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Chapter 1 

Operators with Singular Continuous Spectrum and Rank One Perturbations 

 

If [ߙ, [ߚ ⊂ spec(ܣ) and ܣ has no a.c. spectrum, we show that ܣ +  has ܲߣ

purely singular continuous spectrum on (ߙ,  s. Our purpose is to'ߣ ఋ ofܩ for a dense (ߚ

show that most results of Gesztesy, Kiselev, and Simon are valid for rank one 

perturbations of self-adjoint operators, which are not necessarily semibounded. We 

use the fact that rank one perturbations constitute self-adjoint extensions of an 

associated symmetric operator. The use of so-called ܳ-functions facilitates the 

descriptions. In the special case that ߱ belongs to the scale space ିࡴଵ associated with 

ାଶࡴ = dom	|ܣ|ଵ/ଶ the limiting perturbation ܣ(∞) is shown to be the generalized 

Friedrichs extension. 

 

Section (1.1): Rank One Operators: 

The  subject  of rank  one perturbations of self-adjoint  operators and  the 

closely related issue of the boundary  condition  dependence of Sturm-Liouville 

operators on [0,) has a long history. We’re interested here in the connection with 

Borel-Stieltjes transforms  of measures (Im z >0): 

( )( ) (1)d xF z x z
  

 

where  is a measure  with 

  )(1)1|(| xdx                     (2) 

In  two  fundamental  papers  Aronszajn  [2]  and  Donoghue   [3]  related  F 

to spectral theory with important  later input by Simon-Wolff [4]. In all three works, 

as in ours, the function (y real) 
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yx
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plays an important role. Note we define G to be +  if the integral diverges. Note too 

if G(y)<, then the integral defining F is finite at 

z =y and so we can and will talk about F(y). 
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Donoghue  studied the situation 

A = A0 + P, 

Where P = (,) with  a unit vector cyclic for A. d is then taken to be 

spectral measure for , that  is, 

)(),( 0 xdee isxisA    
Aronszajn studied the situation 

)(2

2

xV
dx
dH formal   

on [0, ),  where V is such that  the operator is limit point  at . Then, there is a 

one-parameter family of operators, H, with boundary condition  

u(0)cos0+u`(0)sin  = 0. 

 is the conventional Weyl-Titchmarsh-Kodaira spectral measure for a fixed 

boundary  condition, 0  

An important result of the Aronszajn-Donoghue theory is 

Theorem (1.1.1)[1]:  E is an eigenvalue of A (resp. H) if  and only if  

(i) G(E)< , 

(ii) F(E)= --1  (resp. cot(-0) 

Our goal here is to prove the following pair of Theorem:  

Theorem (1.1.2)[1]: {E|G(E) = } is a dense G in  spec(A0) (resp. H0). 

Theorem (1.1.2) is a generalization of del Rio [5]. Gordon [6,7] has 

independently obtained these results by different methods. 

Theorem (1.1.3)[1]: let d be a measure obeying (2). Let 

 
 2)(

)()(
yx
xdyG   

Then, {y|G(y) = } is a denseG in supp(d),the support of d. 

 

Proof. The following are fundamental facts about Borel-Stieltjes transforms and 

their relation to d (see [8]). 

0
lim)(


i  F(E + i)  F(E+i0) exists and is finite for Lebesgue a.e.E. 
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acdii )(  is supported  on {E|ImF(E + i0)>0}. 

gdiii sin)(  is supported  on 0lim|{
E  Im F(E+i0) = }. 

If G(y)< , it is easy to see that 0lim
 F(E + i0) exists, is finite and real. Thus, if 

G(y)<  on  an   interval   ( , )   IR,  d ( , )= 0, that is, (( , )  supp(d) 

= . Thus, {y|G(y)=} is dense in supp(d). 

That {y|G(y) = } is a G follows from the fact that G is lower semi-

continuous. To be explicit, let   

 
 212 )()(

)()(
myx

xdyGm
  

Which is a C function by (2) and G(y) = supm Gm(y). Thus  

{y|G(y) = }= { y|n, mGm(y)>n} 

                                                                })(|{ nyGy
n m

m   

is a G . 

Example (1.1.4)[1]:  Let A  [0, 1] be a nowhere dense set of positive measure 

(e.g., remove the middle open ଵ
ସ
 from [0, 1], the middle ଵ

ଽ
 from the remaining  two 

pieces, the middle ଵ
ଵ
, … , ଵ


 at the (n – 1)st step).Let  

|,],0[|)(~ yAyF   
where | . |  is Lebesgue measure. Then F~  is Lipschitz; indeed, if  x < y, 

| .|||],[||)(~)(~ yxyxAyFxF   But F~ [A]=[0,|A|] has non-empty  interior. Thus 

for our F, we need more than just Lipschitz properties (our F is certainly not 

Lipschitz but F|{y|G(y) < } is the restriction  of a Lipschitz function to that  set). 

The  idea  of the  proof  will be  to  break  up  {y I G(y) < , ysupp(d)}  

into a countable  union  of nowhere dense sets, An, so that  F is a homeomorphism 

on each of those sets. On each An, G will be close to constant.  We’ll use: 

 

Lemma  (1.1.5)[1]: Let B  R be a nowhere dense set  and let F: B R  be a 

function obeying for  x  y, with x,yB: 

                    (y-x)  F(y) – F(x)  (y – x )                                    (3) 
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For fixed ,  > 0. Then F[B] is nowhere dense.  

 

Proof. By (3) F has a unique continuous extension to B  obeying (3). B\R   is a union 

of intervals (xi, yi) with xi, yiB . Extend F to the interval by linear interpolation 

using slope 2
1 (+) on any semi-infinite subintervals of R\ B . The extended F also 

obeys (3) and so defines a homeomorphism of R to R. As a homeomorphism, it 

takes nowhere dense sets to nowhere dense sets.   

Lemma (1.1.6)[1]: Let d obey (2) Then  

{F(y|G(y)<  and y supp(d)} 

is a countable union of nowhere dense subsets of R.  

Note that G(y)< implies the integral defining F(y) is absolutely 

convergent and F(y) is real. The proof will depend critically on the fact that F is 

the boundary value of an analytic function. That such considerations must enter is 

seen by. 

Proof . We first break A = {ysupp(d)|G(y)< } into a countable family of sets An 

so that  for each n, there is an > 0,n > 0 so that 

2
3

4
3
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;
21
a

2yx

x)(d
,Ayfor(ii)

;aG(y)
9

8a
,Ayfor(i)

nn
nAy

n
n

n
n

n













 






nyx

 

Such a breakup exists for we can first break R into intervals 
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8,

9
8 m  and 

pigeonhole G by its values. Since G(y) <  implies lim 0                                          

,0
)(
)(

2|| 
  yx

xd
yx


  

we can break each such set into countably many sets where (ii) holds. Then we can 

break each such set into countably many sets so that (iii) holds by looking for gaps 

of size longer than n . 

Operators with Singular Continuous Spectrum 
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Fig.(1) 

Each  An is nowhere  dense  by Theorem  (1.1.2) and  we’ll show  that  on  An,  

y >x implies that 

1 5( ) ( ) ( ) ( ), (4)
3 3n na y x F y F x a y x      

so that  the lemma follows from Lemma (1.1.11). 

 Define ℓn = n  and )(,.4
3 yletAyFor nnnn    be t he triangle in C(see Fig 

(1) )   

.
62

)arg(Im0|)( ,









 yzzzy nn  

This is the equilateral triangle of side ℓn with one side parallel to the real axis at 

distance n  from that  axis and the opposite  vertex at y. For  zn(y), define   

.
)(
)()( 2 dz

dF
zx
xdpzG 


   

We claim that  for zn  

                                               
( ) . (5)

3
n

n
aG z a   

Accepting (5) for the moment, let us prove (4). Boy the fundamental theorem of 

calculus, (5) implies for z,zn (y): 

( ) ( ) ( ) (6)
3
n

n
aF z F z a z z z z        

By hypothesis (iii) on An, )(ynnAy   is connected and so, given y <yAn we can 

find a finite sequence  y0 = y < y1 <. . .<yn = y and z1,.  . . ,zn  so that  (see Fig(1)) 
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 1 1 1( ) ( ) , (7)j n j n j j j j i j jz y y and z y z y y y          

By (6) and (7) 

)(
3

2
)()()( yy

a
yyayFyF n

n   

which is (4). 

 
                                                    yl            y2            y3 

Fig.(2) 

Thus we need only prove (5). We write  

|G(z)-an|  |b0| + |b1| + |b2| + |b3|, 

Where 

),(~)(~

,)(

,)(
)(

3

22

21

,0

yGzGb

yx yx
xdpb

yx zx
xdpb

ayGb

n

n

n




 




 








 

With  


 


nδyx

2z)(x
dp(x)(z)G~  

By hypothesis  (i) on .
9

, 0
n

n
abA   

By hypothesis  (ii) on .
21

, 2
n

n
a

bA   By elementary  trigonometry, 

3( ) . (8)
4

z y and x z y x y     R  

Thus  

,
3
4

21 bb   
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so 

1 2
7
3 21 9

n na ab b    

Finally, using the fundamental theorem of calculus and (8) 
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by definition of the constant  .  Thus (5) hold  

Theorem (1.1.7)[1]: {| A has no eigenvalues in spec (A0)} (resp. {|H has no 

eigenvalues in spec (H0} is a dense G in R (resp. [0, 2])). 

Proof.  The  maps  M1: R\{0} R\{0} by M1() = --1 and M2: [0, )R {}by 

M2() =cot( - 0)  are homomorphisms. Thus, by Lemma (1.1.6) 

{|  E s.t. G(E) < , Espace (A0), F(E) = --1} 

and 

{|  E s.t. G(E) < , Espace (A0), F(E) = cot (- 1)} 

are countable unions of nowhere dense sets. Its omplement is thus a dense set by 

Baire category theorem. But by Theorem (1.1.1), this is precisely {|A has no 

eigenvalues on spec (A0)}, which we conclude is dense. By general principles [9], it 

as also a G . 

 Here are some simple corollaries of Theorem (1.1.7). We state them in the rank 

one case but they hold in the cot ( - 0)B.C.  case also.  

Corollary (1.1.8)[1]:  Suppose that A0 is an operator with no a.c. spectrum and  P is a 

rank one projection whose range is cyclic for A. Then for a dense G of ’s, A = A + 

P has only singular continuous spectrum in spec (A0)int   

Proof.  A has no a.c .spectrum since the a.c. spectrum is left invariant by finite rank 

perturbations. space(A0) has no eigenvalues for adense G of  there can be 
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eigenvalues on R\spec (A0) and so point spectrum on  (spec(A0)).But there cannot 

be point spectrum in spec (A0)int  

Corollary (1.1.9)[1]: Suppose that A0 is an operator with no a.c. spectrum and an 

interval [,]  spec (A0). Let P be a rank one projection whose range is a cyclic 

vector for Ao. Then for a dense G of ’s, A0 + P has singular contionuous spectrum 

on all of (,) and only singular continuous spectrum there .  

Theorem (1.1.10)[1]: Let V(x) be a locally L1 function on [0,) and let 

)(2

2

xV
dx
dH   with  boundary conditions. Suppose there is some 0  and  <  so 

that 

(i) [,] spec(H0) 

(ii) for Lebesgue a.e., E0[,], there exists a function  E0  obeying 

- (x)+V(x)  (x) = E0 (x),                                               (9) 





0

2|)(| dxx                                                    (10) 

Then: 

(i) For a dense G of E’s in [,] , there is no solution of (9) obeying (10). 

(ii) For Lebesgue a.e. , H has only point spectrum in (,). 

(iii) For a dense G of , H has only singular continuous spectrum in (,). 

Proof. If E is such that (9) has a solution obeying (10), then E obeys some boundary 

condition at x = 0 and so E is an eigenvalue of some H.Thus (i) follows from 

Theorem (1.1.2). 

 To prove (ii), note that  if E0 has a solution  and E0 is not  an eigenvalue of H0, 

.|);,0(|lim
0

2
0 


 dxiExG  Now apply the ideas of Kotani  [10] and Simon- Wolff 

[4].(iii) follows from Theorem (1.1.7). 
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Example (1.1.11)[1]: Suppose  that  









 )(],[

2

2

xV
dx
dspecba and   that   for   a.e. E 

 [a, b], )()(
||

1.lim ExTIn
x Ex  and is positive. Here T is the standard transfer 

matrix, that is,  

,
)()(
)()(

)(
21

21















xx
xx

xET



 

where i obeys  - u + Vu = Eu with  1(0) = 2 (0) =1 and 1 (0) =2 = (0). Then (i) 

implies there must be a dense G of E where either )(
||

1.lim xT
x E fails to exist or is 

zero. Thus, a positive limit can never exist for all E in an interval. Results of this 

genre have been found previously by Goldsheid [11] and Carmona  [12]. 

Example (1.1.12)[1]: Consider a one-dimensional random model with localization, 

for example, the GMP model [13,12]. Then for almost every E in [,), one knows 

(E) exists and is positive. It follows from Theorem (1.1.10) that for a locally 

uncountable set of boundary conditions (a Lebesgue typical set), one has pure point 

spectrum, while for a distinct set of locally uncountable boundary conditions (a Baire 

typical set), one has singular spectrum. Each spectral type is unstable to change to the 

other spectral type. 

Example (1.1.13)[1]: Let )cos(2

2

x
dx
dH  on L2(0,), a model  studied  by  Stolz 

[14]. As proven by him for any boundary condition :  

Spec (H) = [-1, ). 

Spec (H) is purely absolutely continuous on (1, ). Krisch et al. [15] prove that for 

a..H has pure point spectrum in [-1, 1] only. Our results show that for a dense G 

of , the spectrum is purely singular continuous. Once again you have intertwined 

purely pure point and purely singular-continuous spectrum. 

Finally, we consider the case of Anderson model: 
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Section (1.2): Self-Adjoint Operators and Rank One Perturbations 

 Let A be a self-adjoint operator in a Hilbert space H. Its  rank one 

perturbations A +  (.,) , R, are studied when  belongs  to the  scale space H-2 

associated with H+2= dom A and  (.,.) is the  corresponding  duality.  If A is  

nonnegative and  belongs  to the scale space H-1, Gesztesy  and Simon [17] prove  

that the spectral measures of A(),R, converge weakly to the spectral  measure of 

the  limiting perturbation A(). In fact A()  can  he  identified as a Friedrichs 

extension. Further results for nonnegative operators A were obtained by Kiselev and 

Simon [18] by allowing H-2. Our purpose is to show that most results of Gesztesy, 

Kiselev, and Simon are valid for rank one perturbations of self-adjoint operators, 

which are not necessarily semi-bounded.  We use the fact that rank one perturbations 

constitute self-adjoint extensions of an associated symmetric operator.  

 The use of so-called Q-functions [19,20] facilitates the descriptions. In the 

special case that  belongs to the scale space H associated with H+1 =dom |A|1/2, the 

limiting perturbation A() is shown to be the generalized  Friedrichs  extension [21]. 

Let  A be  a self-adjoint  operator  in a Hilbert  space H  with  inner  product 

[.,.], Associate  with A the  Hilbert  space  H+2,  which is dom A  provided  with  the 

inner  product [f,g]+2 = [f,g]+[Af,Ag], f,g  dom A. Define the  dual  space H-2 in 

the usual  way, denote the  duality between H+2 and-2 by (.,), and  extend  the form  

(.,) to dom *, cf. [20]. For an element   in the scale space H-2, consider the rank 

one perturbations of A: 

      A()  = A+  (.,), R                                               (11) 

In this  formula A  stands for the  unique  continuation of the  original  operator A  

acting  from H to H-2, cf. [20]. When   H, no continuation of A is needed and 

(.,) can be replaced by [.,]. The family  A(),R, in (11) must be augmented 

by a certain self-adjoint operator or, in general,  relation A() to account  for all 

possible “perturbations” of A. F. Gesztesy and B. Simon [17] prove that the  spectral 

measures of A() converge weakly to the spectral measure of A(), when A is a 

nonnegative operator and  belongs to the scale space H-1 associated with H+1=dom 
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A1/2. The case where A is nonnegative   and    H-2 is studied by A. Kiselev and 

B. Simon [18]. The main ingredient which Gesztesy, Kiselev, and Simon use, is the 

“basic formula” (1) in [17] which makes it necessary to distinguish between  R 

and  =  

 We take another point of vie by associating a symmetric operator with rank 

one perturbations [22,19,18,23]. Let A be a self-adjoint operator, not necessarily 

semibounded, and  let H-2. Introduce 

S ={{f,g}A: (f,) = 0}.                                         (12) 

Then S is a closed, symmetric operator with defect numbers (1, 1), cf.  [20]. The 

perturbation formula (11) augmented with A() parametrizes all self-adjoint 

extensions A(),  RU{}, of S. 

The operator is densely defined and the perturbation A() is a self-adjoint 

operator, only  when H-2\H. When H the condition (f,) = 0 reads  as  [f,] 

= 0, so that S is not  densely defined and A() has  the  form 

A() = S + ({0}  mul S*),                                     (13) 

where mul S* = (dom S) is the multivalued part  of S*. In particular, A() is a 

self-adjoint relation with the same multivalued part as S*. The notion of generalized 

Friedrichs extension of S occurs when the element   belongs to the scale  space  H-1 

associated with H+1 = dom |A|1/2. 

Proposition (1.2.1)[16]: Let A  be a self-adjoint operator, let  H-1 , and let S 

be defined by (12)   

A() ={{f,g}H* : fH+1 },                                   (14)    

Moreover, A() is the only self-adjoint   extension H of S  such  that dorm H  

H+1. 

This description reduces to (13) when   H. When S is semibounded A() is 

precisely  the  usual  Friedrichs  extension [24,21,19]. 

Our interpretation of rank one perturbations of A in (11) as self-adjoint 

extensions of a symmetric operator, shows that many of the results of Gcsztesy, 

Kiselev, and Simon remain valid without the condition that A  is nonnegative. We 
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discuss spectral measures for self-adjoint extensions of closed symmetric operators 

with defect numbers (1,1). Various descriptions of self-adjoint extensions of a 

symmetric operator. We shown that A() converges to A(0) as 0 in the  graph  

sense. That the spectral measures of A() converge weakly to the spectral measure  

of A(0) consider self-adjoint operators whose resolvents  differ  by a rank  one  

operator, answering a question of B. Simon. We contains a discussion of rank one 

perturbations by means of ࣫- functions. 

Let S be any closed symmetric relation with defect numbers (1,1). Let  A be a 

self-adjoint extension of S. Choose for C \ R a nontrivial defect vector  ()  

ker (S*- ). Then for  (A) 

(  ) = (I  + (  - )(A -  )-1())                                         (15) 

defines a holomorphic  basis  for  ker (S*-  ). The Q-function Q(  )  of A  and  S is 

defined (uniquely tip to a real  constant) as a solution  of the  equation 

( ) ( ) [ ( ), ( )]. (16)Q Q 
  







 


 

The function Q  (  )  belongs  to the  class N of Nevanlinna   functions.  Recall that a 

fnnction Q(  ) belongs  to N  precisely  when  

 

   

here  R,  0   the  function  (ݐ)ߪ is nondecreasing on R  and satisfies   

                                           
2 (18)

1
d

t


 


R

 

Another  way of writing  (17)  is 

2
2 2

( ) 1 ( )( ) ( 1) (19)
1 1

d t d tQ
t t t
  

 
        

 
R R

  


 

we will only  consider Nevanlinna  functions Q(  ) which  do not  reduce  to  real 

constants  or  equivalently, which  do  not  take  real  values  off the  real  axis. The 

spectral measure which we associate with A and S is the measure d(t) in (17), 

when Q(  )  is the Q-function of A and S. It can be recovered from Q ( )   by means 

of the Stieltjes inversion formula. It follows from (15) and (16) that 

2

1( ) ( ) (17)
1

tQ d t
t t

         
R
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1( ) ( )* ( )[( ( )( ) ) ( ), ( )], ( ). (20)Q Q I A A                   

Let  R be  the  orthogonal projection onto H  mul A = dom  A and  let  E(t) be  the 

spectral family  of the  operator part As of A in that space. For the following 

connection see [19]. 

Proposition (1.2.2)[16]: The connection between the operator representation  (20)  

and the integral representation (17)  is as follows: 

         

)]).(),()(([
1
)()(

,)(lim)]()(),()1[()(

),(Re)](),([*)()(

2 iRiRtEd
t

tdiii

y
iylmQiRIiRii

iQiiiiQi

y














  

A consequence of (ii) is that  = 0 if and only  (  ) dom  A for some (and  hence  

for all) C \ R.  In particular, if S is an operator then  = 0   if and only if A is 

an operator [25]. 

 Since A is a self-adjoint extension of S there exists a pair   2, \H A     

such that   

                                            {{ , } : ({ , },{ , }) 0. (21)S f g A f g      

Here we have used the notation   

({݂, g}, {ℎ, ݇}) 	= 	 [g, ℎ] 	− [݂, ݇]	,					{݂, g}, {ℎ, ݇}ܪ	

This pair {,} is determined uniquely modulo A. In terms of {,} the Q-

function of A and S can be expressed by 
1( ) [ ( ), ] [ , ], ( ) ( ) ( ) . (22)Q A                     

If () is given, then {,} may be chosen as  {,} 	= 	 {(), ()}. Now 

suppose in addition that A (and hence also S) is an operator and denote the 

continuation of A from H to H-2  by A~.  Let  be defined by  

,. (23)A     

then  H-2  and  (12) and (21)  define the  same  symmetric operator S.  Each    

H-2 is of the form (23). The relation between the element  H-2  in (12)  and  the  

functions  (  ) and Q(  ) is given by (see [20]) 
1 1( ) ( ) , ( ) (( ) , ) ( , ) (24)A Q A                  
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The subclass N1 is the set of functions Q(  ) with 


dy
y

iyQ

1

)(Im . 

It was introduced by I.S. Kac [26]. The function Q(  ) belongs to N1 precisely 

when 

( ) ( )( ) , , (25)
| | 1

d t d tQ
t t
      
  

R R

R


 

It follows from (25) that  

lim (iy). (26)γ Qy   

The Q-function of A and S belongs to N1 if and only if A is an operator and     

H+1 dom |A|1/2 . This last condition is equivalent to   H+1 and to   H-1. The 

subclass N0 is the set of all functions Q(  ) with  supy > 0 y ImQ(iy) < . The 

function Q(  ) belongs to N0 precisely when 

( )( ) , ( ) , (27)d tQ d t
t
      
 

R R

R.


 

 The Q-function of A and  S belongs  to  N0  if and  only  if A is an  operator and   

(  )H.This  last condition is equivalent to    dom A and  to   H. We refer for 

these classes and their integral representations to [26,27,19].The further 

characterizations can be found in [21,19,25,20].      

Assume that   H-2 is given by (23), so that also (24) is valid. If    H-1  or 

  H , the  formulas (23) and (24) are still valid when the  continuation A~ and the 

duality (.,.) are correctly interpreted. The norm of  can be expressed in terms of the 

spectral measure d(t) as follows [21,20]. 

Lemma (1.2.3)[16] : For  H-2  we have 

2
22

( ) . (28)
1

d t
t



  


R

 

If    H-1  then  

2

1

( ) . (29)
| | 1
d t
t



  


R

  

If    H  then  
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2 ( ) (30)d t   
R

 

Let S be a closed, symmetric relation with equal defect numbers (1,1). Since the 

defect numbers of S are equal there are self-adjoint extensions of S in H and there is 

no need for exit spaces. We fix one such self-adjoint extension A of S to describe the 

others Krein’s formula.  

       Let (  ) and Q(  ) be defined by (15) and (16). Then the resolvent operators of 

self-adjoint extensions A(),R{ }, of S are given  by 

1 1 1( ( ) ) ( ) ( ) [., ( )], (31)
( ) 1 /

A A
Q

  


     


C \ R    


 

one-dimensional graph perturbations.  

If S is defined by (31), then the  selfadjoint extensions A(),R { }  are 

given for 1/ + [ , ] 0  by 

{ , },{ , }
( ) { , } [ , ] : { , } , (32)

1 / [ , ]
f g

A f g f g A
 

  
  

 
    

 

And for 1/ + [ , ] = 0  by  

A() = S + span { , } .                                              (33) 

In  fact,  the  resolvent   operators of  all self-adjoint  extensions A(), R{}, in  

(32) and  (33)  are  parametrized  precisely  by  (31),  when  Q(  )  and  x(  ) are  

given  by  (22),  see [25].  

When  = 0 the condition in (21) reduces to [f, ] =0 and  mul S* = span 

{}. The formula (32) now reads as       

A() 	= 	 {{f, g} 	− 		[f,]	{0,} ∶ 	 {f, g}		A},								(34)                   .܀ 

Rank one perturbations and triplet spaces. Under the assumption that A is an 

operator the expressions (32) and (33) are equivalent to: 

      A() = {{h, A~h + c} H2:c(1/ +[,]) =(h,),c  C}          (35) 

where (h, ) = [S*h, ] – [h, ],see [20]. When    = 0 this formula reduces to (34) 

and when [,] = 0 we have (11).  The formula (35) can be interpreted as the 

compression of usual rank one perturbations in a larger Hilbert or Pontryagin space, 

see [20]. 
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An analytic description. Let Q(  ) denote the Q-function of the self-adjoint 

extension A() in (32) and (33) normalized by Re Q()=0. It follows from Krein’s 

formula (31), cf.  [19], that 

 
2( ) (Im ( ))( ) , . (36)

( ) 1
Q QQ

Q
   

   


R


 

The corresponding defect vectors are given by 

 

 

so that  

 

When  = , by (36)  and  (37)  we mean 

Im ( ) ( )( ) , ( ) ( ). (39)
( ) ( )

Q QQ
Q Q

 
      

 
 

 If the Q-functionQ )(  of A  and  S belongs  to  N1 or  N0,  then  also the Q-

functions )(Q  have this  property when 1/ +   0, where R  satisfies (37).  For 

the exceptional value of   R  {},  i.e. when  1/ +   = 0, the  function  )(Q

belongs  to N\ N1,  cf.  [19].  

 There is a simple relation between different extensions. Let )(Q ,   R, be 

defined by (36) and let R. Since )(Q is a Nevanlinna function, the expression 

)()( Q is well-defined, and 

( ) ( ) ( ), \ (40)Q Q   C R    

where ,  , R{} are connected by  

 

If  =  or  = , then (40) still holds with a limiting  interpretation. 

Since for each   R {} the function )(Q in (36) belongs to  N,there  exist 

 R,  0, and  a nondecreasing function   ( t )  on R, such that 

( ) 1 /( ) ( ), (37)
( ) 1 /

Q
Q
   





 



( ) ( ) [ ( ) , ( ) ] . (3 8 )Q Q      





 


2))((Im1 

Q
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—*

—*

( )( ) ( ), (41)21 1
d tQ d t
t
     

 
      

  

1 t- 2t -R Rt
 


 

For the value  = 0 we will write  , and  (t) as  in  (17). In terms of  these  data   

the identity (38)  reads  as 

     [ ( ), ( )] ( ). (42)d t       
      R

1 1
t - t




 

 Let S be a closed symmetric relation with defect numbers (1,1).Then its 

self-adjoint extensions A(),R{}, are continuous in  in a sense to be 

explained  below. 

We will say  that   closed  linear  relations  A tend  to  a closed linear  

relation  A0   as  0 in the  graph  sense,  denoted  by A  A0, if for each 

{f,g} A0 there  are elements {f ,g} g A  such that  {f,g}{f,g}.When, for 

instance, A and  A0 are all self-adjoint, this  definition is equivalent to the strong 

convergence of
0

1 1( ) ( )A to A 
     for some (and,  hence,  for all)  C \ R.  For 

the case of operators this is proved in [28, 29]; 

Proposition (1.2.4)[16]: Let S be a closed symmetric relation with defect  numbers 

(1, 1) of  the form (21). Let its self-adjoint extensions A(),R{}, be given  by 

(32)  and  (33). Let 0  R{}.Then for 0, we have in the graph sense 

A()  A(0), 

Proof. We use the representations (32) and (33) of the selfadjoint extensions A().  

When 1/0 + [, ]  0, then  the  proposition  follows directly  from  the  definition  

and (32). Now consider 1/0 + [, ] = 0. By means of Krein’s formula (31) we 

observe that 

)],(,[
)1)()(1)((

)())(())((
0

01
0

1 


 



 h
QQ

hAhA



   

for  C \ R.  When suitably interpreted for the case 0 = , this shows that  for each  

h  H we have 0 0
1 1(A( )- ) h (A(τ ) ) h in H,as τ τ .         

Let the Q-function )(Q  of A and S belong  to N1 or N0, and let 1/0 +  = 0  

Then A(0)  is the  only  self-adjoint   extension  of S whose Q-function  does  not  
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belong  to  N1. It  is the  generalized Friedrichs extension given  by  the  right  side  of 

(14);  in particular, if )(Q belongs  to N0,  then  A(0) is a true  relation  given  by the  

right  side of (13), see [21]. However, according to Proposition (1.2.4), the operators 

A() tend  to A(0)  in the graph  sense, as 0. 

Let S be a closed symmetric operator with defect numbers (1, 1) as in (21).  Let 

A(),R{}, be  its  self-adjoint  extensions as given  by  (23)  and  (33),  with  

corresponding  spectral measures  d(t) in (41).  We are interested in the limiting 

behaviour of these spectral measures. Note that at most one self-adjoint extension of 

S is not an operator. 

Lemma (1.2.5)[16]:   For all RC \,   

0
1 1 1 1lim ( ) ( ). (43)

00
d t d t

t t t t       
      R R 

 

Proof.  It follows from (37) and (39) that  )(  converges to )(
0
   in the norm  of  

H. Hence, in particular, we obtain 

 lim ( ), ( ) ( ), ( ) . (44)
0 00

         
    

   

Now we rewrite this result by means of (42). Observe that   > 0 if and only  if )(A  

is not  an operator. Hence  = 0 for all R{} with the possible  exception of at 

most one . Therefore we obtain (43). 

The weak convergence of the spectral measures is one of the consequences of 

Lemma (1.2.5) see [17]. 

