4.2.2 Processing of Haraz fruits jam

After determination of the suitable method and processing conditions for production of Haraz fruits extract, the cleaned Haraz fruits (4 kg) were soaked in boiled water (32 L) for (2hr). After that, the mix was blended for 5 min and the fruits extract after filtration was used for production of Haraz jam. Fig (1) and Table (2) show the processing method and recipe which were used for production of Haraz jam. While, Table (8) presents the physical and physico-chemical characteristics of Haraz fruit extract that used for jam production.

4.3 Quality evaluation of Haraz jam

4.3.1 Chemical and physico-chemical characteristics

The chemical and physico-chemical characteristics of Haraz jam are indicated in Table (9). From the results obtained in this study, the product was found to meet the recommended levels of total soluble solids (68%), hydrogen ions concentration (3.20) and titreable acidity (0.51 %) as reported by the SSMO, 2006, Onsa (2007) and Javanmard (2010).

4.3.2 Nutritional value

4.3.2.1 Chemical composition and energy value

The chemical composition and energy value of Haraz jam are shown in Table (10). From the results, the product was found to be with high level of total sugars (64.30 %), but, with low level of protein (0.59 %), fiber (0.19 %), ash (00.18%) and tannin (00.12%), on wet basis. Therefore, the product was found to provide an adequate caloric value (271.55 k.cal/100g). The results obtained in this study are in good agreement with those published by Elsayaid (2008) and Javanmard (2010).
Table (8): Physical and physico-chemical characteristics of Haraz fruits extract

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Haraz fruits extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of raw material</td>
<td>04.00 kg</td>
</tr>
<tr>
<td>Water weight</td>
<td>32.00 kg</td>
</tr>
<tr>
<td>Weight of Haraz extract</td>
<td>20.00 kg</td>
</tr>
<tr>
<td>Total soluble solids (T.S.S %)</td>
<td>05.00 %</td>
</tr>
<tr>
<td>Hydrogen ions concentration (pH)</td>
<td>04.87</td>
</tr>
</tbody>
</table>

Table (9): Chemical and Physico-chemical properties of Haraz jam

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>On wet basis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[n = 3 ± SD]</td>
</tr>
<tr>
<td>Total soluble solids (T.S.S %)</td>
<td>068.00 ± 0.00</td>
</tr>
<tr>
<td>Hydrogen Ion concentration (pH)</td>
<td>003.20 ± 1.06</td>
</tr>
<tr>
<td>Titreable acidity (%)</td>
<td>000.51 ± 1.06</td>
</tr>
</tbody>
</table>
Table (10): Chemical composition and energy value of Haraz jam

<table>
<thead>
<tr>
<th>Chemical composition (%)</th>
<th>On wet basis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[n = 3 ± SD]</td>
</tr>
<tr>
<td>Moisture</td>
<td>034.31 ± 0.61</td>
</tr>
<tr>
<td>Protein</td>
<td>000.59 ± 0.00</td>
</tr>
<tr>
<td>Fat</td>
<td>000.52 ± 0.10</td>
</tr>
<tr>
<td>Total sugars</td>
<td>064.30 ± 0.49</td>
</tr>
<tr>
<td>Reducing sugars</td>
<td>045.60 ± 0.48</td>
</tr>
<tr>
<td>Non reducing sugars</td>
<td>018.70 ± 1.06</td>
</tr>
<tr>
<td>Crude fiber</td>
<td>000.18 ± 0.00</td>
</tr>
<tr>
<td>Tannins</td>
<td>000.12 ± 0.00</td>
</tr>
<tr>
<td>Ash</td>
<td>000.10 ± 0.00</td>
</tr>
<tr>
<td>Caloric value</td>
<td>271.55 ± 0.00 k.cal</td>
</tr>
<tr>
<td></td>
<td>1136.17 ± 0.00 kj</td>
</tr>
</tbody>
</table>

SD ≡ Standard deviation.

n ≡ Number of independent determinations.
4.3.2.2 Minerals content

Table (11) gives the minerals concentration in Haraz jam as mg/100g on wet basis. The product was found to provide appreciable amounts of sodium (22.49 mg), potassium (8.98 mg), magnesium (8.38 mg) and calcium (8.14 mg). Therefore, the product was found with high nutritional value and it can be used especially for young children and mothers during pregnancy and lactating periods as suggested by NRC (1983), Von-Mydell (1986) and Abdoun (2005).

4.3.3 Organoleptic evaluation

The organoleptic evaluation of Haraz jams was carried out by using trained panelists from the Food Science and Technology Dept., College of Agricultural Studies, Sudan University of Science and Technology. Haraz jam products with or without flavour were sensory evaluated as described by Ranganna (2001).

The results in Table (12) show the recorded scores by the panelists for the different Haraz jam samples with respect to their colour, taste, flavour, consistency and overall quality. In general, both Haraz jams that produced with or without flavour were highly accepted by the panelists. But, significant differences were found between the two products with respect to their colour, consistency and overall quality. However, Haraz jam that produced with pineapple flavour was highly preferred by the panelists in comparison with that produced without any flavour.
Table (11): Minerals content of Haraz jam

<table>
<thead>
<tr>
<th>Minerals</th>
<th>On wet basis (mg/100g) (n =3± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>[Na] 22.49 ± 0.00</td>
</tr>
<tr>
<td>Potassium</td>
<td>[K] 08.98 ± 0.00</td>
</tr>
<tr>
<td>Calcium</td>
<td>[Ca] 08.14 ± 0.00</td>
</tr>
<tr>
<td>Magnesium</td>
<td>[Mg] 08.38 ± 0.00</td>
</tr>
<tr>
<td>Iron</td>
<td>[Fe] 00.91 ± 0.00</td>
</tr>
<tr>
<td>Manganese</td>
<td>[Mn] 00.01 ± 0.00</td>
</tr>
<tr>
<td>Cupper</td>
<td>[Cu] 00.11 ± 0.00</td>
</tr>
</tbody>
</table>

SD = Standard deviation.

n = Number of independent determinations.
Table (12): Organoleptic evaluation of Haraz jam products

<table>
<thead>
<tr>
<th>Jam samples</th>
<th>Quality characteristics</th>
<th>Colour</th>
<th>Taste</th>
<th>Flavour</th>
<th>Consistency</th>
<th>Overall quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Score, n = 20 ± SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>2.1 ± 0.59<sup>a</sup></td>
<td>2.1 ± 0.55<sup>a</sup></td>
<td>2.2 ± 0.54<sup>a</sup></td>
<td>3.3 ± 0.62<sup>a</sup></td>
<td>2.2 ± 0.56<sup>a</sup></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1.5 ± 0.52<sup>b</sup></td>
<td>1.9 ± 0.52<sup>a</sup></td>
<td>1.9 ± 0.48<sup>a</sup></td>
<td>1.8 ± 0.54<sup>b</sup></td>
<td>1.7 ± 0.50<sup>b</sup></td>
</tr>
<tr>
<td>Lsd<sub>0.05</sub></td>
<td></td>
<td>0.5236<sup>*</sup></td>
<td>0.3709<sup>ns</sup></td>
<td>0.4511<sup>ns</sup></td>
<td>1.0983<sup>b</sup></td>
<td>0.4306<sup>*</sup></td>
</tr>
<tr>
<td>SE±</td>
<td></td>
<td>0.0718</td>
<td>0.0529</td>
<td>0.0607</td>
<td>0.0872</td>
<td>0.0600</td>
</tr>
</tbody>
</table>

Scale: 1 = excellent, 2 = very good, 3 = good, 4 = acceptable, 5 = unacceptable
A ≡ Haraz Jam without flavour.
B ≡ Haraz Jam with pineapple flavour.
SD ≡ Standard deviation.
Mean ± S.D value(s) bearing different superscript letter(s) within columns are significantly different (P≤0.05).
[*] ≡ Significant at (P≤0.05).
n.s ≡ Not significant.
Lsd_{0.05} ≡ Least significant difference at (P≤0.05).
SE± ≡ Overall experimental error.
5. CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

From the results obtained in this study it can be concluded that Haraz fruits are found to be suitable for production of jam with high nutritional value, high energy value and with appreciable amounts of sodium, potassium, magnesium, calcium and highly accepted by the panelists.

5.2 Recommendations

1. The product could be used for reducing the high incidences of energy-malnutrition among pre-school children in the rural areas, in Sudan.
2. Utilization of Haraz fruit in jam production will make the product very cheap and affordable especially for low income groups in Sudan.
3. The industrial utilization of Haraz fruits in jam production in Sudan should be encouraged.
4. Comprehensive survey for the different Haraz fruits production zones should be conducted to estimate the actual total production and productivity of the fruits in Sudan.
5. Additional studies are definitely needed to ensure safety, storage conditions, economic feasibility and market demands for the product.
REFERENCES

Fagg, C. W. (2003). *Faidherbia albida* - inverted phenology supports dryzone agroforestry. A quick guide to useful nitrogen fixing trees from around the world NFT Highlights. A publication of the Forest,
Farm, and Community Tree Network (FACT Net). Arkansas, Morrilton: Winrock International, USA.

FAO (2009). Traditional Food Plant. Food and Agriculture Organization (FAO), of the United Nations Rome, Italy, P.42.

Hui, Y. (2006). Hand Book of Fruits and Fruit Processing. Published by Black Well. USA.

ICUC (2004). Processing of Jam and Jelly. International Center for Underutilized Crops, UK.

Onsa, O. (2007). Industrial Utilization of Guddaim (Grewia Tenax) Fruits in Jam Production. M.Sc. in Food Science and Technology,

Perkin-Elmer, C. (1994). Trace metal determination in fruit juice and juice products using an axially viewed plasma. Karen W. Barnes, 761 Main Avenue, Norwalk, CT 06859-0219, USA.

Plate (1): Haraz fruits
Plate (2): Haraz fruit jam
Plate (3): Sensory evaluation of Haraz fruits jam