the orbitals	∅(푟 − 푅) 

used in band structure calculations are normalized ∫∅∗ (푟 − 푅)∅(푟 − 푅)푑 푟 

for an atom located at position 푅.	the overlap integral	as 

훿(푅 − 푅′) = ∫∅∗ (푟 − 푅)∅(푟 − 푅′)푑 푟                           (3.1) 

Is a measure of the extent to which the orbitals of atom at positions 푅 and	푅′ 

overlap. The coulomb integral	푢(푅) equal; 

푢(푅) = ∫∅∗ (푟 − 푅)푣 (푅)∅(푟 − 푅′)푑 푟,	                         (3.2) 

Provides the coulomb repulsion energy associated with orbital 

∅(푟 − 푅) atom at position 푅. The Hamiltonian written in terms of creation 

푎  and annihilation (푎 ) operators of spin 휎  associated with atoms at 

positions 푅′ and 푅 in the form: 
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H=−	푡 ∑ 푎 (푅) +′, 푎 (푅′) + ∑ 푎 (푅′) +′, 푎 (푅) 

−	µ 푎 (푅) +
,

푎 (푅) + 푢 푛 + (푅)푛 − (푅)																																									(3.3) 

Where 푢  is coulomb repulsion and the hopping amplitude t > 0 

measure of the contribution from an electron hopping from one site to 

another. The chemical potential  µ takes into account changes in the number 

of electrons and is zero if there is no doping. This Hamiltonian exhibits an 

electron-hole symmetry, which is of some importance because most high 

temperature superconductors are hole types with a close to half-full band [17]. 

3.5. Phase Diagrams:  

  Phase diagrams are critical research for many scientific disciplines 

including materials science, ceramics, engineering and Chemistry.  These 

diagrams contain important information for the development of new 

materials, control of structure and composition of critical phases and 

improvement of properties of technologically important materials [8]. 

 All copper oxides undergo several phase transitions as a function of 

oxygen content. In figure (3.3) we saw that at very low oxygen contents 

(푌퐵푎 퐶푢 푂 ) and high temperatures, the material is a dielectric. At lower 

temperatures below a certain Neel temperature, the material becomes 

antiferromagnetic. The magnetic moments appear on the 퐶푢 atoms on the 

퐶푢푂  planes. Still at low temperatures, at higher oxygen contain, the 

material becomes metallic and superconductor. The critical temperature rises 

up to 92퐾 for	푌퐵푎 퐶푢 푂 . This knows “the optimal doping” [9]. 



17 
 

 

Figure (3.3) phase diagram for (푌퐵푎 퐶푢 푂 ) 

 

3.6. The pseudogap: 

              Gap symmetry used to explain the mechanism of high temperature 

superconductivity. One of the possible explanations of the pseudogap is 

superconducting fluctuations above the transition temperature. 

Superconducting fluctuations in their simplest form are due to small regions 

of normal material becoming superconducting by releasing some of their 

thermal energy to their vicinity. Since the superconducting region cannot be 

smaller than the size of a Cooper pair (휉,the coherence length), the minimum 

required energy to create a superconducting fluctuation is proportional to	휉 , 

the area of the region appropriate superconducting (2D fluctuations are 

considered). The coherence length of the cuprates is in turn very small, 

usually two orders of magnitude smaller than in the conventional 

superconductors. In addition, the transition temperature 푇  is much higher in 

the cuprates, which makes fluctuations in the thermal energy larger [8, 18]. 
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Figure (3.4) show the pseudogap and antiferomagnetic 

The coherence length of the cuprates equal: 

휉 =
ħ

                                                            (3.4) 

Where	휐   the velocity of the Cooper pairs at the Fermi surface.               

Δ  = 1.76	퐾 T the gap energy. 

The free energy for the high−푇  superconductors given by 

퐹 = 퐹 + 퐹 + 퐹 + 퐹 + 퐹 +                              (3.5) 

Where 퐹 is the	normal state free energy, 퐹 푎푛푑		퐹  the lowest-

order contribution for the free energy with tetragonal and orthorhombic 

symmetries. 	퐹 , 퐹 	 the higher order tetragonal contribution involving s- 

wave and d-wave. 

3.7. The tight binding approximation: 

The tight binding approximation used to calculate the electron 

dispersion relation in periodic potentials. We consider a one-dimensional 
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crystal with a primitive cell that contains one atom and with lattice sites at 

positions 푥 = 푛퐿	[19]. 

Where 푛 is an integer and  퐿  the nearest neighbor atom spacing. 푉(푥 − 푥 ) 

the potential of the	푛 atom at position 푥 = 푛퐿. 

The time independent Schrodinger equation for an electron at position x as 

Ĥ휓 (푥) = ħ + ∑ 푉(푥 − 푥 ) 휓 (푥) = 퐸휓 (푥)         (3.6) 

Where 휓 (푥)  Wave function that must satisfy the Bloch condition,		 

(푥 + 퐿) = 휓 (푥)푒                                             (3.7) 

 푘   the Bloch wave vector. 

We used delocalized Bloch functions 휓 (푥) = 푈 (푥)푒 	 for which 

푈 (푥) = 푈 (푥 + 퐿)                                              (3.8) 

The Wannier functions	휙(푥) are localized around the lattice site 푥  

and are orthogonal for different lattice points so that; 

∫휙∗(푥 − 푥 )휙(푥 − 푥 )푑푥 = 훿                             (3.9) 

휓 (푥) = ∑ 푒 	휙(푥 − 푥 )                                (3.10) 

The expectation value of electron energy is 

퐸 = 휓∗ (푥)Ĥ휓 (푥)푑푥 + 

∑ ∑ 푒 ( )	 ∫휙∗ (푥 − 푥 )Ĥ휙 (푥 − 푥 )푑푥           (3.11) 
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The first integral indicated for atom energy levels, 

−퐸 = ∫휓∗ (푥)Ĥ휓 (푥)푑푥                                      (3.12) 

Moreover, the second integral is the contribution from overlaps of 

nearest neighbors. 

−푡 = ∫휙∗ (푥 − 푥 )Ĥ휙 (푥 − 푥 )푑푥                       (3.13) 

Where 푥 = 푥 ± 퐿,  푡  the overlap integral with the sign convention. 

퐸 = −퐸 − 푡 푒 + 푒 = −퐸 − 2푡 cos(푘 퐿)          (3.14) 

This cosine tight binding band for nearest neighbor interactions in one 

dimension has an energy bandwidth of 퐸 = 4푡. 

We assume 퐸 = 0 that giving 

														퐸 = −2푡 cos(푘 퐿)                                       (3.15) 

If one includes next neighbor interaction then there is an additional overlap 

integral 푡 ′	involving sites 

푥 = 푥 ± 2퐿 

The energy dispersion gives by: 

퐸 = −2푡 cos(푘 퐿) − 2푡′ cos(2푘 퐿).              (3.16) 
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3.8. The Second Quantization for Bosons: 

The Hamiltonian of system content	푁 boson in volume V given by: 

Ĥ = 푇 + 푉                                                          (3.17) 

Where 푇  the kinetic energy operator in the form, 

푇 = − ħ ∑ ∇ 푝                                            (3.18) 

 For the second quantization, we rewrite the (3.18) in the form: 

푇 = ∑ 푛^= ∑ 푎 푎                                 (3.19) 

Where ħ=1 the number operator 푛^ = 푎 푎  is creation and inhalation 

operators respectively. In addition, the potential energy operator is 

푉 = ∑ ∑ 푉(|푟 − 푟 | − 	∑ 휐(0) 		 = ∬ 휌(푟) (푟 − 푟′)휌(푟′)푑 푟푑 푟 ′ − ∫ 휌(푟)휐(0)푑 푟′     (3.20) 

Where 푟 − 푟 	 the distance between any interaction particle  푝, 푠 and 휌(푟) is 

the density of particle in position 푟⃗  define as 

 휌(푟) = 푎 (푟)푎(푟) 

푎 (푟) =
1
√푣

푎 푒 .  

푎(푟) = 
√
∑ 푎 푒 .                                    (3.21) 
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Since we are using a representation plane wave states 

휌(푟) = ∑ 푎 푎, 푒 ( ).                              (3.22) 

We insert Fourier transform for the function 푉(|푟 − 푟 |) to find  

푉(|푟 − 푟 |) = ∑ 푣(푞)푒 .( )	                           (3.23) 

Then substitute equations (21.22.23) in equation (3.20) that give:   

푉 = ∑푣(푞⃗)푎 푎 푎 푎 ∬ 푒 ( ). 푒 ( ). 푑 푟푑 푟 −

∑ 푣(푞)푎 푎 ∫ 푒 ( ).
. ′푑 푟                   (3.24) 

Now remove some of summation over the momentum to give: 

푉 =
1
2

푣(푞)푎 푎 푎 푎 −
1
2

푣(푞) 푎 푎  

= ∑ 푣(푞), 푎 푎 푎 푎 + ∑ 푣(푞)푎, , 푎 −

∑ 푣(푞)푎 푎,                        (3.25) 

To used the commutation relation 

[푎 , 푎 ]=훿 ,             [푎 , 푎 ]=0					; 푖 ≠ 푗 

Then equation (3.25) reduced to: 

푉 = ∑ 푣(푞), 푎 푎 푎 푎                              (3.26)  

Finally, the Hamiltonian in second quantization from bosons becomes: 

Ĥ = ∑ 푎 푎 + ∑ 푣(푞), 푎 푎 푎 푎       (3.27) 
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Chapter Four 

 d-wave Superconductivity 
4.1. Introduction: 

 Cooper pairs in high- 푇  superconductors determine by d-wave 

symmetry, especially 푑 	.  This symmetry is internal and it appears in 

momentum space that means the wave function of the Cooper pair moving 

along the	푥-axis has + sign and that moving along 푦-axis has – sign.  

In this chapter we described high- 푇  compounds assume that a 

tetragonal lattice Symmetry, and use the symmetry properties to construct 

the form of the attractive interaction in the system [2, 15]. 

4.2. Model for d-wave superconductor: 

In the BCS theory the isotropic electron-phonon interaction leads to 

an isotropic superconducting gap, this type of pairing symmetry called s-

wave symmetry. The extended s-wave gap functions equal: 

Δ푠∗(푘) = 	Δ°	(푐표푠푘푥 + 푐표푠푘푦),                                        (4.1) 

Н = ∑ 휖 푎 푎 + ∆ 푎 ↑푎 ↓ + ℎ. 푐,                          (٤.2) 

 Where the normal state dispersion given by a tight- binding Hamiltonian as 

휖 = −2푡 cos 푘 + cos 푘 − 푡 ′ cos 푘 cos 푘 − 휇           (4.3) 

Where 푡		the contribution from hopping nearest neighbors, 푡 ′	is the next 

nearest neighbors’ interaction and 휇 the chemical potential. 

In addition, the superconducting order parameter of 푑 	symmetry equal, 
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∆ = ∆ (cos( 푘 푎) − cos( 푘 푎))                              (4.4) 

The 푑 	wave pair field operator equal; 

∆ 	= ∑ ∆ (푘)푎 ↑푎 ↓		                                 (4.5) 

∆ 	=
∆
2

(푎 ↑ 푎 ↓ − 푎 ↓푎 ↑) − 푎 ↑푎 ↓ − 푎 ↓푎 ↑ + 

(푎 ↑푎 ↓ − 푎 ↓푎 ↑) − (푎 ↑푎 ↓ − 푎 ↓푎 ↑)                    (4.6) 

As given, this Hamiltonian has nodal excitations, which are located 

along the 	푑 	  symmetry axis in the (±휋, ±휋)  directions. The nodes 

‘distance from (±휋/2,±휋/2) controlled by the chemical potential	µ. These 

quasi particles are Dirac fermions in the sense that they have conical 

dispersion [15]. 

The excitation energy is 

퐸 = 휖 + ∆                                                    (4.7) 

Return to Schrodinger’s equation 

푎 ℏ − 퐸 = −∑푎 푉                             (4.8) 

We define 휖  the energy above	퐸 , so 

휖 = ℏ − 퐸                                                    (4.9) 

휖	the energy of electron pair; and 퐸 the energy below the Fermi energy. 

∆= 퐸 − 퐸                                                        (4.10) 
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Where ∆ is called the binding energy, given by 

∆= ℏ휔 exp                                          (4.11) 

Then the Schrodinger equation becomes: 

푎 (휖 + ∆) = −∑푎 푉                                 (4.12) 

 Moreover, at low energies	휖  ∼휈 푘  and	∆ ~ 휈Δ푘 , where	푘  and 푘 	are 

displacements resulting from the normal state dispersion linear parallel to 

Fermi surface, and linear gap perpendicular to the Fermi surface, with slopes 

휈 	and	∆  . For µ	on the order of 푡	or smaller, the velocity given as 

Δ
≈

√ ′

∆
                                                     (4.13) 

Then, as perturbations turned on, the locations of the nodes evolves in 

k-space, although the stability of the nodes preserved for non-nesting 

perturbations that preserve the composite symmetry of lattice [17]. 

4.3. The wave function of d-orbitals: 

The wave function of d-orbitals represented by the separated two 

radial wave function and angular wave function in the form: 

휓 = 푅 푌                                    (4.14) 

Where     푅 1 √30⁄ 휌 푍 ⁄ 푒 ⁄ 																																			(4.15) 

휌 =
2푍푟
푛

 

 푛 is the principle quantum number, r radius expressed in atomic units.  
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푍		is effective nuclear charge for orbital in the atom. 

The angular wave function as 

푌 = ( ) ⁄
                          (4.16) 

The electron Hamiltonian represented as a sum of one- and two-electron 

terms: 

퐻 = 퐻 + 퐻                                                     (4.17) 

퐻 = ∑ 휖(푥 ) − ∑ ∑ 휐(푥 , 푥 )                       (4.18) 

Now rewrite the Hamiltonian for the electrons in terms of electron creation 

and destruction operators as 

퐻 = ∑ 휖(푥 ) = ∑ 〈휙 |휖|휙 〉푎, 푎 = ∑ 휖, 푎 푎          (4.19) 

휖 = 〈휙 |휖|휙 〉 = ∫휙∗ (푥)휖(푥)휙 (푥)푑푥               (4.20) 

The operator for the electron-electron interaction	퐻′   acquires at the form: 

퐻′ = ∑ 〈, , , 휙 휙 |휈|휙 휙 〉푎 푎 푎 푎                    (4.21) 

Where 푎 푎  The destruction operators and 휙 ,휙 	 the spin-orbital of 

electrons. 

〈휙 휙 |휈|휙 휙 〉 = ∬휙∗(푥 ) 휙∗(푥 )휐(푥 , 푥 )휙 (푥 )휙 (푥 )푑푥 푑푥    (4.22) 

Finally the Hamiltonian written as 

H = ∑ 〈휙 |휖|휙 〉푎 푎 + ∑ 〈, , , 휙 휙 |휈|휙 휙 〉푎 푎 푎 푎,        (4.23) 

This Hamiltonian similar to Hamiltonian in equation (3.27) those described 

the kinetic energy and potential energy for cooper pair.  
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4.4. Evidence of d-wave pairing: 

The evidence for d-wave superconductivity in the cuprates has 

obtained from experiments sensitive to changes in the sign of the gap 

function. Line nodes are a common feature of unconventional gap function 

symmetry, such as extended s-wave (with nodes along	(|푘 | = |푘 − 휋|), d-

wave ( |푘 | = |푘 | ), and 푑 -wave ( 푘 = 0, 푘 = 0) . In conventional 

superconductors, the number of excitations at low temperatures is 푒 ∆⁄  

due to the presence of a non-zero gap. The low temperature behavior of the 

penetration depth in the cuprates suggests a gap with line nodes [20]. 

All experiments indicate that the phase of the d-wave order parameter 

differs by 휋  between the [100] and [010] directions of the 퐶푢푂 	 plane 

because the lobes of the gap function aligned with the crystal axes. The 

modulation of the critical current has measured for the cuprate 

superconductor. If the cuprates were an s-wave superconductor, the 

supercurrent should be a maximum in the absence of an applied field	퐻. If 

the cuprate were a d-wave superconductor, appositive lobe would face the 

other; the resulting destructive interference should yield zero supercurrent 

when	퐻 = 0, but a maximum current for	퐻 = 휙 2⁄ = 휋. 
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4.5. Conclusion:  
 The pairing of the electrons around the Fermi surface creates a range 

of energies, which depleted of single electron excitations, this called, 

superconducting gap. Equation (4.10), high- 푇  superconductors are 

magnetic systems due to the Coulomb interaction; there is a strong Coulomb 

repulsion between electrons, this Coulomb repulsion prevents pairing of the 

Cooper pairs on the same lattice site. The pairing of the electrons occurs at 

near-neighbor lattice site this called d-wave pairing, where the pairing state 

has a node (zero) at the origin. The weak isotope effects observed for most 

cuprates contrast with conventional superconductors that well described by 

BCS theory. 

In this research, we used quantum mechanics to describe the energy 

gap of the materials, which a characterized by superconducting at high 

temperatures described by 푑  symmetry, equation (4.4) comparing with 

the energy gap in BCS theory and found that Cooper pairs can be described 

as boson.   

4.6. Recommendation: 
We recommended to further study to: 

•More researchers to study the mechanism of the internal structure of 

Cooper pair to explain the phenomena of high 푇  cuprates. 

• develop the model of d-wave that describes the superconducting 

compounds at high temperature. 
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