Theorem (1.2.6)[16]: Let S  be a closed symmetric operator with defect  numbers  

(1,1) as in (21). Let )(A , R{},  be its  self-adjoint  extensions  as given  by (32)  

and (33), with corresponding spectral measures d(t) in (41).  For each continuous 

function f with compact support 

lim ( ) ( ) ( ) ( ).
0 0

f t d t f t d t     
R R

 

Proof. The theorem can be proved in a classical way as in [30]. Here we will use an 

approximation argument as suggested in [17]. Let [a, b] be a compact interval. Then 
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C([a, b]) is equal to  the  closed  linear  span  of the  functions ,,1 R\C



t

                

in the norm || .|| of C([a, b]). To see this, we use the Stone-Weierstrass theorem, cf. 

[31] and the fact that the identity function on [ܽ, ܾ] can be uniformly  approximated 

by these  functions. Let f(t) be a continuous function  with  support in [ܽ, ܾ], then  the 

function f(t)(t-i)2 can be uniformly approximated on  [a, b] by  the  above functions.  

Now 

( )12( ) ( ) ( ) ( ) ( )( ) 20 1 ( )

( )( )1 1 0
2 21 1( ) ( )

n d tf t d t f t d t f t t it tk t ik
d tn nd t

t tk kt i t ik k

 



 
           

   
   



 

R R R

R R

 

             
( )12 0( )( ) .1 2( )

d t
nf t t i k t t ik

 
       

R
 

The middle term in the right side can be made as small as possible by differentiating 

(43). The remaining terms in the right side are estimated by 





 


R t

tdn

k kt
ittf ,

12
)(

1
12))(( 


 

and 





 


R t

tdn

k kt
ittf .

12

)(
0

1
12))((




 

Now the term 



 


n

k kt
ittf

1
12))((


 

 

can  be  made  as  small  as  possible  by  the  Stone-Weierstrass argument,  while  the  

integrals 
R 12

)(

t

td   ‘K are uniformly bounded  in T  by Lemma  (1.2.5).  
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Let  A  be  a  self-adjoint operator extension  of S.  We will interpret  Lemma  

(1.2.5)  in terms of H-2 and  similar  elements   H-2(A()) corresponding  to  

the self-adjoint operator extensions A(),R {}. 

If   H-2\H-1   then  (28) holds.  Moreover,S is densely  defined  and  each self-

adjoint  extension  A(),R {}. is an  operator. By means  of   )( in  (37)  we 

define   by 

)())(~(    A  

 which is independent of  . Here )(~ A  is the continuation of )(A to all of H relative 

to the scale space H-2 ))(( A associated with )(A Then ))((2  AH  and 

{{ , } ( ) : ( , ) 0}, (45)S f g A f     

where  (.,.) denotes the  appropriate duality.  In particular, S is independent of . 

 If H-1\H, then (29) holds. We may repeat the arguments as given above. 

Furthermore, in the  present  case  the  topological  spaces H-1 ))(( A  do  not depend 

on , 1/ +   0, see [21] and [20]. Although the norms are equivalent, they may still 

depend  on  This  motivates the  following result. 

Lemma (1.2.7)[16]: The  elements  and   are related by   

( ) 1/ 1/ 0. (46)1,1/
Q H      

   
 

Proof. The function )(Q in (24) may be written  as 

,),~(],[],[),,)~(()( 1
R   AlAQ   

since    H-1 cf.  (24). Using this  together   with  the  expression  for )( in (35), 

(37), and  Krein’s formula  for the  continuations (see [21]) we obtain 
1( ( ) 1 / ) ( ( ) 1 / )( ( ) )( )

( , ( ))1( ( ) 1 / ) ( ( ) ) ( ( ) ) ( )
( ) 1 /

( ( ) 1 / ) ( ( ) ) .

Q Q A A e

Q A A
Q

Q Q

     
      



    

    

       
   

  
   




 

Now solve  to complete the proof. 

If H, then (30) holds  and  S is not  densely  defined. Again (46) can be 

shown to hold. 
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Proposition (1.2.8)[16]:  Let A  be a self-adjoint  operator and let S  be defined by 

(12)  with H-2. 

(i)  If H-2\H-1 , then ).(
2020

lim 


     

(ii)  If  H-1\H,  then  )(
1010

lim 


 Awhenww   is  not  the  generalized 

Friedrichs  extension;   otherwise  the limit  is  . 

(iii) If H, then )(,
00

lim  Awhen is not the  generalized  Friedrichs 

extension; otherwise  the limit  is  . 

Proof.  For the proof of (i), we take  i   in Lemma  (1.2.5) and  apply (28). To 

prove (ii), choose  a compact  interval  of  R and apply Theorem (1.2.6) with  f(t) = 

(| t |+1) -1 .Then take R and  interchange the  limits.  The value of the limit in (ii) 

is  if and only if 
0

 does not belong to H-1, in which case A(0) is the generalized 

Friedrichs extension. Finally, to  show  (iii)  we take f(t) = 1 and  proceed  as in the  

proof  of (ii)  or  we use  (46)  both  for 1/ +   0 and for 1/ +  = 0. 

If A(0)  is not  an  operator, then  its  multivalued part  is equal  to  mul S*.  In 

fact, A(0) is reduced  by mul S*. Observe that the  self-adjoint  operator 

ܪ)⋂(߬)ܣ  ଶ(∗ݏ	݈ݑ݉⊝

is the  (orthogonal)  operator  part of  A(0).  It is not difficult to see that it is 

equal  to ܴܣ�|ு⊝௨	௦మ, cf.  [17]. These details are worked out in [25]. 

 In  [18] Kiselev  and  Simon  raise  the  question   how  to  characterize two  

self-adjoint operators when  their  resolvents  differ  by  a  rank  one  operator.   We 

use the idea of graph perturbations to give such a characterization.  For a different 

approach, see [32]. 

Proposition (1.2.9)[16]: Let A and B be self-adjoint  relations,  such  that for  some  

(A)  (B) 

rank ((B -  )-1 - (A-   )-1 ) =1                                           (47) 
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Then (47) holds for all    (A)  (B). Moreover,  there exists a closed symmetric 

restriction S  with  defect  numbers  (1, 1) of the form  (21),  such  that for  some    

R {}, B = A() as defined  in (32)  and (33). 

Proof. Note that any closed linear relation A with nonempty resolvent set can be 

written as 

A = {{(A-  )-1 h,(I+  (A-  )-1  ) h}:   hH}, 

for some (A). By assumption 

(B- 0 )-1 - (B- 0 )-1 = c[.,],                                          (48) 

for some 0 (A)  (B), some ,H  and c  C. Define 

   S = {{(A - 0 )-1h, (I  + 0 ( A - 0 )-1)h}: hH, [h, ]=0}.                   (49) 

Clearly, S is a closed symmetric restriction of A, and therefore S has equal defect 

numbers. Moreover, 

ran (S - 0 ) = {hH: [h, ] = 0. 

It follows that ran (S - 0 ) is closed; moreover, it follows from the definition that 0  

is not an eigenvalue of S. Hence 0  is a point of regular type for S. As the  set  of 

points of regular type of S is open and consists of at most two connected  components 

(including C+ and C-), we see that the defect  numbers  of  S  are  (1, 1). 

It follows from (48) with hH, [h, ] = 0, that (B- 0 )-1  h = (A- 0 )-1h. Hence, 

(48) and (49) show that B is also a self-adjoint extension  of S. 

Let {, } be a pair in (the graph of)  S*\A.  Then S  is given  by  (21)  and  so 

B = A() for some  R {}, as defined  in (32) and (33).  The resolvent   

operators of the self-adjoint extensions A() are parametrized precisely by (31). 

Therefore, the condition (47) holds for all (A) (B). 

It is clear from the  above proof  that  the  symmetric relation S in (49)  is in 

general not an operator; in fact  mul S={hmulA: [h,]=0}. Clearly, S is an operator 

if and only if A or B is an operator.  We have concluded that if (47) holds, then B and 

A are self-adjoint extensions of S in (49), and B is a graph perturbation of A. This 
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approach allows us to obtain some of the results of Kiselev and Simon in a different 

way, cf.  [18]. 

Proposition (1.2.10)[16]: Let A be a self-adjoint operator and let B  be a self-adjoint  

relation, such that for some (A) (B) (47) holds. Then there exists an  element  

 H-2(A),  such that for  some   R {}, B = A() as defined in (35). 

The previous result is just a restatement of Proposition (1.2.9), since (32), (33) 

and (35) describe the same self-adjoint extensions. We can say more when we know 

the difference (B-  )-1 - (A-  )-1 explicitly. 

Corollary (1.2.11)[16]: Let A be a self-adjoint operator and let B be a self-adjoint 

relation,  such that for  some (A)  (B) 

(B-  )-1 – (A-  )-1 = c[ . ,], 

with elements  ,  H  and c  C. 

 (i) Assume one of the equivalent conditions dom
1
2 \ ,A dom A

1
2 \ ,dom A dom A   

or  H-1\ H. Then S is densely defined and B is an operator.  Moreover, B is the 

generalized Friedrichs extension of S if and only if  H\dom 2
1

|| B .   
(ii) Assume one of the equivalent conditions  dom A, domA, or  H. Then  S 

is not  densely defined.  Moreover,  B  is the generalized  Friedrichs  extension   of  S  

(i.e.  B is not an operator)  if and  only  if H\ dom B. 

Let A be a self-adjoint operator arid let H-2. Then the rank one perturbations 

of A, defined by 

( ) (., ) , , (50)A A      R  

are of the form (35).  Hence, we may interpret the rank one perturbations of A as self-

adjoint extensions of S. In this sense the convergence results for the self-adjoint 

extensions carry over to the rank one perturbations. We present a brief discussion of 

(50) in terms of special properties of the element   H-2  from the  point  of view of 

Q-functions. 

If  belongs  to H, then  the Q-functions of A(), R, all belong  to N0  and  

the corresponding self-adjoint extensions are rank one perturbations of A in the  usual 

sense. The limit in the graph sense of A() as  is the generalized   Friedrichs 
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extension of S, given by (13).  It has a Qfunction )(Q  with the property that  

;0)(Imlim  y
iyQ

y  hence it belongs to N \ N1. 

If   H-1\H, then the Q-functions of A(),  R, all belong  to N1.  The limit 

in the graph sense of A() as   is the  generalized  Friedrichs extension of S, 

given by A() in Proposition (1.2.1). Moreover, its Q-function belongs to N \ N1.  

When we consider the continuations of  the  self-adjoint extensions  to H+1  H-1 ,  

then the description of the self-adjoint extensions is formally the same as in the  case 

  H), cf. [21]. 

The situation is quite different when H-2\H-1. Then all Q-functions of S 

belong to N\N1. They may all behave in the same way and there is no exceptional 

self-adjoint extension: in [20] there is even an example where all self-adjoint  

extensions  have the  same  Q-function. 

If A is semibounded, then the Q-function of A and S belongs to N1 if and only 

if  H-1. This case is considered in [17], [18], [33] and [34]. If the Q-function of A 

does not belong  to N1, i.e. if H-2\H-1 , then A is necessarily the  Friedrichs  

extension of S,  cf. [19], [21] and [18], but  now all the  other Q-functions belong  to 

N1. For further literature about these cases, see [34].  A treatment of positive 

operators in Pontryagin and Krein spaces appears in [35]. 

The case that A is not an operator is studied in [25]. The Q-functions of all 

other self-adjoint extensions belong to N0.The spectral measure of the exceptional Q-

function is arbitrary. More specific information can be given by a subdivision of N0  

into subclasses N-k,  according  to dom  |A|K/2,  k  N  {0}, cf. [36]. 
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Chapter 2 

Operators with Singular Continuous Spectrum and Smooth Rank One Perturbations 

 

In this chapter we consider smooth perturbations, i.e. we consider ߱ =

dom	|ܣ|/ଶ for some ݇ ∈ ࡺ ∪ {0}. Function-theoretic properties of their so-called ܳ-

functions and operator-theoretic consequences will be studied. While we’re interested 

in the abstract theory of rank one perturbations, we’re especially interested in those 

rank one perturbations obtained by taking a random Jacobi matrix and making a Baire 

generic perturbation of the potential at a single point. 

 

Section (2.1): Self-adjoint Operators and Smooth Rank One Perturbations: 

Let A be a self-adjoint operator in a Hilbert space H with inner product [·, ·]. 

For a nontrivial element ω  H the rank one perturbations of A are defined by 

(	߬)ܣ = ܣ + ߬	[·,߱]߱, ߬	(1)                                             ,ࡾ 

cf. [38]. Let S be the restriction of A to the orthogonal complement of span{ω}: 

ܵ	݉݀ = {ℎ݀݉	ܣ ∶ [ℎ, ߱] = 0	}.                                          (2) 

Then S is a nondensely defined, closed symmetric operator with defect numbers 

(1,1). Clearly, the perturbations A(τ) in (1) are self-adjoint extensions of S and dom 

A(τ ) = dom A, τ  R.  Since all self-adjoint extensions of S are parametrized over 

R  {∞}, one self-adjoint extension of S is not of the form (1).  It is given by 

A(∞) = S+˙ ({0}   span{ω}),                                           (3) 

which is a self-adjoint relation (multivalued operator), whose ultivalued part mul A is 

given by mul A = span{ω}. In fact, A(∞) is the  generalized Friedrichs extension of S  

[39], [21], [40]. There  is a more general  interpretation of (1)  by allowing ω to 

belong to the scale spaces H−1(A) and H−2(A), associated with H+1(A) = dom|A|1\2  

and  H+2(A) = dom A, respectively, [22], [17], [21], [20], [18], [34]. In the present 

section our interest is in the spectral properties of smooth perturbations of A, i.e. 

perturbations for which ω  dom|  |A|k/2  for some k  N  {0}.  

The main emphasis is on a function-theoretic description of the corresponding 
Q-functions. These functions belong to the class N of Nevanlinna functions. A 
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subdivision of N was originated by I.S.  Kac [26],  [27]  and  further  extended  in 

[41].  In this section a complete subdivision of N is presented. We show by means of 

asymptotic expansions how these subclasses of Nevanlinna functions (and their 

moments) behave under certain linear fractional transformations. For this purpose we 

need an extension of asymptotic results due to Hamburger and Nevanlinna; cf. [42].  

Finally, we connect the function-theoretic results to rank one perturbations. 

A function Q (  )  belongs to  the  class N  of  Nevanlinna  functions  if Q (  )  

is holomorphic  on C \ R, ( )Q  = Q ( )  ,  and  Im Q (  )/ Im   ≥ 0 for   C\R. It is 

well known that a function Q (  )  belongs to N  if and  only if there exist α  R. β ≥ 

0, and a nondecreasing function σ(t) on R with ∫ 	(ݐ)ߪ݀
ோ 2ݐ)\ + 1) < ∞,  such that 

1( ) ( ) (4)2 1R

tQ d t
t t

   
       

 


 

Clearly (4) implies that 

Im ( ) 1 ( ). 0 (5)2 2R

Q iy d t y
y t y

   


 

A function  Q (  ) belongs to the Kac class N1 if and only if 

.
1

)(Im)( 


 dy
y

iyQandNQ 
 

It follows from 2 2 1( ) 1 | |( 2 arctan1 | |). 0
R

t y dy t t t     that  Q   belong to N1 

if and only if there exist R and a nondecreasing function σ(t) on R with ∫ 	(ݐ)ߪ݀
ோ \

|ݐ|) + 1) < ∞, such that 

( )( ) (6)
R

d tQ
t
 





 

lim lim( ) Re ( ) (7)Q iy Q iyy y     

cf. [26], [27]. Observe that the constant γ is given by A function  Q   belongs to the 

class N0 if and only if 

Q (  ) N  and  
0

sup Im ( )
y

y Q iy


   

or equivalently, if there exist γ  R and a nondecreasing  function  σ(t) on R with 
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( ) (8)
R
d t    

such that (6) holds.  Clearly,  N0  N1  N. 

 Let the function  Q   belong to N and fix µ  C \ R.  For τ  R  {∞} we 

define a linear fractional transformation Q (  )  of Q (  ).  When  τ  R we define 

2 2( ) (Im ( )) 1 1 ( Im ( )) 1
( ) (9)

2 1( ) 1 ( )

Q Q Q
Q

Q Q

   
    

 
  

 




 
 

and when ߬ = ∞  we define 
2(Im ( ))

( ) (10)
( )

Q
Q

Q







 

For each τ  R{∞} the function  Q  belongs to N.  Moreover, if  Q    belongs to 

N1 or N0, then for all but one τ  R {∞}, the corresponding function  Q   belongs 

to N1 or N0, respectively. The exceptional  value of τ  R  {∞}, τ  0, is given by 

1/τ + γ = 0, where γ is the limit in (7); cf. [40]. If  Q  reduces to a real constant c, 

then the exceptional  value  τ  is given  by  1/τ  + c = 0 and  the corresponding linear  

fractional  transform  is interpreted  as ∞.   We will tacitly exclude this situation.  

Finally, note that βτ = limy→∞ Im Q  (iy)/y, exists for τ  R  {∞} and that if τ  

N0, then 

1 10, 0, : 0, 0 (11)and      
        

For any function  Q   in N we define  0  Q (y)= Im ( )Q iy
y

.  If  Q    N0 we define 

0

2 [0] [0]2 2( ) sup ( ) ( ).
y

Q y y Q y y Q y
 
  


   

According to [41],  Q    belongs to N−1  if and only if 

 Q   N0  and [2]

1

(y)dy< Q


  

and  Q   belongs to N−2  if and only if 

 Q   N0  and 
0

2 2sup ( )
y

y Q y
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Therefore,  N−2  N−1  N.  Now we proceed by induction. Assume that  Q   

belongs to N−2k for some k  N {0} and that the function  2kQ (y) has been given 
with supy> 0 y2

 2kQ (y) < ∞.  Then we define 

 2K 2Q   (y) = [2 ] [2 ]2 2( ) ( ) (12)sup
0

k ky Q y y Q y
y




 

The function   Q    belongs to N−2k−1  if and only if 

 Q    N−2k and [2k 2]

1

.Q  (y)dy< 


  

and the function  Q   belongs to N−2k−2  if and only if  

 Q   N−2k and 
0

[2 2]2sup ( )
y

ky Q y


    

Clearly, 

··  N−2k−2  N−2k−1  N−2k  ···  N−2  N−1  N0. 
We give an equivalent description of the classes N−k. 
Theorem (2.1.1)[37]: Assume  that  Q   N0  has the integral  representation (6)  

with γ  R and σ(t) as in (8).  Let k  N  {0}. Then  Q   N−k if and only if 

(| | 1) ( ) (13)
R

kt d t    

Proof.  We begin with the case of even indices.  We claim that 

 Q   N−2k   if and only if 2k(t 1)d (t)< (14)
R

   

in which case 
2 2[2 2]( ) ( ) (15)2 2R

ktkQ y d t
t y


  


 

If k = 0, (14) is clear and (15) follows as 
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Now assume that (14) and (15) hold for some k  N  {0}. Then 

).()(22)(]22[2sup
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Hence, if  Q   N−2k, then 

 Q   N−2k−2 if and only if  2 2 ,( 1) ( )
R

kt d t    
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in which case 
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Therefore, (14) and (15) hold with k  N  {0} replaced by k +1 
 We now take care of the case of odd indices.  For Q(  )  N−2k , (15) implies 
that 

[2 2] 2 2

1

1 1
( ) ( arctan ) ( ) ( ).

2
k k

R
Q y dy t d t
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Hence, if  Q   N−2k, we conclude that 

 Q   N−2k−1 if and only if 2 1(| | 1 ) ( ) .kt d t    

Let  Q   N−k , k  N  {0}. Then according to Theorem (2.1.1) the moments 

 
R

kitditim ....,.........0),(
 

are well defined as absolutely convergent integrals. The following theorem with k 

even is well known; cf. [42]. 

Theorem (2.1.2)[37]: Let  Q   be a function in N0 and assume  that  it has the 

integral representation (6)  with  γ  R  and  σ(t) as in  (8).  If   Q    N−k for  some 

k  N  {0}, then  Q   has the asymptotic  expansion 

k1 ( ) γ 0(1) , (16)1i 0

mk iQ i
        

  


 

uniformly for δ ≤ arg     with any 10
2

    Moreover,  if k is odd, the 

function  in the left side of (16) belongs to N1. 

Proof.  For  Q   N−k the moments  mi, i = 0,... , k, are well defined, and 

1k1 ( ) γ ( ) (17)1i 0 R

km tk iQ d tti 
         

  
 

As in [42], it follows that the function in the right side is o(1) as   .  Moreover, 

for iy , the right side of (17) is equal to 
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1 

Hence, if k is odd, the function in the left side of (16) is a Nevanlinna function, 

which even belongs to N1. 

Conversely, the class N−k can be described in terms of these asymptotic 

expansions. For k even, the statement of the following result may be found in [42]. 

Theorem (2.1.3)[37]: Let k  N  {0}, and let ̂   and ˆ im ,  i = 0,... , k,  be real 

numbers. Let the function   Q   N have the asymptotic expansion 

ˆk1 ˆ( ) γ 0(1) (18)1i 0

mk iQ i
       

 


 

for  iy ,  y →  ∞.  Then the function in the left side of (18) belongs to N if k is 

odd.  If k is even, or if k is odd and the function in the left side of (18) belongs to N1, 

then  Q   N−k and ̂ = γ, ˆ im = mi, i = 0,... , k. 

Proof.  For k even, we refer to [42]. For k odd, (18) implies that 
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1
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As k−1 is even,  we conclude  that  Q   N−k+1  and ̂ = γ, ˆ im =mi,  i = 0,... ,k − 1. 

Hence, the left side of (18) is given by  

kmtd
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For iy this is equal to 

2 1
ˆ( ) ( ) (192 2 2 2 )

k kt y t yd t i d t mkt y t y
 


  

 

R R

 

Therefore, for k odd, the function in the left side of (18) is a Nevanlinna function. 

Under the further assumption that the function in the left side of (18) belongs to N1, 

it follows that 
R

(|t|k+1)dσ(t) < ∞, so that the moment mk is well defined and  

Q( )  N−k. By taking y → ∞ in (19), we obtain 

km  km̂ . 

Note that for k odd, (18) only implies that Q( )  N−k+1 and that   
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k-11 ˆ( ) γ (1) (20)1i 0

mk iQ m oki
        

 


 

for  =iy→ ∞. If, in this case, the function σ(t) in (6) has support in [0,∞), it 

follows from (19) that Q ( )N−k and km̂ = km . Moreover, then the function in 

the left side of (18) belongs to N1. In general,  for k odd, the  function  in the  left 

side of (18) does not  belong to N1 and km̂ in (20) cannot  be interpreted  as an 

absolutely convergent moment. We give an example for k = 1. 

Example (2.1.4)[37]:  Let σ(t) be a nondecreasing  function  on R such that 

 
RR

,)(||,)( tdttd   

and for which the function 

)(1)( td
t

tF 




R


  

belongs to N\N1,  while limy→∞F(iy) =0. The essential part in the construction of 

such a function is that the support of σ(t) is unbounded in each direction;  cf. [43]. 

Clearly, the function 

)()( td
t

tH 



R


  

also belongs to N\N1 and limy→∞H(iy)=0. Now define 

2
)(0)(),(0 




 Hm
Qtdm  

R
  

Then  Q ( )  has the representation (6) with γ = 0, Q ( )N0 \ N−1, and 















 iy

m
Q 


 ),1(00)(2  

A similar example for positive definite functions is due to A. Wintner; see [44]. 

In order to see how the class N−k, kN{0}, behaves under the linear 

fractional transformation (9),(10) we state and prove the following simple lemma. 

Lemma (2.1.5)[37]:  Let ci, di, i = −1, 0, 1,... , k, be real numbers  satisfying 

1 1 1 0, 1,...., 11 10

i
c d c d i kj i jj         
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And let  ( ) 0(1), .C     
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( ) ( )0 0... ...11 1 1 1
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Proof. It follows from the assumption about the convolution products that 
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where α(  ), γ(  ), and δ(  ) are polynomials  of the form 
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The degrees of α(  ) and of c−1δ(  ) − d−1γ(  ) are at most k, so the second term  in 

the right side is O(1/  ) and the third term  in the right side is o(1/  ). 

 According to Lemma (2.1.5), there is a constant A > 0, such that 

.1,2
)(Im

2)1(

1)(Im



 y

y

A
y

iyC

cy
iyD  

Hence, if C(  )N1,  then  |Im D(iy)|/y is integrable over [1, ∞).  If, in addition, 

 D   N,  it therefore automatically belongs to N1. 

Theorem (2.1.6)[37]: Assume  that the function Q ( ) belongs to N−k  for 

some k  N{0}. 

 Then 

(i) Q ( )  N−k   for 1/τ + γ  0, 

(ii) Q ( ) − β    N−k+2  for 1/τ + γ = 0. 

Proof. Without loss of generality we may assume that γ=0, so that the exceptional 

value of τ corresponds to τ=∞. Due to (9) and (10), it suffices to show that 
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1 \{0}, (21)1 ( )
N forkQ




    R  

and 

2

0

11 . (22)
( ) kN for

Q m
     


 

For the formulation of (22) we used that β in (11) satisfies β =  Im Q (µ))2/m0  

when γ = 0; see [40]. As the function Q (  ) belongs to N−k for some k  

N{0}, it follows from Theorem  (2.1.2) and the assumption γ = 0 that 

( )( ) (23)1 10

mK CiQ i ki
    


 

 

where C(  ) = o(1), → ∞, and C(  ) belongs to N1  when k is odd. 

 We now prove (21) for τ  R \ {0}. From (23) and Lemma (2.1.5) we obtain 

with real numbers  ,ˆ im i = 0,... , k, the asymptotic expansion 

1
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where D(  ) = τ 2C(  ) + O(1/  ) = o(1),  → ∞.  It follows from Theorem 

(2.1.3) and  the asymptotic estimate  of D(  ) that (21) holds. 

Next we prove (22). The statement for k = 0 is obvious, so assume that k ≥ 1. 

From (23) and Lemma (2.1.5)) (with k instead of k + 1) we obtain with real numbers  

,ˆ im , i = 1,... , k, the asymptotic expansion 
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Again we apply Theorem (2.1.3) and the asymptotic estimate of D(  ). Hence, (22) 

holds for k = 1 and for k ≥ 2. 

Let Q ( )  N−k for some k  N  {0}. Assume that 1/τ + γ /= 0. Then it 

follows from Theorems (2.1.2) and (2.1.6) that 
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( ) 1( ) ( ) 0 , , (24)1 10

mK iQ i ki


 

 
        

 
 

 

where γ(τ)=limy→∞ Q τ(iy) and mi(τ), i=0,... , k, are the corresponding  moments 

of Q τ ( ).  Now assume that 1/τ + γ = 0. For k=0 the function Q ( ) − β  

belongs to N, where β is given by (11).  For k ≥ 1 it belongs to N1, in which case 

)25())((lim)( yiiyQy    

is a real  number.  For k ≥ 2 the function Q ( ) − β   belongs  to N−k+2,  and  it 

follows from Theorems  (2.1.2) and (2.1.6) that 

( )2 1( ) ( ) 0 . , (26)1 10

mk iQ i ki


  

  
         

  
 

 

where γ(τ) is given by (25) and mi(τ ), i = 0,... ,k − 2, are the moments  of  Q 

− β  . The constants β and γ(τ) and the moments in (24) and in (26) can be 

expressed in terms of the corresponding data of the expansion (16) of Q (  ). 

Corollary (2.1.7)[37]: Assume  that the function Q ( ) belongs to N−k,  k  N 

 {0}. 

For 1/τ + γ  0 and τ  R, the constant γ(τ ) is given by 
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and the moments mi(τ), i = 0,... , k, in (24) are given by 
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The case 1/τ + γ ≠ 0 and τ = ∞ is obtained as a limiting case of (27) and (28). 

For 1/τ + γ = 0 and τ  R, the constant β is given by 
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and when k ≥ 1, the constant  γ(τ ) is given by 
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Moreover, when k ≥ 2 the moments mi(τ), i = 0,... ,k − 2, in (26) are given by 
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The case γ = 0 and τ = ∞ is obtained as a limiting case of (29), (30) and (31). 

Proof.  From (9) and (10) we obtain 

Q  (  ) − Q ( )+ Q ( ) Q ( ) +  (Im Q (µ))2 = 0,  τ  R          (32) 

Q ( )Q ∞(  )+ (Im Q (µ))2  = 0                                         (33) 
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We will substitute the asymptotic expansions (16) for Q ( ) and (24) or (26) for 

 Q   in (32) and (33), and calculate the coefficients of the powers of  . 

For 1/τ + γ  0 and τ  R we use the expansion (24) for Q ( ) in (32).  

The coefficient of   gives (27), and the coefficient of  −1  gives 

.02)1(

2))(Im(1
01

)(1)(0 mQmm















  

Moreover, the coefficients of  − i−1, i = 1,... , k, give  

(1 + τγ)mi(τ ) = mi(1 − τγ(τ )) + τ (m0mi−1(τ )+ ··· + mi−1m0(τ )).  

This leads to (28).  For 1/τ+γ ≠ 0 and τ = ∞, we use the expansion (24) for Q    

in (33) and obtain the limiting case of (27) and (28) as τ → ∞. 

For 1/τ+γ= 0 we substitute the expansion (26) in (32). Note that the 

coefficient of   is automatically 0. The coefficient of 0  gives (29) (cf. [40]), and 

the coefficient of  −1 gives 1−τγ(τ) = τ m1β/m0, so that (30) follows. Similarly, 

the coefficients of  −i−1 then give 

,
0

1
1)(01...)(10 
















 im

m

m
immimimm   

for i = 1,... ,k−2.  Moreover, the identity also holds for i = k−1.  This leads to (31).  

For γ=0 and τ=∞, we use the expansion (26) for Q ( ) in (33) and obtain the 

limiting case of (29), (30) and (31) as τ → ∞. 

Let H(  ) be a Nevanlinna  function  with β = limy→∞ Im H(iy)/y > 0. We 

have seen that H(  ) − β   belongs to N.  Define the function Q ( ) by 

4( )
( ) (34)2(Im ( )) ( )

H
Q

H H



 


 

Clearly, Q ( )N0 and limy→∞ Q (iy)=0. Hence, H(  )= Q ( ) is the exceptional 

function corresponding  to the exceptional value τ = ∞  of Q ( ); cf. [41]. 

Theorem (2.1.8)[37]: Let H(  ) belong to N with β = limy→∞ Im H(iy)/y > 0.  

Assume that H(  ) − β belongs to N−k+2  for some k  N  {0}. Then the 

function Q ( ) in (34) belongs to N−k . 
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Proof.  It is sufficient to assume that k ≥ 1. Then 
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where  γ= limy→∞( Q (iy)−iβy) and mi,  i= 0,... ,k−2, are  the moments of  H  − 

β   (absent for k=1). Moreover, if k is odd, the function C(  ) belongs to N1. 

Therefore, by Lemma (2.1.5) with k+1 replaced by k, we find real numbers d−1,..., 

dk−1  and a function D(  ) = o(1),   → ∞, such that 
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with D(  ) in N1 when k is odd. HenceQ ( )  N−k  by Theorem (2.1.3).  

The  relation  between  the data  for the functions  H(  ) − β  and  Q ( )  

may  be recovered  from Corollary (2.1.7) by inversion  of the case γ = 0 and  τ = ∞;  

cf.  [45] for a special case. 

Let A be a self-adjoint relation in a Hilbert space H. For µ  C \ R we choose 

a nontrivial element χ(µ)  H and define 

χ(  ) = (I + (   − µ)(A −  )−1)χ(µ). 

Let S be the restriction of A given by 

S = { {f, g}  A : { g −   f, χ(  )] = 0 }                                    (35) 

 Clearly, this definition is independent of  C\R, and S is a closed symmetric 

relation with defect numbers (1, 1).  The relation S is completely nonself-adjoint if 

and only if H = span { χ(  ) :  C \ R }, in which case S is necessarily an 

operator. A function Q ( ) is a Q -function of A and S  if 

])().([)()(



 







QQ  

Hence, a Q -function is determined up to a real constant and belongs to the 

Nevanlinna class N. If S is completely nonself-adjoint, the Q -function uniquely 

determines, up to isometric isomorphisms, the relation A and its restriction S.  All 
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self-adjoint extensions A(τ ), τ  R  {∞}, of S are parametrized by means of 

Kreın’s formula 

)]([.,
1)(

1)(1)(1))((  





 QAA  

The  Q -functions  Q ( )  of A(τ ),  τ R  {∞}, are  related  to Q ( )  via 

(9)  and (10); see [40]. 

In the following we assume that A is a self-adjoint operator. The restriction S 

in (35) coincides with (2) if and only if χ(  )  dom A for some (and  hence for 

all)    ρ(A).  Then χ(  ) = (A −  )−1ω, and Q ( ) can be chosen as 

Q ( )=[(A-  )-1,]. 

This  choice  of Q ( )  N0 gives γ = 0,  so that  the exceptional  value  in  (9) and  

(10)  is τ =∞. The self-adjoint extensions of S in (2) are now the rank one 

perturbations A(τ), τ R, of A given in (1) (cf. [38]), and the exceptional 

extension A(∞) in (3). If E(t), t  R, is the spectral  family of A, and Q ( )  is 

given by (6) with γ = 0 and (8), then dσ(t) = d([E(t)ω, ω]). We denote the polar 

decomposition of A by A = U |A|. The following result is clear. 

Theorem (2.1.9)[37]: Let k  N  {0 } Then Q ( )  N-k  if and only if ω 

dom |A| k/2  . In this case, the moments mj , j = 0,... , k, are given by 

mj  = [Aj/2ω, Aj/2ω],   j even,    mj = [U |A j/2 ω, |A j/2ω],   j odd. 

Note that if A  L(H), then  each ω  H has the property that ω  dom |A|k\2 ,for 

all k  N {0}. In particular this applies when the closed symmetric operator S is 

bounded and, consequently, A(τ )  L(H), τ  R; see also [46]. 

Theorem (2.1.10)[37]: Assume that the Q -function Q ( )  of S  and A  belongs 

to N−k  for some k  N  {0}. Then 

dom |A(τ )|k/2+1  = dom |A| k/2+1,  τ  R  {∞}, 1/τ + γ  0       (36) 

Proof.  The statement is true for k = 0, 1, 2; cf. [20]. We proceed by induction. Let 

g  dom |A(τ )| k/2+1 , so that g = (A(τ ) −  )−1  f for some f  dom |A(τ )| k/2. By 

Kreın’s formula.  
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Since Q ( )  N−k , Theorem (2.1.9) shows that χ(  ) = (A −  )−1 ω  

dom|A| k/2+1. Moreover, N−kN−k+2, and since 1/τ+γ  0, we conclude by an 

induction argument that 

f   dom  |A(τ )|k/2 = dom |A| k/2. 

Hence, (A −  )−1  f dom |A|k/2+1. It follows from (37) that g  dom |A| k/2+1 and 

there fore  

dom |A(τ )|k/2+1  = dom |A| k/2+1,   1/τ + ߛ  0. 

According  to Theorem (2.1.6), A and A(τ ),  1/τ  + ߛ    0,  both  have  a  Q -

function belonging to N−k,  so the reverse inclusion follows by symmetry. 

Theorem (2.1.11)[37]: Let S be a closed symmetric operator in H with defect  

numbers (1, 1) and let α ≥ 0, k  N {0}. If for two different self-adjoint  operator 

extensions A1  and A2  of S  the inclusion 

dom |A1|k/2+1   dom |A2|k/2+1+α 

is satisfied, then for all but one self-adjoint  extension A(τ ) of S  we have 

dom |A(τ )|k/2+1  = dom |A1|k/2+1 . 

Moreover, the Q -functions of these extensions of S all belong to N−k. 

Proof. The statements hold for k = 0, 1, 2; cf. [20]. Let R1(  ) and  R2(  )  be the 

resolvent operators of A1 and A2, respectively. Let h  dom|A2|k/2+α, k ≥ 2, be such 

that [h, χ(  )]  0. By Kreın’s formula 

1 2

, ( )
( ) ( ) ( ) , 0 (38)1/ ( )

h
R h R h h HQ


 



 
     




    

Since R1(  )h  dom A1   and  

R2(  )h  dom |A2|k/2+1+α   dom |A1|k/2+1   dom A1, 

it follows from (38)  and  the selection of h that χ(  ) dom A1. Hence, we may 

write χ(  ) = (A −  )−1ω for some ω  H. Since A1  and  A2  both  are  operator 

extensions of S, Theorems (2.1.6), (2.1.9) and (2.1.10) imply that dom A1 = dom 
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1 A2.  Hence, h  dom A1,  and  thus  (38) shows that χ(  )  dom 2
1A   or ω  

dom A1.  Repeating this argument, we finally observe that, in fact, 

χ(  ) = (A1 −  )−1ω  dom |A1|k/2+1, 

or, equivalently, ωdom |A1|k/2. According to Theorem (2.1.9) the Q -function  

 Q  of A1  and S belongs to N−k.  Now apply Theorems (2.1.10) and (2.1.6). 
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Section (2.2): Rank One Perturbations, and Localization: 

 

Although concrete operators with singular continuous spectrum have 

proliferated recently [1, 48, 49, 50, 51, 52, 53, 54], we still don’t really understand 

much about singular continuous spectrum. In part, this is because it is normally 

defined by what it isn’t — neither pure point nor absolutely continuous. An 

important point of view, going back in part to Rodgers and Taylor [55,56] and 

studied recently within spectral theory by Last [57] (also see references therein), is 

the idea of using Hausdorff measures and dimensions to classify measures. Our main 

goal is to look at the singular spectrum produced by rank one perturbations (and 

discussed in [1,48,58]) from this point of view. 

A Borel measure µ is said to have exact dimension α ∈ [0, 1] if and only if 

µ(S) = 0 if S  has dimension  β < α and if  µ is supported by a set of dimension  

α.   If 0  < α < 1, such a measure is, of necessity, singular continuous. But,  there 

are also singular continuous measures of exact dimension 0 and 1 which are 

“particularly close” to point and a.c. measures, respectively. Indeed, as we’ll explain,  

we know of “explicit” Schro¨dinger operators with exact dimension 0 and 1, but, 

while they presumably exist, we don’t know of any with dimension α ∈ (0, 1). 

While we’re interested in the abstract theory of rank one perturbations, we’re 

especially interested in those rank one perturbations obtained by taking a random 

Jacobi matrix and making a Baire generic perturbation of the potential at a single 

point. It is a disturbing fact that the strict localization (dense point spectrum with 

ฮି݁ݔ௧ுߜฮ
ଶ
= ൫݁ି௧ுߜ , ߜଶ݁ି௧ுݔ 	൯ bounded in t), that holds a.e. for the 

random case, can be destroyed by arbitrarily small local perturbations [1,48]. We’ll 

see that, the spectrum is always of dimension zero, albeit sometimes pure point and 

sometimes singular continuous. And we’ll show that  not only does the set of 

couplings with singular continuous spectrum has Lebesgue measure zero, it has 

Hausdorff dimension zero., We’ll also see that while  ฮି݁ݔ௧ுߜฮ may be 

unbounded after the local perturbation, it never grows faster than C ln(t). 
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We’ll review some basic facts about Hausdorff measures that we’ll use later. 

We relate these to boundary behavior of Borel transforms. We use these ideas to 

present relations between spectra produced by rank one perturbations and the 

behavior of the spectral measure of the unperturbed operator. We’ll relate Hausdorff 

dimensions of some energy sets to the dimensions of some coupling constant sets. 

We use the results to present examples (some related to those in [59]) that 

show that the Hausdorff dimension under perturbation can be anything. 

 We turn to systems with exponentially localized eigenfunctions, and show that 

under local perturbations the spectrum remains of Hausdorff dimension zero. Some 

of the lemmas in this section on the nature of localization are of independent interest. 

Finally, we prove that “physical” localization is “almost stable,” that is, suitable decay 

of (δn, e−itH δm) in |n−m| uniform in t implies that ||xexp(−it(H+λδ0))δ0|| grows at 

worst logarithmically. 

Given a Borel set S in R and α ∈ [0, 1], we define 

( ) inf | | | | ; ,, 1 1
Q S b b S bv v vv v

  
 

   
  

  

the inf over all δ-covers  by intervals bν   of size at most δ.   Obviously, as δ 

decreases, Q increases since the set of covers becomes fewer, and 

)(,0
lim)( SQSh 




  

is called α-dimensional  Hausdorff  measure.   It is a non-sigma-finite measure on the 

Borel sets. Note that h0 coincides with the counting measure (i.e., assigns to each set 

the number of points in it), and h1 coincides with Lebesgue measure. Clearly, if β <α 

< γ, 

δα−γ Qγ,δ (S) ≤ Qα,δ (S) ≤ δα−β Qβ,δ (S), 

so if hα(S) < ∞, then hγ (S) = 0 for γ > α and if hα(S) > 0, then h β (S) = ∞ for 

β<α. Thus, for any S, there is a unique α0, called its Hausdorff dimension, dim(S), so 

hα (S) = 0 if α > α0 and hα(S) = ∞ if α < α0. hα0 (S) can be zero, finite, infinite, 

or so infinite S isn’t even hα0 -sigma-finite. 
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In what follows, we shall use Hausdorff measures and dimensions to classify 

measures. Unless pointed otherwise, by “a measure” (equivalently, “a measure on R ”; 

usually denoted by µ) we mean a positive sigma-finite Borel measure on R . however, 

we discuss more restricted classes of measures, such as finite measures. 

Definition (2.2.1)[47]: A measure µ on R  is said to be of exact dimension α for α ∈ 

[0, 1] if and only if 

(i)  For any β ∈ [0, 1] with β < α and S a set of dimension β, µ(S) = 0. 

(ii) There is a set S0 of dimension α which supports µ in the sense that  

µ(R \S0)= 0 [55]. 

Every measure is of some exact dimension; indeed, the sum of measures of 

exact distinct dimensions is not of any exact dimension. But, most of our examples 

will involve measures of some exact dimension. Last [57], following Rodgers-Taylor 

[55,56], discusses many different decompositions of any measure into a part of 

dimension less than α, equal to α, and larger than α. The piece of exact dimension α 

can be further decomposed in terms of its relation to hα. 

Definition (2.2.2)[47]:  Given any measure µ and any α ≥ 0, we define 

α (39)μ δ 0
μ( x δ,x δ)D (x) lim αδ

    

Note that if  0


D (x0 )< ∞ for some x, then 

D  (x0 ) = 0 for all β < α0  and if 0


D

(x0)> 0 for some x0 , then 
D  (x0 ) = ∞  for all β > α0.  In particular, for each x0 , 

there is an α(x0 )  so 
D  (x0 ) = 0 if α < α(x0 ) and = ∞ if α > α(x0 ).  Indeed, 

0 0
0 0

ln μ(x δ,x δ)lim(x ) (40)
lnδ




 
    

We’ll sometimes write αµ(x0 ) if we want to be explicit about the µ involved; and 

if we have a one-parameter family µλ, we’ll use αλ for αµλ . 

The following is a result of Rodgers-Taylor [55,56] (also see [60]): 
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Theorem (2.2.3)[47]:  Let  µ be any measure and α ∈ [0, 1]. Let Tα = {x\ 
D  

(x) = ∞} and let χα be its characteristic function. Let dµαs= χα dµ and dµαc= (1 

− χα) dµ. Then dµαs is singular with respect to hα (i.e., supported on a set of hα-

measure zero)  and dµαc   is continuous with respect  to hα  (i.e.,  gives zero 

weight to any set of hα-measure zero). 

Corollary (2.2.4)[47]: A measure µ is of exact  dimension α0  ∈ [0, 1] if and 

only if 

(i) For any β > α0, 
D  (x) = ∞ a.e.  x w.r.t. µ. 

(ii) For any β < α0, 
D  (x) = 0 a.e.  x w.r.t. µ. 

Equivalently, if α(x) = α0 a.e. x w.r.t. µ). More generally, if (i) holds 

(equivalently, α(x)≤α0  a.e.  w.r.t.  µ),  then  µ is supported on a set  of dimension  α 

and  if  (ii)  holds (equivalently, α(x)≥ α0  a.e.  w.r.t. µ), then µ gives zero weight 

to any set S of dimension β < α0. 

Corollary (2.2.5)[47]: Let  µ be  a measure  on R , let S ⊂ R be  a Borel  set 

with µ(S) > 0, and suppose  that  α0 ∈ [0, 1] and 

)(0 xD
  

for µ-a.e. x in S. Then dim(S) ≥ α0 . 

Proof. α0 =0 is trivial, so suppose α0 > 0.  Let ν be the measure µ(S ∩ · ).  Then, 

since ν ≤ µ, the hypothesis implies that 

)(0 xDv
  

for a.e. x w.r.t. ν. Thus, by Theorem (2.2.3), ν gives zero weight to sets of hα0 -

measure zero, and so, since ν(S)≠ 0, we must have hα0 (S)>0, which implies 

dim(S)≥ α0. 

It is often easier to deal with power integrals, so we note: 
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Proposition (2.2.6)[47]: Let µ be a finite measure, and
0

( )( ) .0
d ylet G x
x y 


 

  

Then 

(i)   G           ̃ α (x0 ) < ∞ implies 
D  (x0 ) < ∞. 

 (ii)     
D (x0 ) < ∞ implies G̃β (x0 ) < ∞ for any 0 ≤ β < α. 

Proof:  (i) Looking at the contribution to the integral of the set where |x0 − y| < δ, we 

see that 

µ(x0 − δ, x0  + δ) ≤ δα G̃α(x0 ) 

so 

                                          
D  (x0 ) ≤ G̃α (x0 ).   

 (ii) Let 
M  (x0 ) = µ(x0 − δ, x0  + δ).  Then (with λ = Lebesgue measure) 

G̃β (x0 ) = (µ ⊗ λ)((y, t) | 0 ≤ t ≤ |x0  − y|−β ) 

1/ ( )00
tM x dt


      

               .1)0(
0


 dxM 




  

The integral always converges for δ large since 
M  is bounded; and if β < α, 

and 
D  (x0 ) < ∞, then it converges for small δ. 

Consider the set 

μ( x δ,x δ) lim μ( x δ,x δ)w x lim (41)α α αδ δ 0 δδ 0

         
 

For α = 0, Wα is empty; and for α = 1, the theorem of de la Vallée-Poussin (see 

[61], [62]) says that µ(W1) = 0. For 0 < α < 1, however, the situation is quite 

different: A result going back to Besicovitch [63] (also see [64]) is that if µ is the 

restriction of hα to a set of finite positive hα-measure, then µ is supported on Wα. 

Moreover, there are even examples of µ’s where for a.e. x w.r.t. µ, 
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0 0
lim limln ( x δ,x δ) ln ( x δ,x δ)1 and 0.

ln ln 

 
  

      

Given a measure µ with 1(| | 1) ( ) ,x d x    
 
we define its Borel transform by 

 


zx
(x)d(z)μF   

for Im z > 0. These play a crucial role in the theory of rank one perturbations as 

originally noticed by Aronszajn-Donoghue [65,66]; see [58] for their properties and 

this theory. We’ll translate Theorem (2.2.3) into Borel transform language. 

Definition (2.2.7)[47]:  Fix γ ≤ 1 and x.  Let 

)i(xμImFγlim(x)γ
μ 0







Q  

.|)i(xμF|γlim(x)γ
μ 0







R  

Theorem (2.2.8)[47]: Fix µ and x0. Fix α ∈ [0, 1) and let γ = 1 − α. Then 
μD

(x0 ), γ
μQ (x0 ), and γ

μR  (x0 ) are either  all infinite, all zero, or all in (0, ∞). 

Lemma ( 2 .2.9)[47]:  For any γ ≤ 1, 

).(xγ
μ2R)(xγ

μ2)(xμD
000

γ1  Q  

Proof. Let 
μM (x0 ) = µ(x0 − δ, x0  + δ).  Then looking at the contribution of (x0 − , 

x0 + ) to Im Fµ(x0+ i), we see that 

dμ (y) 1
lm F (x i )   M (x ), (42μ 0 μ 02 2 2(y - x )- 0

) 



  


 

so 

,)0(xμM
1
1

2
1

)i0(xμFlm 





  

so the first inequality in the lemma holds.  γ
μQ (x0 ) ≤  γ

μR  (x0 ) is, of course, trivial. 

Lemma (2.2.10)[47]: Let α < 1. If μD  (x0 ) < ∞ (resp.= 0), 1
μR (x0 ) < ∞ (resp. 

= 0). 
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Proof. Suppose first that 
μD  (x0 ) < ∞.  Let 

μM (x0 )= µ(x0 − δ, x0  + δ). The 

case α=0 is trivial so we’ll suppose α > 0. By hypothesis, 

δ αM (x ) Cδ , (43)μ 0   

so with γ = 1 − α : 

0
lim


 |  F (x0 + i 







 




2
1

22y)0(x

(y)d

0
lim






      

                                       =  )]0(xδ
μMδd[

1

0 2
1

)2δ2(

1

0
lim 









 

                                      =  dδ )0(xδ
μM

1

0 )2δ2(
0

lim
2

3










 

                                        dδ 
1

0 )2δ2(

1
lim

0
2

3












C  

                                      =  dδ 
0 )1(

lim
0

1

2
32

1




 








C  

                                       <  . 

The first equality comes from noting that since γ > 0, 

γlim  dμ (y) |x y i | 0.00 |y-x | 10

 


    
 

The second equality is an integration by parts. The boundary term at zero vanishes 

since α > 0. The term at 1 has a zero limit since γ > 0. The final equality comes by 

noting that since α < 1, the integral is finite as −1  → ∞.                               

If 
μD (x0 )=0, then (43) holds for δ ≤ δ0   where C can be taken arbitrarily 

small (by taking δ0 small).  The above calculation (with 1 as the upper integrand 

replaced by δ0  ) shows that 
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dδ 
0 2

3
)12(

1
)0(1 











 CxR . 

Since C is arbitrarily small, R is zero. 

Corollary (2 . 2 . 11)[47] : Let ߛ [0, 1]. Let S  R be a Borel set with µ(S) > 0.  

suppose Q 
 (x) < ∞ for µ-a.e. x  S.  Then,  dim(S) ≥ 1 − ߛ. 

Theorem (2.2.12)[47]:  Suppose that 

  dxixF
b

a
s

2
)(Im0sup   

for some s < 1. Then  µ (a, b) gives zero weight to sets of dimension less than  

1 − s. 

Proof.  We’ll prove that for any β < 1 − s and any closed interval I  (a, b), we have 

                                             
β

x I
y I

( ) ( )
|x y|

d x d y 




 
 .                                             (44) 

This implies )(~ xG =dµ(y) 
 β|yx|

(y)d  < ∞ for µ-a.e. x  I, and the theorem thus follows 

from Proposition (2.2.6) and Corollary (2.2.5). 

 Replacing µ by µ I and noting that Im ),(Im)
zx
(x)d( zF

Ix 



 

 we an suppose µ 

is supported in I. Since I ⊂ (a, b) and |Im Fµ,I (z)| ,
),(
|Im|
2Izdist

zC
  we can suppose that 

s 2sup |lmF ( x i )| dx . (45)μ0  


  
  

By a straightforward calculation, 

                        


 






Iy
Ix 242)yx(

(y)d(x)d
2πdx2|)ix(μImF|




  

So (45) says that 

                        d (x) d (y) 1 . (46)2 2x I ( x y)
y I

sC  


 
  


  

Let 
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Iy
Ix

δ|yx|
).()()(δ(2)

μM ydxd               

                                                   
1

2 2
x 1
y 1

dμ (x)dμ(y))
(x y )

C  




 
      

Then (46) with  =   says that 

s1δ2C)(δ(2)
μM   

Thus, if β < 1 − s, 

                               












1)/β(nn(2)
μ

1|yx|
Ix
Iy

β )2(2
0n

M
|yx|
(y)dμ(x)dμ

 

and (44) is proven. 

Let µ be a normalized finite measure. Let A be the operator of multiplication 

x on L2(R , dµ).  Let   be the unit vector (x)≡ 1. Let Aλ = A + λ(, · ), and let 

dµλ  be the spectral measure for  and the operator Aλ .  Let 
d (x)

( )
x z

F z


  


 and 

denote F (z) for F0(z). Then [58] 

( )( ) (47)
1 ( )

F zF z F z 



 

(48)Im ( )Im ( ) 2|1 ( ) |
F zF z
F z 




 

lim 1dμ (x) ImF (x i )dx (49)πλ λ0



 


 

µλ,sing is supported by {x | F (x + i0) = 

1

 }                         (50) 

Theorem (2.2.13)[47]: Let α  [0, 1]. Let Sα ={x | lim −(1−α)Im F (x+i )>0}.  

If µλ([a, b]\Sα ) = 0 for some λ ≠ 0, then µλ gives zero weight to any subset of [a, 

b] of dimension β < α. 
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Proof. Suppose lim −(1−α)Im F (x0 + i) > 0 (i.e., x0    Sα).  By (48), 

                                               
)i0ImF(x2λ

1)i0x(λFIm





   

So 

                                        .)i0x(λFIm)(x )α(1
0

α1
λ

μ lim   Q  

Theorem (2.2.14)[47]: Let  0 ≤ α < 1. Suppose µ is purely singular. Let Ŝ = {x 

| lim −(1−α) Im F(x + i)<∞}. If λ (R \ Ŝ )=0 for some  λ ≠  0, then  µλ  is 

supported on a set of dimension  α. 

Proof. Suppose lim  −(1−α)Im F (x0 + i) < ∞ (i.e.,  x0   Ŝ )  and that F (x0 

+ i0) = 

1

 . By (42), 

-2)0x(μM  C  

and 

|1 + λ Re F (x0 + i)| = |λ| |Re F (x0 + i) − Re F (x0 + i0)| 

                                               
(y x ) ( y x )0 0|λ | d  (y)2 2 2(y x ) ( y x )0 0




 
 
 
  

 
 

  
 

                                              


 )(
]22)0xy()[0xy(

2
|λ| yd



  

                                              ].)0x(Mδd[
)22δ(δ

2
|λ| δ

μ





  

We can integrate by parts, use the bound on 
M , and integrate by parts again to 

bound  this last integral by 

                        




 






0 1)2y(αy

dy

0
α1)α2(|λ|

)22δ(δ

dδα1δ2
α)2(|λ| 



  

And note the integrand is finite. 

Thus,  |1+ λF (x0 + i)| ≤ C 
1−α  and so lim  

1−α 
|1+ λF (x0 + i)|−1 > 0. Thus, 
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∪ 

by (47), if x0  Ŝ ∩ {x |F (x0+ i) =

1

 }, lim  
(1−α)

|Fλ(x0+ i)| >0. Since µλ is 

supported on {x | F (x0 + i) = 

1

  }, if µλ (R \ Ŝ ) = 0, then by Theorem 

((2.2.8), αλ(x) ≤ α a.e. and so by Corollary (2.2.4), µ is supported on a set of 

dimension α. 

In addition to the functions Fλ(z),F (z) of (47), an important role is played by 

(51)dμ(y)G(x) 2(x y)
 


 

in that 

{x | G(x) < ∞, F (x + i0) = −λ−1 } = set of eigenvalues of Aλ.                                      (52) 

Note that G(x) = lim −1 Im F (x + i), so (52) follows from (50) and the α = 0. 

Moreover, if λ < ∞ (see [58]): 

PP
λ 21{x|G( x ) ,F( x io) λ }

1dμ ( y) dδ ( y). (53)xλ G( x )  
   

Note that G(x) < ∞ implies F (x + i) has a real limit so 





||0

}{})(|{
 AofseigenvaluexGxM  

In [1] del Rio, Markov, and Simon prove that 

                                                            





1n
nMM  

where Mn is such that there exists Cn with (59) for all x < y both in Mn. 

Let Ln = {λ | −λ−1   F [Mn]}.   It follows from (54) that dim(Mn ) = dim(Ln).  

Thus, since dim ( 


1n
nA  ) = sup dim(An ), we see that 

Theorem (2.2.15)[47]:  Fix a Borel  set I. Then  the  Hausdorff dimension  of the  set 

of λ’s where Aλ   has some  eigenvalues  in I is the  same as the  Hausdorff  

dimension  of the  set of x ∈ I where G(x) < ∞. 

There is also a result on the other side: 

We’ll need a lemma that could have many other applications to the theory of 

rank one perturbations: 
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Lemma (2.2.16)[47] : Let η be a finite measure  on R and define a measure ν on 

R by 

                                     v(A) μ (A)dη(  ). (55)λ    

Let Fκ(z) =  dκ(x)/x − z be the Borel  transform  of the measure  κ.  Then 

Fν (z) = Fη (−1/Fµ(z)).                                                                                                                                (56) 

Proof.  By the definition (55): 

(z).μλ)F(λdη(z)vF   

Equation (47) implies the result. 

Lemma (2.2.17)[47]: Let 0 ≤α< 2 and let µ be  a measure  obeying  µ(x − δ, x + 

δ) ≤ Cδα  for some C and x and all δ > 0.  Then there exists C1 so that Im Fµ(x 

+ i) ≤ C1−(1−α)  for all >0.  Moreover, if µ(x − δ, x + δ) ≤ Cδα holds for 

some fixed C and all x and δ > 0, then there exists C1 so that Im Fµ(x + i) ≤ 

C1−(1−α) for all x and  > 0. 

Proof. 

 




 2ε2)yx(

)(ε)(xμFIm ydi 
  

2 2 2 2
n n 1x y| 2 |x y| 2

d (y) d (y)
( x y) ( x y)n 0|   

  
     

 



   

 

                                                      


 


0n )n(2

α)C(2αC
22

1n





  

                                                      )
0n

2)-n(221(
αC





 


  

so we see that the claim holds. 

Proof. The α = 0 case is trivial, so suppose 0 < α ≤ 1 and hα(S) > 0. Let  T1 = 

{x |  G(x) = ∞,  
0

lim


 F (x + i) exists and is finite and nonzero}. We’ll show 
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 hα(T1 ) > 0, so we can conclude that hα(T ) > 0.  For each λ  S1 ≡ S\{0, ±∞},  

sc
λμ  is  supported on T1 so µλ(T1 ) > 0. Since hα(S1) > 0, it is well known ([64]) 

that we can find a measure η so that η is supported by S1,  η(S1) > 0, and 

( , ) (57)x x C        

for all x and δ > 0. Let ν be given by (55). Then ν(T1) > 0. 

 By (57) and Lemma (2.2.16) there exists C1 so that 

Im Fη (x + i) ≤ C1
−(1−α)

 

for all x and  > 0. It follows from (56) that for x  T1, 

(1 α) (1 α) (1 α)lim lm F (x i ) C lim [lm( 1/F (x i ))] . (58)v 1 μ0 0
   

 
      

 
 

since G(x) = ∞ , we have 





G(x)

)i(xFIm

0
lim






 

and since ±∞   S1,  Fµ(x + i) → −λ
−1  0 so  [Im(−1/Fµ(x + i))]-1→ 0.  

Thus, we see from (58) that for all x  T1, 

 (x)v
α1Q  

and if α < 1, then (x)vQ α1 = 0. Since ν(T1 ) > 0, Corollary (2.2.19) (along with 

its  remark) implies that hα(T1 ) > 0. The fact that in the α < 1 case T1  is not 

hα-sigma finite follows from Lemma (2.2.11). 

Theorem (2.2.18)[47]: Suppose µ is purely singular. Let S ={λ|Aλ has some 

continuous spectrum}.  Let T = {x | G(x) = ∞}.  Then 

dim(S) ≤ dim(T ). 

In particular, if T has Hausdorff dimension zero, so does S. 

Rank one perturbations can be described by a measure µ given by 

  zx
(x) d)1)zA(,(   

where A+λ(, · )  is the rank one perturbation,  so we’ll phrase our examples in this 
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section in terms of dµ.  To make things operator theoretic, one can always take H = 

L2(R, dµ), A= multiplication by x, and  the function  (x) ≡ 1. 

We’ll discuss four classes of examples in this section: 

(i) Point measures with rapidly decreasing weights for which we’ll show that 

the  perturbed spectrum is supported by a set of Hausdorff dimension zero. 

This    class is relevant for our study of localization. 

(ii) Point measures where for a.e. λ, dµλ has exact dimension α0. These are 

variants of the measures in [59]. 

(iii) A family of singular continuous measures where one can calculate many 

distinct dimensions.  

(iv) A set  of examples that  show {x |G(x) < ∞}  can have any dimension and  that 

have point spectrum embedded in singular continuous spectrum. 

Example (2.2.19)[47]: Point spectrum with decaying  weights Given a sequence 

of sets An , we call 
1

,m
n m n

A A
 

 
 , the lim sup(An) consisting of points in infinitely 

many An ’s. 

Lemma (2.2.20)[47]: Suppose that for a family of intervals An, we have for each j 

> 0 

.                                 (59) j
n jA C n   

Then A∞ = lim sup(An) is a set of Hausdorff dimension zero. 

Proof.  |An|→ 0 so given δ, choose N0  so |An| ≤ δ for n ≥ N0 . Then for m ≥ N0, 

n
n m

A



  is a δ-cover of A∞. Thus, 









mn

jαα
jδα, n  C)A(Q  

a fixed α > 0, pick j so jα > 1. Then the sum is finite and clearly, 

.0n  infC)A(
mn

αj

0Nm
α
jδα, 









Q  

Thus, hα(A∞) = 0 if α > 0 and so A∞ has dimension zero as claimed. 

Theorem (2.2.21)[47]: Suppose dµ(E) = 
1

n
n

a



   where an obeys the condition (ܧ)ாߜ݀
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λ 

that for all j, there is a Cj with   

|an| ≤ Cj n−j .                                                          (60) 

Then for every λ, dµλ is supported on a set of Hausdorff dimension zero. Moreover, 

dµλ is pure point except for a set of λ’s of Hausdorff dimension zero. 

Proof. Let G(x) be defined by (51) and let }}E{ x ,  G(x) |{x   S 1ii

 . Then the 

Aronszajn-Donoghue theory [58] says that for any λ   0, dµsc
λ , the singular 

continuous measure for Aλ   is supported by S. Thus, the spectral measure dµλ is 

supported by S  {eigenvalues of Aλ}.  Since the set of eigenvalues is a zero-

dimensional set, it suffices to prove that S is zero-dimensional. The final assertion 

then follows from Theorem (2.2.18). 

Let bn  = 3 na  and let An = [En − bn, En + bn ]. Then 

1/3 /32 j
n jA C n   

for any j, so An obeys (59).  Thus, A∞ ≡ lim sup(An ) has dimension zero. 

We claim S  A∞ . To prove this, we need only show if x A∞ and x {Ei }1i

then G(x) < ∞.  But if x ∈/ A∞, then for some N0, x ∈/ 
0

n
n N

A



  so 

1/3
2 n2 n N| n0N Nn0 0

n n
n n

a a
ab|x E 

  

 
    


 

by (60).  Since x {Ei }1i  ,  

0 1

2
1

N
n

n n

a
x E



 
  

so G(x) < ∞ as required. 

Example (2.2.22)[47]: Perturbed measures of prescribed exact dimension our 

second class of examples is intended to  show that  it  can happen that  for any α0 ∈ 

[0, 1], there is a rank one perturbation situation where µλ [0, 1] is a measure of 

exact dimension α0 for a.e. λ (w.r.t. Lebesgue measure). All our unperturbed 

measures in this example will live on [0, 1] and be point measures. The third set of 
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examples will be similar but the unperturbed measures will be continuous. For each 

n = 0, 1, 2, . . . let 

2

/2
0

1 , (61)
2

n

nn n j
j

dd 


   

and for α ∈ (0, 1) define 

 1

0
2 . (62)n

n
n

ddv 
 


 



  

For any x0∈ [0, 1] and n, there is / 2nj  within 12 n   of x0, so  

 1
0 01 1

1 1, 2 .
2 2

n
n nx xv 


 

 

        
 

Thus for any >1, να(x0− , x0 + ) ≥ 
2−α so by (42),  for x0∈ [0, 1] and 0 <  Im 

Fνα (x0 + i) ≥ ½ 
1-

 . So the set Sα of Theorem (2.2.13) is all of [0, 1], and so 

(by Theorem  (2.2.13)): 

Theorem (2.2.23)[47]: Fix 0<α<1. Let dνα be the measure (61),(62) and let dνα;λ  

be its rank one perturbations. Then for any λ ≠ 0, dνα;λ  gives zero weight to any S 

 [0, 1] of dimension β < α. 

On the other hand, suppose (for 
2n
j  closest to x0) 

  n(1 η)δ0 (63)0 nn
j| | 2

2
x 

 
    

for some η, δ0  > 0. Pick 1 < γ < (2 − α)/(1+ η). Then  

 

12 10

1

2

2 2 .

(y) dy
γ γ| y| |x y|n

nn
n

x y

nn
n

d
x

C





 



 

 

  

  
 

 
 




 

Thus, by (61),(62) 

     1 1 12
0

0 00

C 2 2γ|x y|
nn

n n

dv y      
 

           

 

       
   

by the choice of γ and α + γ < 2. 
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The measure of the set of x0 ∈ [0, 1] where (63) fails 0
0

2 n

n







 and is arbitrarily 

small if δ0 gets small. Thus, 

Lemma (2.2.24)[47]: For any γ < 2 - α and a.e. x0 [0, 1],
 
 

dv (y)
.γ|x y|0

 


 

Since γ can be taken arbitrarily close to 2 − α, we see by Proposition (2.2.6) and 

Lemma (2.2.17) that the set Ŝ  of Theorem (2.2.14) has Lebesgue measure 1 if β>α. 

Thus,  0,1 \ ˆ 0S  
 . By the result of Simon-Wolff (4),   0,1 \ ˆ 0S  




  for 

a.e.λ. Thus, by Theorem (2.2.14): 

Theorem (2.2.25)[47]: Fix 0<α<1. Then for a.e.  λ, να;λ is supported on a set of 

dimension α. In particular,  να;λ[0, 1] is of exact  dimension α. 

If we take dν1= 2

1n

n





 dµn, it is not hard to see that for all λ ≠ 0,ν1;λ ↾[0, 1] 

is of exact dimension one. Thus, we see that for any α ∈ [0, 1] there are examples 

with singular spectrum of exact dimension α (in [0, 1]) for a.e. λ (and for α = 0, for 

all λ). 

Example (2.2.26)[47]: Some  number theoretic  examples 

Our third class of examples illustrates change of dimension from singular 

continuous to singular continuous spectrum. Details will be presented in [47]. 

These examples will depend critically on the binary expansion of a number x 

in [0, 1]. Given such an x, we can expand it, viz. 

0

( )

2
n

nn

x
x






                                                           (64) 

We deal with the non-uniqueness for binary decimals (e.g., numbers of the form 
2n
j

) by requiring ܽ(ݔ) = 0 for ݉ large for such ݔ (except for ݔ = 1). Thus, (64) 

defines a map of {0, 1}ே
ி
→ [0, 1], and ݔ → {ܽ(ݔ)} defines a left inverse. 

Any measure λ on {0, 1}ே defines a measure µ on [0, 1] by (ܣ)ߤ =
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,  be the product measure on {0ܣ For any p with 0 <p < 1, let .([ܣ]ଵିܨ)ߣ 1}ே with 

each factor giving weights p to 0 and (1 −  to 1, that is, the ܽ’s are i.i.d.’s with (

density pdδ0 + (1 − p)dδ1 .  Let µp be the corresponding measure on [0, 1]. 

Two dimensions will arise below: 

ln (1 )ln(1 )( )
ln2

p p p pH p                                          (65) 

ln (1 )( ) 2 2 ( )
2ln2
p pL p p                                          (66) 

We note that 

()ܮ < ()ܪ < 																,1 ≠
1
2

 

(but in fact H(p)− L(p) ∼= 0((p − 
2
1 )4) for p near ½ so they are very close for most 

p’s). Notice also that H(p)> 0 and that 

2 3 2 3( , ) ( ) 004 4p I L p      

(I0  is about (0.07, 0.93)). 

Theorem (2.2.27)[47]: (I) dµp has exact dimension H(p). 

(ii) Suppose  p I0 . Then for a.e. λ w.r.t. Lebesgue measure, the restriction 

to [0, 1] of the rank one perturbation of dµp has exact dimension L(p). 

(iii) If p  0I  , then for a.e.  λ, the rank one perturbation of dµP is pure point 

(iv) If p  ( ¼ , ¾ ) , p ≠ ½ , then for all λ, the restriction to [0, 1] of the rank 

one perturbation of dµp is purely singular continuous (so we have an example with  

singular continuous spectrum  for all λ). 

Example (2.2.28)[47]: Examples with pure point spectrum 

Our last class of examples will show {x|G(x)<∞} can have any Hausdorff 

dimension, and also provid examples where dµλ  has a singular continuous component 

for all λ ≠ 0 but sometimes mixed with embedded point spectrum. In this example, dµ 

will be a measure fixed once and for all with supp( ) = [0,1] and 

( )( ) 2( )
d yG x
x y


    
 

on [0, 1].  Three possibilities to keep in mind are: 
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(i) χ[0,1](x) dx which is absolutely continuous. 

(ii) dµp, the measure of Example (2.2.26) with p ( ¼, ½ )  where G(x) = ∞ by 

Theorem (2.2.27). 

(iii) Any of the point measures dνα  of Example (2.2.22) having 

G(x0 ) =  1
00

lim Im vF x i


 


     for all x0   [0, 1]. 

These show there are such µ with any spectral type. 

Theorem (2.2.29)[47]: Let C be an arbitrary closed nowhere dense set in [0, 1]. 

Let µ be a Borel measure on [0, 1] with Gµ(x) = ∞ on [0, 1] and ∫݀(ݔ)ߤ = 1. Let: 

dν(x) = dist(x, C)2  dµ(x). 

Then, supp(ν) = [0, 1], Gν (x) = ∞ on [0, 1]\C and Gν (x)  ≤ 1 on C . 

Proof. If x C , dist(x, C) = δ > 0 since C is closed.  Thus,  

( )2( ) ( )2 2( )| | /2

d yG xv x yx y




  

 
 

since Gµ(x) = ∞. On the other hand, if x C , 
2

2
( , )( ) ( ) ( ) 1
( , )v

dist y CG x d y d y
dist x y

      

since dist(x, y) ≥ dist(C, y).  Finally, since [0, 1]\C is dense, supp(dν) = [0, 1]. 

Now let ν̃  be ν/[dν]. Then for every x  C , Gν̃ (x)  N
1 for N = ∫dν. 

Consider now the rank one perturbation dν̃ λ of dν̃ . From (53), we see each pure point 

has weight at least 2
N


 so there are at most 

2

N
  pure points (since dν̃λ is normalized 

in (53)). Thus, 

Proposition (2.2.30)[47]: If N = ∫dν(x) for the measure ν of Theorem (2.2.29), 

then Aλ ≡ A + λ(, · ) has at  most 
2

N
  eigenvaluesin [0, 1]. In particular, if λ2 < 

N ,  Aλ  has  purely singular continuous spectrum  in [0, 1]; and for any λ, σsc (Aλ ) 

= [0, 1]. 

One of our goals in this section is to prove that local perturbations of random 

Hamiltonians in the Anderson localization regime, while they may produce singular 

continuous spectrum, always produce zero-dimensional spectrum, in the sense that the 
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spectral measures are all supported on a set of Hausdorff dimension zero. We’ll use 

Theorem (2.2.21). Naively, one might confuse exponential decay of eigenfunctions in 

Zν  (as in |n(m)| ≤ Cne−A|m| ) with exponential decay in eigenfunction label (as in 

|n(0)| ≤ C e−B|n|) which allows one to apply Theorem (2.2.21). In fact, they are 

distinct — indeed, if ν ≥ 2, we will not prove that |n(0)| ≤ Ce −B|n| but only |n (0)| ≤ 

C exp(−B|n|
1/ν ) , also see [47]. 

Throughout this section, n is an eigenvalue label and m is a Zν point. It will 

be convenient to take the norm |݉| =
1,...,

max
j v

|mj | on Zν. 

Definition (2.2.31)[47]: Let H be a self-adjoint operator on ).(2 vZ  We say that ܪ 

has semi-uniformly localized eigenfunctions  (SULE), pronounced “operators  with a 

soul,” if and only if H has a complete set 
1nn }{ of orthonormal eigenfunctions, 

there is ߙ > 0 and mn Zν ,  n = 1, . . . , and for each δ > 0, a Cδ  so that 

|n(m)| ≤ Cδ e
δ|mn |−α|m−mn |                        (67) 

for all m  Zν and n = 1, 2, . . . . 

Thus, eigenfunctions are “localized about” points mn. We use the “semi” in 

SULE because one can define ULE by requiring the bound with δ = 0. The theory 

below extends to this case, but we’ll restrict ourselves to the SULE case. We’ll  

show that large classes of models, including the Anderson model in any dimension 

and the almost Mathieu operator, do not have ULE. 

Below we’ll first prove a result about the number of mn in a box of side L, 

essentially proving that the number grows like Lν  as L → ∞. This will show that 

local perturbations of SULE operators have zero-dimensional spectrum. Then, we’ll 

relate SULE  to dynamics and to Green’s function localization; essentially, SULE 

always implies dynamical localization, and if the spectrum is simple, dynamical 

localization implies SULE.  This will imply that Anderson-model Hamiltonians have 

SULE. 

[47] has an example to show that a Jacobi matrix can have localized 
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eigenfunctions which are not (semi) uniformly localized. 

Let  

1|)(m| 2
n 

m
         = 1, 2, . . . ,          (68) 

1|)(m| 2
n 

m
        each m  Zν .       (69) 

Lemma (2.2.32)[47]: For each  > 0, there  is a D so that  for each n and L: 

2/||

)|(|||

2
n |)(m| nmL

Lnmnmm
eeD 



 


  

Proof:  By hypothesis, we can find C )1(
  so 

|n(m)| ≤ C )1(
 e

α[|mn| /2−|m−mn | ] .  

If |m − mn | ≥ (|mn | + L), then |m − mn | ≥ 2
1  |m − mn | + 2

 |mn| + 2
 L so in that regime 

|n(m)| ≤ C )1(
 e

-α L/2
 e

 -|m−m
n

 | /2 . 

so 
2/||

|2)1(

)|(|||

2

||||
|e][|)(mn| nmLkL

Lnmnmm
eeDeC

nmk

















 

as claimed. 

Theorem (2.2.33)[47]: Suppose H has SULE. For each L, #{n||mn | ≤ L} is 

finite and 

vLL )12(
1lim


#{n | |mn | ≤ L} = 1. 

Proof.  To get the upper bound, we’ll use the fact that functions localized in a box of 

side 2L contribute most of their norm to a box of side 2(1 + ) L.  By the lemma, if 

|mn| ≤ L, then 

L

nmLnmmLm
eD 


 


 2

)||(||)21(||

2 |)(mn||)(mn|
 

and so by (68), 

.D1|)(mn|
)21(||

2 Le
Lm









 

Thus by (69), 
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| | (1 2 )

| |

| | (1 2 )

2[2(1 2 ) 1] | ( ) |

2| ( ) |

n

all n
m L

n sothat m L
n

m L

vL mn

mn


 



  



 





  


 

#{ | | | }(1 ).Ln m L D en



    

Thus, #{n | |mn|≤ L} is finite and 

lim  (2L + 1) −ν #{n | |mn|≤ L}≤ 1.                                  (70) 

In particular, 

#{n | |mn|≤ L}≤ c0 Lν                                                (71) 

for some c0  and all L ≥ 1. 

To get the lower bound, we’ll use the fact that wave functions localized far 

outside a box of side 2L cannot contribute much to the wave function sum inside that 

box. Explicitly, suppose that  

|mn| ≥ 




1
1 L and |m|≤ L. 

Then we claim 

|m − mn|≥ (|mn| + L) 

for 

).||(||)1
11()1

11(|||||| LnmnmnmLnmnmm 




 


  

Thus by Lemma (2.2.32), if 

1| m | ,n 1 L


   

then 

2/||αLα

||

2 eD|)(mn| nm

Lm
e 

 


  

so 

α L α /22 α L/2| (m) | ( 1) }D e e D en
1 0| | 1

| |

#{ | n
kLm k L

kn sothat m Ln
m L

n     
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by (71). 

Thus by (69), 

α L /22 1(2 1) | (m) | #{ } D en
1

| |

,n
vL n m L

all n
m L

 
    





  

from which one immediately sees that 

|≤ L}≥ 1.n#{n | |m −ν(2L + 1) lim  

Combining this with (70) yields the theorem. 

Corollary (2.2.34)[47]: Suppose that H has  SULE. Then there are C and D and 

a labeling of eigenfunctions so that 

|n(0)| ≤ C expቀ−ܦ
ଵ/௩ቁ.                                          (72) 

Proof. Reorder the eigenfunctions  so |mn | is increasing. By Theorem (2.2.33), |mn |/ 
2

1  

n
1/ν → 1 as n → ∞ so |mn| ≥ 

3
1  n

1/ν − C0 for some constant C0.  By (67), we get 

(72); indeed, we see D can be taken arbitrarily close to 
2

1  α. 

Combining this corollary with Theorem (2.2.21), we see: 

Theorem (2.2.35)[47]: Suppose that H has SULE. Let Hλ= H + λ(δ0, · )δ0 . Then 

for every λ, the spectral measures for Hλ are supported on a set of Hausdorff 

dimension zero. Moreover, Hλ has pure point spectrum except for a set of λ’s of 

Hausdorff dimension zero. 

Next, we relate SULE to other conditions. We’ll suppose H has simple 

spectrum, although one can easily extend this to examples with spectrum having a 

uniform finite upper bound on multiplicity. 

Definition (2.2.36)[47]: Let H be a self-adjoint operator on )(2 vZ .We say that H 

has semi-uniform dynamical  localization  (SUDL) if and only if there is α > 0 and 

for each δ > 0, a Cδ  so that for all q, m   Zν : 

t
sup |(δq , e

−itH δm)| ≤ Cδ e
δ|m|−α|q−m| .                          (73) 
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We say that  H  has semi-uniformly  localized  projections (SULP) if and only if H  
has a complete set of normalized eigenfunctions and there is α > 0 and for each δ > 
0, a Cδ  so that for all q, m  Zν : 

|(δq ,P{E} δm )| ≤ Cδeδ|m|-|q-m|  

for all spectral projections P{E}  onto a single point (uniformly in E). 

Theorem (2.2.37)[47]: Let H be a self-adjoint operator on )(2 vZ with simple 

spectrum.  Then the following are equivalent: 

(i) H has SUDL. 

(ii) H has SULP. 

(iii) H has SULE. 

Proof: (i)  (ii):  Follows immediately from 

P{E}  = -1lim .2
T iEs iHs

T T
s e e dsT 
   

 (ii)  (iii): Label the eigenvalues of H :  E1, E2 ,... .  For each En  spec(H),  

pick an eigenfunction n( · ), unique up to phase. Then by (ii): 

|n(q)n(m)| ≤ Ce
δ|m| e

−α|q−m| .                                   (74) 

Since n߳ 2 , it takes its maximum value so choose mn so that 

|n(mn)| = |n(m)|.                                               (75) 

Then by (74)(75), 

|n(q)|2  ≤ |n(q)|  |n(m)| ≤ |n(q)| |n (mn)|  

|||| nmqenmeC  
  

so H has SULE  by taking square roots. 

(iii)  (i):  Let n be the eigenfunctions and En eigenvalues. Then 

 
so, assuming SULE, 

2 | | (| | | |)2sup | ( , ) | ( ) ( ) (76)
t

m q m m mitH n n ne q m C e eq m n nn n

 
    

        

m
sup

m
sup

(m)e(q))δe,(δ n
nitE

n
nm

itH
q   
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Now, 

|q − mn| + |m − mn| ≥ |q − m| 

and 

|q – mn | + |m – mn |   |mn| - |m|. 

Thus, 

݁ିఈ(|ି|ା|ି|) ≤ ݁ିଷఋ||݁ଷఋ||݁ି(ఈିଷఋ)|ି|	.	

So, by (76) 

sup
t

 |(δq , e−itH δm)|≤ 2
C e3δ|m| e−(α−3δ)|m−q| A0 

where 

| |
0 .mn

n
A e 

   

By (71) which follows from SULE, A0  is finite. 

One can prove by the above means a result that shows that if H has simple 

spectrum and tsup |(,e−itH δn )| ≤ C e−α|n|, then the spectral measure for  can be written 

∑ ܽ݀ߜா
ஶ
ୀଵ where |an| ≤ De−βn1/v if the En’s are properly labeled. That is, one can 

prove a result that requires less uniformity than the full-blown theory assumes. 

Finally, we turn to when any, and hence all, of the conditions of Theorem 

(2.2.37) hold in the context of the Anderson model. We’re dealing here with models 

depending on a random parameter so we first reduce SUDL to a requirement on 

expectations.  General considerations [69,70,71] imply that the spectrum is simple in 

the localized regime. 

Theorem (2.2.38)[47]: Let (Ω, µ) be a probability measure  space  and E( · ) its 

expectation. Let ω → Hω  be a strongly measurable map from Ω to the self-adjoint  

operators on )(2 vZ which is translation invariant in the sense that  for each  mZν , 

there  is a measure preserving Tm :Ω → Ω so HTmω = UmHω 1
mU   where (Um)(q) = 

(q − m).  Suppose that 

E( |(δq , e
−itHω δ0 )| ) ≤ C1e

−α|q|                                (77) 

for some  α > 0 and that  Hω   has simple  spectrum  for a.e. ω. Then for each 

t
sup
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 β < α, for a.e. ω, there is a Cω < ∞ so that for all 0 <  ≤ 1 

|(δq , e
−itHω δm)| ≤  )(||

1
qmemev

C 




  

In particular, a.e. Hω has SULE. 

Proof. Let 

     1

,

1 sup , .
v m q itH

q m
tm q

Q m e e   
      

Then by (77), 

E( Q (ω)) < ∞ 

so Q(ω) < ∞ for a.e. ω.  But for such ω, 

sup , itH
q m

t
e   ≤ Cω(1 + |m|)

ν+1
e

−β|m−q| .  

The result now follows from the trivial bound (1 + x)ν   ≤ νν ex−ν  for  ≤ 1. 

Delyon-Kunz-Souillard [72] have proven this bound for a general class of one-

dimensional random potentials.   

Theorem (2.2.39)[47]: (Aizenman’s theorem) Let  Vω (n)  be  a family  of 

independent identically distributed random  variables  (indexed  by n  Zν ; ω  Ω is 

the  probability parameter ). Suppose H0   is an operator on )(2 vZ commuting with 

translations and Hω = H0 + Vω with Vω  viewed  as a diagonal  matrix.  Suppose Vω 

(n)  has a distribution  g(λ) dλ with g  L∞ and has compact support.  Suppose 

| |1( ,( 0) ) (78)
sb nE H i d Cena

   
     
 

 

for some s  (0, 1).  Then 

E( sup
t

 |(δn, e
−itHω P[a,b](Hω )δ0 )| ≤ C̃ e

−µ|n|/(2−s)
                      (79) 

where C̃  only depends  on s and the distribution  g. 

Combining this result with those of Aizenman-Molchanov [73,74], we see that 

the strongly coupled multi-dimensional  Anderson model has SULE. 

Anderson localization (at least as proven in [209]) implies that if ⃗ݔ is the 

operator 

t
sup
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(xi ψ)(m) = miψ(mi)      i = 1,..., ν, 

then in the localized regime, 

sup
t

(e−itH δ0 , x2 e−itH δ0 )  ∞.                                              (80) 

It follows from the RAGE theorem (see, e.g., [57,75]) that (80) implies that H has 

pure point spectrum. 

For operators H with dense pure point spectrum, it is proven in [1,48] that for a 

Baire generic set of λ, Hλ = H +λ(δ0, · )δ0  has only singular continuous spectrum and 

so for such Hλ's, (80) must fail. Our purpose in this section is to show that the failure 

is only very mild. x2(t)≡(e
−itH

δ0,x
2
e

−itH
δ0) is unbounded but grows at worst 

logarithmically! 

Theorem (2.2.40)[47]: Suppose that H is a self-adjoint operator on) )(2 vZ  with 

SULE.  Let Hλ = H + λ(δ0 , · )δ0 . Then 

)0)2(,0()(2 
itH

enx
itH

etnx


  

obeys 
ntnCtnx 2|)|(ln)(2   

for |t| large. 

Proof.  Write a DuHamel expansion: 

  (δm, itHe  δ0 ) = (δm , e−itH δ0 ) − iλ 
t

0
(δm , e−isH δ0)(δ0 ,  i t s He   δ0) ds.   (81) 

Since H has SULE, by Theorem (2.2.37), 

t
sup |(δm, e−itH δ0 )|≤ Ce−α|m|  

for suitable C and α. Plugging this into (81) and using |(δ0 , e−itH
λ δ0 )|≤ 1, we see that 

            |(δm, itHe  δ0 )|≤ Ce−α|m|[1 + |λ| |t|].                                      (82) 

This would seem to give linear growth in t for mmx
212 trivial bound but we’ll 

combine it with the 


m

|(δm, itHe  δ0 )|2  = 1.                                                   (83) 

Use (82) only if |m| > 2 ln(1 + |λ| |t|)/α ≡ G(t).  In that regime (82) says that 
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|(δm, itHe  δ0 )| ≤ C e−α|m|/2.  

Thus, 

G(t)|m| (m2 )n|(δm , itHe  δ0)|2  ≤ Cn 

and obviously by (83), 
2 2 2

0| |  ( )
( ) | ( , ) | ( ( )) ,

itHn n
mm G t

m e G t 



  

so )(2 tnx ≤ (G(t))2n + Cn, as claimed. 

In fact, the proof shows that 

.)2
α((t)x|)t|(ln

|t|
iml 2n2n2n  
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Chapter 3 

Generalization of Projection Constants and Minimal- Volume 

 

We show some characterization of sufficiently Enlargements. Our main result 

is that for some subspaces there exist minimal-volume shadows that are far from 

parallelepipeds with respect to the Banach–Mazur distance. 

 

Section (3.1): Sufficient Enlargements: 

Let X be a Banach space and let Y be a finite dimensional subspace. We 

denote the unit ball of X by B(X). Let P:  X Y be some continuous linear 

projection.   Then P(B(X))  B(Y) and P(B(X)) is a convex, symmetric with respect  

to 0, bounded  subset  of  Y.  

Let X be a finite dimensional normed space. 

Definition (3.1.1)[76]:  Asymmetric with respect to 0 bounded, closed convex 

body A   X will be called a sufficient  enlargement  for X  (or of B(X)) if for 

arbitrary isometric embedding  X  Y  there  exists  a projection  P: Y X such that  

P(B(Y))  A. 

Convention (3.1.2)[76]: We shall use the  term  ball for symmetric  with respect  to 

0, bounded, closed convex body with  nonempty interior in a finite dimensional linear 

space. 

We use standard definitions and notation of Banach space theory (see [77], 

[78]). 

    Let A be a ball in a finite dimensional space X. The space X normed by the 

gauge functional of A will be denoted by XA. 

We start with some simple observations. Their proofs are straightforward 

and we omit them.  By  we denote the L-factorable norm (see [78]). 

 

Proposition (3.1.3)[76]: A ball A is a sufficient  enlargement  for X  if and only 

if   (I)  I, where I  is the natural  identity mapping  I : X  XA. 
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Corollary (3.1.4)[76]: If X and Y are Rn with different norms and B(X) 

B(Y) then every sufficient enlargement for Y is a sufficient enlargement  for X. 

Corollary (3.1.5)[76]: Let  T: X   Z  be an invertible  linear operator  between 

finite  dimensional normed  spaces. Then: 

 (T) .T-1 (B(Z)) 

is a sufficient enlargement  for X. 

Corollary (3.1.6)[76]: A symmetric  with respect  to 0 parallelepiped containing 

B(X) is a sufficient enlargement  for X. 

Proposition (3.1.7)[76]: [79,80,81,82] Convex combination of sufficient  

enlargements  for X is a sufficient enlargement  for X. 

The same is true for integrals with respect to probability measures.  In order 

to make this statement precise we need to introduce a notion of integral of 

function, whose values are convex subsets in Rn         

 I introduce the notion of integral for convex body-valued functions as some 

mixture of Riemann and Lebesgue integrals.  This  definition  of integral  is 

somewhat  unnatural, but  it is sufficient for our purposes  and  at  the  moment I 

do not  want  to overcome difficulties which appear  for more general  notions of 

integral. 

Let M be a compact metric space with a regular Borel probability measure 

. (The main example for us is the group of orthogonal matrices in Rn or its closed 

subgroups with the normalized Haar measures). 

The set of all compact convex subsets of Rn will be denoted by C(n). We 

shall consider C(n) as a metric  space with the Hausdorff metric: 

})A,b(distsup,)B,a(distsupmax{)B,Ad(
BbAa 

  

Recall the following well-known fact: C(n) is complete  with  respect  to d. 

For this and other results on convex bodies we refer to [83,84,85]. 

Let f : M   C(n) be a continuous  function. 

Definition (3.1.8)[76]: The integral of f with respect  to measure    is defined to 

be: 



71 
 

)),((M))(af(lim:μ(m)f(m)d
)k(

1i0Δdiam ii   





M
               (1) 

where  is a pair consisting of a partition of M onto a finite number  of 

measurable  subsets )(
1})({ 
 k

iiM  and a family )(
1})(,{ 
 k

iia  of points for which 

)()({  iMia . Diameter of  is defined to be the maximum of the diameters of 

the sets  iM  () (i = 1, ... ,k())  in the metric space M.  The limit in (1) is considered 

in the Hausdorif metric. 

A proof that the integral exists can be obtained in the same way as the 

proof of existence of Riemann integral in classical analysis. 

Proposition (3.1.9)[76]: [82,86,87,88]  Let  X = ( Rn , ||.|| ) be a normed  space and  

M  be a compact  metric space with a probability  measure .   Suppose  that  a 

mapping  f :M  C(n) is continuous  and  that  f(m)  is a sufficient  enlargement  for 

X  for all  m M.  Then: 


M

mdmf )()(   

is also a sufficient enlargement  for X. 

Corollary (3.1.6) and Propositions (3.1.7) and (3.1.9) supply us with the 

following family of sufficient enlargements for a space X:  parallelepipeds  

containing  B(X), their  convex combinations and integrals with respect  to 

probability  measures. It is natural to ask:  is it true that any sufficient enlargement 

contains some sufficient enlargement  of the described  type? 

The answer to this question is negative. The first example was found by 

V.M.Kadets (1993). In his example X is a two-dimensional space, whose unit ball is 

a regular hexagon.  The space X can be isometrically embedded into .3
l  

Let P :  .3
l   X  be the orthogonal  projection.  It is clear that A: = P(B( 3

l ))  

is a sufficient enlargement  for X.  V. M. Kadets  proved that  A does not contain any 

integral with respect  to a probability  measure of parallelograms  containing B(X). 

Our purpose is to prove that  analogous examples can be constructed  even for 

two dimensional  Euclidean  space. 
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Theorem (3.1.10)[76]:  There  exists  a sufficient  enlargement  for .2
2

l  which  does 

not contain  any integral with respect to a probability measure  of parallelograms 

containing B( 2
2

l ). 

Proof. Let us denote by S1 and S2 the operators of counterclockwise rotation  of  2
2

l

onto  2/3  and  4/3  respectively.  Let 1e  and  2e  be the unit  vector basis of 2
2

l  

and *
1e and  *

2
e be its biorthogonal  functionals . 

It is easy to verify that  for all x, y  R2, ||y||2  = 1 we have 

.)SySx,SySx,yyx,(3
2x 2211 yy  

Let y = e2. We have the following factorization of the identity  operator  on 2
2

l : 

2
,2

32
2

, lllRQI
RQ



  

where 

},,,,,,{)( 22212 eSxeSxexxQ   

                                          R ({a0,a1,a2 }) =  3
2  (a0e2 + a1S1e2 + a2S2e2 ). 

Hence the Minkowski sum of the line segments 

A = 3
2 ( [- e2,e2] + [-S1e2, S1e2 ] + [-S2e2, S2e2] ) 

is a sufficient enlargement  for 2
2

l . 

It is easy to verify that  A is a regular  hexagon with 

sup{ *
1

e (x)  :  x  A}  =  .
3

2  

We need the following lemma. 

Lemma (3.1.11)[76]  : Let  P  be a parallelogram  containing B( 2
2

l ).  Then 

sup{ *
1

e (x): x  3
1 (P + S1P + S2P)} > .

3
2  

Proof. We represent P  as a sum of two line segments:  P[-f1,f1] +[-f2,f2]. We 

introduce the notation 
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a := sup{ *
1e (x) : x  3

1 (P + S1P + S2P)}. 

We have 

a = 3
1  (| *

1e (f1)| + | *
1

e (f2)| + | *
1

e (S1f1)| + | *
1

e (S1f2)| + | *
1e (S2f1)| + | *

1e (S2f2)|). 

Set 

t(f1)  := 3
1 (| *

1
e (f1) | + | *

1
e (S1f1) | + | *

1
e (S2f1) |). 

Let us show that 

,
3

||1f||
)1t(f   

and  the  equality  is attained if and  only if the  angle between  f1  and  e2 is a multiple  

of  /3. 

It is easy to see that in order to prove this statement  it  is sufficient to consider 

the case when the angle α between f1  and e2  is in the  interval  ].
3

,0[     

We have 

).cos3α(sin3
||f||

))3
4παsin()3

2παsin(αsin(3
||f||

)|3
4παsin(||)3

2παsin(||αsin(|3
||f||)1t(f

1

1

1







 

It  is clear  that  for-vectors  of  the  same  norm  this  product  is minimal  if and only 

if  = 0 or  = /3.  In both cases we have t(f1)=ǁf1ǁ/ 3 .  So we have proved the 

assertion about t(f1). 

Since a = t(f1)  + t(f2), then: 

,
3

||2f||||1f||
a


  

and the equality  is attained if and only if the angles between f1,  f2 and e2 are 

multiples  of /3.  On the other  hand  since [ -f1, f1]  + [-f2, f2]  B( 2
2

l ),  then ǁf1ǁ, 

ǁf2ǁ l  and  if the  angles between  f1, f2 and  e2  are  multiples  of /3, then 

ǁf1ǁ+ǁf2ǁ  2. 
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Hence a > 2/ 3 . 

We return to the proof of the theorem. Suppose the contrary. Let M be a metric space 

with a probability measure µ and let F: M  C(n) be a uniformly continuous function 

for which F(m) is a parallelogram  containing B( 2
2

l ) for each m  M and 

 
M

.A)(dF(m) m  

Since A is invariant under action of S1 and S2, then 
1

1 23M
(F(m) S F(m) S F(m)dμ(m) A. (2)    

Hence 

                                
M 3

2
213

1 .)}(mμdF(m)SF(m)S(F(m)x:(x)esup{ *
1

   

This supremum equals to 

 
M 213

1*
1 ).(mdμ)}F(m)SF(m)S(F(m)x:(x)esup{  

By the lemma the integrand is 
3

2 for each m. Hence the integral is 
3

2 This 

contradicts (2).   
It is natural to consider an”isomorphic” version of the question above. I mean 

the following. If a sequence   }{X 1nn

  of finite dimensional normed spaces is such 

that for some sufficient enlargements An (n  N) for Xn, arbitrary 0 < C <  and 

arbitrary integrals  nl  with respect to probability measures of parallelepipeds 

containing  B (Xn) we have 

,n C . A     , InN n   

then we shall say that  {Xn}has property  N. 
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Section (3.2): Shadows of Cubes: 

Let Km   Rm be defined by Km ={(x1, ..., xm):|xi | ≤ 1 for every i{1, ..., m}}. 

We refer to Km as an m-cube. Let L be a linear subspace in Rm and P: Rm  L be a 

linear projection onto L. The set P(Km) will be called a shadow of Km in L. Using a 

compactness argument it can be proved that for every m N and for every subspace 

L  Rm there exists a linear projection that minimizes the volume of P(Km). In such a 

case the set P(Km) will be called a minimal-volume shadow of Km in L.  

It may happen that Km has many different minimal-volume shadows in L. we 

study the shape of minimal-volume shadows of cubes. It is known that among 

minimal-volume shadows in an arbitrary subspace there is always a parallelepiped 

(see Theorem (3.2.1)). Our main result is that there exist minimal-volume shadows 

that are far from parallelepipeds with respect to the BanachMazur distance. Such 

shadows can be found by a simple and explicit construction; see the beginning of the 

proof of Theorem (3.2.3). 

Initially this study was motivated by the study of sufficient enlargements (see 

[90]). Here we do not discuss this connection, because it is also a natural geometric 

problem.  

The following result is essentially known. It is implicitly contained in [91]. We 

prove it because our proof is more direct than the proof in [91] and we use our proof 

in further considerations. 

Theorem (3.2.1)[89]: Let L be a linear subspace in Rm. Let M be the set all minimal-

volume shadows of Km in L. The set M contains a parallelepiped. 

Proof.  Denote by m
iie 1}{   the unit vector basis in Rm.. Let n = dim L and let 

})(,....,)1({ nmieielinE   

where {i(1), ..., i( m- n)} is a subset of {1, ..., n}, be such that L  E=[0]. Let P be the 

projection of Rm onto L with kernel E. Then P(Km) is a parallelepiped. We endow Rm 

with the standard inner product and compute all volumes with the corresponding 

normalization. Let z1, ..., zm  Rm be such that iejizm
ijz ,1  . By det[z1, ..., zm] we 

mean the determinant of the matrix .1,],[ m
jijiz    
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  Let {x1, ..., xn} be some orthonormal basis in L. Then 

.
|])(,...,)1(,,...,1det[|

2)(
nmieienxx

nmKPVol


  

Suppose that E is chosen in such a way that 

|])(,...,)1(,,...,1det[| nmieienxx   

takes the maximal possible value. 

  Let Q: RmL be another projection. Let q1, ..., qm-n be an orthonormal basis in 

its kernel. We have 

1 (1) ( )

2( )
| det[ ,..., , ,..., ] |1 1

| det[ ,...., , ,...., ] |,
{ (1),..., ( )} {1,..., }

m n j j n

nmVol Q K
x x q qn m n

q q e e
j j n m






 


 

where the sum is over all n-element subsets of [1, ..., m]. (To prove this formula we 

first project the cube onto the orthogonal complement of the kernel of Q and use the 

well-known formula for the volume of a zonotope, see [92]. Then we use the 

previous formula.) 

In order to prove the theorem it is enough to show that 

vol P(Km) ≤ vol Q(Km)                                                    (3) 

Inequality (3) is equivalent to the following inequality: 

             |det[x1, ..., xn, q1, ..., qm-n]| 

                   ≤ |det[x1, ..., xn, ei(1), ..., ei(m-n)]| 

1 (1) ( )| det [ ,...., , ,...., ] |. (4)
{ (1),..., ( )} {1,..., }

m n j j nq q e e
j j n m

 


 

By the Laplacian expansion (see [93]) the determinant 

det[x1, ..., xn, q1, ..., qm-n] 

can be represented as 

1 1 1det det ,
{1,..., },

X Q
I m I n
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where XI is the n× n-submatrix of [x1, ..., xn] corresponding to I, QI is the 

corresponding (complementary) (m-n)×(m-n)-submatrix of [q1, ..., qm-n], and {I} are 

some signs.  

It is easy to see that by the choice of {i(1), ..., i(m-n)} we have 

.|det|max.|]
)(

,....,
)1(

,,....,1[det| IXInmjejenxx


 

It is easy to see also that 

1 (1) ( )| det [ ,...., , ,...., ] | det .
{ (1),..., ( )} {1,..., }

m n j j nq q e e QIj j n m I
 


 

The inequality (4) follows.  

Our next purpose is to show that there exist minimal-volume shadows that are 

far from parallelepipeds.  

Observe that each shadow is convex, closed, bounded and symmetric with 

respect to 0. A shadow of Km in L has a non-empty interior in L. Hence it is a unit 

ball of some norm on L. With some abuse of terminology we define the Banach-

Mazur distance between a shadow and a parallelepiped as the Banach-Mazur distance 

between the normed space correspondent to the shadow and dl , where d is the 

dimension of the shadow. We refer to [78] for basic facts on the Banach- Mazur 

distance. 

Convention (3.2.2)[89]: We use the term ball for a symmetric-with-respect-to-0, 

bounded, closed, convex body with nonempty interior in a finite dimensional linear 

space. 

We say that two balls are affinely equivalent if there exists a linear operator 

between the corresponding spaces that is a bijection of the balls.  

A Minkowski sum of (finitely many) line segments in Rn is called a zonotope 

(see [279] for basic facts on zonotopes). We shall consider zonotopes that are sums of 

line segments of the form [-x, x]. Such zonotopes are balls according to our 

convention. Let a1, ..., am be some collection of vectors in Rn. The Minkowski sum 

[ , ]
1

m
a ai ii




 

will be called the zonotope spanned by a1, ..., am. 
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Construction. Subspaces L satisfying the condition of the theorem can be found in 

the following way. Let Gn be a two-dimensional discrete torus with n vertices. (It 

means that Gn=Zk×Zk, where Zk is the group of residue classes of integers modulo k; 

vertices (x1, y1) and (x2, y2) are adjacent if and only if either x1=x2 and y1=y2 ±1 (in 

Zk) or y1 = y2 and x1=x2 ±1 (in Zk). We can visualize this graph drawing 2k circles on  

a usual torus; k of the circles are meridians and k are parallels.) 

We consider Gn as a directed graph, edges are directed in an arbitrary way.  

Let Mn be the incidence matrix of Gn, that is, an nx(2n) matrix whose rows and 

columns are indexed by the vertices and edges of Gn, respectively, and the column 

corresponding to an edge e has exactly two non-zero entries: -1 in the row 

corresponding to the starting vertex of e and 1 in the row corresponding to the end 

vertex of e.  

We consider rows of Mn as vectors in R2n. LetL be the subspace of R2n 

spanned by the rows of Mn.  

Definition (3.2.3)[89]: A matrix A with real entries is called totally unimodular if 

determinants of all submatrices of A are equal to -1, 0 or 1. 

Totally unimodular matrices is a very important object in integer 

programming. There exists a vast literature devoted to them (see [95]). We need only 

the following observation that goes back to H.Poincare : an incidence matrix of any 

directed graph is totally unimodular. (See [95] for historical notes  and a very short 

proof.) So, Mn is totally unimodular. 

Lemma (3.2.4)[89]: Let A be a totally unimodular  r × m matrix of rank l . Let L be 

the subspace in Rm spanned by rows of A. Let PL be the orthogonal projection onto L. 

Then 

(i) PL(Km) is a minimal-volume shadow of Km  in L. 

 (ii) PL(Km) is affinely equivalent to the zonotope in Rr spanned by columns of A. 

Proof. We rearrange the rows of A in order to get a matrix whose first l  rows are 

linearly independent. It is clear that the zonotope spanned by the columns of the 

obtained matrix is affinely equivalent to the zonotope spanned by the columns of A. 
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Hence without loss of generality we may assume that the first l  rows of A are 

linearly independent. 

By AT we denote the transpose of A. Let C be an upper-triangular r × r matrix 

such that the first l  columns of the product ATC form an orthonormal basis in L and 

the remaining columns contain zeros only. The existence of such matrices can be 

shown using the Gram-Schmidt orthonormalization process. We denote by D the l × l  

submatrix of C correspondent to the first l  rows and the first l  columns. It is easy to 

see that D is invertible.  

Straightforward verification shows that the product ATCCTA is the matrix of 

PL with respect to the unit vector basis of Rm.  

Let {x1, ..., xm} be an orthonormal basis in Rm satisfying the following 

condition: vectors{x1, ..., x l } are the first l  columns of ATC. Writing [xk, ..., xs] we 

mean the matrix with columns xk, ..., xs.  

We use results on compound matrices. We refer to [93] for necessary 

definitions and results. 

Let u ={ui} be an ( m
l )-dimensional vector, where ui are l × l  minors of [x1, ..., x

l ]. Since a compound matrix of an orthogonal matrix is orthogonal (see [93]), then u 

is normalized (with respect to the Euclidean norm). For the same reason the vector 

v=[vi] in the ( m
lm )-dimensional space, where vi are (m- l ) ×(m- l ) minors of [x 1l , ..., 

xm], is also normalized. 

Since the matrix [x1, ..., xm] is orthogonal, its determinant is equal to ± 1. On 

the other hand, by the Laplacian expansion (see [93]) the determinant is equal to 

1

m
l

u vi i ii


  
 



 

for proper signs i and for proper ordering of  ui  and v i . (Observe that ( m
l ) = ( m

lm

).) Since u  and v  are normalized, it implies that either ui = i v i for every i or ui = i v i 

for every i.  
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          Now we let n= l , Q = PL, and {q1, ..., q lm } = [x 1l , ..., xm] in the argument of 

Theorem (3.2.1). We get: vol P(Km)=vol PL(Km) is equivalent to 

             |det[x1, ..., xm]|=|det[x1, ..., x l , e i(1), ..., e i( lm )]| 

1 (1) ( )| det [ ,...., , ,...., ] |.
{ (1),..., ( )} {1,..., }

l m j j lx x e e
j j l m

 


 

 where {i(1), ..., i(m- l )] are chosen to maximize 

|det[x1, ..., x l
, e i(1), ..., e i( lm )]|. 

In terms of ui and v i this equality is 

max1 . (5)
1

m
l

u vi i ii

  
 

 


 

Let E be the matrix consisting of the first l   rows of A. It is clear that E is 

totally unimodular. It is easy to see that [x1, ..., x l ]=ETD. Therefore ui is equal to det 

D, 0 or - det D for every i.  

To prove equality (5) we observe that maxi |ui |=|det D|. Assume that ui=i v i 

for every i (the case ui = - i v i is similar). Then 1=|  i i ui v i |= |det D|2  , where  

is the number of non-zero ui 's (=the number of non- zero v i 's). On the other hand, 

.|
1

|||.2|det| max 










 m
l

i iviuD i  

It proves that PL(Km) is a minimal-volume shadow.  

The statement (ii) can be proved in the following way. Consider A as an 

operator from Rm to Rr. The image of Km under A coincides with the zonotope 

spanned by the columns of A in Rr. This zonotope spans a subspace of dimension l  in 

Rr (because l= rank A). The operator PL= ATCCTA: Rm  Rm also has l -

dimensional image. Therefore the restriction of ATCCT to the range of A is an 

isomorphic embedding. Therefore the image of Km under PL is a finely equivalent to 

the zonotope.  
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Lemma (3.2.5)[89]: If ln k  23C2+3, then the Banach-Mazur distance between the 

zonotope spanned by the columns of Mn and the parallelepiped of the same 

dimension is   C . 

Proof. Observe that the linear space spanned by the columns of Mn in Rn is (n-1)-

dimensional and it consists of all vectors whose sum of the coordinates is equal to 0. 

Let Xn be this space normed by the gauge functional of the zonotope. 

Observe that vertices of  the zonotope spanned by a1, ..., an are contained in the 

set 






  1:1 iiai

n
i   and that this set is contained in the zonotope. Therefore the 

maximal value of a functional f  over the zonotope is equal to  )(1 iafn
i  .Using this 

observation we can identify the dual space *
nX  of Xn with the space of functions on 

the set of vertices of Gn with zero average and with the norm 

 
vu

vfuff
~

)()(*  

where u ~v means that u and v are adjacent in Gn.  

We need to estimate the  Banach-Mazur d (Xn , 1


nl ) from below. Since d(X, 

Y) = d(X*, Y*) for every finite-dimensional spaces X and Y, then 

d(Xn, 1


nl ) = d( )1
1,*( nlnX . 

To estimate the distance  d )1
1,*( nlnX ) we use the approach that goes back to  

J. Lindenstrauss and A. Petczynski (see [96]). 

Recall that the 2-summing norm of an operator T: XY is defined to be the 

smallest constant C satisfying the condition 



































1*,:
1

2))((sup
1

2 2121

 X
n

i ixC
n

i iTx  

for every collection {x1, ..., xn} X. The 2-summing norm of T is denoted by 2(T).  

Let T: Z H be a non-zero operator, where H is a Hilbert space and dim Z = n. 

The dual form of the ``little Grothendieck theorem'' (see [79]; this form of the 

Grothendieck theorem [97] was proved in [91]) implies that 
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1 2 ( )2 2( , ) (6)1
Tnd Z l

T



   
 

 

So we need to find a Hilbert space H and an operator T: *
nX   H with ``large'' 

ratio 2(T)/ǁTǁ.  

With this purpose in mind we introduce the norm 
21

2))((2 







v
vff  

on the space of all functions on the set of vertices of Gn. We denote the obtained 

normed space by l 2(Gn). 

 Let In be the identical embedding of *
nX  into l 2(Gn).  

To estimate the norm of this embedding from above we use a Sobolev type 

inequality due to F. R. K. Chung and S.-T. Yau [98] (see, also, [99]).  

We need the following definitions. 

Definition (3.2.6)[89]:  Let G be a graph. By dv we denote the degree of a vertex v. 

Let X be some set of vertices of a graph G. Let vol X : = .vv X
d

  The number of 

edges joining X and its complement X~ is denoted by |E(X, X~ )|. We say that G has 

isoperimetric dimension    with isoperimetric constant c if 

|E(X, X~ )|  c (vol X) (-1)/  

Whenever vol  X ≤  vol X~ . The constant c  depends on  only. 

Definition (3.2.7)[89]: A graph G is called k-regular if d v   = k for every v . 

We need the following special case of [98]. 

Theorem (3.2.8)[89]: Let G be a connected k-regular graph with isoperimetric 

dimension 2 and isoperimetric constant c2. Let f  be a function on the set of vertices 

of G with zero average. Then 
2121 2))((

22~
)()( 






 

v
vfkc

vu
vfuf  

Observe that Gn is 4-regular. To apply Theorem (3.2.8) to Gn we need to 

estimate the isoperimetric constant c2 for this graph. Since the author has not found a 

proper reference, we present such an estimate (with the best possible constant). 
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Sublemma (3.2.9)[89]:  The graph Gn has isoperimetric dimension 2 with constant 

2 . 

Proof. Let X be a set of vertices of Gn with   X ≤  k2/2. Sets of vertices of the form 

{( x , 0), ( x , 1), ( x , 2), ..., ( x , k-1)} 

will be called meridians and sets of the form 

[(0, y), (1, y), (2, y), ..., (k-1, y)] 

will be called parallels.  

Let m1 be the number of meridians contained in X and let m2 be the number of 

meridians intersecting X. Let p1 be the number of parallels contained in X and let p2 

be the number of parallels intersecting X. It is easy to see that 

|E(X, X~ )| ≥ 2(m2 - m1) + 2(p2 - p1). 

We have also ≠ X ≥ m1k and  ≠ X ≥ p1k. Hence m1≤ k/2 and p1≤ k/2. We have three 

possibilities: 

(i) Both m1 and p1 are nonzero.  

(ii)   Exactly one of the numbers m1 and p1 is nonzero.  

(iii) m1 = p1= 0. 

 

(i) In this case m2= p2=k. Hence 

|E(X, X~ )| ≥ 2(m2-m1) +2(p2-p1) ≥ 





 






 

2
2

2
2 kkkk  

                                

.21)(221)(22
21

2

2
222 XvolXkk 
















 
(ii) We consider the case m1 ≠ 0 and p1= 0 (the case p1 ≠ 0 and m1= 0 is similar). 

In this case p2 =k and 

|E(X, X~ ) ≥ 2p2= 2k ≥ 2   (vol X)1/2. 

(iii) In this case ≠  X≤ m2p2 and 

|E(X, X~ )| ≥ 2(m2+p2) ≥4 21)(221)(422 XvolXpm   

Remark (3.2.10)[89]: If k is even and X is the union of 2
k  meridians (or 2

k  parallels), 

then 
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|E(X, X~ )|=2k = 2  (vol X)1/2. 

So the constant 2  is the best possible. 

By Theorem (3.2.8) we get 22
22* ff   for every f  with average 0. 

Hence .
2

1
nI  

To estimate 2(In) from below we use the approach developed by S. V. 

Kislyakov [287] for continuous case.  

Let p be the integer part of 2
1k . We introduce a family   P

tstsf 1,, 
 of functions 

on Gn in the following way. We consider Gn as {0, ..., k-1} ×{0, ..., k-1} and let 
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1),(,  

Observe that 

}1)*,*(:21)2|),(|,sup{

21)
2
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nXtsfts

tsfts
nI  

So we need to estimate the quantity 

2 1 2 *sup{( | ( ) | ) : ( )*, , 1} (7),
,

f X ns t
s t

     

from above and the quantity 

2 1 2( ) (8), 2,
f s ts t

  

from below. 

To estimate (8) we observe that 
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Hence  
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To estimate (7) we observe that 
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The right-hand side in this inequality is a hilbertian norm on )*( nX  induced by the 

inner product 
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where (k-1) + 1 = 0.  

We denote by Hn the corresponding Hilbert space. We shall use (6) for H = Hn. 

Since the natural embedding of Hn into *
nX  has norm 1, then the supremum in (7) is 

not greater than 
1 2

2sup | ( ) | : ( )*, 1 , (10),,
f H ns ts t

  
      
   

 

where the norm is in (Hn)*.  

To estimate this supremum we show that the functions   P

tstsf 1,, 
 are 

orthogonal with respect to the inner product (9). 
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We shall show that the first sum is equal to zero (the same argument works for 

the second sum also). 
1

( ( 1, ) ( , ))(( ( 1, ) ( , )), , ', ' ', ', 0
11 1 2 1 2 1 22sin cos sin

( ) ( ) 2 2, 0

2 1 2 1 22sin cos sin
2 2

4
2

k
f x y f x y f x y f x ys t s t s t s tx y

k s s tx y
k s t k s t k k kx y

s s tx y
k k k

k

  

  


   


                         

                     





2 1 2 1sin sin
2 2( )( )

1 2 1 2 1cos ) cos
2 20

1 2 2sin sin .
0

s s
k ks t s t

k s sx x
k kx

k t ty y
k ky

 

 

 

   
   
     

                 
         

   

 

 

By use of the fact that 1≤ s, s, t, t< 2
k  it is easy to show that if s ≠ s, then the first 

sum in the last product is equal to 0, and if t  ≠  t, then the second sum is equal to 0.  

Since the functions    P

tstsf 1,, 
  are orthogonal with respect to the inner product 

(9), then the supremum in (10) is not greater than 

.,,,
max
, tsftsfts  

Using the computation above we get  
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Hence the suprema in (10) and (7) are not greater than 2 . Therefore 
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Theorem (3.2.11)[89]:  Let 1< C <.∞ If ln k ≥  23 C2 + 3, k  N and n=k2, then there 

exists an (n-1)-dimensional subspace L of R2n such that the shadow P(K2n), where P 

is the orthogonal projection onto L, is a minimal-volume shadow of K2n in L; and its 

Banach-Mazur distance to an (n-1)-dimensional parallelepiped is ≥ C. 

Proof . Consider the subspace L in R2n spanned by the rows of Mn. By Lemma 

(3.2.4) the image of K2n under the orthogonal projection onto L is a minimal-volume 

shadow. By the same lemma this shadow is a finely equivalent to the zonotope 

spanned by the columns of Mn. By Lemma (3.2.5) the Banach-Mazur distance 

between the zonotope and a parallelepiped is  C.  
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Chapter 4 

Rank-One Perturbations of Diagonal Normal Operators 

 

We show that two well known results about the eigenvalues of rank-one 

perturbations and one-codimension compressions of self-adjoint compact operators 

are equivalent. Sufficient conditions are given for existence of nontrivial invariant 

subspaces for this class of operators. It is shown that if ܶ ∉ C1 and the vectors ݑ 

and ݒ  have Fourier coefficients {ߙ}ୀଵஶ  and {ߚ}ୀଵஶ  with respect to an orthonormal 

basis that diagonalizes ܦ that satisfy ∑ ൫|ߙ|ଶ/ଷ + |ଶ/ଷ൯ஶߚ|
ୀଵ < ∞, then ܶ	has a 

nontrivial hyperinvariant subspace. This partially answers an open question of at least 

30 years duration. 

 

Section (4.1): Diagonal Operators and Rank-One Perturbations: 

We let H be a separable, infinite dimensional, complex Hilbert space, and let 

L(H) denote the algebra of all bounded linear operators on H  If u, v  H, we shall 

write u   v for the operator of rank one defined by  

(u  v) x =< x ,v > u,      xH 

where <, > denotes the inner product of the Hilbert space H. The class N of operators 

T in L(H) which can be written in the form T= N + (u  v),where N is a normal 

operator and (u v) ≠ 0 is still not very well understood. Indeed, even the smaller 

class of operators of the above form, where N is a diagonalizable normal operator, is 

not in a much better situation, despite the structural simplicity of diagonalizable 

operators. In this section we are interested in this second class of operators which will 

be denoted simply by D. 

Similar problems concerning operators in the class N, or rank-one perturbations 

of different classes f operators such as isometries, self-adjoint compact operators, self-

adjoint Toeplitz operators, shift restriction operators, cyclic operators, differential 

perators, (or Volterra operator) have been studied in a series of sections of which we 

cite only a few of  them :[102], [103], [104]-[107], [108]-[111], [112]-[34], [53], 

[114]. It is worth  mentioning that the class of rank- one perturbations of bounded (or 
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unbounded) self-adjoint operators has been extensively studied and many interesting 

spectral properties have been established in various works (see for instance [115]-

[128], [116], [117], [16], [37], [34], [53]).  

We let 
1}{ nne  denote an orthonormal basis for H which will remain fixed 

throughout the section. We also let 
1}{ nn be an arbitrary bounded sequence of 

complex numbers and throughout the remainder of the section we shall write Diag 

  n  for the unique operator D satisfying  Den= ,nen , n N. We shall denote 

henceforth by DO the subset of L(H) consisting of all operators T which can be 

written in the form  

T = Diag( n{ }) + uv,             u ≠ 0 , v≠ 0                                    (1) 

We shall suppose that u and v are nonzero vectors in H and their expansions with 

respect to the (ordered, orthonormal) basis {en} are  

ݑ = ߙ݁

∞

ୀଵ

ݒ				, = ߚ݁

∞

ୀଵ

.																																															(2) 

Note that up to unitary equivalence, D0 consists exactly of all sums N + R, where N is 

a normal operator whose eigenvectors span H  and R is an operator of rank one. Note 

also that the inclusion D  N is a strict one. One way to see this is to make use of 

Kato and Rosenblum’ s result (cf. [118]) stating that the absolutely continuous parts 

of a self-adjoint operator and its self-adjoint trace class perturbation are unitarily 

equivalent. 

Observe that the expression for T in (1) is not necessarily unique. If we restrict 

our study, though, to the class D1 of those operators in D0 which admit a 

representation as in (1) with u and v having nonzero components n and n for all n  

N, we have uniqueness in the following sense.  

Proposition (4.1.1)[101]: If T  D1 then the representation (1) for T is unique in the 

sense that if T = Diag ( n{ }) + (u v) = Diag( n { }) + (u'  v'), then Diag( n{ ) = 

Diag( n { ) and (uv) = (u'  v').  
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Proof. We may assume T = Diag( n{ })+(uv)=Diag( }{ n )+ (u'v'). Where all the 

Fourier coefficients of u and v in (2) are not zero. This means that Diag ( }{ n ) - 

Diag( }{ n  ) = Diag( }{ nn   )=(u'  v') - (uv) has  rank at most  two. Thus, there 

exist different positive integers n1, n2 such that kk    for all k  N \{n1,n2}. 

Moreover the range of S = Diag })({ nn    is contained in V },{
21 nene , and so we may 

have three essentially different situations. If the range of S is (0) we are done. If the 

range of S is one- dimensional-say, spanned by 
1ne , then since (u'v')–(uv) would 

have a two-dimensional range if {u, u' } and {v, v' } are linearly independent sets of 

vectors, we get that either u and u' are linearly dependent or v and v' are. Let us 

suppose that u and u' are linearly dependent. Then u = 
11

, nen and u' = 
1 1
,en n . But 

this cannot happen since we have assumed that < u1ek > ≠ 0 for all k N . Similarly 

the case in which v and v' are linearly dependent is ruled out. If the range of S were 

two-dimensional, then V{u, u'} = V },{
21 nene , and again we would have a 

contradiction.  

The next two propositions show that when looking for nontrivial invariant 

subspaces for operators in D0, one can then restrict his attention to the subset D2 of DI 

consisting of those operators T = D + (u  v) in DI such that D has uniform 

multiplicity one (i.e., if  D = Diag( n{ }), then all of the numbers n , n  N, are 

pairwise distinct).  

Proposition (4.1.2)[101]: Suppose T=Diag( n{ }) + (u  v)  D0 is not a normal 

operator, and for some no  N, 
0n = 0 or  

0n = 0. Then T* [resp. T] has point 

spectrum and T and T* have nontrivial hyperinvariant subspaces (n.h.s).  

Proof. In case 
0n = < u, 

0ne   > = 0, we have  

T*
0ne  = 

0n 0ne  + (v  u) 
0ne  = 

0n 0ne  + < 
0ne , u > v = 

0n  
0ne , 
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which shows that (T*), the point spectrum of T*, is nonempty, and since T* is 

non-normal, the eigenspace associated with 
0n  is a n.h.s, for T*. Its orthogonal 

complement is thus hyperinvariant for T. The case 
0n = 0 is handled similarly.  

For a diagonal operator D = Diag   n  we denote by A(D) the set of all its 

eigenvahies n .  

Proposition (4.1.3)[101]: If  T = D + (u  v)  D1 and at least one   A(D) has 

multiplicity larger than 1, then T has  in its point spectrum.  

Proof. Suppose  = 
0n =

1n , no ≠  nl. Then (T- )e
0n

= < e
0n

,v > u = 
0

n u, and (T 

- ) e
1n

 = < e
1n

 , v > u = 
1n u.  Hence, if 

0n ≠ 0 and
1n ≠ 0 then  

(T - µ)( 
1n e

0n
- 

0n e
1n

 ) = 0. 

In any case T -  is not injective, and then   (T).  

For an operator T  D1 given by (1), an interesting phenomenon happens with 

the isolated eigenvalues of  Diag( n ): they are not in the spectrum of  T. The 

following theorem gives necessary and sufficient conditions for a point  in (D) (T 

= D + (u  v)  D0) to be in g(T) (resolvent set).  

 

Theorem (4.1.4)[101]: Suppose we have T= D + (u  v)  D0  and   (D). Then 

 g(T) if and only if the following two conditions are satisfied:  

(i)  is an isolated eigenvalue of  D, 
0n  of multiplicity one,  

      (ii) 
0n  = <  v, e

0n  > ≠ 0 and 
0n =  < u, e

0n  > ≠ 0.  

Proof.  For the necessity part of this theorem, let us assume first that (i) is not satisfied. 

We have three cases: (I)µ is not an eigenvalue; (II)µ is an eigenvaiue but is not isolated, 

and (III)µ is an isolated eigenvalue but has multiplicity larger than 1. In the cases (I) and 

(II), there exists a sequence of distinct eigenvalues {
kn } k ≥1 such that  

kn . Then, 

since  
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(T - ) e
kn

 = (
kn - ) e

kn
+  e

kn
 ,  v  u 

we have  

||(T- ) e
kn

|| ≤ |
kn -  | +|   e

kn
,v| || u || 0, 

as k goes to infinity. This says in particular that T -  is not bounded below (if it is 

injeetive), and then it cannot be invertible. In other words,   (T). In the case  

(III), if we  have  = 
0n  = 

1n
 ,  then ( T -  )e

kn
 =    e

kn
, v  u = un ,

0
   and  

( T -  )e
1n

 =    e
1n

, v  u = un1
  . 

Hence, if ,
0n ≠ 0 and ,

1
n ≠ 0 then  

(T  - )( 
1n

  e
1n

-
0n e

1n
) = 0. 

In any case T -  is not injective, and then again  (T).  

Suppose now that (i) holds but (ii) doesn't. First, if 
0n = 0, we get as above  

(T  - )  e
0n

= 0, and so  (T). If  
0n = 0, then )*( T  e

0n
= 0, and  then

*)(T  , or equivalently, ).(T  

For the sufficiency, we assume now that (i) and (ii) hold. We want to show that 

T -  is invertible. Since  is an isolated point in  (D) and D is normal, D -  and 

hence T- , is Fredholm with index zero. Thus it suffices to show that   is not an 

eigenvalue for T. If (T - )x = (D - 
0n ) x+  x, v  u = 0, then by our hypothesis, 

0n ≠ 0, it follows that x, v  = 0. So, x = 
0ne with  ≠ 0, and this contradicts the 

hypothesis 0
0
n .  

We characterize now the point spectrum of an operator T in D1 [resp. D2]. 

Proposition (4.1.5)[101]:  For C ,   is an  eigenvalue for T = D + (u v)  D1  if 

and only if  

(i)   Rang (D - ), and  
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(ii)    x ,v  + 1 = 0 for at least one vector x H  satisfying u = ( D -  )x. 

Equivalently   is an eigenvaIue for T = Diag({}) + (u  v)  D2 if and only 

if  

(iii)   A (D),  

(iv) and
n

n
DAn

,
||

2

2

)( 


  


  

(v) 1
)(


  n

nn

DAn 



 

Proof.  For the necessity part, let   C be an eigenvalue for T and x H\{0}, such 

that Tx =  X Then   x, v  u = ( - D)x. We cannot have  x, v  = 0 because we 

obtain then  =
0i

  x = {0}\C ,
0i

e   and then ,
0i

 =  e 0i ,v  = 

1   x,v   =  0 which 

is not possible since T  D1. Hence, if we write  x
vx

x
,
1~  , then u = (D - ) x~   and 

  x~ ,v   +l = 0.  

For the sufficiency part, we can assume that there exists x H such that u = (D-)x 

andx,v  +l = 0. Then x ≠ 0and Tx = Dx + x,v  u = u + x –u =x.  

 Finally, suppose (i) is valid and A(D) . Then u = (D- I)x  = ( D -  0n  )x for 

some xH, and so  0n  = 0 which contradicts that TD1  . It follows that A(D) and 

the rest of the equivalence between (i) together with (ii) and (iii)-(v) is now obvious. 

For T = D + u  v D1 , the diagonal operator D and the rank-one operator are 

uniquely determined  by T and so we can define the fuction FT(z) =  ( zI– D)-1 u,v   , 

for z C\ )(DA . This function is clearly an analytic fuction and it can be written as a 

Borel series ([119]) : 

( ) , \ ( ) (3)
1

n nf z z A DT zn n
 




  
C  

Corollary (4.1.6)[101]: Assume T = D + uvD1 and  .)(\ DAC Then  is an 

eigenvalue for T if and only if fT () = 1  
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Proof. Since  .)(\ DAC part (i) in Proposition (4.1.5) is satisfied. Taking x = (D- 

I)-1 u in part (ii) of Proposition (4.1.5) we obtain the corollary. The next corollary 

describes the spectrum of an operator TD2  .  

Corollary (4.1.7)[101]: If  T = D + (u  v )  D2 then  

(T) = A(D) { ,)(\ DAz C fT (z) = 1 }                                        (4) 

Where A(D)  denotes the derived set of A(D)  

Proof. In general for an operator A L(H) , (A) = e(A) p(A)p(A*)*, where if 

  C, * = }:{ zz (cf. [120]). Since TD2,we have e(T) =e (D)= A(D)`. and so 

by Corollary (4.1.6), one inclusion necessary to establish (4) follows. For the other 

inclusion, let us assume  (T) = e(T) P (T) U P(T*)* Since e (T) = A(D)', we 

can assume that e(T). Suppose then that P (T). If P (T)  )(DA , by 

Proposition (4.1.5),  A(D) and so  A(D)' =e (T) which contradicts our 

assumption. It follows that (T)\ )(DA and so by Corollary (4.1.6) , fT() = 1. 

Since fT(z) = )(* zfT  for all z  C \ )(DA , one takes care likewise of the case p 

(T*)*.  

Example (4.1.8)[101]: ([121]) Let T=Diag(n)+uu where D= Diag(n) and u are 

constructed in the following way. First we consider a family of open disjoint (and non 

tangent) disks {Dn}nN (Dn is centered at n and has radius rn) contained in the unit 

disk D = {z C :|z| < 1} and such that the set D \U nN  nD has Lebesgue measure zero. 

Such a family can be constructed using an induction argument, covering at each step a 

closed set of whose measure is a fixed nonzero fraction of the measure of the open set 

uncovered by the disks constructed at previous steps. Moreover, one can refine the 

argument in order to satisfy the condition  .n   nrN   

The diagonal operator D is defined by the sequence {n } constructed above 

and u is given as in (2) where n = rn, n  N . We want to compute the point 

spectrum of T. In order to do this let us observe that the essential spectrum of T is 
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.\)( nDnUDA ND    Also we need the following formula which can be proved easily 

by a change of variables to polar coordinates:  
2

( , )

| | ,
(5)

( )
( ), | | ,

D a r

r if z a r
z adx dy

z x yi
z a if z a r






     

   

   

 for every a  C and r > 0. Then  if z  D, by (3) and (5), we have 

(

2

, )

1 1 1( ) .
( ) ( )

rk
D rk k

dx dy dx dyf zT z z x yi z x yi zk kk   
             N N D

 

Hence, by Proposition (4.1.5)  T does not have any eigenvahes zC\ D   Let us 

suppose that nDUz n ND  \   In this case if z were an eigenvalue for T then by 

Proposition (4.1.5), the sum  
 Nk kz

kr



2
  would be absolutely convergent and it would 

be equal to 1. But using again (5), we have  
2 1 1

( ) ( )( , )

rk dx dy dx dy z
z z x yi z x yik k D rk k k

  
            N N D

 

This implies that the only possible point which may be an eigenvalue is z = 1. In fact, 

under our hypothesis, z =1 is indeed an eigenvalue because    nrnk k

kr
NN |1|

2


 

Suppose z  nD \{n }for some n  N and let us assume that z is an eigenvalue for T. 

Then using (5) again we can compute  
22 2 21 ( )

( )( , )
n

n n n

r r rn nk
k

r
z z z

dx dy z z n nz z x yik D rk k k
   

 
  


    

            N,k nN
 

This shows that  
n

nr
nz







1

2
  is the only possible eigenvalue for T in this case. In 

fact, it is easy to see that these values are indeed eigenvalues for T. Hence, P(T) 

}.1{}:
1

{
2

Un
r

n

n
n N





   

A natural question which arises at this point is whether or not there exist op- 

erators T  D0 with empty point spectrum . An example of such an operator was first 
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constructed by J. G. Stampfli in [113], for the case when the spectrum of T is a 

square. Given an arbitrary nonempty compact subset of the plane K, it is interesting 

to know if there are examples of operators T  D0  with empty point spectrum and 

such that (T) = K. Next, we put together some information about the resolvent of 

operators T in D2  around points which are isolated in A(D).  

Proof. If < A-l u, v  > +1 = 0, then u ≠ 0 and since S(A-l  u) = 0, it is clear that S is not 

invertible. On the other hand, if  A-l  u, v  +1 ≠ 0, then it is enough to  cheek that (6) 

gives the inverse of S: 

       

 1 1 1 1
1

1
1 1

1 1

1[ ( )] ( ( *) )] ( ( *) )
, 1

,1 ( ( *) ) ( ( *) )
, 1 , 1

A u v A A u A v I u A v
A u v

A u v
u A v u A v I

A u v A u v

   



 

 

       
  

   
 

 

The second part of the lemma clearly follows from the first part.  

For T = D + u  v  D0  we define the function FT(Z) =  (ZI - T)-1 u, v  for z 

C\(T). We have the following relation between the functions FT and fT.  

Proposition (4.1.9)[101]: Assume T = D+( u  v)  D1 Then for all z C\( 

(T)(D))  we have 

( )( ) (6)
1 ( )

T
T

T

f zF z
f z




 

Moreover ,if    A (D)\A(D)(=
0n ) , then FT () = -1,

1

00
)(








 nndx

TdF
  , 

haveweDTifand 2  

1 11( ) * (7)
0 0

0 0

1( ) ( 1) ,0 0 0 00

T D Du e e D vn n
n n

k k e en n n nk n k


 

 
 

 

      

  


  

 

where  .
1)(

0
~

kekeknkD     

Proof. Formula (8) can be easily derived from (7). Each  A(D)\A(D)' is an isolated 

eigenvalue of multiplicity one for D, and hence by Theorem (4.1.4),  T -   is 

invertible. We have   - D =   - T + (u  v) and then by Lemma (4.1.9),   ( - T)-1  
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u, v  +1 = 0, which proves that FT () = -1.  To compute )(
dx

dFT  we differentiate (8) 

at a point z different of   and take the limit as z   

1

002)]()([

)(2)(lim
2))(1(

)(lim)(

















 nn

zTfzz

zTfz
zzTf

zTf
zdz

TdF





  

The equality (9) follows from (7) by a similar argument of passing to the limit as 

 z   .    

As an application to formula (9) we will show the equivalence of two 

interesting facts from the theory of self-adjoint compact operators. The first result 

appears in [114] (see also [104]) and the second result was proved independently by 

several authors (cf. [121], [122] and [123]).  

Theorem (4.1.10): (i) Let {vk}kN and {k} kN be two distinct monotone in- creasing 

sequences of real numbers, each having zero as the limit point. Further assume that 

(k} belongs to (vk, vk+l) for each k  N. Then if A is a self-adjoint compact operator 

on a separable Hilbert space H having the sequence vk (k  N) as its eigenvalues 

(with multiplicity one), there exists a vector x  H such that  

A + x  x has precisely the eigenvaIues {k } kN   

(ii) Let {vk} kN  and {k } kN be two distinct monotone decreasing sequences 

of real numbers, each having zero as the limit point and such that {k } belongs to 

(vk+l ,vk)  for each k N. Then if A is a self-adjoint compact operator on a Hilbert 

space H having the eigenvalues vk (k  N) (with multiplicity one), there exists a 

vector y H such that if P denotes the orthogonal projection on the one-dimensional 

space spanned by the vector y, the compact operator (I - P)A(I - P)|(I-P)( H)   has exactly 

as its eigenvalues the sequence {k} kN  

Proof. For the implication (i)  (ii) we assume that {vk}kN , {k} kN  and  A  are as 

in (ii) and let us take the diagonal operator  D on H whose eigenvalues are {k} kN   

where 1 = -1, k+1 = (1+ k)-1 -1  for k N. Then by (i) we can find x such that  T = 

D + x  x has exactly the eigenvalues {(1 + vk) -1  - 1} kN . We take  = 1  and apply 

formula (7) for D, u = v = x  and n0 = 1.  Let Q  be the orthogonal projection on el. 
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We see that (I -Q )(T–  I)-1 (I– Q )|(I– Q )(H)  is a diagonal whose eigenvalues are 

precisely   N












 kkk
k




121  Hence, by spectral mapping theorem the operator S 

= (T –   I)-1 -I  is compact and has the eigenvalues {vk} kN  . Thus, we can find an 

unitary operator U such that U*SU = A. To finish the proof we take y = U*e1 and 

observe that (I - P)A(I -P) = U*(I - Q)S(I-Q)U, where P is the orthogonal projection 

on the one-dimensional space spanned by y. For the implication (ii)~(i), let {vk} kN  , 

{k}kN and A be as in (i). Without loss of generality, we can assume that A is a 

diagonal operator with respect to the basis {ek} kN and v1  = -1. Let B be an arbitrary 

compact operator on H which has {(k + 1) -1 -1} kN has its only eigenvalues 

(multiplicity one). Using (ii) we can find y: = y1  H  such that (I-P)A(I-P)\(I-p) H)  has 

precisely {(vk+1+l)-1 - 1} kN  as its eigenvalues. Let {yk+1} kN  be an orthonormal 

basis in (I - P)(H) with respect to which (I - P)A(I - P)\(I-P)( H)  diagonalizes. Then the 

matrix of  B + I with respect to the basis {yk} kN  looks exactly as the right hand side 

of (7) (for D = A, k = vk (kN), =v1, u=v and 
0

1ne  ). We shall show that we can 

determine the coefficients of u such that these two matrices coincide (which will give 

a unitarily equivalence between the operators which admit this same representation 

matrix in different orthonormal basis). Let us write the representation of B as follows  

B + I = b1e1   yl + .
1)1

2 1(1212 kyky
k kvyky

k kbkyy
k kb 

 





 

If we compare this with (7) we obtain that k = -l(vk+1  )bk, (k  2) and then  

1 2( 1) | | (8).12 2| |1
b v bk kk

  


 

This will allow us to solve for 1 if the right hand side of (8) is not zero. Suppose by 

way of contradiction that this is not true. Then a simple computation shows that (B + 

I)z = 0 where z = kbkvky )1(21    and so B + I admits the value 0 as one of its 

eigenvalues but by our assumption the only eigenvalues of  B + I are the elements of 

the sequence {(k+ 1)-l}kN. This proves that we have a solution for u  H and so by 

spectral theorem A + u  u has precisely the eigenvalues {k } kN.  
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Proposition (4.1.11)[101]: Let T = N + (u  v)  L(H) where N is a normal operator  

and u, v are nonzero vectors in H. Then T is a normal operator if and only if either  

(i) u and v are linearly dependent and u is an eigenvector for .(N*), where 

or
v

vu
,

||||

,
2  

(ii)  u,v are linearly independent vectors and there exist , C such that   
2( * ) (9)
2( ) ,

N I u u v and

N I v v u

 

 

 

 
  

.2/1)( Rwhere  

Proof: We observe that the equation T*T = TT* is equivalent to  

N*u  v + v N*u + ||u||2VV  =                                         (10) 

Nv  u + uNv + ||v||2u  u. 

It is a simple computation to check that (10) is satisfied if (i) or (ii) is true.  

Let us assume that T is a normal operator. We distinguish two distinct cases.  

Case I: We assume that u, v are linearly dependent. Thus, there exists   C such 

that u = v ( =< u,v >/ǁvǁ2). Since ǁvǁ2u u = |a|2ǁvǁ2v v = ǁuǁ2 vv,  if we write 

 = (N* -  N)v (= 2. (N*)v), (12) becomes   v = -v  . This last equality 

holds if and only if  = itv for some t  R and (i) is proved.  

Case II: We assume that u, v are linearly independent vectors. From (10) we get that 

<x, N*u > v= < x, Nv> u,  x(V{u,v}) 

Hence < N*u, x  > = < Nv, x > = 0 for every x  (V{u, v}) . which means that  

N*u = a11u + a12v, Nv = a21u - a22v,                                         (11) 

for some aij  C. Substituting in (10) we obtain that the aij satisfy the following 

relations:  

.02||||2121
2||||1212,2211  vaauaaaa  

So, if we write a11 =   and a12 = -ǁuǁ2/2 + is1, a21 = -ǁvǁ2/2 + is2, where sl, s2  R, 

(13) implies that (N*- I)u = (-ǁuǁ2/2 +isl)v and (N- I)v = (-ǁvǁ2/2 + is2)u. Thus (N - 

I)*(N - I)u = (-ǁuǁ2/2 + isl)(- ǁuǁ2/2 + is2)u which implies that sl /ǁuǁ 2 = -s2/ǁvǁ2. if  
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we write t = 1/4 + (1/ǁuǁ4) 2
1s  and  = -1/2 + sign(sl) 4

1ti  then clearly u and v 

satisfy (11). (Here, we used the notation sign for the real valued function defined by 

sign(x) = 1 if x > 0, sign(x) = -1 if x < 0 and sign(0) = 0.)  

Corollary (4.1.12)[101]: T = D + u  v   :D1 is normal if and only if either  

(a) there exist   C  and t  R such that A(D) lies on the line {z C : ( z ) = t}, 

and u= v, or  

(b) there exist   C and t  R such that A(D) lies on the circle {z  C : |z  - |= t}, t 

 R, and  

tu/ǁuǁ = ei (D - I) (v/ǁvǁ), 

where  [0, ) is determined by the equation R(tei/ǁuǁǁvǁ) = -1/2. 

Proof. Suppose that (a) or (b) holds. Then either (D*) = t I or |D-I| = tI. If (a) 

holds then (i) in Proposition (4.1.12) holds and hence T is a normal operator. If (b) 

holds then an easy computation shows that (9) holds for  = tei/ǁuǁǁvǁ. The two 

relations in (9) alone imply that (10) holds and so T is normal.  

On the other hand if T is normal then, by Proposition (4.1.11), (i) or (ii) holds. 

In case (i) is true then (D*)u = tu for some t  R. Thus  nnn t )(  for all n  

N and since an ≠ 0 for every n in N we obtain that A(D) is a subset of the line {z  

C: )( z = t} and (a) follows. If (ii) holds, we get from (9) that (D-I)*(D-aI)v 

=ǁuǁ2ǁvǁ2 ||2 v  , and by a similar argument as above, we get that A(D) is a subset of 

the circle {z  C:|z- |= t}, where t =ǁuǁǁvǁ||. Then, the other part of (b) follows 

easily from (9).  

It is worth mentioning that actually if A(D) is a subset of a line or of a circle 

then T = D + u  v is a decomposable operator (cf. [124]). Moreover, T has the 

property (Triang0) (cf.[119]), i.e., for any pair S1  S2 of invariant subspaces for T 

such that dim (S1/S2) > 1 there exists another invariant subspace S3 of T verifying 

S S1 2 3S 
   

Another interesting question about the class D0 is whether we have the 

decomposability property for operators in D0 whose spectrum is not necessarily an 
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arc of an analytic curve. It is known ([124]) that every decomposable operator has the 

following property.  

Definition (4.1.13)[101]: We say that an operator TL(H) has the single valued 

extension property (notation: SVEP) if the only vector-valued analytic function f : G 

H , where G is an arbitrary open connected subset of C, which satisfies the equality  

(T- z ܫ) f(z) = 0,            z  G, 

is the function identically equal to zero. 

Proposition (4.1.14)[101]: Every operator T:D+(uv)D1 for which the set C\ )(DA  

is connected has the SVEP.  

Proof. Let f: G H  be an analytic function such that (T - z	ܫ) f(z) = 0 for every z  

G. If G(C\ )(DA ≠    then by Corollary (4.1.6), T - z	ܫ is invertible for all z(G\

)(DA ))\{z C\ )(DA , fT(z) = 1} and so f(z) = 0 for all z  (G\ )(DA )\{z \C\A(D); 

fT(z) = 1}.  

The function fT cannot be identically equal to 1 on the connected set C\ )(DA

because limlzl   fT(z) = 0. Hence the set {z; fT(z) = 1} is discrete and since G is 

connected it follows that f is identically zero. 

 We may assume that actually G  )(DA . If we expand f in the basis {en} as 

nenfn
1  ,  where fn : G  C are scalar-valued analytic functions, we get  

(2 - z) fn(z) + < f(z), v > n = 0,          z  G,  nN                                    (12) 

If we take z = n  G   A(D) in the above equation, we obtain that <  f(n), v > = 0 

for all n G  A(D). Since the set A(D) is dense in )(DA and G  )(DA , the set G  

A(D) is clearly dense in G. Hence < f(z), v >= 0 for all z  G. Thus (14) implies that 

for every integer n  N, fn(z) = 0 for all z  G\A(D). Since each fn is a continuous 

function and G\A(D) is dense in G, it follows that fn is identically equal to zero on G 

for every n  N and so is f. 

  We consider the class D0(D) of the operators T= D + uv D0 for which 

A(D) D  We will characterize the contraction operators in D0(D). The following 

proposition provides one such characterization and leads us to Corollary (4.1.18) 
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which gives a simple sufficient condition for an operator T D0(D)D2 to be a 

contraction.  

Proposition (4.1.15)[101]: T = D + u v  D0 (D) is a contraction operator if and 

only  if  

|1 ( ), ( ) |
, (0,1), (13)

|| ( ) || || ( ) ||
s u s Dv s

s s
u s v s


 

 
 

 

where ,)*()(~)*()(~ 2
1

2
1

vDsDIsvanduDsDIsu


  or equivalently, in case T  D0 

(D)D2, if and only if  
2 2 2

1 , (0,1) (14)2 2 21 1 1(1 | | ) (1 | | )(1 )

k kk k ks s s
k k ks ss k kk

   

 

   
     

       
      

   

 

Proof. Clearly T is a contraction if and only if T*T is a contraction. Since T*T is a 

positive self-adjoint operator, T*T is a contraction if and only if its spectrum is 

contained in the interval [0, 1]. A simple computation shows that  

T*T = D*D + (D*u +||u||2v)  v +v  D* u. 

Hence, e(T*T) = e (D*D )   (D*D)  [0, 1] and so T*T ((T*T) = e(T*T)  P 

(T*T)) has its spectrum contained in the interval [0, 1] if and only if its point 

spectrum does not intersect the interval (1, ). We need the following lemma .  

Lemma (4.1.16) [101] : Let A  L(H) be invertible and S = A + (a  b) + (c  d) for 

some vectors a, b, c, d  H. Then the following are equivalent :  

(i) S is not invertible, 

(ii) ker(S) ≠ ,  

(ii) the determinant of the matrix 
1 1

1 1

1 , ,
.

, 1 ,
A a b A c b

is zero
A a d A c d

 

 

     
      

 

Lemma (4.1.17)[101]:  Let A  L(H) be an invertible operator, and let S = A + (u  

v). Then S is invertible if and only if < A-1 u, v > +1≠ 0, and its inverse is given by 

the formula  

1 1 1 1
1

1 ( ( *) ) (15)
, 1

S A A u A v
A u v

   
  


  

In particular, if  T = D + (u  v)  D1  and  fT() ≠ 1 for some   C\ )(DA , we have  
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1

1 1 1 1

( )
( ) ( ( ) 1) (( ) (( )*) ) (16)T

T
D f D u D v



   



   

 

     
 

Proof. Since S = A (I + (A-l a  b) + (A-1 c  d)), S is not invertible if and only if  I + 

(A-l a  b) + (A- l c  d) is not invertible. Using the Fredholrn theory, this latter 

operator being Fredholrn of index zero, it is not invertible if and only if its kernel is 

not the (0) subspace. Hence (i) and (ii) are equivalent. For the equivalence of (ii) with 

(iii), let x  H be a vector such that Sx = 0. This implies that  x+ < x, b > A-l a + < x, 

d > A-l c = 0. Taking the inner product of this equation with b and d respectively, we 

get the following system of equations with the the unknowns < x, b > and < x, d >:  





 


0,,1,),11(

.0,),11(,,1
dxbcAbxbaA

dxdcAbxdaA
 

Therefore if we assume that (ii) is true, then  

x = – < x , b > A-1  a – < x , d  >  A-1  c ≠ 0 

and so at least one of the numbers < x, b > or < x, d > is not zero. This implies that 

the above homogeneous system has a nontrivial solution. This fact is equivalent with 

the statement (iii). Let us assume that (iii) is true. Then there is a nontrivial solution 

of the above homogeneous system of equations-say < x, b > =  and < x, d > = . 

Hence x = – A-l a –   A-l c is not the zero vector and a simple calculation shows that 

(I + (A-l a  b) + (A-l c  d)) x = 0 or Sx = 0.  

We apply Lemma (4.1.17) for the case A = D*D – t I, a = D*u + ǁuǁ2 v, b = c = 

v, and d = D*u, where t  R, t > 1. Hence, T*T is a contraction if and only if the 

determinant of the matrix  

















uDvtIDDuDvuuDtIDD
vvItDDvvuuDtIDD

*,)*(1*),||||*()*(
,)*(),||||*()*(1

121

121

 

equals zero for no t  (1, ). If we multiply the second column of this matrix by ǁuǁ2 

and subtract it from the first column, the determinant is the same as the determinant 

of the resulting matrix  

















uDvtIDDuuDuDtIDD
vvItDDvuDtIDD

*,)*(1||||*,*)*(
,)*(,*)*(1

121

11

 

The (2, 1) entry can be written differently as follows : 
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< (D*D – tI)-l D*u, D*u > –ǁuǁ2  = < (D*D – tI)-l D*Du, u > – ǁuǁ2  = 

< (D*D – tI)-l(D*D – tI)u, u > –ǁuǁ2+ t < (D*D – tI)- l u, u > 

= t < (D*D – tI)-l u, u >. 

If we observe that the (1, 1) entry is the complex conjugate of the (2, 2) entry, we 

obtain that T*T is a contraction operator if and only if the equation (in t)  

|1+ < (D*D – tI)-l  D*u,v >|2 – t < (D*D – tI)-l  u, u > < (D*D –  tI )-l v, v > = 0 

has no solution in the interval (1, ). Finally, if we change variables by setting  s = 

1/t, s  (0, 1), the above equation becomes 

,
,1)*(,1)*(

,*1)*(1
2

s
vvDsDIuuDsDI

vuDDsDIs





 

which implies (15) since both members of the above equality are continuous 

functions of s and the sign of the inequality is determined when s = 0. The inequality 

(16) follows form (15) taking into account the explicit form of the operator D.  

Corollary (4.1.18)[101]:  Assume that for T= ܦ + (u  v) D0(ܦܫ) D2 the 

coordinates of  u and v satisfy the inequality  
2 2| | | |

3 2 2 0.171572876 (17)2 21 1(1 | | ) (1 | | )
k k

k kk k

 

 

           
        

 

Then T is a contraction operator.  

Proof.  Using Proposition (4.1.15) we get that T is a contraction operator if and only 

if   
2 2

|

2 2

|| ( ) || || ( ) |
1 2 Re ( ), ( ) | ( ), ( ) | , (18)

s u s v s
s u s Dv s s u s Dv s


     

 
   

 

for every s(0, 1). We observe that (18) is satisfied if )1(~u  and )1(~v are finite 

numbers satisfying  

.1)1(~)1(~22||)1(2)1(~  vuvu  

This last inequality is clearly satisfied if we have (17).  

Corollary (4.1.19)[101]: Assume that T = D + (u  v)  Do(ID) D2 is a 

contraction operator. Then the following inequality holds for every s(0, 1) :  
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2 2

2 2 2
1 1

| | | | 1 (19)
(1 | | ) (1 | | ) (1 )

k k

k kk ks s s s
 
 

 

 

   
        

   

Proof. If T is a contraction operator then we have (18), which implies that  

).1,0(,)(~)(~)(~)(~21)(~)(~ 22222  ssvsussvsusvsus  

This last inequality is equivalent to (19) by simple computations.  

If A  L(H) and  x  H we write Cx(A) = }{0 xnAnV
   A vector x  H is called 

cyclic for A if Gx(A) = H.  The following proposition characterizes those operators T 

= D + (u  v)  D0 for which Lat(T)  Lat(D) ≠ (0).  

Proposition (4.1.20)[101]: If  T : D+ (u  v)  D0 then D and u  v have a common 

n.i.s if and only if Cu(D) ≠ H or Cv(D*) ≠ H.  

Proof. One can easily find all the invariant subspaces of u v. Namely, a subspace S 

is invariant for u v if and only if u S or v S . Let us assume that S is a common 

n.i.s. for D and u v. If u S we get that Cu (D) ≠ H and if vS, S is nontrivial 

invariant for D* containing v. Hence in this case Cv (D*) ≠ H.  This proves the 

necessity. For the sufficiency, we just have to observe that Cu (D)  and (Cv(D*))  are 

common invariant subspaces for D and u  v.  

The following proposition is a particular case of Bram's result [120] and 

answers the natural question whether an arbitrary diagonal operator admits a cyclic 

vector. For completeness we include here a simple proof of this fact which is a 

simplified version of the proof of Bram's result given in [120].  

Proposition (4.1.21)[101]: Let D=Diag({n})L(H) such that every value in A(D) 

has multiplicity one. Then there exits a cyclic vector for D.  

Proof. We consider the operator Mz, the multiplication with the variable on L2(X,), 

where X = )(DA  and  = 
nnn 2

1
1 
  . Define V : H  L2(X, ) by Vx = fx where 

fx(z) = nxn if z=n and zero otherwise, x= x1e1 + x2e2 + ...  H. We have for each x  

H,  ||Vx||2= ||fx||2 = x | fx (z)|2 d(z) = 2||||2||1
2|)(|2

1
1 xnxnnxf

nn  
 

  . 

Clearly, V is an unitary operator and VDV -1 = Mz, which implies that it suffices to 
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show that Mz has a cyclic vector. For each n  N, denote Kn = {1, 2, ..., n}. Since 

all the eigenvalues n are assumed to be distinct, the following system of linear 

equations has a unique solution in  

c0 , cl, ..., cn :   

... , 1,2,..., . (20)0 1
nc c c j nnj jj

       

Let pn(z) = c0 ,clz+…+cnzn ,  where the coefficients co, cl, ..., cn are satisfying (20). 

Using this notation, (20) can by written as )(znpz   on Kn. We now construct a Borel 

measure v on X with the following properties: 

(i) v is a measure absolutely continuous with respect to   

(ii) 


:
d
dv  is essentially bounded ([]),  

(iii)  the function 1(z) = 1 is a cyclic vector for Mz  acting on L2 (X, v).  

       First we choose n = (max l k  n. [supzX|pk(z)| 2)]) -1 for each n  N, and 

let  then .12
1

21 nna
nnv   

   Clearly, al    a2   ...  an, > 0. It is easy to 

observe that (i) is satisfied, and in order to check the second property we take  (z) = 

an-1  if  z =n, n  2 , 1 if z = I  and zero anywhere else. Hence, 0  (z)  max{a1, 1} 

= a0 for every z  X. To check the third property, we want to show that pn converges 

in L2 (X, v) to the function  
 

 

 

 

zz   : 

\ \

\ \ \

2 2 2( ) ( ) ( ) ( ) 2 ( )

2 22 ( ) ( ) 2 2

22 ( \ ) 2 ( \ ) (2 1) ( \ ) 0,0 0 0

X K X Kn n

X K x k X Kn n n

z p z dv z z p z dv z z dv zn nx

p z dv z d p dn n

a X K p a X K a X Kn n n n
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as n   In other words, this means that the sequence of functions z pn (Mz)l(z) 

converges in L2(X, v) to the function zz  . From here, we obtain that for any  

polynomial q C |z| , the sequence (qpn)(Mz) l (.) converges to zzqz )( . Thus, the 

function 2)(zz   is in C1(.) (Mz). Inductively, we can show that )()( (.)1 z
n MCzz  for 

every n  N. Finally, )(),( (.)1 zMCzzp  for every polynomial in two variables ),,( zzp , 

and by Stone-Weierstrass theorem we get that any continuous function on X is in 

CI(.)(Mz). This shows that the property (c) holds. 

 Now, we want to show that 1\2  is a cyclic vector for Mz acting on L2(X,). If  

f  L2(X, ) then clearly 21
f  is in L2.(X, v) and hence it can be approximated by a 

sequence of polynomials qn in L2(X, u). Therefore,  

,0)(|
)(

)()(|

)(|
)(

)()(|)()(|)()(|

2
2\1

2
2\1

221









zdv
z

zfzq

zd
z

zfzqzzdzfzq

X
n

X
n

X
n







 

by our assumption. This proves that qn(Mz) 1\2  converges to f in L2(X, ) which 

finishes the proof.  

Let us observe that if  T = D + (u  v)  D2 we have (T) =  (D), and hence, 

since  (D) is normal in the Calkin algebra, we have that  el  (D) =  er  (D) and 

consequently  el (T)= er (T)= e (T)= e (D)=A(D)'. Hence, well-known reductions of 

the invariant subspace problem (see [124] for part (iii)) applied to our particular case 

and together with what we have proved so far give the following proposition.  

Proposition (4.1.22)[101]:  If T=D + (u  v)D2, and  

(i) (T) ≠ A(D)' (equivalently 1  )),\(1 ACfT


 or 

(ii) A(D)' is not connected, or  

           (iii) A(D)' is a singleton, or 

(iv) u[resp. v] is not cyclic for D[resp. D*], then T has a n.h.s.  

When one searches for invariant subspaces for an operator T it is useful to have 

a description of its commutant {T}' := {A  L(H) : AT = TA}.  
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Proposition (4.1.23)[101]: Let T= D + (u  v)  D2, and A  L(H) Then A  }{ T  if 

and only if there exist a sequence of complex numbers {tn}nN and  a positive 

constant C such that  

(i) for every square-summable sequence {k}k  l we have  

)21(,2
2

,1 ,
2





 n nC

nkk nkkkn n   

where ,:, nk

ntkt
nk 





      for k ≠ n, (k, n  IN), 

(ii) for every k IN,  

(22),,1,
Ae s e en nk k k k k nn n k

    
 

 

where the sequence defined bY  

, , (23),1,
s t knk k n k nn n k

    
  N  

is a bounded sequence.  

Proof. The equality AT = TA can be written equivalently as  

AD - DA = (u  A*v) - (Au  v),                                                 (24) 

For the necessity part, let {tk} be defined by the equation .1 kekktkAu  
  For every 

integer k 1, we have < (AD - DA)ek, ek >= 0 and then from (24) we obtain  

< ek, A*v > < u, ek > - < ek, v > < Au, ek > = 0, 

which in turn implies that < ek, A*v >= kkt  . Hence, using (24) again, we get  

( ) ( ) ( ) , 1, (25)
1,

D A t u Au t t e ke n n nk k k k kk n n k
   


     

 
 

which implies that we can express Aek as in (22). Taking the inner product of both 

sides of (22) with v, we obtain that sk is given by (23). To obtain the inequality (21) 

we first need to observe that sk =< Aek, ek > (by (22) and so {sk} is a bounded 

sequence. Thus, the inequality (21) follows easily from the boundedness of  the 

operator ,~DA   where D~  is the diagonal operator defined by keD~  = skek, k  N.  
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           For Sufficiency, we observe that the linear operator A defined by (22) is 

bounded because of (21) and the hypothesis that {sk} is bounded. Then from (22) and 

(23) we get that < ek, A*v > = kkt   and .1 kekktkAu  
  Using these two relations 

and (22), we obtain (25) which is equivalent to (24).  

Next we would like to combine Proposition (4.1.23)  with Lomonosov's 

theorem (cf. [125]) to obtain sufficient conditions for existence of n.i.s, for operators 

in D2. For this purpose we introduce some more notation. Let H(U) be the set of 

analytic functions on  the open set U( C). For a fixed w  U we define a linear 

transformations on H(U), byw),)(.,(   

( ) ( )

( )( , ) , ( ) (26)

`( ) ,

z w if z w
z

z w z U H U

w if z w

 


 



     

 

 

For TD2 given by (1), and U such that UDA )(  we define another linear 

transformation on H(U) by  

( )

( )( ) ( )( , ) ( ), ( ), ( ), (27)T
A D

B z z w dv w z U A D H U        

where v is the atomic measure supported on A(D) given by   .1 nnnnv    

Theorem (4.1.24)[101]: Let T  D2 given by (1) and BT defined by (27). Suppose 

there exists a function   H(U), with U  )(DA ,  such that BT =  and  is not 

zero on )(DA . Then T has a nontriviaI invariant subspace.  

Proof. Let us consider tn =  (n) n  N, and let A be the operator A defined as in 

(22) and (23). We will show that A satisfies (21) and it is a nonzero compact 

operator. By Proposition (4.1.23), T commutes with a nonzero compact operator and 

then using Lomonosov's theorem T admits a n.i.s.  

Suppose that A  = 0. Then, from the proof of Proposition (4.1.23), we have 

  ,nentnnuA  N
and so tn = 0 for all n  N. By Proposition (4.1.22) we can 
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assume that (T) = A(D)' and A(D)' is connected. Thus we can consider U~  to be the 

connected component of  U containing A(D)'. Hence,  = 0 on U~  since A(D) must 

have an accumulation point in A(D)'  U~  (U~ is connected). C\U~  cannot contain but 

finitely many points of A(D) where  must be zero because tn = 0, nN,. This 

contradicts our assumption on  and so A is not zero.  

Since   H(U)  and )(DA   U, there exists a constant C1 > 0 such that 

|()(z,w)|  C1 for all z,w  )(DA and so, with the notation from Proposition (4.1.2) 

|k,n| C1 for every k, n  N, k  n. Then, using Cauchy's inequality, we have  











2222

2
1

2

,1,1,1 ,
2

kC
nkk knkk kn nC

nkk nkkkn
n   

where C = 222
1 vuC . This proves that inequality (21) is satisfied. Also, the sequence 

defined by (23) is bounded since {tn} is clearly bounded and for every k  N  

.1,1 , vuC
knn nknn 


  

Then, by Proposition (4.1.23) , A commutes with T. From (23), for every k N we 

have  

)())(()(,,1
)( kkkkTBknkn

knn
nkks  


  

which simplifies to sk 
)( kkk    because of our hypothesis on . Clearly, 

0lim  ksk  and so the diagonal operator ),~(~
N keseDD kkk  is a compact operator. 

Since A  = BD 
~  where B is defined by  

,,,,1 N


 knenkknn
nkkBe   

it suffices to show that B is a compact operator. In fact, B is a Hilbert-Schmit 

operator since  

,|,|
,1

|||| 2
222

Cnkknn kNk kB
Nk kBe 








  

which finishes our proof.  
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Corollary (4.1.25)[101]: Let TD2 given by (1) such that A(D)  D . Suppose that fT 

(cf. (3)) is bounded on C\D and let T be the Toeplitz operator on H2(D) of symbol 

() = )(Tf  for    D. In addition we assume that the equation T() =   has a 

solution   H2(D)  which is analytic on an open set U  (D ) and not zero on A(D) . 

Then there exists a n.i.s for T. 

Proof. The assumption on fT insures that  is in L( D).  and so the Toeplitz  

operator T is well defined. Indeed, for z  D we have fT 

,1
011)1(  



 

 kzkmKnz
nn

nzZ 
 Where mk are the moments of the measure v ( 

i.e., mk= }).0{),(  ND kdvk  So,  

z  fT(1/z) is a bounded analytic function on D, and thus L ( D)  In fact, T is a 

co-analytic Toeplitz operator. We want to show that BT and T act the same way on 

functions   H2(D)  which are analytic on open neighborhoods of D . Forsooth, if 

(z) =  


kzkak 0
 H2(D)  is such a function, we have  

( 1)( )( ) ( ( ) ( )) ( )2 2 0 0
(28)

( 1) 2( ) ( ) ( ).2 10, 0 0

i ki i i ilT e P e e P m e a ek lH H k l

i l k inP m a e m a e in Hk l k n kH nk l k

     

 

     
 

         D

 

On the other hand, if z  D\A(D) we have 

( ) ( ) 1 1( )( ) ( ... )
11 1

1 2( ... ) ( ) . (29)1 1 11 00

z n nkB z a znT k k k k kz nk kk
n m ka z m z m m a zn nn n kn nk

  
     



          
  

           

 

The assumptions on  allows one to do the computations in (28) and (29). Moreover, 

if T () = , comparing (28) with (29) we have BT() (z) = () (z) for zD, and so 

we can apply Theorem (4.1.24)  to conclude the corollary.  
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Section (4.2): Normal Operators and Rank-one Perturbations: 

Let H be a separable, infinite-dimensional, complex Hilbert space, and denote 

by L(H) the algebra of all bounded linear operators on H. For T in L(H), we write 

{T}´ for the commutant of T (i.e., for the algebra of all S  L(H) such that TS = ST ) 

and {T } = ({T }´)  ́for the double commutant of  T . As usual in what follows, N, R, 

C, and T will denote the sets of positive integers, real numbers, complex numbers, 

and complex numbers of modulus one, respectively. 

We now choose an ordered orthonormal basis {en}nN for H which will remain 

fixed throughout the section. If A = {λn}n∈N  is any bounded sequence in C, we write 

DA  for the normal operator in L(H) determined by the equations 

DA (en) = λnen,   n  N.              (30) 

This notation for A = {λn}n∈N  and DA  will also remain fixed throughout, as well 

the notation A´ the derived set of A. By definition, we shall say that an operator T in 

L(H) is a rank-one perturbation of a diagonal normal operator if there exist nonzero 

vectors nnn eu   N and nnn ev   N in H and a bounded sequence  A = {λn}n∈N  in 

C such that T is unitarily equivalent to the operator  DA + u  v, where, as usual, u  

v is the operator of rank one defined by 

(u ⊗ v)(x) = x, v u,    x ∈ H.                (31) 

The notation {αn}n∈N and {βn}n∈N for the Fourier coefficients of u and v, 

respectively, will also remain fixed throughout this section. There is a vast literature 

devoted to the study of this class of operators and its various subclasses (cf., e.g., the 

bibliography of [101]), but almost all of these studies are concerned with the special 

case in which the sequence Alies either on R or T. In fact, very little is known about 

the structure  of operators T = DA + u ⊗ v when no restriction is placed on the 

location of the eigenvalues λn of DA, and one of the most annoying unsolved 

problems in operator theory (on Hilbert space) is the following. 
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(I) Does every rank-one perturbation T= DA + u ⊗ v ∈ L(H)\C1H of a diagonal 

normal oper ator DA have a nontrivial invariant subspace (n.i.s.),or better yet,a 

nontrivial hyperinvariant subspace (n.h.s.)? 

Despite the fact that Problem (I) is at least thirty years old (cf., for example, 

[129] where it is explicitly posed, but probably not for the first time), it has 

remained stubbornly intractable, although E. Ionascu [101] addressed the problem. It 

is thus natural to regard this section as a sequel to [101], some results from which we 

use below. 

The purpose of this article is to provide a partial solution to Problem (I) by 

exhibiting a rather substantial subset of operators of the form T= DA + u ⊗ v each of 

which has an n.h.s. More precisely, our main result is as follows. 

Theorem (4.2.1)[128]: Let T= DA+ u ⊗ v be any rank-one perturbation of a diagonal 

normal operator Such that TC1H  and .)|||(| 3
2

3
2

  nnn N Then T has an 

n.h.s. 
To prove this theorem, we first treat some rather easy cases and thereby reduce 

the proof of Theorem (4.2.1) to the derivation of the following technical result. 

Theorem (4.2.2)[128]: With the notation as introduced above, suppose T = DA + u ⊗ 

v is such that 

(i) the map n →λn of N onto A is injective and A´ is not a   singleton, 

(ii) for every n ∈ N, αnβn   0, and 

   (iii)   )|||(| 3
2

3
2

nnn N  (the on trivial assumption). 

 Then either  

  (i) there exists an idempotent F with 0  F  IH such that F ∈{T }, and 

consequently, T  has a complemented n.h.s. (i.e., there exist n.h.s. M and N of T with 

M ∩ N = (0) and M + N = H), or 
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   (ii) there exists an uncountable set {μ: μ∈P} of eigenvalues of T and an 

associated family {uμ}μ∈P of linearly independent eigenvectors (with  Tuμ = μuμ) 

such that M = Vμ∈P {uμ} is an n.h.s. for T and H⊝M is infinite-dimensional. 

The techniques and results herein also allow us to show, in as equal [130] to 

this section, that the operators T= DA+u ⊗ v satisfying (i)–(iii) above but not (II) are 

decomposable in the sense of [124].  

We introduce some needed notation and set forth some known results from 

[101] bearing on Problem (I). The ideal of compact operators in L(H) will be 

denoted by K and the Calkin map L(H) → L(H)/K by π . For T in L(H) we denote 

by σ (T ) the spectrum of T, by σle(T ) [σre(T )] the left essential [right essential] 

spectrum of  T , and  

σe(T ) = σ (π(T)) = σle(T) ∪ σre(T),           σlre(T) = σle(T) ∩ σre(T). 

Moreover, we write, as usual, σp (T ) for the  point spectrum of T .  

We first take note of some cases treated in [101]. 

Proposition (4.2.3)[128]: (See [101].) If T = DA + u ⊗ v ∈ L(H)\C1H  and there 

exists n0∈ N such that 
00 nn   = 0, then either 

0n  ∈ σp (T ) or 
0n ∈ σp (T ∗). 

Moreover, if there exist m0, n0 ∈ N with m0 n0 such that 
0m   = 

0n  , then 
0n  ∈σp 

(T ). Finally, if A´ is a singleton, then {T} contains a nonzero compact operator. 
Consequently, in all cases T has an n.h.s. 

Thus in what follows we restrict our attention to the class (RO) consisting of 

all operators T = DA + u ⊗ v in L(H) for which all coefficients αn and βn are nonzero, 

A = {λn}n∈N is a one- to-one map of N into C, and A´ is not a singleton. We remark 

that it follows easily that if T1 = DΛ1  + u1 ⊗ v1 and T2 = DA2  + u2 ⊗ v2 belong to 

(RO) with T1 = T2, then the sequences A1 and A2  coincide and u1 ⊗ v1 = u2 ⊗ v2  

[2, Proposition 1.1]. It is also clear that for all T = DA + u ⊗ v ∈ (RO),  we have 

σe(T ) = σlre(T ) = σlre(DA) = A´. 

The following proposition gives very useful necessary and sufficient 
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conditions that a number λ  C belong to σp (T ). 

Proposition (4.2.4)[128]: (See [2].) Let T= DA+u⊗ v∈(RO).  Then a point μ∈C is 

an eigenvalue of T if and only if 

(i) μ  A, 

(ii)
2

2
n

n n


 

   N  (which implies by the Schwarz inequality that 

and
n
nn

n ,  



N  

(iii) 1n n
n n

 
    N  

Moreover, if μ ∈ σp (T )  [respectively μ̄  ∈ σp (T *)],  then the eigenspace associated 

with μ [respectively μ̄ ] is spanned by the single  vector ne
n

n
n )(  


N  [respectively

],)( ne
n

n
n  


N  

and so is one-dimensional. Finally, (A\A´) ∩ σ (T ) = ∅ (i.e., all isolated points λn  of 

the set Λ lie outside of σ (T )). 

We observe that the last statement of Proposition (4.3.4) can be proved in two 

lines by noting that if λn is isolated in Λ, then (DA− λn) (and thus (T − λn)) is a 

Fredholm operator of index zero, and hence necessarily either λn∈σp (T ) (which is 

impossible by (a)) or λn∈ C\σ (T ).  

 One might expect that an arbitrary T in (RO) would satisfy σp(T ) ∪ σp (T *) ∅ 

(and thus trivially have an n.h.s.), but that this is false  has been known (in the case 

DA= D*A
 ) for at least fifty years (cf., e.g., [3]). Perhaps the first example of an 

operator T∈(RO)  such that A'  has positive planar Lebesgue measure and σp(T ) = ∅ 

was given by Stampfli [131]. 

Before turning to more serious business, there is one more easy case to 

dispose of by using the Riesz–Dunford functional calculus and elementary Fredholm 

theory. 
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Proposition (4.2.5)[128]: If T= DA+u⊗v∈(RO) and either σe(T)(= σlre(T)= A´) is not 

connected or σ (T)  σe(T ), then either conclusion (I) or (II) of Theorem (4.2.2) 

obtains. 

Proof. Suppose first that σe(T ) is not connected. Then, either (1) σ(T) is not 

connected, in which case the well-known argument consisting of integrating the 

resolvent of T about a curve surrounding a separated part of σ (T) produces an 

idempotent 0  E  1H  in {T}, or (2) σ (T) is connected, from which one deduces, 

since σe(T) is not a singleton, that σ (T) must fill at least one hole H in σe(T), and 

(via the normality of DA) H necessarily has associated Fredholm index zero. Thus 

every point μ∈ H lies in σp (T) and μ̄ ∈ σp (T ∗). It follows easily (see Proposition 

(4.2.9) where the needed notation is available) that conclusion (II) of Theorem (4.2.2) 

holds. 

Now suppose that σe(T) is connected but σ(T)  σe(T ). Then clearly either 

σ(T) contains an isolated point, in which case{T} contains a nonzero idempotent as 

above, or σ (T) is connected but fills at least one hole in σe(T), in which case (II) of 

Theorem (4.2.2) holds (again via Proposition (4.2.9). 

Our first order of business is to delineate a class of operators of the form T = 

DA + u ⊗ v with which we shall be concerned in the remainder of the section. In 

view of Proposition (4.2.5), to establish Theorems (4.2.1) and (4.2.2), it suffices to 

deal with those T in the subset (RO)1  defined as follows. 

Definition (4.2.6)[128]: Suppose T = DA + u ⊗ v ∈ (RO)  L(H). If σ (T ) = σe(T ) 

(= A), σ (T ) is a (perfect) connected subset of C, and the sequences {αn}n∈N  and 

{βn}n∈N satisfy 
2 2

3 3, , (32)n n n n      N N  

then T will be said to belong to the class (RO)1. Note that for  

T ∈ (RO)1, σp (T ) ⊂ σ (T ) = A .́ 

The development of the techniques and results that will eventually yield the remainder 
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of the proof of Theorems (4.2.1) and (4.2.2) now begins. 

Definition (4.2.7)[128]:  For T = DA + u ⊗ v in (RO)1, we define γn = max{|αn|, |βn|},  

n ∈ N, and set 

22 3
1 ( ). (33)

n

c n


  
N

 

Moreover, for ζ ∈ C and s > 0, we define the open disc D(ζ, s) by 

D(ζ, s) := {λ ∈ C: |λ − ζ | < s}, 

and, in particular, we set, for every r > 0, 
2

3: ( , ). : (34),A D r Ar n n r rn
   


C \

N
  

and 


0

.:0 


r
r  

Denoting planar Lebesgue measure on C = R
2 by m2, we obtain that 

4 42 23 3( )2m A r rr n n
n n

     
 N N

 

Proposition (4.2.8)[128]: Suppose T∈(RO) has the property that σp(T)∩ Δ0  is 

uncountable (which, of course, is true if σ (T ) fills a hole in σe(T )). Then T satisfies 

conclusion (II) of Theorem (4.2.2) 

Proof. Since σp (T ) ∩ Δ0  is uncountable, there exists r0 > 0 such that σp (T ) ∩ Δr0   

is also uncountable, and thus contains a perfect set P . For μ ∈ P, uμ spans the 

eigenspace of T corresponding to μ (by Proposition (4.2.4), and since uμ,v = −1, 

by taking complex conjugates we get uv , = −1. Thus by another application of 

Proposition (4.2.4), we see that μ̄∈σp (T ∗) and v  spans the associated eigenspace. 

Partition P as P= P1∪ P2, where P1  is countably infinite and P2 is uncountable, and 

set  M = VP2 {uμ}. Note that since each one-dimensional space Cuμ is an n.h.s. for 

T, so is M. Moreover, the computation 
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,,*,,,
21212121 21   vuvTuvTuvu   

valid for all μ1 ∈ P1, μ2  ∈ P2, shows that 
1u  ⊥ 

2v for all such μ1, μ2. Thus, for 

μ ∈ P1, v ∈ H⊝M, and since these v with μ ∈ P1 are linearly independent, we 

see that H⊝M is infinite-dimensional, and thus T does, indeed, satisfy (II) of 

Theorem  (4.2.2). 

Note that this result also completes the proof of Proposition (4.2.5) Because 

of the frequency with which notation such as (DA − λ1H)  or (DA − λ1H) −1occurs 

below, we shall henceforth simply use the slightly simplified notation (DA− λ) for 

(DA − λ1H ), (DA− λ)−1for (DA− λ1H)−1, etc., where the inverse maps make sense (as 

possibly unbounded, densely defined, linear transformations) whenever the respective 

maps are injective. 

Lemma (4.2.9)[128]: Suppose T = DA + u ⊗ v ∈ (RO)1  and r > 0 is fixed. Then for 

every λ ∈ Δr , we have u, v ∈ ran(DA − λ) ∩ ran (DA∗  − λ̄ ), the vectors 

uλ := (DA − λ) -1u,                    vλ := (DA − λ)
−1

v, 

u  := ( *
AD − λ̄ ) −1

u,                                     v  :=  ( *
AD − λ̄ ) −1

v,                                                                                                                   

(35) 

are nonzero and satisfy 

max{|| uλ||, ||vλ||, || u ||, || v || c1/r,    λ∈Δr                              (36) 

Proof. Calculations show that, providing the two series converge, we have 

,0,0 2

2
22

2

2
22 





 

 NN n n

n

n n

n vvuu







  

and the result thus follows immediately from the inequality 
2 2 2 2

1
22 4

32

max{ }
,n cn n

r rn n rn n

   
  

   
 N N

 

Lemma (4.2.10)[128]: With T= DA+u⊗v∈(RO)1,r> 0 fixed, and uλ, vλ, u  , v as 

in Lemma (4.2.9), each of these four functions (of λ) is strongly continuous on Δr . 
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Consequently, functions of the form λ →uλ, v  are also continuous on Δr. 

Proof. The equality 

2
3

2
1 ,2 2N N n

n N
n nrn




 
  

 
N  

shows that the partial sums ne
n

nN
n 








  


1 (which are clearly strongly continuous 

functions of λ on Δr ) converge uniformly there to uλ. This establishes the strong 

continuity of uλ, and the arguments for the other functions are similar. 

Definition (4.2.11)[128]: We write(RO)2 for the set of all T(RO)1  such that σp (T 

)∩ Δ0 is a countable set, and note that to complete the proofs of Theorems (4.3.1) 

and (4.3.2), it suffices to show that each T  (RO)2  has the appropriate properties. 

Proposition (4.2.12)[128]:  Suppose T = DA + u ⊗ v  (RO)2,r > 0 is fixed, uλ, vλ, 

u , and v  are as in Lemma (4.3.11), and we define 

λ := 1 + uλ,v = 1 + (DA− λ) −1u, v,    λ Δr .                                                                                                                             

(37) 

Then for every compact subset K  Δr  such that λ does not vanish on K, 

u, v  ran(T− λ) ∩ ran(T* − λ̄ ),       λ  K,  

each of the four function 

,1)*(:,1)*(:

,1)(:,1)(:

vTTvuTTu

vTTvuTTu







  

is strongly continuous on K (where here again, the linear transformations (T− λ)−1 and 

(T*−λ̄ )−1 are possibly unbounded but densely defined), and there exists εK,r  > 0 such 

that 

K,r
K,r

T T T Tφ ε u , v , u , v , λ K, (38)λ λ λ λλ 1c r    

Proof. We treat only the case of Tu
 ; the arguments for the other three functions 

are similar. Clearly 

(T − λ)uλ  = (DA − λ)uλ + uλ,vu =  λu,         λ  Δr ,                       (39) 
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and we know from Proposition (4.2.12) that λ is continuous on Δr . Since λ does 

not vanish on K, there exist 0 < εK,r < MK,r < ∞ such that εK,r  |λ|  MK,r on K. 

Moreover, (39) yields 
1( ) (1 / ) , , (40)Tu T u u K    
     

which shows, via the continuity of 
−1  and strong continuity of uλ  on K,  that Tu  

is strongly continuous there and also, via (45), that 

|| Tu || c1/rεK,r for all λ  K . 

The following result is established by some calculations closely resembling those in 

Lemmas (4.2.9), (4.3.10), and Proposition (4.2.12), so we only sketch the proof. 

Definition (4.2.13)[128]: For T = DA + u ⊗ v  (RO)2  and r > 0 fixed, we write DA 

=  λdE (so E is the spectral measure of DA), and for every x  H, we define the 

extended real number cx[0, +∞], by 
2 4

32 : ( , )c x ex n nn
 

N
 

and the set L  H as 

L := {x  H:  cx < +∞}.                                       (41) 

Theorem  (4.2.14)[128]:  For T(RO)2  and r> 0 fixed, the set L in (50) is a dense 

linear manifold in H, invariant under DA, D*A , T , T*, (D*A − λ)−1, and (D*A  − λ̄ 

)−1 for every λ  Δr. Moreover L contains u, v, the basis vectors {en}nN, and is 

invariant under every value of E. Furthermore, for every compact subset K Δr  on 

which λ does not vanish, 

)),λ*ran(T)λ*
Aran(Dλ)ran(Tλ)

Kλ A(ran(DL 


   

and, upon defining, for each x  L and λ  Δr , 

1 * 1: ( ) , : ( ) ,

1 * 1: ( ) , : ( ) , (42)

x D x x D xA A
T Tx T x x T x

  

  

    

    
 

we obtain, for all x  L and λ K, that the four functions in (51)  take values in L, 

that 
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1: , , , (43)T Tx x x v u x x v u K        
      

where λ is as in (37), that 

, / , , (44)x x c rx r     

and that 

2
,, ( / ) ( / ) ( / ) , (45)1 K r

T Tx x c r c r xx r       

where εK,r  is a lower bound on |λ| on K. Finally, for every xL, each of the 

functions appearing in (42) is bounded and weakly continuous on K. 

Sketch of proof : It is clear that L is a linear manifold invariant under every value 

of E, and that L−=H follows because every xH with only finitely many nonzero 

Fourier coefficients x, en belongs to L. Thus {en}nN  L and earlier calculations 

showed that u, vL. For each x  L, we calculate 
222 2

2 2
2

2 4 22 3

1 * 1( ) ( )

, ,
, (46)x

x D x x D xA A

x e x e cn n
rrn n rn n

  


  

     

      
 N N

 

so x  dom(DA  − λ)−1,  L  is invariant under (DA  − λ)−1  and  )*( AD −1 (for 

λr), x  ran(DA − λ) ∩ ran )*( AD , and  ||xλ|| ,  x  are bounded by cx /r, as 

desired. Moreover, for λ  K almost the same calculation shows that L is invariant 

under *, ADAD  ,T, and T *, and the weak continuity on K  of the four functions in 

(42) is established by an argument like that in Lemma (4.2.9). Next, (43) is verified 

by a calculation similar to (40). Then, by (43) and what has already been shown, for 

λ  K, L is also invariant under (T − λ)−1   and (T * − λ̄ )−1. Finally, (46) follows 

from (43), (46), (36), and (3113), where εK,r  is as in (38).  

We shall need one additional easy lemma. 

Lemma (4.2.15)[128]: Let T = DA + u  v  (RO)2, A{T }, r > 0 be fixed, and 

let   K  Δr  be a compact subset on which  does not vanish. Then for every xL 
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and λK, (T− λ)−1Ax is well-defined and (T − λ)−1Ax = A(T− λ)−1x. Consequently, 

(T− λ)−1Ax is bounded and weakly continuous on K. 

Proof. We know from Theorem (4.2.14) that for xL, and λK, Tx
 = (T − λ)−1 x 

is well-defined, bounded, and weakly continuous on K,  and therefore so is )( TxA  = 

A(T − λ)−1x. Moreover, since A(ran(T − λ))  ran(T − λ) for every λ  K, (T − 

λ)−1Ax is also well-defined, and a trivial calculation shows that 
T
λ(Ax) : = (T − λ)−1Ax = A(T − λ)−1x = )( TxA  ,   x  L, λ  K.           (47) 

We are now almost prepared to write down some integrals that will be needed 

to complete the proof of Theorems (4.2.1)and (4.2.2) (for an arbitrary T in (RO)2).  

We will use without further comment the notation, definitions, and results of this 

section, and we shall need some additional notation and a standing convention. 

Recall that if Γ  C is a simple, closed Jordan curve in C, then according to the 

Jordan curve theorem, C\Γ consists of exactly two disjoint open connected sets which 

we shall denote by Int(Γ) and Ext(Γ), with Ext(Γ) being unbounded. 

Standing Conventions (4.2.16)[128]: Thus far, for T= DA+u  v  (RO)2, no 

assumption has been made concerning the size of ‖ܶ‖ or the location of σ (T ), and 

the significance of this work is that none is needed. Nevertheless, to simplify the 

notation in the plane geometry to be undertaken below, it will be convenient in what 

follows to, first, recall that σ (T ) = A is a perfect connected set, and thus has diameter 

d > 0, and then to replace DΛ  and T by ζ DΛ  and  ζT for a suitable ζC\(0) (which 

will have no effect on the validity of Theorems (4.2.1) and (4.2.2) or  any other 

result to follow), so that every T(RO)2  under consideration satisfies the following  

standing conventions: ‖ܦ‖,  ‖ܶ‖  < 1, 

−1 < a := min{Re(λ): λ  σ (T )} <b := max{Re(λ): λ  σ (T )} < 1, 

and all r>0 under consideration satisfy r(0,min{1-‖ܶ‖,(b− a)/( 2
14c )}). Note that 

these conventions ensure that ArD. Moreover, we write ρ(T ) := C\σ (T ), the 

resolvent set of T, and since 
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0,1λ)(Tlim
|λ|   

one knows that the function λ→(T− λ)−1  is analytic and norm-continuous on ρ(T ) 

and bounded in C\D. Also we shall denote by P the projection of C = R2 onto R  

C. For r > 0 fixed, it follows immediately from the definition of the set Ar in 

(4334), the connectedness of σ (T)= A,  and the standing conventions, that P (σ 

(T))= [a, b] and that P(Ar) is a union of open subintervals of R of total length at most 

).2rc(nn2r 2
1

3
2

γ  N  Therefore 

)]0Δ(T)P(σ)r[P(A\b)(a,:r    

and Πr  has (linear, Lebesgue) measure larger  than (b − a)(1 − r 2
1c ) > (b − a)/2 (since 

σp (T) ∩ Δ0  is a countable (perhaps void) set). We note that an important and needed 

property of Πr is that for every  s Πr , the vertical line x = s lies entirely in Δr . We 

also will use the fact that the subset Πr consisting of all points of Πr  with Lebesgue 

density 1 has the same linear measure as does Πr . Consequently, Πr is dense in Πr , 

and for each s Πr, there exist monotone sequences }{ ns nN  and }{ 
ns nN in Πr , 

with a < ns < s < 
ns < b, such that ݏି ↗ ାݏ and ݏ ↘  .ݏ

The following result, whose proof is long and is, in particular, given in a 

sequence of five steps, implies (what remains to be proved to establish) Theorems 

(4.2.1) and (4.2.2). 

Theorem (4.2.17)[128]: Let T= DA + u  v (RO)2.  Then, with T and r > 0 as in 

the standing conventions, for every s  Πr, there exist two nonzero idempotents s
jF

{T }, j = 1, 2, such that sF1 + sF2 =1H. Furthermore, for all s, s  Πr with s  s, and 

for  j = 1, 2, s
jF   s

jF  . 

Proof. The proof will be given in several steps. 
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Step I: Since T satisfies the standing conventions, we have σ (T ) σ (DA) = A  A 

 D. We fix an arbitrary s ߨᇱ   (a, b), so the vertical line segment sl   D− defined 

by 

sl = {s + it : −( 1 − s2)
1/2

  t   (1 − s2) 
1/2

} 

lies entirely in Δr ∩ D− and has endpoints on T. 

We next construct two positively oriented, piecewise smooth, simple closed, Jordan 

curves s
ss l T21 , as follows. Let 2,1,  js

j  consist of the line segment sl together 

with an arc sa j  of T (each properly oriented), where 

)}.Re(:{},)Re(:{ 21
 iesiesasieiesa  TT  

Note that both  s
1   and s

2 contain sl   (with opposite orientations) as a subarc and 

are compact sets. Thus T = sa1  sa2   (T ) ∩  (DA), so the resolvents Rλ(T ) = (λ − 

T )−1 and Rλ(DA) are analytic in a neighborhood of  T  = sa1  sa2 . Since  sl   T (=

ss
21  ) is a compact set on which λ does not vanish, we see that for every x  L 

(the dense linear manifold of Theorem (4.2.14)), the functions T
λx,T

λx,λx,λx  and 

Tuvx ,  from Theorem (4.2.14), as well as all functions (Ax)T
 as in (56) where A 

 {T },  are bounded and weakly continuous on sl   T. Therefore, these functions 

are weakly measurable and (since H is separable) strongly measurable on ss
21  . 

Consequently, the vector-valued integrals 

s 1
j

s sΓ Γj j

1 1E x: (λ D ) xdλ x dλ ,x L,j 1,2, (48)A2π i 2π i 


 
       
 
 

 

and 

1

s sΓ Γj j

1 1s TF x: (λ T) xdλ x dλ ,x L,j 1,2, (49)j λ2 i 2π i


 
       
 
 

 

exist in the strong topology on H, and from (57), (58), and (52) we get 
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sΓ j

-1

sΓ j

1s TF x x,v u dλj 2π i

1 x,v u dλ , 1,2. (50)
2π i

sE xj

sE x x L jj

 

  

  

   

 

Moreover, with DA = λdE, as in Definition (4.2.13), so E is the (purely atomic) 

spectral measure of DA, it is easy to check (for example, by computing the weak 

integrals Ej
s
x, en for xL) that  

sF x ( ( )) , , x L , j 1,2, (51)j
s sE Int x E x xj j      

and hence from (50), (51), (36), and (38), we obtain that 

2 2
1

sF x  (1 / ( )) , x L , j 1,2 , (52)j ,c r xk r     

where |λ |  εK,r on K = ss
21  as in Proposition (4.2.12). Since it is now obvious 

from (48) – (52) that s
jE   and s

jF  , j = 1, 2, are bounded linear transformations defined 

on L, we may extend them by continuity (without changing the notation) to be 

elements of L(H) (but the equalities (48)–(50) obtain only for x  L), so 

,2,1)),((  jIntEE s
j

s
j  

and since A  Int( s
1  )  Int( s

2  ) and Int( s
1  ) ∩ Int( s

2  ) =  , 

1 , . 0. (53)1 2 1 2
s s s sE E E EH    

Since, by Theorem (4.3.16) , Ej
s L  L, we also get from (62) that 

, , (54)1 2 1 2
s s s sL E L E L E L E L    

the direct sum of the indicated mutually orthogonal linear manifolds. Moreover, since 

for x  L, in the integral xFF ss )( 21   the integrations along sl  cancel one another, we 

get immediately that 

1
1 2

1s sF F  ( ) , ,
2

x T xd x L
i

 


   
T

 

and since σ (T )  D, we see that also, by the Riesz–Dunford functional calculus, 

1 2
s sF F 1 . (55)H   

Therefore to show that sF1
 and sF2

 are idempotents, it clearly suffices to show that 
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sF1
. sF2

 = sF2 . sF1 = 0. 

Step II: We expand the set of x  H for which (49) is valid, as follows. 

Lemma (4.2.18)[128]: With T(RO)2  and r and s fixed as in Theorem (4.2.17), let 

L Ldenote the set of all x in H for which the function Tx
 = (T − λ)−1x  is well-

defined, bounded, and weakly continuous on s
1   s

2 . Then A( Tx )L for every 

xL and every A{T }.  Moreover, 

1

sΓ j

1sF x (λ T) xd λ x L , j 1,2, (56)j 2π i
      

and 
s s
j jF F  , { } , 1,2.A A A T j    

Proof. Obviously the hypotheses guarantee that the integral in (56) exists, so we fix 

x0Land, via the density of L in H, let {xn}nN L be such that ฮݔ	–  .ฮ → 0ݔ	

Then from (49), we have 

1
j

1sF ( ) , , 1,2,
2n

s
j

x T x d n jni
 






    N  

and since sFj  L(H), clearly 00  xFxF s
jn

s
j  for j=1,2 (so the sequence  }||xF{|| nn

s
j N  

is bounded). Thus it suffices to show that 

1
j

1sF , ( ) , , , 1,2.02 s
j

x y T x d y L jn i
  






     

But, for j = 1, 2, and y  L, 

,}0{,,)(
2

1

,)(
2

1,sF

1

1
j

N

 










ndydxT
i

ydnxT
i

ynx

s
j

n

s
j







 

since the integrals in question are limits of finite (Riemann–Stieltjes) sums, and 

moreover, the convergence 
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1

1
0

( ) , , ,0

( ) ,

s s s
j j j

s
j

T TT x y d x y d x y dn n

T x d y

    

 



  





      

 
 

now follows from the fact that the sequence of continuous functions { Tynx , }nN  

(on sFj ) con- verges uniformly on sFj
  to Tyx ,0 . Next, note that by Lemma 

(4.2.15) (= (Ax)T
 )L, and thus from (56) we obtain that 

1 1
j

j

1 1sF ( ) ( )
2 2

sF , , { } 1,2, (57)

s s
j j

Ax T Ax d A T x d
i i

A x x L A T j

   
 

 

 

    

   

 

so sFj
 commutes with {T } as desired. 

Step III. We formulate the penultimate step of the proof as follows. 

Lemma (4.2.19)[128]: With T(RO)2  = and r, s fixed as in Theorem  (4.2.17) we 

have that for j = 1, 2, and each fixed ζ  Ext )( s
j  there exist operators s

jB  ( ), s
jA  (

) in L(H) with s
jB  ( ) {DA}, s

jA  ( ){T } such that 

.2,1),(,))(())),((())((  jExtFTAIntEEDB s
j

s
j

s
j

s
j

s
jA

s
j   

Moreover, for each x  L and  j = 1, 2, 

1

1

1( ) ( ) , (58)
2

1( ) ( ) , (59)
2

s
j

s
j

s T
j

s
j

B x x d
i

A x x d
i





   


   










 

 




  

and s
jB  (·. ) x, s

jA (.·)x : Ext( s
j )→H are analytic (vector-valued) functions. 

Furthermore, s
jF  is an idempotent different from 0 and 1H, s

jM  := ran( s
jF ) is a 

nontrivial hyperinvariant subspace for T, and 
( | ) ( ) ( \ ( )), 1,2. (60)s s s s

j j j jT M Int Ext j      C  

Proof. We give the argument for j = 1; the other argument is essentially the same. Fix 

  Ext( s
1 ). It is clear that the functions λ → ( − λ)−1 xλ  and λ → ( − λ)−1 Tx  are 

bounded and weakly continuous on s
1  , so the integrals in (58) and (59) are well-
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1

1 1

defined for each x  L, and thus we define sB1  (ζ ) and sA1  ( ) on L by (58) and (59). 

(We note here that since DA =  λ d E, one could also define sB1  ( ) by using the 

functional calculus for the normal operator DA, but we need both sB1  ( ) and sA1  ( ) 

to be written as line integrals so we can compare them later in the proof.) We shall 

first show that sB1 ( ) is bounded on L, and thus extends to an element of L(H), and 

then use this fact to show that sA1
 ( ) is also bounded on L. First, since L = sE1

 L + 
sE2
 L and (DA −  ) sE1

 L  sE1
 L  L, j = 1, 2 (via Theorem (4.2.14) and (51)), we 

compute, with x = x1 + x2  sE1 L + sE2 L arbitrary in L, 

1 1 1( )( ) ( ) ( ) ( ) ,
2

1 1 1( ) ( )( ) ,
2

1 1( ) ,1 2

0, 1, 2,1
, 1,1 (61)

0, 2,

sB D xk D D xk dA A Aj si
j

D D xk dA Asi
j

sE xk xk d
i

sE xk k

x if k

if k

      


      


  


     


      


  

  










 

where the next-to-last equality results because the function	ߣ → ൫ߣ −  ൯
ିଵ
 is  ݔ

analytic on a neighborhood of the simply connected region s
1   Int( s

1  ). Since (	ܦ  

−  )| sE1 H is clearly invertible 

 − ܦ	) )[ sB1
 ( ܦ	) − ( | sE1   −  )

−1 sE1 ] x = 0,  x  L. 

Therefore for all    Ext( s
1  we have ,ܣ\( 

B1( )x = (	ܦ | sE1   −  )
−1 sE1

 x,        x  L. 

But from (58) the left-hand side of this last equality is analytic (in  ) on Ext( s
1  ), and 

obviously so is the right-hand side. Therefore that equality holds for all   in Ext( s
1  

). In particular, sB1
 (  )extends to a bounded operator in L(H) satisfying the same 

equation for each   in Ext( s
1  ) and every x in H. 

We now show that As ( )| L is bounded on L, first by computing, using (43), 

(58), and (59): 
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r

1 11 1 1( ) ( ) ( ) ( , ) ,
2 2

1 1 1 1( ) ( ) ( , ) ,
2

sA x xk d x u u dj si i
j

sB x x u u d x Lj si
j

          

      

      


     


 

Then, using (45), we obtain (with K = s
1 ) 

( )s s 2 2 sA ( ) { B c /(r εk,r dist(ζ,Γ ))} x , x L.1 1 1 1     

Thus sA1 (ζ ) is bounded on L, and extends by continuity to an operator in L(H). Recall 

that from (58) and (59) we also obtain that for x  L, the functions sA1  , sB1 : Ext( s
1  ) 

→ H are analytic on Ext( s
1 ). Moreover, that sA1

 (ζ ){T} is immediate from the 

computation 
1s 1 1A ( )Tx (ζ λ) (T ζ) Tx dλj s2π i Γj

1 1 TT(ζ λ) x dλλs2π i Γj
s sTA ( )x, x L,ζ Ext(Γ ) (62)1 1





   

 

  

 

which is valid since T L  L  K ran(T − λ). Next, we calculate 

1s 1 1A ( )(T ζ) x (ζ λ) (T ζ) xdλj s2π i Γj
1 1 -1(ζ λ) (T )(T ) dλ

s2π i Γ j

1 1( )1 2π i
1

, , ( ),1 1

x

sF x xd
s

s sF x x L Ext



   

  



    

     

  


   

 

since the function ߣ → ߣ) −  ଵx is analytic in a neighborhood of the simplyି(ߞ

connected region Γଵୱ Int (Γଵୱ) Hence 

(T − ζ ) sA1 (ζ ) = sA1 (ζ )(T − ζ ) = sF1
 , ζExt ( s

1 ),                            (63) 

and we observe that this (together with its counterpart for j = 2) shows that both sF1
  

and sF2  are nonzero. For instance, if sF2 = 0, then sF1 = 1H and (62) give that σ (T ) ∩ 

Ext( sF1 ) =∅, which we know to be false since s  Πr  and there exists a point λ0   σ 

(T )  D such that s < P (λ0)< b. 
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Step IV. In this step we show that sF1
sF2
 (which equals sF1

sF2
 by Lemma (4.2.18)) is 

the zero operator, which simultaneously shows that sF1 and sF2 are idempotents. To 

accomplish this, however, and also for use in the sequel [130] to obtain the 

decomposability of the operators in (RO)2, we must introduce some additional 

machinery. 

 Since T(RO)2,T has the single-valued-extension property (SVEP); i.e., if ∅ 

 G  C is a connected open set and w : G → H is an analytic (vector-valued) 

function such that (T  − λ)(λ) ≡ 0 on G, then w ≡ 0 on G. (Indeed, if G ∩ σ (T ) =∅, 

this is trivial. 

 Otherwise, let ݈ be a vertical line with ݈ ∩ G ∅   and P (݈)Πr . Since σp (T 

) ∩ Πr  =∅,  w ≡ 0 on ݈ ∩ G, which contains an open interval, and thus w ≡ 0 on G 

via the analyticity of w.) This makes it possible to define for every x in H, the 

local spectrum σT (x)  σ (T ) of T at x to be the (compact) set C\ρT (x), where ρT 

(x), the local resolvent of T at x, is defined as the (open) set consisting of all λ0  C 

such that there exists an open neighborhood Nλ0 (x) of λ0 and an analytic function xλ0: 

Nλ0 (x) → H satisfying (T − λ)xλ0 (λ) ≡ x on Nλ0 (x). The SVEP guarantees the 

uniqueness of xλ0 , and therefore one has an analytic function xT (λ) defined on ρT (x) 

such that (ܶ	 −  x on ρT (x). It is well known (cf. [124]) that σT (x) = if ≡ (ߣ)	௫்(ߣ	

and only if x = 0 and also that σT (Ax)  σT (x) for every A  {T }. In particular, 

( ) ( ) ( ), , 1,2, (64)s
j TF x x T x H j      

and using Lemma (4.2.19) (see also (63)), we obtain 

2,1,),(),(,)()())((  jHxxExtxFxATxTA s
j

s
j

s
j

s
j

s
j   

The analyticity of As (·)x on Ext(Γ s ), together with the definition of local spectrum, 

gives 

( ) ( ), , 1,2, (65)s s
T j s jF x l Int x H j       

and putting (64) and (65) together, we get 

( ) ( ) ( int ( )), , 1,2, (66)s s
T j T s jF x x l x H j        

To complete the argument that sF1
 and sF2

 are idempotents (for each  s  '
r ), it is 



131 
 

convenient now to fix s  '
r   and introduce monoton sequences {ݏି}∈ே  and 

' ∈ே in{ାݏ}
r such that ݏି ↗ ାݏ and	ݏ ↘ ' Since s was completely arbitrary in .ݏ

r , 

all of the preceding results are valid for s Thus we obtain from (66) that 

                      

1 2 1 2 1

2 1

( ) ( ) ( ( )),

( ( )), ( ( ))

, ,

n n

n

n

S Ss s s
T T s

S s
sS

F F x F F x l Int

l Int l Int

x H n N

 



 





   

     

  

 

Hence, by what was said above, 1 2 0nssF F


  for each nN, and to complete the 

argument that 1 2 0ssF F   we shall show that the sequence 2 0nS

n N
F




  converges to 2

sF

in the weak operator topology (WOT). For this purpose we note, that 

2 ( )nSs
n N

K



      is a compact set, and thus (52) with K replaced by K~  gives that 

the sequence 2
nSF
  is uniformly bounded. Thus it suffices to show that  

2 2( ) , ) 0, , .nSs
m kF F e e k m N



   

Next we use (50) and (51) to write 

2 2 2( ( )) , ,s s s
m m mF e E Int e G e m N     

Where 

1 1 1 1
2

1 ( ) , ( ) ,
2 2

s m
m A m mG e D e u u d u d

i i  


      

 
         

and similarly for ,2
nS

mF e n N


   Since it is obvious from the definitions of the Jordan 

loops 2
nS 

 that 

2 2( ) ( )nS s
n N

Int Int



    

the regularity of the spectral measure E gives us that 2 2
nS sE E


  in the strong operator 

topology, and thus what remains is to show that 

2 2

1 1 -1( λ ) ( )(T ) dλm2π i
1( )(

n
s s

xmk        

     

                                     1 1 -1( λ ) ( ) dλm2π i
1)( kmkL ls

sn

    
   



 



132 
 

(( ) , ) 0. . , (67)2 2
nSsG G e e k m Nm k


     

where the arcs 2 2, , ,ss na a ls


 and 
sn

l   are all properly oriented to agree with their 

definitions at the beginning of Section this . Moreover, since ,, ssss nn   > and 

,

1 -1( λ ) ( )m
2( / )(1/ min{ ( ), ( , )}) , , , (68), 2 2 2

1(

K r

k
s s sdist dist k m Nk m k m

mk   

      

  
 

    





 

it is obvious that the first term on the left side of  (67) tends to zero as ݏା →  On the .ݏ

other hand, if the line segments sl  and 
sn

l   are parameterized as at the beginning of 

the proof of Theorem (4.2.17) the second term on the left-hand side of (67) becomes 

21 1 -1( ) (s it )
2 21

1

21
1 1 -1( ) (s it )n

21

21
( ( ) ( ) ( )) ,

2 2 2[ 1 . 121

sk m s it dtm k
s

s it

sn
s it dtn m ks it

sn
snmk t t t dtns ss n nn

 
 




  

 
  



     
 












         


     

 

Where 

,)()()( 111 
  kmits itsitst   

and the functions ߰ (t ) are defined analogously. Since ߰ and the ߰ (for n large 

enough) are uniformly bounded as in (68), and {߰}nN converges pointwise on 

−ൣ√1 − ଶݏ , √1 − to ߰ convergence in the WOT of 	ଶ൧ݏ 2
ns

n N
F




 to sF2

 follows, for 

example, from the Lebesgue bounded convergence theorem. 

Step V. To complete the proof of Theorem (4.2.17), we first notice that from 

Lemmas (4.2.18), (4.2.19), and Step IV, we know that for each s  Π`r , sF1  and 
sF2  

are nonzero idempotents in {T }, and therefore that for all such s, ran( sF1  ) and ran(

sF2  ) are n.h.s. for T . Thus it only remains to show that for  s, s' Π`r, sF j
  sF j . 
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Thus suppose that sF1 = sF1
 s < st. Then 1H = sF1 + `

1
sF  and therefore for every x  H, 

σT (x)  σT ( sF1 x)  σT
sF1( x)  Int( s

1( )−  Int( s
1( )−. Hence for every λ  C such 

that s < Re(λ) < st, and every x  H, we have (T − λ)xT (λ) = x. Thus (T − λ)H = H, 

and it follows that σ (T )  Int 1( )s    Int( s
1( )−, which contradicts the fact that σ (T ) 

is a connected set. 
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Chapter5 

Characteristic Functions for Infinite Sequences of  

As the main result of this chapter, we obtain a model for a completely non-co 

isometric (c.n.c) sequence ܶ (in our notation ܶ ∈   in which the "characteristic ((ଵ)ܥ

function"  ߠ occurs explicitly. We obtain criteria for joint similarity of ݊-tuples of 

operators to Cuntz row isometries. In particular, we show that a completely non-

coisometric row contraction ܶ is jointly similar to a Cuntz row isometry if and only if 

the characteristic function of ܶ is an invertible multi-analytic operator. 

Section (5.1): Sequences of Non-commuting Operators: 

This section with the “characteristic function” of an infinite sequence T		 = { ܶ}ୀଵ∞  

of noncommuting operators on a Hilbert space H  , when the matrix { ଵܶ, ଶܶ, . . . } is a 

contraction. in connexion  with this, we extend to our setting the results  from  

[133] for  two operators  and  many of the  results  from [134] for one  operator. 

 As the main result of this note, we obtain a model for a completely non-co-

isometric c.n.c.) sequence T		 (in our notation T		 ∈  in which the “characteristic ((ଵ)ܥ

function”  occurs  explicitly. 

 Further, it is shown when an operator ߠ:E → ℓଶ(F    , E∗)(E,E∗ generates a 

c.n.c. sequence ܨas above. Using these theorems, we prove that two c.n.c. 

sequences T		and T			′ are unitarily equivalent if and only if their characteristic 

functions coincide. 

 Finally,  by using  the  above-mentioned-model  and the Sz.-Nagy—Foias  

lifting theorem  [140], [134], [131], [133], [137], we give explicit forms  for the 

commutants  of an infinite sequence T		of  noncommuting   operators. 

 We point out that an important role in this section is played by a sequence 

ܵ = { ଵܵ, ܵଶ, … }	 of unilateral  shifts on a Hubert  space ℓଶ(F    ,H    )with orthogonal 

final spaces and  such that the  operator matrix [ ଵܵ, ܵଶ, … ] is nonunitary.  

 Let us mention that A.  F.  Frazho uses (in [138]) a countable number of 

shifts in a Fock space, in an algebraic setting, to solve a realization problem. 

Reference [139] also uses two shifts on an  space to solve certain problem in 

stochastic processes. 

2
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Although the Fock space setting is natural for transfer functions of certain system, 
as explained in [140], or to certain problems in control, it is not the best space to 
use in dilation theory. The framework of this paper is that of an ℓଶ(F    ,  H   )	space. 

 To put our work in perspective, let us recall from [134], [133], [141], [137], 

some facts from dilation theory for an infinite sequence T		 = { ܶ}ୀଵ∞  of 

noncommuting  operators on a Hilbert space H when the matrix [ ଵܶ, ଶܶ, . . . ] is a 

contraction.  

 Let  ߉  be the  set {1,2, … ݇}(݇ ∈ ܰ	ݎ	(ܰ = {1,2,4,… } and,  for every ݊ ∈ ܰ 

let ܨ(݊, …,be the set of all functions from the set {1,2 (߉ , ݊} to the set ߉. Denote  

the  set        
1

( , )F n







  by F    where0)ܨ, (߉ = {0}.  

 A subspace L 	 of H 	 will be called a wandering subspace for the selfadjoint 
sequence  V	 = { ఒܸ}ఒ∈௸ of isometries  on H  if for  any  distinct  functions ݂, g∈F  	  
we  have  ܸL	 ⊥ ܸL 	 where for each ݂F	 , ܸ stands  for the  product 

ܸ(ଵ)
∗

ܸ(ଶ)
∗ … ܸ()

∗  and  ܸ
∗ =  .H   (the  identity  on H  )ܫ

 We say that V	   is a ߉-orthogonal shift on H 	  if there exists a subspace 
L	 ⊂ H   which is  wandering  for  V    and 

									H = (L   )	 Fܯ ≝ ⨁
݂ ∈ F   

			 ܸL		.																																										(1) 

Now let ܵ = { ఒܵ}ఒ∈௸ be the ߉-orthogonal  shift with the wandering  subspace H   
defined  on  the  Hubert  space 

ℓଶ(F  , H  	) = ቐ൫ℎ൯F   
; 	  ฮℎฮ

ଶ

F   

< ∞, ℎ ∈ H  ቑ												(2) 

as follows. 

       For each  ߉  we  put  ܵ ቀ൫ℎ൯F
	ቁ = ൫ℎశభ

′ ൯
శభF   

 ,where  ℎ′ = 0  and  

for ݂ାଵ ∈ 1)ܨ + ߳,Λ)	(߳ ≥ 0) 

ℎ′ =

⎩
⎨

⎧
ℎ; 						݂݅		g ∈ g(1)	݀݊ܽ	(Λ,1)ܨ = 																																																	,	ߣ
ℎ; 										݂݅		g ∈ ,(Λ,݊)ܨ (݊ ≥ 2), ݂ ∈ ݊)ܨ − 1,Λ)	ܽ݊݀	g(1) = ,ߣ
																						g(2) = ݂(1), g(3) = ݂(2), … , g(݊) = ݂(݊ − 1),

0; 																																																																													݁ݏ݅ݓݎℎ݁ݐ																	

� 

This model will play an important role in our investigation. 
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We can easily see how acts the Λ-orthogonal   shift with the wandering sub- space 

H		 if we consider another model.  For this, let us form the Hilbert space of all 

formal power series with noncommuting  indeterminates  ܺ(Λ) 

ܵଶ(F   , H 	 ) = ቐ  ܽ ܺ

F   

; ܽ	  ฮܽฮ
ଶ

F   

< ∞	 ቑ, 

With the inner product 

〈  ܽ ܺ
F   

,  ܾ ܺ
F   

〉 =  ൫ܽ, ܾ൯
F  

 

Where for any ݂ ∈ ,݊)ܨ ,(߉ ