Chapter 1

Operators with Singular Continuous Spectrum and Rank One Perturbations

If [a,B] < spec(A) and A has no a.c. spectrum, we show that A + AP has
purely singular continuous spectrum on (a, ) for a dense Gg of A's. Our purpose is to
show that most results of Gesztesy, Kiselev, and Simon are valid for rank one
perturbations of self-adjoint operators, which are not necessarily semibounded. We
use the fact that rank one perturbations constitute self-adjoint extensions of an
associated symmetric operator. The use of so-called Q-functions facilitates the
descriptions. In the special case that w belongs to the scale space H_; associated with
H,, = dom |A|'/2 the limiting perturbation A(c0) is shown to be the generalized

Friedrichs extension.

Section (1.1): Rank One Operators:

The subject of rank one perturbations of self-adjoint operators and the
closely related issue of the boundary condition dependence of Sturm-Liouville
operators on [0,00) has a long history. We’re interested here in the connection with

Borel-Stieltjes transforms of measures (Imz >0):
d
F(z)=]4LX) (M)
X —z
where p is a measure with
(x| +) ™ dp(x) <o @)
In two fundamental papers Aronszajn [2] and Donoghue [3] related F

to spectral theory with important later input by Simon-Wolff [4]. In all three works,

as in ours, the function (y real)

dp(x)
G(y)=[-2XL
(x—y)?

plays an important role. Note we define G to be +oo if the integral diverges. Note too
if G(y)<oo, then the integral defining F is finite at
z =y and so we can and will talk about F(y).
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Donoghue studied the situation
A;\ = A(] + 7\,P,
Where Py = (@,y)e with ¢ a unit vector cyclic for A. dp is then taken to be

spectral measure for ¢, that is,
(9. @) = [ dp(x)

Aronszajn studied the situation

2

d
=——+V(x
dx’ @)

Sformal

on [0, ), where V' is such that the operator is limit point at co. Then, there is a
one-parameter family of operators, H, with boundary condition
u(0)cosO+u’(0)sin 6 = 0.
p is the conventional Weyl-Titchmarsh-Kodaira spectral measure for a fixed
boundary condition, 0
An important result of the Aronszajn-Donoghue theory is
Theorem (1.1.1)[1]: E is an eigenvalue of A, (resp. Hp) if and only if
(1) G(E)< o,
(i))F(E)=-A"" (resp. cot(0-0y)
Our goal here is to prove the following pair of Theorem:
Theorem (1.1.2)[1]: {E|G(E) = o} is a dense G5 in spec(Ao) (resp. Hg).
Theorem (1.1.2) is a generalization of del Rio [5]. Gordon [6,7] has
independently obtained these results by different methods.
Theorem (1.1.3)[1]: let dp be a measure obeying (2). Let

dp(x)
(x—y)?

Then, {y|G(y) =} is a denseGs in supp(dp),the support of dp.

Gy =]

Proof. The following are fundamental facts about Borel-Stieltjes transforms and
their relation to dp (see [8]).
() lim_

t F(E + i) = F(E+i0) exists and is finite for Lebesgue a.c.E.
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(i) dp, 1s supported on {E[ImF(E +10)>0}.

(iii) dp,,,is supported on {E|lim_ Im F(E+i0) = oo}.
If G(y)< oo, it is easy to see that lim | F(E + i0) exists, is finite and real. Thus, if
G(y)< o on an interval (a,B) < IR, dp (a,B)= 0, thatis, ((a,B) supp(dp)
= ¢. Thus, {y|G(y)=o0} is dense in supp(dp).

That {y|G(y) = «} is a G; follows from the fact that G is lower semi-

continuous. To be explicit, let

dp(x)
x=y) +(m™)

G,(»=] (

Which is a C* function by (2) and G(y) = supy Gum(y). Thus
YIG(y) = 0= { y|Vn, ImGm(y)>n}
=NUw»1G,0)>n

s a Gy .
Example (1.1.4)[1]: Let A < [0, 1] be a nowhere dense set of positive measure

(e.g., remove the middle open % from [0, 1], the middle % from the remaining two
pieces, the middle 1—16, ,% at the (n — 1)* step).Let

F(y) =/ An[0,y]],
where |.| is Lebesgue measure. Then F is Lipschitz; indeed, if x <y,
|F(x)-F(y) |5 An[x,y]|<|x—y|. But F[A]=[0,|A]] has non-empty interior. Thus
for our F, we need more than just Lipschitz properties (our F is certainly not
Lipschitz but F|{y|G(y) < a} is the restriction of a Lipschitz function to that set).
The idea of the proof will be to break up {y I G(y) < oo, yesupp(dp)}

into a countable union of nowhere dense sets, A, so that F is a homeomorphism

on each of those sets. On each A,, G will be close to constant. We’ll use:

Lemma (1.1.5)[1]: Let B © R be a nowhere dense set and let F: B> R be a

function obeying for x <y, with x,yeB:

a(y-x) < F(y) = F(x) <B(y - x) 3)
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For fixed a, f > 0. Then F[B] is nowhere dense.

Proof. By (3) F has a unique continuous extension to B obeying (3). R\ B is a union
of intervals (x;, y;) with x;, yje B. Extend F to the interval by linear interpolation
using slope L (a+B) on any semi-infinite subintervals of R\B . The extended F also
obeys (3) and so defines a homeomorphism of R to R. As a homeomorphism, it
takes nowhere dense sets to nowhere dense sets.
Lemma (1.1.6)[1]: Let dp obey (2) Then

{F(ylG(y)< o and y esupp(dp)}
1s a countable union of nowhere dense subsets of R.

Note that G(y)<oo implies the integral defining F(y) is absolutely
convergent and F(y) is real. The proof will depend critically on the fact that F is
the boundary value of an analytic function. That such considerations must enter is
seen by.

Proof . We first break A = {yesupp(dp)|G(y)< o} into a countable family of sets A,

so that for each n, there 1s a, > 0,0, > 0 so that

(i) fory € A, Sgn <G(y)<a,:

. dp(x) _a, .

(i1) foryeAn’j‘x_ngn 723 e
x-y |

. 3 1/(3 %
(1) Y yea, [y — B0,y +Bo, ]is connected wheref3 = 18[4]

Such a breakup exists for we can first break R into intervals H 8 )m” [ 8 )ml and
9) 7 9

pigeonhole G by its values. Since G(y) < oo implies lim 5

dp) _,

2 5

we can break each such set into countably many sets where (ii) holds. Then we can
break each such set into countably many sets so that (iii) holds by looking for gaps
of size longer than J, .

Operators with Singular Continuous Spectrum
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Fig.(1)
Each A 1s nowhere dense by Theorem (1.1.2) and we’ll show that on A,

y >x implies that
1 5
gan(y —x)<F(y)—F(x)<§an(y —x), (4)

so that the lemma follows from Lemma (1.1.11).

Define £, =0, and ¢, = \/ézn_ Fory e A,let A, (y) be t he triangle in C(see Fig

<zl
6

This is the equilateral triangle of side £, with one side parallel to the real axis at

(1))

V4
arg(z —y) -

An(y)z{z|0<lmz£8n’ 5

distance €, from that axis and the opposite vertex at y. For ze A,(y), define

dp(x) dF
G(z) = ==
2 I (x—2)* dz
We claim that for ze A,
1G(z)-aq, s%. (5)

Accepting (5) for the moment, let us prove (4). Boy the fundamental theorem of
calculus, (5) implies for z,z' € A, (y):

!

|F(z)—F(z’)—an(z -z") z -z

<%
3

(6)

By hypothesis (iii) on A, | J,., A,(») is connected and so, given y <y'€A, we can

yed,

find a finite sequence yo=y <y;<...<y,=y and z;,. ..,z, so that (see Fig(1))



B T P R e g

By (6) and (7)
IFO)-F(»)' —a,(y-y")| < 2%(y—y’)

which is (4).

L)

M Y2 Y3
Fig.(2)
Thus we need only prove (5). We write

G(2)-an| < [bo| + [ba] + [b2| + [bs],

Where
b,=G(y)~-a,
. dp(x)
1 29
X—y[<0, x—z
- dp(x)
2 29
x—y|<0, =y
b,G(2)-G(y),
With
G(z) = d]D(X)2
‘x—y‘zﬁn (X - Z)
By hypothesis (i) on 4,,|p,| < %".
By hypothesis (ii) on 4,,|b,| < ;1 . By elementary trigonometry,

z e A(y)and x eR:>|z —y|2\/§|x —y|.
Thus

4
O

5

5

(7)

®)



SO

Ta a
|bl|+|b2|s§2—"1 ?"

Finally, using the fundamental theorem of calculus and (8)

4 3/2 dp(x)
b,|<2|z —y|(—] 5, B
‘ 3‘ 3 LY_yI>5n (X _y)
3/2
<250, G] a

4 3/2 a
:2 J— — I
ﬂ[3] a,=%

by definition of the constant (. Thus (5) hold
Theorem (1.1.7)[1]: {A| 45 has no eigenvalues in spec (Ag)} (resp. {6[Hy has no
eigenvalues in spec (He,} is a dense G; in R (resp. [0, 27])).
Proof. The maps M;: R\{0}— R\{0} by M;(A) = -A"" and M,: [0, 1)>R U{w}by
M;(0) =cot(0 - 6p) are homomorphisms. Thus, by Lemma (1.1.6)
{A| 3 E s.t. G(E) < o0, Eespace (Ao), F(E) = -1}
and
{6] 3 E s.t. G(E) < o, Eespace (Ay), F(E) = cot (6- 0;)}

are countable unions of nowhere dense sets. Its omplement is thus a dense set by
Baire category theorem. But by Theorem (1.1.1), this is precisely {A|A;, has no
eigenvalues on spec (Ag)}, which we conclude is dense. By general principles [9], it
as also a Gg .

Here are some simple corollaries of Theorem (1.1.7). We state them in the rank
one case but they hold in the cot (6 - 69)B.C. case also.
Corollary (1.1.8)[1]: Suppose that A, is an operator with no a.c. spectrum and P is a
rank one projection whose range is cyclic for A. Then for a dense Gs of A’s, Ay = A +
AP has only singular continuous spectrum in spec (Ag)™

Proof. A, has no a.c .spectrum since the a.c. spectrum is left invariant by finite rank

perturbations. space(Ao) has no eigenvalues for adense Ggs of A there can be



eigenvalues on R\spec (Ag) and so point spectrum on 0 (spec(Ag)).But there cannot
be point spectrum in spec (Ag)™

Corollary (1.1.9)[1]: Suppose that Ay is an operator with no a.c. spectrum and an
interval [o,B] < spec (Ag). Let P be a rank one projection whose range is a cyclic
vector for A,. Then for a dense Gs of A’s, Ag + AP has singular contionuous spectrum

on all of (a,) and only singular continuous spectrum there .

Theorem (1.1.10)[1]: Let V(x) be a locally L; function on [0,00) and Ilet

H, = ci; +V(x) with 6 boundary conditions. Suppose there is some 6y and o < 3 so
that
(i) [o,B] spec(Ha,)
(1) for Lebesgue a.e., Ege[a,3], there exists a function ¢E, obeying
- 9" (X)+V(x) ¢ (x) = Eoo (%), )
Jloco de< (10)
Then:

(1) For a dense Gsof E’s in [a,B] , there is no solution of (9) obeying (10).

(11) For Lebesgue a.e. 6, Hy has only point spectrum in (a.,3).

(111)For a dense G; of 6, Hg has only singular continuous spectrum in (a.,f3).
Proof. If E is such that (9) has a solution obeying (10), then @g obeys some boundary
condition at x = 0 and so E is an eigenvalue of some Hg.Thus (i) follows from
Theorem (1.1.2).

To prove (ii), note that if Eq has a solution and Ey is not an eigenvalue of Hg,
lim I | G(0,x;E +ig) |"dx < oo.Now apply the ideas of Kotani [10] and Simon- Wolff
0

[4].(i11) follows from Theorem (1.1.7).
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Example (1.1.11)[1]: Suppose that [a,b]cspec[— d +V(x))and that for a.c. E

c [a, b], lim -%IHHTE (x)|=r(E)and is positive. Here T is the standard transfer

X—>0
| x

matrix, that is,

P (x)  9,(x)

T = ,
£ [cof(x) qo; <x)J

where @; obeys -u” + Vu=Euwith ¢;(0)=¢', (0)=1 and ¢’y (0) =@, = (0). Then (i)

implies there must be a dense Gz of E where eitherlim.ﬁHTE (x)H fails to exist or is
X

zero. Thus, a positive limit can never exist for all E in an interval. Results of this
genre have been found previously by Goldsheid [11] and Carmona [12].

Example (1.1.12)[1]: Consider a one-dimensional random model with localization,
for example, the GMP model [13,12]. Then for almost every E in [o,0), one knows
v(E) exists and is positive. It follows from Theorem (1.1.10) that for a locally
uncountable set of boundary conditions (a Lebesgue typical set), one has pure point
spectrum, while for a distinct set of locally uncountable boundary conditions (a Baire
typical set), one has singular spectrum. Each spectral type is unstable to change to the

other spectral type.

2

+cos(v/x)on L*(0,:0), a model studied by Stolz

Example (1.1.13)[1]: Let H = j ;
x

[14]. As proven by him for any boundary condition 6:

Spec (Hg) =[-1, ).
Spec (Hg) is purely absolutely continuous on (1, «©). Krisch et al. [15] prove that for
a.0.Hp has pure point spectrum in [-1, 1] only. Our results show that for a dense Gs
of 0, the spectrum is purely singular continuous. Once again you have intertwined

purely pure point and purely singular-continuous spectrum.

Finally, we consider the case of Anderson model:



Section (1.2): Self-Adjoint Operators and Rank One Perturbations

Let 4 be a self-adjoint operator in a Hilbert space H. Its rank one
perturbations A + 1 (.,m) ®, T€R, are studied when ® belongs to the scale space H._,
associated with H,,= dom A and (.,.) is the corresponding duality. If A is
nonnegative and o belongs to the scale space H.;, Gesztesy and Simon [17] prove
that the spectral measures of A(t),t€R, converge weakly to the spectral measure of
the limiting perturbation A(c). In fact A(e0) can he identified as a Friedrichs
extension. Further results for nonnegative operators A were obtained by Kiselev and
Simon [18] by allowing weH_,. Our purpose is to show that most results of Gesztesy,
Kiselev, and Simon are valid for rank one perturbations of self-adjoint operators,
which are not necessarily semi-bounded. We use the fact that rank one perturbations
constitute self-adjoint extensions of an associated symmetric operator.

The use of so-called Q-functions [19,20] facilitates the descriptions. In the
special case that o belongs to the scale space H associated with H,, =dom |A|"?, the
limiting perturbation A(o0) is shown to be the generalized Friedrichs extension [21].

Let A be a self-adjoint operator in a Hilbert space H with inner product
[.,.], Associate with A the Hilbert space H.,, which is dom A provided with the
inner product [f,g]., = [f,g]+[Af,Ag], f,g € dom A. Define the dual space H. in
the usual way, denote the duality between Hiz andS.; by (.,), and extend the form
(.,») to dom &%, cf. [20]. For an element ® in the scale space H.,, consider the rank
one perturbations of A:

A(t) =A+t1t(,0)o,T €R (11)
In this formula A stands for the unique continuation of the original operator A
acting from H to H_,, cf. [20]. When o € H, no continuation of A is needed and
(.,) can be replaced by [.,o]. The family A(r),tr€R, in (11) must be augmented
by a certain self-adjoint operator or, in general, relation A(w) to account for all
possible “perturbations” of A. F. Gesztesy and B. Simon [17] prove that the spectral
measures of A(t) converge weakly to the spectral measure of A(o0), when A is a

nonnegative operator and o belongs to the scale space H_; associated with H,;=dom
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A'Y?. The case where A is nonnegative and ® € H. is studied by A. Kiselev and
B. Simon [18]. The main ingredient which Gesztesy, Kiselev, and Simon use, is the
“basic formula” (1) in [17] which makes it necessary to distinguish between 1 eR
and 1= o

We take another point of vie by associating a symmetric operator with rank
one perturbations [22,19,18,23]. Let A be a self-adjoint operator, not necessarily
semibounded, and let ®€H.,. Introduce

S ={{f,g} €A: (fl.w) = 0}. (12)
Then S is a closed, symmetric operator with defect numbers (1, 1), cf. [20]. The
perturbation formula (11) augmented with A(oo) parametrizes all self-adjoint
extensions A(t),t € RU{wx}, of S.

The operator is densely defined and the perturbation A(o0) is a self-adjoint
operator, only when weH_,\H. When weH the condition (f,m) = 0 reads as [f,®]
= 0, so that S is not densely defined and A(o0) has the form

A(0) =S + ({0} & mul S*), (13)
where mul S* = (dom S)* is the multivalued part of S*. In particular, A(c0) is a
self-adjoint relation with the same multivalued part as S*. The notion of generalized
Friedrichs extension of S occurs when the element ® belongs to the scale space H_;
associated with H,; = dom |A|"2.
Proposition (1.2.1)[16]: Let A be a self-adjoint operator, let @e H.; , and let S
be defined by (12)

A() ={{f,g}eH* : feH,, }, (14)
Moreover, A() is the only self-adjoint extension H of S such that dorm H
H.,.

This description reduces to (13) when ® € H. When S is semibounded A() is
precisely the usual Friedrichs extension [24,21,19].

Our interpretation of rank one perturbations of A in (11) as self-adjoint
extensions of a symmetric operator, shows that many of the results of Gcesztesy,
Kiselev, and Simon remain valid without the condition that A 1is nonnegative. We
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discuss spectral measures for self-adjoint extensions of closed symmetric operators
with defect numbers (1,1). Various descriptions of self-adjoint extensions of a
symmetric operator. We shown that A(t) converges to A(To) as T—>7To in the graph
sense. That the spectral measures of A(t) converge weakly to the spectral measure
of A(to) consider self-adjoint operators whose resolvents differ by a rank one
operator, answering a question of B. Simon. We contains a discussion of rank one
perturbations by means of Q- functions.

Let S be any closed symmetric relation with defect numbers (1,1). Let A be a

self-adjoint extension of S. Choose for neC \ R a nontrivial defect vector X(u) €
ker (S*- 1). Then for ¢ € p(A)

()= +(£-p)A- ) X(Ww) (15)
defines a holomorphic basis for ker (S*-7). The Q-function Q(¢) of A and S is

defined (uniquely tip to a real constant) as a solution of the equation

0(H-0(A)

i VA AL (16)

The function Q (/) belongs to the class N of Nevanlinna functions. Recall that a

fannction Q(/) belongs to N precisely when

t
+1

Q(E):a+ﬁ£+j($—t2 ]da(t) (17)

here ae R, 2 0 the function o (t) is nondecreasing on R and satisfies

J‘dG

2
R0 +1

< (18)

Another way of writing (17) is

Q(z)=a+z(ﬂ+jd“(t)}+(ﬁ+1)jLM (19)

st +1 t—0t*+1

we will only consider Nevanlinna functions Q(¢) which do not reduce to real
constants or equivalently, which do not take real values off the real axis. The
spectral measure which we associate with 4 and S is the measure do(t) in (17),
when Q(¢) is the QO-function of A and S. It can be recovered from Q(¢) by means

of the Stieltjes inversion formula. It follows from (15) and (16) that
12



O =0 () *+({ = U + (L= p)(A =0 ) (), x (W], L€ p(4). (20)
Let R be the orthogonal projection onto H ® mul A = dom A and let E(t) be the
spectral family of the operator part A, of A in that space. For the following
connection see [19].
Proposition (1.2.2)[16]: The connection between the operator representation (20)
and the integral representation (17) is as follows:
(0) a=Q0@)*+i[x(©), x()] = Re (i),
ImQ(iy)

@) p=[0-R)x(D),I - R)y(D]=1lim )

do(t)
2 +1

(iii)

d([E@Rx (D), Ry (D)]).

A consequence of (ii) is that f = 0 if and only y(/)e dom A for some (and hence
for all) ¢ eC\R. In particular, if S is an operator then § =0 if and only if 4 is
an operator [25].

Since 4 is a self-adjoint extension of S there exists a pair {(p,y)em?\4}
such that

S={.gted:({f.g}1p.y})=0. (21)

Here we have used the notation

{f.gh{h.k}) = [gh] —[f. k], {f.gh{hk}ieH
This pair {@,y} is determined uniquely modulo A. In terms of {¢,y} the O-

function of A and S can be expressed by

0O =[x(0), lo-yl+lpy], x(D=A-0"(Ly -y)+o. (22)
If y(n) is given, then {p,y} may be chosen as {@ v} = {y(w), ux(w)}. Now
suppose in addition that A (and hence also S) is an operator and denote the

continuation of A from Hto H, by 4. Let w be defined by

w=Ap—-vy,. (23)
then @ eH, and (12) and (21) define the same symmetric operator S. Each ® €
H., is of the form (23). The relation between the element we H, in (12) and the
functions x(¢)and Q(¢) is given by (see [20])

1= -0 0,0()=(4-0)" 0-9,0)+W,.p) (24)
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The subclass N, is the set of functions Q(¢) with TMdy <o
| y

It was introduced by I.S. Kac [26]. The function Q(/) belongs to N; precisely

when

O(0)=y+ jdt"(t) (290 (o, yer (25)

5 =+

It follows from (25) that
y=im,_ . Q). (26)
The Q-function of A and S belongs to N if and only if A is an operator and y (¢) e

H., dom |A|"? . This last condition is equivalent to ¢ € H,, and to ® e H_,. The
subclass N, 1s the set of all functions Q(¢) with supy > ¢ y ImQ(iy) < o, The
function Q(¢ ) belongs to Ny precisely when

dG(t)

O)=y +j [dot)<m, yeR. (27)

The O-function of A and S belongs to N, if and only if A is an operator and y

(¢)eH.This last condition is equivalent to ¢ € dom 4 and to ® € H. We refer for
these classes and their integral representations to [26,27,19].The further
characterizations can be found in [21,19,25,20].

Assume that o € H, 1s given by (23), so that also (24) is valid. If ® € H,; or
o € H,the formulas (23) and (24) are still valid when the continuation 4 and the
duality (.,.) are correctly interpreted. The norm of ® can be expressed in terms of the
spectral measure do(t) as follows [21,20].

Lemma (1.2.3)[16] : For ® €eH_, we have

2 dG(t)
lol’, = | 57 <= (28)
If ® € H; then
2 _rdol(t)
o’ =y < (29)

If ® € H then

14



|of =[do)<eo (30)

Let S be a closed, symmetric relation with equal defect numbers (1,1). Since the
defect numbers of S are equal there are self-adjoint extensions of S in H and there is
no need for exit spaces. We fix one such self-adjoint extension A of S to describe the
others Krein’s formula.

Let y(¢)and Q(¢) be defined by (15) and (16). Then the resolvent operators of

self-adjoint extensions A(t),te RuU{w}, of S are given by

1

W[.,x(ﬁ)], /eC\R (31)

A@ -0 = -0 = x(0)

one-dimensional graph perturbations.
If S is defined by (31), then the selfadjoint extensions A(t),teR W {oco } are
given for 1/t +[y,9]#0 by

({f g} lo.w})
l/7+[y,¢]

A(T):{{fag}_ [QD,I//]i{f,g}EA }}’ (32)

And for 1/t +[y,0]=0 by
A(t)=S +span {@,y}. (33)
In fact, the resolvent operators of all self-adjoint extensions A(t), te RU{0}, in
(32) and (33) are parametrized precisely by (31), when Q(¢) and x(¢) are
given by (22), see [25].
When ¢ = 0 the condition in (21) reduces to [f, w] =0 and mul S* = span
{w}. The formula (32) now reads as
A(D) = {t.g} — tlfv]l{0y}: {f.g}e A}, teR (34)
Rank one perturbations and triplet spaces. Under the assumption that A is an
operator the expressions (32) and (33) are equivalent to:
A(7) = {{h, 4h + co} e H:c(1/t H[o,y]) =(h,»),c € C} (35)
where (h, ®) = [S*h, ¢] — [h, y],see [20]. When ¢ = 0 this formula reduces to (34)
and when [p,y] = 0 we have (11). The formula (35) can be interpreted as the
compression of usual rank one perturbations in a larger Hilbert or Pontryagin space,

see [20].
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An analytic description. Let Q.(¢) denote the Q-function of the self-adjoint

extension A(z) in (32) and (33) normalized by Re 0.(u)=0. It follows from Krein’s
formula (31), cf. [19], that

_0()—r(imQ())* .
0)= " TOYS , e RU{eo}. (36)

The corresponding defect vectors are given by

Or(

Q) +1/z

2 (D) = Q(£)+1/rx(£)’ (37)
so that
Cell el 1y (e (), (38)
When 1= o0, by (36) and (37) we mean
ImQ (1) Q1)
()= 1= 2250 39
Qoo (0) 0(0) Xoo(0) Q(K)Z() (39)

If the O-functionQ (/) of A and S belongs to N; or N,, then also the O-

functions Q_(¢) have this property when 1/t + v # 0, where yeR satisfies (37). For

the exceptional value of te RU {od}, i.e. when 1/t + vy =0, the function Q; (/)
belongs to N\ N;, cf. [19].

There is a simple relation between different extensions. Let Q,(¢), T€ R be
defined by (36) and let neR. Since Q,(¢)is a Nevanlinna function, the expression

(O ) (0) is well-defined, and
(Qr)r](g):Qé/(f), /e C\R (40)

where 1, T, € RU{w} are connected by

_ n+t
1-nt(ImQ(u))’
If 1= o0 or N = oo, then (40) still holds with a limiting interpretation.

Since for each teR {00} the function Q, (¢)in (36) belongs to N,there exist

o €R,B; >0, and a nondecreasing function .(t) on R, such that
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dGT(Z‘)

O (0) = ocT+,BT€+j[ - tzt J o (1), j "

(41)

For the value 1 =0 we will write o, and o(t) as in (17). In terms of these data

the identity (38) reads as

[, (0.1, (D)= ﬂr+I( ull) o7 (). “2)

Let S be a closed symmetric relation with defect numbers (1,1).Then its
self-adjoint extensions A(t),teRU{}, are continuous in T in a sense to be
explained below.

We will say -that closed linear relations A; tend to a closed linear
relation Agp as T —Tp in the graph sense, denoted by A: —> Aq, if for each
{f,g} € Aqo there are elements {f; ,g:}€ g A: such that {f;,g.}—>{f,g}.When, for
instance, A; and Aq are all self-adjoint, this definition is equivalent to the strong

convergence of (4, —E)‘lto(AT0 —ﬁ)_l for some (and, hence, for all) 7€ C\R. For

the case of operators this is proved in [28, 29];
Proposition (1.2.4)[16]: Let S be a closed symmetric relation with defect numbers
(1, T) of the form (21). Let its self-adjoint extensions A(t),teRU{xo}, be given by
(32) and (33). Let tpe Rwu{oo}.Then for T—1, we have in the graph sense

A(1)—> A(m),
Proof. We use the representations (32) and (33) of the selfadjoint extensions A(r).
When 1/1¢ + [y, ] # 0, then the proposition follows directly from the definition
and (32). Now consider 1/t9 + [y, ] = 0. By means of Krein’s formula (31) we
observe that

Ty —

T
(7 Q(0) +D(z,0(0) +1)

(AT =0 h=(A(xy) =0 h = x(0) [, x (0],

for ¢ € C\ R. -When suitably interpreted for the case ty = oo, this shows that for each
h € H we have (A(7)-¢) 'h - (A(t,) - ) thin Has T - 1,.

Let the O-function Q(¢) of A and S belong to Ny or Ny, and let 1/t + y =0
Then A(tg) is the only self-adjoint extension of S whose Q-function does not

17



belong to Nj. It is the generalized Friedrichs extension given by the right side of
(14); in particular, if Q(¢)belongs to Ny, then A(ty) is a true relation given by the
right side of (13), see [21]. However, according to Proposition (1.2.4), the operators
A(7) tend to A(tp) in the graph sense, as T—1,.

Let S be a closed symmetric operator with defect numbers (1, 1) as in (21). Let
A(7),teRU{xo}, be its self-adjoint extensions as given by (23) and (33), with
corresponding spectral measures do.(t) in (41). We are interested in the limiting
behaviour of these spectral measures. Note that at most one self-adjoint extension of

S is not an operator.

Lemma (1.2.5)[16]: Forall /,AeC\R

: 1 1 1
lrlgr J—gm or(t)= ﬁr thj op (f) (43)

Proof. It follows from (37) and (39) that y,(¢) converges to ZTO (/) 1in the norm of

H. Hence, in particular, we obtain
lim _
r—)ro[?(r (D), xz (/1)] = [lro (f),lro (/1)} (44)

Now we rewrite this result by means of (42). Observe that ;> 0 if and only if 4(r)

is not an operator. Hence B, = 0 for all te Ru{oo} with the possible exception of at
most one t. Therefore we obtain (43).

The weak convergence of the spectral measures is one of the consequences of
Lemma (1.2.5) see [17].
Theorem (1.2.6)[16]: Let S be a closed symmetric operator with defect numbers

(1,1) as in (21). Let A(r), teR{xo}, be its self-adjoint extensions as given by (32)

and (33), with corresponding spectral measures dc.(t) in (41). For each continuous

function f with compact support

i [ @M 0= 1/ Mo, @

Proof. The theorem can be proved in a classical way as in [30]. Here we will use an

approximation argument as suggested in [17]. Let [a, b] be a compact interval. Then
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C([a, b]) is equal to the closed Ilinear span of the functions%,éeC\R,

in the norm || .|lx of C([a, b]). To see this, we use the Stone-Weierstrass theorem, cf.
[31] and the fact that the identity function on [a, b] can be uniformly approximated
by these functions. Let f(t) be a continuous function with support in [a, b], then the

function f(t)(t-i)? can be uniformly approximated on [a, b] by the above functions.

Now
[/ (0do, )= [/ 0o (1)< I{f(t)(t—z) - z 1€ }‘“’f(’)‘
R R R Sl )i -i)?)
do; (t)
o gt 1€ dO'.L-.(tz)_ n 1£ TQZ‘
szl g (t-1) szl r=tp (t—i) ‘

dchO(t)‘
)|

]
R

The middle term in the right side can be made as small as possible by differentiating

2 n 1
SOe-i)y -2, _
[ klf‘gk]

(43). The remaining terms in the right side are estimated by

‘f(t)(t—i)z N S T iU
k=1 t=Cp | R %41
and
1 dGT (t)
‘f(t)(t A
k=1 t— k ooRt +1
Now the term
roe-n2-% !
k=1 t_gk 0

can be made as small as possible by the Stone-Weierstrass argument, while the

integrals | 270) ‘K are uniformly bounded in T by Lemma (1.2.5).
p t7+1
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Let A be a self-adjoint operator extension of S. We will interpret Lemma
(1.2.5) in terms of weH,; and similar elements ®w, € H.,(A(t)) corresponding to
the self-adjoint operator extensions A(t),teR U{x0}.

If ® € H,\H,; then (28) holds. Moreover,S is densely defined and each self-
adjoint extension A(t),t1eR U{x®}. is an operator. By means of y.(/)in (37) we
define . by

or = (A@) =Dz (1)
which is independent of 7. Here A(r) is the continuation of A(r)to all of H relative

to the scale space H., (4(r)) associated with A(r) Then w; € H ,(A(r))and
S ={{f,g}eA(r):(f,wT)=O}, (45)

where (.,.) denotes the appropriate duality. In particular, S is independent of .

If @eH_|\H, then (29) holds. We may repeat the arguments as given above.
Furthermore, in the present case the topological spaces H.; (4(r)) do not depend
ont, 1/t +v#0,see [21] and [20]. Although the norms are equivalent, they may still
depend on t This motivates the following result.

Lemma (1.2.7)[16]: The elements ® and ®, are related by

+1/
wrz%a)efl_h 1/t+y #0. (46)

Proof. The function Q(¢)in (24) may be written as
o) =y +((A-D"w,0), 7=[p.y]+ly,0]l-(dp,0)eR,
since ® € H,cf. (24). Using this together with the expression for x(¢)in (35),
(37), and Krein’s formula for the continuations (see [21]) we obtain
Q@) +1/ 1)y =@ (1) +1/7)(A (2) - )4 ~e) o
=(Q(u)+1/f)(ff(f)—ﬁ){(ﬁ(f)—ﬁ)_lw+% (f)}
=@ +1l/1)o+ Q) -y)or.
Now solve o, to complete the proof.
If ®eH, then (30) holds and S is not densely defined. Again (46) can be
shown to hold.
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Proposition (1.2.8)[16]: Let A be a self-adjoint operator and let S be defined by
(12) with meH,,,

(1) IfoeH\H, , then lim_,, |oc]_5 =

a)TO i (< ).

(1) If oweH,\H, then Ilim, _>TO||WT||_1:

e, 1when A(w) is not the generalized

Friedrichs extension; otherwise the limit is co .

(iii) If weH, then lim, -7, loz | = , when A(0)is not the generalized Friedrichs

COZ-O

extension; otherwise the limit 1s oo .

Proof. For the proof of (i), we take ¢=21=i in Lemma (1.2.5) and apply (28). To
prove (ii), choose a compact interval A of R and apply Theorem (1.2.6) with f{(t) =
(| t +1) " .Then take A—>R and interchange the limits. The value of the limit in (ii)

is o if and only if or, does not belong to H_;, in which case A(ty) is the generalized

Friedrichs extension. Finally, to show (ii1)) we take f(t) = 1 and proceed as in the
proof of (ii) or we use (46) both for 1/t +y# 0and for 1/t +y=0.

If A(tp) is not an operator, then its multivalued part is equal to mul S*. In
fact, A(1p) is reduced by mul S*. Observe that the self-adjoint operator

A(To)N(H © mul s*)?

is the (orthogonal) operator part of A(tg). It is not difficult to see that it is
equal to RA|ygmu 2> ¢f. [17]. These details are worked out in [25].

In [18] Kiselev and Simon raise the question how to characterize two
self-adjoint operators when their resolvents differ by a rank one operator. We
use the idea of graph perturbations to give such a characterization. For a different
approach, see [32].

Proposition (1.2.9)[16]: Let A and B be self-adjoint relations, such that for some
L ep(A) N p(B)
rank (B-¢)" - (A- ¢)")=1 47)
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Then (47) holds for all 7 p (A) N p(B). Moreover, there exists a closed symmetric
restriction S with defect numbers (1, 1) of the form (21), such that for some 1 €
RU {o}, B = A(1) as defined in (32) and (33).

Proof. Note that any closed linear relation A with nonempty resolvent set can be

written as
A={{(A-0)" h(I+¢(A-¢)" )h}: heH},
for some 7 ep(A). By assumption
(B-£,)" - (B-£,)" =c[.]C, (48)
for some 7, ep(A) N p(B), some n,LeH and ¢ € C. Define
S={{(A-¢,)'"h, T +¢,( A-¢,Y"Hh}: heH, [h, n]=0}. (49)
Clearly, S is a closed symmetric restriction of A, and therefore S has equal defect
numbers. Moreover,
ran (S-/,)= {heH: [h,n]=0.
It follows that ran (S -/,) is closed; moreover, it follows from the definition that 7
is not an eigenvalue of S. Hence /, is a point of regular type for S. As the set of
points of regular type of S is open and consists of at most two connected components
(including C" and C"), we see that the defect numbers of S are (1, 1).
It follows from (48) with heH, [h, n] = 0, that (B-¢,)" h = (A-/¢,)"'h. Hence,
(48) and (49) show that B is also a self-adjoint extension of S.
Let {@,y } be a pair in (the graph of) S*\A. Then S is given by (21) and so
B = A(r) for some 7teRU {wo}, as defined in (32) and (33). The resolvent
operators of the self-adjoint extensions A(t) are parametrized precisely by (31).
Therefore, the condition (47) holds for all ¢ ep(A)np (B).
It is clear from the above proof that the symmetric relation S in (49) is in
general not an operator; in fact mul S={hemulA: [h,n]=0}. Clearly, S is an operator

if and only if A or B is an operator. We have concluded that if (47) holds, then B and
A are self-adjoint extensions of S in (49), and B is a graph perturbation of A. This
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approach allows us to obtain some of the results of Kiselev and Simon in a different
way, cf. [18].

Proposition (1.2.10)[16]: Let A be a self-adjoint operator and let B be a self-adjoint
relation, such that for some ¢ ep(A)np (B) (47) holds. Then there exists an element
® €H.(A), such that for some 1 € RU {00}, B = A(7) as defined in (35).

The previous result is just a restatement of Proposition (1.2.9), since (32), (33)
and (35) describe the same self-adjoint extensions. We can say more when we know
the difference (B-¢)" - (A- )" explicitly.

Corollary (1.2.11)[16]: Let A be a self-adjoint operator and let B be a self-adjoint
relation, such that for some ¢/ ep(A) N p(B)

(B-0)' —(A-£)" =c[. M,
with elements 1, € H and ¢ € C.

1 1
(i) Assume one of the equivalent conditions nedom|4|2 \dom 4, & edom 4|2 \dom A,
or ® €H_;\ H. Then S is densely defined and B is an operator. Moreover, B is the

generalized Friedrichs extension of S if and only if ne H\dom| B |]5.

(11) Assume one of the equivalent conditions ne dom A, e domA, or o€ H. Then S
is not densely defined. Moreover, B is the generalized Friedrichs extension of S
(i.e. Bis not an operator) ifand only if neH\ dom B.
Let A be a self-adjoint operator arid let @eH_,. Then the rank one perturbations
of A, defined by
A(t)=4 +1(,0)w, 7eR, (50)
are of the form (35). Hence, we may interpret the rank one perturbations of A as self-
adjoint extensions of S. In this sense the convergence results for the self-adjoint

extensions carry over to the rank one perturbations. We present a brief discussion of
(50) in terms of special properties of the element ® € H, from the point of view of
O-functions.

If o belongs to H, then the Q-functions of A(t),t €R, all belong to Ny and
the corresponding self-adjoint extensions are rank one perturbations of A in the usual

sense. The limit in the graph sense of A(t) as tT— is the generalized Friedrichs
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extension of S, given by (13). It has a Qfunction Q(¢) with the property that

lim  1mO®) 0; hence it belongs to N \ Nj.

Yo
y

If ® € H\H, then the Q-functions of A(t), T €R, all belong to N;. The limit
in the graph sense of A(t) as T — is the generalized Friedrichs extension of S,
given by A() in Proposition (1.2.1). Moreover, its O-function belongs to N \ Nj.
When we consider the continuations of the self-adjoint extensions to H,; x H.,
then the description of the self-adjoint extensions is formally the same as in the case
o € H), cf. [21].

The situation is quite different when weH,\H.;, Then all Q-functions of S

belong to N\N;. They may all behave in the same way and there is no exceptional
self-adjoint extension: in [20] there is even an example where all self-adjoint

extensions have the same Q-function.

If A is semibounded, then the Q-function of A and S belongs to N; if and only
if e H_;. This case is considered in [17], [18], [33] and [34]. If the O-function of A
does not belong to Ni, i.e. if weH,\H,; , then A is necessarily the Friedrichs
extension of S, cf. [19], [21] and [18], but now all the other Q-functions belong to

N;. For further literature about these cases, see [34]. A treatment of positive
operators in Pontryagin and Krein spaces appears in [35].

The case that A is not an operator is studied in [25]. The Q-functions of all
other self-adjoint extensions belong to Ny.The spectral measure of the exceptional Q-
function is arbitrary. More specific information can be given by a subdivision of Ny

into subclasses N, according to medom |A[X?, k e N U {0}, cf. [36].
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Chapter 2

Operators with Singular Continuous Spectrum and Smooth Rank One Perturbations

In this chapter we consider smooth perturbations, i.e. we consider w =
dom |A|*/? for some k € N U {0}. Function-theoretic properties of their so-called Q-
functions and operator-theoretic consequences will be studied. While we’re interested
in the abstract theory of rank one perturbations, we’re especially interested in those
rank one perturbations obtained by taking a random Jacobi matrix and making a Baire

generic perturbation of the potential at a single point.

Section (2.1): Self-adjoint Operators and Smooth Rank One Perturbations:
Let A be a self-adjoint operator in a Hilbert space H with inner product [-, -].
For a nontrivial element ® € H the rank one perturbations of A are defined by
Atr)=A+ 1|, w]w, TeR, (1)
cf. [38]. Let S be the restriction of A to the orthogonal complement of span{w}:
dom S = {hedom A : [h,w] =0 }. (2)
Then S is a nondensely defined, closed symmetric operator with defect numbers
(1,1). Clearly, the perturbations A(t) in (1) are self-adjoint extensions of S and dom
A(t)=dom A, T € R. Since all self-adjoint extensions of S are parametrized over
R U {00}, one self-adjoint extension of S is not of the form (1). It is given by
A(0) =S+ ({0} ® span{w}), (3)
which is a self-adjoint relation (multivalued operator), whose ultivalued part mul A is
given by mul A = span{w}. In fact, A(x) is the generalized Friedrichs extension of S
[39], [21], [40]. There is a more general interpretation of (1) by allowing ® to
belong to the scale spaces H (A) and H »(A), associated with H;;(A) = dom|A|"*
and Hiy(A) = dom A, respectively, [22], [17], [21], [20], [18], [34]. In the present
section our interest is in the spectral properties of smooth perturbations of A, i.e.
perturbations for which o € dom| |A[** for some k € N U {0}.
The main emphasis is on a function-theoretic description of the corresponding

9_functions. These functions belong to the class N of Nevanlinna functions. A
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subdivision of N was originated by [.S. Kac [26], [27] and further extended in
[41]. In this section a complete subdivision of N is presented. We show by means of
asymptotic expansions how these subclasses of Nevanlinna functions (and their
moments) behave under certain linear fractional transformations. For this purpose we
need an extension of asymptotic results due to Hamburger and Nevanlinna; cf. [42].

Finally, we connect the function-theoretic results to rank one perturbations.

A function Q () belongs to the class N of Nevanlinna functions if Q (/)
is holomorphic on C\R, 0(0))=Q (¥) , and Im Q(¢)/ Im ¢ >0 for ¢e C\R. It is
well known that a function Q (/) belongs to N if and only if there exist a € R. B >

0, and a nondecreasing function o(t) on R with [ " do(t) \(t2 + 1) < oo, such that

Q(K)=a+ﬁ€+£[$—t2t+ljda(t) 4)
Clearly (4) implies that
MOW) _ g4 IR ! 5 do(t). y#0 (5)
y R = +y

A function Q (/) belongs to the Kac class N1 if and only if

O(l)eN and?%y(iy) dy < .
1

It follows from [t +y )"l dy =1/|¢ |(z/2 - arctan1/|t ).t =0 that O(¢) belong to N,

if and only if there exist yeR and a nondecreasing function 6(t) on R with [ L do(®)\

(Jt] + 1) < oo, such that

_1do@®)
0()=r["" (6)
7 =0 0 () =™, o ReQ (i) (7

cf. [26], [27]. Observe that the constant y is given by A function Q (¢) belongs to the

class Ny if and only if

Q(r)e N and supy ImQ(iy)<»

y>0

or equivalently, if there exist y € R and a nondecreasing function o(t) on R with
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[do(t)<o (8)

such that (6) holds. Clearly, No < N; < N.
Let the function Q(¢) belong to N and fix p € C\R. Fort € R U {00} we

define a linear fractional transformation Q.(¢) of O (Y). When t € R we define

_0W-tmQ(u)* _1_1+@imQu)°* 1

b4 9
i TQ(0)+1 7 2 Lo )
and when 7 = o we define
2
o)

For each 1 € RU{oo} the function Q_(¢)belongs to N. Moreover, if 0 (¢) belongs to
N; or Ny, then for all but one T € R U{oo}, the corresponding function Q. (¢) belongs

to N; or Ny, respectively. The exceptional value of T € R U {00}, T # 0, is given by

1/r + v = 0, where y is the limit in (7); cf. [40]. If ¢ (¢)reduces to a real constant c,

then the exceptional value t is given by 1/t + ¢ =0 and the corresponding linear
fractional transform is interpreted as co. We will tacitly exclude this situation.

Finally, note that Bt = limy—oo Im Q. (iy)/y, exists for 1 € R U {o} and that if T €
N, then

,B[=O,%+7/¢O, andﬂ,z:ﬁ>0,%+;/:0 an

For any function Q (/) in N we define 9, (y)=m. If 0(¢) € Ny we define
y

2
012y = supy 20190y =y 20100y,

y>0

According to [41], O (¢) belongs to N-; if and only if

[0.0)
0(¢) € No and [ QP (y)dy< o
and O (/) belongs to N, if and only if
0 (¢) € Ny and supyzQz(y)< 0
y>0

27



Therefore, N, < N-; < N. Now we proceed by induction. Assume that O (¢)

belongs to N,k for some k € N U{0} and that the function 0™ (y) has been given
with supy» o Y20 (y) < oo. Then we define

0P (y) = sup y 201K )(y) =y 202K ] ) (12)
y >0

The function Q(¢) belongs to Ny if and only if
o0
0(f) € Nycand I Q™! (y)dy< oo.

and the function Q (¢) belongs to N if and only if

O (¢) € Ny and supy 2Q [2k +2](y )<

y>0
Clearly,
- C N—2k—2 (- N—2k—1 (- N—2k c - C N_2 (- N_1 (- N().

We give an equivalent description of the classes N_y.
Theorem (2.1.1)[37]: Assume that Q(¢)e Ny has the integral representation (6)

withy € R and o(t) as in (8). Letk € N U {0}. Then Q(¢) € Ny if and only if

(e [+ o) <o (13)
Proof. We begin with the case of eve; indices. We claim that
0 (7)€ Ny ifand only if [(t* +1)do(®)<w (14)
in which case
oK+ = | fmz do(r) (15)
R t%+y

Ifk =0, (14) is clear and (15) follows as

2 2

2], y _ t
(y)=|do(t)—- do(t)= do(t
() ,{ )’{t2+y2 ) ’{t2+y2 )

Now assume that (14) and (15) hold for some k € N U {0}. Then

2k+2

sup yZQ[z"*z](y):I{r do () (<o),

y>0
Hence, if O (¢) € N-y, then

0 (¢) € Ny if'and only if J.(t k24 Ddo(t) < o,
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in which case
2k+2 .2 2k+4

0PF ¥ () = [*2do(t) - | L2 do().= |
R RI"+Yy R

S do(0).

Therefore, (14) and (15) hold with k € N U {0} replaced by k +1

We now take care of the case of odd indices. For Q(g) € Ny , (15) implies
that

. 1 1
JOR Ay ydy = 137 I (% —arctan—) do () (<<0).
1 R t 2 [

Hence, if Q (¢) € N_y, we conclude that
0 (¢) € N—2k—1 if and only if j(|t P +1)do(t) <oo.
Let 0(¢) e Ny, k € N U {0}. Then according to Theorem (2.1.1) the moments
m = [1'do(t), i=0ynn .
are well defined as absolutely coilvergent integrals. The following theorem with k

even is well known; cf. [42].

Theorem (2.1.2)[37]: Let Q(¢) be a function in Ny and assume that it has the
integral representation (6) with y € R and o(t) asin (8). If 0(¢)e N for some
k € N U {0}, then 0(¢) has the asymptotic expansion

m.
l

k
ok 1 [Q(ﬁ)—y+ v ]:0(1), /> (16)
i=0

il
uniformly for 6 < arg /<z -5 with any 0<6<%n Moreover, if k is odd, the

function in the left side of (16) belongs to Nj.

Proof. For 0(¢) e N the moments mi, 1=0,..., k, are well defined, and

do(t) (17)

kK m k+1
k+1 3 i |t
A ow-vs £ 2l

As in [42], it follows that the function in the right side is o(1) as ¢ — o« . Moreover,

for ¢ =iy, the right side of (17) is equal to

tk+2 tk+1

. Y
) do(t)+i | do(1).
22 142 24,2
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Hence, if k is odd, the function in the left side of (16) is a Nevanlinna function,
which even belongs to Nj.

Conversely, the class Ny can be described in terms of these asymptotic
expansions. For k even, the statement of the following result may be found in [42].

Theorem (2.1.3)[37]: Let k € N U {0}, and let y and m,, 1=0,..., k, be real

numbers. Let the function ¢ (¢) € N have the asymptotic expansion

k m.
el [Q(ﬁ)—fﬁ > mll]=0(1> (18)
1=0

gt
for ¢=iy, y — oo. Then the function in the left side of (18) belongs to N if k is
odd. Ifk is even, or if k is odd and the function in the left side of (18) belongs to Ny,
then 0 (¢/)e N.yand y=vy, m

.=1’1’1i,i=0,... ,k.

1

Proof. For k even, we refer to [42]. For k odd, (18) implies that

k-1 m. nk 1
ko -vs s — L =" o) =01), =iy >
i—o ¢*1 o

As k-, 1s even, we conclude that 9(¢)e Ny and y=1v, m,=m;, 1=0,... k—1.

Hence, the left side of (18) is given by

- . k
gl {Q(f)—w b3 L},@k:; L dotoy i

i—ori*l _ ot
For ¢ =iy this is equal to
k2 k+1
LY do)+i [ t—L do)+m (19)
2,2 2, .2 k
R Y R T

Therefore, for k odd, the function in the left side of (18) is a Nevanlinna function.
Under the further assumption that the function in the left side of (18) belongs to Ny,

it follows that [ ([t/*+1)do(t) < oo, so that the moment my is well defined and
R

O(¢) € N_x. By taking y — oo in (19), we obtain
m, =ﬁ1k.

Note that for k odd, (18) only implies that O(¢) € N_x+; and that
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k-1 m.
£k+1[Q(é)—y+i§0£ij_1]+n%k:o(l) (20)

for ¢=1iy— oo. If, in this case, the function o(t) in (6) has support in [0,0), it
follows from (19) that O (/)eN_ and m, = m; . Moreover, then the function in

the left side of (18) belongs to N;. In general, for k odd, the function in the left
side of (18) does not belong to N; and . in (20) cannot be interpreted as an

absolutely convergent moment. We give an example for k = 1.

Example (2.1.4)[37]: Let o(t) be a nondecreasing function on R such that

[do(t) < o, [|¢]do(t) = oo,
[ =] [ =]
and for which the function
1+¢¢
F(0) = d
() |:I> -y o(?)

belongs to N\N;y, while limy_,,,F(1y) =0. The essential part in the construction of
such a function is that the support of (t) is unbounded in each direction; cf. [43].
Clearly, the function

4

H(O)= | —— do()
. t—/

also belongs to N\N; and limy_,..H(iy)=0. Now define

H(l)

m
_ ___0
my = | do(0), o) =- T 2

R
Then Q (/) has the representation (6) with y =0, QO (¢)eNp\ N, and

62{Q(£) +n170] —0(1), (=iy o

A similar example for positive definite functions is due to A. Wintner; see [44].

In order to see how the class N_, ke NU{0}, behaves under the linear
fractional transformation (9),(10) we state and prove the following simple lemma.
Lemma (2.1.5)[37]: Letc;, di,1=—1, 0, 1,..., k, be real numbers satisfying

C d =1 i c d

- j=0 J-1%i=i-1T

0, i=1..,k+1
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And let C(¢)=0(1),/ — .

-1
c c d d
e+ 0y 4k LOF o, %% PO
Vi pk+l o pk+l -1 ok+1 o pk+l

Where D(7)=0 (1), ¢ —>o0. Moreover

2

1
D(() =
()(

-1

C(0)+0 Gj ! - oo,

Proof. It follows from the assumption about the convolution products that

_a()+8()C()
y(+C(0)

where a( /), y(¢), and &( /) are polynomials of the form

— D(¢)

k j Je+1 k—j+l i+l k—j+l
all)= 2 al’, y()= 2 ¢, ¢ , o(0)= X d._lf

Hence, we may write

d d
Dy =Ty 9D 19O T n
¢ 0)+C(D) |00 +C(0) ¢

The degrees of a( ¢ ) and of c_16(/) — d—yy(¢) are at most k, so the second term in
the right side is O(1/7) and the third term in the right side is o(1/¢).
According to Lemma (2.1.5), there is a constant A > 0, such that

[lm D(iy)| 1 |ImCGy)| 4
< 2 + _2 5
y (c_p) Y y

y=>1.

Hence, if C(7/)eN;, then |[Im D(iy)|/y is integrable over [1, o). If, in addition,
D (/) € N, it therefore automatically belongs to Nj.
Theorem (2.1.6)[37]: Assume that the function QO (/) belongs to N_y for
some k € NU{0}.
Then

(i) 0,(f/) e N forl/t+vy=#0,

(i) O,(f)— B¢ € Ngsp for 1/t+vy=0.
Proof. Without loss of generality we may assume that y=0, so that the exceptional
value of t corresponds to T=co. Due to (9) and (10), it suffices to show that
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1

—meN_kforreR\{O}, (21

and

1
L ——(eN ., for T=0n. (22)

o) m,
For the formulation of (22) we used that B in (11) satisfies p = ¢Im O (n))*/m
when y = 0; see [40]. As the function Q (/) belongs to N_; for some k e

NuU{0}, it follows from Theorem (2.1.2) and the assumption y = O that

K m.

where C(¢) = o0(1), { — oo, and C(/) belongs to N; when k is odd.
We now prove (21) for t € R\ {0}. From (23) and Lemma (2.1.5) we obtain

with real numbers m,,1=0,... , k, the asymptotic expansion

koo p
! -7 — i DO

Leowy o /¥ A

where D(¢) = t *C(¢) + O(1/¢) = o(1), ¢— oo. It follows from Theorem
(2.1.3) and the asymptotic estimate of D(/) that (21) holds.

Next we prove (22). The statement for k = 0 is obvious, so assume that k > 1.
From (23) and Lemma (2.1.5)) (with k instead of k + 1) we obtain with real numbers

m,,,1=1,... , k, the asymptotic expansion

1 k m., p
I .1}
LQ(0) m =108

with D(f) = C(()/mg +O(1/1),0 = 0. Hence
1 kK m, D
- L__g:_ y L ﬁ
o) m i:1£l_1 gk_l

Again we apply Theorem (2.1.3) and the asymptotic estimate of D(¢). Hence, (22)
holds for k =1 and for k > 2.

Let O (¢) € Nk for some k € N U {0}. Assume that 1/t +y /= 0. Then it
follows from Theorems (2.1.2) and (2.1.6) that
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~ K m.(7) 1 y
way—mrrgg)ﬂ+l+o B | {— o0, (24)

where y(t)=limy_,,. O (1y) and mi(t), 1=0,... , k, are the corresponding moments
of 0.(/). Now assume that 1/t + y = 0. For k=0 the function QT(K) — B
belongs to N, where B is given by (11). For k> 1 it belongs to N, in which case
7(0) = 0 (Qr () 1B ¥) (25)
i1s a real number. For k > 2 the function Q . (/) — B¢ belongs to N_x4p, and it

follows from Theorems (2.1.2) and (2.1.6) that

k—2mi(r) 1
0:(N-p1 =)= 3 ~Lr+ [fk_l

i=0

j. (- o, (26)

where y(7) is given by (25) and mj(t ), 1 = 0,... .,k — 2, are the moments of Q, (/)
— B¢. The constants B and y(t) and the moments in (24) and in (26) can be
expressed in terms of the corresponding data of the expansion (16) of QO (/).
Corollary (2.1.7)[37]: Assume that the function O (/) belongs to N, k € N
v {0}.

For 1/t + v+ 0 and t € R, the constant y(t ) is given by

l+7y

and the moments my(t), 1= 0,... , k, in (24) are given by

mo(T)
ml(f) P
: _ 1+ (z ImQ (2/1)) (28)
mk_l(f) (I+1y)
mp (7)
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1 0 0 0

™m
- 0 1 0 o
+ 1y

) y
Tm

I+zy N
T™m Tm "y
T Y T RO (N

I+7y I+7y I+1y

The case 1/t +vy # 0 and T = oo is obtained as a limiting case of (27) and (28).

For 1/t +y=0and t € R, the constant 3 is given by

2
5 L+ EImO() 29)

2m
0

and when k > 1, the constant y(t ) is given by

yry= L L ImO) - (30)
T T mO

Moreover, when k > 2 the moments m;(t), 1= 0,... .k — 2, in (26) are given by

my(7)
ml(r)
. — 1+ (T ImQ(:u))z (3 1)
* 2
T°m
m, (1) 0
m, ()
m,
mz—m—ml
0
m, 0 o oY m,
m,——m,
m, m, 0 m,
Mo oy 0 m_, _ﬂmk—z
mg_, m;_; m, m, m,
m
mk_m_]mk—l
0

The case y = 0 and T = oo is obtained as a limiting case of (29), (30) and (31).
Proof. From (9) and (10) we obtain
0 (=0 (+T0 (N0 (NH+t(Im QO (W)'=0,tcR  (32)
0 (1)Q oo(£)+(Im Q (W) =0 (33)
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We will substitute the asymptotic expansions (16) for O (/) and (24) or (26) for

0. (¢) in (32) and (33), and calculate the coefficients of the powers of ¢ .
For 1/t +y # 0 and T € R we use the expansion (24) for Q T(ﬁ) in (32).
The coefficient of ¢ gives (27), and the coefficient of ¢~ gives

1-7y(7) - 1+(rImQ(u))2 m
I+1y 0 (1+z’7/)2 0.

me (r)=

—i—1

Moreover, the coefficients of ¢~ ", 1=1,..., k, give

(I +y)mi(t) = mi(1 — ty(t)) + T (mem;—1 (T )+ -+ + mi—mo(7 ).
This leads to (28). For 1/t+y # 0 and © = oo, we use the expansion (24) forQ; (¢)
in (33) and obtain the limiting case of (27) and (28) as T — oo.

For 1/z+y= 0 we substitute the expansion (26) in (32). Note that the
coefficient of ¢ is automatically 0. The coefficient of ¢° gives (29) (cf. [40]), and
the coefficient of ¢ ' gives 1—ty(T) = T myB/my, so that (30) follows. Similarly,

—i—1

the coefficients of / then give

m
_ _ 1
momi_l(r)+...+ml._1m0(r)—ﬂ [mi+1 mi},

for 1= 1,...  k—2. Moreover, the identity also holds for 1 = k—1. This leads to (31).
For y=0 and t1=0c0, we use the expansion (26) for Q T(ﬁ) in (33) and obtain the

limiting case of (29), (30) and (31) as T — oo.
Let H(¢) be a Nevanlinna function with B = limy_,.. Im H(iy)/y > 0. We
have seen that H(/ ) — B¢ belongs to N. Define the function Q (/) by

| ()] 4
(Im H (u))* H (¢)

Q) =~ (34)

Clearly, O (¢)eNp and limy_,,,O (1y)=0. Hence, H(/ )=0 Oo(é ) 1s the exceptional

function corresponding to the exceptional value t=o0 of QO (¢); cf. [41].
Theorem (2.1.8)[37]: Let H(¢) belong to N with B = limy_,., Im H(iy)/y > 0.
Assume that H(/) — B/belongs to N_x+; for some k € N U {0}. Then the
function Q (/) in (34) belongs to N_y .
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Proof. It is sufficient to assume that k> 1. Then

k=2 m. C(0)
o 1
HO=-pl=y= 2 KA,

where y= limy ,(Q (iy)—iPy) and m;, i=0,... . k—2, are the moments of H (¢)—
B¢ (absent for k=1). Moreover, if k is odd, the function C(¢) belongs to Nj.

Therefore, by Lemma (2.1.5) with k+1 replaced by k, we find real numbers d-,,...,
dx-1 and a function D(7)=0(1), ¢ — oo, such that

1 —_—

! ! k di D)
H() ¢ ﬁ+%z’.“2 iy C(If) i=0 0" gkl

with D(/) in N; when k is odd. HenceQ (/) € N_x by Theorem (2.1.3).

The relation between the data for the functions H(¢) — Brand Q (/)
may be recovered from Corollary (2.1.7) by inversion of the case y =0 and 1= oo;
ctf. [45] for a special case.

Let A be a self-adjoint relation in a Hilbert space H. For p € C \ R we choose
a nontrivial element (1) € H and define

x(0) =1+ (0 = p)A =) ().
Let S be the restriction of A given by
S={{fgleA:{g—fix()]=0} (35)

Clearly, this definition is independent of ¢/ € C\R, and S is a closed symmetric
relation with defect numbers (1, 1). The relation S is completely nonself-adjoint if
and only if H = span { x(¢) : ¢ C \ R }, in which case S is necessarily an
operator. A function Q (/)isa Q -function of A and S if

o) -0N)" _

22
= [ x(0).x(A)]

Hence, a QO -function is determined up to a real constant and belongs to the
Nevanlinna class N. If S is completely nonself-adjoint, the Q -function uniquely

determines, up to isometric isomorphisms, the relation A and its restriction S. All
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self-adjoint extensions A(t ), T € R U {0}, of S are parametrized by means of

Krein’s formula

1 _ -1 1 -
(A()—0) " =(4-10) —%(@m [, x(D)]

The QO -functions QT(K) of A(t), Tt eR U {0}, are related to QO (/) via
(9) and (10); see [40].

In the following we assume that A is a self-adjoint operator. The restriction S
in (35) coincides with (2) if and only if y(/) € dom A for some (and hence for
all) ¢ € p(A). Theny(¢)=(A— ¢)'w,and O (¢) can be chosen as

0 (1=[(A-1) »,0].
This choice of O (/) € Ny gives y = 0, so that the exceptional value in (9) and
(10) 1is t© =oo. The self-adjoint extensions of S in (2) are now the rank one
perturbations A(t), te R, of A given in (1) (cf. [38]), and the exceptional
extension A(o) in (3). If E(t), t € R, is the spectral family of A, and O (/) 1is
given by (6) with y = 0 and (8), then do(t) = d([E(t)®, ®]). We denote the polar
decomposition of A by A = U |A|. The following result is clear.
Theorem (2.1.9)[37]: Let k € N U {0 } Then QO (/) € N if and only if e
dom |A| ¥ *In this case, the moments m;,j=0,...,k, are given by
m; = [Aj/zoa, Ajlzoa], jeven, m;=[U |Aj/2 o, |A jlzoo], j odd.

Note that if A € L(H), then each ® € H has the property that ® € dom |A|*? ,for
all k € N U{0}. In particular this applies when the closed symmetric operator S is
bounded and, consequently, A(t ) € L(H), T € R; see also [46].
Theorem (2.1.10)[37]: Assume that the O -function O (/) of S and A belongs
to N_x forsome k € N U {0}. Then

dom |A(T)**! =dom [A|¥*, te RU {o}, I/t+y=0  (36)
Proof. The statement is true for k =0, 1, 2; cf. [20]. We proceed by induction. Let
g € dom |A(t)| “**", so that g = (A(t ) — ¢)™" ffor some f € dom |A(t )| ¥2. By

Krein’s formula.
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2]
l/T+Q ()

Since Q (¢) € Ny, Theorem (2.1.9) shows that y(/)=(A—¢) " ® €

g=A-07f - x(0) (37)

dom|A] 2+ Moreover, N_xcN_x+,, and since 1/t+y # 0, we conclude by an
induction argument that

fe dom |A(t)[**=dom |A| 2.
Hence, (A — ¢) ' fe dom |A[M**. It follows from (37) that g € dom |A|***" and
there fore

dom |A(T)[**! =dom [A|¥*, 1r+y=0.

According to Theorem (2.1.6), A and A(t), 1/t +y # 0, both have a QO -
function belonging to N_i, so the reverse inclusion follows by symmetry.
Theorem (2.1.11)[37]: Let S be a closed symmetric operator in H with defect
numbers (1, 1) and let a > 0, k € N U{0}. If for two different self-adjoint operator
extensions A; and A, of S the inclusion

dom |Aq[ S dom |A,[<2H1*
is satisfied, then for all but one self-adjoint extension A(t ) of S we have

dom |A(T)[F*! = dom |A,M**.
Moreover, the O -functions of these extensions of S all belong to N_.
Proof. The statements hold for k = 0, 1, 2; cf. [20]. Let Ry(7) and R,(/¢) be the
resolvent operators of Ay and A,, respectively. Let h € dom|A,[****, k > 2, be such
that [h, (/)] # 0. By Krem’s formula

[7x@] (O)=R(Oh=R,(O)h, heH 720 (38)
1z+0(0* = AT
Since Ry(/)h € dom A; and

R,(¢)h € dom |A;[*' < dom |A[*"" = dom A4,

it follows from (38) and the selection of h that (/) edom A;. Hence, we may

write x(¢) = (A —¢) ' for some ® € H. Since A; and A, both are operator
extensions of S, Theorems (2.1.6), (2.1.9) and (2.1.10) imply that dom A; = dom
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A,. Hence, h € dom Ay, and thus (38) shows that y(¢/) € dom Al2 or m e

dom A;. Repeating this argument, we finally observe that, in fact,
w()=(Al1- ¢) ' € dom |A,¥*"],
or, equivalently, oedom |A;[**. According to Theorem (2.1.9) the O -function

O (¢)of Ay and S belongs to N_x. Now apply Theorems (2.1.10) and (2.1.6).
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Section (2.2): Rank One Perturbations, and Localization:

Although concrete operators with singular continuous spectrum have
proliferated recently [1, 48, 49, 50, 51, 52, 53, 54], we still don’t really understand
much about singular continuous spectrum. In part, this is because it is normally
defined by what it isn’t — neither pure point nor absolutely continuous. An
important point of view, going back in part to Rodgers and Taylor [55,56] and
studied recently within spectral theory by Last [57] (also see references therein), is
the idea of using Hausdorff measures and dimensions to classify measures. Our main
goal is to look at the singular spectrum produced by rank one perturbations (and

discussed in [1,48,58]) from this point of view.

A Borel measure p is said to have exact dimension o € [0, 1] if and only if

u(S) =0 if § has dimension f < a and if u is supported by a set of dimension
a. If 0 < a < 1, such a measure is, of necessity, singular continuous. But, there
are also singular continuous measures of exact dimension 0 and 1 which are
“particularly close” to point and a.c. measures, respectively. Indeed, as we’ll explain,

we know of “explicit” Schro“dinger operators with exact dimension 0 and 1, but,

while they presumably exist, we don’t know of any with dimension a € (0, 1).

While we’re interested in the abstract theory of rank one perturbations, we’re
especially interested in those rank one perturbations obtained by taking a random
Jacobi matrix and making a Baire generic perturbation of the potential at a single

point. It is a disturbing fact that the strict localization (dense point spectrum with

|xe=tH5,]|* = (e 5y, x2e~#5, ) bounded in #), that holds a.e. for the
random case, can be destroyed by arbitrarily small local perturbations [1,48]. We’ll
see that, the spectrum is always of dimension zero, albeit sometimes pure point and
sometimes singular continuous. And we’ll show that not only does the set of
couplings with singular continuous spectrum has Lebesgue measure zero, it has
Hausdorff dimension zero., We’ll also see that while ||xe_itH50|| may be

unbounded after the local perturbation, it never grows faster than C In(?).
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We’ll review some basic facts about Hausdorff measures that we’ll use later.
We relate these to boundary behavior of Borel transforms. We use these ideas to
present relations between spectra produced by rank one perturbations and the
behavior of the spectral measure of the unperturbed operator. We’ll relate Hausdorff
dimensions of some energy sets to the dimensions of some coupling constant sets.

We use the results to present examples (some related to those in [59]) that
show that the Hausdorff dimension under perturbation can be anything.

We turn to systems with exponentially localized eigenfunctions, and show that
under local perturbations the spectrum remains of Hausdorff dimension zero. Some
of the lemmas in this section on the nature of localization are of independent interest.
Finally, we prove that “physical” localization is “almost stable,” that is, suitable decay
of (8,, ¢ ™ §_) in |n—m| uniform in t implies that [xexp(—1t(H=+16,))do| grows at

worst logarithmically.

Given a Borel set S in Rand o € [0, 1], we define

g%g&=M£amﬂ

um<&5cﬁ@}
v =l

the inf over all d-covers by intervals b, of size at most 6. Obviously, as ¢

decreases, Q increases since the set of covers becomes fewer, and
h* (S) = 1im Q < (S)
530" @0
is called a-dimensional Hausdorff measure. It is a non-sigma-finite measure on the
Borel sets. Note that 49 coincides with the counting measure (i.e., assigns to each set
the number of points in it), and h! coincides with Lebesgue measure. Clearly, if B <a
<,
%Y 0,5(8) <045 (5) 0P 0y 5(S),
so if h%*(S) < oo, then AY (S) = 0 for y > a and if A%(S) > 0, then WP (S)= w for

B<a. Thus, for any S, there is a unique o, called its Hausdorff dimension, dim(S), so
h* (S)=0if a > ayand A*(S) = o if a < a,. %0 (S) can be zero, finite, infinite,

or so infinite S isn’t even A%o -sigma-finite.
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In what follows, we shall use Hausdorff measures and dimensions to classify
measures. Unless pointed otherwise, by “a measure” (equivalently, “a measure on R ”;
usually denoted by pu) we mean a positive sigma-finite Borel measure on R . however,

we discuss more restricted classes of measures, such as finite measures.
Definition (2.2.1)[47]: A measure x4 on R is said to be of exact dimension a for a €
[0, 1] i1f and only if

(1) Foranyf €[0, 1] withf < a and S a set of dimension S, u(S)= 0.

(i1) There is a set S, of dimension a which supports u in the sense that

1(R\S,)= 0 [55].

Every measure is of some exact dimension; indeed, the sum of measures of
exact distinct dimensions is not of any exact dimension. But, most of our examples
will involve measures of some exact dimension. Last [57], following Rodgers-Taylor
[55,56], discusses many different decompositions of any measure into a part of

dimension less than a, equal to a, and larger than a. The piece of exact dimension o

can be further decomposed in terms of its relation to 2%.

Definition (2.2.2)[47]: Given any measure ¢ and any o >0, we define

Dg(x):%: u(x—a%x+8) (39)

Note that if DZO (xo )< oo for some x, then Dﬁ (xg) =0 forall f < a, and if DZO
(x¢)> 0 for some x,, , then Dﬁ (xg) = o forall f > a,. In particular, for eachx, ,

there is an a(x,) so DZ (xg) =01fa < a(x,) and = o if a > a(x,). Indeed,

_Iim :ln 1(x,—0,X,+0) (40)

0 540 Ind
We’ll sometimes write a,,(x,) if we want to be explicit about the p involved; and
if we have a one-parameter family p, , we’ll use o, for a,, .

The following is a result of Rodgers-Taylor [55,56] (also see [60]):
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Theorem (2.2.3)[47]: Let p be any measure and o € [0, 1]. Let T, = {x\ DZ

(x) = o} and let y, be its characteristic function. Let du,.= %, dp and dp .= (1
—%,) du. Then dp,, is singular with respect to h® (i.e., supported on a set of h®-
measure zero) and dpoac is continuous with respect to h®* (ie., gives zero
weight to any set of h®*-measure zero).

Corollary (2.2.4)[47]: A measure p is of exact dimension o, € [0, 1] if and
only if

(1) For any B > a, ij (x) = o a.e. x w.r.t. L.

(i1) For any B < a,, Dﬁ x)=0ae. x wrt. p.

Equivalently, if a(x) = o, a.e. x w.rt. p). More generally, if (i) holds
(equivalently, a(x)<0, a.e. w.r.t. u), then p is supported on a set of dimension a
and if (i1) holds (equivalently, a(x)>a, a.e. w.r.t. p), then p gives zero weight

to any set S of dimension } < a.
Corollary (2.2.5)[47]: Let u be a measure on R, let S C Rbe a Borel set

with u(S)> 0, and suppose that o, € [0, 1] and

a
D0 <00
W @)

for p-a.e. x in S. Then dim(S) >a, .
Proof. a, =0 is trivial, so suppose a, > 0. Let v be the measure u(S N ). Then,

since v < u, the hypothesis implies that
D0 (x)<
for a.e. x w.r.t. v. Thus, by Theorem (2.2.3), v gives zero weight to sets of 2%o -

measure zero, and so, since v(S)# 0, we must have A% (S)>0, which implies
dim(S)> a,,.

It is often easier to deal with power integrals, so we note:

44



Proposition (2.2.6)[47]: Let p be a finite measure, and /et Ga(xo)z_[ d“(y|)a.
Xo—Y

Then

i) G,(x,) < oimplies D% (x,) < .
a(Xo p u o
(i1) Dg (Xq) < oo implies GB (Xg) < oo for any 0 <f <a.

Proof: (1) Looking at the contribution to the integral of the set where |x, —y| < d, we

see that

u(xy —0,x, +06)<6*Galxy)

SO

Dz (xo) < Go (%0 )-

(11) Let M 2 (xg) = u(xg—06,x, +6). Then (with A = Lebesgue measure)

Gy(x) =N, D10tk 3 )

-1

_ B O(E;Mg(xo)fs_ﬂ ds.

The integral always converges for ¢ large since M 2 is bounded; and if § < a,

and fo (x¢) < oo, then it converges for small 4.

Wa{x

For a = 0, W, is empty; and for a = 1, the theorem of de la Vallée-Poussin (see

Consider the set

im Wx—9,x+9) » lim w(x—96,x+90)

) 5% 5§40 8% 0

[61], [62]) says that u(W,) = 0. For 0 <a < 1, however, the situation is quite
different: A result going back to Besicovitch [63] (also see [64]) is that if p is the

restriction of h® to a set of finite positive h*-measure, then pu is supported on W.

Moreover, there are even examples of pu’s where for a.e. x w.r.t. pu,
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—lny(x 8X+8)_land lim Inp(x—0,x+0) _ 0.
5¢o Ind 50 Ind

Given a measure p with j (|x [+1)'d u(x)< oo, we define its Borel transform by

Fu(2) = Idu x)

for Imz > 0. These play a crucial role in the theory of rank one perturbations as
originally noticed by Aronszajn-Donoghue [65,66]; see [58] for their properties and
this theory. We’ll translate Theorem (2.2.3) into Borel transform language.
Definition (2.2.7)[47]: Fix y <1 and x. Let

Yx)=lim &7 ;
QH(X) hin g ImFH(x+1g)

&

RY(x)=1im &Y |F_(x+ig)|.
H g0 H
Theorem (2.2.8)[47]: Fix p and x,. Fix a € [0, 1) and let y = 1 —a. Then Dﬁ‘

(X0), QJ (X)), and RZL (x( ) are either all infinite, all zero, or all in (0, ).
Lemma (2.2.9)[47]: For any v <1,
DL_Y(XO) < 2Qg(x0)g 2RZL(XO).
Proof. Let Mg(xo) = w(xo—9,x, +0). Then looking at the contribution of (x, —¢,

Xo +¢€) to Im F ,(x,+ ig), we see that

ImF (x +ig)=¢ Ojo du—(Y)

-oo(yx)"'g

1 ¢
226 po”

(42)
SO

1 1
e/ 1mF X +ig) >2— ——— M€ (x
WK+ =) T MEg)

so the first inequality in the lemma holds. Q(X,) < R} (X) is, of course, trivial.
Lemma (2.2.10)[47]: Let a < 1. If D7 (x,) < o (resp.= O),RE;O‘(X0 ) < oo (resp.

=0).
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Proof. Suppose first that Dfl‘ (Xg) < oo. Let MS (X9 )= W(xg —8,x, + 0). The

case a=0 is trivial so we’ll suppose a > 0. By hypothesis,

M (x)<C8%, (43)
sowithy=1-a:
— o 0
fime'| F, (xo+ie |< im & | du )
g0 g0

2}%

— o0 [(xo—y)2+8

= ime’ |4 MO (s
40 0 o) o) 1 6 u0
(e“+5°) 2
. 1 S
= liin el | Mi(xo)dé‘)
&0
0 (24522
. 1 o +1
< lim C«S‘}/J g ds
e40 ) ) 3
0 (%4542
-1
. &£ a+l1
lim o
= C s
g4 0

0 (8741
< 0.
The first equality comes from noting that since y > 0,
M ST p duw) ik -y -iel=0.
ed0 0
[y-x¢/>1

The second equality is an integration by parts. The boundary term at zero vanishes
since o > 0. The term at 1 has a zero limit since y > 0. The final equality comes by

1

noting that since oo << 1, the integral is finite as ¢ + — oo.

If D% (x,)=0, then (43) holds for § < §, where C can be taken arbitrarily
u

small (by taking d, small). The above calculation (with 1 as the upper integrand

replaced by d,, ) shows that
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1 o0 o+1
Rl-¢x <o) -2 §s.
uxsC] ) 7

0 (5% +1)/2

Since C is arbitrarily small, R is zero.
Corollary 2.2 .11)[47] : Let y €[0, 1]. Let S — R be a Borel set with u(S) > 0.
suppose Q! (x) << o for p-a.e. x € S. Then, dim(S) >1 .

Theorem (2.2.12)[47]: Suppose that

sup dx < oo

b
S .
>0 € I‘ImFlu(xHe)
a

for some s < 1. Then u(a,b) gives zero weight to sets of dimension less than
I —s.

Proof. We’ll prove that for any 3 < 1 —s and any closed interval I — (a, b), we have

dpx)dp ) o (44)

xel |X— Y|B
yel

du(y)

[x -yl

< oo for p-a.e. x € 1, and the theorem thus follows

This implies G 5™ =du(y) |

from Proposition (2.2.6) and Corollary (2.2.5).

Replacing p by p I and noting that Im( | du (X)) <ImF (z), we an suppose L
xel X—Z H
is supported in I. Since I c(a, b) and [Im Fp,I (z)| < % we can suppose that
1st(z,
s 7 ANV
SUp_ g € _!)O |ImE, (x+i&)["dx <oo. (45)
By a straightforward calculation,
o0
| |ImFy (x+ig)[* dx =2ne | du (X)Zd“(”z
—o0 xel (x-y)“+4 ¢
yel
So (45) says that
dp (%) dp(y) - ~1-s (46)

xel (X—y)2+62 -

yel

Let
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M@= T du@du(),
x-3/<3

xel

yel

J‘ dp (x)dp(y)) <C e
(x-y)+e

xel

yel
Then (46) with ¢ = 9§ says that
M 3 <205

Thus, if B <1 —s,

dp()du(y) _ § M@ 21
x—vy|<1 — B B =0 H
Xyl [x -y n
xel
yel

and (44) is proven.

Let pu be a normalized finite measure. Let A be the operator of multiplication

x on L*(R, dp). Let ¢ be the unit vector p(x)=1. Let A, = A + M¢, ), and let

du, (x
du, be the spectral measure for ¢ and the operator A, . Let Fi@z)= | 4 and
X—Z
denote F (z) for Fy(z). Then [58]
F(z)
F ="
2O =T F “47)
ImF, (z)= ImF(z) 5 (48)
11+ AF(z)]
dy, () zgfﬁ) FImE, (x +ig)dx (49)
), sing 18 supported by {x |F(x +10) = —%} (50)

Theorem (2.2.13)[47]: Let o € [0, 1]. Let Se={x|lime¢ (17 m F (x+ie)>01.
If u, ([a, b\S,) = O for some A # 0, then p, gives zero weight to any subset of [a,

b] of dimension < a.
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Proof. Suppose lim e "™“Im F (x, + i¢) > 0 (i.e, X, € Sa). By (48),

1
A2 ImF(x , +i)

IrnF>b (XO +ig) <

So

Q&;“ (Xq) = lim e~ ImF, (x +ig)<oo,
Theorem (2.2.14)[47]: Let 0 < o < 1. Suppose p is purely singular. Let S, = {x
| lim ¢ "™ Im F(x + ig)<<oo}. If . (R\ $,)=0 for some A # 0, then p, is
supported on a set of dimension a.
Proof. Suppose lim e (1= F (Xo + ig) <o (ie., Xo € Sy) and that F (x,

+i0) = —%. By (42),

Mﬁ(xo)s Ce2-@

and

I1 +ARe F (x,+ 1¢)| = |A||Re F (x, + i) —Re F (x( + 10)|

(y_x()) (y_X())

- du (y)
(y=x)* (y-x)*+&°

=M\

&2

Sl
(y=xl(y-x)* +&7]

du (y)

<|MJL[d M3 (x,)].
T 8(32+g2y N0

We can integrate by parts, use the bound on M?¢, and integrate by parts again to

bound this last integral by

2 d-a
DV ee doé
IM[(2-0) |

—M(2-0)e
05(52+e2)

l-a OIO dy
a, 2
0y™(y"+D
And note the integrand is finite.
1—a 1—a
Thus, |1+ AF (xo +ig)<Ce andsolim & |1+AF (xo +ig) ! > 0. Thus,
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— (1w . .
by (47), it xy € §, N {xX [F (Xt i¢) =_% +, lim e |[FA(xo+ 1€)|>0. Since p, is

supported on {x | F (xo + 1&) = _% ¥, if iy (R\§,) = 0, then by Theorem

((22.8), o,(x) < a a.e. and so by Corollary (2.2.4), pn is supported on a set of
dimension a.

In addition to the functions F,(z), F'(z) of (47), an important role is played by

du(y)
G(x)=[— (51)
j (x—y)?

in that
{x|G(x) << oo, F(x +i0)= 51 + = set of eigenvalues of 4,. (52)

Note that G(x) = lim e limF (x +1i.), so (52) follows from (50) and the a = O.
Moreover, if A < o (see [58]):

1
;" (y) = > o 40k (¥). (53)
4 {x|G(x)<w,F(x+io)=—k‘1}XZG(X) X
Note that G(x) << o implies F (x + i;) has a real limit so

M ={x|G(x)<w}= |J {eigenvaluesof Al}
0<|A|<0

In [1] del Rio, Markov, and Simon prove that

0.0]
M=U M,
n=l1

where M, is such that there exists C,, with (59) for all x <y both in M,
LetL,={A| -1 € F[M,]}. It follows from (54) that dim(M,, ) = dim(L,).

Thus, since dim ( OLj A4, ) =sup dim(A, ), we see that
n:

Theorem (2.2.15)[47]: Fix a Borel set I. Then the Hausdorff dimension ofthe set

of ’s where A; has some eigenvalues in I is the same as the Hausdorff

dimension of the set of x € I where G(x) < .

There is also a result on the other side:
We’ll need a lemma that could have many other applications to the theory of

rank one perturbations:
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Lemma (2.2.16)[47] : Let n be a finite measure on R and define a measure v on

Rby
v(A) =1, (A)dn(A). (55)

Let F(z) = dk(x)/x—z be the Borel transform of the measure x. Then
F,(2) = F,(~1/Fu(2)). (56)
Proof. By the definition (55):
Fy (z) = [dn(A )FwL (2).
Equation (47) implies the result.
Lemma (2.2.17)[47]: Let 0 <a< 2 and let p be a measure obeying w(x —d,x +

§) < C3% forsome C and x and all 3> 0. Then there exists C, so that ImF ,(x
+ ig) < Cie (179 for all £>0. Moreover, if p(x — 8, x + §) < C5% holds for
some fixed C and all x and 8 > 0, then there exists C, so that Im F,(x + ig) <

C,e (179 for all x and &> 0.
Proof.

: edp(y)
ImE, (x+i¢g) =
i Sy ed?
I duy) °§ I edu(y)

2, .2 2, 2
|X_Y|<(9 (X_Y) & n=0 2ng£|x—y n+18 (X_y) e

<2

Ce®* ® oM

< o2 n_\2 2
€ n=0 (") +e
o © i
<L (1 ¥ p@-2),
& n=0

so we see that the claim holds.

Proof. The o = 0 case is trivial, so suppose 0 < a < 1 and h®(S) > 0. Let T; =

{x| G(x) =00, lim F (x + ig) exists and is finite and nonzero}. We’ll show
vl
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h%(T, ) > 0, so we can conclude that h%(T ) > 0. For each A € S; = S\{0, £},
uic is supported on T; so uy(T; ) > 0. Since h%(S;) > 0, it is well known ([64])

that we can find a measure 1 so that n is supported by S;, n(S;) > 0, and
n(x —8,x +8)<Cs% (57)
for all x and 6 > 0. Let v be given by (55). Then v(7}) > 0.

By (57) and Lemma (2.2.16) there exists C, so that

—(1-o)
ImF, (x +ig) <Ce

for all x and &> 0. It follows from (56) that forx € T,

E%g“‘“hmp§@+4@sc15%g”‘ahmu—1ﬁha+4@n‘”‘“? (58)

since G(X) = oo , we have

ImF (x+i¢)
lim | o~ =G =
and since =0 ¢ S;, F (x + ig) — —7;1 # 0 so ¢ [Im(—1/F,(x + i8))]'1—> 0.
Thus, we see from (58) that forall x € T,

Oy (x)<o0
and if o« < 1, then le—a (x)= 0. Since v(T, ) > 0, Corollary (2.2.19) (along with

its remark) implies that #%(7,) > 0. The fact that in the & < 1 case T, is not

h®-sigma finite follows from Lemma (2.2.11).
Theorem (2.2.18)[47]: Suppose p is purely singular. Let S ={A|A, has some

continuous spectrum}. Let T = {x|G(x) = o}. Then
dim(S) < dim(T).

In particular, if T has Hausdorff dimension zero, so does S.

Rank one perturbations can be described by a measure ¢ given by

(p.(A-z) L py=j £

X—Z

where A+A(o, - ) ¢ is the rank one perturbation, so we’ll phrase our examples in this
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section in terms of du. To make things operator theoretic, one can always take H =
L*(R, du), A= multiplication by x, and ¢ the function ¢ (x) = 1.
We’ll discuss four classes of examples in this section:
(i) Point measures with rapidly decreasing weights for which we’ll show that
the perturbed spectrum is supported by a set of Hausdorff dimension zero.
This class is relevant for our study of localization.
(i) Point measures where for a.e. A, du, has exact dimension a,. These are
variants of the measures in [59].
(iii) A family of singular continuous measures where one can calculate many
distinct dimensions.
(iv) A set of examples that show {x |G(x) <o} can have any dimension and that
have point spectrum embedded in singular continuous spectrum.

Example (2.2.19)[47]: Point spectrum with decaying weights Given a sequence

o0 o0
of sets A, , we call 4,=(()4,., the lim sup(A,) consisting of points in infinitely
n=lm=n
many A, ’s.
Lemma (2.2.20)[47]: Suppose that for a family of intervals A,, we have for each j
>0

4 |<C.n. (59)

J

Then A, = lim sup(A,) is a set of Hausdorff dimension zero.

Proof. |A,|— 0 so given 0, choose Ny so |A;| <6 for n > Ny . Then for m > N,

|J4, is a 3-cover of A,. Thus,

Ap)<C S ni
Qa,S( oo)—Cj ; n
n=m
a fixed a > 0, pick j so jo > 1. Then the sum is finite and clearly,

o L —ja_
Qa,S(AOO)SCj mf > n '7=0.

mZNO n=m

Thus, h*(A,) = 0 if o> 0 and so A, has dimension zero as claimed.

Theorem (2.2.21)[47]: Suppose du(E) = ian ddg (E) where a, obeys the condition

n=l
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that for all j, there is a C; with
s < Cjn’ . (60)
Then for every A, dy, is supported on a set of Hausdorff dimension zero. Moreover,

dp, 1s pure point except for a set of A’s of Hausdorff dimension zero.

Proof. Let G(x) be defined by (51) and let S={x|G(x) =0, X ¢ {Ei };il }. Then the
Aronszajn-Donoghue theory [58] says that for any A # O, dpic, the singular
continuous measure for A, is supported by S. Thus, the spectral measure dp )Lis

supported by S U {eigenvalues of A;}. Since the set of eigenvalues is a zero-
dimensional set, it suffices to prove that S is zero-dimensional. The final assertion

then follows from Theorem (2.2.18).
Letb, = /an and let A, = [E, — by, E, + b, ]. Then
|4,|<2C " n "
for any j, so A, obeys (59). Thus, A, = lim sup(A, ) has dimension zero.
We claim S < A, . To prove this, we need only show if x ¢A, and x ¢ {E; }(ixz)l
then G(x) << . But if x € A_, then for some N, x € CJ A, so
n=N,

Il < Z b—g: Z a <0

— 2 = n
:No |X En| n—NO n n=N

n 0

by (60). Sincex ¢{E;}?”, ,

N -1
2 a
n <00

2
n=l1 |x _En

so G(x) << oo as required.

Example (2.2.22)[47]: Perturbed measures of prescribed exact dimension our
second class of examples is intended to show that it can happen that for any o, €

[0, 1], there is a rank one perturbation situation where u, [0, 1] is a measure of
exact dimension a, for a.e. 4 (w.r.t. Lebesgue measure). All our unperturbed

measures in this example will live on [0, 1] and be point measures. The third set of
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examples will be similar but the unperturbed measures will be continuous. For each

n=20,12...1let

du = 1,, Yds ., (61)
2=
and for o € (0, 1) define

dv,=>2""dy,. (62)

For any x,€ [0, 1] and n, there is j /2" within 27" ofxy, so

2—a
Thus for any e>1, v, (Xg—€,Xo +€) =€  so by (42), for x,€ [0, 1] and 0 << ¢ Im

l-a
F,, (Xo +1i€) = 14, o So the set S, of Theorem (2.2.13) is all of [0, 1], and so

(by Theorem (2.2.13)):
Theorem (2.2.23)[47]: Fix 0<a<I. Let dva be the measure (61),(62) and let dv,)
be its rank one perturbations. Then for any A # 0, dv,.;, gives zero weight to any S

c [0, 1] of dimension B < a.
On the other hand, suppose (for é]_n closest to Xg)

2—n(1+n)80

_ e =
|x0 211|><9n_ (63)

for some #, 00 > 0. Pick 1 <y < (2 —a)/1+ n). Then
AIG) < gy dy
| Y|Y 27" < -y [t |X - Y|y
<Clg 272,

Thus, by (61),(62)

J' ( ) (z n(2-a-y) n iéo_y 2—n[—y(l+n)+l+l—a]] <0

X, — yW ‘

by the choice of y and a + p << 2.
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The measure of the set of x, € [0, 1] where (63) fails iz‘"”@) and is arbitrarily
n=0

small if d,, gets small. Thus,
Lemma (2.2.24)[47]: For any v <2 - a and a.e. x,€[0, 1],

dv_(y)
xg ="

<00,

Since y can be taken arbitrarily close to 2 — a, we see by Proposition (2.2.6) and

Lemma (2.2.17) that the set S ;0of Theorem (2.2.14) has Lebesgue measure 1 if >a.

Thus,

[0,1]\ﬂﬁ>a§ﬁ‘ = 0. By the result of Simon-Wolff (4), g, ([0,1]\ﬂﬁ>a§ﬂ): 0 for

a.e.A. Thus, by Theorem (2.2.14):
Theorem (2.2.25)[47]: Fix O<oa<I1. Then for a.e. A, v, is supported on a set of

dimension a. In particular, v,.,[0,1] is of exact dimension a.

If we take dv,= in* dp,, it is not hard to see that for all 1 # 0,v., 10, 1]

is of exact dimension one. Thus, we see that for any a € [0, 1] there are examples

with singular spectrum of exact dimension « (in [0, 1]) for a.e. 4 (and for o = 0, for
all 4).
Example (2.2.26)[47]: Some number theoretic examples

Our third class of examples illustrates change of dimension from singular
continuous to singular continuous spectrum. Details will be presented in [47].

These examples will depend critically on the binary expansion of a number x
in [0, 1]. Given such an x, we can expand it, viz.

0 a (x)

x =) (64)
n=0 2"

We deal with the non-uniqueness for binary decimals (e.g., numbers of the form é]—n

) by requiring a,,(x) = 0 for m large for such x (except for x = 1). Thus, (64)

F
defines a map of {0, 1} - [0, 1], and x = {a,,(x)} defines a left inverse.

Any measure A on {0,1}" defines a measure pu on [0, 1] by u(4) =
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A(F~Y[A]). For any p with 0 <p < 1, let A, be the product measure on {0, 1}V with
each factor giving weights p to 0 and (1 — p) to 1, that is, the a,,’s are i.i.d.’s with
density pdd, + (1 —p)dd, . Let u, be the corresponding measure on [0, 1].

Two dimensions will arise below:

H(p)E_plnp+(11;;27)ln(l—p) (65)
L(p)=2+ 2 UZP) _oy ) (66)
We note that
1
Lip) <H(p) <1, PF3

(but in fact H(p)- L(p) = 0((p - —)4) for p near 2 so they are very close for most

p’s). Notice also that H(p)> 0 and that

2—/3 2+J3
P32 2B =1 oL (p)>0

(I, is about (0.07, 0.93)).
Theorem (2.2.27)[47]: (I) du, has exact dimension H(p).

(i1) Suppose p €l,. Then for a.e. A w.r.t. Lebesgue measure, the restriction
o [0, 1] of the rank one perturbation of du, has exact dimension L(p).

(iii) If p ¢ 1, , then for a.e. A, the rank one perturbation of dup is pure point

av)Ifpe( %, %), p#",then for all A, the restriction to [0, 1] of the rank
one perturbation of dy, is purely singular continuous (so we have an example with
singular continuous spectrum for all A).
Example (2.2.28)[47]: Examples with pure point spectrum

Our last class of examples will show {x|G(x)<o} can have any Hausdorff
dimension, and also provid examples where du, has a singular continuous component
for all A # 0 but sometimes mixed with embedded point spectrum. In this example, du

will be a measure fixed once and for all with supp( p) =[0,1] and

d
G ) =] “;y)%

n [0, 1]. Three possibilities to keep in mind are:
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(i) %o,17(x) dx which is absolutely continuous.

(i) du,, the measure of Example (2.2.26) with pe('4,’2) where G(x) = « by
Theorem (2.2.27).

(iii) Any of the point measures dv, of Example (2.2.22) having

G(xy) = lig)le_l ImF, (x,+ig)=c0 forallx, €[0,1].

These show there are such p with any spectral type.
Theorem (2.2.29)[47]: Let C be an arbitrary closed nowhere dense set in [0, 1].
Let u be a Borel measure on [0, 1] with G,(x) = on [0, 1]and [ du(x) = 1. Let:
dv(x) = dist(x, C)* du(x).
Then, supp(v) =[0, 1], G, (x) =x on [0, I]\C and G, (x) <1 on C.
Proof. If x ¢C, dist(x, C) =6 > 0 since C is closed. Thus,
G282 A,
be—y|<6/2 (x =)

since Gy(x) = oo. On the other hand, if x € C,

dist (y ,.C)*

G, ()= [ BOCV () < fd () =)
dist (x,y)

since dist(x, y) >dist(C, y). Finally, since [0, 1]\C is dense, supp(dv) = [0, 1].

Now let ¥ be v/[[dv]. Then for every x € C, G; (x) < %for N = [dv.

Consider now the rank one perturbation dv, of dv. From (53), we see each pure point

N

2
has weight at least 2 80 there are at most % pure points (since dv, is normalized

in (53)). Thus,
Proposition (2.2.30)[47]: If N = [dv(x) for the measure v of Theorem (2.2.29),

2
then A, = A + M¢, )¢ has at most % eigenvaluesin [0, 1]. In particular, if A2 <

N, A, has purely singular continuous spectrum in [0, 1]; and for any A, 6. (A, )
= [0, 1].

One of our goals in this section is to prove that local perturbations of random
Hamiltonians in the Anderson localization regime, while they may produce singular
continuous spectrum, always produce zero-dimensional spectrum, in the sense that the
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spectral measures are all supported on a set of Hausdorff dimension zero. We’ll use

Theorem (2.2.21). Naively, one might confuse exponential decay of eigenfunctions in

ZV (as in |p,(m)| < Cae ™) with exponential decay in eigenfunction label (as in
p,(0) = C ¢ ") which allows one to apply Theorem (2.2.21). In fact, they are

distinct — indeed, if v > 2, we will not prove that |¢p,,(0)| < Ce ®" but only p, (0) <
1v
C exp(—Bn| ), also see [47].
Throughout this section, n is an eigenvalue label and m is a ZVY point. It will

be convenient to take the norm |m| = max |m;|onZV.
j=lL..y

Definition (2.2.31)[47]: Let H be a self-adjoint operator on ¢*(Z*). We say that H

has semi-uniformly localized eigenfunctions (SULE), pronounced “operators with a

soul,” if and only if H has a complete set {gon };OZI of orthonormal eigenfunctions,

thereis « > 0 and m, €ZY, n=1,..., and for each 6 > 0, a C; so that

d|mn |—o/m—mn |

pn(m)[ <Cye (67)
forallmeZY andn=1,2,....

Thus, eigenfunctions are “localized about” points m,. We use the “semi” in
SULE because one can define ULE by requiring the bound with § = 0. The theory
below extends to this case, but we’ll restrict ourselves to the SULE case. We’ll
show that large classes of models, including the Anderson model in any dimension
and the almost Mathieu operator, do not have ULE.

Below we’ll first prove a result about the number of m, in a box of side L,
essentially proving that the number grows like L" as L — co. This will show that
local perturbations of SULE operators have zero-dimensional spectrum. Then, we’ll
relate SULE to dynamics and to Green’s function localization; essentially, SULE
always implies dynamical localization, and if the spectrum is simple, dynamical
localization implies SULE. This will imply that Anderson-model Hamiltonians have
SULE.

[47] has an example to show that a Jacobi matrix can have localized
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eigenfunctions which are not (semi) uniformly localized.

Let

Slea =1 =12, (68)
Yo, (m)[2=1 eachmeZV. (69)

Lemma (2.2.32)[47]: For each € > 0, there is a D, so that for each n and L:

—ae|mn |/2

> lpa(m)[P< D e Fe
lm—m, |2&(m,|+L)
Proof: By hypothesis, we can find ¢V so

(1) o[gmn| /72— m—mn | ]
€ e

[Pn(m)|< €

If m-m,|>¢(m, |+ L), then jm-m,| > % m -m,|+ §|m,|+ £L so in that regime

(1) -eal2 -ojm-m |/2
€ € v n

[Pn(m)| < €
SO

)y |(0n(m)|2£ [C(gl)]Ze—aaL 3 e—a|k|§Dg€_gaL€_ag|m"|/2
ey ) kel |
as claimed.
Theorem (2.2.33)[47]: Suppose H has SULE. For each L, # {n|m,|< L} is

finite and

lim — L1 #{n|jm,|<L}=1.
L—o (2L+1)Y

Proof. To get the upper bound, we’ll use the fact that functions localized in a box of
side 2L contribute most of their norm to a box of side 2(1 +¢) L. By the lemma, if

im,,| < L, then

> lpp(m)? < 2 @ (m) [2< D_e™ L
|m|>(1+2¢)L im—m,, [2&(L+/m,|)
and so by (68),
S lepm)>21-D e~ %L
Iml<(1+2¢)L
Thus by (69),
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RA+20)L+1 > 5 g (m)f
alln
|m|<(1+2¢)L

>y g, mP

nsothat |m |<L
n

|mn <K(+2¢)L

> #{n| |m |£L}(1—D8e‘“'9L).
Thus, #{n | |m,|< L} is finite and
lim QL+ 1) " #{n||m/<L}<1. (70)
In particular,
#{n||my|<L}<coL’ (71)
for some ¢y and all L > 1.

To get the lower bound, we’ll use the fact that wave functions localized far
outside a box of side 2L cannot contribute much to the wave function sum inside that
box. Explicitly, suppose that

jm,| > F£L and [m[< L.
Then we claim
[m — my[> e(jmy,| + L)
for
m=m, |2 |m, |-L2|m, |(1-1=£) = e(1+1=E) |m, | 2e(|m, |+L).
Thus by Lemma (2.2.32), if

m_[>1+e
n 1-¢

then
- —oe /2
3 |§0n(m)|2 SDge agLe m, |
|m|<L
SO
o0
) g P< X #n||m,| <Gk + DLID_ g 0eL —uskL /2 <D_ —0el2
nsothatm |>1+€L k=0
nl-e
|m|<L
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by (71).

Thus by (69),
QL+1)Y = X |¢n(m)|2 S#{n| |mn|<1+—‘9L}+]~) e—OLEL/Zj
all n l-¢ €
Im|<L

from which one immediately sees that
lim QL+ 1) #{n||m,<L}> 1.
Combining this with (70) yields the theorem.
Corollary (2.2.34)[47]: Suppose that H has SULE. Then there are C and D and

a labeling of eigenfunctions so that

0a(0) <C exp(-Dy"). (72)

Proof. Reorder the eigenfunctions so |m,,| is increasing. By Theorem (2.2.33), |m,,|/ 1
2

1/v 1/v
n — lasn —o so|m,| > In - C, for some constant C;,. By (67), we get
3

(72); indeed, we see D can be taken arbitrarily close to . a.
2

Combining this corollary with Theorem (2.2.21), we see:
Theorem (2.2.35)[47]: Suppose that H has SULE. Let H,= H +A(d,, ')d,. Then
for every A, the spectral measures for H, are supported on a set of Hausdorff
dimension zero. Moreover, H, has pure point spectrum except for a set of A’s of

Hausdorff dimension zero.

Next, we relate SULE to other conditions. We’ll suppose H has simple
spectrum, although one can easily extend this to examples with spectrum having a

uniform finite upper bound on multiplicity.

Definition (2.2.36)[47]: Let H be a self-adjoint operator on RIVASA say that H

has semi-uniform dynamical localization (SUDL) if and only if there is @ > 0 and

for eachd > 0, a C; so that forall g, m € ZV:
i Slm|—atq—m]|

—itH
sup[(3,,€  0,)| <Cse (73)
t
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We say that H has semi-uniformly localized projections (SULP) if and only if H
has a complete set of normalized eigenfunctions and there is o > 0 and for each ¢ >

0, a Cs so that forall g, m € ZV:
(3q Py O )| < Coelmetm

for all spectral projections P, onto a single point (uniformly in E).

Theorem (2.2.37)[47]: Let H be a self-adjoint operator on 12 (zV) with simple
spectrum. Then the following are equivalent:

(i) H has SUDL.

(ii)) H has SULP.

(iii) H has SULE.

Proof: (i) = (i1): Follows immediately from

r . :
P, = s—limZTL [ e e ifls gy,
T >
-T
(i1) = (i11): Label the eigenvalues of H: Ei, E,,.... For each E, € spec(H),

pick an eigenfunction ¢n( '), unique up to phase. Then by (i1):

dm|  —a|q—m|

[Pn(DPn(m)|<Ce e : (74)

Since @ne /2, it takes its maximum value so choose m,, so that

|Pn(my)| = sup |@a(m)|. (75)
m
Then by (74)(75),

@@ < lpa(@)| SUp.|pa(m)| = pa(@)][on (11

<ol

so H has SULE by taking square roots.

m) = (1): Let € the eigenfunctions an eigenvalues. en
(iii) = (): Let ¢, be the eigenfunctions and E, eigenvalues. Th
_3 ——— —itE
@ eM8 ) =T o (@ Mo (m)
n

so, assuming SULE,

261m, | ~alg=m,|+|m=m, )

—itH VR 2
sup (5«5 i< %\qsn @), (m)|<C ;e (76)
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Now,

q ~my|+[m-m,|>|q - m|

and
Ig—m, |+ |m—-m, | >|m,| - |m].
Thus,
e—allg—mpl+Im-my)) < 5—38lmyl,38Iml,—(a—38)Im-ql
So, by (76)
sup |(9q , o itH B)I< Cg e30ml o~ (@300m—al A
where
-0
AO =>e |mn | .
n

By (71) which follows from SULE, A, is finite.
One can prove by the above means a result that shows that if H has simple

spectrum and sup; (@, ™™ 8,)| < C e™ then the spectral measure for ¢ can be written

Yin=1anddg where [a,] < De ™V if the E,’s are properly labeled. That is, one can
prove a result that requires less uniformity than the full-blown theory assumes.

Finally, we turn to when any, and hence all, of the conditions of Theorem
(2.2.37) hold in the context of the Anderson model. We’re dealing here with models
depending on a random parameter so we first reduce SUDL to a requirement on
expectations. General considerations [69,70,71] imply that the spectrum is simple in
the localized regime.

Theorem (2.2.38)[47]: Let (€2, u) be a probability measure space and E( - ) its

expectation. Let ® — H, be a strongly measurable map from Q to the self-adjoint

operators on 62(2 Vywhich is translation invariant in the sense that for each meZ',
there is a measure preserving T, :Q — Q so Hryp, = UyH, U ’1_11 where (Une)(q) =

¢@(q — m). Suppose that

—alq]

E( Sl%p |(6q > e ))<= Cpe (77)

for some o > 0 and that H, has simple spectrum for a.e. . Then for each
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B << a, forae. o, thereisa C, <<oo so thatfor all 0 <g<1

—i C _ _
Sup By, e 8| < V_Cileﬂmle B(m—q)
&

In particular, a.e. H, has SULE.
Proof. Let

Q (a)) — Z(l T |m |)_(v +1)e ﬂ‘m—q‘ Sup‘éq e —itHa)5m )
t

m.q

Then by (77),
E(0(w)) <
so O(0) << oo for a.e. w. But for such o,

- v+l —Blm—q|
sup|3,.e 5, |< C,(1 +|m)) e
!

The result now follows from the trivial bound (1 + x)" <v'e"™e¢ "’ fore <I.
Delyon-Kunz-Souillard [72] have proven this bound for a general class of one-

dimensional random potentials.

Theorem (2.2.39)[47]: (Aizenman’s theorem) Let V, (n) be a family of

independent identically distributed random variables (indexed byn e Z'; ® € Q is

the probability parameter ). Suppose Hy is an operator on 2z") commuting with
translations and H, = Hy + V, with V,, viewed as a diagonal matrix. Suppose V,,

(n) has a distribution g(\) dA with g € L™ and has compact support. Suppose
b
£ ( i
a

for some s € (0,1). Then

(5n,(Hw—ﬂ,—i0)_15)‘S dl] <Ce~Hinl (78)

ECowp (e Py ) <Ce (19)
where C only depends on s and the distribution g.
Combining this result with those of Aizenman-Molchanov [73,74], we see that
the strongly coupled multi-dimensional Anderson model has SULE.
Anderson localization (at least as proven in [209]) implies that if X is the

operator
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(x; W)(m) = m;y(m;) 1=1,..,v,

then in the localized regime,
sup(e " ™M8,,x2 ¢ M 5,) < oo. (80)

It follows from the RAGE theorem (see, e.g., [57,75]) that (80) implies that H has
pure point spectrum.

For operators H with dense pure point spectrum, it is proven in [1,48] that for a
Baire generic set of A, H, = H +A(3,, ' )d, has only singular continuous spectrum and

so for such H,'s, (80) must fail. Our purpose in this section is to show that the failure

—itH tH
is only very mild. (x’)(t)=(e d,x ¢ 9,) is unbounded but grows at worst
logarithmically!

Theorem (2.2.40)[47]: Suppose that H is a self-adjoint operator on) ¢*(Z") with

SULE. Let H, = H+ (3, , )8, . Then

<x2” >(¢) _ " 5os(x2)" M 59)

obeys

<x2” >(r) <C (e
for |t| large.
Proof. Write a DuHamel expansion:

. z .
By e 80) = (B, e 80) —iA[ Bm,e ™ 80)(B0, e 8 ds. (81)
0

Since H has SULE, by Theorem (2.2.37),
Sup |(3m, ¢ ™ 8 )i< Ce ™
t

for suitable C and a. Plugging this into (81) and using |(8y , e ™ 8¢ )< 1, we see that
By €7 8o )i Ce [T+ A |t]. (82)

2 trivial bound but we’ll

2m >1/

This would seem to give linear growth in t for <x
combine it with the

Y |8, e 80 )F = 1. (83)

Use (82) only if jm| > 2 In(1 + [A| |t|)/a = G(t). In that regime (82) says that
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|(6m’ e 1§y )| <C e—a|m|/2‘
Thus,

|m|2%(t) (1’1’12 )n|(6m , e M 80)'2 < Cn

and obviously by (83),

—itH
| |<G(t)<mz>"|<5m,e TSR <G ),
RS

SO <x2” >(r) < (G(t))™ + C,, as claimed.
In fact, the proof shows that

. nlt DTE (XA HO<(H
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Chapter 3

Generalization of Projection Constants and Minimal- Volume

We show some characterization of sufficiently Enlargements. Our main result
is that for some subspaces there exist minimal-volume shadows that are far from

parallelepipeds with respect to the Banach—Mazur distance.

Section (3.1): Sufficient Enlargements:

Let X be a Banach space and let Y be a finite dimensional subspace. We
denote the unit ball of X by B(X). Let P: X— Y be some continuous linear
projection. Then P(B(X)) o B(Y) and P(B(X)) is a convex, symmetric with respect
to 0, bounded subset of Y.

Let X be a finite dimensional normed space.

Definition (3.1.1)[76]: Asymmetric with respect to 0 bounded, closed convex
body A < X will be called a sufficient enlargement for X (or of B(X)) if for
arbitrary isometric embedding X — Y there exists a projection P: Y— X such that
P(B(Y)) c A.

Convention (3.1.2)[76]: We shall use the term ball for symmetric with respect to
0, bounded, closed convex body with nonempty interior in a finite dimensional linear
space.

We use standard definitions and notation of Banach space theory (see [77],
[78]).

Let 4 be a ball in a finite dimensional space X. The space X normed by the
gauge functional of 4 will be denoted by Xa.

We start with some simple observations. Their proofs are straightforward

and we omit them. By v, we denote the L.-factorable norm (see [78]).

Proposition (3.1.3)[76]: A ball A is a sufficient enlargement for X if and only

if v, (I) < 1, where I is the natural identity mapping I : X o X,.
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Corollary (3.1.4)[76]: If X and Y are R" with different norms and B(X)c
B(Y) then every sufficient enlargement for Y is a sufficient enlargement for X.
Corollary (3.1.5)[76]: Let T: X — Z be an invertible linear operator between
finite dimensional normed spaces. Then:

Yo (T).T" (B(2))
is a sufficient enlargement for X.
Corollary (3.1.6)[76]: A symmetric with respect to O parallelepiped containing
B(X) is a sufficient enlargement for X.
Proposition (3.1.7)[76]: [79,80,81,82] Convex combination of sufficient
enlargements for X is a sufficient enlargement for X.

The same is true for integrals with respect to probability measures. In order
to make this statement precise we need to introduce a notion of integral of
function, whose values are convex subsets in R"

I introduce the notion of integral for convex body-valued functions as some
mixture of Riemann and Lebesgue integrals. This definition of integral is
somewhat unnatural, but it is sufficient for our purposes and at the moment I
do not want to overcome difficulties which appear for more general notions of
integral.

Let M be a compact metric space with a regular Borel probability measure
. (The main example for us is the group of orthogonal matrices in R" or its closed
subgroups with the normalized Haar measures).

The set of all compact convex subsets of R" will be denoted by C(n). We
shall consider C(n) as a metric space with the Hausdorff metric:

d(A,B) = max{supdist(a,B), supdist(b,A)}
aeA beB

Recall the following well-known fact: C(n) is complete with respect to d.
For this and other results on convex bodies we refer to [83,84,85].

Let f:M — C(n) be a continuous function.

Definition (3.1.8)[76]: The integral of f with respect to measure p is defined to
be:
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[ )= tim S R () £V, (), 1)
where A is a pair consisting of a partition of M onto a finite number of
measurable subsets {M i(A)}ll'l(lA ) and a family {al.,(A)}f.c:(lA ) of points for which
{al. (A)eM ; (A). Diameter of A is defined to be the maximum of the diameters of

the sets Mi (A) (1=1, ... k(A)) in the metric space M. The limit in (1) is considered

in the Hausdorif metric.

A proof that the integral exists can be obtained in the same way as the
proof of existence of Riemann integral in classical analysis.
Proposition (3.1.9)[76]: [82,86,87,88] Let X =( R",||.|| ) be a normed space and
M be a compact metric space with a probability measure pu. Suppose that a
mapping f:M — C(n) is continuous and that f(m) is a sufficient enlargement for

X for all m eM. Then:
[ fmydp(m)

is also a sufficient enlargement for X.

Corollary (3.1.6) and Propositions (3.1.7) and (3.1.9) supply us with the
following family of sufficient enlargements for a space X: parallelepipeds
containing B(X), their convex combinations and integrals with respect to
probability measures. It is natural to ask: is it true that any sufficient enlargement
contains some sufficient enlargement of the described type?

The answer to this question is negative. The first example was found by

V.M.Kadets (1993). In his example X is a two-dimensional space, whose unit ball is

a regular hexagon. The space X can be isometrically embedded into /3 .

Let P: [3.— X be the orthogonal projection. It is clear that A: = P(B(/3,))
is a sufficient enlargement for X. V. M. Kadets proved that A does not contain any
integral with respect to a probability measure of parallelograms containing B(X).

Our purpose is to prove that analogous examples can be constructed even for

two dimensional Euclidean space.
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Theorem (3.1.10)[76]: There exists a sufficient enlargement for / 22 which does
not contain any integral with respect to a probability measure of parallelograms
containing B(/ 22 ).

Proof. Let us denote by S; and S, the operators of counterclockwise rotation of / 22

onto 27/3 and 4m/3 respectively. Let ¢, and e, be the unit vector basis of 122

and eik and e; be its biorthogonal functionals .
It is easy to verify that forall x,y € R? |ly|, = 1 we have
x = 2(% Y)Yy +{ %8,¥)S,y+( x5,¥)S,»).

Let y = e;. We have the following factorization of the identity operator on/ 22 :

[ =RO, 1222 zfoi 122’

where

O(x) ={(x,e,),(x,S,e,),(x,5,e, )},

R ({ag,an,a }) = % (age2 T a1S1€2+ 32567 ).
Hence the Minkowski sum of the line segments
A= Z2([-ene] + [-Siez, Sie2 ]+ [-Sze2, Saea] )
is a sufficient enlargement for/ 22
It is easy to verify that A is a regular hexagon with

sup{ eT x) : xe A} = %

We need the following lemma.

Lemma (3.1.11)[76]: Let P be a parallelogram containing B(/ 22 ). Then

sup{ eT x):x € %(P + SiP + S,P)} > %

Proof. We represent P as a sum of two line segments: P[-f},f;] +[-f5,f;]. We

introduce the notation
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a = sup{ eT x):x € %(P + S,P + S,P)}.
We have
a=1 (e ()+]e B)+]e] Sif)l+]e (Sif2)+| CT (Sa2f)] + | CT (S2£2)D).
Set
() = 3(e (B)[+ e (Sif)[+]e (S:) ).

Let us show that
||f |
ﬁ

and the equality is attained if and only if the angle between f; and e, is a multiple

of m/3.

) >

It is easy to see that in order to prove this statement it is sufficient to consider

the case when the angle a between f; and e, is in the interval [0, %].

We have
of)) = ” ‘” (|s1na|+|s1n(a+2n) |+ s1n(a+ an )
:ﬂz,”(sma+sm(a+2n) sin( o+ ))
= @ (sina+ \/gcosa).

It is clear that for-vectors of the same norm this product is minimal if and only
if o = 0 or o = /3. In both cases we have t(f})=|fi/~/3. So we have proved the
assertion about t(f;).

Since a = t(f;) + t(f), then:

LY
\/g >

and the equality is attained if and only if the angles between f;, f, and e, are

multiples of m/3. On the other hand since [ -fj, fi] + [-f;, ;] © B(lz2 ), then ||,

If2>1 and if the angles between fj, f; and e, are multiples of n/3, then

I+l > 2.
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Hence a > 2/4/3.

We return to the proof of the theorem. Suppose the contrary. Let M be a metric space

with a probability measure p and let F: M — C(n) be a uniformly continuous function

for which F(m) is a parallelogram containing B(/ 22) for eachm € M and
JM F(m)d u(m)c A.

Since A 1s invariant under action of S; and S,, then

I L(F(m)+8 F(m)+S,F(m)dp(m)c A (2)

Hence

sup{e; (x):x e jM %(F(m)+SlF(m)+SzF(m)du(m)} < %
This supremum equals to

IM sup{er(x):x € %(F(m)+SlF(m)+SzF(m))}du(m).

By the lemma the integrand is >%for each m. Hence the integral is >%This

contradicts (2).
It is natural to consider an”isomorphic” version of the question above. I mean

the following. If a sequence {Xn}f=1 of finite dimensional normed spaces is such
that for some sufficient enlargements A, (n € N) for X,, arbitrary 0 < C < o« and
arbitrary integrals 7, with respect to probability measures of parallelepipeds

containing B (X,) we have
dneN,In ¢ C.A,,
then we shall say that {X,}has property N.
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Section (3.2): Shadows of Cubes:

Let K™ < R™ be defined by K™ ={(x, ..., Xm):[xi| < 1 for every ie {1, ..., m}}.
We refer to K™ as an m-cube. Let L be a linear subspace in R™ and P: R™ — L be a
linear projection onto L. The set P(K™) will be called a shadow of K™ in L. Using a
compactness argument it can be proved that for every me N and for every subspace
L < R™ there exists a linear projection that minimizes the volume of P(K™). In such a
case the set P(K™) will be called a minimal-volume shadow of K™ in L.

It may happen that K™ has many different minimal-volume shadows in L. we
study the shape of minimal-volume shadows of cubes. It is known that among
minimal-volume shadows in an arbitrary subspace there is always a parallelepiped
(see Theorem (3.2.1)). Our main result is that there exist minimal-volume shadows
that are far from parallelepipeds with respect to the BanachMazur distance. Such
shadows can be found by a simple and explicit construction; see the beginning of the
proof of Theorem (3.2.3).

Initially this study was motivated by the study of sufficient enlargements (see
[90]). Here we do not discuss this connection, because it is also a natural geometric
problem.

The following result is essentially known. It is implicitly contained in [91]. We
prove it because our proof is more direct than the proof in [91] and we use our proof
in further considerations.

Theorem (3.2.1)[89]: Let L be a linear subspace in R™. Let M be the set all minimal-
volume shadows of K™ in L. The set M contains a parallelepiped.

Proof. Denote by {ei};?i | the unit vector basis in R"™.. Let n=dim L and let

E :lin{ei(l),....,ei(m_n)}

where {i(1), ..., i( m- n)} is a subset of {1, ..., n}, be such that L n E=[0]. Let P be the
projection of R™ onto L with kernel E. Then P(K™) is a parallelepiped. We endow R™

with the standard inner product and compute all volumes with the corresponding

normalization. Let zy, ..., zm € R™ be such that z;= 3 1”1 170 e;- By det[zy, ..., Zm] We

mean the determinant of the matrix [z, i ] :.”j _1-
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Let {xy, ..., Xn} be some orthonormal basis in L. Then

m 2"
Vol P(K™)=

| det[x1 yees Xp ei(l) yeees ei(m—n) 11 ’
Suppose that E is chosen in such a way that
QLX) s X1+ €5 1) s €4 ) ]
takes the maximal possible value.
Let 0: R"—>L be another projection. Let qy, ..., qm-n b€ an orthonormal basis in
its kernel. We have

2I’l
|det[x1a---axn aqla---aqm —n] |

Vol O (K™) =

X > [det[q), 3G, 5€1ys5€ () 1
U, jm)y cil,.om}

where the sum is over all n-element subsets of [1, ..., m]. (To prove this formula we
first project the cube onto the orthogonal complement of the kernel of O and use the
well-known formula for the volume of a zonotope, see [92]. Then we use the
previous formula.)
In order to prove the theorem it is enough to show that
vol P(K™) <vol 0(K™) 3)
Inequality (3) is equivalent to the following inequality:
|det[x1, ..., Xn, Q15 +--> Qmen]]
< |det[X, ..., Xn, €i(1)s ---> Ci(m-n)]|
X > LG yerres@ € j1yseeers ] |- (4)
J),...,j(n)yc{l,....,m}
By the Laplacian expansion (see [93]) the determinant
det[X1, ..., Xn» Q15 +++» m-n]

can be represented as

> 0 det X, detQ,,
I c{l,...m},#1 =n

76



where X; is the nx n-submatrix of [xi, ..., X,] corresponding to I, QO is the

corresponding (complementary) (m-n)*(m-n)-submatrix of [q, ..., qm=n], and {0y} are
some signs.

It is easy to see that by the choice of {i(1), ..., (m-n)} we have

max
| det[xl,....,xn , ej(l)’w’ej(m—n)] | Vi | detXI| .

It is easy to see also that

> S 7 R | =Z‘deth ‘
U, j(n)c{l,...om} I

The inequality (4) follows.

Our next purpose is to show that there exist minimal-volume shadows that are
far from parallelepipeds.

Observe that each shadow is convex, closed, bounded and symmetric with
respect to 0. A shadow of K™ in L has a non-empty interior in L. Hence it is a unit
ball of some norm on L. With some abuse of terminology we define the Banach-

Mazur distance between a shadow and a parallelepiped as the Banach-Mazur distance

between the normed space correspondent to the shadow and lo%, where d is the

dimension of the shadow. We refer to [78] for basic facts on the Banach- Mazur
distance.
Convention (3.2.2)[89]: We use the term ball for a symmetric-with-respect-to-0,
bounded, closed, convex body with nonempty interior in a finite dimensional linear
space.

We say that two balls are affinely equivalent if there exists a linear operator
between the corresponding spaces that is a bijection of the balls.

A Minkowski sum of (finitely many) line segments in R" is called a zonotope
(see [279] for basic facts on zonotopes). We shall consider zonotopes that are sums of
line segments of the form [-x, x]. Such zonotopes are balls according to our

convention. Let a, ..., a, be some collection of vectors in R". The Minkowski sum

m
ZZZ:I [_al- :al- ]

will be called the zonotope spanned by ay, ..., ap.
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Construction. Subspaces L satisfying the condition of the theorem can be found in
the following way. Let G, be a two-dimensional discrete torus with n vertices. (It
means that G,=Zx*xZy, where Zy is the group of residue classes of integers modulo k;
vertices (xy, y1) and (X,, y2) are adjacent if and only if either x;=x; and y;=y, 1 (in
Zy) or y1=y; and x;=x, =1 (in Zy). We can visualize this graph drawing 2k circles on
a usual torus; k of the circles are meridians and k are parallels.)

We consider G, as a directed graph, edges are directed in an arbitrary way.

Let M,, be the incidence matrix of G, that is, an nx(2n) matrix whose rows and
columns are indexed by the vertices and edges of G, respectively, and the column
corresponding to an edge e has exactly two non-zero entries: -1 in the row
corresponding to the starting vertex of e and 1 in the row corresponding to the end
vertex of e.

We consider rows of M, as vectors in R*". LetL be the subspace of R™
spanned by the rows of M,,.

Definition (3.2.3)[89]: A matrix A with real entries is called totally unimodular if
determinants of all submatrices of A are equal to -1, 0 or 1.

Totally unimodular matrices is a very important object in integer
programming. There exists a vast literature devoted to them (see [95]). We need only
the following observation that goes back to H.Poincare : an incidence matrix of any
directed graph is totally unimodular. (See [95] for historical notes and a very short
proof.) So, M,, is totally unimodular.

Lemma (3.2.4)[89]: Let A be a totally unimodular r X m matrix of rank /. Let L be
the subspace in R™ spanned by rows of A. Let Py, be the orthogonal projection onto L.
Then

(i) PL(K™) is a minimal-volume shadow of K™ in L.

(i) PL(K™) is affinely equivalent to the zonotope in R" spanned by columns of A.
Proof. We rearrange the rows of A in order to get a matrix whose first / rows are
linearly independent. It is clear that the zonotope spanned by the columns of the

obtained matrix is affinely equivalent to the zonotope spanned by the columns of A.
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Hence without loss of generality we may assume that the first / rows of A are
linearly independent.

By AT we denote the transpose of A. Let C be an upper-triangular r x r matrix
such that the first / columns of the product ATC form an orthonormal basis in L and
the remaining columns contain zeros only. The existence of such matrices can be
shown using the Gram-Schmidt orthonormalization process. We denote by D the /%1
submatrix of C correspondent to the first / rows and the first / columns. It is easy to
see that D is invertible.

Straightforward verification shows that the product ATCCTA is the matrix of
Py, with respect to the unit vector basis of R™.

Let {X{, ..., Xm} be an orthonormal basis in R™ satisfying the following

condition: vectors{xy, ..., X l} are the first / columns of ATC. Writing [X, ..., Xs] We

mean the matrix with columns xy, ..., Xs.
We use results on compound matrices. We refer to [93] for necessary
definitions and results.

Let u={u;} be an (/" )-dimensional vector, where u; are / x/ minors of [xy, ..., X

1 Since a compound matrix of an orthogonal matrix is orthogonal (see [93]), then u

is normalized (with respect to the Euclidean norm). For the same reason the vector

v=[vi] in the (Z;_ / )-dimensional space, where v; are (m-7) X(m-/) minors of [Xx 1417

Xm], 18 also normalized.
Since the matrix [Xy, ..., Xm] 18 orthogonal, its determinant is equal to = 1. On
the other hand, by the Laplacian expansion (see [93]) the determinant is equal to
)
[
‘Z Qiul. v,
i=1

for proper signs 6; and for proper ordering of u; and v;. (Observe that (") = ( 77,

).) Sinceu and v are normalized, it implies that either u; = 0; v; for every i or u; = 0;v;

for every 1.
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Now we letn=/, O =P, and {q, ..., qm_l} = ., Xm] 1n the argument of

Xp41o
Theorem (3.2.1). We get: vol P(K™)=vol Pr,(K™) is equivalent to

|det[X1, cees Xm]|=|det[X1, cees Xl, €i(1)s +++s €i( oy )]|

X ‘ ‘ > [det[x,,, ..o X, ,ej(l),....,ej(l)]|.
M), j(HycAL,...,m}
where {i(1), ..., i(m-7)] are chosen to maximize
|det[x1, cees Xl s €4(1), +oe» ei(m—l)]|‘
In terms of u; and v ; this equality is
()
| 8
I i il

i=1
Let E be the matrix consisting of the first / rows of A. It is clear that E is

totally unimodular. It is easy to see that [x, ..., X l]=ETD. Therefore u; is equal to det

D, 0 or - det D for every 1.
To prove equality (5) we observe that max; [u; [=|det D|. Assume that u;=0;v;

for every 1 (the case u;= - 0; v; is similar). Then 1=| z ; Oiujvi [= |det D|2 o , where ®

is the number of non-zero u; 's (=the number of non- zero v; 's). On the other hand,

m
det D|* = Max |u,-|il§1|vl.|.
It proves that P (K™) is a minimal-volume shadow.

The statement (ii) can be proved in the following way. Consider A as an
operator from R™ to R". The image of K™ under A coincides with the zonotope
spanned by the columns of A in R". This zonotope spans a subspace of dimension / in
R" (because /= rank A). The operator Pi= ATCCTA: R™ — R™ also has I-
dimensional image. Therefore the restriction of ATCC" to the range of A is an
isomorphic embedding. Therefore the image of K™ under Py, is a finely equivalent to

the zonotope.
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Lemma (3.2.5)[89]: If In k > 21°C?*+3, then the Banach-Mazur distance between the

zonotope spanned by the columns of M, and the parallelepiped of the same

dimensionis > C.

Proof. Observe that the linear space spanned by the columns of M, in R" is (n-1)-

dimensional and it consists of all vectors whose sum of the coordinates is equal to 0.
Let X, be this space normed by the gauge functional of the zonotope.

Observe that vertices of the zonotope spanned by ay, ..., a, are contained in the

set {Z 109, :6; =J_rl} and that this set is contained in the zonotope. Therefore the

maximal value of a functional f over the zonotope is equal to Y’ ?:1‘ f (al-)‘ .Using this

observation we can identify the dual space X ,, of X, with the space of functions on

the set of vertices of G, with zero average and with the norm
[f+= % [f@)- /)]
U=y

where u ~v means that u and v are adjacent in Gy,.

We need to estimate the Banach-Mazur d (X, , /"}) from below. Since d(X,
Y) = d(X*, Y*) for every finite-dimensional spaces X and Y, then

dXa, ") =d(x,, 1 7.
To estimate the distance d(x : 11” ~1y) we use the approach that goes back to

J. Lindenstrauss and A. Petczynski (see [96]).
Recall that the 2-summing norm of an operator T: X—Y is defined to be the

smallest constant C satisfying the condition

n 2\ n o) ]
(_z 7| J <C sup (_z (9E) ]
i=1 i=1

for every collection {xy, ..., X,} € X. The 2-summing norm of T is denoted by m,(T).

/2

e X*,||§||£1}

Let T: Z— H be a non-zero operator, where H is a Hilbert space and dim Z = n.
The dual form of the ™'little Grothendieck theorem" (see [79]; this form of the

Grothendieck theorem [97] was proved in [91]) implies that
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12 . r
d(Z,l f)z(%] %”) (6)

So we need to find a Hilbert space H and an operator T: X Z — H with “"large"

ratio (T)/||T|l.

With this purpose in mind we introduce the norm

I =(s0en? )

on the space of all functions on the set of vertices of G,. We denote the obtained
normed space by 75(Gy).

Let I, be the identical embedding of X Z into 75(Gy).

To estimate the norm of this embedding from above we use a Sobolev type
inequality due to F. R. K. Chung and S.-T. Yau [98] (see, also, [99]).

We need the following definitions.
Definition (3.2.6)[89]: Let G be a graph. By d, we denote the degree of a vertex v.
Let X be some set of vertices of a graph G. Let vol X : =Zvddv. The number of

edges joining X and its complement X is denoted by |[E(X, X ). We say that G has
isoperimetric dimension & with isoperimetric constant cg if
IE(X, X)|> ¢ (vol X)©D'®

Whenever vol X < vol X . The constant ¢c; depends on & only.
Definition (3.2.7)[89]: A graph G is called k-regular if d,, =k for every v.

We need the following special case of [98].
Theorem (3.2.8)[89]: Let G be a connected k-regular graph with isoperimetric
dimension 2 and isoperimetric constant c,. Let f be a function on the set of vertices

of G with zero average. Then

1/2

1/2
S| - fo)ze, © (; (f(v))z]

u~v 2

Observe that G, is 4-regular. To apply Theorem (3.2.8) to G, we need to

estimate the isoperimetric constant c, for this graph. Since the author has not found a
proper reference, we present such an estimate (with the best possible constant).
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Sublemma (3.2.9)[89]: The graph G, has isoperimetric dimension 2 with constant

V2.
Proof. Let X be a set of vertices of G, with # X < k?/2. Sets of vertices of the form
{(x,0),(x,1),(x,2),..(x,k1)}
will be called meridians and sets of the form
[0, y), (L, y), (2, ¥), ..., (k-1, ¥)]
will be called parallels.

Let m; be the number of meridians contained in X and let m, be the number of
meridians intersecting X. Let p; be the number of parallels contained in X and let p,
be the number of parallels intersecting X. It is easy to see that

[E(X, X)|=2(m; - my) + 2(p2- py).
We have also # X > myk and # X > p;k. Hence m;< k/2 and p;< k/2. We have three
possibilities:
(1) Both m; and p; are nonzero.
(11) Exactly one of the numbers m; and p; is nonzero.

(i)  m=pi=0.

(1) In this case my= p,=k. Hence

E(X, X)| > 2(my-my) +2(pz-p1) 22(k _ 9 N 2(,{ . 9

12
2
=2k > 2&["7} > 242 (= X)V2 = 2 (vol X)V2.

(11) We consider the case m; # 0 and p;= 0 (the case p; # 0 and m;= 0 is similar).
In this case p,=k and
IE(X, X)>2p,=2k>+2 (vol X)"%

(111) In this case # X< mpp, and
E(X, X)|>2(mgtp) >4 [m,p, 24z )V 2 =200l x)12
Remark (3.2.10)[89]: Ifk is even and X is the union of £ meridians (or 4 parallels),

then
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IE(X, X)=2k =42 (vol X)"2.
So the constant +/2 is the best possible.

By Theorem (3.2.8) we get [ /]« >+2 %” f|, for every f with average 0.

Hence |1,]<—=.

V2
To estimate m,(I,) from below we use the approach developed by S. V.
Kislyakov [287] for continuous case.

Let p be the integer part of % We introduce a family {f § t} of functions

P
s,t =1

on G, in the following way. We consider G, as {0, ..., k-1} x{0, ..., k-1} and let

fo.(x,y)= 1 sinzﬂsx sinzﬂ—ty
S, k(s +1) k k

Observe that

 salsa Hi)“ 2

772(111)2 "
sup(S ¢ /1SS )2 g e (n o)<

So we need to estimate the quantity

cl.<1; (7)

supl(Z 1£(f )2 ¢ ey,
st
from above and the quantity
2.2
bl

from below.

To estimate (8) we observe that

12
1 k=1 . 2(27&9 ] ) 2(27” ]
=———| XY sn“|—ux|sin“|—y
2 k(S+t) x’y:() k k

12
k-1 k—1
_ 1 v sinz[zﬂsx] S sinz(zﬂty]
k(s +1)| x=0 k )y=0 k

(we use the fact that 1 <s,t < %)

fs,t

1 (ﬁ]‘”_ !
Cks+0\22)  2s+0)]
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Hence

P
L

5

2\ 11 2 "o
) >— Sty et £ 5 2—(lnk—3)l/2
2) 2(2% 3 (p+1) 2

To estimate (7) we observe that
1/2
V- ro) <25 gw-ron? ]

The right-hand side in this inequality is a hilbertian norm on (X Z) induced by the

inner product

k-1
(f,g)=2k2 'S (G +Ly)=f (gl +1Ly)—g(x,»))
x,y =0
k-1
+ > (f (x,y +D=f(x,y Ngx,y +D—gx,») |, )
x,y =0

where (k-1) +1=0.
We denote by H, the corresponding Hilbert space. We shall use (6) for H = H,,.

Since the natural embedding of H,, into X Z has norm 1, then the supremum in (7) is

not greater than

12
S“p{s% (s y) |2] LEe(H )Y, :llﬂ}, (10)

where the norm is in (H,)*.

To estimate this supremum we show that the functions are

}P
St st =1

orthogonal with respect to the inner product (9).
We have

<fs’t,fs,’t,>2k{x ;z_]zo( fo G- f )

([ (L) =f (%)
g st

Y (D= fy ()
x,y=0

<y p ey +D=f, )
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We shall show that the first sum is equal to zero (the same argument works for

the second sum also).

k-1
x,yzzo(f”(x HLY) S5 N g p (3 +Ly)=f 01 i(x,0))

1 1 k-1 . (27s 1 2rws 1 . (2nt
= > 2sin| ——— |cos X +—||sin| —y
k(s+t)k(s'+t")x,y=0 k 2 k 2 k
2rs' 1 2rs' 1Y) . (2%t
— | cos X +— | |sin y
k 2 k 2 k
4 . (27TS 1] . (27TS’ 1)
=— sin | ——— [sin —
k(s +t)(s'+t") k2 k2
k=1 (27&9 1 ] 2ﬂs’( 1]
x Y cos| ——(x+=)|cos | =——|x+=
x=0 k 2 k 2

k=1 (27” ] : (27”’ ]
X >, sin|——y |sin|——Y |.

By use of the fact that 1<s, s, t, t'< % it is easy to show that if s # s’, then the first

x2 sin (

sum in the last product is equal to 0, and ift # t', then the second sum is equal to 0.

Since the functions |/, } P

o, are orthogonal with respect to the inner product

(9), then the supremum in (10) is not greater than

max
S,t <fs,t’fs,t>'

Using the computation above we get

—2k2 1 2 k_14,227rs1
Vi Tsr) = wrn) | 2

2 1 2wt
xcosz( ™3 (x+—]]sin2(LY]
k 2 k

k-1 27t 1 2 1 2
+ > 4sin2(—ﬂt—]cos2 (—ﬂt(y+—nsin2( ﬂsx]
x,y=0 k 2 k 2 k

(we use the inequality |sin z | < |z])
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2
k-1 k-1
< 8 (ﬁ] > cos2 [ﬂ(x+l] > sin2 [ﬂy
(S + t)2 k x=0 k 2 y:O k
2
k-1 k-1
+(ﬂ—tJ > sin2 [2ﬂsx] > cosZ 2mt y+ln
k x=0 k y=0 k 2
(each sum is equal to % (since 1 < s,t < %))
2.2 2,2
el )
s+02 k) 4 (k) 4

Hence the suprema in (10) and (7) are not greater than /27 . Therefore

Lnk-3)12

N

7r2(ln)2

and

12 I B y
A, 0y gt (2 7aUn)  (nk=3)" .
ol nl I 2
7) |l J2r7

Theorem (3.2.11)[89]: Let 1< C <.0 IfInk > 27° C*+ 3, k e N and n=k?, then there

exists an (n-1)-dimensional subspace L of R*" such that the shadow P(K*"), where P

is the orthogonal projection onto L, is a minimal-volume shadow of K*" in L; and its

Banach-Mazur distance to an (n-1)-dimensional parallelepiped is > C.

Proof . Consider the subspace L in R*™ spanned by the rows of M,. By Lemma

(3.2.4) the image of K* under the orthogonal projection onto L is a minimal-volume

shadow. By the same lemma this shadow is a finely equivalent to the zonotope

spanned by the columns of M,. By Lemma (3.2.5) the Banach-Mazur distance

between the zonotope and a parallelepiped is > C.
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Chapter 4

Rank-One Perturbations of Diagonal Normal Operators

We show that two well known results about the eigenvalues of rank-one
perturbations and one-codimension compressions of self-adjoint compact operators
are equivalent. Sufficient conditions are given for existence of nontrivial invariant
subspaces for this class of operators. It is shown that if T & C1 and the vectors u
and v have Fourier coefficients {a,}n=; and {8, }n=; With respect to an orthonormal
basis that diagonalizes D that satisfy Z?{’zl(lanlz/3 + |,6’n|2/3) < oo, then T has a

nontrivial hyperinvariant subspace. This partially answers an open question of at least

30 years duration.

Section (4.1): Diagonal Operators and Rank-One Perturbations:

We let H be a separable, infinite dimensional, complex Hilbert space, and let
L(H) denote the algebra of all bounded linear operators on H If u, v € H, we shall
write u ® v for the operator of rank one defined by

u®v)x=<x,v>u, xeH

where <, > denotes the inner product of the Hilbert space H. The class N of operators
T in L(H) which can be written in the form T= N + (u ® v),where N is a normal
operator and (u® v) # 0 is still not very well understood. Indeed, even the smaller
class of operators of the above form, where N is a diagonalizable normal operator, is
not in a much better situation, despite the structural simplicity of diagonalizable
operators. In this section we are interested in this second class of operators which will
be denoted simply by D.

Similar problems concerning operators in the class N, or rank-one perturbations
of different classes f operators such as isometries, self-adjoint compact operators, self-
adjoint Toeplitz operators, shift restriction operators, cyclic operators, differential
perators, (or Volterra operator) have been studied in a series of sections of which we
cite only a few of them :[102], [103], [104]-[107], [108]-[111], [112]-[34], [53],

[114]. It is worth mentioning that the class of rank- one perturbations of bounded (or
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unbounded) self-adjoint operators has been extensively studied and many interesting
spectral properties have been established in various works (see for instance [115]-
[128], [116], [117], [16], [37], [34], [53]).

We let {en}fz1 denote an orthonormal basis for H which will remain fixed

throughout the section. We also let {1,}° be an arbitrary bounded sequence of
"' p=] ty q

complex numbers and throughout the remainder of the section we shall write Diag

({/ln }) for the unique operator D satisfying Den=lnen , ne N. We shall denote

henceforth by D¢ the subset of L(H) consisting of all operators T which can be
written in the form

T = Diag({4,}) + u®v, u#0, v 0 (1)

We shall suppose that u and v are nonzero vectors in H and their expansions with

respect to the (ordered, orthonormal) basis {e,} are

u=zanen, v=z,8nen. (2)
n=1

n=1

Note that up to unitary equivalence, Dgy consists exactly of all sums N + R, where N is
a normal operator whose eigenvectors span H and R is an operator of rank one. Note
also that the inclusion D < N is a strict one. One way to see this is to make use of
Kato and Rosenblum’ s result (cf. [118]) stating that the absolutely continuous parts
of a self-adjoint operator and its self-adjoint trace class perturbation are unitarily
equivalent.

Observe that the expression for T in (1) is not necessarily unique. If we restrict
our study, though, to the class D; of those operators in Dy which admit a
representation as in (1) with u and v having nonzero components o, and 3, for alln €
N, we have uniqueness in the following sense.
Proposition (4.1.1)[101]: If T € D, then the representation (1) for T is unique in the
sense that if T = Diag ({1, }) + (u ®v) = Diag({4;,}) + (u' ® V'), then Diag( {An) =

Diag({4,,) and (u®v) = (u' ® v").
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Proof. We may assume T = Diag({4,, } )\ H(u®v)=Diag({4,,} )+ (u'®v'). Where all the
Fourier coefficients of u and v in (2) are not zero. This means that Diag ({4,}) -

Diag({4,,}) = Diag({4,, — 2,1'1})=(u' ® V') - (u®v) has rank at most two. Thus, there

exist different positive integers n;, n, such that o :ﬂ,]’c for all k € N \{ny,n,}.

Moreover the range of S = Diag ({4, —A ) is contained in V (e, ¢, }, and so we may
1 2

have three essentially different situations. If the range of S is (0) we are done. If the

range of S is one- dimensional-say, spanned by ¢, , then since (W'®v')~(u®v) would
Yoep

have a two-dimensional range if {u, u' } and {v, v' } are linearly independent sets of
vectors, we get that either u and u' are linearly dependent or v and v' are. Let us

suppose that u and u' are linearly dependent. Then u = ¢, ¢, and u' = Bn, -en - But
1 1

this cannot happen since we have assumed that < uje, > # 0 for all k eN . Similarly
the case in which v and v' are linearly dependent is ruled out. If the range of S were

two-dimensional, then V{u, u'} = V(e ¢, }, and again we would have a
1 2

contradiction.

The next two propositions show that when looking for nontrivial invariant
subspaces for operators in Dy, one can then restrict his attention to the subset D, of Dy
consisting of those operators T = D + (u ® v) in Dy such that D has uniform

multiplicity one (i.e., if D = Diag({4, }), then all of the numbers 4,, n € N, are
pairwise distinct).
Proposition (4.1.2)[101]: Suppose T=Diag({4,}) + (u ® v) € Dy is not a normal

operator, and for some n, € N, o, = 0 or = (0. Then T* [resp. T] has point
n, ﬁno p p

spectrum and T and T* have nontrivial hyperinvariant subspaces (n.h.s).

Proof. In case ¢, =<u >=(), we have
0

e
9n0

zllnoeno +(V®U) eno =/1noen0 +< eno,u>V= /1”() eno,

T*

e
nO
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which shows that op(T*), the point spectrum of T*, is nonempty, and since T* is

non-normal, the eigenspace associated with 1, is a n.h.s, for T*. Its orthogonal
0

complement is thus hyperinvariant for T. The case g, =0 is handled similarly.
0
For a diagonal operator D = Diag ({4,,}) we denote by A(D) the set of all its
eigenvahies A4,,.

Proposition (4.1.3)[101]: If T=D + (u ® v) € D; and at least one A € A(D) has
multiplicity larger than 1, then T has A in its point spectrum.

Proof. Suppose A = )“”o =Anl , Ny # np. Then (T- L)e g =< e/lno V>u= B”o u, and (T
-A) e/lnl =< e/lnl ,V>u= Bnl u. Hence, if ﬁnogé 0 andﬁn1 # 0 then
(T - M)( Bnl e/lno - Bnoe/lnl ) =0.

In any case T - A is not injective, and then A € o,(T).
For an operator T € D; given by (1), an interesting phenomenon happens with

the isolated eigenvalues of Diag(A,,): they are not in the spectrum of T. The

following theorem gives necessary and sufficient conditions for a point u in (D) (T

=D+ (u® v) € Dy) to be in g(T) (resolvent set).

Theorem (4.1.4)[101]: Suppose we have T=D + (u ® v) € Dy and p €c (D). Then
pe g(T) if and only if the following two conditions are satisfied:

(1) nis an 1solated eigenvalue of D, lno of multiplicity one,

1 =<v,e, >#0anda, = <ue,, >#0.
()Bno n, n, n,

Proof. For the necessity part of this theorem, let us assume first that (i) is not satisfied.

We have three cases: (I)u is not an eigenvalue; (II)u is an eigenvaiue but is not isolated,

and (IID)u is an isolated eigenvalue but has multiplicity larger than 1. In the cases (I) and

(IT), there exists a sequence of distinct eigenvalues {lnk } k>1 such that lnk — 1. Then,

since
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T-n)e =(A, -we, +{(e , Vyu
(T-p) /I”k (nk vy /I"k </1”k )

we have

(T-we, <[4, -nl+ e, W[ull-0,
"k k "k
as k goes to infinity. This says in particular that T - p is not bounded below (if it is
injeetive), and then it cannot be invertible. In other words, p € o(T). In the case
III), if we haveu=A4, = A4, , then(T-p)e =(e, ,vyu=gp5, .« and
(I1I) u nO n1 ( w) /I"k ( /I"k ) B .

(T, = (€, VIu=fyu,

Hence, if Bno,;é 0 and g, .# 0 then
1
(T -w( B, ¢, 'ﬁ_n e, )=0.

In any case T - u is not injective, and then again p ec(T).

Suppose now that (i) holds but (i1) doesn't. First, if ﬂ”o =0, we get as above

(T -w e, =0,and so u ec(T). If o, = 0, then (T*—p) e, =0, and then
"o "0

ueo(T*) , orequivalently, ueo(T).

For the sufficiency, we assume now that (i) and (ii) hold. We want to show that
T - u is invertible. Since p is an isolated point in ¢ (D) and D is normal, D - u and
hence T- p, 1s Fredholm with index zero. Thus it suffices to show that p 1s not an

eigenvalue for T. If (T - p)x = (D - lno) x+ ( X, v ) u =0, then by our hypothesis,
ano # 0, it follows that (x, v) = 0. So, x = ;/eno with y # 0, and this contradicts the

hypothesis ﬂ”o #0.

We characterize now the point spectrum of an operator T in Dy [resp. D,].
Proposition (4.1.5)[101]: For AeC, A is an eigenvalue for T=D + (u ®v) € D; if
and only if

(1) p € Rang (D - L), and
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(1) ( x,v)+ 1=0 for at least one vector x eH satisfying u=( D - A )x.
Equivalently A is an eigenvalue for T = Diag({A}) + (u ® v) € D, if and only
if

(1) A ¢ A (D),

: |an |2
(iv) > AyeA(D) m <o, and

v) z a,p, —1

In€dD) A —A,
Proof. For the necessity part, let A € C be an eigenvalue for T and x eH\{0}, such
that Tx = AX Then ( x, v)u= (A - D)x. We cannot have ( X, v ) = 0 because we

0btainthen?»=il.0 X = ¢e, ,¢ €C\{0} and then ﬁi0,=<ei0,V>=% (x,v) = 0 which

is not possible since T € D;. Hence, if we write ¥ =- x,thenu=(D-A)Xx and

1
o)
( x,v )y+l=0.

For the sufficiency part, we can assume that there exists x €H such that u = (D-A)x
and(x,v ) ¥1=10. Then x # 0Oand Tx = Dx + (X,v ) u=u + AX —u =AX.

Finally, suppose (i) is valid and A e A(D) . Then u = (D- Al)x =(D - An, )x for
some xeH, and so an, = 0 which contradicts that TeD; . It follows that A A(D) and
the rest of the equivalence between (1) together with (ii) and (ii1)-(v) is now obvious.

For T=D +u® v €D, the diagonal operator D and the rank-one operator are
uniquely determined by T and so we can define the fuction Fr(z) = ( (zI-D)" u,v) ,

for z eC\ A(D). This function is clearly an analytic fuction and it can be written as a

Borel series ([119]) :

fT(z):nozil “nﬁn, z eC\A(D) (3)

~n
Corollary (4.1.6)[101]: Assume T = D + u®veD; and A e C\ A(D).Then A is an

eigenvalue for T if and only if fr (A) =1
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Proof. Since KeC\TD).part (1) in Proposition (4.1.5) 1s satisfied. Taking x = (D-
AD" u in part (ii) of Proposition (4.1.5) we obtain the corollary. The next corollary
describes the spectrum of an operator TeD, .
Corollary (4.1.7)[101]: If T=D+ (u® v ) € D, then

o(T) = A(D)Y U{zeC\AD),fr (z)=1} (4)
Where A(D) ' denotes the derived set of A(D)
Proof. In general for an operator A eL(H) , 6(A) = 6.(A) Uc,(A)Uc,(A*)*, where if
A c C, A* = {z:z e A}(cf. [120]). Since TeD,,we have c.(T) =c, (D)= A(D)". and so
by Corollary (4.1.6), one inclusion necessary to establish (4) follows. For the other
inclusion, let us assume A€o (T) = 6(T)U op (T) U op(T*)* Since o, (T) = A(D)', we
can assume that A¢c.(T). Suppose then that Aecp (T). If Aecp (T) N A(D), by
Proposition (4.1.5), A¢ A(D) and so Ae A(D)' =c. (T) which contradicts our
assumption. It follows that Aec,(T)\ 4(D)and so by Corollary (4.1.6) , fr(r) = 1.

Since fy(z) = m for all z € C \ 4(D), one takes care likewise of the case Aecp
(T*)*.

Example (4.1.8)[101]: ([121]) Let T=Diag(A,)+u®u where D= Diag(A,) and u are
constructed in the following way. First we consider a family of open disjoint (and non
tangent) disks {Dy,}nen (D 1s centered at A, and has radius r,) contained in the unit
disk D = {z €C :|z| < 1} and such that the set D \U ,ex D, has Lebesgue measure zero.
Such a family can be constructed using an induction argument, covering at each step a

closed set of whose measure is a fixed nonzero fraction of the measure of the open set

uncovered by the disks constructed at previous steps. Moreover, one can refine the

argument in order to satisfy the condition ¥ 7y <oo.

The diagonal operator D is defined by the sequence {A, } constructed above
and u is given as in (2) where o, = 1, n € N . We want to compute the point

spectrum of T. In order to do this let us observe that the essential spectrum of T is
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A(D) =D\ U, nDn. Also we need the following formula which can be proved easily

by a change of variables to polar coordinates:

Tr

if 1z —akr,
dx dy 3 z—a

b an? & +yi)

(%)
n(z—a), if |z-alkr,

foreverya € C and r > 0. Then ifz ¢ D, by (3) and (5), we have

rk2 _1 dx dy __“. dxdy — _ 1

keNZ_’lk ;kEN D(,lk,rk)z—(eryi) t'pz—(x+tyi) z

fT(Z)—

Hence, by Proposition (4.1.5) T does not have any eigenvahes zeC\D Let us
suppose that zeD\U,_y D, In this case if z were an eigenvalue for T then by

2

Proposition (4.1.5), the sum 3

- would be absolutely convergent and it would
keN z — k

be equal to 1. But using again (5), we have
rkz 1 dx dy _dxdy
3 =— 3 jo ol Ly
keNZ —ik T J'eN D(Ak’rk)z —(x+yi) 7w pz-—(x+yi)

=Z

This implies that the only possible point which may be an eigenvalue is z = 1. In fact,

2
-
under our hypothesis, z =1 is indeed an eigenvalue because > | k/l |
keN |1-
k

<ZneNrn<oo

Suppose z € D, \{A, }for some n € N and let us assume that z is an eigenvalue for T.

Then using (5) again we can compute

}’2 2 _ _ }’2 _ }’2
e =L drdy , h _z (T gyt =T+
keNZ —lk T keNkei, D(/l e )? —(x +yi) z -1, z -2, z -2,

2

This shows that z=2, + is the only possible eigenvalue for T in this case. In

1-2,

fact, it is easy to see that these values are indeed eigenvalues for T. Hence, cp(T)

2

={1, +

- :neN} U{l}.

n

A natural question which arises at this point is whether or not there exist op-

erators T € Dy with empty point spectrum . An example of such an operator was first
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constructed by J. G. Stampfli in [113], for the case when the spectrum of T is a
square. Given an arbitrary nonempty compact subset of the plane K, it is interesting
to know if there are examples of operators T € Dy with empty point spectrum and
such that o(T) = K. Next, we put together some information about the resolvent of
operators T in D, around points which are isolated in A(D).

Proof. If< A™u, v > +1 =0, then u # 0 and since S(A™ u) = 0, it is clear that S is not
invertible. On the other hand, if ( A* u, v ) +1 # 0, then it is enough to cheek that (6)

gives the inverse of S:

N

<Auy >+1
< Ay >

< Auy >+

(4 +u®v )][ A7 - (A u®A* "W =T+u®UA*)v)-

1
< Auy >

M®®A* ) - M®®UA*v)=1
+1 1

The second part of the lemma clearly follows from the first part.

For T=D+u® v € Dy we define the function F(Z) =( (ZI- T)" u, v ) for z
eC\o(T). We have the following relation between the functions Fr and fr.
Proposition (4.1.9)[101]: Assume T = D+( u ® v) € D; Then for all z eC\(c
(TYuo(D)) we have

L)
FE=20 (6)

dF. _ !
Moreover ,if § & A (D\A(D) (=4, ) . then Fr (5) = -l,d—T(cj):—(anO ﬁnoj ,
X
and if T eD2 we have
T-0'=P-—L Pude, ——e, ®D* + (7)
ano n, 0

a AR 1, Qe
( noﬁno) (k;nofl e ) ny ®en,,

where D=y g (4 —O)le, ®e,

Proof. Formula (8) can be easily derived from (7). Each e A(D)\A(D)' is an isolated
eigenvalue of multiplicity one for D, and hence by Theorem (4.1.4), T - { is
invertible. We have £ -D=¢ - T + (u ® v) and then by Lemma (4.1.9), ( (£ - T)"
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il (¢) we differentiate (8)

u, v ) +1 = 0, which proves that Fy ({) =-1. To compute y
X

at a point z different of  and take the limit as z — C

dF, .
T :hm
2 <€)

U= fr @2 T O fp

5@ im =02 f3(2) (a 7 ]—1
0 0

The equality (9) follows from (7) by a similar argument of passing to the limit as

z—>C.

As an application to formula (9) we will show the equivalence of two
interesting facts from the theory of self-adjoint compact operators. The first result
appears in [114] (see also [104]) and the second result was proved independently by
several authors (cf. [121], [122] and [123]).

Theorem (4.1.10): (i) Let {vi}ken and {uk} ken be two distinct monotone in- creasing
sequences of real numbers, each having zero as the limit point. Further assume that
(g} belongs to (v, Vi) for each k € N. Then if A is a self-adjoint compact operator
on a separable Hilbert space H having the sequence vy (k € N) as its eigenvalues
(with multiplicity one), there exists a vector x € H such that

A + x ® x has precisely the eigenvalues {uk } ken

(11) Let {vik} ken and {px } ken be two distinct monotone decreasing sequences
of real numbers, each having zero as the limit point and such that {uy } belongs to
(vks1 ,vk) for each k eN. Then if A is a self-adjoint compact operator on a Hilbert
space H having the eigenvalues vy (k € N) (with multiplicity one), there exists a
vector ye H such that if P denotes the orthogonal projection on the one-dimensional
space spanned by the vector y, the compact operator (I - P)A(I - P),qpym) has exactly
as its eigenvalues the sequence {Lik} ken
Proof. For the implication (i) =>(ii) we assume that {vi}ken, {1k} ken and A are as
in (i1) and let us take the diagonal operator D on H whose eigenvalues are {Ay} ken
where Ay = -1, A = (1+ uk)'1 -1 for k eN. Then by (i) we can find x such that T =
D + x ® x has exactly the eigenvalues {(1 + vi) " - 1} ken . We take { = A, and apply

formula (7) for D, u=v=x and nyo = 1. Let Q be the orthogonal projection on el.
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We see that (I -Q)(T— ¢ ) (I-0)|1-Oym 1s a diagonal whose eigenvalues are
precisely {—L_lg>2= {H“k} Hence, by spectral mapping theorem the operator S
uk—§ keN

=(T- ¢I)'-I is compact and has the eigenvalues {vi} xex . Thus, we can find an
unitary operator U such that U*SU = A. To finish the proof we take y = U*e; and
observe that (I - P)A(I -P) = U*(I - Q)S(I-Q)U, where P is the orthogonal projection
on the one-dimensional space spanned by y. For the implication (i1)~(1), let {Vi} ken ,
{}ken and A be as in (1). Without loss of generality, we can assume that A is a
diagonal operator with respect to the basis {ex} xen and v; =-1. Let B be an arbitrary
compact operator on H which has {(u + 1) " -1} ke has its only eigenvalues
(multiplicity one). Using (i1) we can find y: =y; € H such that (I-P)A(I-P)\q.p) m) has
precisely {(vicitD)™" - 1} wen as its eigenvalues. Let {yi:1} ken be an orthonormal
basis in (I - P)(H) with respect to which (I - P)A(I - P)\q@.pymy diagonalizes. Then the
matrix of B + I with respect to the basis {yy} ken looks exactly as the right hand side
of (7) (for D = A, A = vk (keN), C=v;, u=v and e, =1). We shall show that we can
determine the coefficients of u such that these two matrices coincide (which will give

a unitarily equivalence between the operators which admit this same representation

matrix in different orthonormal basis). Let us write the representation of B as follows
B+I=be;® yi+ X by ®y + X b,y ®y + ¥ (v, +D) 7y ®
1O NT Lo @yt 20 @t 2 Oty @

If we compare this with (7) we obtain that oy = -o;(vit1 )by, (k > 2) and then
1

. 2
2 =by= X 6 DI | @®).
. >

This will allow us to solve for a; if the right hand side of (8) is not zero. Suppose by

way of contradiction that this is not true. Then a simple computation shows that (B +

Iz = 0 where z = V=2 s +1)1§ and so B + I admits the value 0 as one of its

eigenvalues but by our assumption the only eigenvalues of B + I are the elements of
the sequence {(puct 1)'}ken. This proves that we have a solution for u € H and so by
spectral theorem A + u ® u has precisely the eigenvalues {Lk } ken.
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Proposition (4.1.11)[101]: Let T=N + (u ® v) € L(H) where N is a normal operator
and u, v are nonzero vectors in H. Then T is a normal operator if and only if either

(1) u and v are linearly dependent and u is an eigenvector for .3(aN*), where

(11) u,v are linearly independent vectors and there exist a,3 €C such that
(N *—al u =u ||2 Bv and 9)
N —aly =|p|* Fu,
where R(B)=—1/2.
Proof: We observe that the equation T*T = TT* is equivalent to
N*u ® v+ v ®N*u + |[ulf[V®V = (10)
Nv ® u+ u®Nv + ||v|[fu ® u.
It is a simple computation to check that (10) is satisfied if (1) or (ii) is true.
Let us assume that T is a normal operator. We distinguish two distinct cases.
Case I: We assume that u, v are linearly dependent. Thus, there exists o € C such
that u = av (o =<u,v >/||V||2). Since [|[v[*u ®u = |a|2||V||2V® v = |lul® v®v, if we write
® = (aN* - a N)v (= 2.3 (aN*)v), (12) becomes ® ® v =-v ® ®. This last equality
holds if and only if ® = itv for some t € R and (i) is proved.
Case II: We assume that u, v are linearly independent vectors. From (10) we get that
<x, N*u>v=<x, Nv>u, xe(V{uv})
Hence < N*u, x >=<Nv, x> =0 for every x € (V{u, v})" . which means that
N*u=aju+ apv, Nv=azu - azyv, (11)
for some a;; € C. Substituting in (10) we obtain that the aij satisfy the following
relations:
ay| =gy, apy +ay+ulP=ay, +ay +[ v =0.
So, if we write aj3 = @ and a;p = -JJul|’/2 + isy, ay; = -|V|[*/2 + isy, where s, s, € R,
(13) implies that (N*-& Du = (-||ull>/2 +is;)v and (N-a I)v = (-||v||*/2 + is,)u. Thus (N -
al)*(N - al)u = (-ul’/2 + is))(- lull/2 + isz)u which implies that s; /|Jull * = -so/|IVI[°. if
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we write t = 1/4 + (1/[u*)s?> and B = -1/2 + sign(s)) i t—% then clearly u and v

satisfy (11). (Here, we used the notation sign for the real valued function defined by
sign(x) = 1 if x> 0, sign(x) = -1 if x < 0 and sign(0) = 0.)
Corollary (4.1.12)[101]: T=D +u® v € :Dy is normal if and only if either
(a) there exist a € C and t € R such that A(D) lies on the line {z €C : J(az) = t},
and u= awv, or
(b) there exist a € C and t € R such that A(D) lies on the circle {z € C: |z - al=t},t
€ R, and
tw/lull = (D - al) (v/|IvI),

where € [0, m) is determined by the equation R(tei9/||u||||v||) =-1/2.
Proof. Suppose that (a) or (b) holds. Then either J(aD*) =t I or |D-al| = tl. If (a)
holds then (i) in Proposition (4.1.12) holds and hence T is a normal operator. If (b)
holds then an easy computation shows that (9) holds for B = tei9/||u||||v||. The two
relations in (9) alone imply that (10) holds and so T is normal.

On the other hand if T is normal then, by Proposition (4.1.11), (i) or (ii) holds.

In case (i) is true then J(aD*)u = tu for some t € R. Thus J(ad,a,)=ta, foralln
N and since a, # 0 for every n in N we obtain that A(D) is a subset of the line {z €
C:3 (az)=t} and (a) follows. If (i1) holds, we get from (9) that (D-al)*(D-al)v
=lull*lIvI® |[3|2 v , and by a similar argument as above, we get that A(D) is a subset of
the circle {z € C:|z- a|= t}, where t =|ul|[|v[||B|. Then, the other part of (b) follows
easily from (9).

It is worth mentioning that actually if A(D) is a subset of a line or of a circle
then T = D + u ® v is a decomposable operator (cf. [124]). Moreover, T has the
property (Triangg) (cf.[119]), i.e., for any pair S; — S, of invariant subspaces for T

such that dim (S,/S;) > 1 there exists another invariant subspace S; of T verifying
S1 c 82 cS 3
*  #

Another interesting question about the class Dy is whether we have the

decomposability property for operators in Dy whose spectrum is not necessarily an
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arc of an analytic curve. It is known ([124]) that every decomposable operator has the

following property.

Definition (4.1.13)[101]: We say that an operator TeL(H) has the single valued

extension property (notation: SVEP) if the only vector-valued analytic function f: G

—H , where G is an arbitrary open connected subset of C, which satisfies the equality
(T-z1) f(z)=0, z € G,

is the function identically equal to zero.

Proposition (4.1.14)[101]: Every operator T:D+(u®v)eD; for which the set C\ 4(D)

is connected has the SVEP.

Proof. Let f: G ->H be an analytic function such that (T - z I) f(z) = 0 for every z €

G. If GN(C\ 4(D)# 0 then by Corollary (4.1.6), T - z I is invertible for all ze(G\

AD))\{z €C\ A(D) fr(z) =1} and so f(z) = 0 for all z € (G\4(D))\{z e\C\A(D);
fr(z) = 1}.

The function fy cannot be identically equal to 1 on the connected set C\ A(D)
because limy,, fr(z) = 0. Hence the set {z; fy(z) = 1} is discrete and since G is
connected it follows that f is identically zero.

We may assume that actually G < 4(D). If we expand f in the basis {e,} as

> le Jfnen ,» where £, : G — C are scalar-valued analytic functions, we get

M -2) f(z) +<f(z),v>0,=0, z € G, neN (12)
If we take z = A, € G n A(D) in the above equation, we obtain that < f(A,), v>=0
for all Lye G N A(D). Since the set A(D) is dense in A(D)and G — A(D), the set G N
A(D) is clearly dense in G. Hence < f(z), v>= 0 for all z € G. Thus (14) implies that
for every integer n € N, f,(z) = 0 for all z € G\A(D). Since each f;, is a continuous
function and G\A(D) is dense in G, it follows that f;, is identically equal to zero on G
foreveryn € N and so is f.
We consider the class Dyg(D) of the operators T= D + u®ve D, for which
A(D)c D We will characterize the contraction operators in Dy(D). The following

proposition provides one such characterization and leads us to Corollary (4.1.18)
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which gives a simple sufficient condition for an operator Te Dy(D)ND, to be a
contraction.

Proposition (4.1.15)[101]: T =D + u® v € Dy (D) is a contraction operator if and
only if

|1—s<u~(s),Dv~(5) >|
s 0,1), 13
Eolre Y TeOD (13)

1 1 . :
where #(s)=( —sD* D) 2u and v(s)=(I —sD* D) 2v, or equivalently, in case T € Dy

(D)ND,, if and only if

e wii| [« kP e B
1o ¥ kKL sl s TRL S FEL e a4

Proof. Clearly T is a contraction if and only if T*T is a contraction. Since T*T is a
positive self-adjoint operator, T*T is a contraction if and only if its spectrum is
contained in the interval [0, 1]. A simple computation shows that
T*T = D*D + (D*u +|u/[*v) ® v +v ® D* u.

Hence, 6.(T*T) = 6. (D*D ) c o (D*D) — [0, 1] and so T*T (o(T*T) = c.(T*T) U cp
(T*T)) has its spectrum contained in the interval [0, 1] if and only if its point
spectrum does not intersect the interval (1, ). We need the following lemma .
Lemma (4.1.16) [101] : Let A € L(H) be invertible and S=A + (a ® b) + (¢ ® d) for
some vectors a, b, ¢, d € H. Then the following are equivalent :

(1) S is not invertible,

(i1) ker(S) # O,

-1 -1
(i1)the determinant of the matrix r<d7ab> <d7cb> is zero.

<A7lad > l+<A'c,d >
Lemma (4.1.17)[101]: Let A € L(H) be an invertible operator, and let S= A + (u ®
v). Then S is invertible if and only if < A" u, v > +1# 0, and its inverse is given by

the formula

A u®U*™V) (15)
+1

< Auy >

In particular, if T=D + (u® v) € D; and fr(A) # 1 for some A € C\A(D), we have
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(A-T)"' =

(A-D)"'=(f; (A=) (A-D) u®(A-D)*v) (16)
Proof. Since S= A (I+ (A"a®b) + (A" ¢ ® d)), S is not invertible if and only if I+
(A'a ® b) + (A"' ¢ ® d) is not invertible. Using the Fredholrn theory, this latter
operator being Fredholrn of index zero, it is not invertible if and only if its kernel is
not the (0) subspace. Hence (i) and (i1) are equivalent. For the equivalence of (ii) with
(111), let x € H be a vector such that Sx = 0. This implies that x+ <x, b> Ala+< X,
d > A™ ¢ = 0. Taking the inner product of this equation with b and d respectively, we

get the following system of equations with the the unknowns < x, b > and <x, d >:

(+<4=lap >)<xp>+ <A lep> <x,d>=0
<A7la,d ><xp>+1+<4= 1 c,d>)<x,d >=0.

Therefore if we assume that (i1) is true, then
x=—<x,b>A"a-<x,d > AT ¢c#0

and so at least one of the numbers < x, b > or < x, d > is not zero. This implies that
the above homogeneous system has a nontrivial solution. This fact is equivalent with
the statement (ii1). Let us assume that (iii) is true. Then there is a nontrivial solution
of the above homogeneous system of equations-say < x, b > = a and < x, d > = B.
Hence x =— oA a— B A™ ¢ is not the zero vector and a simple calculation shows that
I+ (A'a®b)+ (A’ c®d)) x=0or Sx = 0.

We apply Lemma (4.1.17) for the case A=D*D —t[,a=D*u+ lul*v,b=c=
v, and d = D*u, where t € R, t > 1. Hence, T*T is a contraction if and only if the
determinant of the matrix

l+<(D*D—tH) " (D*u+|ul’v),v> <(D*D—tI)'v,v>
<D*D—-tH ' (D*u+||u|’>v),D*u> 1+<(D*D—tl)"'v,D*u>

equals zero for no t € (1, o). If we multiply the second column of this matrix by [ull?

and subtract it from the first column, the determinant is the same as the determinant

of the resulting matrix

l+<(D*D—tI)"' D*u,v> <(D*D—-tD)'v,v>
<D*D—-t)'D*u,D*u>—|ul|> 1+<(D*D—tI)'v,D*u>

The (2, 1) entry can be written differently as follows :
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< (D*D —tI)" D*u, D*u > —|u||* =< (D*D —tI)" D*Du, u> — ||u* =
< (D*D —tI)(D*D — thu, u> —JJul*+ t < (D*D — tI) 'u, u>
=t < (D*D —tl)"u, u>.
If we observe that the (1, 1) entry is the complex conjugate of the (2, 2) entry, we
obtain that T*T is a contraction operator if and only if the equation (in t)
11+ < (D*D —tI)! D*u,v>f —t<(D*D —tI) y,,u><D*D- tI)'v,v>=0
has no solution in the interval (1, o). Finally, if we change variables by setting s =

11, s € (0, 1), the above equation becomes

2
l—s<(I-sD*D) ' D*uv>

:S’
<(I-sD*D)yVuu><(I-sD*D) Iy, v>

which implies (15) since both members of the above equality are continuous
functions of s and the sign of the inequality is determined when s = 0. The inequality
(16) follows form (15) taking into account the explicit form of the operator D.

Corollary (4.1.18)[101]: Assume that for T= D + (u ® v)e Dy(D) nD, the

coordinates of u and v satisfy the inequality

2 2
OZO oy | - OZO Lu <3-24220.171572876 (17)
k=1(1=| 2, 1) ) | k=10=12, 1)

Then T is a contraction operator.
Proof. Using Proposition (4.1.15) we get that T is a contraction operator if and only
if
sla() PV (s) <
1-2s Re<u(s),Dv(s)>+s*|<u(s),Dv(s)>, (18)

for every se(0, 1). We observe that (18) is satisfied if[i(1)] and |v(1)are finite
numbers satisfying

~ 12— ~ ~

O T 17 +2fEQ) | [Ty <1.
This last inequality is clearly satisfied if we have (17).

Corollary (4.1.19)[101]: Assume that T = D + (u ® v) € Do(ID) ND; is a

contraction operator. Then the following inequality holds for every se(0, 1) :
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S |a, |2 x | B |2 1 19
[;(1—“% |2)J [;(1—“% |2)J<S(1—\/§)2 )

Proof. If T is a contraction operator then we have (18), which implies that

sfE G| <t+2 @) [Fe)+ s @) [76), se©l).

This last inequality is equivalent to (19) by simple computations.

If A € L(H) and x € H we write C4(A) = Vnoio {4"x} A vector x € H is called

cyclic for A if G(A) = H. The following proposition characterizes those operators T
=D+ (u® v) € Dy for which Lat(T) n Lat(D) # (0).

Proposition (4.1.20)[101]: If T : D+ (u ® v) € Dy then D and u ® v have a common
n.i.s if and only if Cy(D) # H or Cy(D*) # H.

Proof. One can easily find all the invariant subspaces of u® v. Namely, a subspace S
is invariant for u ®v if and only if u €S or v LS . Let us assume that S is a common
n.is. for D and u ®v. If u €S we get that C, (D) # H and if v.LS, S* is nontrivial
invariant for D* containing v. Hence in this case C, (D*) # H. This proves the
necessity. For the sufficiency, we just have to observe that C, (D) and (C,(D*))" are
common invariant subspaces for D and u ® v.

The following proposition is a particular case of Bram's result [120] and
answers the natural question whether an arbitrary diagonal operator admits a cyclic
vector. For completeness we include here a simple proof of this fact which is a
simplified version of the proof of Bram's result given in [120].

Proposition (4.1.21)[101]: Let D=Diag({A,})eL(H) such that every value in A(D)
has multiplicity one. Then there exits a cyclic vector for D.

Proof. We consider the operator M,, the multiplication with the variable on L*(X,n),

where X = 4(D) andn =3y * -1 . Define V : H —» L*(X, n) by Vx = f, where

n=12 %2

fx(z) = nx, if z=A, and zero otherwise, x= x;€; + x,€; + ... € H. We have for each x €
2_ 2 _ 2 _ 0 1 2 < ® 2 2

H IVXIP= IR = x| & @F dn@) = £7, -L1a@)P=x 7 Tx, 1P,

Clearly, V is an unitary operator and VDV ™' = M,, which implies that it suffices to
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show that M, has a cyclic vector. For each n € N, denote K;, = {A4, A, ..., A,}. Since
all the eigenvalues A, are assumed to be distinct, the following system of linear
equations has a unique solution in

Co,Cly ... Cn :

A =ch+ciA. o, A =121 20
j 0" "17y no; J (20)

Let pu(z) = ¢g ,cizt...+cz" , where the coefficients ¢,, ¢y, ..., ¢, are satisfying (20).

Using this notation, (20) can by written as z = p,(2) on K,. We now construct a Borel

measure v on X with the following properties:

(1) v is a measure absolutely continuous with respect to n
(i1) j—v = ¢ 1s essentially bounded ([n]),
n

(ili) the function 1(z) = 1 is a cyclic vector for M, acting on L* (X, v).
First we choose o, = (Max i< k < n, [SUPsex|p(z)] 2)]) ' for each n e N, and

_ © 1 ;
let then V_(Sil +X " a, | 5%. Clearly, a; > a; > ... > a,, > 0. It is easy to

observe that (i) is satisfied, and in order to check the second property we take ¢ (z) =
apq 1If z=Ap, n>2,11fz =2 and zero anywhere else. Hence, 0 < ¢(z) < max{a,, 1}
= ag for every z € X. To check the third property, we want to show that p, converges

in L* (X, v) to the function

z=>7z .
_ 2 _ 2 )
j|z —pn(z)| dv(z)= | |z —pn(z)| dv(z)<2 | [F[7av(z)+
X X\Kn X\Kn
2 2
2 |pn(z)| dv (z)<2 | (/)d77+2||pn||Oo [ @dn<
X\Kn x\kn X\Kn

2
2ap(X \Kn)+2||pn||ooa0n (X \K ;)< (ay+n (X \K,) =0,
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as n — o In other words, this means that the sequence of functions z —p, (M,)I(z)
converges in L*(X, v) to the functionz —» z. From here, we obtain that for any
polynomial q €C |z| , the sequence (qpn)(M,) 1 (.) converges to z — g(z)z. Thus, the
function z — (2)* is in Cy() (M,). Inductively, we can show that z — (2)" e C,,(M,) for
every n € N. Finally, p(z,2) e C,,(M,)for every polynomial in two variables p(z,2),,

and by Stone-Weierstrass theorem we get that any continuous function on X is in

Ci)(My). This shows that the property (c) holds.

1\2

Now, we want to show that ¢ is a cyclic vector for M, acting on L*(X,n). If

f e L*(X, n) then clearly % is in L%(X, v) and hence it can be approximated by a

12

sequence of polynomials g, in L*(X, u). Therefore,

f(2)

*dn(z) =
¢,\2(Z)| n(z)

[19,(¢" = 1) " dn(2) = [$(2)] 4, (2) -

Z_f(Z) 2 (= 0
yqn() ¢,\2(Z)| W(z) = 0,

by our assumption. This proves that qu(M;) ¢'? converges to f in L*(X, n) which
finishes the proof.

Let us observe that if T=D + (u ® v) € D, we have n(T) = n (D), and hence,
since (D) is normal in the Calkin algebra, we have that 6; (D) = o, (D) and
consequently 6/ (T)=cr (T)=c (T)=c (D)=A(D)' Hence, well-known reductions of
the invariant subspace problem (see [124] for part (iii)) applied to our particular case
and together with what we have proved so far give the following proposition.
Proposition (4.1.22)[101]: If T=D + (u ® v)eD,, and

(1) o(T)# A(D)' (equivalently 1 € fr(C\A)), or

(11) A(D)' is not connected, or

(i11) A(D)' 1s a singleton, or

(iv)u[resp. v] is not cyclic for D[resp. D*], then T has a n.h.s.

When one searches for invariant subspaces for an operator T it is useful to have

a description of its commutant {T}':= {A € L(H) : AT = TA}.
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Proposition (4.1.23)[101]: Let T=D + (u® v) € Dy, and A € L(H) Then A € {T}' if
and only if there exist a sequence of complex numbers {t,},en and a positive
constant C such that

(1) for every square-summable sequence {Cy}x>; we have

2
Seal’| ¥ By, | <cxkal @1
n k>1k#n KTk k,n n
ty —tn
where Ykn ::ﬁ’ fork #n, (k, n € IN),
k n
(1) for every k €IN,
Aek =5, +ﬁkn21,21:1¢k %Y pln, (22)
where the sequence defined bY
K ~k _nzl,%;tk Byl e FEN (23)
is a bounded sequence.
Proof. The equality AT = TA can be written equivalently as
AD -DA=(u® A*v) - (Au® v), (24)
For the necessity part, let {t .} be defined by the equation Au=3 Z’:ltka x5 Forevery
integer k >1, we have < (AD - DA)ey, ex >= 0 and then from (24) we obtain
<e, A*v><u e >-<eg v><Au e >=0,
which in turn implies that < e, A*v >= ¢, g, . Hence, using (24) again, we get
— — Q0
(g =DMe, =By (tu—Au) =By nZlZ}:i;tk oty —t; Jen, k 21, (25)

which implies that we can express Aeg as in (22). Taking the inner product of both
sides of (22) with v, we obtain that sy is given by (23). To obtain the inequality (21)
we first need to observe that sy =< Aey, ex > (by (22) and so {sx} 1s a bounded

sequence. Thus, the inequality (21) follows easily from the boundedness of the

operator 4— D, where D is the diagonal operator defined by De © = Sk k € N.
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For Sufficiency, we observe that the linear operator A defined by (22) is
bounded because of (21) and the hypothesis that {sy} is bounded. Then from (22) and

(23) we get that < ey, A*v>= ¢ B, and du=Y (l)co:ltkake Using these two relations

i
and (22), we obtain (25) which is equivalent to (24).

Next we would like to combine Proposition (4.1.23) with Lomonosov's
theorem (cf. [125]) to obtain sufficient conditions for existence of n.i.s, for operators
in D,. For this purpose we introduce some more notation. Let H(U) be the set of

analytic functions on the open set U(c C). For a fixed w € U we define a linear

transformations on H(U), v —>T'(w)(.,w),by

VEIZYO) e Ly
rp)ewy=1 zeU, yeHU)  (26)
pw) ifz=w,
For TeD, given by (1), and U such that 4(D)cU we define another linear

transformation on H(U) by

B (y)(z)= f L)z .w)dv (w), zeUvwdD), yeHU), (27

A(D)

where v is the atomic measure supported on A(D) given by v=3% a1 B0

Theorem (4.1.24)[101]: Let T € D, given by (1) and Bt defined by (27). Suppose
there exists a function y € H(U), with U > 4(D), such that Bry = y and  is not
zero on A(D). Then T has a nontrivial invariant subspace.

Proof. Let us consider t, = y (A,) n € N, and let A,, be the operator A defined as in
(22) and (23). We will show that A, satisfies (21) and it is a nonzero compact

operator. By Proposition (4.1.23), T commutes with a nonzero compact operator and

then using Lomonosov's theorem T admits a n.i.s.

Suppose that A,, = 0. Then, from the proof of Proposition (4.1.23), we have

A u=y a t e ,and so t, = 0 for all n € N. By Proposition (4.1.22) we can
v ney nnon
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assume that o(T) = A(D)' and A(D)' is connected. Thus we can consider U to be the
connected component of U containing A(D)'. Hence, y = 0 on U since A(D) must
have an accumulation point in A(D)' < U (Uis connected). C\U cannot contain but
finitely many points of A(D) where y must be zero because t, = 0, neN,. This
contradicts our assumption on y and so A, is not zero.

Since y € H(U) and 4(D) < U, there exists a constant C; > 0 such that
IC(y)(z,w)| < C, for all z,w € A(D)and so, with the notation from Proposition (4.1.2)

lYkn/< C for every k, n € N, k # n. Then, using Cauchy's inequality, we have

2

) 2 2
<C Z‘an
n

et |? <cxle,

n

2

> g
k>Lk#n

k>Lk#n

> ¢, By
k>Lken K K Kn

Py

where C = C2|u|’ M. This proves that inequality (21) is satisfied. Also, the sequence

defined by (23) is bounded since {t,} is clearly bounded and for every k € N

2 k“nﬁnd,n < C V]

n>1,n#

Then, by Proposition (4.1.23) , A, commutes with T. From (23), for every k eN we

have

Sk = W(lk)_nZIZI:i;tk anﬁn?’k’n :V/(lk)_BT (W)(lk)"'akﬁkl//'(lk)

which simplifies to sy =a i B kz//’(ﬂ, k) because of our hypothesis on . Clearly,
lim, s, =0 and so the diagonal operator D(De, =s,e,,k € N) IS @ compact operator.
Since A, = D + B where B is defined by

Berzﬁ > oy,  en, k en
k anLnik "knn N

it suffices to show that B is a compact operator. In fact, B is a Hilbert-Schmit

operator since

2 2

2
= 2 |B; | > lag | ly, |* <C,
ken' K n>1,n#k k k,n

kezNHBek

which finishes our proof.
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Corollary (4.1.25)[101]: Let TeD, given by (1) such that A(D) € n . Suppose that fr
(cf. (3)) 1s bounded on C\D and let Ty be the Toeplitz operator on H(D) of symbol

(&) = £,(¢) for { € 0 D. In addition we assume that the equation Ty(y) =y hasa

solution y € H(D) which is analytic on an open set U o (n ) and not zero on A(D).
Then there exists a n.i.s for T.
Proof. The assumption on fr insures that ¢ is in L™(0 D). and so the Toeplitz

operator Ty 1s well defined. Indeed, for z e D we have fy

an B I
(%):ZZ :lozlﬁzz C’[gzomkzlch ,Where my are the moments of the measure v (

ie., m= [ ¢Kan¢)keNU(0}).So,

z — f1(1/z) is a bounded analytic function on D, and thus ¢$cL” (0 D) In fact, T is a
co-analytic Toeplitz operator. We want to show that Br and T, act the same way on

functions y € H*(D) which are analytic on open neighborhoods of n . Forsooth, if

y(z) =y Z’:Oak .k < HA(D) is such a function, we have

Tpw)e' ) =P, 0w O)=p, 5 (3 me” €D S qef)

[=0
(28)
_ H2(k,lzzomkalei(l_k_l)g) _ ngo(éomkaﬂkﬂ)emem 2.
On the other hand, if z € D\A(D) we have
Br(y)(z)= ;2;%% B, = él noz;an R ﬂ,;;_l)ak B, =
noz;an " amz" 2 em ) = kozio(noziom”awk ek (29)

The assumptions on y allows one to do the computations in (28) and (29). Moreover,
if Ty (y) = v, comparing (28) with (29) we have Br(y) (z) = (y) (z) for zeD, and so
we can apply Theorem (4.1.24) to conclude the corollary.
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Section (4.2): Normal Operators and Rank-one Perturbations:

Let H be a separable, infinite-dimensional, complex Hilbert space, and denote
by L(H) the algebra of all bounded linear operators on H. For T in L(H), we write
{T}" for the commutant of T (i.e., for the algebra of all S € L(H) such that TS = ST )
and {T } = ({T }")’ for the double commutant of T . As usual in what follows, N, R,
C, and T will denote the sets of positive integers, real numbers, complex numbers,
and complex numbers of modulus one, respectively.

We now choose an ordered orthonormal basis {e,},.n for H which will remain

fixed throughout the section. If A = {A, } e~ 1s any bounded sequence in C, we write

D4 for the normal operator in L(H) determined by the equations
DA (e,) = Men, n € N. (30)

This notation for A = {A,},.ny and D, will also remain fixed throughout, as well

the notation A" the derived set of A. By definition, we shall say that an operator T in

L(H) is a rank-one perturbation of a diagonal normal operator if there exist nonzero

vectors u=Y  ya,e,and v=>" B e in H and a bounded sequence A = {A,} ey in

C such that T is unitarily equivalent to the operator D, + u ® v, where, as usual, u ®

v is the operator of rank one defined by

(u®v)(x)=(x,vyu, x€H. (31)
The notation {o,}.y and {B,},ex for the Fourier coefficients of u and v,

respectively, will also remain fixed throughout this section. There is a vast literature
devoted to the study of this class of operators and its various subclasses (cf., e.g., the
bibliography of [101]), but almost all of these studies are concerned with the special
case in which the sequence Alies either on R or T. In fact, very little is known about

the structure of operators T = D, + u ® v when no restriction is placed on the

location of the eigenvalues A, of D,, and one of the most annoying unsolved

problems in operator theory (on Hilbert space) is the following.
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(I) Does every rank-one perturbation T=D, + u ® v € L(H)\C1y of a diagonal

normal oper ator D, have a nontrivial invariant subspace (n.i.s.),or better yet,a
nontrivial hyperinvariant subspace (n.h.s.)?

Despite the fact that Problem (I) is at least thirty years old (cf., for example,
[129] where it is explicitly posed, but probably not for the first time), it has
remained stubbornly intractable, although E. lonascu [101] addressed the problem. It
is thus natural to regard this section as a sequel to [101], some results from which we
use below.

The purpose of this article is to provide a partial solution to Problem (I) by
exhibiting a rather substantial subset of operators of the form T=D, + u ® v each of
which has an n.h.s. More precisely, our main result is as follows.

Theorem (4.2.1)[128]: Let T=D,+ u ® v be any rank-one perturbation of a diagonal
normal operator Such that Tg¢ Cly and Y neN(| oy, |% +| By, |%) <+00.Then T has an

n.h.s.
To prove this theorem, we first treat some rather easy cases and thereby reduce

the proof of Theorem (4.2.1) to the derivation of the following technical result.
Theorem (4.2.2)[128]: With the notation as introduced above, suppose T =D, + u ®

v 18 such that

(1) the map n —A,, of N onto A is injective and A" is nota singleton,
(i) foreveryné€N, o B, # 0, and
(i) ¥ _N(ay |% +| By, |%) <+ (the on trivial assumption).

Then either

(1) there exists an idempotent F with 0 # F # I such that F €{T }"”, and

consequently, T has a complemented n.h.s. (i.e., there exist n.h.s. M and N of T with

M NN =(0) and M + N =H), or
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(11) there exists an uncountable set {u: p€P} of eigenvalues of T and an
associated family {up},ep of linearly independent eigenvectors (with Tu, = pu,)
such that M = Viep {u,} is ann.h.s. for T and HOM is infinite-dimensional.

The techniques and results herein also allow us to show, in as equal [130] to

this section, that the operators T= D ,+u ® v satisfying (1)—(ii1) above but not (II) are

decomposable in the sense of [124].

We introduce some needed notation and set forth some known results from
[101] bearing on Problem (I). The ideal of compact operators in L(H) will be
denoted by K and the Calkin map L(H) — L(H)/K by n. For T in L(H) we denote
by o (T ) the spectrum of T, by 6,.(T ) [c,.(T )] the left essential [right essential]
spectrum of T, and

6.(T) =0 @(T)) =0,(T) Uc,(T),  01(T) =061(T) N (T).

Moreover, we write, as usual, 6, (T) for the point spectrum of T .

We first take note of some cases treated in [101].
Proposition (4.2.3)[128]: (See [101]) If T =D, + u® v € L(H)\C1, and there
exists ny€ N such that on, ﬁ"o = 0, then either 1"0 € o, (T) or I”O € o, (T ).
Moreover, if there exist m,, n, € N with m,, #n, such that Amo = A"O , then A"O €o,

(T ). Finally, if A" is a singleton, then {T}' contains a nonzero compact operator.
Consequently, in all cases T has an n.h.s.
Thus in what follows we restrict our attention to the class (RO) consisting of

all operators T =D, +u ® v in L(H) for which all coefficients a,, and B, are nonzero,
A ={\,}, =N 15 a one- to-one map of N into C, and A’ is not a singleton. We remark
that it follows easily that if T, =D,;, + u;, ® v, and T, =D,, + u, ® v, belong to
(RO) with T, =T,, then the sequences A, and A, coincide and u; ® v, =u, ® v,
[2, Proposition 1.1]. It is also clear that for all T =D, + u ® v € (RO), we have

Ge(T ) = cSlre(T ) = cslre(]:)A) =A".

The following proposition gives very useful necessary and sufficient
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conditions that a number A € C belong to o, (T ).
Proposition (4.2.4)[128]: (See [2].) Let T=D,+u® v&€(RO). Then a point peC is
an eigenvalue of T if and only if

D neA,

ap \2

neN‘ﬂ_jw‘z

<+ (which 1implies by the Schwarz inequality that

Moreover, if u € o,(T) [respectively p € o, (T *)], then the eigenspace associated

with p [respectively pn]is spanned by the single vector Y e [respectively

o
N (/,t—ﬁn )en

B
ZneN(ﬁ_nn)e ]a

and so is one-dimensional. Finally, (A\A ) No (T ) =@ (i.e., all isolated points A, of

the set A lie outside of 6 (T)).
We observe that the last statement of Proposition (4.3.4) can be proved in two

lines by noting that if A, is isolated in 4, then (D,— A,) (and thus (T — X)) is a

Fredholm operator of index zero, and hence necessarily either A,€c, (T ) (which is
impossible by (a)) or A,€ C\c (T).

One might expect that an arbitrary T in (RO) would satisfy 6,(T) Uc, (T *) %)

(and thus trivially have an n.h.s.), but that this is false has been known (in the case

D,= D*, ) for at least fifty years (cf., e.g., [3]). Perhaps the first example of an

operator TE(RO) such that A' has positive planar Lebesgue measure and 6,(T ) =
was given by Stampfli [131].
Before turning to more serious business, there is one more easy case to

dispose of by using the Riesz—Dunford functional calculus and elementary Fredholm

theory.
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Proposition (4.2.5)[128]: If T=D,,+u®v&(RO) and either 6.(T)(= 6, (T)=A") is not
connected or 6 (T) # o.(T ), then either conclusion (I) or (II) of Theorem (4.2.2)
obtains.

Proof. Suppose first that 6.(T ) is not connected. Then, either (1) o(T) is not
connected, in which case the well-known argument consisting of integrating the

resolvent of T about a curve surrounding a separated part of ¢ (T) produces an
idempotent 0 #E # 1; in {T}", or (2) o (T) is connected, from which one deduces,

since 6.(T) 1s not a singleton, that o (T) must fill at least one hole H in o.(T), and

(via the normality of D,) H necessarily has associated Fredholm index zero. Thus

every point p€ H lies in op (T) and p € o, (T *). 1t follows easily (see Proposition
(4.2.9) where the needed notation is available) that conclusion (II) of Theorem (4.2.2)
holds.

Now suppose that o,(T) is connected but o(T) # o .(T ). Then clearly either

o(T) contains an isolated point, in which case{T}" contains a nonzero idempotent as
above, or ¢ (T) is connected but fills at least one hole in ce(T), in which case (II) of
Theorem (4.2.2) holds (again via Proposition (4.2.9).

Our first order of business is to delineate a class of operators of the form 7' =

D, + u ® v with which we shall be concerned in the remainder of the section. In

view of Proposition (4.2.5), to establish Theorems (4.2.1) and (4.2.2), it suffices to
deal with those 7 in the subset (RO); defined as follows.

Definition (4.2.6)[128]: Suppose T=Ds+u®v € (RO) cL(H). lf 6 (T ) = ce(T)
(= A"), o (T) is a (perfect) connected subset of C, and the sequences {a,},cn and

{IBn } neN SatiSfy

%

3<+oo > ‘ﬂ 7
’ neN|["n

<400, (32)

2 ne N‘an
then T will be said to belong to the class (RO),. Note that for
Te RO), 06, (T)Co(T)=A""

The development of the techniques and results that will eventually yield the remainder
116



of the proof of Theorems (4.2.1) and (4.2.2) now begins.

Definition (4.2.7)[128]: For T =D, + u ® v in (RO),, we define y, =max{|a,, |B,/}>
n € N, and set

=%y, " (<+o). (33)

neN
Moreover, for { € C and s > 0, we define the open disc D((, s) by

D(.s) ={r € C: A —=([<s},

and, in particular, we set, for every r > 0,

2
A= U D7y r). Ap=C\4,. (34)
neN
and
Ay = A
0 rL>JO "

2
Denoting planar Lebesgue measure on C =R by m,, we obtain that

4 4
mz(A,,)S > ﬂynérzzﬂrz > ;/né
neN neN

Proposition (4.2.8)[128]: Suppose TE€(RO) has the property that o, (T)N A, is
uncountable (which, of course, is true if 6 (T ) fills a hole in 6e(T )). Then T satisfies

conclusion (IT) of Theorem (4.2.2)

Proof. Since o,(T) N A, is uncountable, there exists ry = 0 such that 6, (T) N A
is also uncountable, and thus contains a perfect set P . For p € P, u, spans the
eigenspace of T corresponding to u (by Proposition (4.2.4), and since (u,,v) = —1,

by taking complex conjugates we get <17”,u>= —1. Thus by another application of
Proposition (4.2.4), we see that uEo,, (T *) and vy, spans the associated eigenspace.

Partition P as P=P,U P,, where P, is countably infinite and P, is uncountable, and
set M=V ,cp, {u,}. Note that since each one-dimensional space Cu, is an n.h.s. for

T, so is M. Moreover, the computation
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‘u1<uﬂl"7#2>:<Tuﬂl"_}#z>:<u/‘l’T*‘7ﬂz >:‘Ll2<uﬂl"_}ﬂz>’

valid for all u, € P, u, € P,, shows that u TR for all such py,, w,. Thus, for

uw € Py, v, € HOM, and since these v, with @ € P, are linearly independent, we

see that HOM is infinite-dimensional, and thus T does, indeed, satisfy (II) of
Theorem (4.2.2).

Note that this result also completes the proof of Proposition (4.2.5) Because

of the frequency with which notation such as (Dsy — Aly) or (Da — Alp) ~loccurs

below, we shall henceforth simply use the slightly simplified notation (Da— A) for

(Da—Aly), (Da— k)_lfor (Da— MH)_I, etc., where the inverse maps make sense (as
possibly unbounded, densely defined, linear transformations) whenever the respective

maps are injective.

Lemma (4.2.9)[128]: Suppose T =D, + u® v € (RO); and r > 0 is fixed. Then for

every A € A, we have u, v € ran(D, —A) Nran (D,* —1), the vectors

u =(D, —A) -1y, v, =(D, —X)_lv,
iy :=(DZ—7:) _1u, vy = (DZ—}:)_IV,
(35)
are nonzero and satisfy
max || wll, [vill, 1y Il [V, [[< e1 /1, AEA, (36)

Proof. Calculations show that, providing the two series converge, we have

2 2

_ a, _ B,
s =1 2;1_—%2”)’ A Z;W>0
and the result thus follows immediately from the inequality
max {|ay, |2|€n |2} g yf4 _c} g JeA
neN  [A- 2, neN o, B T r

Lemma (4.2.10)[128]: With T= D ,tu®v&(RO),,r> 0 fixed, and u,, v,, iy, ,Vv,as

in Lemma (4.2.9), each of these four functions (of A) is strongly continuous on A, .
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Consequently, functions of the form A —(u,, v, ) are also continuous on A,.
Proof. The equality

2
|0‘n |

1
2S 2 Z yn% NEN’
”2N|l—ln| r= n=N

shows that the partial sumsy ,’,Vl( /ﬁ’i jen (which are clearly strongly continuous
n

functions of A on A, ) converge uniformly there to u,. This establishes the strong
continuity of u,, and the arguments for the other functions are similar.

Definition (4.2.11)[128]: We write(RO), for the set of all Te(RO); such that ¢, (T
)N A is a countable set, and note that to complete the proofs of Theorems (4.3.1)

and (4.3.2), it suffices to show that each T € (RO), has the appropriate properties.

Proposition (4.2.12)[128]: Suppose T = Da + u® v € (RO),,r > 0 is fixed, u, v,,

iy, and v, areasin Lemma (4.3.11), and we define

0 =1+, v)=1+{(Dxr—2) _lu, V), AEA,.
(37)
Then for every compact subset K — A, such that ¢}, does not vanish on K,

A e K, uveran(T-X) Nran(T* - 1),

each of the four function
ul =T -7, vI=@-ah,

_ O _ *  —
al = -2, L= -0,

is strongly continuous on K (where here again, the linear transformations (T-A)~1 and

(T*—K )| are possibly unbounded but densely defined), and there exists g, = 0 such

that
T

2 2 b

T —_T| (=T
‘(pk‘ >, Hu7L Y V;\“ < cl/rgK’r , LeK, (38)

Proof. We treat only the case of »! ; the arguments for the other three functions

are similar. Clearly
(T =My, =(Da My, +(uy, viu = Q,u, Ae A, (39)
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and we know from Proposition (4.2.12) that ¢, 1s continuous on A, . Since ¢; does
not vanish on K, there exist 0 < gg, < Mg, < o such that &g, < |ps| < Mk, on K.

Moreover, (39) yields

T _ 7 -1, _
uy =T —-4) u—(l/(bl)ul, rLek, (40)
which shows, via the continuity of (p;fl and strong continuity of u, on K, that « 5

is strongly continuous there and also, via (45), that

||uﬁw I< ¢ /reg, foralld e K.
The following result is established by some calculations closely resembling those in
Lemmas (4.2.9), (4.3.10), and Proposition (4.2.12), so we only sketch the proof.
Definition (4.2.13)[128]: For T =D + u ® v € (RO), and r > 0 fixed, we write D

= | MdE (so E is the spectral measure of D,), and for every x € H, we define the

extended real number c,€[0, +o], by
i = % ocen) 5,
and the set L — H as
L:={xe H: ¢, <+oo}. (41)
Theorem (4.2.14)[128]: For Te(RO), and r> 0 fixed, the set L in (50) is a dense
linear manifold in H, invariant under D, D*, , T, T*, (D*, - X)_l, and (D*, - A
YL for every A € A,. Moreover L contains u, v, the basis vectors {e,},.n, and is

invariant under every value of E. Furthermore, for every compact subset Kc A, on

which @) does not vanish,

Lc N (ran(D A~ M) Nran(T —A) N ran(DZ —0) Nran(T *-1)),
reK

and, upon defining, foreachx e L and A € A, ,

o vl — ._(p*_n1
xﬂ,'_(DA A) “x, xﬂ,'_(DA A) “x,

o=@ -7, =@ -2, (42)
we obtain, for all x € L and A €K, that the four functions in (51) take values in L,

that
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. . - T _ 1 —
Xy i=x, <x,v/l >ul =X, ¢ﬂ, <x,vl >ul, rekK (43)
where @, is as in (37), that

5

Hxl fl‘écx /r, reA,, (44)

and that

xﬁ x_g <(ex 1) +e I/ e,)  AeA,, (45)

2

where ex, 1s a lower bound on |p;] on K. Finally, for every xeL, each of the
functions appearing in (42) is bounded and weakly continuous on K.

Sketch of proof : It is clear that L is a linear manifold invariant under every value
of E, and that L™=H follows because every xeH with only finitely many nonzero
Fourier coefficients (x, e,) belongs to L. Thus {e,},.n < L and earlier calculations

showed that u, veL. For each x € L, we calculate

2

2 D* __1
R

=|7;
e e ) e
5, <3

= < =X <40, AeA (46)
neN |i—ﬂ,n|2 neN ,/27,% r’ r

2 1
:H(DA _a)

H"A

so Xx € dom(Dy - X)_l, L is invariant under (D, - 7»)‘1 and (DZ —2) " (for
AeA)), x € ran(Da — A) N ran(DZ —~1), and |[x,| , H)_C/IH are bounded by c, /1, as

desired. Moreover, for A € K almost the same calculation shows that L is invariant

under D D* T, and T *, and the weak continuity on K of the four functions in

A>TA”
(42) is established by an argument like that in Lemma (4.2.9). Next, (43) is verified
by a calculation similar to (40). Then, by (43) and what has already been shown, for
A € K, L is also invariant under (T - A7l and (T = )1 Finally, (46) follows
from (43), (46), (36), and (3113), where g, is as in (38).
We shall need one additional easy lemma.

Lemma (4.2.15)[128]: Let T =D, + u®v € (RO),, Ae{T }', r > 0 be fixed, and

let ?#K < A, be a compact subset on which ¢ does not vanish. Then for every xeL
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and LeK, (T- A)"1 Ax is well-defined and (T - 1)1 Ax = A(T- 1) 1x. Consequently,
(T- 0"l Ax is bounded and weakly continuous on K.

Proof. We know from Theorem (4.2.14) that for xeL, and AeK, x;j =(T -2l x
is well-defined, bounded, and weakly continuous on K, and therefore so is A(xﬁw )=

A(T - X)_lx. Moreover, since A(ran(T - A)) < ran(T - A) for every A € K, (T -
A)~L Ax is also well-defined, and a trivial calculation shows that
A =(T -V TAx=AT -V Ix=uul), xeL,reK @)
We are now almost prepared to write down some integrals that will be needed
to complete the proof of Theorems (4.2.1)and (4.2.2) (for an arbitrary T in (RO),).
We will use without further comment the notation, definitions, and results of this
section, and we shall need some additional notation and a standing convention.
Recall that if I' < C is a simple, closed Jordan curve in C, then according to the
Jordan curve theorem, C\I' consists of exactly two disjoint open connected sets which
we shall denote by Int(I") and Ext(I"), with Ext(I") being unbounded.
Standing Conventions (4.2.16)[128]: Thus far, for T= D,+u ® v € (RO),, no
assumption has been made concerning the size of ||T|| or the location of ¢ (T ), and

the significance of this work is that none is needed. Nevertheless, to simplify the

notation in the plane geometry to be undertaken below, it will be convenient in what
follows to, first, recall that 6 (T ) = Aisa perfect connected set, and thus has diameter
d > 0, and then to replace D, and T by (D, and (T for a suitable (e C\(0) (which
will have no effect on the validity of Theorems (4.2.1) and (4.2.2) or any other
result to follow), so that every Te(RO), under consideration satisfies the following
standing conventions: ||Dy||, |[T]| <1,
—1 <a:=min{Re(A): A € 6 (T )} <b :=max{Re(A): A e c(T)} <1,

and all r>0 under consideration satisfy re(0,min{1-||T||,(b- a)/(4c])}). Note that
these conventions ensure that A.cD. Moreover, we write p(T ) := C\c (T ), the

resolvent set of T, and since
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A L

one knows that the function A—(T- 1)~ is analytic and norm-continuous on p(T )

and bounded in C\D. Also we shall denote by P the projection of C =R2 onto R

C. For r > 0 fixed, it follows immediately from the definition of the set A, in

(4334), the connectedness of o (T)= A, and the standing conventions, that P (o
(T))=[a, b] and that P(A,) is a union of open subintervals of R of total length at most

2

ay _NYn ’ (=2rc}). Therefore
IT,=@b\[P(Ar) U (op(T)nAg)]

and I1. has (linear, Lebesgue) measure larger than (b —a)(1 -r¢;)> (b —a)/2 (since
op (T) N A, 1is a countable (perhaps void) set). We note that an important and needed

property of II; is that for every se Il;, the vertical line x =s lies entirely in A,. We
also will use the fact that the subset II; consisting of all points of Il, with Lebesgue
density 1 has the same linear measure as does I1.. Consequently, I, is dense in I1,,
and for each se II,, there exist monotone sequences {s, }, .y and {s;{ b oen 10 11,
witha < 5, <s < s; <b,suchthat s; 7 sand s} \s.

The following result, whose proof is long and is, in particular, given in a
sequence of five steps, implies (what remains to be proved to establish) Theorems
(4.2.1) and (4.2.2).

Theorem (4.2.17)[128]: Let T=D4s + u® v €(RO),. Then, with T and r > 0 as in
the standing conventions, for every s € I1,, there exist two nonzero idempotents F;
e{T}",j=1,2, such that F"+ F,=1y. Furthermore, for all s, s e II, with s # s', and
for j=1,2, F; ;«tF]‘-9 .

Proof. The proof will be given in several steps.
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Step I: Since T satisfies the standing conventions, we have ¢ (T )uc (Da) = A" U A
c D. We fix an arbitrary s e, < (a, b), so the vertical line segment /; < D™ defined
by

= (s+it:—~(1-8) " <t< (1-8)
lies entirely in A, N D™ and has endpoints on T.
We next construct two positively oriented, piecewise smooth, simple closed, Jordan

curves I7,I; c Tul as follows. Let FjS, Jj=L2 consist of the line segment / together
with an arc ajS of T (each properly oriented), where

aIS :{eig eT:Re(eiQ)Ss}, af :{eig eT:sSRe(eiQ)}.
Note that both T'S and I'contain /; (with opposite orientations) as a subarc and
are compact sets. Thus T = a> U a5 < p (T ) N p (Da), so the resolvents R, (T ) = (A -
T)~! and R, (D ,) are analytic in a neighborhoodof T = a’U a? . Since Iy UT (=
'S UTY) is a compact set on which @, does not vanish, we see that for every x € L

(the dense linear manifold of Theorem (4.2.14)), the functions X, ,ix , x}:, i{ and

<x,17 A>u£ from Theorem (4.2.14), as well as all functions (Ax)ﬁw as in (56) where A

e {T }', are bounded and weakly continuous on /g U T. Therefore, these functions

are weakly measurable and (since H is separable) strongly measurable on 'S UT?.

Consequently, the vector-valued integrals

1 1
Ex:=— [(A=D, ) 'xdr =—— [x,dA |, xel,j=1,2, 48
MmO [ i L2 ] = )
J J
and
S 1 -1 1 T .
FPxi=—— [ A-T) xdA |=—-—[x,dA|xeLlj=12, (49)
J 2ri rs 27“1“5. A
J J

exist in the strong topology on H, and from (57), (58), and (52) we get

124



1 — T
FPx=ESx +— X,V u,dr
J Jo 2mi rjs< A ) A
1
= ESx +— Toxv, Yu,d\ xeL, j=12. 50
JU o 2mi yﬂ« (X7 0w g 0

Moreover, with D, =] AdE, as in Definition (4.2.13), so E is the (purely atomic)

spectral measure of Dy, it is easy to check (for example, by computing the weak

integrals <EjSX, e,) for xeL) that

Fjsx =E(1nt(rj.))x, E;x <[x], xeL, j=L2, (51)
and hence from (50), (51), (36), and (38), we obtain that
Fj?'x s(1+cf/(r23k’r)) x|l xeL, j=1.2, (52)

where [¢,| > g¢, on K = I’ UT'Y as in Proposition (4.2.12). Since it is now obvious

from (48) — (52) that E; and F; ,j =1, 2, are bounded linear transformations defined

on L, we may extend them by continuity (without changing the notation) to be

elements of L(H) (but the equalities (48)—(50) obtain only for x € L), so
ES=E(In(T})),  j=12,

and since A cInt(T"S ) UInt(T"Y ) and Int(T"5 ) N Int(T5 ) = ¢,

S S _ A S _
EY +E5 =1,  E].E5=0. (53)

Since, by Theorem (4.3.16) , Ejs L cL, we also get from (62) that

=S s s S
L=EJL+ESL, E{L LE3L, (54)

the direct sum of the indicated mutually orthogonal linear manifolds. Moreover, since
for x € L, in the integral (F' + F,')x the integrations along /; cancel one another, we
get immediately that
F +F x _ 1 [(A-T)'xdA, x €L,
2ri T
and since ¢ (T ) — D, we see that also, by the Riesz—Dunford functional calculus,

FS 4 FS =1 (55)

o
Therefore to show that F" and F, are idempotents, it clearly suffices to show that
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F'-F, =F;.F'=0.
Step II: We expand the set of x € H for which (49) is valid, as follows.
Lemma (4.2.18)[128]: With Te(RO), and r and s fixed as in Theorem (4.2.17), let

L'> Ldenote the set of all x in H for which the function x%: =(T -0 "Ix is well-
defined, bounded, and weakly continuous on I} U TI,. Then A(x%: yeL' for every
xel and every Ae{T }'. Moreover,

Fix :L, [O-T)"'xdr xeL,j=1,2, (56)
J 21 s
J

and

FEA=AF, AT}, j=12
Proof. Obviously the hypotheses guarantee that the integral in (56) exists, so we fix
XoeL'and, via the density of L in H, let {x,},.nC L be such that ||xn - x0|| — 0.

Then from (49), we have

1 _ :
FJ'SX"ZT J(A=T)"'x dA, neN, j=12,
Tl s
J

and since F’ € L(H), clearly ‘

Fx, —F;'xOH — 0 for j=1,2 (so the sequence {||Ex, I|,.v}

is bounded). Thus it suffices to show that

S 1 -1 .
< ijn,y >—><% r{'(ﬂ,—T) xodl,l>, yelL, j=12.
J

But, forj=1,2,andy € L,

S /1 B
< Fj xn,y >—<% rjs(i—T) xndﬂ,,y>
J
:L_ <(A—T)-1xn dﬂ,,y>d&, ne {0} UN,
27Tll_s
J

since the integrals in question are limits of finite (Riemann—Stieltjes) sums, and

moreover, the convergence
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now follows from the fact that the sequence of continuous functions { xn,)_/%j ) FneN

(on F’) con- verges uniformly on F° to ( xo,yf ). Next, note that by Lemma

(4.2.15) (= (Ax) /Tl yeL', and thus from (56) we obtain that

S 1 ) 1 .
F’ Ax :FI(A—T) 'Axdlzr [AA-T)'xdA

s Tl s
J J

=AF’x, xeL, Ae{lV j =12, (57)
so F° commutes with {T }" as desired.
Step III. We formulate the penultimate step of the proof as follows.
Lemma (4.2.19)[128]: With Te(RO), = and r, s fixed as in Theorem (4.2.17) we

have that for j = 1, 2, and each fixed { € Ext(T’;) there exist operators B; (), 4; (¢
) in L(H) with B; (¢ )e {Da}, 4 (¢)e{T} such that

B;(E)D,=C)=E;(=E(Unt(T7})), A(CNT-¢)=F;,§ebxt(T}),j=12.
Moreover, for eachx € Land j=1, 2,

, 1 _
Bi(¢)x :Tj(g—z,) 'x dA, (58)
Ty s,
j
, 1 _
A3 (&)x :Tj & -2)"x"da, (59)
L
o
and B (. ) x, 4;()x : Ext(ri. )—H are analytic (vector-valued) functions.
Furthermore, F; is an idempotent different from 0 and 1, M; =ran(F;) is a
nontrivial hyperinvariant subspace for T, and
o(T |M$)cInt(T)UTS (= C\Ext(I)),j =1,2. (60)

Proof. We give the argument for j = 1; the other argument is essentially the same. Fix

¢ € Ext(T?). It is clear that the functions A — (¢ — L) ' x, and A — (& — A) x%: are

bounded and weakly continuous on I , so the integrals in (58) and (59) are well-
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defined for each x € L, and thus we define B ({)and 4; (¢ ) on L by (58) and (59).
(We note here that since D, = [ A d E, one could also define B} (¢) by using the
functional calculus for the normal operator D4, but we need both B (¢ ) and 4, (&)

to be written as line integrals so we can compare them later in the proof.) We shall

first show that B;(¢ ) is bounded on L, and thus extends to an element of L(H), and
then use this fact to show that A4’ (¢) is also bounded on L. First, since L = E L +
E;Land (DA -¢) E LcE LcL,j=1,2 (via Theorem (4.2.14) and (51)), we

compute, with x =x, + x, € EL + E;L arbitrary in L,
s 1 -1 -1
B (eXD —C)xk—mil_rg(é“—l) Dy-A) Dy -ECxkda,

- ] (C—l)_l(DA ~A+A=¢)D ~ ) xkda,
2ri 1"}?,

i _
—ESxk ———[(A=¢) xkd A,
2ri

:Elsxk -0, k=12,

x4, if k=1,
_re 7 (61)
0, ifk=2

where the next-to-last equality results because the function A — (/1 - ¢ )_1x is
analytic on a neighborhood of the simply connected region I U Int(I7 ). Since (],
— ¢ )| E/yis clearly invertible

(D~ OB () ~(DJE &) E1x=0, xeL.
Therefore for all £ € Ext(T} )\4, we have

B(C)x=(DJE -¢) Ex  xeL.

But from (58) the left-hand side of this last equalityiis analytic (in ¢ ) on Ext(T} ), and
obviously so is the right-hand side. Therefore that equality holds for all ¢ in Ext(I}
). In particular, B/ (¢ )extends to a bounded operator in L(H) satisfying the same
equation for each ¢ in Ext(I; ) and every x in H.

We now show that As (¢ )| L is bounded on L, first by computing, using (43),
(58), and (59):
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S =—— [ (-2} IR P e i P
AGQR =5 [ €A whdA=S (€ =) 4 (e TAWA A,
J

1 ~1-1,-1, —
:B}‘.(g)x :mrjs. C -2 ¢, (x.mAurdA,  xel

J

Then, using (45), we obtain (with K =T7")

a3 < {HBT@)H +/(ZekrdistCI)} x|, xeL.
Thus 4 ({) is bounded on L, and extends by continuity to an operator in L(H). Recall
that from (58) and (59) we also obtain that for x € L, the functions 4 , B/ : Ext(I} )

— H are analytic on Ext(I}). Moreover, that 4’ (C )e{T}' is immediate from the

computation

AOTx = [ (€-n 10" Txa
mirs
J

_ LT
=5 lis TE-2) Xy dr
J
ZTAi(C)X, xeLle Ext(ri) (62)

which is valid since TL cL < ~, _i ran(T -1). Next, we calculate

AOT-0x = [ -0 T-07xan
mirs
j
S NG Y I Be 0 S
2niTs
j
S B
1 2mi ¢
1
=F1Sx, X eL,é‘eExt(Fi),
since the function A —» (4 — {)~!x is analytic in a neighborhood of the simply

connected region ITU Int (I'7) Hence

(T-0) 4Q)=4CNT-0)=F, CeExt(I}), (63)
and we observe that this (together with its counterpart for j =2) shows that both F’
and F, are nonzero. For instance, if 7, =0, then F'=1H and (62) give that ¢ (T ) N
Ext( F") =@, which we know to be false since s € II';, and there exists a pointy € c

(T ) < D such that s <P (Ay)<b.
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Step IV. In this step we show that F* F,” (which equals F" F,;’ by Lemma (4.2.18)) is
the zero operator, which simultaneously shows that F’and F, are idempotents. To
accomplish this, however, and also for use in the sequel [130] to obtain the
decomposability of the operators in (RO),, we must introduce some additional
machinery.

Since Te(RO),,T has the single-valued-extension property (SVEP); i.e., if @
# G < C 1s a connected open set and w : G — H is an analytic (vector-valued)
function such that (T -A)w(A) =0 on G, then w =0 on G. (Indeed, if G N o (T ) =0,
this is trivial.

Otherwise, let [ be a vertical line with [ NG #@ and P ({)ell’,. Since op (T

)N TIL =@, w =0 on | N G, which contains an open interval, and thus w =0 on G
via the analyticity of w.) This makes it possible to define for every x in H, the
local spectrum oT (x) co (T) of T at x to be the (compact) set C\pT (x), where py
(x), the local resolvent of T at x, is defined as the (open) set consisting of all A, € C
such that there exists an open neighborhood N, (x) of A, and an analytic function x;,;:
N,, (x) — H satisfying (T - 1)x,y (A) =x on N, (x). The SVEP guarantees the
uniqueness of x,, , and therefore one has an analytic function x; (A) defined on pT (x)

such that (T = A),; (1) =x on pT (x). It is well known (cf. [124]) that o (x) =0 if

and only if x =0 and also that 6, (Ax) c oy (x) for every A € {T } . In particular,
(Fx)coy(x)co), xeH, j=12, (64)
and using Lemma (4.2.19) (see also (63)), we obtain
AT -Ox=T-OAx=F'x, (eExt()xe)xeH, j=12
The analyticity of AS (")x on Ext(I" 8), together with the definition of local spectrum,
gives
o (Fix)cl Ulnt (T), xeH, j=12, (65)
and putting (64) and (65) together, we get
o, (Fix )< o, (x) N (I, uint(T)), xeH, j=12, (66)

To complete the argument that F° and F; are idempotents (for each s € [1)), it is
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convenient now to fix s €[I. and introduce monoton sequences {s, },ey and

{s; ey in I1 such that s; 7 sand s;; \vs. Since s was completely arbitrary in [T,
all of the preceding results are valid for s Thus we obtain from (66) that
o, (F'FY x)co, (F'FS x)n(l, ulnt (T})),
<y, v (T3 ), Ulnt (TY))

=¢,x e H,.neN

Hence, by what was said above, FSF;" =0 for each neN, and to complete the

argument that F°F; =0 we shall show that the sequence{Ff'7} =0 converges to F;
neN

in the weak operator topology (WOT). For this purpose we note, that

K =T} vl , ') is a compact set, and thus (52) with K replaced by K gives that

the sequence Fgf is uniformly bounded. Thus it suffices to show that

<(F2SF25"+ e, .e, )> —0,k,meN.

Next we use (50) and (51) to write

Fje, =E(nt(I')))e, +G,e meN,

m?

Where

s _ 1 -1 -1 _ ﬁ_m -1 -1
Ge, = — [0 (D =2) e, uju,dd = [ 9} (3, = 2) u,d A,

and similarly for F25'7em ,neN Since it is obvious from the definitions of the Jordan
loops I} that

U, Int (T5) = Int (T)

s
2

.
Sy

the regularity of the spectral measure E gives us that £ — E_ in the strong operator

topology, and thus what remains is to show that

1 7 -1 -1 -1
e Rl IR A R
LI B o7 la-2 yla-1ylan
ot} ZI Ny By by A=) =2y
S

S
n
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_(GS —GSh
_«62 G2 y%rek)—»o. kmeN, (67)
where the arcs ,a;; ,lS, and [, are all properly oriented to agree with their

definitions at the beginning of Section this . Moreover, since S > §,5 —> §,> and

7 4—1 -1 -1
(@ B85 G=r ) a-2)

— . . S . S 2 S
S(‘ak m‘/ek’r)(l/mm{dzst(ﬂ,k’Fz),dzst(ﬂ,m,FZ)}) AedS k.meN. (68)

it is obvious that the first term on the left side of (67) tends to zero as s,/ — s. On the

other hand, if the line segments / and [/, are parameterized as at the beginning of

n

the proof of Theorem (4.2.17) the second term on the left-hand side of (67) becomes

akﬁm s ¢—1 -1 v Vsait—a vl
Tor | A G A SHA)

— 1—s2
1—g +2
n
[ .(s;+it—im)_l(sgﬂt—ik)'ldt
+2 s +1it
1-s
n

v | (w@)—x @)y, ())t,
O [—\/1—sl‘:2.\/1—s22 "

Where
v =g, (s+it=2,) " (s+it=4)",
and the functions ,, (t ) are defined analogously. Since 1 and the ,, (for n large

enough) are uniformly bounded as in (68), and {Y,},.n converges pointwise on

—[V1-5%,v1-5?|to ¢ convergence in the WOT of {17;'7} to £, follows, for

neN

example, from the Lebesgue bounded convergence theorem.

Step V. To complete the proof of Theorem (4.2.17), we first notice that from

N
Lemmas (4.2.18), (4.2.19), and Step IV, we know that for eachs € IT'r, F* and 2
are nonzero idempotents in {T }”, and therefore that for all such s, ran( £° ) and ran(

F’ ) are n.hss. for T . Thus it only remains to show that for s, s'e IT'r, F¥ # F5.
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Thus suppose that F*=F° s < st. Then IH= E*+F* and therefore for every x € H,
or (X) cop (ESx) Uor(FSx) < Int((IF)” U Int((I'¥)~. Hence for every A € C such
that s < Re()) < s!, and every x € H, we have (T -L),; (A) =x. Thus (T -A)H =H,
and it follows that 6 (T ) < Int(I¥ )" U Int((I*)~, which contradicts the fact that ¢ (T)

1S a connected set.
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Chapter5

Characteristic Functions for Infinite Sequences of
As the main result of this chapter, we obtain a model for a completely non-co
isometric (c.n.c) sequence T (in our notation T € € ™) in which the "characteristic
function" @ occurs explicitly. We obtain criteria for joint similarity of n-tuples of
operators to Cuntz row isometries. In particular, we show that a completely non-
coisometric row contraction T is jointly similar to a Cuntz row isometry if and only if
the characteristic function of T is an invertible multi-analytic operator.
Section (5.1): Sequences of Non-commuting Operators:
This section with the “characteristic function” of an infinite sequence ./~ = {T}, }5r—;
of noncommuting operators on a Hilbert space H ,when the matrix {T1,T,,...}is a
contraction. in connexion with this, we extend to our setting the results from
[133] for two operators and many of the results from [134] for one operator.

As the main result of this note, we obtain a model for a completely non-co-
isometric c.n.c.) sequence ./ (in our notation ./~ € € W) in which the “characteristic
function” 0 occurs explicitly.

Further, it is shown when an operator 8: /" — (/. «.)(+, ', generates a
c.n.c. sequence Fas above. Using these theorems, we prove that two c.n.c.
sequences .~ and ./~ are unitarily equivalent if and only if their characteristic
functions coincide.

Finally, by using the above-mentioned-model and the Sz.-Nagy—Foias
lifting theorem [140], [134], [131], [133], [137], we give explicit forms for the
commutants of an infinite sequence .~ of noncommuting operators.

We point out that an important role in this section is played by a sequence
S = {5152, -} of unilateral shifts on a Hubert space ¢*(./..# )with orthogonal
final spaces and such that the operator matrix [S1,S2, ] is nonunitary.

Let us mention that A. F. Frazho uses (in [138]) a countable number of
shifts in a Fock space, in an algebraic setting, to solve a realization problem.
Reference [139] also uses two shifts on an ¢? space to solve certain problem in

stochastic processes.
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Although the Fock space setting is natural for transfer functions of certain system,
as explained in [140], or to certain problems in control, it is not the best space to

use in dilation theory. The framework of this paper is that of an ¢*(. /. ") space.
To put our work in perspective, let us recall from [134], [133], [141], [137],

some facts from dilation theory for an infinite sequence. /~ = {Ty}5=q Of

noncommuting operators on a Hilbert space H when the matrix [T, T,,...] s a

contraction.
Let A be the set {1,2,...k}(k € N) or N ={1,2,4,...}and, for everyn € N

let F(n, A1) be the set of all functions from the set {1,2, ..., n} to the set A. Denote

the set UF('%A) by F whereF(0,4) = {0}.

e=1

A subspace -/ of 7 will be called a wandering subspace for the selfadjoint
sequence 7 = {V;},e4 of isometries on H if for any distinct functions f,g€. /~
we have Vy /' LV, ./ where for each fe./, Vg stands for the product

Vf;(l)Vf;(z) Vf*m(n) and VO* = I,//f (the ldentlty on .~ )

We say that 7 " 1s a A-orthogonal shift on .~ if there exists a subspace
~ < 7 whichis wandering for V and

//: M /,*( L/) def @

_fE.f Vfl/ (1)

Now let S = {S;},e4 be the A-orthogonal shift with the wandering subspace ./~
defined on the Hubert space

7)) = (he), o z Ihe||* < oo, by € 7 (2)
fer

as follows.

. _ ,where hy =0 and
m+1€-/

Foreach AeA we put S, ((hfm)
for fus1 EF(1+€,A) (e =2 0)
(ho; if g€ F(1,A) and g(1) = 1,
B = {hf; if geF(n,A),(n=2),f € F(n—1,A) and g(1) = A,
g(2) =f(1),8(3) =f(2),..,g(n) = f(n — 1),

k 0; otherwise

)=,

fme s

This model will play an important role in our investigation.
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We can easily see how acts the A-orthogonal shift with the wandering sub- space
- if we consider another model. For this, let us form the Hilbert space of all

formal power series with noncommuting indeterminates X2(1€A)

52(. /o ,,/‘/') = z anf;afE ||af||2 <o o,
fer fer

With the inner product
( z ar X, z beXy) = z (a7 by)
fer fer

Where for any f € F(n, A), Xy stands for X¢ 1y Xp2) -+ Xrmy -

Define the A-orthogonal shift S = {S;},c, onS? (7~ /) by setting

fer fer

When A = {1} we find again the unilateral shift S defined by
S( S "j=ian oy
n=0 n=0
which is unitarily equivalent with the usual unilateral shift on the Hardy space
H?(D, 7 ) where D = {z € C: 12| < 1}.
In the case when A = {1,2} the A-orthogonal shift S = {S;,S,} will be uni-

tarily equivalent with the shifts {S, E} defined in [133] on a Fock space.

We recall from [137] that for any sequence ./ = {T,},c, of noncommuting
operators on a Hilbert space -~ such that > . 7,7, <I , , there exists a minimal

Aen

isometric dilation (m.i.d.) 7 = {V,};¢4 on a Hilbert space .7 > 7, which is
uniquely determined up to an isomorphism, 1.e., the following conditions hold

( () Each operator V,(AeA)is an isometry,
OEDNAL I

) AEA (3)
(iii) Foreach JeA, Vi (7)) c # and Vy| 7 =Ty,

(1V) = \/Vf w,

fer
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(see [137]).

if we consider the following subspaces of . /"~

o= \/(VA —T) 7 %= <1//' - z VAT,{) - (4)

= leA

we have the orthogonal decompositions
= 2@®M - ()= 7 BM () (5)
and .~ reduces each operator V, (AeA).

Moreover, .~ = {0} if and only if 7y, = {0}, where

Vo =4he 7 lim |77k |2 =0}. (6)
T fertma)
Further, we have
v n v ={0} (7)
and
Mo \/M 0 =ren, )
where
#1=3he 7, z | T/h |2 = ||h||? for everyn € N;. (9)
fEF(1+€4)

For any sequence ./ = {T; } ;4 of operators on .~ with %AT o ,: <1, we have the
following orthogonal decomposition ([137])

= D 1D Ay,
where 7, /1 are given by (6), (7) and 7, = 7 © (#y&® 7).

We shall say that. 7 € C (k) ( JE C(k)) if 7= {0} (,,// 3“//1%) , Where

ke{0,1,2}. A sequence ./ € C @ will be called a completely non-coisometric
(c.n.c.) sequence.

Let ¢, ¢, be Hilbert spaces and S = {S;},e, the A-orthogonal shift acting
onf2( 7. )or*( . ).

An operator A: £%(./. *) - £2(./. /%) which commutes with each S;(1eA)
is uniquely determined by theoperator
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0: —>¢%( /. ,),0=A| . This follows because for every
f€./,h€  wehave ASrh = 5:0h and Vy. - Sp " = £2(.7 ).

Now, let us consider an operator 0: “— £2(./". %), We define M, :
22( 7 ) - £%( 7 ) by the relation

In this section we only work with © such that My is a contraction. One can
show that

Mo ((hy),_ )= D Sy0hy for (), € (7.
fer

Throughout this paper an Operator 8: “— £2(./ %, ) will be called

(i) inner if My is an isometry,

(ii)youter if Mg£2( /") = £2(. 7 )
(iii) purely contractive if |P..6R|| < IRl for every he 7, h#0.

Proposition (5.1.1)[132] Let. 0 : «“— £2(.7 ), be an operator such that My is a
contraction.

(i) ©is inner if and only if 0 is an isometry and 0/ is a wandering subspace
for S.

(ii) O is outer ifand only 8 ¢ is cyclic for S, i.e.,

\/ Sp(0) =427 )
fer

cr

(111) © 1s inner and outer if and only if O is a unitary operator from * to

The version of the Beurling-Lax theorem [134], [133] in to our setting is.
Theorem (5.1.2)[132]: A subspace . 7/ £%(./. ) is invariant for each §,(1e A) if
and only if there exists a Hilbert space S and an inner operator 6 :
h— £2(_ 7 ¢)such that
V= Mgt?*(. 7 )

Proof. Using the Wold decomposition for an infinite sequence 7= {V;},c, of
isometries with orthogonal final spaces. ([137]).

Let 7= {V;},e4 be a A-orthogonal shift acting on a Hilbert space .7 "Such

that &~ < ./ is wandering subspace for 7  that is,
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=M () = 69‘ Ve .

fes
Denote by @~ the unitary operator from M - (/) to #2(./. /") defined by

7 Evflf = Esflf I € :/';Z||lf||2 < o,

fer fer fe
where S = {S;}, 4 is the A-orthogonal shift acting on £2(./ ) .
Then for any Ae A we have
OV =857,
The following extension in [9] will be used in the sequel. We omit the proof
which is simple to deduce.

Lemma (5.1.3)[132] Let 7 '={V,;},c4, and 7~ = {V;},e4 be A-orthogonal shifts
on the Hilbert spaces . »~ and ./, with the wandering subspaces ~ and ~ ',
respectively.

Let 0 be a contraction of ./ into .~ such that for any 1 € A
QV, =V,9.
Then there exists 0 a contraction of L into #2(. /.~ ") such that
® Q=MD"
In order that 6 be

(a) purely contractive,
(b) inner,
(c) outer,

(d)a unitory from ~ to ',
it is necessary and sufficient that the following conditions hold, respectively:

@p . QU < Il for everyl e, 120,

(b) Q is an isometry,

©07=7",

(d)Q is a unitary.

Let ./ = {T;},e4 be a sequence of noncommuting operators on a Hilbert

space .~ such that the matrix [Ty, T,,...] is a contraction. Let us recall from
[137] that the defect operators of ./~ are
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1/2

D,=[1,- z T,T; | ;D =Dy,
feA

where T* stands for the matrix [Ty, T,,...] and Dy = (I — T*T)Y/2.

The defect spaces of ./~ are

“~.=D,7; =D (}LGEBA//Z),

where each .~ ; (A € A) is a copy of ./ .

We define the characteristic function of ./~ as the operator
0. —¢*( /7)) by
or (h) = — z T,P.h + z 5 ((.1pPDR) ) (he ),

AEA AEA

where P;stands for the orthogonal projection of © C -/ onto 7 ; and

5
ALEA
S ={S;}1ca is the A-orthogonal shift acting on £2(. /7~ 7,).

It is easy to see that 6 -1is a contraction and moreover 0 -is purely
contractive.

Let us remark that if ./ = {T*}(||T*|| < 1) the “characteristic function” of

./"is the operator 0 . “r— £2(N, “1+) given by the following matrix

We remark that Mg _is unitarily equivalent to (67): L4 ( “q+) = L5 (), where
01 is the classical characteristic function of the contraction T and (87), is
defined in [134].

Let us consider another sequence ./~ = {T;},c, on a Hilbert space # '
such that the matrix [T{,T,,...] is a contraction.

We say that the characteristic functions 8 ~and 8 -r coincide if there exists
two unitary operator

! !
W:2o - <, W.:,- 7,
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Such that
My, 6 =60 W,

One can easily show that if . ~and ./~ ' are unitarily quivalent, 1.e., T/{ =
UT,U* for any A € A, where U is a unitary operator [from # to # ', then their
characteristic functions coincide. The converse is not true, at least not in this
generality. Notice also that if . /€ C(;ythen 6 ~= 0.

We are now going to show that the definition of the characteristic function
for ./~ arises in a natural way in the context of the theory of isometric dilation of
asequence ./ = {T;},e4 of noncommuting operators on .~ such the matrix
[T{,T,,...] is a contraction (see [137]).

Let 7 = {V,;},e4 be m.i.d of T on the Hilbert space.” > 7.

By (5) we have that {V;|M  ~,)},es and {V;|M A/ )},e4 are A-orthogonal
shifts actingon M ~( ~/,) and M (/) ,respectively .

Moreover, for each 1 € A
(P <M A :/')) (Vi IM A7) =V IM ) (P M A L/')),

where P+ stands for the orthogonal projection of ./ onto M A /).

Setting @ = P/+|M ~( /), we can apply Lemma (5.1.3) and we obtain that

there exists a contraction 0 , . ~— £2(. /. /,) such that
CD/\/*Q — MHL/ q);/’
Hence we deduce that

0. =0 (P )0 )|~ (10)

We remark first that 8 _ is purely contractive. Indeed, if P, denotes the orthogonal
projection onto /,, we have ”p,/ p*;/l” <l foreveryl € o, [ # 0. Otherwise
there would existan [ € . [ # 0 such that, | = P,P lie LE U, and this

contradicts the relation (7).

Let us recall from [137] that the operator @, defined from -/, to ~/, by

®, <1/— z V;T;> h=Dh;(he #) (11)

AEA

is unitary and the operator ® defined form > to ~ by
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P (1 - > Wi - Ti‘)’u) = D(()zen)s (W)sea €, 7 (12)

AEA

1s unitary too.

We are ready for proving the following theorem which is a generalization in
[134].

Theorem (5.1.4)[132]: the characteristic function 8 - for .~ coincides with 8 ., .
Proof. we show that
M(D*H\w/ = 6./‘CD, (13)

Where ®,, ® are the unitary operators in (11), (12), respectively. For this, it is
necessarily to prove that

P, StMg 6 =P, S0 @ (fe. ), (14)
Where P, stands for the orthogonal projection of #%(./~7~,) onto 7.

By (10) and by the Wold decomposition (5), the relation (14) is equivalent to

o.P V| = Pf,*s;9_7 d (fe.), (15)
In what follows we shall prove this relation. First let us notice that
P(/*Q_/‘= _zTiP/l' (16)
AEA

P’,/*S;S/IH./‘: D*TJZ‘PAD (LeAfe. ).

For f = 0 the relation (15) holds true. Indeed for

=Y W=Tom =00 (, 2 ) (Zumuz < oo) (7

AEA AEA
we have that | + (I — X34 ViTy) XseaToh, € 1 GEBAV/% 7" and by (15) we obtain that
P;/*l = — <I - z VATA*)z T/lh/l'
AEA AEA
Hence, by (16) we have
_ _ 5 _ @D _
®,P, 1 =—D,[T;, Ty, ...] (/1 - Ah,l) = [T}, Ty, ...]D (/1 - Ah,l) = —[T,, Ty, ... ]®I

== P(/*H'/‘CDL
It remains to show that forany f € .~ ,1 € A
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O.P, VeVil =P, S50 ~-®l (1€ ). (18)
Let [ be as in (17); then according to (16) the relation (18) becomes
*Y7r*y] * 2 @
®.P, V;V;l=D,TiP,D (/1 - Ah,l).
Since

D,T}P,D? (zfAhﬂ) = @, <1 - z Vﬂf) T} P,D> (,leeaAhﬂ)'
AEA

we have only to show that

P, ViVl = <1 - z Vﬂ/{‘) T} P,D> (zeeaAhl)' (19)
AEA

Let us notice that for any 1 € A

2 ea _ * 2
P,D (/1 - Ah,l) =— z T; T,hy + D3 h,.
UEA
UFEA

Consequently, the relation (19) holds if and only if the following relations hold

P;/*Vf*Vf(V/lh/l — T/lh/l) = — <I — z V,{F/{) T]:DTZ‘Ah/l (ﬂ, € /1)
AEA

and

P, ViVi(Vohy — Tyhy) = — <1 - z Vﬂf) TIT;T,hy, (A # W.
AEA

These relations hold since the element

Vf*V/l* (V,lh/l - Txlh/l) - <I - z V,{F/{) T;DT,lh/l (Le )
AEA

and

Vevy (Vuhy — Tyhy) + <1 - z V,J/{‘) TFTyTyhy, (A # 1)
AEA

are orthogonal on ,. This follows by simple computation .The proof is complete.

Remark (5.1.5)[132]: if ./ € Cp then 6 -is inner.
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Proof. Taking into account [137], it follows that the m.i.d. 7~ of ./ is pure, i.e.,
=M ~~,). By relation (10) and Theorem(5.1.4) it follows that 8 - is inner.

In this Section we make the additional assumption that ./~ is c.n.c. on ./ .

Then the relation (8) implies

=M ) \/M_/{ )

and consequently,

(I-P")M ()= » (cf. (5)).
Consider the operator A ., defined on #2(./. /) by

)

A= (1M M@:/)l/2

where 6 , 1s given by (10).
Fork € M ) we have
I P YIP = 1k = o = [l kI = o]
= [l kl* = IMo. @ K| = (|2, @ k|

We can define the unitary operator @ ,from .~onto A £?(./ /) by the relation
d , (I-P)k=A, 0"k (keMA)).
Consequently,
=D "PD .

is a unitary operator from space .~ = M -(/,) @.~ to the Hilbert Space

K=2(7"27)®A £2( /. ).

Let us find the image of space .~ under the operator @ . Since /" = ., &
M () and foreachk e M -( )

Pk=0 P k®P ,(I-P")k=My ® kDA, d k

we have

d/=H=[3(77)0A (7 )| O{Mg udA u; uet*( /7 )}
Because P~ commutes with each V3 ( 1€ A) it follows that
® VI-P)k=0 (I-P")Wk=A,d Vik=A 59k

foreveryk € M - (), where S = {S,},¢, is the A-orthogonal shift on £2(./ )
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Therefore,
e Vo' (A, v)y=A S5V (v € 2(. /" L/'))
and

OV D" =V = S5;,BC, forevery ALe A,

where each operator C, is an isometry defined on A, #2(. 7~ /) by the relation
C,(A v)=A_Sv forveL*( /7 )

Now , sinse (X1e4(V7)? = I)|.#= 0 we have

z CCy = Iz 2~y whence A2 )=A (27 )6 7).
2EA

It is easy to see that for every vef?(./. ) and A, ue A

CA(A;’/SMU ):{0/ lf /17':‘[,[,

According to (3) we have T; = Vy'|H, where T} is the transform of T; by ®.
Therefore, for u®A , S, veH we can write that

Sju®A v if A=u

Ti(uds . sy ) = {Sj‘u @0 if A%

Where A, ue A.

The above results permit us to construct a model for a c.n.c. sequence ./, in
which the characteristic function occurs explicitly. We obtain a generalization in
[134], namely:

Theorem(5.1.6)[132]: Every completely non-isometric sequence . /= {T;},c, on the
Hilbert space ./ is unitarily equivalent to a sequence T* = {T;},c, on the Hilbert
space

H=[?(72)®A 27 )| e{My udA wuet*( 7 7))}
where A = (I — M;_/‘Mg_/\)l/z.
For each 1 € A the operator T, is defined by

Sju®A ~u if U==a

Ti(u®A 5w ) = {si‘u ®0 if w4

Where S = {S,},¢4 is the A-orthogonal shift acting on £2(./~ © or £2(./~. 7/ ,).

If./"€ C(p), and only in this case, 6 - is inner, and this model reduces to
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H=20(/"2)0 My £*(7 ~); Tiu=Su (u€H).
Proof. By virtue of the relation (13) it follows that
My Mg =My Mg.
Hence we obtain that A ~-= MguA Mg,

On the other hand the operators @ and ®, defined by (11) and (12) generate
the unitary operator

U - M(I)*GBM(D

from the space #2(. /.~ )® A £2(. /. /) to the space

2( 7 )® A £2(. /. <) Such that
U{Mg:/ u® A u;u€b?*( /. L/')} = {Mg_/\UEB A v;vel*( o )}.

By means of this unitary operator we can re write the result obtained before
this theorem and; in this way, we complete the proof.

Let us remark that for ./ = {T}, we find a model for completely non-co
isometric contractions, which coincides with the Sz-Nagy-Foias model. Indeed, if T
is a completely non-coisometric contraction, that is, if there is no non-zero invariant
subspace for T* on which T* is an isometry, then it is easy to see that

ArH?*( ) = A L2( )

Let us note that the Sz.-Nagy-Foias, model is given for a larger class of
contraction, namely for completely non-unitary contractions.

Now show that any contraction 8: -~ — 22( 7 ) (¢, , Hilbert spaces) such that
My is contraction generates, a c.n.c. sequences T = {T;},ex

In the case when 6 is purely contractive and

A6€2(_/f (/) =Ag['€2(/‘ (/)e (/] (20)

we shall show that @ coincides with the characteristic function of ./~ .
The main result of this section is the following generalization of in [134].

Theorem (5.1.7)[132]: Let 8 be a contraction from ¢ to £2(. /" ¢*,) such that Mypis a

contraction. Setting Ag= (I — MjMg)'/? the sequencesT = {T;},c4 of operator
defined on the Hilbert space

H=[€2(7 )@ 8t?( 7 )] © {Mew Agw ;w € £2(7 )}
by

T, (udhgv) = Sju BC;(Bgv) (A€ A),
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where each operator C; is defined by C;(Agg) = AgS;g(g € #2( 7)) and
S = {S,} e is the A-orthogonal shift action on #2(. 7~ ") or #2(./ 7,) is
completely Non-coisometric.

If 6 is purely contractive and (20) holds, then 6 coincides with the
characteristic function of ./~ In this case, considering H as a subspace of

K =247 )@ 0g#?( 7 ")
we have that the sequence V = {V;},¢4 of operator defined on K by
W =50C (e
is the minimal isometric dilation of T*

Proof. Let us consider the following Hilbert space

K=202(7 )@ Ag#2( 7 ")
G = {Mgw® Agw ;w € £2(. 7 )}

and let V = {3} e, be a sequence of isometrics defined on K by V; = S, ®C; (1 €
A), where each C, is given by

C1(Agg) = NgSyg  for g€ £*( /")

z ViVy < Iy

AEA

It is easy to see that

and that G is invariant for eachV; (4 € A).
Setting H =K © G and T; = V;|H(A € A) we see that V is an isometric
dilation of T = {T3} e

Let us show that T is c.n.c. For this, let uAyv € H such that for every
n € N we have

T w@e)|” = lu®hgvll® 1)
fEF(n,A)

. * 2_
rlll_r>r010 z |Sfu| =0 and z |

fEF(1+€,A) fE€F(n,A)

it follows that u = 0. But, (0Agv, Mgw®Agw) = 0 for any

Since

Cigv|” < l1agull?

w € £2(./ ) implies Ag= 0.
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Thus T is c.n.c.
We assume from now on that 0 is purely contractive and that (20) holds.
Let us show that V is m.i.d. of T 1.e.

K = \/ Vf*H.

fe
First we note that (20) implies

z CyCy = IW' (22)
AEA

Suppose u®Ayv € K and for every f €./, u®Agv L ViH ie., Vr(u®Agv) € G.
This means that for each f € ./ there exists w(s) € 22(. 7. ) such that
Vi(u®Agv) = Mow(r)@Agw(s).
Therefore, for each A € A, f € . /there exists w(y ;) € £2(. 7~ ) such that
Vi(Mow(ry®hew(s)) = Mow(s,1@DeW(y, 1.

By using the information of V; (1 € A) we obtain

<z SAS/{> MgW(f)@ <z CAC/{> AQW(f) = My <z Sa W(fﬂ)) DAy <z Sa W(fﬂ)).

AEA AEA AEA AEA
Hence according to (22), we have
Mowy = P Mgw(ry and Agw(s) = 0, (23)
Where w5y stands for wiey — X564 53 W(r 1)
Since My commutes with each S;(4 € A) it follows that
P, Mgw(ry = P, MgP, ws
and (23) gives
wry = MgP, MgP, w(s), (24)
Hence P, wy = P w(py = P, MgP, MgP, ws).
Consequently,”P;f W(r) || = ”P;f*MgP;f W(r) || and since 0 is purely contractive
it follows that
P w¢y = 0. (25)

Now, the relation (24) implies w sy = 0, i.e.
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Wi = 25,1 W(r,0 fOT' f €./
AEA

Hence, we obtain that

W) = z Siway = z 52 z SuWaw | = z S Wi =

AEA AEA UEA gEF(2,4)

= z Sgw(s for any n € N.
feF(n,A)

We deduce that Sfw(gy = wy for every f € . /. By (25) we find P S(*f)W(g) =
P,wiy =0 forevery f €./,

It follows that wgy = 0 and u® Agv = Maw ) Agw() = 0, which implies
the minimality of V.

Our next step is to determine

L.= <1H — z Vﬂ;) H.

AEA

Taking into account (22), for ué® Agv € H we have

<IH — z V,Jj{) (u®Ayv) = P, ud0

AEA

and hence L, c . @{0}.
Lete, €, and let us choose u = (I — MgMpy)e, and

Agv = —AgMje,. Since Myu = Ajv = 0 it follows that u® Agv € H.
Thus

<1H — z Vﬂf) (u®Agv) = (I, — P, MgMy)e,®O.

2EA
Now the element of the form (I;f* — P;f*MgMg)e*, (e. e ,), are dense in *,.
Otherwise there exist an e, € *,, e, # 0, such that e, = P,- MgMye, and hence
lell = IMgelll = ||P..,MgMge.
contractive it follows that Mge, = 0 and e, = 0 which is a contradiction.

;e. = MgMge,. Since Mye, € , and 0 is purely

Thus
L, = . ®{0} (26)

149



and M - (L,) = £*( 7 ,)®{0}.

Denoting by P%+ the orthogonal projection of K onto M - (L,) we have
foru® Agv € K

PL-(u®Ayv) = ud0, (27)
OLPL-(uBAgv) = @ *ud0 = ud0.
Next we show that

L= \/(VA —T)H = {Mge®Age ;e € }.
AEA

Notice that an element u@®Agv in K belongs to H if and only if
MjudAZv = 0. (28)
For u® Agv € H and A € A we have
T,(u®lgv) = PyV,(udlgv) = (SudlgSHv) — (Mgw;BAgwy),
where each wy € £2(./" ") is defined by
((Sau — Mawp)B(AgSav — Agw), Mgw'@Agw’) = 0
For every w’' € £2(.7 ).
Hence, we find that
wy = MpS;u + AgS;v
and
(V, = T (uBAgv) = Magw;DAgw;.

By (28) an easy computation shows that{w,, Sre*) = 0 for every e, € -/,
f € ./,f # 0.Consequently, w; €

Let us show that if u@Agv varies over H and A over A, then the corresponding

-

elements w;, vary over a set dense in " .
It is easy to see that for e € “and A € A the element

wy = MpS)S;Mge + AgC;CyAge is the corresponding element of S; Mge@®CyAge €
H.

Thus, for e € ¢~ we have

z wy = Mj(1 — P, )Mge + Aje = e — MyP . Mge € .
AEA

It remains to prove that the set
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{(1.—MzP.0)e; e€ }
is dense in ",
Indeed, otherwise there exists e’ € ¢/, e’ # 0 such that
e’ = MpP, Mgy e’ It follows that ||e]| = ||P;1*Mg e’
purely contractive.

|, which contradicts that O is

The last step is to prove that the characteristic function of T coincides with 6.

It is easy to see that the operator @ defined from * to L by w(e) =
Mge®Aye (e € ) is a unitary one.

On the other hand, from (26) it follows that the operator w, defined from *,
to L, by w,.(e.) = e, ®0(e, € *,) is a unitary too.

According to (40), for [ = Mge®Age (e € ) we have
OLpPl-(Mge®Age) = O+ (Mge®0) = Mge®0 = M, Mge = M, Ow™e.

Hence, using Theorem (5.1.4), we deduce that characteristic function of T
coincides with 0.

The proof is completed.

Proposition (5.1.8)[132]:. Let0: -* - £2(./ ) and 8": -~ — £2 ( T fk) be some
operators such that My and My be contractions.

If 6 and 6’ coincide, then the sequences T and T' which they generate in the
sense of Theorem (5.1.7) are unitary equivalent.

‘r ‘r

Proof. If y: " — ¢ "and Xut x> ¢ | are unitary operators such that
M,6=0%

then U = M, @M, is a unitary operator from H to H' such that

T, = UT,U" for every A € A.

The proof is just the same as in the particular case considered in the proof of
Theorem (5.1.6).

Applying this result to characteristic function and by using Theorem (5.1.6) we
obtain a generalization in [134] and [133], namely:

Theorem (5.1.9)[132]: Tow completely non-coisometric sequences ./ and ./~ are
unitarily equivalent if and only if their characteristic function coincide.

Finally, let us show when the characteristic function is outer.
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Proposition (5.1.10)[132]: For a c.n.c. sequence .~ we have that 8 -is outer if and
only if. /€ C(Z)

Proof. It suffices to prove our assertion for the functional model of . /.

Accordingly, let T = {T;},e4 be the sequences defined in Theorem (2.1.7). For
everyu @ A -€ H we have

lim z T wa )| =118 2.

€

feF(n,A)

This shows that T € C(,y. ifand only if u @ 0 € H implies u = 0. On the
other hand, u @ 0 € H meansu L My £*( /.7 ).

The last condition implies u = 0 if and only if

Mg €2( 77 ) =4*( 7.7,
1.e., 6 - 1s outer.

Using our functional model for a c.n.c. Sequences ./ = {T;},e4 and the lifting
theorem [135], [134], [136], [133] to our setting [137], we provide explicit forms for
the commutants of T .

For the sake of simplicity we only consider the case when ./~ € C(q . Thus,
assume that 8: .~ - £2(./" *,) is a purely contractive inner operator.

Let T = {T;},e4 be a sequence of operators defined on the Hilbert space
H=12(7 )0 Mgt*( ),
By
Tiu =S)u (u€eH)
for every AeA.

By Theorem (2.1.7), the A-orthogonal shift S = {S;},¢, acting on K =
£2(.7" ") is a minimal isometric dilation of T.

Let H', T’ etc. corresponding similarly to an operator
6': " - £2(.7 . the same kind.
We have that every operator
Y:i#2( ) o 20 0)
such that
S;Y=YS; (L€ A)
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can be represented in the form Y = M, ,where y: . = £2(./" ") is an operator

such that M, is bounded.
Combining this fact in [137], we obtain a generalization.
Theorem (5.1.11)[132]: every operator X: H'—H satisfying
T,)X = XT, for every A€ A. (29)
can be represented in the form
Xu=PyM,u (u€H), (30)

where Py is the orthogonal projection of #2(. /- /*,) onto H, and y: ", = £*(./~ ,)
is an operator such that the following condition hold

a) M, is a bounded operator,
b) MMy t*(.7 ) € Mgl*(.7 ).
Conversely, every y satisfying the above- mentioned condition yields, by (30),
and solution X of (29).

Theorem (5.1.12)[211]: A subspace . 7c£?(./. ") is invariant for each
S(Az_l)((/lz —1e /1) if and only if there exists a Hilbert space .~ and the
sequence of inner operators 6, : .»— £?(. /") such that

L2 )

A=M
X9

Proof. Using the Wold decomposition for an infinite sequence 7= {Vaz—l)}(,lz—neA

of isometries with orthogonal final spaces. ([137]) this proof'is a simple extension
of that of Theorem 3.3 in [134] or Theorem 2 in [133].

Let 7= {V&z_l)}( be a A-orthogonal shift acting on a Hilbert space

A2-1)eA
.~ 'such that & < ./ 1s wandering subspace for, 7 ' thatis,

> ]

=M () = foeT Ve .

Denote by @~ the unitary operator from M - () to #2(./. /) defined by

O\ Y Vb = Y Sl (b€ 75 D Il <),

fme s fme/ fme

where 7= {S (,12_1)} is the A-orthogonal shift acting on #2(. /. )

(A2-1)eA

Then for any (1% — 1) € A we have
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() /\/V(*lz—l) = S(lz—l)q) ,\/.
The following extension [132] of Lemma 3.2 in [134] will be used in the
sequel.

Theorem (5.1.13)[211]: The sequence of the characteristic functions (9]-)‘7 for

.~ coincides with the sequence of (Hj) -

Proof. We show that

q q

Mo, zej _ zej ®, (31)

j=1 P =t )
Where ®,, ® are the unitary operators in (11), (12), respectively. For this, it is
necessarily to prove that

q

q
PRsiMo | Do) =P2si (D) 6] ® (e (2

j=1 j=1 _

o .

Where P?/* stands for the orthogonal projection of #2(./~7/,) onto 7.

By (10) and by the Wold decomposition (5), the relation (32) is equivalent to

q
®.P? Vi | =P% S} ZHJ- ® (fm€. /) (33)

j=1 o~

In what follows we shall prove this relation. First let us notice that

* 2
Tz_1yPz_1y (34)
- (A2-1)eA

IIMQ

P?.S; 5(12_1) =D.T} Pz_yD (P -De€AfrE. /)

IIMQ

For f,,, = 0 the relation (33) holds true. Indeed, for

L= z (Voz-1) = Tie-p)haz-n)
(A2-1)eA

* @ )
=P ((/12 ~1e€ Ahﬁz‘l)) Z |hgz-pll” < =]  (35)
(A2-1)eA
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we have that [ + (1 - Z(Az—l)eA Vaz—l)T&Z—l)) 2(12—1)€A T&z_l)h(AZ_l) €

® V(2_1)#" and by (33) we obtain that

A-1e4
Prl=-{1- z Vaz-uTaz-1) z TGz-nhae-1)-
(A2-1)ea (A2-1)ea
Hence, by (34) we have
2 - @
®.P% 1= =DT\ Tz, 1 (32 _ 1y g ghw#-n)

* * @
= [TliTZ' ]D <(/12 _ 1) € Ah(lz—l))

q
= —[T},T;, .19l = P?, z 6| oL
j=1

S

It remains to show that forany f,, € .~ ,(12 = 1) € A

q
DL VE Vi gl = P2 S; Sta | ) 6] @l we ).
j=1

S

Let [ be as in (35); then according to (34) the relation (36) becomes

2 * * _ * 2 2 @
CD*P\V"/*meV(AZ_l)l bl D*Tme(Az—l)D <(/12 _ 1) = Ah(AZ_l))

Since

* 5]
D.T5, P(2-1)D* ((az ~De Ah(az—n)

2]

=2 (’ - V&Z—l)T&Z—l)) 17, PP (2 1) € 4h0e-

(A2-1)ea
we have only to show that

2 R P44 —
P\w/ *meV(AZ—l)l —_

)

* * * p2
= z Vaz-0TGe-1) | ThnPG2-1)D” ((,12 1) e Ah(az—l))-(37)

(A2-1)eA

Let us notice that for any (12 — 1) € A
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Q)
P(2/12—1)D2 <(/12 _ 1) € Ah(/lz—l))

* * 2
- z T(/lz—l) T(22—1)+eh(/12—1)+e + DT&z_l)h(lz—l)'
(A2-1)+e€€4
€>0

Consequently, the relation (37) holds if and only if the following relations hold
P2 Vi Ve (Voz—phaz-1) — Tae—phaz-n)
* * * 2
=\~ z Voe-nTe-n | TiDr,_ hoz-n (2 =1 €4)
(A2-1)eA

and

2 * * * *
PL Vi Voo (Vieoiysehaz-n+e = Thz-nyrehz-1+e)

=—1]—- z V(*Zz—l)T(*lz—l) T;mT&Z—1)T(32—1)+eh(12—1)+6 (E > O)
(A2-1)eA

These relations hold since the element

Vi Vor o (Voephaz-1) = Te_phae-1)

* * * 2
—| 1 z Vaz-nTGe-1 | TPy yhaz-n (2 = 1) € 4)
(A2-1)eA

and
Vi Vor o (Voe_nrehz-n+e = Tz _pyreh@2-1+e)
+ I - z V(*Zz—l)T(*lz—l) T;mT&Z—l)T&Z—1)+eh(/12—1)+e (E > O)
(A2-1)eA
are orthogonal on ~,. This follows by simple computation .
The proof is complete.

Remark (5.1.14)[211]: if ./ € C(y) then the sequence(é?j) /‘is inner.

Proof. Taking into account Theorem 2.8 in [137], it follows that the m.i.d. 7 " of T
is pure, i.e.,.~"= M A ,). By relation (10) and Theorem (5.1.13) it follows that the

sequence (Hj) - 1s inner.
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Theorem(5.1.15)[211]: Every completely non-isometric sequence
= {T&Z—l)}(,ﬂ—neA on the Hilbert space ./ is unitarily equivalent to a sequence

T = {T (/12—1)}(/12—1)@1 on the Hilbert space

H=[¢?(7o0eA 2 )]|6 {M(ZL 6)) ud A wu€ (7o )},

1/2
where A = <I o MEZ?=1 ej)./‘M(Z;Ll ej)./‘> .

For each (12 — 1) € A the operator T (j2_qy is defined by

S&z_l)u dA u if €>0,

T(Az_l)(u®A_/‘S(12_1)+ev ) = {Sglz_l)u @O ]f € > 0;

where 7= {5(22—1)}
27 )).

(2-1)ea is the A-orthogonal shift acting on #2(./~ 7/ )or

If./~€ C(p), and only in this case, the sequence (Hj) - is inner, and this model

reduces to

_ p2 — 2 — . * _ *
H=¢( 7,6 M(Z?ﬂ@j)_f () Tie_pu = S(Az_l)u (u € H).
Proof. By virtue of the relation (13) it follows that
Mgy M =M Mg.
- (Z?ﬂ 61') o (Z?ﬂ 6]-)_/‘ ®

Hence we obtain that A ~-= MgpA Mg,

On the other hand the operators @ and ®, defined by (11) and (12) generate
the unitary operator

U - M(I)*GBM(D

from the space £2(. /.~ )® A £2(. /. /) to the space

¢4 )@ b A7) Such that
. 20~ .,
U{M(zjf:lej)//u@A;/u,uE{ (-/,‘/)}
- y 207 ¢
= {M(Z?ﬂei)_/‘U@ A_/‘U,U € ‘g (./ e )}

By means of this unitary operator we can rewrite the result obtained before this
theorem and; in this way, we complete the proof.

157



Let us remark that for ./ = {T*}, we find a model for completely non-
coisometric contractions, which coincides with the Sz-Nagy-Foias model. Indeed, if
T* is a completely non-coisometric contraction, that is, if there is no non-zero
invariant subspace for T* on which T™ is an isometry, then it is easy to see that

Ap-H*( 1) = Ap-L*(pe)
(see Theorem?2.3 in [134]).

Note that the Sz.-Nagy-Foias, model is given for a larger class of contractions,
namely for completely non-unitary contractions.

Theorem (5.1.16)[211]: Let the sequence 6; be a contraction from * to 22(7 )

1/2
such that M2?=1 p,is 2 contraction. Setting A2?=1 0, <I - M ,-MZ?=1 6,-) the

*
q
2]'=1 6

sequencesT™ = {Taz_l)}(lz—l)eA of operator defined on the Hilbert space

—_ 2 7 2 T . 2 7
H = [ﬁ (/7 7)P Az?zlejf (¢ )] ) {M2?=16jw® AZ?=19,-W wEeL( sl )}
by
* — * * 2
T(lz—l) (u®A2?=1 ejv) — S(Az_l)u ®C(12—1) (Azjl=1 ejv) ((/1 - 1) € A),
where each operator C;2_4y is defined by
6(12—1) (A2§?=1ejfm+1) = A2?=1ej5(,12—1)fm+1(fm+1 € fz(- s )) and 7=

{S (,12_1)} 2—1ea is the A-orthogonal shift action on £2(. /. «* ) or £2(./7 ") is

completely Non-coisometric.

If the sequence 6; is purely contractive and (20) holds, then the sequence 6;

coincides with the characteristic functions of ./~ In this case, considering H as a
subspace of

— 2 /‘f(/ 2./‘((/
K=+?¢( " *)GBAz?:le]{ ()

we have that the sequence V* = {Vaz_l)} of operator defined on K by

(A%2-1)eA
Ve =Sae-0®Ce-y (A -1)€4)
1s the minimal isometric dilation of T*.

Proof. A. Let us consider the following Hilbert spaces

— 2 /‘f(/ 2./‘((/
K=+?¢( " *)GBAz?:le]{ (),

_ . 2 T
G = {M2?=191W® AZ?=19,-W iwEL( sl )},
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and let V™ = {Vaz_l)} be a sequence of isometries defined on K by

(A2-1)ea
Viieey = Spz-n®Cpz_1) (A% — 1) € A), where each C(y2_y) is given by
Cor-1) (B5s_ o, fms1) = Bss_g,Sce-vfmer  fOT finss € 207 1),

It is easy to see that
. 2
(Viz-y) <k
(A2—-1)eA
and that G is invariant for each Vaz_l)((/lz —1) e N).
Setting H = K © G and Taz_l) = V’&z_l)|H((/12 —-1)€ /1) we see that V* is

an 1sometric dilation of T* = {T(Az—l)}az—neA-

Let us show that T* is c.n.c. For this, let uEBAZ;g=1 o,V € H such that for every
€ = 0 we have
2 2
> (ngy o) = fuorg ool e
fm€F(1+€,4)
Since

2 2 2
sl =0 and S [ty opl” < Jasg o]
fm€EF(1+€,4) fm€EF(1+€,1)

lim z |

€—00

it follows that u = 0. But, (OEBA2?=16],U, szg:l ejWGBAZ?:lejW) = 0 for any
w € £2(./ ) implies A2?=1 0,= 0.

Thus T* is c.n.c.

B. We assume from now on that the sequence 6; is purely contractive and that
(20) holds.

Let us show that V* is m.i.d. of T", i.e.

K = \/ V]Z"mH.

fm€.

First we note that (20) implies

C(Az—l)caz—n = IAZq p L2077 (39)
(A2-1)eA =17

Suppose uEBAZ;g:lejv € K and for every f,, €./, uEBAZ;g:lejv LV Hie,
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Ve (uEBAz?zlejv) €QG.
This means that for each f,;, € ./ there exists w(, ) € £2(.7 ) such that
Vi (uEBAzji:le,-U) = Mga_ o Wirn®R5 o, W(s)-

Therefore, for each (12 — 1) € A, f,,, € ./ there exists W(

£2(. 7" ) such that

fm22-1)) €

Vieon (MZL 6, W) PRz o ,-W(fm)) = Ms1 0% (1 2-0)P85L, 0,%(1,,22-1)"

By using the definition of Vaz_l)((/lz — 1) € A) we obtain

Saz-1SGz-1) 1"12§?=1(9,-W(fm)ea z Caz-1)Cpz-1 Azjizlejw(fm)
(A2-1)eA (A2—-1)eA

= Msa 0, Z S0 W(,,w2-1) | DAL, 0, Z S@-nW(r,,a2-1)
(A2-1)eA (A2—-1)eA

Hence, according to (39), we have
MZj?:lij(fm) = P?Z’*szi:lejw(fm) and Aij:lij(fm) =0, (40)
where w(y y stands for wir y — X a2-1)ea Saz-1) W(fm(,/lz—l))'
Since M2?=1 p; commutes with each S(;2_1)((A* — 1) € A) it follows that
P% Msa_ o Wis,) = P% Mga_ o P% Wi,
and (40) gives
W) = Mg?zl ejP?,*szg:l ejP?, W(r, ) (41)
hence P2 W(r,) = P2 W) = PZ M§?=16jP?,*M2?=16 P?Z’W(fm)-
Consequently,”P;Z, W(fm)” = ||P;2,*M2?=1 ejP;Z, W(s ) || and since the sequence

8; is purely contractive it follows that
PZ w, ) = 0. (42)

Now, the relation (41) implies ws y = 0, i.e.
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W) = z 5(,12—1)W(fm,(/12_1)) for fm€./.
(A2-1)eA

Hence, we obtain that

w = Sz_1yW(jy2_
(z2,6;) (/12—21:)@1 -1 Wiaz-1)

Saz-1) z Saz-1)+e W((az—l),(12—1)+e)
(A2—-1)eA (A2—-1)+e€A

= Stnss Wlmsn) = 7
fm+1€F(2,4)

= z St W,y for any € =0.
fm€F(1+¢€,4)

We deduce that S¢ W(Zq 9 ) = w(y, ) for every f,, €./ . By (42) we find
m f=1 ] m
P?Z’S;mw(ZleH,-) = P?Z’me =0 forevery f,, €. /.

It follows that W(Zq 9,-) —
j=1

ud A2?=1 o,V = MZ?=1 HJ'W(Z;Ll 6]-) @ Azq_ 0. W(Zq 6]-) = 0, which implies the
minimality of V",

C. Our next step is to determine

(A2-1)eA

Taking into account (39), for u® Ayaq o,V € H we have
j=1

* * _ p2
IH - z V(Az_l)T(AZ_l) (u@Azjq=1 6]17) - P;r*u®0
(A2-1)eA

and hence L, c . @{0}.
Lete,e ¢, and let us choose u = <I — M2?=191M2?=1 6]-) e, and
_ * . * 3 — .
A2?=16]_v = A2?=10]-M2;?=1e].e*- Since M2?=1 eju + A2?=16]_v 0 it follows that
u@ A2?=1 ejv € H.

Thus,
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IH - z szlz—l)szlz—l) (u®A2?=1 ejv)
(A2-1)eA

— (7., —p2 ;
- <I( * Pf *szq'=1 efMZJq'=1 61) e*®0

Now the element of the form (I, — P2 Mya , Maq e,, (e,e,), are dense in
* “ % 2]':16] 2]=16]

cr

O %

Otherwise there exist an e € *,, e, # 0, such that e, = P2 Msa ,ng 0 e)
* j_l ] j=1 ]

!
,e*—

e,

and hence ||e/|| = |M* P2 Msa o M :
x Lj=q U

*
q q e
z:j=1 0 2:j=1 6;"*
cr

M M. e!. Since M el € 7, and the sequence 8; is purely contractive it
DY ) 27,0, ¢ q j is purely

follows that ng 0 e, =0 and e, = 0 which is a contradiction.
j=1Yj

Thus
L, = .®{0} (43)
and M - (L,) = £?( 7 ,)®{0}.
Denoting by P?L« the orthogonal projection of K onto M - (L,), we have
for u® A2?=16]_v EK
P2 (uBAys_ g v) = udO, (44)

L, p2L, — D _
OLP2h (uBlys o v) =D uB0 = uo.

D. Next we show that

L = \/ (V(/lz—l) — T(ﬂz—l)) H = {M2?=1018®A2?=16,-e ;e € }
(A2-1)eA

Notice that an element u@Aya o,V in K belongs to H if and only if
j=1

* 2 _
M2?=1 ejuEBAZq 16]_17 = 0. (45)

For u@® Aya 6,V € Hand (1> — 1) € A we have
j=1

* — 2 *
T(lz—l) (u®A2?=1 ejv) = PHV(ZZ—l) (u®A2?=1 ejv)
= (5(12—1)U®A2§?=19]-5(/12—1)”) - (szleejW(AZ—l)eaAZ?:le,-W(AZ—l))'
where each wy2_qy € £2(. /" ¢*) is defined by
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((S(Az_l)u - M2?=1 HjW(/lz—l)) @ (AZ?=1 9]-5(/12—1)‘7
—_ A2?=1 ejW(AZ_l)), M2?=1 HJW @AZ?=1 HJW ) = 0

for every w' € £2(./. °).

Hence, we find that

2
ejS(Az_l)u + Azq 9]-5(/12_1)1]

Jj=1

W(/lz—l) = Mg

q
j=1

and

(Viz-1) = TGae-) (u@Azgzle,-v) =Mga_ o Waz-n®hya o Wiz-1)-
By (45) an easy computation shows that{w;2_1), S e,) = 0 for every e, € ,,
fm € -/, fm # 0.Consequently, wz_qy €
Let us show that if u@®Ayq 6,V varies over H and (12 — 1) over A, then the
j=1

corresponding elements w,2_;y vary over a set dense in «* .

It is easy to see that for e € “and (12 — 1) € A the element

W(Az_l) == Mg: HjS(/lz_l)Saz—l)MZ?ﬂ 6]8 + AZ?=1 ejC(AZ_l)CgAZ_l)Azqul 6]8 iS the

q

j=1

corresponding element ofSaz_l)qu ejeEBCaz_l)AZq eje € H.
J=1 j=1

Thus, for e € ¢© we have

— M* _ p2 2
e AW(AZ—l) - szizlej(l P;’*)sz?:le,-e + Azgzle,-e
-1)e

=e—M

* 2 r
q P;f Mq e e .
Xja 05 TR O

It remains to prove that the set

1s dense in .

Indeed, otherwise there exists e’ € ¢/, e’ # 0 such that

e’ = M. P2 M e’ .It follows that ||e’]|| = ||P2 M e’
qu-=16j % Z]q=16] || || ZEs Z]q=16]

contradicts that the sequence 6; is purely contractive.

, which
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E. The last step is to prove that the characteristic functions of T* coincides with
the sequence 6;.

cr

It is easy to see that the operator  defined from  to L by
w(e) = M2?=1gj€€|9A2?=1eje (e € ) is a unitary one.

On the other hand, from (43) it follows that the operator w, defined from 7,
to L, by w,.(e,) = e, ®0(e, € *,) is a unitary too.

According to (44), for | = Msa ejeEBAZq 6,€ (e € ) we have
j=1 j=1

L.pL, — L, —
Pl (Myo g 0@y ge) = @ (Mg o,e®0) = My p e
q

=My Mgs_ g6 =M, z 6 |w"e.
j=1

Hence, using Theorem (5.1.13) we deduce that characteristic functions of T*
coincides with the sequence 6;.The proof is completed.

Proposition (5.1.17)[211]: Let the sequences 6;: «" — £2(.7 ) and 6;: ">

£ ( e fk) be some operators such that szg:l 0, and szg:l 0 be contractions.

If the sequences 6; and 9]-' coincide, then the sequences T} and T]'- which they
generate in the sense of Theorem (5.1.16) are unitary equivalent.

c cr

Proof. If Xji o " and Xt . > L are unitary operators such that

q q
My., zej = z 0 | x)
=1 j=1
q
thenU = @ (M . ®OM )(j) is a unitary operator from H to H' such that
j=1% "

;'I=1(Tf)(,12—1) = UZ;'I=1(T]')(,12_1)U* for every (12 — 1) € A.
The proof is the same as in the proof of Theorem (5.1.15)

Applying this result to the series of the characteristic functions and by using
Theorem (5.1.15) we obtain a generalization of Theorem3.4 in [134] and Corollary 2
in [133], namely (see [132]):

Proposition (5.1.18)[211]: For a c.n.c. sequence .~ we have that the sequence
(Hj) - is outer if and only if . /"€ C(y).
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Proof. It suffices to prove our assertion for the functional model of . /.

Accordingly, let T* = {Taz_l)} p be the sequences defined in Theorem

(A2-1)e
(5.1.16) Foreveryu @ A ~v € H we have

" 2
Tf w®A )" = 1A vl

lim E |
€00
fm€F(1+¢€,4)

This shows that T* € C(,y ifand only if u € 0 € H implies u = 0. On the

other hand, u @ 0 € H means u L M(Zq 6') 27 ).
j=1"J Va

The last condition implies u = 0 if and only if

L
M(zj’:le,)_/f’z(-/,(/ Y= 22( ),

1.e., the sequence (0]) - is outer.
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Section (5.2): Joint Invariant subspaces:

In the classical case of a single operator, the connection between the invariant
subspaces of an operator and the corresponding characteristic function was first
considered, for certain particular classes of operators, in the work of LivSic, Potapov,
Smulyan, Brodskii, etc. (see the references from [143,144]). One of the fundamental
results in the Sz.-Nagy—Foia,s theory of contractions [134] states that the invariant
subspaces of a completely non-unitary (c.n.u.) contraction T on a (separable) Hilbert
space are in ‘“‘one-to-one” correspondence with the regular factorizations of the
characteristic function associated with T . This general result, although influenced in
part by the work of the authors cited above, was obtained by Sz.-Nagy and Foia s in
[143,144], following an entirely different approach based on the geometric structure
of the unitary dilation and the corresponding functional model for c.n.u. contractions.

The main goal of this section is to obtain a multivariable version of the above-
mentioned result, for n-tuples of operators, and to provide a functional model for the
joint invariant subspaces in terms of the regular factorizations of the characteristic
function. This comes as a natural continuation of our program to develop a free
analogue of Sz.-Nagy—Foia s theory, for row contractions.

An n-tuple T := [Ty, . . ., T,] of bounded linear operators acting on a common
Hilbert space H is called row contraction if
TT +.+TT <I.
A distinguished role among row contractions is played by the n-tuple S =[S, . . .,
S,] of left creation operators on the full Fock space with n generators, F*(H,), which

satisfies the noncommutative von Neumann inequality [145] (see also [146,147])

||p(Tl yeees LIS ||p(Sl yeeesS )

for any polynomial p(X;, . . . , X;) in n noncommuting indeterminates. For the
classical von Neumann inequality [148] (case n = 1) and a nice survey, we refer to
Pisier’s book [149]. Based on the left creation operators and their representations, a
noncommutative dilation theory and model theory for row contractions was
developed in [150,151,152-153,132,154], etc. In this study, the role of the unilateral
shift is played by the left creation operators and the Hardy algebra H*(D) is replaced
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by the noncommutative analytic Toeplitz algebra F,;’O . We recall thatF,;’O was

introduced in [145] as the algebra of left multipliers of F* (H,) and can be identified
with the weakly closed (or w ™ -closed) algebra generated by the left creation operators
S1, ..., Spand the identity.

In [132], we defined the standard characteristic function ®r of a row
contraction (a multi analytic operator acting on Fock spaces) which, as in the
classical case (n = 1) [134], turned out to be a complete unitary invariant for
completely non-coisometric row contractions (c.n.c.). We also constructed a model
for c.n.c. row contractions, in which the characteristic function occurs explicitly. In a
very recent paper [155], Ball and Vinnikov introduced an additional invariant Lt so
that the pair (Lt ,071 ) is a complete unitary invariant for the more general case when
T is a completely non-unitary (c.n.u.) row contraction.

In 2000, Arveson [156] introduced and studied the curvature and Euler
characteristic associated with a row contraction with commuting entries.
Noncommutative analogues of these numerical invariants were defined and studied
by the author [157] and, independently, by D. Kribs [158]. We showed in [159] that
the curvature invariant and Euler characteristic associated with a Hilbert module
generated by an arbitrary (respectively commuting) row contraction T := [Ty, . .., Ty]
can be expressed only in terms of the (respectively constrained) characteristic
function of T. We also proved in [159,160] that the constrained characteristic
function is a complete unitary invariant for the class of constrained c.n.c. row
contractions, and we provided a model.

We continue the study of the characteristic function ©, associated with a row

contraction T := [Ty, . .., T,] in connection with joint invariant subspaces under the
operators Ty, . .., T,, and the joint similarity of 7' to a Cuntz row isometry W := [W, .
., W, e, Wy, ..., W, are isometries with

W+ W0, =1
We establish the existence of a “one-to-one” correspondence between the joint
invariant subspaces under T;, . . . , T, and the regular factorizations of the

characteristic function @, associated with a completely non-coisometric row
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contraction T := [Ty, . . ., Ty]. In particular, we prove that there is a non-trivial joint
invariant subspace under the operators Ty, . . ., Ty, if and only if there is a non-trivial

regular factorization of ®, . Using the model theory for c.n.c. row contractions, we

provide a functional model for the joint invariant subspaces in terms of the regular
factorizations of the characteristic function(see Theorem (5.2.5)). An important
question related to the main result, Theorem (5.2.4), is to what extent a joint invariant
subspace determines the corresponding regular factorization of the characteristic
function. We address this problem in Theorem (5.2.10).

We prove the existence of a unique triangulation of type

c, O
* e,

for any row contraction 7 := [T}, . . ., T,] (see Theorem (5.2.11)), and prove the
existence of nontrivial joint invariant subspaces for certain classes of row
contractions. We show that there is a non-trivial joint invariant subspace under 77, . . .
, T, whenever the inner—outer factorization of the characteristic function associated
with T is non-trivial (see Theorem (5.2.18)). We also consider some examples that
explicitly illustrate the correspondence between joint invariant subspaces and
factorizations of the characteristic function.

We obtain criteria for joint similarity of n-tuples of operators to Cuntz row
isometries. In particular, we prove that a completely non-coisometric row contraction
T is jointly similar to a Cuntz row isometry if and only if the characteristic function
of T is an invertible multi-analytic operator (see Theorem (5.2.20)). Moreover, in this
case, we provide a model Cuntz row isometry for similarity. This is a multivariable
version of a result of Sz.-Nagy and Foias [160], concerning the similarity to unitary
operators.

Extending some results obtained by Sz.-Nagy [161], Sz.-Nagy and Foias [134],
and the author [152,163], we prove, in particular, that a one-to-one power bounded n-
tuple [Ty, . . ., Ty] of operators on a Hilbert space H is jointly similar to a Cuntz row
isometry if and only if there exists a constant
¢ >0 such that
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2T i = el he n

aeEf,\a\:k

forany k=1, 2, . .. (see next section for notation).

[164], Muhly and Solel extended the results from [132] to c.n.c.
representations of the Hardy algebra H“ (E) and their characteristic functions. We
believe that all the results can be generalized to their setting.

The existence of a non-trivial joint invariant subspace for Ty, . . ., T, is
equivalent to the existence of non-trivial regular factorizations for the characteristic

function ©, . This raises the following natural question: does any contractive multi-

analytic operator have a non-trivial regular factorization? While this remains an open
problem even in the one-variable case, it will be interesting to find, as in the classical
case, sufficient conditions for the existence of non-trivial regular factorizations in our
multivariable setting.

Another natural open problem worth mentioning is the problem of extending ,
concerning c.n.c. row contractions, to the case of ¢.n.u. row contractions by using the
complete invariant (L7, @, ) from [155].

Recently [159,160] we developed a dilation theory on noncommutative
varieties determined by row contractions [T}, . . ., T,] subject to constraints such as
p(Ty, ..., Ty) =0, p € P, where P is a set of noncommutative polynomials. It would
be interesting to see to what extent the results of this paper can be extended to
constrained row contractions and their constrained characteristic functions.

Let H, be an n-dimensional complex Hilbert space with orthonormal basis e,
e, ...,e, Where n € {1, 2, . . .} or n=00. We consider the full Fock space of H, defined
by

F*(H)=@H,"

k>0

where H® =C, and H %" 1s the (Hilbert) tensor product of k copies of H,. Define the
left creation operators S; : F*(H,)—F*(H,),i=1,..., n,by

Sip=e, ®p, @E F’(H,).
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The noncommutative analytic Toeplitz algebra F,” and its norm closed version,
the noncommutative disc algebra An, were introduced by the author [12] in
connection with a multivariable noncommutative von Neumann inequality F,” is the
algebra of left multipliers of F°(H,) and can be identified with the weakly closed (or

w" -closed) algebra generated by the left creation operators S;, . . . , §, acting on

F*(H,), and the identity. When n = 1, F” can be identified with #”(D), the algebra
of bounded analytic functions on the open unit disc. The algebra F”can be viewed as
a multivariable noncommutative analogue of H*(D). There are many analogies with
the invariant subspaces of the unilateral shift on #?(D)), inner—outer factorizations,
analytic operators, Toeplitz operators, H~*(D)-functional calculus, bounded

(respectively spectral) interpolation, etc.

Let F; be the unital free semigroup on » generators gy, . . ., g,, and the identity
go- The length of a € F,"is defined by |a| =k, if a = g; gi, - &, , and |a[ :=0, if a = go.
e also define ¢, = e ®e, ® -+ ®e; and €gy= 1. It is clear that {e,: @ €EF } is an
orthonormal basis of F*(a,).If T}, . . ., T, €B(H), the algebra of all bounded linear
operators on a Hilbert space H, we define T, := T; 1Ti2 Tik and Tg0:=1 H-

We need to recall from [132,165,146,166] a few facts concerning multi-

analytic operators on Fock spaces. We say that a bounded linear operator 4 acting
from F*(H,) ® Kto F*(H,)) ® G is multi-analytic if

AS:® I,)=(S;® I;)4  foranyi=1,..,n. (46)
Notice that 4 is uniquely determined by the operator 8 :K — F*(H,) ® G, which is
defined by 8k = A(l ®k), k € K, and is called the symbol of 4. We denote 4 = Ay .

Moreover, Ay 1s uniquely determined by the “coefficients” 8 ) € B(K,G), which are
given by

<0(d)x,y> =(0x, ¢, ®y) =(A,(I®x),¢,®Y), xeK,yeGoeF-,

where ais the reverse of o, i.e., a=g; - g ifa=g; g, . We can associate with

A,a unique formal Fourier expansion
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Ay~ D R, ®0,

+
aeck,

where R; .= U*S,U, i = 1,...,n, are the right creation operators on F*(H,)and U is the
unitary operator on F*(H,) mapping e ®e, ® - Oe; nto e, ®..®e¢,®e¢ . Based

on the noncommutative von Neumann inequality [146], we proved that

4,=S0T ~limY. >.r"R, ®,,
ro1 k=0 |a|=k
where, for each » € (0, 1) the series converges in the uniform norm. The set of all
multi-analytic operators in B(F*(H,) ® K, F*(H,) ®G) coincides withR” ® B(K,G) ,
the WOT closed algebra generated by the spatial tensor product, where R” :=U * F*U

(see [166,167]). The multianalytic operator Ay is called:

(1) inner if Ay 1s an isometry,

(i1) outer if (A4,(F*(H,)®¢&)=F*(H,)®¢.,

(iii) purely contractive if || P, 0 hH < HhH foreveryh € ¢, h # 0,

(1v) unitary constant if 4,= I ® W for some unitary operator W € B(K,G).
If A, : F*(H,) ®M— F*(H,) ®N 1s another multi-analytic operator, we say that 4,
coincides with 4, if there exist two unitary operators
W:K—M, W, :G >N
such that
(1 ®W.)Ag=A, (1 ®W).

For simplicity, throughout this paper, 7 := [T, ..., Ty, n=1, ... ,0, denotes
either the n-tuple(Ty, . . ., T,) of bounded linear operators on a Hilbert space H or the
row operator matrix [T - - - T,] acting from H" to H, where H” :=®_, H is the
direct sum of n copies of H. Assume that
T:=[T,, ..., T,]is arow contraction, i.e.,

TT +..+T,T, <I.

The defect operators of T are
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=

1/2
A= (IH —~ TiTi*j eB(H) and A =, ~T'T"* e BH™),

i=l
and the defect spaces of T are defined by
D.=A_H and D:=A,H" .
The characteristic function of the row contraction T := [Ty, . . ., T,] is the multi-
analytic operator @, : F*(H,)® D - F*(H,)® D, with symbol ©, is given by
®, (h)==>T,Ph+> (S, ®1D*)( D e, ®AT*T;13AThJ ,heD,
i=l i=l aeF;

where P; denotes the orthogonal projection of H" onto the i-component of H”, and S
=[Sy, . .., S,] 1s the model multi-shift of left creation operators acting on the full
Fock space F*(H,) .

Using the characterization of multi-analytic operators on Fock spaces (see

[166,167]), one can easily see that the characteristic function of 7 is a multi-analytic

operator with the formal Fourier representation
-1
—1 T+ (I ® AT*)(I—ZRI. ®T;‘j [R,®1I,,..R,®1I,](I®A,),
i=1

where Ry, . . ., R, are the right creation operators on the full Fock space F*(H,).

The definition of the characteristic function of T arises in a natural way in the

context of the theory of noncommutative isometric dilations for row contractions (see

[153,132]). Let V :==[V1, ..., V,], Vi € B(K), be the minimal isometric dilation of 7" on
a Hilbert space K D H.
Therefore,
(1) ¥y, ..., V, are isometries with orthogonal ranges;

() T, =V, |,,i=1,...,n
(i) K=V .V, H.

Consider the following subspaces of K:

L=/ (V,~T)H.L. = (lk - ZK-TJ‘]H
i=1

i=l
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According to [153], we have the following orthogonal decompositions of the minimal
isometric dilation space of T':
K=R®M,(L)=H®M,(L) (47)

where R reduces each operator V;,i=1, ..., n,

M,L)=@®V,L. and M,(L)=@V,L.

\ \
acr, acr,

Denote by @* the unitary operator from My (L) to F*(H,)® L defined by

@L[ZVazanz e, @, L, eL, Y|t <.

ack,; ack; ack;

One can view ®" as the Fourier representation of My (L) on Fock spaces. Then, for

anyi=1,..., n, we have

CDLVZ. = (S, ®1,)D",
where S =[Sy, . . ., S,] is the model multi-shift of left creation operators acting on
the full Fock space F*(H,). Similarly, one can define the unitary operator (Fourier
representation) ®"* : M, (L.) - F>(H,)® L..We proved in [132] that the characteristic
function ©, coincides with the multi-analytic operator O, :F*(H,)®L —

F*(H,)® L. defined by

0, = o (PMV(L*)|MV(L))(CDL)*a

where Py, w+) denotes the orthogonal projection of K onto M (L+).

LetT=[Ty, ..., T,],n=1,...,00, be arow contraction with 7; € B(H) and
consider the subspace H. CH defined by

H, = {h eH: Z
‘a‘:k

T h

g ||h||2 forany k =1, 2,..}

We call T a completely non-coisometric (c.n.c.) row contraction if H. = {0}. We
proved in [153] that H. is a joint invariant subspace under the operators 7;",..,7’, and

it is also the largest subspace in H on which 7" acts isometrically. Consequently, we

have the following triangulation with respect to the decomposition H =H . ® H .,
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40
T = , i=1...n
1 %k Bl, y

where [A4y, . . ., A,] 1s a coisometry, i.e.,AlAl* +...t AnA: = ]Hc » ,and [By, ..., B,]

is a ¢.n.c row contraction. We say that 7'is of class C.,  (or pure row contraction) if

lim 2

k—© ‘a‘=k

. 12
T,h =0 forany h€H.

In [132], we constructed the following model for c.n.c. row contractions, in which the

characteristic function occurs explicitly.

Theorem (5.2.1)[142]: Every completely non-coisometric row contraction 7 := [T, .
., Iy, n=1,2,...,0 , on a Hilbert space H is unitarily equivalent to a row

contraction T := [T}, ... ,T,] on the Hilbert space

H=[(F*(H,)®D.AO®, (F*(H,)®D] ©{©,f ®A®,f :f cF*(H,)®D}
Where A ©, :==(I- ®," ©, )"*and operator T;, i=1, ..., n, is defined by

. (5;®1,)f®Ag, g ifi=]

T[fOPAO, (S ®I = . ’ ! o

LS OA0(S, ®1, )e] {(Sl. ®1,)f ®0 i1 ]
ij=1,....,nand Sy, ..., S, are the left creation operators on the full Fock space F*(H,).
Moreover, T is a pure row contraction if and only if ®, is an inner multi-

analytic operator.In this case the model reduces to
H=(F(H,)®D,) ©O,(F(H,)®D) T f=(S ®I,)f, feH
Any contractive multi-analytic operator ® :F*(H,) ® £ —F*(H,) ® ¢, (¢,6,are
Hilbertspaces) generates a c.n.c. row contraction T := [Ty, . . . ,T,]. More precisely,

we proved in [132] the following result.

Theorem (5.2.2)[142]: Let © le(Hn)®8 —>F2(Hn)® e, be a contractive multi-

172

analytic operator and set A g :=(I— ®* ©) ". Then the row contraction T := [T}, . . .

,T] defined on the Hilbert space

H=[(F(H,)®e)®A(F*(H,)®¢)]O{0,®A,g:g €F*(H,)®¢}
by

T (f ®Ayg)=(S, ®I,)f ®C,(Ayg), i =1,...,n,
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where each operator C; is defined by
Ci(A08) = A (Si®L)g g € F(H,) e,
and S;, . . ., S, are the left creation operators on Fz(Hn), is completely non-
coisometric.
If ® is purely contractive and
De(F?(Hy) @ €) = Do ((F?(Hn) ® €) O €),

then ® coincides with the characteristic function of the row contraction

T :=[Ty, ..., Ty]. Inthis case, considering H as a subspace of

K=(F3(H,)®c)®A, (F*(H,)®¢),
we have that the sequence of operators V := [V, . ..,V,] defined on K by
Vi=(S®1,)®C,, i=1,...,n,
is the minimal isometric dilation of T := [Ty, ... ,T,].
We establish the existence of a “one-to-one” correspondence between the joint
invariant subspaces under 7j, . . . , T,, and the regular factorizations of the

characteristic function ©, associated with a completely non-coisometric row
contraction 7 := [Ty, . . ., T,]. In particular,we prove that there is a non-trivial joint
invariant subspace under the operators 7y, . . ., T,,if and only if there is a non-trivial
regular factorization of @, . Using the model theory for c.n.c row contractions, we
provide a functional model for the joint invariant subspaces in terms of the regular
factorizations of the characteristic function.

Let ® :F*(H,)®¢ — F*(H,)®¢. be a contractive multi-analytic operator and
assume that it has the factorization

0=0,0,

Where ©,:F*(H,)®¢ »> F*(H,)®F and ©,:F*(H,)® F - F*(H,)®e¢. are contractive

multi-analytic operators. Define the operator

Xo :Ag(FP(H)®&) > A (F(H)®F)®A(F(H,)®¢)
by setting
X@(A(af)::A2®1f@A1faf€F2(Hn)®8, (48)
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where A, =(1-0*0)"? and 4;:= (I -00,)"?, j =1, 2. Notice that X is an isometry.
Indeed, since

[-0'0=1-0'0.0,0,=0'(/-0'0,)0, +(-0'0),),
we have

Ir.0.7 @ 8, /T =[.0, 11+, fF
=(0;(1-0,0,)0,f +(1-0,0,),f)
=(1-0'0)f.f)=|rof]"
As in the classical case (see [134]), we say that the factorization ® =0, +©, is regular

if Xp 1s a unitary operator, i.¢.,

(A0, f®Af:feF (H)®cf =A,(F*(H,)®F)®A,(F*(H,)®¢).
Now let us prove the following technical result which will be very useful in what
follows.

Lemma (5.2.3)[142]: Let ® : F*(H,)®¢ — F*(H,)®¢. be a contractive multi-

analytic operator and let C = [C;, . . ., C,] be the row isometry defined on

Ao (F*(H,)®¢) by setting
CA f=A(S,®I)f, [feF*(H,)®¢,
foreachi=1, ..., n, where A, :=(7-0"®)"?. Then C is a Cuntz row isometry, i.e.,

CC, +...C,C, =1I,1f and only if

Ag(F*(H,)®¢&)=A0g((F2(Hn) ® ) O ¢). (49)
Assume that ® has the factorization
0=0,0,,
where ©,:F*(H,)®¢ - F*(H,)®F and ©,:F*(H,)®F — F*(H,)®e¢, are contractive

multi-analytic operators and let £ .= [EY, . . ., E,] and F=[F, ..., F,]be the

corresponding row isometries defined on A(F*(H,)®¢) and A,(F*(H,®F).,

respectively. Then

X, C. = Fo0 X =1
(Chad A 0 E (C] JA=1,...,0 (50)

1
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where the operator X, is defined by relation (48). Moreover, if the factorization
®=0,0, is regular, then C is a Cuntz row isometry if and only if E and F are Cuntz

row isometries.

Proof. First, notice that since ® is a multi-analytic operator, i.e.,

O (5,®1,)=(5®1, )0, i=1...n

we have
(CAfCihog)=((S; ®I,)I-O'O)S, ®1,)f.g)
=(6,I-0°0)f.g)=5,(Aof.Aog)
forany f, g € F*(H,)®¢ and 1,j=1, ..., n. This shows that the operators C;,...,C,

are isometries with orthogonal spaces. Due to the definition of

C;, it is clear that C,C; +...+C,C. =Iif and only if the range of the operator

[Ci, ..., C,] coincides with A, (F*(H,)®e¢ ,which is equivalent to (49).
On the other hand, foreachi=1,..., n,andf€ F*(7,)®E , we have

XoCi(Apf)=XgAo(S, ®I)f =A,0,(5,®1,)f DA (S, ®IE)f
:AZ(Si ®[F)®lf@Al(Si®[g)f:F;A2®lf@EiAlf

0 E

1

E.

1

F 0 F 0
:£ l ](Aze)lf@Alf) :£Ol ]XGAGf:

which proves relation (35). If the factorization ® = ®, 0, is regular, then X, is a

unitary operator. Consequently, we have

n

SFEF 0

x, QCCHX, =| ™ ! ,
i=l 0 > EE;
i=1
which implies that C :=[C,, . . ., C,] is a Cuntz row isometry if and only if £ = [E], .
.., E,Jand F =[F}, ..., F,] are Cuntz row isometries. This completes the proof.
Theorem (5.2.4)[142]: Let T := [Ty, . . ., Ty], Ti € B(H), be a completely non-

coisometric row contraction and let ® :F*(H,)®¢ - F*(H,)®¢.be a contractive

multi-analytic operator which coincides with the characteristic function of T . If H; C

H is a joint invariant subspace under the operators Ty, . . ., T,, then there exists a
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regular factorization ©=0,0,, where ©O,:F’(H,)®¢c—>F*(H,)®F and 0,:
F*(H,))® F - F*(H,)® ¢,are contractive multi-analytic operators such that T := [T, .

., Ty] 1s unitarily equivalent to a row contraction T :=[Ty,...,T,] defined on the

Hilbert space

H =[(F*(H,)®&e)®A,(F*(H,)QF)®A (F*(H,)®&)]O
[0,0f ®A0f ®AS :f €F’(H,)®¢|
by setting
T (f@p@y)=(S ® ) [®F p®Ey, [@p®yecH,
forany i=1, ..., n, where the operators F; and E; are defined in Lemma (5.2.3) and

Si,...,S, are the left creation operators on Fz(Hn). Moreover, the subspaces

corresponding to H; and H, :=H&H, are

H, :={ Of OAf ®g:f cF (H,)®F,g eAl(Fz(Hn)@)g)}e
{0,0f ®A,0f ®ASf :f eF’(H,)®¢ |

and

H,=[(F*(H,)®&)®A,(F(H,)®F)®{0}] O {G)Zf DA, ©{0}:f er(Hn)®F},
respectively. Conversely, every regular factorization © =©,0, generates via the above

formulas the subspaces H; and H, with the following properties:
(1) H; 1s invariant under each operator T; ,i=1, ..., n;
(i1)) H, = HOH,.
Under the above identification, H; corresponds to a subspace H; cH which is

invariant under each operator T; ,i=1, ..., n.

* o

Proof. Partl. Let T .= [Ty, ..., T,], T; € B(H), be a row contraction and let V :=[V|,

.» Vul,Vi € B(K), be its minimal isometric dilation on a Hilbert space K=V _ v, H

. Since Vj,...,V, are isometries with orthogonal ranges, the noncommutative Wold
decomposition [153] provides the orthogonal decomposition

K=R&M, (L), (51)

where
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Moreover, R is the maximal subspace of K which is reducing for the operators
Vi,...,V, and the row contraction [Vi[g, . . ., Valr] 1s @ Cuntz row isometry.
Let HicH be an invariant subspace under the operators Ti,...,T,. Since

*

4

1

,=T ,1=1,..., n, we deduce that the subspace H, = HOH, is invariant under the

operators ¥,",..,V. . Therefore, the subspace G:=K©OH, is invariant under Vj,...,V,.

Applying again the noncommutative Wold decomposition to the row isometry
[Vilg, - - ., Vilg], we obtain the orthogonal decomposition

G=R®M, (Q), (52)
where

R, 1=ﬁ{@VaG} and Q:=G6(§-]BVZ.GJ,

Since R; reduces the operators Vi, . .., V,and [V1|R1, C Vn|R1] 1s a Cuntz row
isometry, we deduce that R; € R. Notice that R, := ROR| is also a reducing subspace
for Vi, ..., V,and [V1|R2, e, Vn|R2] is a Cuntz row isometry. Using relations (51)
and (52), we infer that
H,=k ©G =[R®M, (L.)] 6 [R,®M, (Q)]=[R, ®M, (L.)] 6 M, (Q).

Hence, we deduce that

M,(Q)c R, ®M, (L.). (53)
On the other hand, due to (47), we have

K=R®M,(L)=H®M, (L).
Hence, we obtain

H =[R®M, (L)|© M, (L).
Since H, cH, the above representations of H and H, imply

[R,®M, (L)]© M, (Q c[R @M, (L)]O M, ().
Taking into account that R=R; ®R;, we have
[R,®M, (L)]© M, (Q=[R,®M, (L)]O [ROM, Q).
Consequently, we deduce that
M,(L)CR® M, (Q) (54)

179



and
H =HQ© H,=[R®&M,(Q]O M, (L)=G O M, (L)

Let Py y> Py, > FroFr» and Py, be the orthogonal projections onto the
corresponding spaces. According to relations (53) and (54), for any x €M, (Q) and y
€M, (L), we have

x=Lp, X+ By )X and  y=Fuy+ Py o) . (55)
In particular, if x .= P v, QY and y €M, (L), we deduce that

y=5y+ BBy ) Db (56)
Hence and taking into account that the subspace R; ®R, =R is orthogonal to M, (L.),

we deduce that

By = PuyoPuy @y and Py = Poy+ Py By )Y (57)

for any y EMy (L). Due to relation (51), we have
PRf:(l_PMV(L*))f , fek. (58)

On the other hand, relations (54) and (53) imply
PRly:(l_PMwo)) . yeM,(L) (59)

and

Pox=(1-Py ., xeM,(Q) (60)
Assume now that [Ty, ..., T,] is a c.n.c. row contraction. In this case, we have

(see [153])
K=M,(L)vM,(L)=R®M,(L.),

which implies

PRMV(L):(I_PMV(L*)MV(L):R- (61)

Hence and using the second relation in (57), we deduce that

P.M,(LY=R and P P, oM, (L)=R,,

v (Q)

and, consequently,
P, M,(L)=R, and P, M,(Q)=R,. (62)
Part II. Consider the following contractions:
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Q= PMV(L*)\MV(L) M, (L) > M, (L),
Q=P M, (L) > M,(Q), and

T My (QIMy (L)

0, = Py oy, ) My (Q) »> M, (L),
Since M, (L.),M,(L ), and M,(Qg) are reducing subspaces for the operators Vi, . . .,

V., we deduce that, foreachi=1, ..., n,

Q(Vz |MV(L)) = (Vz |MV(L*)) Qa

Q] (Vl |MV(L)) = (Vl |MV(Q)) Q]a and

Qz (Vl |MV(Q)) = (Vl |MV(L*)) Qz-
Let ®* :M,(L.) > F*(H,)® L. be the Fourier representation of the subspace M, (L.)
J.e.,

@L{ZVazaj: e, ®1,,

achy ach;

where ¢, e L. and )|/ a||2 <o Notice that

aeF,
OV, |y 1) = (S, @, O™, i=1,...n,

where Sy, . . ., S, are the left creation operators on F*(H,). Similarly, we define the
Fourier representations of the subspaces My (L) and My (Q), respectively. Now, due

to the above intertwining relations satisfied by Q , 01, and Q,, the operators

@, :F*(H,)®L >F*(H,)®L,, ©, =0"Q(®L)",
v :Fz(Hn)®L _)Fz(Hn)®Q7 V= (DQQI((DL)* and (63)
v, F*(H)®Q—>F*(H )®L., W¥,=0"0,(®°)

are contractive and multi-analytic. Hence and using the first equation in (42), we have
0, =P Q(d") =0o" Py, .y b, (L))(CDL)*
=" (Pu, 2 Pus, ) b, (L)XCDL )
=[Py by, @)@ ][Oy by 0 )P
=[©"0,(@%)" [ @°0,(@")’]
=Y,¥,.
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Due to (58) and (61), there exists a wunique unitary operator

®,:R—>A,(F*(H,)®L) such that
O, PY=AP"Y, WYeM,(L), (64)
where A, :=(/-0,0,)"? Indeed, we have
(7 =2 ) ] =1 =

=|ote| o P, (L*)‘PHZ

=[ot e[ o, ot |

=|a, 0 |

Consequently,

O = P" DD, (65)

is a unitary operator from the dilation space K =My (L.)@R onto the Hilbert space

K=(F*H,)®L)®A,(F>(H,)®L)

The image of the space H=K © M, (L).My (L) under the operator @ is

OH =1 = [(FZ(H,,)®L*)@AL(F2(H,,)®L)J@ (0, ®Af if eF(H,)®L).
The row contraction T := [Ty, ..., T,] is transformed under the unitary operator @

into the row contraction7 :=[7,,...,T,] where

T'(f®A,g)=(S ®L)f®C (Ag), i=1l.,n

b

and each operator C, is defined by
éi(ALg):AL(Si@)IL)g ) ger(Hn)@)L.

Notice that, using relations (59), (60), and (62), one can show that there are some

unitary operators

@, :R > A, (F'(H)®L) and @, :R,—>A, (F'(H,)®Q)
uniquely defined by the relations
D, P x= AWI(DLx, xeM,(L),

Q (66)
(DRZPRZy:: AWZ(D y, yeM,(Q),
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where A, = -¥ ¥,)"’for j=1,2. Consequently, since R=R,®R; and due to
; it J q y

relation (64), the operator

X, (A (FP(H)®L)—> Ay (F'(H)®Q @A, (F'(H,)®L)
defined by
Xp = ((DR2 DD, )(D; (67)
is unitary. Due to relations (64), (57), (66), and (63), we deduce that
xLALcDLy =x, PPy = (CDR2 ® D, )Py

= (CDR2 ®q)R] )(PRZPMV(Q)y @PR]J’)

= Ay, PP,y DA, Py

= AWZ‘PICDLy®A\p]CDLy

for any y EMy (L). Hence, we have
XA f=A Y f®A, f, feF'(H,)QL. (68)

Since X is a unitary operator, we also deduce that

D@ f @A, [, [eF (H)®L{=A, (F*(H,)®Q® A, (F*(H,)®L)
Due to (65) and (67), we have
P=D" DX, (D, DD,).

Now, we need to find the images H, and H, of H, and H, respectively, under the
unitary operator @ . To find A, , notice first that, due to relation (67), we have

Qz=X, (O, @D, )(zD0)=X, (D, zD0) (69)
for any z €R,. Hence and using (64), we infer that

O(M,(L)®R,)=®P"“M,(L.)D DR,
= (F*(H,)®L)® X, (Ay, (F*(H,)®Q) @{0))

and, due to (55),
OM, (Q) = {0 P,y (1) f O PPy, [+ f € M, (Q)
Hence, and using relations (48), (51), and (54), we obtain
M, (Q) = (¥,u ® X; (A, u®0):u e F*(H,)®Q}

Now, using the representation of H, from part I, i.e.,
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H,=[M,(L)®DR,]OM, Q.

We obtain

i, =[ (P, ®L)®X (A, (F (H,)®Q)®{0} |©

(W.f ®X[ (A, f ®0):f eF*(H,)®Q}.

Since A, =A © H,, we deduce that

[, ={¥.f ®X (A, f ®g):f €F(H,)®Qg A, (F(H,)®L)|O
(0w @Aw 2w e F*(H,)®L}.

The characteristic function ©, of the row contraction T coincides with ©, , and
therefore with ®. Via this identification, the regular factorization ©, =¥,¥,
corresponds to a regular factorization ® =0,0,, where ©,: F*(H,)®& — F*(H,)® F
and ©, : F*(H,)® F — F*(H,)® ¢, are contractive multi-analytic operators. Now, it is

casy to see that, under the above identification, the subspaces H,and H, correspond to

the subspaces

H, :[(Fz(Hn)®g*)®X;(A2(F2(Hn)®F))®{O}J

O {0f @X (Af ®0):f eF*(H,)®F| (70)

and

H ={0,f ®X (Af @g):f eF*(H,)®F,g eA(F(H,)®¢)}
O{Op@Ap:peF(H,)®¢}, (71)
respectively, where A, =(/-©'0,)"?, j =12 Moreover, under the same identification,

the row contraction7 is unitarily equivalent to the row contraction T = [Ty, . .. ,T,]

defined on the Hilbert space

H::[(Fz(Hn)@)s*)®A®(F2(Hn)®s)} e{@)g ®AgD:g er(Hn)®g},
and
T (f ®Agg):=(S; ®I&)f ®C,(Ayg), i=1,..,n,
where each operator C; is defined by

Ci(Apg)=Ae(S;®1,)g, geF*(H,)®e¢,
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and Sy, . . ., S, are the left creation operators on F*(H,).

Since the factorization ©® =0,0, is regular, X is a unitary operator which

identifies the subspace A, (F’(H,)®¢) with A,(F*(H,)®F)®

A(F*(H,)®¢)and the operator C; with (]; 2], for eachi1=1, ..., n. Under this

identification the Hilbert spaces H, H;, and H, are identified with H, H;, and H,,
respectively, and the row contraction T is unitarily equivalent to the row contraction
T.

Part III. We prove the converse of the theorem. Due to the above identification, it is
enough to assume that the factorization ® =0,0, is regular and the subspaces H; and
H, are defined as above by relations (71) and (70), respectively. Since X 1s a unitary
operator and using Lemma (5.2.3), we have

Hence, we obtain
H, =G, @{@(p +A®(p:(peF2(Hn)®e}.

On the other hand, we have

[(Fz(Hn)@)e*)@A@(Fz(Hn)®3)} O G,

:[(Fz(Hn)(@g*)@X;(Aze(Hn)®F)®A1(F2(Hn)®g)}@ G,

:[(FQ(H,,)(@&)@XZ)(AQFZ(H”)®F)®{O}} O{0.f X (Af ®{0}):f eF*(H,)®F|.

Consequently,

H, :[(Fz(Hn)®8*)@A@(F2(Hn)®g)}@ G, .

Hence, and taking into account the definition of H,, we deduce that H= H, ® H,.

It remains to prove that the subspace H, is invariant under the operators

T',..T IffEF(H,)®¢ and gEA,(F*(H,)®F), then the vector x:=f & X (g ®0)is in
H, if and only if

Q,f+A,g=0. (72)
Indeed, using relation (70), one can prove that the condition

(f@X5(£®0).0,0© X (A,p®0))=0 foranyp e F*(H,)®F
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is equivalent to (72). Since
T'x=T (f®X;(g®0)=(S ®I)fDC X;(gDO0)
foreach 1=1,...,n, to prove that 7'x € H, it is enough to show that
(5] ®L)f ®C (X5(2D0)),0,0® Xo (A0 ©0)) =0
for any ¢ e F*(H,)® F Since ® 1s a multi-analytic operator, the latter condition is

equivalent to

(S ®1,)0,f+A,PX,C X;(g®0)=0, (73)

where P is the orthogonal projection of the direct sumA, (F*(H,)® F®A,(F*(H,)®¢

onto A,(F*(H,)®F Using Lemma (5.2.3) and the definition of the operators C;, E; ,

and F;, we deduce that

*

ABX X (8 ©0) = AZPIX@X;;(F(; E‘lj(g ®0)
=AF'g=(S ®I,)Ag.
Hence, and using relation (72), we have
(S ®1,)05/ +A,PX,C X (g®0) = (S @1, )OL1 +A,g)=0,
which proves relation (73). This shows that 7'H,cH, for any i=1,...,n.

Consequently,the subspace H;= HOH,is invariant under the operators 7,....,7,. This

completes the proof of the theorem.

Now we can reformulate Theorem (5.2.4) in terms of the functional model of a
c.n.c. row contraction provided by Theorem (5.2.2). This version will be useful later
on.

Theorem (5.2.5)[142]: Let O©:F*(H,)®¢ — F*(H,)®e¢.be a purely contractive

multi-analytic operator such that

Ao (F?(H,)®z)=A ¢ [(F2(H,) ® ¢) O €]

and let T .= [T}, ..., T,] be defined on the Hilbert space

Him| (F2(,) @)@ A, (F(H,)92) | ©fog 0,816 71,05},
and
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T'(f ®Ag)=(S, ®I ) ®C(Aog), =1,
where each operator C; is defined by
C(Bo8)=Do(S, ®1,)g, geF*(H,)®s,
and Sy, . . ., S, are the left creation operators on F*(H,).

If H; € H is an invariant subspace under each operator T; ,i=1, ..., n, then
there is a regular factorization
0=0,0,
where ©,: F*(H,)®¢ - F*(H,)®F and @©,:F*(H,)®F — F*(H,)®g¢, are contractive

multi-analytic operators such that, if X o is the operator defined by (33), then the

subspaces Hiand H, := HOH, have the representations:

H, ={®2f OX.(ASf Dg):f eFX(H,)®F, g eA](FQ(Hn)®g}

O {0p@Ap:peF(H,)®¢}

and

H, - [(Fz(Hn)(@g*)@X; (AQ(FQ(Hn)®F))®{O}}

O {0/ X (Af ®0):f e F’(H,)®F|
Conversely, every regular factorization ® =0,0, generates via the above formulas the

subspaces H; and H, with the following properties:
(1) H; is an invariant subspace under each operator T; ,1=1, ..., n;
(i1)) H, = HOH,.
In what follows we need the following factorization result for contractive multi

analytic operators [168].
Lemma (5.2.6)[142]: Let®eR’ ®B(e,G) be a contractive multi-analytic operator.

Then ® admits a unique decomposition ® = y ® A with the following properties:
(i) ¥ € R*®B(s,,G,) is purely contractive,.eHPG A% hH <|#| forany heeyh=0
(1) A=1®U eR’®B(¢,,G,) is a unitary operator;
(iif) E=¢,9¢, and G =G,DG,.
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Moreover, the purely contractive part of an outer or inner multi-analytic operator is
also outer or inner, respectively.
The next result is an addition to Theorem (5.2.2)

Proposition (5.2.7)[142]: Let ©:F’(H,)® ¢ - F*(H,)®¢. be a contractive multi-

analytic operator such that

Ao (F?(H,)®z)=A g [(F2(H,) ® ¢) O €]

and let T := [Ty, ... ,T,] be the functional model associated with ®, as in Theorem
(5.2.2).
(1) The characteristic function of T := [Ty, . . . ,T,] coincides with the purely

contractive part of © .
(i1) The space H defined in Theorem (5.2.2) is different from {0} if and only if
there is no unitary operator UeB (¢,&,)such that @ =71 ®U.
Proof. According to Lemma (5.2.6), the multi-analytic operator © admits the
decomposition ® =d® Awith y € R ® B(g,,&.,) purely contractive and A = [
®U e R” ® B(s, ., ), whereU € B(g,,€.,) is a unitary operator, € = &, ¢, and ¢ .
= &,0D¢&,y, - Notic that

F*(H)®¢.=(F*(H,)®¢, )®(F*(H,)®¢.,) and
F*(H)®e=(F'(H,)®¢,)®(F(H,)®¢,).
On the other hand, we have
O @A g:gc FX(H,) ®¢)=(F*(H,)®¢,)® 0o ®Ap:pc F*(H,) O, )

Now, using the definition of the Hilbert space H, one can identify H with

H, = [(FZ(Hn)(@g*O)(-BAG)(FZ(Hn)®gO)} O [Pp®Ap:pcF (H,)®s,).

Due to this identification, the row contraction T := [T}, . .., T,] is unitarily equivalent

toT’ :=[T'..., T°],which is defined on Hy in the same manner as T is defined on H.

1 90 n

Since A, =A, ®0, it is easy to see that

Ao (FP(H,)®g)=n¢g [(F2(Hy) @ ¢) O ¢l
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According to the second part of Theorem (5.2.2) the characteristic function of
T’ coincides with the multi-analytic operator ® which coincides with the
characteristic function of T.

We prove now part (i1). [f @ =1 ® U for some unitary operator U € B(¢, &),
then 4g = 0 and
H=[F'(H,)®&]0 oFH,)®s) =10}.
If © 1s not a unitary multi-analytic operator, then, according to Lemma (5.2.6) it has a

non-trivial purely contractive part. By part (1), Theorems

dim D,= dim €., dim D = dim g,
where ¢ and ¢, are not both equal to {0}. Since D.cH and D cH™" we deduce that

H#{0}.This completes the proof.

The following result is an important addition to Theorem (5.2.5) (and hence
also to Theorem (5.2.4).
Theorem (5.2.8)[142]: Under the conditions of Theorem (5.2.8), let H=H; @ H; be

the decomposition corresponding to the regular factorization ® =0,0,, and let

A *
T = , i=1..,n
0 B

be the corresponding triangulation of T := [T, . . . ,T;]. Then the characteristic
functions of the row contractions A :=[A},...,AyJand B :=[B,, ... ,B,] coincide
with the purely contractive parts of the multi-analytic operators ©, and ©,,
respectively.

Moreover, the invariant subspace H; under the operators Ty, . . . ,T, is non-
trivial if and only if the regular factorization ® =0,0, is non-trivial, i.e., each factor is
not a unitary constant.

Proof. Define the operator U from the Hilbert space

(F*(H,)®&)®X o(A,(F*(H,)®F ) ®{0})

to

(F*(H,)®&)®(A,(F*(H,)®F)
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by setting
U(f ®X (g®0)):=f @g

forany f € F’(H,)®e¢, and g € (AZ(FZ(H,,)®F). Since Xg 1s unitary, so is U. Using

the definition of Hj, (see relation (70)), we deduce that UH, = H,, where

H,=[(F*(H,)®e)®A,(F*(H,)®F)O {0,00A,0:0c F>(H,)®F}. (74)

SetI', :=UB;U",i=1,...,n and denote by P, the orthogonal projection of the direct sum

A(F*(H)®F)®A(F’*(H,)®¢) onto A,(F*(H,)®F). Using Lemma (5.2.3), we

deduce that

PIX@C,»X@(g@OFR[’ E*J(g}ﬁ:g

0 - \O
forany g € A,(F’(H,)®F)andi=1, ..., n. Hence and using the definitions for the
row contraction [Ty, . .. ,T,] and the unitary operator U, we have

T/(f ®g)=UT, (f ®X o(g ®0))
=U[S; ®I,)f &CX (g ®0)]
=(8;®I, ) ®PX X o(g ®0)
=(S;®I,)f ®F ¢

forany f € F?(H,)®s, and g € A,(F*(H,)®F) such that f ®g eH,, and i=1,...,n .

Since

Ao (F?(H,)®2)=4¢ [(F2(H,) ® ) O ¢l

one can use again Lemma (5.2.3) to deduce that

A (F*(H)®F)=A,(F*(H,)®F).
Now, due to Proposition (5.2.7), we infer that the characteristic function of the row
contraction [I3,...,I,],I; € B(H,) (and hence also [By, . . . ,B,]), coincides with the
purely contractive part of the multi-analytic operator®, .
Taking into account the definition of the subspace H; (see relation (71)) and
the fact that ® =0,0,, one can see that, for each fe F*(H ,)®F and g eAIFTn)@Qg ,

the vector @.f ® X ,(Af ®g) is in H; if and only if
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(0,/ B XA, ©2),0,0,0® X, (A,0,0DA,0))=0
forany ¢ € F*(H,)® ¢ . The latter equation is equivalent to
0,00,/ +0/Af+A,g=0
Since A} =1-0,0,the above equation is equivalent to
O f+Ag=0 (75)
Ifx=0,fox,(A,f®g) e H,, then we have
T'x=(S ®Ie.)O,f®C X (A, f®g)

foreachi=1, ..., n. Since 0, is a multi-analytic operator and
[=2(8,5®1.)f+f(0),
Jj=1

where f(0) .= P, f, we deduce that
T'x =[0,(S; ®I,)f +(S; ®1£)0,f (0) |®C;X j(Af Dg)
=u+v,
where
=0, ®1,)f S[ XA, ®I,) ®Eg)]
and
vi=(S, ®I,)0,f (O)@[C:X;(Azf D)X (AS, ®I,)f @Ejg)].

Now notice that u € H;. Indeed, using the above characterization of the elements of
H,, it is enough to show that

O,(S, ®I,)f+AE g=0 i=1,..,n (76)
Using relation (75) and the definition of E;, we have

O,(S, ®I,)f+AE g=(S ®I)NO,f+A,g) =0

which proves (76) and therefore u € H;.

Now we prove that v € Hj. First, notice that due to Lemma (5.2.3), we have

C'X,(00g)=X,(0®E g), geA(F(H,)®¢),),
and therefore
v= (S ®1£)0,f(0)®[C X5 (A, f ®0)— X, (A, (S, ®1,)f ®0)) (77)

Using again Lemma (5.2.3) and the definition of F; , we infer that
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C'Xo(A,f®0)=C X, (A{isjsj ®I, jf(O) ® 0] +CT X0 (A,f(0)@0)

= X;(E*A{Zn:SjS; ®1, jf@0J+ch;(A2f(0)@0)
=
=Xo(A,(S, ®1,)f®0)+C, Xo(A, f(0)DO0)
=Xo(A(S, ®IN)f®0)+ X, (F A, £(0)®O0).
Consequently, relation (77) implies
v=(S ®1,)0,1(0)® X (F A, f(0)®0)
Due to the definition of the subspace H,, to prove that v € H,, it is enough to show
that
®,(S; ®1,)0,f(0)+A,F A, f(0)=0
foreachi1=1, ..., n. Since
AF =(S, ®I,)A,, i=1..n
and 0, is multi-analytic, we have
@, (S; ®1,)0,1(0)+A,F A, £(0)=(S; ®1,)(©,0, +A3)f(0)
=(S; ®1;)f(0)=0.
Hence, v € H,. Now, using the fact that 7, x =u +v and the definitions for u and v,
we deduce that the operator 4, = B, 7, |, satisfies the equation
£O,f OX,(A,f©g)=0,(S ®L)fBX,(A,(S ®L)f OE g)| (78)

forany @,/ ® X, (A,f®g) EHjandi=1,...,n

L0,/ @X, A,/ ®g): f € F(H,)®F,g e A (F (H,)®¢) |

to the direct sum (F*(H,)® F)®A,(F*(H,)® ¢) by setting
QO,f@X (A, fBg)=[fDg. (79)
Since
lo.r@xg.r@g)| =le./ +|xo@.re 9|
= (0,0, . 1)+ A/ +el
=|reogf,

it is clear that Q is a unitary operator. Notice also that
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Q (Bp®Ap)=Q (0,00DX (A,0,0D A p)
=0,pDAp

for any ¢pe F?(H,)® ¢ . Consequently, Q H, = H,, where

H, = (F(H,)®F)O A (F (H,)®2) |© (e perp:pe Fa1,)@2). (80)
Setting A; := QA;Q relation (63) implies
A(f®g)=(S, ®I,)fPE g, f®geH,,

foranyi=1, ..., n. Once again, Lemma (5.2.3) implies

A(FPH,)®e)=n, [(F2(Hy) ® €) O €]

Now, using Proposition (5.2.7), we infer that the characteristic function of the row
contraction [Aj, . . ., Ay], A; € B(H ) (and hence also [Aj, . . . ,A,]), coincides with
the purely contractive part of the multi-analytic operator ®,. Due to the relations (74),
(80), and Proposition (5.2.7),the subspaces A | and H, (and hence also H; and H;)
are different from {0} if and only if both multi-analytic operators ®; and ©, are not
unitary constant, i.e., the factorization ® = 0,0, is non-trivial. This completes the
proof.

Now, combining Theorems (5.2.4) and (5.2.8), we can deduce the following

result.
Theorem (5.2.9)[142]: Let T:=[Ty, ..., T,] be a completely non-coisometric row
contraction on a separable Hilbert space H. Then, there is a non-trivial invariant
subspace under each operator Ty,..., T, if and only if the characteristic function O
has a non-trivial regular factorization.

Concerning the uniqueness in Theorem (5.2.5) (and also Theorem (5.2.4)), we
can prove the following result, which shows the extent to which a joint invariant
subspace determines the corresponding regular factorization of the characteristic
function.

Theorem (5.2.10)[142]: Under the conditions of Theorem (5.2.5) let

©-0,0, ad ©-0,0,
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be two regular factorizations of the purely contractive multi-analytic operator ©, and
lete ,F,e.and g, F',¢. be the corresponding Hilbert spaces. Let Hic H and H'; — H be
the invariant subspaces under each operator T;,1=1, ..., n, corresponding to the
above factorizations. If HcH';, then there is a multi-analytic operator

Y:F*(H,)®F — F*(H,)®F' such that

!

0, =y 0,
Moreover, if H=H',

0, =(I®y,)0,

for some unitary operator v, € B(F,F')and, consequently, the multi-analytic operators

0 and O, coincide.

Proof. We associate with the factorization ® = 0,0, the subspace

M:={®2f@Xg(A2f@g);feF2(Hn)®F,geA1(F2(Hn)®g) }

Similarly, we define the subspace M’ associated with the factorization ® = (5)2’(5)]’ H;

< H'; relation (71) and its analogue for H'; imply M M ’Consequently, for each

feF*(H,)®F,thereexist f'e F’(H,)®F' andg'eA]’(Fz(Hn)@)g) such that
(Of BX(Af ®0)=0,f'®X, (Af'Dg)). (81)

Hence and using the definition of the unitary operators X and X, , we have

’ ' 2
I =le.rex;a.ro0f =|o. roxs @.ree) =Ir1 el

f!

g!

Therefore, it makes sense to define the contraction Q: F*(H,)® F - F*(H,)® F'and

R:F*(H)®F - A]’(Fz(Hn)®g)by setting of := f' and Rf ;= g’ respectively. Now,
we show that Q is a multi-analytic Q(S, ®1,)=(S,®1,)Q, 1=1,...,n.
Let f}, . . ., f, be arbitrary elements in F*(H,)®¢ . Taking into account the
definitions for C; and X, and the fact that
(S} ®I NS, ®1,)=6,A,, i,j=1,...n

we deduce that
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<QX;<A2f@0>,A@(i<Sj ®1L)f, >>
= <(A2f®0)’X®A®fi> = <(A2f®0)’A2®1fi @Alfi> = <A22fa®1fi>

and

<Xé; (A,(5,®1,)f ®0).0,(>(S, ®1,)f )>
- <A2(Si ®1,)f ©0.4,0,(3.(5, ®1,)1)®A, (DS, ®Ig)f,)>
- <A2(Si ®1,)/.0,0,(3(S, 81, )f,)>

= i<(S: ®IF)A22(S1‘ ®IF)fa®1fj>
=(A21.0,f,)

Hence, and taking into account that

Ao (F?(H,)®z)=A ¢ [(F2(H,) ® ¢) O ¢]
we deduce that
CXo(A,f®0)=X (A,(S, ®I,)f®O) foranyfeF*(H,)®F. (82)
Similar calculations show that
CX(0®AP)=X (0D A,(S, ®1,)p) (83)
forany ¢ e F*(H,)®cand 1= 1, ... , n. Moreover, similar relations to (82) and (68)
hold with X/ ,A;,and A} instead of X,,A and A,, respectively. Since
C.X5(0®Ajp)= X5 (0D AI(S, ®1,)p) (84)

forany p e F’(H,)®cand 1= 1, . . ., n, by taking appropriate limits, we deduce that

C Xy ({0} ®A[(F*(H,)®¢)) < Xy ({0} @ A(F*(H,) ®¢)).

Consequently, for each g’ e A|(F*(H,)®¢) there exists g'’" e A[(F*(H,)®¢) such that
CX(00gY=X,(0®g"). (85)

Now, notice that using relations (82), (81), (84), and (85), we obtain
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©,(S, ®1,)/ ®Xo(A,(S, ®1,) [ ®0) = (S, ®ls. ®C)O,1 DX, (A,f ©0))
= (S, ®Is. ®C,)(O,f ® Xy (ALf' @ g'))
= 0,(S, ®1,)f ® Xy (AY(S, ®1,) [ ®g")

forany f € FF?(#,)® F . Hence and using the definition of O, we deduce that

/ 2
OS; Ip)f=(S; @1 ) f'=(S; @1 )0 f, [feF (Hy)®F,
which proves that QO is a multi-analytic operator.

Since Mc M', we have

ﬁ @[S, ®1,)ecC, |M gﬁ
k=0l

k=0 |o]=k

[(Sa ®Ig*)®Ca}M’ . (86)

Using Lemma (5.2.3), definition (79) of the unitary operator Q, and relations (82),

(83), one can prove that
((5,®1,)®C, |Q"=Q°[(S,®1,)®E,].
Indeed, we have
(5, ®1,)8C, | Q'(f @A)

=0,(S, ®I,)f ®C, X (AS ®AQ)
=0,(S, ®I,)f ®X (A(S, ®I,)f ®A(S, ®I,)p)
=Q(S, ®I.)f ®A(S, ®I,)p]
=Q(S, ®I)PE, |(f ®Ap)

forany fe F*(H,)® F and p e F*(H,)®¢.

Now, due to the fact that [S, ®7,....5, ®1,] is a multi-shift and [E,,...,E,] is a

Cuntz row isometry, the noncommutative Wold decomposition implies

N@ls.eryec,u
=Q*{ﬁ @ (S, ®L)F (H,)®F)|®() @EMFZ(H”)@@}
k=0| |a|=k k=0| |a|=k

=Q (10 ®A,(F>(H,)®¢))
=0 X; (0@ g): g e A (F>(H,) ®¢)).
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A similar relation can be obtain for the set on the right-hand side of the inclusion

(86). Hence and using relation (86), we obtain

0®X,(00g): g e A(F(H,)®e)} 0O X, (0D g): g' e A\ (F*(H,) ®é)}.

Consequently, for each g € A, (F*(H,)®c¢) there exists g'e A/(F*(H,)®¢) such that
Xo(0®g)= X5 (00 g). (87)

Since X, and X are unitary operators, we can define the isometry

VA(F*(H)®¢g)—>A(F(H,)®¢)

by setting Vg := g'. For eachp € F*(H,)® &, we have
OpDAp=0,0/pDX ; (AB/pDAY). (73)
On the other hand, using the operators 0,R,V and relation (81), we deduce that
Op®Ap=0,0,p EBX(; (4,0,00A,0)

=[0,00®X ;(A,0,0®0) |+[0DX ;(0DAp) |

=[0,00,0®X (A, 00,0®RO ) |+[ 00X 08V A) |

=0,009p®X (A0 Opy),

where y = RO,p+VA @ isin A|(F*(H,)®¢).Using the latter relation and (88), we

obtain
0010 =0500,p and A,0,p=A;00,¢.
Since the mapping O, '@ A} f'+ f' is isometric, we deduce that
Olp=00,p, @cF’(H,)®¢, (89)
which proves the first part of the theorem.

Now assume that H; = H'; A closer look at the above proof reveals that

Q(F*(H,)® F)=F*(H,)® F'and V is a unitary operator. Taking into account relations

(87) and (81), we obtain
LS £ 3 L3
Of DX 5 (Af @O)z[@'ﬂ"@X(’a(A’ﬂ"’@O)}+[O@X@(O@g’)}
£ 3 £ 3 £ 3
=[®’2f’@X(’a(A’y”@O)}+[O@X(’9(O@V g')]
Hence, we get
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* * A ! ! /* ! !
O,/ ®Xg(Ayf BV ) =041 ®Xg(A,f ®O).
Taking the norms, we have
2

1A+l =1

Combining this with |f]*+|f| =|¢|., we obtain |s|=|s] ., which shows that is a

g!

unitary multi-analytic operator. Due to [166], this implies 0= 1®W¥,, for some unitary

operator W, e B(F, F') Using relation (89), we complete the proof.

We prove the existence of a unique triangulation of type

C 0
( h CJ (90)

for any row contraction T := [Ty, . . ., T,], and prove the existence of joint invariant
subspaces for certain classes of row contractions.

We need a few definitions. A row contraction T: = [T4,...,T,,], T;€B(H), is of
class C; if

T:h‘2 #0 forany he H,h # 0.

lim 2.
k—>o |a|=k

We say that a row contraction T := [Ty, . .., T,], TieB(H), has a triangulation of type
(90) if there is an orthogonal decomposition

H=H, ® H, with respect to which

4 0
T = , i=1..n
1 * B

and the entries have the following properties:
(i) T/H,c H, foranyi=1,..,n;
(i) 4= [A1 yeens A, ]is of classC;
(iii) B = [B,,..., B, | is of class C,
The type of the entry denoted by * is not specified.
Theorem (5.2.11)[142]: Every row contraction T:= [Ty,...,T,], T;€B(H), has a

triangulation of type



Moreover, this triangulation is uniquely determined.

Proof. First, notice that the subspace

. * 2
H, = heH:hmZ T, h =0
k—>w© |gl=k
is invariant under each operator7’, i= 1, . . . , n. The decomposition H =H, ® H,,

where H,:=H © H,, iyields the triangulation

Lo (4
T ="' .l i=1...,n,
0 B,

where 4, =T, |, and B, =P, T, |, foreachi=l,..,n. Since

. * 2 . .12
lim 2|44 =lim 2 |T.h| =0, heH,,
k—o |a|=k k—o |a|=k
the row contraction A:=[Ay, ..., A,] is of class C . Now, we need to show that
lim S|B.A[ 20 foralihe H,, h=o.
k—0 ‘a‘:k
Let V.= [V, ..., V., Vi € B(K), be the minimal isometric dilation of the row
contraction T :=[Ty, ..., T,] .Forevery m =1, . . ., the isometries V,,|a| = m, have

orthogonal ranges. Therefore, we have

2 2

=2

|a|=m

> Va(ZVﬂT;jPHOT;h

jal=m \|Bl=F

( Z VT, jPHO T h

|Bl=k

-2 >

|a|=m|B|=k

2

T,P, T, h

For any h €H since Py, T*(x heHyw e have

. B3 * 2
lklrnZHTﬂPHOTah\ =0. ©O1)
—>0 ﬂ:k
According to [134], we have
P.h= liszaT;h forany he H (92)
k—o ‘a‘:k

Where Py is the orthogonal projection of the minimal isometric dilation space K on
the subspace R in the Wold decomposition K = R® M, (L.) . Now, using relations
(91) and (92), we obtain
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Peh=1im >, DV.VT.T,

k> |a|=m|B|=k

lim> (z jPHO e lim 3 [zVﬂT;jPH] I

k= |a|=m k—w |a|=m Bl=k

= >V, PP, T h.

‘a‘:m

Hence, we deduce that

2

|| = | >V, PP, T

a‘ m

3 \

‘a =m

forany h € H. Let h eH,,

The above relation shows that Prh=0 and, due to (91), we deduce that he Hy,
which is a contradiction.
Now, we prove the uniqueness. Assume that there is another decomposition

H=M,® M, which yields the triangulation

C. 0
T = , i=1,..,n
1 % D

0 % % * * .
c ] where C; =T/, and D, =P,T, |, foreachi=1,... n To

1

of type (C:ko

prove uniqueness, it is enough to show that H, = M,. Notice that if he M), then, due

to the fact that the row contraction [Cl, ..., Cylisof class C.(, we have

* Jaj=m
Hence, he Hy, which proves that Hy, & M,. Assume now that he Hy, © M,. Since

heM,;, we have

hmz ‘ ® |o|= )
Consequently, since the row contraction [Dy, . . ., D] is of class C.;, we must have

h = 0. Hence,we deduce that Hy, © M, = {0}, which shows that M, = H,. This

completes the proof.
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Corollary (5.2.12)[142]: If T := [Ty, ..., Ty] 1s a row contraction such
TeCpand T ¢ C., then there is a non-trivial joint invariant subspace under
T,..., T

Any row contraction admits a triangulation of type

C. 0
e

where C, (respectively C.,.) denotes the class of coisometric (respectively c.n.c.) row
contractions. Notice that C. < C.;. Combining this result with the triangulation of
Theorem (5.2.11), we obtain another triangulation for row contractions, that is,
C, O 0
* C

c

0
* * Ccnc ﬂ C.l
Corollary (5.2.13)[142]: If T := [Ty, ..., Ty], Ti € B(H), is a row contraction such

TT +.+TT =1

|2 2
T, h :HhH for any k = 1, 2,...,

and there is a non-zero vector h €H such that Z
||k

then there is a non-trivial invariant subspace under the operators
Ty, ..., Th

We recall from [163] that if

TT, +.+TT =1
then a subspace M is invariant under Ty, . .., T, if and only if
TP, T +..+T P, T <P,
where P, is the orthogonal projection on M. We also mention that the case when T €
C.o 1s treated in the next corollary.
Lemma (5.2.14)[142]: Let ©:F*(H,)®¢ — F*(H,)®¢, be a contractive multi-
analytic operator and assume that it has the factorization
0=0,0,

where ©,: F’(H,)®¢—>F*(H)®F and ©,: F*(H)®F —>F*(H,)Q¢, are

contractive multi-analytic operators.
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(i) If @, is inner, then the factorization ® = ©,0,is regular.
(ii) If © is inner, then the factorization ® = ©,0,is regular if and only if ©, and ®,
are inner multi-analytic operators.
(iii) If rank 4 5 < oo, then
rank Ay =rank Ay +rank A

if and only if the factorization ® =0,0,1s regular.

Corollary (5.2.15)[142]): If T := [Ty, . . ., T,] is a row contraction of class C.(, then
the non-trivial joint invariant subspaces under Ty,..., T, are parametrized by the non-

trivial inner factorizations of the characteristic function ©, of T (i.e., ®, =0,0, with
®, and ©, inner multi-analytic operators). Moreover, the subspaces H; and H, in
Theorem (5.2.4) become

H ={oy :fer?H,)®F}O {0,/ :f eF(#,)®D} and H,={F*u,)®D.}

O (0. :f eF’(H,)®F|
where D and D, are the defect spaces of T .

Now, we consider some examples that explicitly illustrate the correspondence
between joint invariant subspaces and factorizations of the characteristic function.
Example (5.2.16)[142]: Let ®:= 1/V2(RR,+R,R?), where R, R, are the right
creation operators on F’(H,) the full Fock space with 2 generators. Since
Rl.*Rj =0,1,i,j =1,2 we have ®®=1.0n the other hand, is a purely contractive inner
multi-analytic operator. Define the Hilbert space

H =F*(H,) O [FH,)®,®c +e’®e,)]
and the row contraction T := [T, T,], where T, .=P,S,I,, and §,,S,are the left creation
operators on F*(H,). According to Theorem (5.2.2), the characteristic function of T

coincides with the multi-analytic operator © .

We consider now some regular factorizations of ®, and write down the

corresponding joint invariant subspaces for T, T,. First, notice that

©®, = R,(/N2R,R, +1/~2R?)
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and the multi-analytic operators ©,:= 1/+/2R,R, +1/~/2R?and @, := R, are isometries on
F*(H,). Therefore, due to Lemma (5.2.14), the factorization ®, =0, 0O, is regular.

Taking into account Corollary (5.2.15), we deduce that the joint invariant subspace

under T, T, corresponding to the above factorization is
. 2
M = [F (H2)®e1] S [FZ(H2)®(e2®elz+e§®el)]
Another regular factorization of ©, is
©, = (/2R +1/\2R R, R,.
As above, one can see that this is a regular factorization and the corresponding joint

invariant subspace for Ty, T, is
N = |:F2(Hz)®(el2 te, ®el):' © [FZ(H2)®(92 ®e/ +e; ®el)]'

Let us consider a class of examples when the regular factorizations have

factors which are not multi-analytic operators with scalar coefficients.

Example (5.2.17)[142]: Let ® eB(F?*(#,)) be an inner multi-analytic operator with
©® (0) = 0.Due to the structure of multi-analytic operators,we have © = R;¢p; +-
+R,p, for some multi-analytic operators ¢y, . . . , ¢, € B(F?*(#H,)). Since

R'R, =6,1,i,j=1,.,n itis clear that © is inner if and only if

QO +..+00, =I. (93)

In this case, © is purely contractive and we have the factorization © =©,0,, where

(4
©,=|: |and ©,=[R,,...,R,]

@,
are inner multi-analytic operators. Clearly, the factorization ©=0,0, is regular.
Define the Hilbert space H:= F*(H,) © @ F*(H,) and the row contraction T :=
[Ty,...,Ta], where T; :=P,S, |, and S,,...,S,are the left creation operators on the full
Fock space F?(H,). According to Theorem (5.2.2), the characteristic function of T

coincides with the multi-analytic operator &.
The joint invariant subspace under Ty, . . . , T, corresponding to the regular
factorization ®, =0,0, is
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M =[F*(H,)®e,+..+F(H,)®e, |© © F(H,)
As examples of ¢y, . . . , &, satisfying relation (63), one can take ¢, =1/~nV,,i=1,..n,
where V; is any isometry inR” (e.g., any product R,, o € F?)
We remark that if W € B(F*(#,)) is an inner multi-analytic operator with

Fourier representation l//=Z‘a‘2maaRa,m=1,2,...,then it admits the regular

factorization

D )
t//:[Rﬂ:|ﬂ|:m] o,
B =m

Where @, € B(F*(H,)) are multi-analytic operators such that Z‘ mzmq)?ﬁ)(l)(m =1

Now,one can write Example (5.2.17) in this more general setting. For examples of
inner multi-analytic operators we refer to [169,170].

We recall [165] that any multi-analytic operator admits an essentially unique
inner—outer factorization.
Theorem (5.2.18)[142]: Let T:= [T4,..., T,] be a completely non-coisometric row

contraction. The inner—outer factorization of the characteristic function ®, induces

(cf. Theorem (5.2.8) the triangulation of type
c, 0
* C.]

In particular, if the inner—outer factorization of the characteristic function is

for the row contraction T .

non-trivial, then there is a non-trivial joint invariant subspace under the operators
Ti,.... Th.
Proof. Suppose that the multi-analytic operator®: F*(H,)®&— F*(H,)®e.

coincides with the characteristic function of the c.n.c. row contractionT: =
[Ty,...,T,]-Let ® = B;0, be the canonical inner—outer factorization of . Since 6;
is inner, Lemma (5.2.14) implies that the factorizationis regular. Therefore, according
to Theorem (5.2.4) (see also Theorem (5.2.5)) and Theorem (5.2.8), the above
factorization yields a triangulation
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B, 0
T = , Ii=1,..,n
1 %k A

of T :=[Ty, ..., T,], the functional model of T , such that the characteristic functions
of B=[By, ... ,ByJand A :=[A,, ... ,A,] coincide with the purely contractive parts of
0; and @, respectively. Due to Lemma (5.2.6), the purely contractive part of an outer
or inner multi-analytic operator is also outer or inner, respectively. We recall from
[132] that a c.n.c. row contraction is of class C. (respectively C.;) if and only if the
corresponding characteristic function is inner (respectively outer) multi-analytic
operator. Finally, using the last part of Theorem (5.2.8), we can complete the proof.

We obtain criteria for joint similarity of n-tuples of operators to Cuntz row
isometries. In particular, we prove that a completely non-coisometric row contraction
T:= [Ty, ..., Ty] i1s jointly similar to a Cuntz row isometry if and only if the
characteristic function of T is an invertible multi-analytic operator. This is a
multivariable version of a result of Sz.-Nagy and Foias [161], concerning the
similarity to unitary operators.

Extending some results obtained by Sz.-Nagy [161], Sz.-Nagy, Foias [134],
and the author [152,163] we provide necessary and sufficient conditions for a power
bounded n-tuple of operators on a Hilbert space to be jointly similar to a Cuntz row
isometry.

We need the following well-known result (see, e.g., [134]).

Lemma (5.2.19)[142]: Let M , N, X and Y be subspaces of a Hilbert space H such

that
H = M@N = X®Y
if
P, X =M and |P,x |2¢c | x |, xeX,
for some constant ¢ >0, then
PY=Nand|| Pyy|=c|y|, »yeY.

We recall a few facts concerning the geometric structure of the minimal

isometric dilation of a row contraction. Let T :=[Ty,..., T,],
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T; € B(H), be a row contraction and let V := [V, . .., V,] be its minimal isometric

dilation on a Hilbert space K o H. In [153], we proved that K =R® M, (L.) and

Ph=1im>.V.T,h, heH, (94)

k—0 ‘a‘:k
where Py is the orthogonal projection of K onto R. Moreover, if T is a one-to-one row

contraction, then
P.H =R. (95)

The next result provides necessary and sufficient conditions for a c.n.c. row
contraction to be jointly similar to a Cuntz row isometry, in terms of the
corresponding characteristic function.
Theorem (5.2.20)[142]: Let T := [Ty, . . ., Ty], Ti € B(H), be a completely non-
coisometric row contraction.Then T is jointly similar to a Cuntz row isometry W =
[Wi, ..., W], W;eB(W), i.e.,

) ww' +. . +ww, =1,;

(1) ST;=W;S,1=1,...,n, for invertible operator S :H—W,
if and only if the characteristic function @7 is an invertible multi-analytic operator.

In this case,

H@;IH = min{ ||X || HX _1H: [X TX,.,X _lTnX} is aCuntz row isometry }
Proof. Suppose that the row contraction T := [Ty, . . ., T] is jointly similar to a
Cuntz row isometry W :=[Wy, ..., W, ], W; € B(W), i.e.,

WW, +.+WW, =1,
and T; = s"'w.S,i=1,.,n, for some invertible operator S :H—W. Since ST, =W,S and

T.S" =SW, foranya € F ,wehave

S[ZTQT;]S* = > W, SS'w, S > ww, :
|

=——7
*_] -1 o o 2
Tk |k SIS e HSJ H

forany k=1, 2, .. .. Therefore,

TThn)>|s | >
;< A a > ‘ H HS—1H2 ‘

2

O e
s s

b
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which, due to relation (94), implies

|Pe ] 2 heH (96)

Is HHS T
Notice that the operator [Ty, . . ., T,,] is one-to-one. Indeed, the relation

S'W,Sh, +..+S'W Sh, =0, hjeH, i=1,....n,
implies

W.Sh, +..+W Sh, =0
Since W; are isometries with orthogonal ranges, we have
wSh=0, i=1,...,n,

whence hj=0,1=1, ..., n. Therefore [Ty, . .., T,] is one-to-one. According to (95),
we have P,H = R. Due to relation (96), the subspace PrH is closed. Therefore, P,H =
R and the operator
X =Pgr/H :H-R

is invertible. According to (94), we have

V Ph=1im 2.V V. Toh=1im D VTV, T, h= P, h

k—0 \a\:k k— \a\:k—l
foranyh eHandi1=1, ..., n. Consequently, we have

TX =XW,, i=L.,n,

where W; .= V; |g, 1=1, ..., n. Due to the noncommutative Wold decomposition
applied to the row isometry [V, . . ., V,], the subspace R is reducing under each
isometry V;,1=1,...,and [Wy, ..., W,]is a Cuntz row isometry.

Now, due to the geometric structure of the minimal isometric dilation of T, we
have (see relation (47))
K=R®M,(L)=H®M,(L)

Since P,H =R, we can use relation (96) and Lemma (5.2.19) to deduce that

Py, M, (L) =M, (L.) and |P, . xeM,(L).

>

Therefore, the operator

0= PM,,(L,,) |MV(L):MV(L)_)MV(L*)
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is an invertible contraction with HQ“H < ||S||HS “H. Since Q is unitarily equivalent to the

characteristic function @ of T , we deduce that @ is an invertible multi-analytic

0,

operator and ‘ ‘S ||S||HS"H
Conversely, assume that the characteristic function @1 (and hence Q) is an

0,

invertible contraction and ‘ ‘S % for some constant ¢ >0. Applying again
Lemma (5.2.19), we deduce that

PH=R and |PH|=c|h

, heH.

This shows that the operator X := P, |,: H—R is invertible and HX "“ S% . As in the

first part of the proof, we have X" (v, |R)=T,x" foranyi=1, ..., n. This proves the

similarity to a Cuntz row isometry. Notice also that, since |X||<1, we have

e

Il

_ 1
-l

To prove the last art of the theorem, let ¢ > 0 be such that ‘@)T"

‘z%The

converse of this theorem implies the existence of on invertible operator X such that

|x'7,x...x"'T,x] is a Cuntz row isometry and
el o
b llxl= 2 =lerl

On the other hand, using the first part of the proof, we have

lor'| <[]
Therefore, |@®;' H=||X ||HX "H and the proof is complete.
Corollary (5.2.21)[142]: If T = [Ty, . . ., Ty], T; € B(H), is a completely non-

coisometric row contraction jointly similar to a Cuntz row isometry, then T is jointly
similar to the Cuntz part in the Wold decomposition of the minimal isometric dilation
of T . Moreover, in this case, T is similar to the model row contraction C := [Cy,...,

C.],where foreachi=1, ... , n,

C,:Ao (F*(H,)®D)—> Ay (F*(H,)®D)
is defined by
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Ci(A@)Tf) ::A®T(Si®ID)f’ fEFz(Hn)®D7

. 1
and Ag =(1— ®T®T)A where ©, is the characteristic function of T .

Proof. The first part of the theorem follows from the proof of Theorem (5.2.20).
Now, using the model theory for c.n.c. row contractions (see Theorems (5.2.1) and

(5.2.2), one can complete the proof.

Now we consider the case when T := [Ty, . . ., T,] is an arbitrary row
contraction.
Theorem (5.2.22)[142]: Let T := [Ty, . . ., T,], T; € B(H), be a row contraction.

Then T is jointly similar to a Cuntz row isometry W :=[W, ..., W], W; € W, ifand

only if T is one-to-one and the operator

P
P:= (SOT -lim >.7.7, J (97)
k— ‘a‘:k
is invertible.
Moreover, if this is the case, then the row contraction T := [Ty, ..., Ty] is
jointly similar to the Cuntz part R ;= [Ry, . .., R,] in the Wold decomposition of the

minimal isometric dilation of T .
Proof. Assume T is a similar to W, i.e., there exists an invertible operator S :H —W

such that T;= §™'w.S,i=1,...,n As in the proof of Theorem (5.2.20), one can show that
the operator [Ty, . . ., T,] is one-to-one. According to (95), we have P,#=R. On the

other hand, due to relation (94), we deduce that

1P =Tim 2. [T

k —>o© ‘a‘:k

where operator P is well defined by (97), due to the fact that {Z‘a‘sz T3% is a

2
>

2
- e

hel (98)

decreasing sequence of positive operators. Notice that, since {Wg}|4|=f are isometries

with orthogonal ranges, we have
Sl =l sl s
-1
= (s~ lsI° )

T'h S|

for any h e H. Therefore
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[Pt =P = (s [1s)
for any h € H. Hence, it follows that the operators P and Pg|y are one-to-one and have
closed ranges. Since P,H =R, it is clear that the operator X:H—R is invertible.
According to relation (94), we have

Vi Ph=1im D VsT;T h=PT h

k= |a|=k-1

foranyh eHandi=1, ..., n. Consequently, we deduce that

XT =R'X, i=1..,n, (99)
where X = Prlgand R; .= V; [g,1=1, ..., n. Therefore, T := [Ty, ..., Ty] is jointly
similar to R :=[Ry, ..., Ry].

Conversely, assume that the row contraction [T, . . ., T,] is one-to-one and the
operator P is invertible. Then relation (98) implies Pg|y 1s one-to-one and has closed
range. On the other hand, by (95), we have PxH = R. Therefore, the operator X :=
Prlu:H—R is invertible and, due to relation (69), the row contraction [Ty, . . ., T,] 1s
jointly similar to the Cuntz row isometry [Vi|g, . . ., Vyr]. The proof is complete.

We recall [163] that an n-tuple [Ty, . . ., Ty], of operators T; € B(H), is power

bounded if there is a constant M >0 such that

2

‘a‘=k

TH| <M, heH,

foranyk=1,2,....
Theorem (5.2.23)[142]: Let [T, . . ., T,] be a one-to-one power bounded n-tuple of

operators on a Hilbert space H such that, for any non-zero element h € H, > 7.4 ’
|o|=k

does not converge to 0 as k—oo. Then there exists a Cuntz row isometry [Wy, . . .,
W.], W; € B(H), such that
TiX =XWi, 1= 1, R 1

for some one-to-one operator X € B(H) with range dense in H.

Proof. For each h eH, h #0, denote

e
c(h) = inf[z T.h } :

Since [Tj,..., Ty] 1s a power bounded n-tuple of operators, there is a constant M >0

such that
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T <MZ|h[, heH, (100)

|

Jort=k

forany k=1, 2,.... If c(h) =0 and ¢ >0, then there is k, such that

Hence and using (100), we deduce that

> | = <Tﬁ(ZTyT;jT;h,h>
|af=m+k, | B|=ko |y[=m
<M* Y (T,T;hh)<e’
"B‘:ko

for any m>0. Consequently, limZ“T;hW:O» which contradicts the hypothesis.
k

7% ek
Therefore, we must have c(h) #0 for any h eH, h #0.

Now, for each h, 7' e H, we define
[hh']:= m;@ah,nm
where LIM is a Banach limit. Due to the properties of the Banach limit, [-,-] is a

bilinear form on H and we deduce that

3 2
[h,h]:=1im 3" | k| zc(h) >0 if heH h#0

k —>o© ‘a‘=k

and [h,h] < M| . Moreover, we have

[h,h]=> [T h,T k], heH.
i=1

Due to a well-known theorem on bounded Hermitian forms, there exists a self-adjoint
operator P € B(H) such that

[h,h')=(Ph,h"y  forany h,h'€ H,
and, due to the above considerations, we have

2
s

0 <(Ph,hy<M?|h

heH,h#0 . (101)

Now, we show that P = Z; TPT  Indeed, we have
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2

T h T.T h

(Ph,h)=1im

k—o ‘a‘:k+l

“=limY Y
k—o =1 \a\:k

n n
* * * *

=N[T"h,T 1= [PT h,T h]

i i i
i=1 i=l1

= < sz*h,h>
=1 \i=l

for any h € H, which proves our assertion. Notice that relation (101) shows that the

x| =

Ve . . n
operator X:=P’?is one-to-one and has range dense in H. Since Zizl

for any h eH, it is clear that
Xz =

2
i=1

for any x in the domain on X '. Hence and due to the fact that the domain on X' is

dense in H, the operators ¥, := XT, X ',i =1,...,n,can be extended by continuity on

H. Using the same notation for the corresponding extensions, we have

n

2

i=1

and VX = XT",i =1,..,n.This shows that [V, . .., V] is a co-isometry from #™ to H

1

v =, heH,

such that
TiX=XVi, i=1,...,n.

Assume now that h; € H and Z;Vihi =0. Then Z:Z:lT,-Xhi =0. Since [Ti,..., Tu]

and X are one-to-one operators, we must have h; = 0 for each

1= 1,..., n. Consequently, [Vi,..., V,] is a one-to-one co-isometry, and therefore a
unitary operator from A to H. This implies that Vy,..., V,, are isometries on H with
v +..+vV V' =1I,=Iy. The proofis complete.

As a consequence of Theorem (5.2.23), we deduce the following criterion for
joint similarity of a power bounded n-tuple of operators to a Cuntz row isometry.
Corollary (5.2.24)[142]: Let [T4,..., T,] be a one-to-one power bounded
n-tuple of operators on a Hilbert space H. Then [Ty,..., T,] is jointly similar to a

Cuntz row isometry if and only if there exists a constant ¢ >0 such that

>

\a\:k

ToH > c|nf, heH (102)
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foranyk=1,2,....
Proof. The direct implication can be extracted from the proof of Theorem (5.2.20).
Conversely, if condition (102) holds, then, using the proof of Theorem (5.2.23), we

have

c(h) > e|jh

, heH,h+0.

Moreover, the positive operator P e B(H) has the properties
TP =P, i=1..n,

where [V, ..., V,] is a Cuntz isometry, and

2

(Ph,h) > c|h heH, h#0

172

Since the latter inequality shows that P is an invertible operator, the result follows.
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Chapter 6

Minimal-Volume Projections with Sufficient Enlargements of Minimal-Volume

A symmetric with respect to 0 bounded closed convex set A in a finite
dimensional normed space X is called a sufficient enlargement for X (or of B(X)) if
for arbitrary isometric embedding of X into a Banach space Y there exists a projection
P:Y - X such that P(B(Y)) is a subset of A (by B(X) we denote the unit ball). In
particular the author investigate sufficient enlargements whose support functions are
in some directions close to those of the unit ball of the space, sufficient enlargements
of minimal volume, sufficient enlargements for euclidean spaces. We devoted to a
description of the shape of such images of the cube. The shape is characterized in
terms of zonotopes spanned by scalar multiples of rows of totally unimodular
matrices. The main results of the chapter: (1) Each minimal-volume sufficient
enlargement is linearly equivalent to a zonotope spanned by multiples of columns of
a totally unimodular matrix. (2) If a finite-dimensional normed linear space has a
minimal-volume sufficient enlargement which is not a parallelepiped, then it contains
a two-dimensional subspace whose unit ball is linearly equivalent to a regular

hexagon.

Section (6.1): Normed Linear Spaces and Sufficient Enlargements:
Definition (6.1.1)[171]: A in a finite dimensional normed space X is called a

sufficient enlargement for X (or of B(X)) if for arbitrary isometric embedding

XCY (Y is a Banach space) there exists a projection P :Y — X such that

P(B(Y ))CA. A minimal sufficient enlargement is defined to be a sufficient

enlargement no proper subset of which is a sufficient enlargement.

The notion of sufficient enlargement is implicit in B.Griinbaum’s in [82], it
was explicilty introduced by the present author in [76].

The notion of sufficient enlargement is of interest because it is a natural
geometric notion, it characterizes possible shadows of symmetric convex body onto

a subspace, whose intersection with the body is given.
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The main purpose of the present section is to continue investigation of
sufficient enlargements started in [76]. We investigate sufficient enlargements
whose support functions are in some directions close to those of the unit ball of the
space, we have devoted to sufficient enlargements for euclidean spaces. We have
refer to [172] and [78] for background on Banach space theory and to [83] for
background on the theory of convex bodies.

Let X and Y be finite dimensional normed spaces and T:X—Y be a linear

operator. An [/ — factorization of T is a pair of operatorsu; : X — [, andu,: [, — Y
satisfying T=u,u;. The /_ —factorable norm of T is defined to be the inf ||uq||||u,|l,
where the if is taken over all. /_ —factorizations.

An absolute projection constant of a finite dimensional normed linear space

X 1is defined to be the smallest positive real number AMX ) such that for every

isometric embedding XCY there exists a continuous linear projection P:Y —X
with ||P]| < A(X).

We shall use the following observations.
Proposition (6.1.2)[171]: [76] Let A be a ball in a finite dimensional normed
linear space X. The space X normed by the gauge functional of A will be denoted
by X . The ball A is a sufficient enlargement for X if and only if the L,- factorable
norm of the natural identity mapping from X to X, is < 1.
Proposition (6.1.3)[171]: [82] A symmetric with respect to 0 parallelepiped
containing B(X) is a sufficient enlargement for X.
Proposition (6.1.4)[171]: [82] Convex combination of sufficient enlargements
for X is asufficient enlargement for X .

Theorem (6.1.5)[171]: Let X be an n — dimensional normed space. Let

{f}", = S(X*) be a basis of X* and let vectors x; € S(X ) be such that fi(x;) = 1

and for some c, > 0 and each f € B(X*) there exists at most one element i in

the set {1,...,n} for which |f(x;)|>1 —c,.
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Let A be a sufficient enlargement for X such that for some c, > 0 it is
contained in the parallelepiped {x : [f;(x)|<1+c,, 1€ {l,...,n}}

2-c,

Lete, =1-

¢,- Suppose ¢c; > 0. Then A contains the parallelepiped

2
Q: = {X: |fi(X)|SC39 le {19 . -9n}}‘
Proof. Let {f;}° | C S(X*) be such that (¥Yx € X)) (/x| = sup {|f;(x):i € N}).
Then the operator E : X —/_  defined by Ex = { fi}zil is an isometric

embedding. Let P: I, — E(X) be a projection for which
P(B(1,)) < E(A).

The condition of the theorem imply that there exists a partition of N into
subsets Fy, ..., F, such that for 1 € F; we have f;(x,) <1 —c¢, for
k #].

Let us show that P (B(/_)) contains E( Q). Observe that the first n coordinate
functionals on /, are norm-preserving extensions of functional f E™' : E(X ) — R.

Therefore in order to prove that A > Q it is sufficient to prove that
for every collection 0371 0,= £1 there exists a vector
zg€ B(/,) and real numbers by, ..., b, > c3 such that

Pzy = (0,by,0,b,,...,0,b,,b,01,b5425--.)

for some b, ,¢,b,4+5, € R.

We introduce zg as the sequence {dk}lejwhere di = 0; fi(x; ) if k €F;. In
particular,d, = 0,,...,d, = 0,. Letus show that P z,satisfies the requirement

above. Let

PZQ = ((11, eoe s Oy Olpt+1se - o )
Suppose that for some m € {1, ..., n} we have o, ¢[0,c3, 0,,0). Let us

consider the family of vectors

y8 = (1 + 8)0, E(x,,) — 0z, (5> 0).
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When & > 0 is small enough, then y; € B(/,). More precisely, by the conditions

of the theorem it happens at least when (1—c,)(1+0)+06< 1, that is, when

¢,

o<

2-c,
On the other hand the m—th coordinate of P y; is equal to
(1+6)0, —da, =0, +306, —a,).
So for 0 <6 <c,/(2—c¢,) we have 0, + (0, —0o, ) <1+ c,. Hence

c 2—c
2 (1-cy)<l+c¢, ore, >1- 2
-G o

1+

This contradicts the condition on cs.

Corollary (6.1.6)[171]: Let X be an n-dimensional normed space and Q be a

parallelepiped circumscribed about B(X). Suppose there exist points {xi};zl on faces

of QO (one point on the union of each pair of symmetric faces) such that x; € B(X ) and
for every pair (X;, X; ), X; #X; and every f € B(X*) at least one of the numbers |f (x;)] is
less than 1. Then Q is a minimal sufficient enlargement for X .
Proof. By Proposition (6.1.3) only minimality requires a proof. Let { fl.};:1 < B(X*) be
such that 0 = {x: |fi(x)|<1, 1€ {1,...,n}}.

By compactness of B(X*) there exists ¢, > 0 satisfying the condition of
Theorem (6.1.5). Let A — QO be a sufficient enlargement for X. Applying Theorem

(6.1.5) with ¢, = 0 we get A o Q. Hence the sufficient enlargement Q is minimal.
The next result shows that the condition of the Corollary is not necessary for
O to be a minimal sufficient enlargement.
Theorem (6.1.7)[171]: There exist a two-dimensional normed linear space X and
functionals f, f, € B(X*) such that the following conditions are satisfied:
(1) There exists precisely one point x; € B(X) such that f;(x;)=1 and precisely one
point x, € B(X ) such that f;(x;) = 1.
(i)The parallelogram C= {x:|fi(x)|<L,|x(x)|< 1} 1s a minimal sufficient

enlargement.
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(111) There exist a linear functional f; € B(X*) such that |f5(x;)| = |f3(x2)| = 1.
Proof. Consider the space whose unit ball is the euclidean disc intersected with the
strip

{(a),ay) t]a; —ay[<1}.
Let x,= (1, 0), x, = (0, 1) and let f; and f, be the coordinate functionals. It is
clear that Condition (i) of the theorem is satisfied.
In our case C = {(a;,a,) : [a,|<1, |a,|<1}.
It is clear that the functional f;(a,, a,)=a,— a, satisfies Condition (ii1) of
the theorem.

It remains to show, that C is a minimal sufficient enlargement.

Let {fi}(z'x:)4CS(X*) be such that (VxeX) (||x][= sup{|fi(x)| : ie N}). Then the
operator E : X — [/ defined by Ex: = {fz (x)}’?il is an isometric embedding.

Now, if we suppose that C is not a minimal sufficient enlargement, then there

exists a projection P : /| — E(X), such that the closure of its image is a proper part of

E(C). We show that this. gives us a contradiction.

Consider the vectors

X,(€) = (cos g, sin€), X,(€) :=(sing, cose) e B(X), 0 <e<mn/4.
It 1s clear that for 0<<¢<< m/4 the following is true (the reader is advised to draw
the picture): for each fe B(X*) either
f(x,(g))|<1—-tane or [f(x,(g))<1—tane.
Therefore there exists a partition N = A,(¢) U A,(¢) such that |f;(x,(g))| <
lI-tane for i € A,(¢) and |fi(x,(€))|<1 —taneg for i € A,(¢).

Now for 6 = (0,, 0,), where 8,= £1, 0, = *1, we define z, (¢) € /, as the
vector, whose 1—th coordinates coincide with the coordinates of 0, Ex;(¢) for 1 €
A,(¢) and with the coordinates of 0,Ex,(¢) for 1 € Ay(¢).

It is clear that ze B(l_). Let

Pz 4(e) = (04, Oy, ..., 0, ...) EI

0 *

Let us show that
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0,0, >cose—2(1 —coseg)/e, (D)
0,0, >cose—2(1 —coseg)/e. (2)

Because € >0 and 6 = (0,, 0,) = (%1, £1) are arbitrary(1l) and (2) imply
P (B(7,)) o E(C), so we get a contradiction.

Suppose that either (1) or (2) is not satisfied. Without loss of generality, we
may assume that (1) is not satisfied.

Consider the family of vectors

ys— (1 +8)0,E(x,(€)) —02y (¢) € 1, (8 > 0).
From the definition of z, (¢) it is easy to derive that
lys I, <max{l, (1 +3)(1 —taneg) + &}.
Hence if & is such that 28/(1+06)<tan g, then ||y || ,< 1. In particular,

Py., € 1, 1s <1. On the other hand, we have

ye| < 1. Since P (B(/,)) < E(C), then the modulus of the first coordinate of
2 oo

PJ’s/z = (1 +&/2)0,E(x,(€)) —(e/2)P zy(¢).
Hence the first coordinate of PYg/z is
(1 +¢&/2)0, cose —(e/2)a,.
We have
(1 +¢€/2)0, cose —(e/2)a,|=|(1 +&/2)cose—(&/2)0,0, >
(1 +¢&/2)cose—(e/2)(cose —2(1 —coseg)/e) = 1.
This contradiction implies that (1) and (2) are valid. Theorem (6.1.7) is

proved.

By a prism in R we mean the Minkowski sum of a set A lying in an
(n—1)—dimensional hyperplane and a line segment that is not parallel to the
hyperplane. The set A is called a basis of the prism.

It turns out that if a sufficient enlargement A for X is such that its boundary
intersects S(X) in a smooth point, then A should contain a prism, which is also a
sufficient enlargement, so the investigation of such enlargement can be in certain

sense reduced to investigation of (n—1)—dimensional sufficient enlargement.

219



Theorem (6.1.8)[171]: Let X be an n — dimensional normed space and let x; € S(X
) be a smooth point and h € S(X*) be its supporting functional. Let {xi}?zzc S(X)

be such that {xl.}?:1 is a basis in X and h(x;) =0 for i €{2, . . ., n}. Suppose that A is

the a sufficient enlargement for X , which is contained in the set { xeX: |h(x) <1 }.
Then there exists a symmetric with respect to 0 prism M with basis parallel to
lin{x,, ..., Xy} such that

(1) McA;

(1) M is a sufficient enlargement for X .
Proof. We consider the natural isometric embedding E of X into C(S(X*)): every
vector is mapped onto its restriction (as a function on X*) to S(X*). We introduce
the following notation: C = C(S(X*)) and
Bc= B(C(S(X))).

Since A is a sufficient enlargement for X, then there exists a projection

P:C — lin{£x;}?, , such that
P (B¢ ) <= E(A) (3)

Projection P can be represented as P(f) =)/ u (f)Ex,, where p; are measures on

S(X¥).

Inclusion (3) implies that ||u,[[< 1. Since P is a projection we have p; (Ex;)
=9 (1, j= 1,...,n). In particular, n;(Ex;)=1. Because x, is a smooth point,
the function |[Ex,|eC attains its maximum only at h and —h. Hence p; can be
represented as |y = by,;0, + b,,;0_, where 6, and 6_, are Dirac measures, by,; >
0,b,; <0 and by,; —=b,; = 1.

Now, for i = 2,...,n we find representations

Wi = by,iOn + bidp + Vi,
where v; don’t have atoms in h and —h. To unify the notation we set v; = 0.

We introduce new measures

i = (brsi — ba,i)dn + Vi
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It is clear that w; (Exj)= &;; (i, j =1, . .., n). Hence O(f) => " o (f)Ex, is also a

projection onto lin {Ex;}7 |
Let us show that
O(Bc) ccl(P (Be)) (4)
Let f € B¢ . Since v; don’t have atoms in +h, then for every € > O there
exists a function g € B¢ such that g(—h) = —f (h), g(h) =f(h) and |vi(f) —vi(g)| <€
foralli e {1, ..., n}. This implies that
Vie {l,...,n} |oif) — w(g) <e.
Since € > 0 is arbitrary (4) follows. Hence O0(B.) < E(A). Now we shall show
that Mi= B (cl(0(Bg.))) is the required prism.
The fact that M is a sufficient enlargement follows by a standard argument
from the fact that C is an Loo-space (see [172, 78,173]).
It remains to show that E(M ) is a prism with basis parallel to lin {Ex,, . .
Exy}.
We have

M

EM) = cl{f(h)Ex, + i(bl,i —b,,)f(h)Ex; + ivi (f)Ex, : f € B,).
It is clear that the closures of the sets
L, = {Zvi(f)Exi :feB., f(h)=a}

don’t depend on a. So M is a prism of required form. The theorem is proved.
Definition (6.1.9)[171]: A sufficient enlargement A for lg is said to be small if
[ T(A)du(T) = /l(lf )B(lf),
O(n)
where p is the normalized Haar measure on the orthogonal group O(n) and A

(lf) is the absolute projection constant.

The following result supplies us with a wide and interesting class of small

sufficient enlargements.

Theorem (6.1.10)[171]: Let G be a finite subgroup of O(n) such that each linear
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operator on R" co mmuting with all elements of G is a scalar multiple of the identity.

Then for every y € S( lg) the Minkowski sum of segments

n
A=—=> [-g(»).g()]
| G} geCG
is a small sufficient enlargement for lg.

Proof. First we prove

(Vxeg") (x= %' 2 (. g()g ), (5)

Let us introduce a linear operator T : lg — lg by the equality

Tx =3 (x.g(»)e(y) 6)

geG

Let us show that hT= Th for each h € G. In fact
AT (x)= " x.g())hg(y)= D (h(x).gh(y))hg(y)=

geG geG

> (h(x).g(3))g(»)=T h(x).

geG

Hence T = AI for some A € R.

The equality of traces in (6) shows that A, = |G|. Hence 4 = IG1 The assertion
n

(5) follows.

Now, (5) implies that the identity operator on lg admits factorization I= T, T},

where T; : lg —>lg and T, : l(g —>l§ are defined as follows

n
@) = (x g0 g and Ty (lag} 4eir) = ] etV

It is clear that ||Ty|| =1 and A=T2(B(ZO(O; )), therefore A is a sufficient

enlargement (see Proposition (6.1.2).
The enlargement A is small by the following observation. A calculation of B.

Griinbaum [82] shows that

z | A
| ||n(2)B(l§) o

Vz 6151 J. O(n)T([_ZaZ ])dﬂ(T) =
Therefore
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A1
| T(A)du(T):% 3 g (2)

O(n) Gl e

B(zg)zz(lg)B(zg).

Theorem (6.1.11)[171]: Let A be a sufficient enlardement for léHm =l§ @lé" and
suppose that the images A; and A, of A by the orthogonal projections onto lg and
15 are small sufficient enlargements for 1 and 1. Then A = A; + A, (Minkowski
sum).

Proof: We claim: if A; and A, are small sufficient enlargements for In and Im, then

A +A c lé”m is a small sufficient enlargement.

At the moment we do not need the fact that A; + A; is a sufficient enlargement,
but because the proof is simple, we sketch it. By Proposition (6.1.2) the fact that A,
is a sufficient enlargement for In means that the L. factorable norm of the identical

embedding of lg nto R" normed by the gauge functional of A; is not greater than

1, the analogous assertion is valid for 1 and A,. Now, it is easy to see that the L..-

factorable norm of the identical embedding of lg ®, lé" into R™™ normed by the

gauge functional of
A] + A2 1S < 1.
The fact that the sufficient enlargement A; + A, is small can be proved in the

following way:

| T(Al + Az)du(T) =
O(n+m)

o i @ Ty (A,)du (T, ))du(T) =
oy Ty AV T I T (gl (T ()

(here n, and p, are normalized Haar measures on O(n) and O(m) respectively)

TAUHBIMY + 2™BU™ Y)du(T) =
O(nf+m) (A5)B(5) + A(5)B(ly ))du(T)

T T, du, (T, T du~(T-)du(T) =
O(nj—km) (O([n) 1(Q1) ,Ul( 1)+O(Im) 2(Q2) ,Uz( 2)) u(T)

(here 0, and Q, are cubes cicumscribed about B(lg) and B(/3) respectively)
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T d (T )= A Mg (11T
O(nJ.+m) (Q1+Q2) () (2 ) (2 )

(by B.Grunbaum'’s result [82]).

Let X be a finite dimensional normed linear space. Denote by M the set of

all sufficient enlargements of minimal volume for X. Results of [87](Theorem
6.1.12) imply the following result.
Theorem (6.1.12)[171]: The set M contains a parallelepiped. Easy examples (e.g.
two dimensional space whose ball is regular hexagon) show that M may contain
balls which are not parallelepipeds. But it turns out that for Euclidean spaces M
contains only parallelepipeds.

Theorem (6.1.13) [171 If A is a sufficient enlargement of minimal volume for 17,

then A is a cube circumscribed about B(lg).

Proof. Let A be a sufficient enlargement for lg and volA = 21 'We may assume

without loss of generality (see Proposition (6.1.2) that A is a zonoid. Therefore (see

[83), its support function can be represented in the form

h(A4,x)= | |(x,v }|dp(v) for x e gn

-l
with some even measure p on S" "

We denote by D the set of all smooth points on the boundary of A. It is known
(see [83]) that the complement of D in the surface of A has zero surface measure.
Let T:D — S™' be the spherical image map (see [83]), that is: T (d) is the unique
outer unit normal vector of A atd. Let p be the measure on S™' defined by

Q) = my, (T(Q)),

where m,_; 1s the surface area measure on the boundary of A.

It is clear that

(v >‘dp(v)du(x).

1

1 1
volA = ;SJI h(A4,x)du(x) = ;sjl SJ

The (n—1)—dimensional volume of the orthogonal projection of A onto the

hyperplane orthogonal to ® € S"' can be computed as
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a(w) =

%SJ.Kxa) >‘d,u(x).

We proceed by induction on the dimension. The case n = 1 is trivial. Suppose that

we have proved the result for n — 1. Now, let A be a sufficient enlargement for ;2

and vol A =2".

By Fubini theorem

2" —yola =L [ 2a(w)dp(w).

n egn-1
Since A is a sufficient enlargement, it is easy to derive from (7) that var(p) > n.

It is clear that an orthogonal projection of A onto an (n—1)—dimensional

subspace is a sufficient enlargement for 13—1' It is clear also that every
parallelepiped containing B(lg_l) has volume >2""'. Therefore by Theorem

(6.1.12) a(w) > 2n—1 1t follows that almost everywhere (in the sense of p) a(w)
=2"
By induction hypothesis orthogonal projections in directions w for which
a(w) = 2" are cubes. Let us choose one such direction, say ®,, and let us
denote by w,, 5, ..., ®, an orthonormal basis in the subspace orthogonal to
®, such that the orthogonal projection of A onto lin{®,,...,®,} is
[F0,, @] + -+ [~o, o]
In particular
Ac {x;|<x, a)2>| <1y
By Theorem (6.1.8) . A contains a prism M with the basis parallel to
lin {o,, ®w;,®,,...,0,}
such that M is a sufficient en largement for lg. Since A is a sufficient
enlargement of minimal volume then M =A. Let N= AN lin{®,, ®;, ®,,...,®,}
It is easy to see that N is a sufficient enlargement for 13—1 and vol,A =
2vol,_N. Hence vol,_ (N = 2", By induction hypothesis N is a cube. Hence A is also
a cube.
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Section (6.2): Cubes and Totally Unimodular Matrices:

Let K"c R™ be defined by K™= {(x1,..., Xm) : [x |[< ] for every i e{l,...,
m}}. We refer to K™ as an m-cube. Let L be a linear subspace in R™ and P : R™ —
L be a linear projection onto L. The set P(K™) will be called a projection of K™ in L.
Using a compactness argument it can be proved that for every m €N and for every
subspace
L < R™ there exists a linear rojection that minimizes the volume of P (K™). In such a
case the set P (K™) will be called a minimal-volume projection of K™ in L.

Volumes of projections of convex sets and related optimization problems is
one of the natural objects of study in convex geometry. Many problems of this type
have been already studied, see [175—-181,182,183,89], and references therein.

Usually only orthogonal projections are considered and the standard
optimization problem is to find a subspace such that the volume of the orthogonal
projection onto it is minimal or maximal.

We consider a different problem. It arises in the study of Projections in
normed linear spaces, see [171]. The problem is to characterize the shape of
minimal-volume projections of cubes. Some steps in this direction were made in [89],
where some classes of minimal-volume projections of K™ were found and the normed
linear spaces corresponding to them were studied.

We say that subsets A and B of linear spaces X and Y , respectively, are
linearly equivalent if there exists a linear isomorphism T between the subspace
spanned by A in X and the subspace spanned by B in Y such that T (A) =B.

We give a complete description of the set of minimal-volume projections of

K™ up to linear equivalence. To present the description we need some definitions.
A real matrix A with entries 0, 1, and —1 is called totally unimodular if
determinants of all submatrices of A are equal to —1, 0 or 1. See [184,95] for survey of

results on totally unimodular matrices and their applications.

A Minkowski sum of (finitely many) line segments in R is called a zonotope

(see [185,83,94,92] for basic facts on zonotopes). We shall consider zonotopes that
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are sums of line segments of the form [—x, x]. Let a,,..., a, be some collection of

vectors in R” . The Minkowski sum
m
lél[_a i’ ai ]

will be called the zonotope spanned by ay,..., ap.
Observe that any projection of the m-cube is a zonotope spanned by m
vectors. The main result of this section he following

We denote by {el- }l"i | the standard basis in R"™. The proof of the theorem is based

on the following observation:
Lemma (6.2.1)[171]: (Minimality condition). Let S :R™ — L be a linear projection

onto. Le t{xy,..., X; } be an orthonormal basis in L and let{q,....qm-7 } be an

orthonormal basis in the kernel of S. The set S(K™) is a minimal-volume projection
of K™ in L if and only if

| det[Xi,eeey X7 5 Qloeees ! ]| = [det[X1,eee, X7, €ic1)seees €itm—1 ]|

X

det[g,,..q € v N ]
(j(l),---,j(lz)}C(l,....m} P m =17 j ()5 (1)

where {i(1), ..., 1(m —; )} are chosen to maximize

|dCt[X1,..., X7 5 Ci(1)s-++» Citm—/ )]|
Lemma (6.2.2)[171]: (Image shape lemma). Let P : R™ — R™ be a linear projection.
Let q1,..., qm-7 be an orthonormal basis in its kernel ker P. Letg, ,..., ¢, be such that

~ ~ .

G veees G)5q,5.es g, 1s an orthonormal basis in R™. Then P (K™) is linearly equivalent
1 ! 1 m—l y q

to the zonotope spanned by rows of the matrix 0 = [7,,...,7, .

Proof. It is enough to observe that:

Images of K™ under two linear projections with the same kernel are linearly
equivalent. Hence P(K™) is linearly equivalent to the image of the orthogonal
projection with the kernel ker P.

The matrix 0 O, where by 0" we denote the transpose of 0, is the matrix of

the orthogonal projection with the kernel ker P .
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Theorem (6.2.3)[171]: An /-dimensional zonotope Z is linearly equivalent to a
minimal- volume projection of K™ if and only if it is linearly equivalent to the
zonotope spanned by multiples of rows of a totally unimodular m x r matrix of rank /7
Proof. The lemmata imply that in order to prove the “if” part it is enough to show
that for every totally unimodular mx r matrix 4 of rank / and for every diagonal
m>xm matrix D with positive entries on the diagonal there exists an orthonormal
sequence g, ..., g,such that

(1) The zonotope spanned by rows of [g,,..., ¢,] is linearly equivalent to the

zonotope spanned by rows of DA.

() Ifgy,..., gm—1 aresuchthat g,,..., ¢,, q1,..., ¢m—1 1S an orthonormal basis in

RM_ then there exists an orthonormal sequence x,,..., x; such that [x,,..., x;]

and [q,, ..., q,, -] satisfy the minimality condition of Lemma (6.2.1).

We rearrange columns of A in order to get a matrix whose first / columns are
linearly independent. It is clear that the zonotope spanned by rows of DX (the obtained
matrix) is linearly equivalent to the zonotope spanned by rows of DA.

Hence without loss of generality we may assume that the first / columns of A
are linearly independent, where / is the rank of A. Also it is clear that if the first /
columns a,,..., a; of A are linearly independent, then the zonotope spanned by
rows of [ay,..., a;]is linearly equivalent to the zonotope spanned by rows of A. So
without loss of generality we may assume that A is an mx / matrix of rank /.

Using the Gram—Schmidt orthonormalization process we get that there exists
an invertible / x / matrix C; such that columns of AC; form an rthonormal set. This
set will play the role of x,,..., x; in the construction (see (i1)).

Using the Gram— Schmidt orthonormalization process again we get that there
exists an invertible / x / matrix C, such that columns of DAC, form an orthonormal

set. This set will play the role of g,, ..., g,1n our construction (see (1)).

The condition (1) is satisfied because the matrix C, is invertible.

Letg,,...,q, ,€ R™ be such that g,,..., ¢,, ¢,,..., ¢, , form an orthonormal

basis in R, It remains to show that (ii) is satisfied.
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Let M:(;”) We denote by v; (1 = 1,...,M) the /xIminors of [Xi,..., X/ ]
(ordered in some way). We denote by w; (i1 = 1,...,M) the /x/minors of [g,,..., g, ]

ordered in the same way as the u; . We denote by v.=(@ :1,...,(2_ ) =M) their

complementary (m—; ) X (m — ;) minors of [q,..., qu-7/ ]. Using the word

complementary we mean that all minors are considered as minors of the matrix [ g,

yeeesqp5eees 4,115 S€€ [93].

By the Laplacian expansion (see [93]),

M
> O.u.v

det[xl""’xl’ql,...,qm—l]:l-: iii

and

. . M
detlgysed sy, A 1= 2 69, ®)
for proper signs 6;.

Since the matrix [9)>q7.9]  4,,_;] is orthogonal, then

det [(71,...,(71,q1’_..’qm_l]=ﬂ:l. 9)

We need one result on compound matrices. We refer to [93] for necessary definitions
and background. The result that we need is

A compound matrix of an orthogonal matrix is orthogonal (see [93]).
This result implies, in particular, that the Euclidean norms of the vectors {col.}l].‘;[l and
{vl-}?;l1 in R™ are equal to 1.
From (8) and (9) we get that either
(1) o; =6,v; foreveryi
or
(1) o; =-6;v; for every 1.
Without loss of generality we assume that o; = 0; v; for all i (we replace q; by — q; if
it is not the case).
Observe that

-1
[Xl""’ x,]=D [c?l,...,(il]CQ Cl'
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-1
Hence u; =4, ®; detC, det C,, where 8, are some positive numbers determined by

- -1
the diagonal entries of D 1. Denote det C; det C, by a. We get

U :ﬂl. o, Q. (10)
On the other hand [x,..., x; ]= AC, and A4 is totally unimodular. Therefore u; is

equal to det C;, 0 or —det C,; for everyi. Let QQ = {i :u; # 0}, then |u,|is the same

foralli € Q.

The minimality condition of Lemma (6.2.1) (that we need to verify) can be written as

Z GZulvl

max‘ ‘ ‘ ‘ (11)

We have

= Zeiuivi =

ieQ

[ASS R

(we use (a), (10), and p; > 0)

1ZQBIw1 ol = ZQ

(we use (a), (10), and the fact that |uj | is constant when i€Q)

Z|ul.”v.‘=max ‘u‘ > ‘ ‘
i€Q T e e

It remains to observe that from (a) and (10) u, =0 if and only if v, = 0. Hence

max ‘ui"z ’vl‘ max‘ ‘Z‘ ‘
ieQ 1€Q

Hence (11) is proved and the proof of the “if” part of Theorem (6.2.3) is finished.
Proof of the “only if”: Let a linear projection P: R”— R be such that P (K™) is

a minimal-volume projection of K. Let {¢,,... ,q, , } be an orthonormal basis in ker

P. Let {x,,...,x;} be an orthonormal basis in the image of P, and let {g,,...,q, } be

such that {g,,...,4,,9,,...,q,,,} 1S an orthonormal basis in R”. According to Lemma
(6.2.2) it is enough to show that the zonotope spanned by rows of 0 =[g,,...,q,] is
linearly equivalent to the zonotope spanned by multiples of rows of some totally
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unimodular mx/ matrix. It is clear that it is enough to show that 0 = DAC, where D
is a diagonal mxm matrix, A is a totally unimodular m>/ matrix, and C is an
invertible [ X [ matrix.

We letm = (') and introduce the numbers u; , v;, and @; (i =1,..., M) in the

same way as in the first part of the proof. Since P (K) is a minimal-volume

projection, then the minimality condition from Lemma (6.2.1) is satisfied, that is

M
> O.u.v

P RS A

M
=max‘u. zM (12)

Also, as in the first part of the proof, either
(i) o; =06;v; foreveryi
or
(i) o; =—0;v; for every i.
Let I'={i :v;# 0} ={i : @, # 0}. The equality (12) is satisfied if and only if
the following three conditions are satisfied:

(iii) the numbers {u; };cr have the same absolute value, let us denote it by u;
(iv) the numbers {u; v; 0; } ;e have the same sign;
(V) |u;|<pifiel.
By (1) and (i1) the condition (iii) is equivalent to
(1v') the numbers {u; o, },cr have the same sign.

Our approach to finding matrices D and C mentioned above is the following.
Let X = [xy,... X7].

First we find invertible [ X [ matrices C; and C,, and a permutation mx m
matrix R such that the first [ rows of Q* = R0 C, and X* = RXC, are identity [ X [
matrices, and conditions similar to (iii), (iv'), and (iv) are satisfied.

The second step is to show that replacing some of the entries of X* by zeros
we get a totally unimodular matrix 4 satisfying Q*= DAS, where D is a diagonal

mxm matrix and Sis a diagonal [ X | matrix. Hence
_ -1 S N
Q =R Q*CI =R DASC] ZDAC,
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where D =R_15 R,A=R"4,C= §C1_1.
The first step. The condition (iv)) implies that either u; = u sign o, for all i€ I'or u; =—u
sign o, for all i € I". Therefore there exists i such that u; # 0 and ®; # 0. Therefore we
can multiply both X and O by invertible /x/ matrices from the right, and by the same
permutation mxm matrix from the left (observe that ultiplication by such permutation
matrix is equivalent to simultaneous permutation of rows of X and Q) to get matrices
0 * and X* satisfying the conditions:

(1) The first / rows in each of them form an /x/ identity matrix.

(i1) Absolute values of /x/ minors of X* are at most 1.

(111) If some /x/minor w of QO * is nonzero, then the corresponding /x/minor (the
minor with the same rows) in X* is equal to sign w.
Let e,..,e; be the rows of the identity matrix of order [. Let x;* be rows of X*,

and let q;-k be rows of O *.

We show that the conditions (i) and (ii1)) imply that if q; is a nonzero entry of

0 O *,then x;- = sign q; , Where by x;- we denote the corresponding entry of X*.

To prove this statement we apply (ii1) to the minors corresponding to the

submatrices with rows

X
el,..., ej_l, €j+1,..., el,xl'

and
s €1y €iysnn€, i
in X* and Q *, respectively.
In a similar way we get
(ii+) Absolute values of all minors of X* are at most 1.
and

(111+) some minor (of any order) of QO * is equal to w# 0, then the corresponding

minor in X* is sign .

For each sub matrix Q," of Q * (in particular for Q0 * itself) we introduce a
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graph G( Q) whose vertices are nonzero entries of Q_"; two vertices are adjacent in
G(0,") if and only if the corresponding (nonzero) entries are either in the same row or
in the same column of Q.. Edges joining two entries in one row will be called

horizontal, edges joining two entries in one column will be called vertical.

A sub matrix Q," will be called connected if the following two conditions are

satisfied:

(I) Each column and each row of Q" contains a nonzero entry.

(IT) The graph G(Q,") is connected.
A sub matrix Q. of 0" is called a connected component of 9 if it is a maximal
connected submatrix of Q”.

It is clear that there are two types of zero entries of Q": some of them are

entries of some connected components of 9° and some are not.

Lemma (6.2.4)[171]: If q; =0 and q; is an entry of some connected component of

0", then x.. =0.

*
i
Proof. We shall prove this statement for each connected submatrix using the
induction on the number of columns of a submatrix. For connected submatrices Q.

of 0° with one column there is nothing to prove: all entries of Q. should be

nonzero by (I) in the definition of a connected submatrix.

Consider asconnected submatrix Q," with two columns. There should be a row,
let it be the row number k, such that both entries of Q. in that row are nonzero.

Consider the 2 x 2 submatrix of Q," formed by rows number & and i.

Since q; =0 and Q;k is connected, then the 2 x 2 submatrix has exactly 3 nonzero

entries. Hence its determinant is nonzero. Using (iii™) we get that the determinant of

the corresponding submatrix in X* is +1.

On the other hand, since in Q" this submatrix has exactly 3 nonzero entries,

then the corresponding submatrix in X* has at least three entries equal to £1.

Therefore its determinant can be £1 if and only if the remaining entry is 0, that
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Suppose that we have already proved the result for connected submatrices with

k columns (k > 2). Let us prove it for a connected submatrix with £ + 1 columns.

Assume the contrary. Let Q;k be a minimal connected submatrix with & + 1

columns that violates the condition, that is it contain a zero entry q; such that x;- = 0.

Such q; will be called a violator. The word minimal here means that after removal

of any row we get either a disconnected submatrix or a submatrix without violators.

By x:k we denote the corresponding submatrix in X*.
So let 9jj be a violator. Let qz‘*t and ¢, be nonzero entries in Q:. Such nonzero

entries exist by the part (I) of the definition of a connected matrix. Let P be a shortest
path in G( Q:) joining qi*t and qj ;. It 1s clear that in a shortest path vertical and
horizontal edges are alternating and that a shortest path contains at most 2 vertices in

each row of Q;k and atmost 2 vertices in each column of Q:. Using another choice of

qz‘*t and qj .1f necessary we may assume that the first edge is vertical and the last edge

1s horizontal.

Let us consider the minimal submatrix ¥ of 9° containing q; and all entries

of the path. The submatrix V' is connected and is a submatrix of Q.. Since V contains
a violator, it implies that V= Q_". Hence the path has vertices in each column of Q.
and in each row of Q.. It is easy to see that it implies that Q. is of size (k + 1)

X(k + 1) and that columns and rows of Q," can be renumbered in such a way that for

}k+l

i j=1 the path (presented by listing its vertices) is

the obtained matrix 7 = {¢ i

Lol Lol 50 b p ks Uk 10
%
and ¢ if corresponds to £, ;-
It is clear that all other entries of 7 (and, hence, Q. ) are zeros, because

otherwise there is a shorter path. (We skip an elementary proof of this step. It can be
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obtained by sketching pictures corresponding to the situation ¢;; = 0, i=j, i=j + 1
for the cases i<j and i>; . Observe that we need to use the condition £ + 1> 3).

Therefore det 7 = 0 and det 0" = 0.

Let W be the matrix obtained from x:k by the same renumbering that was used

to get T from Q.. Observe that by the minimality and by the inductive hypothesis

q; is the only violator in Q,". Therefore the only nonzero entries in W are

0)1’1, 0)2,1, 0)2,2, 0)3,2, 0)3,3, “ ey C()k’k 5 C()k+1,k ) C()k+1,k+], and a)]’k+].
By (iii™) the absolute values of all of these entries, except, possibly, @, ,., are equal to
a :

1. By (i) |®, 4| < 1. Hence |det @|#1 and |det X :k|¢1 .We get a contradiction with
the condition (iii+).

We replace all entries in X* that correspond to those zero entries of 0 that do
not belong to any connected component of Q9 by zeros and denote the obtained
matrix by 4.

Let us show that the matrix 4 is totally unimodular, that is all of its minors
are equal to 0, 1, or —1.

Connected components of 4 are defined in the same way as for 0*. Observe
that by Lemma (6.2.4) and the definition of 4, the graphs G(4) and G(Q") are
the same.

First consider a minor of 4 corresponding to a submatrix of a connected
component of 4. By the definition of 4 it follows that the minor is a minor of X*
also. By Lemma (6.2.4) and (iiit) it follows that all entries of the minor are 0 or 1.

Hence the minor is an integer. Since it is a minor of X*, by (ii*) the absolute value of
this integer is at most 1. Hence the integer should be equal to 0, 1, or —1.

Observe that the definition of a connected component implies that two
different connected components cannot have entries in the same row or in the same
column. By the definition of 4 all entries of 4 that are not in any of the connected
components are equal to 0. Hence each minor of 4 is either 0 or is a product of

minors corresponding to square submatrices of some connected components. Hence
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4 is totally unimodular .
The discussion above implies also that each minor of Q" 1is either 0 or is a
product of minors corresponding to square submatrices of some components.

Therefore Aand Q" satisfy the condition:

(i;z') If some minor of Q" is equal to w # 0, then the corresponding minor in A4
is equal to sign w.
Note: We have not proved that, if some minor of Q" is zero, then the corresponding
minor of 4 is also zero.
Lemma (6.2.5)[171]: There exist a diagonal [ X | matrix S and a diagonal m x m
matrix D with positive entries on the diagonals such that "= D4S.
Proof. Assume the contrary. Let Q. be a minimal submatrix of Q" such that it
cannot be multiplied by diagonal matrices with positive diagonals from both sides in
order to get the corresponding submatrix 4 of 4. Saying minimal we mean that each
submatrix of Q. can be multiplied by the diagonal matrices in such a way that we
get the corresponding submatrix of 4.

It is clear that the minimality condition implies that each row and each column
of 0." (and 4,) contains at least two nonzero entries.

Simultaneously renumbering rows and columns of © "and 4, we get two

}I/I \%

u %
} and Z ={Z. i1, j=1 *

matrices, say Y={y. .}._, j=1 i j

i, satisfying the following

conditions.

u v—1 _ C_
)] M}, >0)3{sj }jzl’(sj >0)such that Vi _dizi’j 5 for all i=1,...u

and j =1,..,v —1. Such i, }2.‘:1 and {sj };.11 are not unique, but we fix some choice of

them at this time.
() Vvs, ER,s, >0,3i€1,...,u suchthaty, =dz,s..
By Lemma (6.2.4) and (iii") the definition of 4 implies
z;; =signy; . (13)

Hence we get from (I) and (II) that there exist pairs (i,, i,) of integers in {1,..., u}
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such that

(14)

We call such pairs of integers incompatible.

Let us remove the last column from ¥ and consider connected omponents of the
obtained matrix Y .

An incompatible pair (i,, i,) will be called connected in Y, if there exists a
path in the graph G(Y ) joining an entry in the 1;th row of Y with an entry in the i, th
row of Y . Otherwise the pair (i, 1) will be called disconnected in Y .

Let us show that jf all incompatible pairs are disconnected in Y, , then we can

find positive numbers {d i}?:l and {3 j};:l such that

yl.’]. :dizi,jsj Viell,.u} Vjell.,}, (15)

contrary to the assumption.

In fact, different connected components;cannot have nonzero entries in the
same row or in the same column. Therefore there exist partitions {V, } and {H, } of
the sets {1,...,v—1} and {1,...,u}, respectively, where C runs over the set of all
components of Y, , V. is the set of numbers of all columns intersecting the
component C, H. is the set of numbers of all rows intersecting C. The observation

above (about at least two nonzero entries in each row and column of Q. ) implies
thato, Ve={1,...,v—1l}and U. Ho ={1,..., u}.
If all in compatible pairs are disconnected in Y, then the nonzero values of

are the same for all i € H, where C is any component of G(Y, ).

1
di Yiy

If there exist nonzero values of the form ‘dl._l viy| (0 €Hc), welet r(C) be their

common value. If all numbers ‘dl._l v; | (i € Hc) are equal to 0, we let r(C) =0.

Let

~ { dz' z'fz'eHcandr(C)=0,
l.:

r(C).dl- ifie Hc andr(C)#0

and
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S j ﬁ:jeVLandr(C):(L
if je Vc andr(C)#0,

Si =15 j1r(C)
1 if j=v.
Straightforward verification shows that (15) is satisfied.

Hence the assumption that Q. is a minimal submatrix of Q" such that there
are no diagonal matrices satisfying the condition described at the begining of the
lemma implies that there exist incompatible pairs (i,, i,) that are connected in Y, . For
each such pair we choose a shortest path among all paths in G(Y; ) joining a nonzero
entry in the i;th row of ¥, and a nonzero entry in the i,th row of Y,. We minimize
the length of the path over all incompatible pair(s), connected in Y .

So let (i;, i,) be an incompatible, connected in Y, pair and P be a path in G(Y)
joining a nonzero entry in the i;th row of Y, and a nonzero entry in the i,th row of ¥
and such that any other path joining two nonzero entries from rows corresponding to
incompatible pairs is at least of the same length as P. It is clear that vertical and

horizontal edges are alternating in P, and the first and the last edges are vertical.

Let @ be the minimal submatrix of Y containing y; ,»; ,and all entries
12 29

corresponding to vertices of P. We renumber columns and rows of @ in such a way
that in the obtained matrix (we shall keep the notation @ for it) the path P
corresponds to

)

D11, Wy, Oy, W35, W33,..., O, m,m—1,

m—1>m—1>

m ,m*

the entry v, ycorresponds to @, , - and the entry y, | corresponds to @,
D) s X

We renumber {d; } in the corresponding way and get {t,}", .
The minimality property of P implies that the only nonzero entries of @ are

W1, Wyq, Wy, W35 D33 Opy 1 m—1, Pmym-1, Pm,m, and O, m.

(The existence of other nonzero entries would imply the existence of a shorter path of
the same type. It is easy to verify this for all possible cases. Observe that in the case
when additional nonzero entries are in the last column we need to consider another

incompatible pair.)
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Let us show that det @ # 0. Assume the contrary, that is det @ =0.

The condition (14) corresponds to

1 1

‘tl_ a)l,m‘;t‘tn_i Om m ‘ (16)

On the other hand

m m—1 m—1
det =TT + U7 T jy

Hence det @ =0 implies that

m m-—1
jl;ll a)i 4 - l'l;ll wi +1,i "wl,m ‘ (17)
The conditions (I) and (13) imply that
“iil _ Y4
t.+1
Qi
Hence (17) implies
tl ‘a)l .m ‘

9

Im ) |a’m.m
We get a contradiction to (16). Hence det o= 0.
On the other hand, consider the submatrix U of Z corresponding to @ . Let us
renumber entries of U in the same way as we did it forw. Then the condition (13)
implies that the only nonzero entries of U are
Up g Up g Upzs Uz s Uz 3 s oo Upy g et Mgt U » A0 Uy

Hence
m m—1 m-—1
detl = El”i T = E }}1 i1, jul,m.
Since all nonzero entries of U are equal to =1, and U is totally unimodular (as a
matrix obtained by renumbering of columns and rows of a submatrix of a totally
unimodular matrix), then det U = 0.

Since renumbering of rows and columns can change the signs of determinants

only the equalities det U=0 and det @ # 0 contradict the condition (i;z'). This

contradiction proves the lemma and the “only if” part of the theorem.
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Section (6.3): Finite-dimensional Normed Linear Spaces:

We devoted to a generalization of the main results of [187], where similar
results were proved in the dimension two. We refer to [187, 188] for more
background and motivation.

All linear spaces considered will be over the real's. By a space we mean a
normed linear space, unless it is explicitly mentioned otherwise. We denote by Bx
(Sx) the unit ball (sphere) of a space X. We say that subsets A and B of finite-
dimensional linear spaces X and Y, respectively, are linearly equivalent if there exists
a linear isomorphism T between the subspace spanned by A in X and the subspace
spanned by B in Y such that T(A)=B. By a symmetric set K in a linear space we
mean a set such that x€K implies —xeK.

Our terminology and notation of Banach space theory follows [189]. By B/},

1 <p <oo, nEN we de note the closed unit ball of £ Our terminology and notation
of convex geometry follows [83].

We use the term ball for a symmetric, bounded, closed, convex set with interior

points in a finite-dimensional linear space.
Definition (6.3.1)[186]: (See [76]) .A ball A in a finite-dimensional normed space X
is called a sufficient enlargement (SE) for X (or of By) if, for an arbitrary isometric
embedding of X into a Banach space Y, there exists a projection P :Y—X such that
P(By)cA. A sufficient enlargement A for X is called a minimal-volume sufficient
enlargement (MVSE) if vol A <vol D for each SE D for X.

It can be proved, using a standard compactness argument and Lemma (6.3.10)
below, that minimal-volume sufficient enlargements exist for every finite-
dimensional space.

Recall that a real matrix A with entries —1, 0, and 1 is called totally unimodular
if all minors (that is, determinants of square submatrices) of A are equal to —1, 0, or
1. See [184] and [190] for a survey of results on totally unimodular matrices and their
applications.

A Minkowski sum of finitely many line segments in a linear space is called a

zonotope (see [191,185,192,83,94] for basic facts on zonotopes). We consider
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zonotopes that are sums of line segments of the form I(x) = {Ax: —1 <A <1}. Fora

d x m totally unimodular matrix with columns 1; (1= 1, ..., m) and real numbers a;

we consider the zonotope Z in Rd given by
7= I(az,).
i=l1

The set of all zonotopes that are linearly equivalent to zonotopes obtained in
this way over all possible choices of m, of a rank d totally unimodular d x m matrix,
and of positive numbers aj (1 = 1,..., m) will be denoted by 7,. Observe that
each element of 7, is d-dimensional in the sense that it spans a d-dimensional
subspace. It is easy to describe all 2 x m totally unimodular matrices and to show that
T, is the union of the set of all symmetric hexagons and the set of all symmetric
parallelograms.

The class T; of zonotopes has been characterized 1in several different ways,

see [193, 194, 195, 196, 174, 197]. We shall use a characterization of 7, in terms of

lattice tiles. Recall that a compact set K C RY is called a lattice tile if there exists a

basis {x ; }d_ in R%such that
i=1

d d
R"™ = U Zml-xl- +K |,
Myseesdl g g i=1

and the interiors of the sets (Y ?:1 m.x;)+ K aredisjoint. The set

d
Az{ > m.x. :ml,...,md EZ}

i=1 !
1s called a lattice. The absolute value of the determinant of the matrix whose columns

are the coordinates of {xi }?’:1 is called the determinant of A and is denoted d(A), see

[198] .
Theorem (6.3.2)[186]: [194,196] A d-dimensional zonotope is a lattice tile if and
only if it is in Tj.

It is worth mentioning that lattice tiles in R® do not have to be zonotopes, see

[199, 200, 201], and [202].
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The main result of [174] can be restated in the following way. (A
finitedimensional normed space is called polyhedral if its unit ball is a polytope.)
Theorem (6.3.3)[186]: A ball Z is linearly equivalent to an MVSE for some d-
dimensional polyhedral space X if and only if Z € Tj.

In [187] it was shown that for d = 2 the statement of Theorem (6.3.3) is
valid without the restriction of polyhedrality of X. The main purpose is to prove the
same for each d € N. It is clear that it is enough to prove
Lemma (6.3.4)[186]: (See [187,90]). The set of all sufficient enlargements for a
finite-dimensional normed space X is closed with respect to the Hausdorff metric.
Theorem (6.3.5)[186]: Each MVSE for a d-dimensional space is in 74.

Using Theorem (6.3.4) we show that spaces having non-parallelepipedal MVSE
cannot be strictly convex or smooth. More precisely, we prove
Proof. (We assume that Lemmas (6.3.6) and (6.3.7) have been proved.) Let X be
a d-dimensional space and let A be an MVSE for X.
Let {¢, ), be a sequence satisfying Y4 > &, > 0 and &, | 0 Let{r,},_; bea

sequence of polyhedral spaces satisfying

1
B, cBy, cB 19
l+e&, . Yy . 1)

Then A is an SE for Y,. Let B, be an MVSE for Y,. Then (1 + &,)B, is an SE for X.
Since A 1s a minimal-volume SE for X, we have
volA < vol (1 + &,)B,) = (1 + &,)" vol B,

By Lemma (6.3.7) for every n € N there exists an SE 4, for y, satisfying

A 4
and

d( Ay, Ty) <t 4 (sp) (20)
for some T, € Tj.

The condition (19) implies that (1 +¢,) 4, is an SE for X.

The sequence {(1+¢,) 4, }2021 is bounded (all of its terms are contained in (1

+ ¢,)A). By the Blaschke selection theorem [83] the sequence {(1 + ¢, 4, }2021
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contains a subsequence convergent with respect to the Hausdorff metric. We denote

its limit by D, and assume that the sequence {(1 +¢,) 4, }2021 itself converges to D.

Observe that each 4, contains (1/(1 + &))Bx and is contained in A. By (20)

we may assume without loss of generality that T,, are balls in X satisfying

1
1+¢

By C/IncTnctd (gn),in ct, (s, )4 (21)
It is clear that D is the Hausdorff limit of { 4, };’10:1. From (21) we get that D

is the Hausdorff limit of {T,} > - By Lemma (6.3.6) we getD € T.

By Lemma (6.3.4) the set D is an SE for X. Since (1 +¢,) 4, = (1 + ¢ )A,
and (1 + ¢ )A is Hausdorff convergent to A, we have D < A. On the other hand, A

1s an MVSE for X, hence D = A and A € Tj.

Lemma (6.3.6)[186]: Let Tn < RY, n € N be such that T, € Ty, and {T,}

n=l
converges with respect to the Hausdorff metric to a d-dimensional setT. Then T€ Tj.
Proof. By Theorem (6.3.2) the sets T, are latticetiles. Let {A,} 7, be lattices
corresponding to these lattice tiles. Since volume is continuous with respect to the
Hausdorff metric (see [83]), the supremum sup, vol(T,) is finite. Since T, is a lattice
tile with respect to A, the determinant of A, satisfies d(A ;) = vol(T,). (Although I
have not found this result in the stated form, it is well known. It can be proved, for
example, using the argument from [198].) Hence sup, d(A ,) <oo. Since T is d-

dimensional, there exists r > 0 such that ng c T . Choosing a smaller >0, if

necessary, we may assume that ng c T, for each n. Therefore the lattices {A ,}

satisfy the conditions of the selection theorem of Mahler (see, for example, [198],
where the reader can also find the standard definition of convergence for

lattices).Hence the sequence {A ,} ” contains a subsequence which converges to some

lattice A . It is easy to verify that T tiles R4 with respect to A.

On the other hand, the number of possible distinct columns of a totally

unimodular matrix with columns from RY is bounded from above by 3d, because
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each entry is 0, 1, or —1. (Actually a much better exact bound is known, see [190].)
Using this we can show that T is a zonotope by a straightforward argument. Also we
can use the argument from [83] and the observation that a convergent sequence of

d

measures on the sphere of ¢¢, each of whom has a finite support of cardinality < 3d,

converges to a measure supported on < 3d points. Thus, T is a zonotope and a lattice
tile. Applying Theorem (6.3.2) again, we get TeT,.
Lemma (6.3.7)[186]: (Main lemma) For each d € N there exist ; > 0 and a
function t; : (0,3 4) — (1, o) satisfying the conditions:
(1) lim, t4(e) = 1;
(11) If Y 1is a d-dimensional polyhedral space, B is an MVSE for Y , and A is an SE
for Y satisfying

Vol A<(1+ ¢)d vol B (18)
for some 0< € <14, then A contains a ball A satisfying the conditions:
() d(A,T) < ty(e) for some T € T,, where by d(A, T) we denote the Banach— Mazur
distance;
(ii) A is an SE for Y .
Proof. In our argument the dimension d is fixed. Many of the parameters considered

below depend on d, although we do not reflect this dependence in our notation.

Since Y is polyhedral, we can consider Y as a subspace of ¢7} .
Let P: /% vy
be a linear projection satisfying P(B”) < A (such a projection exists because A is an
SE). Let 4 = P(B™). It is easy to see that 4 is an SE for Y . It remains to show that
Ais close to some T € T, with respect to the Banach-Mazur distance.

We consider the standard inner product on ¢? . (The unit vector basis is an

orthonormal basis with respect to this inner product.)

Let {g,,....q, ,tbe an orthonormal basis in ker P. Let {y;,..., y;} be an

orthonormal basis in Y. Let §,..g, be such that {3.,..4,,9,..9,,5 15 an

orthonormal basis in ¢7} -
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Lemma (6.3.8)[186]: (Image Shape Lemma) Let P and g,,...,q,be as above.
Denote by O [§,.....4,] the matrix whose columns are §,,...,q,. Let z, . .., z_ be the
columns of the transpose matrix Q. Then P(B")is linearly equivalent to the
zonotope ¥ " 1(z;) c RY
Proof: It is enough to observe that:
(i) Images of B” under two linear projections with the same kernel are linearly
equivalent. Hence, P(B”)is linearly equivalent to the image of the orthogonal

projection with the kernel ker P .

(i) The matrix QQ7 is the matrix of the orthogonal projection with the kernel ker

P. By Lemma (6.3.8) we may replace 4 by
m
7= _zl I(z;) (22)
1=
in the estimate (i) of Lemma (6.3.7).

Let M:(Z’) We denote by u; (1=1,...,M) the d X d minors of [y, .. ., y4]
(ordered in some way). We denote by w; (i=1,..., M) the d x d minors of
[G,,---q,] ordered in he same way as the u. We denote by v; (i = 1,...,(%_61) = M)their
complementary (m — d) x (m — d) minors of [g,...q, ,]. Using the word
complementary we mean that all minors are considered as minors of the matrix

(G5 >G5, 4 1> SEE [93].

By the Laplacian expansion (see [93])
| -3
det VoY g2y D g |7 ElQl-ul-vl.
and

> Ow.v. (23)

A A

det[cil,...c]d,ql,...,qm_d}:i
for proper signs 0;.

Since the matrix [¢,,...,4, » ¢,5----9,,_, ] 1S orthogonal, we have

det[q,,-»q, +q,59q,, 4] = E1. (24)
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We need the following result on compound matrices. (We refer to [93] for
necessary definitions and background.)

A compound matrix of an orthogonal matrix is orthogonal (see [93]).

This result implies, in particular, that the Euclidean norms of the vectors [Wz‘ ]?;[1
and {V}z]'\;ll in RM are equal to 1.

From (23) and (24) we get that either
(1) w; = 0;v; for every ior
(i)w; =—0;v; for every 1.
Without loss of generality, we assume that w; = 6;v; for all 1 (we replace q; by

—q; 1f 1t is not the case).

We compute the volume of 4 and B with the normalization that comes from
the Euclidean structure introduced above. It is well known (see [89]) and is easy to

verify that with this normalization

- 2d M
volAz—Z|vl.|
‘Z ?;[l Hlulvl -
and
d
2
vol B =
max; |u. |

for each MVSE B for Y.
Remark (6.3.9)[186]: After the publication of [89] I learned that the formula for the

volume of a zonotope used in [89] can be found in [203].

Since vol 4 <volA, the inequality(18) implies that

M JM
max. |u. | X [v £(A+¢)" | Y O.u.v. (25)
i P B A
By (a) the inequality (25) canbe rewritten as
M J1M
max. |u. | Y [w. K(1+&)" | X uw, (26)
A R P R

We need the following two observations:
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) M ) .
(1) 24y i lwi 18 the volume of Z in R%.

(1) The vector {ul.}l.M: is what is called the Grassmann coordinates, or the Plucker

1
coordinates of the subspace Y < R™ see [204] and [205]. Recall that Y is
spanned by the columns of the matrix [y;, . . ., y4]- It is easy to see that if we
choose another basis in Y , the Grassman (Plucker) coordinates will be multiplied
by a constant.

We denote by Zg (¢ >0) the set of all d-dimensional zonotopes in Rd

satisfying the condition (26) with an equality. More precisely, we define Zg as the

set of those d-dimensional zonotopes Z in R4 for which

(i) There exists m € N and a rank d matrixQ of size m x d such that,Z =y l”i 1z

where z e R4, i=1,..., m, are rows of 0.
(i1) There exists a rank d matrix Y of size m x d such that, if we denote the d x d

minors of O by {wl.}‘l?il where M = (Z’) and the d X d minors of Y , ordered in

the same way as the w;, by {ui}‘l.x:’1 then

M
P> u;w; 27)

i=l

M d
max. |u. | > |w. =(1+¢)
1 1 i=l 1

and thereis no Y for which

M
‘Zlul.wl.

1=

M d
max, |ul. | > |Wz' Ik(+¢)
1=

Many objects introduced below depend on Z and ¢, although sometimes we do
not reflect this dependence in our notation.

Let ZEZs. We shall change the system of coordinates in R? twice. First we
introduce in RY a new system of coordinates such that the unit (Euclidean) ball B{
of R4 is the maximal volume ellipsoid in Z. now on we consider the vectors zi

introduced in Lemma (6.3.8) as vectors in RY and not as d-tuples of real numbers.

It is easy to see that the support function of Z is given by
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OEPHICEN]

It is more convenient for us to write this formula in a different way. We

consider the set

zZ zZ
L fm 1 Zm | (28)
EN

If the vectors in (28) are pairwise distinct, we let pu to be the atomic measure on the
unit (Euclidean) sphere S whose atoms are given by w(z/llzll) = u(=z/lizll) =lzll/2. 1t

is easy to see that
h(x) = [1(x.2) | du(2). (29)
S

The defining formula for p should be adjusted in the natural way if some of the
vectors in (28) are equal.

Conversely, if 1 is a nonnegative measure on S supported on a finite set, then
(29) 1s a support function of some zonotope (see [83] for more information on this
matter).

Dealing with subsets of S we use the following terminology and notation. Let
Xo €S, r>0. The set A(X,,1):= {XES : Ix —x,l<r or Ix + x,ll<r}, where [.I is the
¢,-norm, is called a cap. If 0<r <+2, then
A(X,, 1) consists of two connected components. In such a case both xy and -xo will
be considered as centers of A(Xy, 1).

We are going to show that if € > 0 is small, then the inequality (26) implies that
all but a very small part of the measure p is supported on a union of small caps
centered at a set of vectors which are multiples of a set of vectors satisfying the
condition: if we write their coordinates with respect to a suitably chosen basis, we get
a totally unimodular matrix. Having such a set, it is easy to find T€7, which is close
to Z with respect to the Banach—Mazur distance, see Lemma (6.3.29).

For any two numbers o, § > 0 we introduce the set

Q(0,0) = {XES: W(A(x,0))>0d}
(recall that by S we denote the unit sphere of ¢¢). In what follows c,(d), c,(d), ...,
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C,(d), Cy(d), . .. denote quantities depending on the dimension d only. Since d is
fixed throughout our argument, we regard them as constants.

First we find conditions on ® and 6 under which the set Q(w, d) contains a

normalized basis {el.}?’:1 whose distance to an orthonormal basis can be estimated in

terms of d only.

Lemma (6.3.10)[186]: There exist 0<c,(d), C,(d), C,(d)<oo, such that for a)SM%

0 <c,(d)w’" there is a normalized basis {el.}?’:1 in the space R? satisfying the

conditions:

(1) n(A(ei, ®)) = 8.

(i) If {Oi}ld:l is an orthonormal basis in R® , then the operator N:R* >R? given
by N o= e; satisfies [N < C,(d) and |[N"}||< C,(d), where the norms are the
operator norms of N, N~L considered as operators from 6‘21 into 6‘22’.

Proof. We need an estimate for pu(S). Observe that if K; and K, are two symmetric
zonotopes and K; < K,, then p;(S) < ux(S) for the corresponding measures p; and
W, (defined as even measures satisfying (29) with Z =K, and Z = K,, respectively)

.To prove this statement we integrate the equality (29) with respect to x over the

Haar measure on S.

d

Now we use the assumption that B,

is the maximal volume ellipsoid in Z.

Let is the maximal volume ellipsoid in Z. Let 3 ?zlyixi ®x, be the F. John
representation of the identity operator corresponding to Z (see [42]). Then
Zo{x: (xx)<1Vie{l,...,n}}.

Since sz?:1< X,%, );/l.xl.for each x € Rd, we have ZCZ?:I[_yixi’yixi]' Since

> y; =d, this implies u(S) <d.

Using the well-known computation, which goes back to B. Griinbaum ([206],
see, also, [207]) one can find estimates for u(S) from below, which imply p (S)>+/d
For our purposes the trivial estimate u(S)>1 is sufficient (this estimate follows

immediately from Z> B4 , because this inclusion implies h, (x) >lxl).
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We denote the normalized Haar measure on S by n. It is well known that there

exist ¢y(d) > 0 such that
NAKX, 1) > c(dr*™  Vre(0,1)Vx eS. (30)
Using a standard averaging argument and u(S) > 1, we get that there exists e,€ S

such that
H(AGe;, 0)) > cy(dod™l.
Consider the closed (%+ ®) -neighborhood (in the /¢ ‘; metric) of the line L; spanned

by e,. Let A, be the intersection of this neighborhood with S. Our purpose is to

estimate n(S\A,) from below. Let x € S be orthogonal o e,. Then
1<h, (x) <1 u(S\A,)+ (%wo).d,

d .

where the left-hand side inequality follows from the fact that Z contains B5

Therefore p(S\A,) >1 —(%+a)) d.

We erase all measure p contained in A;, use a standard averaging argument

again, and find a vector e, such that

wWA(e,, )\A,) >c,(d) o d-1 [(l—é+a))dj.
Since n(A(e,, ®)\A,) > 0, the vectore, is not in the % -neighborhood of L;.

Let A, be the intersection of S with the closed (%+ ) - neighborhood of L,

= lin {e,, e, } (that is, L, is the linear span of {e,,¢e,}). Let x € S be orthogonal to
L,. Then

I<h, (x) <l.p (S\A2)+(%+a)).d,

d .

where the left-hand side inequality follows from the fact that Z contains B5

Therefore

1
> —(—+
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Using the standard averaging argument in the same way as in the previous step

we find a vector e; such that

W(A(ey, @ N\A,) > ¢y(d) o 471 (1 —($+ a)]d].

Since n(A(e;, @)\A,) > 0, the vector e, 1s not in the %-neighborhood of L,.

We continue in an obvious way. As a result we construct a normalized basis

{e,..., €4 ¢ satisfying the conditions.
() 1(ACe,0) 2 e(@) @ (1= L+ o))

(11) dist(e1 , lin {e } > L ,i=2,...,d, where dist(-, -) denotes the distance from

J=1 7 3d°
a vector to a subspace.

If o< é the inequality (i) implies

WA Ce,0)) 2 e (o,
and we get the estimate (1) of Lemma (6.3.10) with c,(d) = ¢,(d)/2.
To estimate |N | and ||N_1||, we let {ol.}ld:1 be the basis obtained from {e;} are

using the Gram—Schmidt orthonormalization process. Let N : R® — R? be defined

by No, = e, The estimate [N | < C,(d) with C,(d) =Js follows because the

vectors {el.}l‘.i1 are normalized and the vectors {ol.}ld:1 form an orthonormal set .

To estimate |N _1|| we observe that the matrix of N with respect to the basis

{0, } is of the form

11 NIZ Nld
N = 0 ]v.22 N2d
O 0 -- N,

and that the inequality (i1) implies N prp % We have
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N 0 0 1 Mo N
11 N O Nll Nll
N
T= 22 , 0 1 2\ = D(I+U),
: . ) Ngz
0 0 N : :
dd/ o o 1
where I is the identity matrix,
0 N12 Nl.dfl Nld
N O O Nll N]] N]]
) N .. 0 0 .. Noaa Ny
D=| . 22 . |landU=). . | N Ny
0 0 Ndd 0 0 0 M
Nd—l.d—l
0 0 0

Therefore

N T=a+u)y' D' =a-Uu+U—+E=)"UDp? 31
the identity 01 +U) 1 = @ -U+U2 - + (-1)41lud-ly follows from the
obvious equality U9=0. The definition of U and Nii Z%. imply that columns of U

3
are vectors with Euclidean norm at most 3d, hence |U| < 342. Therefore the identity

Therefore the identity (31) implies the following estimate for ||N_1||:
d 4 2 B
v < ”ﬁfU”Tll I PR EY)
3d* -1

Denoting the right-hand side of this inequality by C,(d) we get the desired estimate.
Lemma (6.3.11)[39]: Let c,(d) be the constant from (30), then

o
S\((Q(w, 0 <—.
M( (( ((’09 ))(l))) Cz(d)a)d_]
. o .
Proof. A th t that S\((Q(w, d ————. Then,
roof. Assume the contrary, that is, u(S\((Q(@ ))a) ) >c2(d)a)"“ en, using

a standard averaging argument as in Lemma (6.3.10), we find a point x such that

&-1. o6  _
A, o\ ((2(@,8)) ) 2¢,(d) @ Piral 5.

By the definition of Q(w, §) this implies x€ Q(®, ). On the other hand, since the
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set A(x, o)\((Qw,06)) () is non-empty, it follows that
X £Q(w,0). We get a contradiction.
For each Z € Ze& we apply Lemma (6.3.10) with w = w(e) = 4K and

0=d(e)= ghdk , where 0 < k < 1 is a number satisfying the conditions

! and k< B (32)

k < ,
6+ 4d> 2d +4d?

we choose and fix such number k for the rest of the proof. It is clear that there is

- (d, k) > 0 suchthat the conditions @ (¢) gé and

0e) <c/(d)( w (g))d_1 are satisfied for all € € (dO, Z,), where ¢ (d) is the constant

from Lemma (6.3.10). In the rest of the argument we consider € € (0, £,) only. Let

{el.)ld:1 be one of the bases satisfying the conditions of Lemma (6.3.10) with the

described choice of  and 8. Now we change the system of coordinates in R! > Z the

second time. The new system of coordinates is such that {ei)zd—l is its unit vector

basis. We shall modify the objects introduced so far (€2, u, etc.) and denote their
versions corresponding to the new system of coordinates by €, i, etc. All these

objects depend on Z, &, and the choice of {e; }zd:l'

We denote by S the Euclidean unit sphere in the new system of coordinates.
We denote by N : S — S the natural normalization mapping, that is, N(z) = z/lzl,
where llzll i1s the Euclidean norm of z with respect to the new system of coordinates.
The estimates for INIl and IN'll from Lemma (6.3.10) imply that the Lipschitz
constants of the mapping N and its inverse N' : S — S can be estimated in terms of
d only.

We introduce a measure [I on S as an atomic measure supported on a finite set
and such that [ (N(z)) = u(z) llzIll for each z€S , where llzll is the norm of z in the new
system of coordinates. Using the definition of the zonotope Z it is easy to check that the

function

hz (x) = [ ( x.2)|dii(2),
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where (.,.) 1s the inner product in the new coordinate system, is the support function

of Z in the new system of coordinates.

We define O = Q(w, ) as N(Q(w, 8)). It is clear that ¢; € 3. Everywhere
below we mean coordinates in the new system of coordinates (when we refer to |- |,

A, etc).

The observation that N and N ! are Lipschitz, with Lipschitz constants
estimated in terms of d only, implies the following statements:

(1) There exist C5(d), C,(d) < oo such that
I 5
A(S V(2 (60,5))03(0:)@(5))) SC4(d)F (33)
(we use Lemma (6.3.11).
(1) There exist ¢;(d) > 0 and C,(d) < oo such that
i (A, C5(D)®)) 2 ¢;(d)3 ¥x € A(w, D) (34)

(we use the definitions of Q(w, §) and Q(w, 9)).
(111) There exists a constant C,(d) depending on d only, such that

vol(Z) <C¢(d). (35)
Let O be the transpose of the matrix whose columns are the coordinates of z;

in the new system of coordinates. We denote by w;(1=1,...,M) the dxd minors of

O ordered in the same way as the w,. The vector {vT/l.}l].\;[l is a scalar multiple of

{wl.}l].\;[l. Therefore (27) implies

MK

M d
max . ‘u > ‘w.‘=(1+8)
A P

' ul.vil.. (36)
i =1

M _
. w

The volume of Z in the new system of coordinates is 2 Xl

To show that if € >0 is small, then the inequality (36) implies that all but a

very small part of the measure a is supported “around” multiples of vectors

represented by a totally unimodular matrix in some basis, we need the following
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lemma. It shows that the inequality (36) implies that the measure [ cannot have non-
trivial “masses” near (d + 2)-tuples of vectors satisfying certain condition.
Lemma (6.3.12)[186]: Let y(¢),0(¢), and n(e) be functions satisfying the following
conditions:

(D) limgyo x(e) = limgyo 0(e) = limgy (e) = 0;

(i) € = o((x(e))2(c(e))9) ase | 0;

(ii1) m(e) = o(x(e)) ase | 0;

(iv) There is a subset ®y= (0,Z,) such that the closure of ®, contains 0, and

for each ee®, there exist ZeZg and points X, . . ., X4, Py P2> P3» P4 10 the
corresponding S, such that
(A(z, 1(€))) 20(e) VZ €{Xy,. .., Xgp, Pp-P 2 P3> Pu}- (37)
Let u, be the set of pairs (g, Z) in which ee® and Z satisfies the condition from
(iv). Let ®;c® be the set of those ee P for which there exists (€, Z)eu, such that the
corresponding points X, . .., X4y, Py> P2» P3- P4 Satisfy the condition .

det(Hq g )l = x(e) (38)

for all matrices H,p whose columns are the coordinates of {X,,..., X4, Py Pp o,

Be {1,2,3,4}, a = B, with respect to an orthonormal basis {e l.}l‘.l:1 in RY. Then there

exists g, > 0 such that ®; N(0,,) = @
Proof. We assume the contrary, that is, we assume that 0 belongs to the closure of
®,. For each ¢ e®; we choose Z € Ze such that (¢, Z)eu,y and the condition (37) is
satisfied. We show that for sufficiently small € > 0 this leads to a contradiction.

We consider the following perturbation of the matrix H,; : each column
vector z in it is replaced by a vector from A(z, m(g)). We denote the obtained

perturbation of the matrix H,, by H7 5. We claim that
|det(H0’Zﬁ)|2x(8) —d.xn(e). (39)

To prove this claim we need the following lemma, which we state in a bit more

general form than is needed now, because we shall need it later.
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Lemma (6.3.13)[186]: Letx,,...,xy, z € K‘; be such that max; < i<q4 [X;[|<m and |z

—X,|<1. Then
det[z,X,, ..., Xq] —det[X, X5, ..., X4]|< Lmd1,
This lemma follows immediately from the volumetric interpretation of determinants.
To get the inequality (39) we apply Lemma (6.3.13) d times with m=1 and
I=n(¢).

Since Z € Zg, it can be represented in the form Z=> 1(z). First we

complete our proof in a special case when the following condition is satisfied:

All vectors z; whose normalizations z/llzll belong to the sets A(z, n(¢)), z € {xi, ...
X4-2> D1» P2> P3» Dy +» have the same norm t and there are equal amounts of such
vectors in each of the sets A(z, n(g)), ze {X,,. .., X4_3> P> P> P3- P4 § » WE denote the
common value of the amounts by F.

The inequality (37) implies

F.1>0(¢).
We denote by A the set of all numbers i€ {1, ..., M } satisfying the

condition: the normalizations of columns of the minor w; form a matrix of the form

Hg’ﬁ, for some a, Be{l, 2, 3, 4}.

We need an estimate for Yje4|w; |. The inequality (39) implies |w, | = rd(x(s) -

d'm(e)) foreachi e A
On the other hand, the cardinality |A| of A is 6F". In fact there are F*2 choose
two of the sets A(p;, m(€)), j = 1, 2, 3, 4, and there are F? ways to choose one vector

zi/|zi|| in each of them. Therefore | A | = 6F" and

) W1 = 6F 19(x(e) —d n(e)) = 6(c(e))(x(e) —d m(z)). (40)

le
We assume for simplicity that max; [u;| = 1 (if it is not the case, some of the
sums below should be multiplied by maxi |u;|). The u; are defined above the equality

(27). Then the condition (36) can be rewritten as
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d M
A+ S w2 ¥ o]+ ¥ [, (41)
i=l1 ieA igA
On the other hand,
(+e)? zuw <t+ef| v ww td+e v ‘w ‘ (42)
1=l iecd igA
From (41) and (42) we get
(1+8) Yuw. (43)
i=1 igA

As 1s well known, 2dz z{[l‘ﬁ’i 1s the volume of Z, hencezl].‘;[1 ‘wl.‘s 274 Ce(d).

Using this observation and the inequalities (40) and (43) we get

Duw.
EAZ

) (+e) —ne, @)™
> rE 7 6 > }w“ )
(I+¢) 6(c(e))” (x(e)—d.m(¢)) !

(We use the fact that y(e) —d m(e) > 0 if € > 0 is small enough.) The conditions (19)
and (20) imply that there exists ¥ > 0 such that

1 e -nc@n™

a+e)?  6o(eN? (x(e)-dan(e))

>(1-0.04(x(e)—-d.7))) (44)

is satisfied if € € (0, ¥). The right-hand side is chosen in the form needed below.

Let 1 > 0 be such that the statement above is true. Then for €€ (0, 1) we have

Zuw

> (1-0.04(x(2) ~d.7(@) X || (45)
ied

ie A

Recall that u; are d x d minors of some matrix [yy,..., ya]. We need the Plucker
relations, see [204] or [205]. The result that we need can be stated in the following
way: if v, ..., V-2 K;» Ky, K3, K, areindices of d +2 rowsof [y,, . .., y,], then

tatg “lialn T gty =0, (46)
where t,g 1s the determinant of the d X d matrix whose rows are the rows of [y, . . .,
ya] with the indices vi,..., Ya2, K and kg . Note that (46) can be verified by a
straightforward computation (which is very simple if we make a suitable change of
coordinates before the computation).
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Now we Show that (45) cannot be satisfied. Let 1 be a set Consist in g of d

+2 vectors z, .z, ,z,,24 52, 2, formed in the following way. We choose

vectors, (z, /|[z, [)) € A(pi, m(e)), 1= 1,2, 3, 4, and choose vectors (z, /lz, ) €
1 1 l l

A(x, m(e)), 1=1, ..., d — 2. To each such selection there corresponds a set of 6

. v d P . . . -
minors W; of the form t° det( Ha’ ﬁ)’ we denote this set of six minors by W s ()

One of the immediate consequences of the Pliicker relation (46) is that for any
such (d + 2)-tuple Y

u| < % for some 1ieM (V). (47)

(Here we use the assumption that max; |u;| = 1.)
For each 1 we choose one such 1 € M (1) and denote it by s(i)). The estimate
(39) and the condition (I) imply that
4 > w2 190e) —d n(e)) (48)
for every 1 € A.
Hence for every (d + 2)-tuple i of the described type we have

s phswls T |—%|ws(w>l

<

W, ) v,
ieMz (y/)ulwl ieM (y\(s(w)) ’W’

N PP okl | N7

- l
ieM (y) \/Ezl.eM(W)

(20 (4(e)-d.x(e))
x/§.6rd

< 3w [(1=0.04)(x(e) ~d 7 (£)).
ieM (y)

b, |

< 2w
ieM (y)

Thus

<

Y wai|< 3 }w ‘ (1-0.04)(x(¢)—d 7 (£))). (49)
ieMy) bt ieM(y) 1!
Recall that F is the number of vectors z; corresponding to each of the sets A(z, m(g)),

ze {Xy,...,Xd-2,P1-P2,P3.P4}. Simple counting shows that for an arbitrary

collection {Y;}iea of numbers we have
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S % 7,=F X%y,

v ieMy) ied
Using (49) we get that
F2 S uw. =2 ¥ uw <3| 3 uw,
ied VY W oieM@y) !t ! WieM(y/)l L
<3 3 ’W.‘(I—0.04(;((g)—d.ﬂ(g)))
Vo oieM (y)' !
-F% ¥y W (1-0.04(x () ~d 7(e))).
i=4

If € € (0, ), we get a contradiction with (45).

To see that the general case can be reduced to the case (I) we need the
following observation:

Let 1, T, > 0 be such that 7, + t, = 1. We replace the row with the
coordinates of z; in Q by two rows, one of them is the row of coordinates of 1,7,
and the other is the row of coordinates of 1,z;. The zonotope generated by the rows

of the obtained matrix coincides with Z. In the matrix [y, ..., y,] we replace the jth

row by two copies of it. It is easy to see that if we replace the sequences {{ui}?;ll and

{Vvl.}l].‘;ll by sequences of d X d minors of these new matrices, the condition (36) is

still satisfied.

We can repeat this ‘cutting’ of vectors z; into ‘pieces’ with (36) still being
valid.

Therefore, we may assume the following: among z; corresponding to each of

the sets A(z, n(€)), z € {Xi,. .., X4-> P1» D3> P3- P4 5 there exists a subset O(z, n(e))

consisting of vectors having the same length 1, and such that the sum of norms of

vectors from @(z, n(g)) is >

—0—(28) , moreover, we may assume that the numbers of

such vectors in the subsets ®(z, n(e)) are the same for all z € {X;, ..., X4_5, P> P2>

D3> Py ¥ -

Lemma (6.3.12) in this case can be proved using the same argument as before,
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but with A being the set of those minors W; for which rows are from ®(z, n(¢)).
Everything starting with the inequality (40) can be shown in the same way as before;

only some constants will be changed (because we need to replace o(¢) by %’9)).

Let p(e) = ek ,Vv(e) = ¢3K | For a vector s we denote its coordinates with respect
d d
to fe; ;-1 BY ;¥4

Lemma (6.3.14)[186]: If

1

k <
6+ 4d 2

(50)

then there exists £, > 0 such that for € € (0,5,), s,t € Q(w(¢),(¢)), and a, p €
{1, ..., d}, the inequality

min{|sa|9|sﬁ|9|ta|9|tﬁ|} Zp(g)a (51)

Ky t
det[ “ taJ
Sp g

Proof: Assume the contrary, that 1s, there exists a subset ®, <(0, 1), having 0 in its

implie

<v(¢) (52)

closure and suchthat for each ¢ e®, there exist Z € Zg, s,t € Q(w(e),d(¢)) and a,

B satisfying the condition (51), and such that

Ky t
det[ “ taJ
Sp g

We apply Lemma (6.3.12) with {x;,...,X4,} z{el'}z';ta,ﬂ’ {P1>P2> P35> s ¥ = €5

>y (g) (52)

e, S, t}. Using a straightforward determinant computation we see that the condition
(38) is satisfied with y(¢) = min{1, p(g), v(e) } = g3k (we consider € << 1).

The inequality (34) implies that the condition (iv) of Lemma (6.3.12) is
satisfied with () = C(d)m(g) = C4(d)e™ and o(e) = cy(d)d(e) = cy(d)e™™. It is
clear that the conditions (i1) and (ii1) of Lemma (6.3.12) are satisfied. To get (19)
we use the condition (50). Applying Lemma (6.3.12), we get the existence of the
desired =,.

For each vector from Q(w(¢), 3(¢)) we define its top set as the set of indices of
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coordinates whose absolute values > p(¢).
The collection of all possible top sets is a subset of the set of all subsets of

{1,...,d}, hence its cardinality is at most 29, We create a collection ®(w(g), §(c)) < Q
“(o(¢), §(¢)) in the following way: for each subset of {1,...,d} which is a top set

for at least one vector from & (w(¢), 3(¢)), we choose one of such vectors; the set

O(m(g),0d(¢)) is the set of all vectors selected in this way.

In our next lemma we show that each vector from Q (w(¢), 5(¢)) can be
reasonably well approximated by a vector from ®(w(g), d(¢)). Therefore (as we shall
see later), to prove Lemma (6.3.7) it is sufficient to find a “totally unimodular” set
approximating @(m(¢), (¢)).

Lemma (6.3.15)[186]: Let p(¢) and v(¢) be as above and let k and =, be numbers

satisfying the conditions of Lemma (6.3.14). Let € € (0,Z3), Z € Z_,and let s, t €

Q(w (), 3(c)) be two vectors with the same top set =. Then

min {||t +5

2

t—s||}£\/2 v (8)2+4dp(8)2. (53)
(p(€)

p—

Proof. Observe that if p(e) = K > L , the statement of the lemma is trivial.

QU

Therefore we may assume that p(g) < . In such a case X contains at least one

1
Jd
element.

First we show that the signs of different components of s and t “agree” on X in
the sense that either they are the same everywhere on X, or they are the opposite

everywhere on X. In fact, assume the contrary, and let a, B € Z be indices for which

the signs “disagree”. Then, as is easy to check,

Ky t
det[ “ ta J
Sp g

and we get a contradiction. We consider the case when the signs of t, and s, are the

= I8l Ity | I | ta] = 2(p(£)%> v (),

same for each a € X, the other case can be treated similarly (we can just consider —s
instead of s).
We may assume without loss of generality that |t | > |s | for some o € . We
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show that in this case

-2

v(e)

forall B € . In fact, if [t <[l——2
(p(8))

det[ia ;aj
B B

j | sp| for some B € X, then

V(€
>ty 155 =154/t | = 15435 —-E > v(e),

>
vee) )

a contradiction.

We have

=2 =42 +[s)2 -2t s) <2-2 5 a-—E 240 5 pe)?
«E T (p(e)) ady.

<27 (‘9)2 +4 Y pe)t <2t (‘9)2 +4dp (¢)?.
(p (¢)) agy (p(&))

Let O(w(g),0(g))= {bj}§=1> where ]§2d. We may and shall assume that

{el.(g)}fl=1 c O(w(g), i(e)) (see Lemma (6.3.10) We denote d - od by n and
introduce d - n functions: @,(€), . . ., @ga(€), such that

P1(E) = 2 Pga(e) = p(e) = &° (54)

9u(6) = (0411(2)) 7 (55)

We consider the matrix X whose columns are {b j}jzl We order the absolute

values of entries of this matrix in non-increasing order and denote them by a; > a, >

‘> ayy- Let j, be the least index for which
Pyio (8) > a5, (56)
The existence of j, follows from{el.(g)}l?l:1 cBO(w(e), 4(e)). The definition of j
implies that a; > @q; (¢) for j <Jo, hence a; > @q4jo-1 (€) for j < jo-1.
We replace all entries of the matrix X excepta, . . ., a,_; by zeros and denote
the obtained matrix by G = (G;), 1=1,...,d,j=1,...,], and its columns by

J :
{g j}jzl' It 1s clear that
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”gJ - bj ”S d- godj (8) (57)
We form a bipartite graph G on the vertex set {1, ..., (T} u{l,...,J}, where

we use bars in T, c, d because these vertices are considered as different from the
vertices 1, . . . ,d, which are in the set {1, ...,J}. The edges of G are defined in the
following way: the vertices i and j are adjacent if and only if Gy # 0. So there is a
one-to-one correspondence between edges of G and non-zero entries of G. We choose
and fix a maximal forest F in G (We use the standard terminology, see, €. g. [90].)

For each non-zero entry of G we define its level in the following way:

(1) The level of entries corresponding to edges of F'is 1.

(i1) For a non-zero entry of G which does not correspond to an edge in F we
consider the cycle in G formed by the corresponding edge and edges of F. We
define the level of the entry as the half of the length of the cycle (recall that the
graph G is bipartite, hence all cycles are even).

Observation (6.3.16)[186]: One of the classes of the bipartition has d vertices.
Hence no cycle can have more than 2d edges, and the level of each vertex is at most
d.

To each entry Gj of level f we assign a square submatrix G(1j) of G all other
entries in which are of levels at most f—1. We do this in the following way. To entries
corresponding to edges of F we assign the 1 x 1 matrices containing these entries. For
an entry Gj; which does not correspond to an edge in /' we consider the corresponding
edge e in G and the cycle C formed by e and edges of F. Then we consider the entries
in G corresponding to edges of C and the minimal submatrix in G containing all of
these entries. Now we consider all edges in G corresponding to non-zero entries of
this submatrix. We choose and fix in this set of edges a minimum-length cycle M
containing e. We define G(ij) as the minimal submatrix of G containing all entries
corresponding to edges of M. It is easy to verify that:

(1) G(ij) 1s a square submatrix of G.

(i1) Non-zero entries of G(ij) are in one-to-one correspondence with entries of M.

(111) The expansion of the determinant of G(ij) according to the definition contains

exactly two non-zero terms.
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(iv) All non-zero entries of G(ij) except Gij have level <f— 1.
Lemma (6.3.17)[186]: Let k < 1/(2d + 4d?). If & > 0 is small enough, then there exists
a dxJ matrix G such that:
(i) If some entry of G is zero, the corresponding entry of G is also zero.
(i) The entries of level 1 of G are the same as for G;
(111) All other non-zero entries of G are perturbations of entries of G
satisfying the following conditions:
(DIf Gy is of level f, then |Gy =G ij| < @ajo-r+1(€).
(II)  For each non-zero entry Gjj of level > 2 of G the determinant of the
submatrix G (ij) of G corresponding to Gf(ij) is zero.
Proof. Let Gj; be an entry of level f. Since, as it was observed above, all entries of
G(1) have level < f— 1, we can prove the lemma by induction as follows.
(1) We let Gij = G;j for all Gj of level one.
(i1) Let > 2.
We assume that for all entries Gj; of levels ¢(G;) satisfying 2< ¢(Gyj)< f—1 we have

found perturbations Gij satisfying

Gy —Gij | < @, Lain(e),

such that det(G (ij)) = 0. (Note that this assumption is vacuous if f=2.)

Inductive step: Let Gij be an entry of level f. If € > 0 is small enough we can find a
number Gij such that |(§ij—Gij|§ ¢d;j,_r+1(¢) and det(G(ij))=0. Observe that by the
induction hypothesis and the observation that all other entries of G(ij) have levels <

f-1, all other entries of G (ij) have already been defined.
So let Gj be an entry of level f, and G(ij) be the corresponding square
submatrix. Renumbering rows and columns of the matrix G we may assume that the

matrix G(ij) looks like the one sketched below for some h < f.
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a 0 GU
b1 ay 0
G(ij) =
0 a4 0
0 0 .. b4 qa

Therefore the matrix G (possibly, after renumbering of columns and rows) has the

form
a 0 0 . 0 0 0O 01 O
y
bl ay 0 0O 0 O 0 0 0 1
0 0 ah_1 0O 0 O 0 0 0 O
0 O bh—l ah 0 0 0 0 0 O (58)
® % * *= 1 0 0 00 O
% * * 0 1 0 0 0 O
® k. * * 0 0 1 0 0
x % ... % * 000 .- 0100

We have assumed that we have already found entries {a, }Z:Iand {b~n }Z;% of G

which are perturbations of {an}zzl and {bn}z;%- The entries 1 shown (58) are the

only non-zero entries in their columns, therefore the corresponding edges of G should

be in F'. Let us denote the perturbation of G;; we are looking for by Gij . The

condition (II) of Lemma (6.3.17) can be written as

ho pyhl
I1a, +(-1) Hlbn Gy =0. (59)
n:

=
So it suffices to show that the number Gij , found as a solution of (59) satisfies
|(§ij —Gij|< @qjo-r +1(€). To show this we assume the contrary. Since there are finitely
many possibilities for j, and f, the converse can be described as existence of jy and f,
such that there is a subset ®;c(0,1), whose closure contains 0, satisfying the
condition:
For each ¢ € ®; there 1s ZeZ, such that after proceeding with all steps of
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the construction we get: all the conditions above are satisfied, but

h hoy h=1_
M, +0"" 15 G,

n=1 n=1

>0; 0o 41®) n \b IO
n =

We need to get from here an estimate for |det(G(ij))| from below. To get it we observe
that the inequality (60) is an estimate from below of the determinant of the matrix

0 - 0 G.

N

1 i
b.1 a.2 0 0
G'@=| + :
0 0 i, 0
0 0 - b, @

To get from here an estimate for det(G(ij)) from below we observe the following:
The ¢,-norm of each column of G;; 1s <1, the [;-distance between a column of G;;
and the corresponding column of G(ij) is at most 2¢;o_¢ 1,(€). Hence the /,-norm of
each column of G(ij) is < 1 + 2¢4;9_¢ 1»(¢). Applying Lemma (6.3.13) h times we
get

|det(G(ij))| > |det(G' (i) ~h 29450 _¢ <2 (€)1 + 20450 ¢ 1o (D™
The induction hypothesis implies
| I;L| = (Pd(jo—1)(8) - (deO—f+2(8):
we get
|det(G(1)))| = Pajo—r£ +1 (&) ((Pd(j o-1y(&) - Pajo-r 2(8)) e (61)
—h294;0—¢ 2(E)1 +2040-¢ +2(€)) -

Let us keep the notation {g J} for columns of the matrix (58). We consider

the following six dxd minors of this matrix: the corresponding submatrices contain

the columns {g,,..., g _1> 81> - - - » 84 5 » and two out of the four columns {g,, g,,

Za+1> gz 5 - Observe that g ., =€, ..., 84 = €4, a1 = €15 Earz — €2

The absolute values of the minors are equal to

h

|detG (if )| : (62)

2 b

h h-1 h-1 h-1
| 11 an 1 byl || T1 bp I1 by
n=2 n=l1 n=2 n=2

n=2

The first number in (62) was estimated in (61). All other numbers are at least
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((pdo-o_l)(g))h_l , it is clear that this number exceeds the number from (61).

We are going to use Lemma (6.3.12) with {x,, ..., X4, = {N(g), ...,

N(gp-1)» N(gpsr)> - - - » N(gg)} and {py, pp, P35> Psy = {N(g), N(gy), N(ggs1)s
N(ga+2)}. (Recall that N(z) =z/llzll.) Our definitions imply that lib;ll= 1 and ligli< 1,
because g; 1s obtained from b; by replacing some of the coordinates by zeros. Hence
the inequality (61) and the remark above on the numbers (62) imply that the
condition (38) is satisfied with

x(E) = Pgjo-r (®) . ((Pd(jO—l)(g) ~ Pgjo-r 2(8)) o

—h . 2¢450-¢ +2(E)1 + 204505 +2(€)) " (63)

The inequality (57), the inclusion b; € Q (w(e), 5(¢)) and (34) imply that the

condition (37) is satisfied with n(e) = 2d . @450 (¢) + Ci(d)w(e) and o(e) =

c3(d)d(e). So it remains to show that the condition (55) implies that the conditions
(1) and (i11) of Lemma (6.3.12) are satisfied.

By (55), (63), the inequality 2 < h < f < d, and the trivial observation that all

functions @4(€) do not exceed 1 for 0 <& <1, we have
(Pajor +1(8))" = O(x(&)). (64)
Now we verify the condition (iii) of Lemma (6.3.12). The part (II) can be
verified as follows. The conditions (54) and (38), together with £>2 and w(g) = 84k,
imply that m(¢) = O(@gjo (£)) =0 (Pajo.r1(ENY) = 0(x(e).
To verify the condition (i1) of Lemma (6.3.12) it suffices to observe that (64)

and (54) imply (p(s))d= O(y(¢)). Hence (i1) is satistied if 2dk + 4d2k < 1. This
inequality is among the conditions of Lemma (6.3.17). Hence we can apply Lemma

(6.3.12) and get the conclusion of Lemma (6.3.17).

Now let G be an approximation of G by a matrix satisfying the conditions of
Lemma (6.3.17). We use the same maximal forest F in G as above. It is easy to show

(and the corresponding result is well known in the theory of matroids, see, for

example, [208]) that multiplying columns and rows of G by positive numbers we can
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make entries corresponding to edges of F to be equal to 1. Denote the obtained
matrix by G .

Lemma (6.3.18)[186]: If G satisfies the conditions of Lemma (6.3.17)., then G is a
matrix with entries —1, 0, and 1.

Proof. Assume the contrary, that is, there are entries is a matrix with entries Gij which
are not in the set {—1,0,1}. Let Gij be one of such entries satisfying the additional
condition: the level 7(G; ) is the minimal possible among all entries Gij which are not

in {—1, 0, 1}. Denote by G (ij) the submatrix of G which corresponds to G(ij).
Then, by observations preceding Lemma (6.3.17), the expansion of detG (ij)

contains two non-zero terms: one of them is 1 or —1, the other is Gij or —Gij. Our

assumptions imply that detG (ij) # 0. This contradicts det G(ij)= 0, because G is
obtained from G using multiplications of columns and rows by numbers.

In Lemma (6.3.19) we show that for functions ¢,(€) chosen as above, the
matrix G should be totally unimodular for sufficiently small €. In Lemma (6.3.22) we
show how to estimate the Banach—Mazur distance between Z and 7 in the case when
G 1is totally unimodular.

Lemma (6.3.19)[186]: If € > 0 is small enough, the matrix G is totally unimodular.
Observation (6.3.20)[186]: Each dxd minor of G is a product of the corresponding
minor of G and a number ( satisfying ((pd(]-o_l)(s)/Z)d <{<I.

Proof. Consider a square submatrix Sin G and the corresponding submatrix Sin G .
If the corresponding minor is zero, there is nothing to prove. If it is non-zero, we
reorder columns and rows of §in such a way that all entries on the diagonal become
non-zero, and do the same reordering with S. Let T;, ¢; > 0 be such that after

multiplying rows of S by t; and columns of the resulting matrix by ¢; we get S.

Then
det(S) =detH[ [z, ] [c,-

On the other hand, Ti¢; > @q40-1y(€)/2, because the diagonal entry of S is £1, and the
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absolute value of the diagonal entry of S is > @4io-1)(€)/2. The conclusion follows.
Lemma (6.3.21)[186]: Let D be a dxJ matrix with entries —1, 0, and 1, containing a
d x d identity submatrix. If D is not totally unimodular, then it contains d+2 columns

{fcl...,fc -2, 120929928 ﬁ4} such that far all six choices of two vectors from the set
{P|>P,>P3> D4} minors obtained by joining them to {fcl,...,fcd ~ 2}»are non-zero.

Proof. Our argument follows [209] (see, also, [190]), where a similar statement is
attributed to R. Gomory.

Suppose that D is not totally unimodular, then it has a square submatrix S
with |det(S)|> 2. Let S be of size h x h. Reordering columns and rows of D (if
necessary), we may assume that D is of the form:

SR
d—h
where I, and I, are identity matrices of sizes h X h and (d — h) x (d — h),
respectively, 0 denote matrices with zero entries of the corresponding dimensions,
and * denote matrices of the corresponding dimensions with unspecified entries.

We consider all matrices which can be obtained from D by a sequence of the

following operations:
(1) Addition or subtraction a row to or from another row,
(i1) Multiplication of a column by —1,
provided that after each such operation we get a matrix with entries —1, 0, and 1.
Among all matrices obtained from D in such a way we select a matrix D which
satisfies the following conditions:
(1)Has all unit vectors among its columns;
(i)  Has the maximal possible number & of unit vectors among the first d
columns.

Observe that £ < d because the operations listed above preserve the absolute

value of the determinant and at the beginning the absolute value of the determinant

formed by the first d columns was > 2. Let d_ be one of the first d columns of D

which is not a unit vector. Let {i,,...,1} be indices of its non-zero coordinates.
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Then at least one of the unit vectors e, , ..., e, is not among the first d columns of

D (the first d columns of D are linearly independent). Assume that e, is not among

the first d columns of D. We can try to transform D adding subtracting the row

number 1, to from rows number 1,, ..., 1, (and multiplying the column number r by

(—1), if necessary) into a new matrix D which satisfies the following conditions:
(1) Has among the first d columns all the unit vectors it had before;
(i)  Has e, as its column number r;
(i11)  Has all the unit vectors among its columns.
It 1s not difficult to verify that the only possible obstacle is that there exists another

columnd, in D, such that for some s € {2,...,t}
A 1| Z
det=| b =2 (65)

where by D;; we denote entries of D. By the maximality assumption, a submatrix

satisfying (65) exists. It is easy to see that letting

{ﬁl,ﬁz,ﬁ3,ﬁ4}={dr ,ds, eil,eis}and {fcl...,...,)%d_z}={el,. .. ,ed}\{eil s € ¥,

s
we get a set of columns of D satisfying the required condition.

Since the operations listed above preserve the absolute values of dxd minors,
the corresponding columns of D form the desired set.

We continue our proof of Lemma (6.3.19). Assume the contrary. Since there
are finitely many possible values of j, there is jy and a subset
@4 (0, 1), whose closure contains 0, satisfying the condition:

For each ee®, there is Ze Zg such that following the construction, we get the
preselected value of j,, and the obtained matrix G is not totally unimodular.

Since the entries of G are integers, the absolute values of the minors are at
least one. We are going to show that the corresponding minors of G are also
‘sufficiently large’, and get a contradiction using Lemma (6.3.12).

By the observation above the corresponding minors of Gare at least

((pdo-o_l)(g)/2)d. The Euclidean norm of a column in G is at most 1 + dogcio-1)+1(8)-
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Applying Lemma (6.3.13) d times we get that the corresponding minor of G are at

least
((Pdg'o—l)(8)/2)(1'g ~d’ (Pd00—1)+1(8) (1+ d(Pd(jO—l)H(g))d_l.
We are going to (use Lemma 6.3.12) for x,, ..., X;,, P;> P;> P3> P4 defined in
the following way. Let X,,..., X;,, P> Ds» D3> P4 be the columns of G
corresponding to the columns )%1,...,3261_2,;31,;52,;53,;34of G and Xis « «« 5 Xgogp D

1»P2-P3.p4 be their normalizations (that 1s, x, = X,/|[X,|, etc). Since norms of columns
of G are < 1, the condition (38) of Lemma (6.3.12) is satisfied with
X(E) = (Pgqo-1)()/2)" ~d’@yjo-ny1(e) - (1 + depago-npa(€)) "
Now we recall that columns {g; } of G satisfy (57) for some vectors b eQ (w(e),
0(¢)). Hence the distance from x, . .., X4_,, Py P2» P3- P4 t0 the corresponding vectors
bj 1s < 2d(|)cb-0(8). By (34) the condition (37) is satisfied with
n(e) = 2d0q0 (2) + Cs()eo(e)

and

o(e) = c;(d)d(e).
The fact that the conditions (i1) and (ii1) of Lemma (6.3.12) are satisfied is verified in
the same way as at the end of Lemma (6.3.17), the only difference is that instead of
(64) we have ((I)do-o_l)(g))d = O(x(¢)). This does not affect the rest of the argument.
Therefore, under the same condition on k as in Lemma (6.3.23), we get, by Lemma
(6.3.12), thatG should be totally unimodular if € > 0 is small enough.
Lemma (6.3.22)[186]: IfG is totally unimodular, then there exists a zonotope TeT)
such that

d(Z, T) < ty(e),
where ty(€) is a function satisfying limg |0 ty(e) = 1.
Proof. Observe that the matrix Gcan be obtained from G using multiplications of

rows and columns by positive numbers. Hence, re-scaling the basis {e;}, if

necessary, we get: columns of G with respect to the re-scaled basis are of the form

a;T;, where t; are columns of a totally unimodular matrix.
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We are going to approximate the measure I by a measure u supported on

vectors which are normalized columns of G. Recall that [i is supported on a finite

subset of S .

The approximation is constructed in the following way. We erase the measure
il supported outside (Q (w(¢), 0(€))) 3@ Lhe total mass of the measure erased in

this way is small by (33). As for the measure supported on B:= (Q (w(e),

0(€)))c3@yosy» WE approximate each atom of it by the atom of the same mass
supported on the nearest normalized column of G. We denote the nearest to zesupp

{i normalized column of G by A(z). If there are several such columns, we choose one

of them.
Now we estimate the distance from a point of (Q (w(e), 3(€)))c3@oce O the

nearest normalized column of G. The distance from this point to Q (w(¢), 3(¢)) is

C;(d)m(¢), the distance from a point from Q(w(¢), 3(¢)) to the point from O(w(e),

d(g)) with the same top set (or its opposite), by Lemma (6.3.2), can be estimated from

2

above by \/2( v((g) +4dp(e)’ the distance from a point in ®(w(g), 3(g)) to the
p(e

corresponding column of G is estimated in (57), it is < d ¢y, (¢), so it is < d .9, (¢),
and the distance from a column of G to the corresponding column of G is < d.g
j0—1)+1(8) < d.@,(¢). Since we have to normalize this vector, the total distance from a

point of (Q (w(e), 0(€))) 3@ to the nearest normalized column of G can be

estimated from above by

2

C(d)a(e) + \/2 v(e) 5 +4dpls)” +4d.p, (o).

(p (&)

It is clear that this function, let us denote it by {(¢), tends to 0 as € | 0, recall that p(g)

R
=K , v(e)= g3k , () = g4k , O,(e) = g(”’ +‘j . The obtained measure corresponds
to a zonotope from 7. Let us denote this zonotope by T .

Since the dual norms to the gauge functions of Z and T are their support
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functions, we get the estimate

(

S

u
d(T,Z)<sup - VZ( ) .sup - f(u).
ues T(u) ues hZ )
So it is enough to show that
o ()
C.d,e)<L—<C,d,e), (66)
h_(u)

z
where lim, 10 C,(d, &) = lim,y C,(d, ) = 1.
Observe that Lemma (6.3.10) implies that there exists a constant
0 < Cy(d) < o such that
C,(d) <h,(u), Vues. (67)
We have

hy )= [|( u.z Ydii(z)
S

< [ | wz W)+ [ w.z Jdiz)+ > (w2 ) (A iz)
S\B S ze supp uNB
o(e)

<C,(d)—SE)
4 wd—l(g)

+ hop () + & (£)(S), VueS.

In a similar way we get

b =1 wz A <[ wz ac)+ 2wz )-(wd@) Dace)

z e suppunB
<h, )+ (&)is), Vues.
Using (67) we get
C,(d)-2¢) o e
o (&) L(EAWS) h @) . Se)AS)
C,(d) C,d) b, Cd)

It is an estimate of the form (66).

It is clear that Lemma (6.3.22) completes our proof of Lemma (6.3.7).
Theorem (6.3.23)[186]: Let X be a finite-dimensional normed linear space having an
MVSE that is not a parallelepiped. Then X contains a two-dimensional subspace

whose unit ball is linearly equivalent to the regular hexagon.
Proof. We start by proving Theorem (6.3.5) for polyhedral X. In this case we can
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consider X as a subspace of ¢} for some meN. Since X has an MVSE which is not
a parallelepiped, there exists a linear projection P: /% — X such that P (B} ) has the
minimal possible volume, but P (B}}) is not a parallelepiped. Let d = dim X, let
{q> . .-, qyu_qys be an orthonormal basis in ker P and let {G;, ..., q;} be an
orthonormal basis in the orthogonal complement of ker P . As it was shown in
Lemma (6.3.8), P(B?) is linearly equivalent to the zonotope spanned by rows of O
= [q},.-.,qy]. By the assumption this zonotope is not a parallelepiped. It is easy to
see that this assumption is equivalent to: there exists a minimal linearly dependent
collection of rows of O containing >3 rows. This condition implies that we can

reorder the coordinates in ¢ and multiply the matrix O from the right by an

invertible d x d matrix C, in sucha way thatQ C, has a submatrix of the form

I 0 0
0 1 0
0 0 1
a; a, a;

where a; # 0 and a, # 0. Let y be a matrix whose columns form a basis of X. The
argument of [205] implies that ¥ can be multiplied from the right by an invertible d x

d matrix C, in such a way that y C, is of the form

1 0 e 0
0 1 e 0
0 0 |
sign a sign Ay - *

where at the top there is an d x d identity matrix, and all minors of the matrix y C, have
absolute values < 1.
Changing signs of the first two columns, if necessary, we get that the subspace X

c (7 is spanned by columns of the matrix
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+1 0

0 +1

0 0

0 0 0 1
1 1 * ... %
bl ¢ * ... %
15.2 c,2 * ... %
bm—l—l “m—I-1

The condition on the minors implies that bi| < 1, |ci| < 1, and |bi - cil<I for each i.

Therefore the subspace, spanned in ¢ by the first two columns of the matrix (68) is

1sometric to R2 with the norm

|, B = max(fa, [B, oo + B]).

It is easy to see that the unit ball of this space is linearly equivalent to a regular
hexagon. Thus, Theorem (6.3.23) is proved in the case when X is polyhedral.

Proving the result for general, not necessarily polyhedral, space, we shall
denote the space by Y. We use Theorem (6.3.5). Actually we need only the following
corollary of it:

Each MVSE is a polyhedron.

Lemma (6.3.24)[186]: Let Y be a finite dimensional space and let A be a polyhedral
MVSE for Y . Then there exists another norm on Y such that the obtained normed
space X satisfies the conditions:

(1) X 1s polyhedral;

(1)Bx o By ;

(111) A is an MVSE for X.

So we consider the space Y as being embedded into a polyhedral space X with
the embedding satisfying the conditions of Lemma (6.3.24).

By the first part of the proof the space X satisfies the conditions of Theorem

(6.3.23) and we may assume that X is a subspace ¢ in the way described in the first
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part of the proof. So X is spanned by columns - let us denote them by ey, . . ., e4 - of
the matrix (68) in ¢7 . It is easy to see that to finish the proof it is enough to show
that the vectors ¢,, €,, €, —¢, are in By .

It turns out each of these points is the center of a facet of a minimum-volume

m

paral-lelepiped containing By . In fact, let {£;}”". be the unit vector basis of ¢l . Let
=l

P, and P, be the projections onto Y with the kernels lin{fy:1, . . ., fn} and lin{f}, {42,
. .., fm}, respectively (recall that Y, as a linear space, coincides with X). The
analysis from [89] shows that Py(BL! ) and P»(BZ ) have the minimal possible
volume among all linear projections of B into X. It is easy to see that P;( B! ) and
P,( B! ) are parallelepipeds.

We show that e, e, are centers of facets of Pi(BZ! ), and that e; — e, is the
center of a facet of P,( By ). In fact, the centers of facets of P (BY) coincide with
Pi(f), ..., Pi(fy), and it is easy to check that P(fi) =¢; fori=1,...,d. As for P, we
observe that e; — e, € lin{f}, f;, fss, . . ., fin}, and the coefficient near f, in the expansion
of e; —e,1s £1. Therefore P,(f;) = £(e, —¢,).

Since the projections P; and P, satisfy the minimality condition from [174]
(see, also [89]), the parallelepipeds P ,( B% )and P,(BJ ) are MVSE for X. Hence, by
the conditions of Lemma (6.3.24), they are MVSE for Y also. Hence, they are

minimum-volume parallelepipeds containing By. On the other hand, it is known, see
[210], that centers of facets of minimal-volume parallelepipeds containing By should

belong to By , we get e, e,,e, €, EBy .
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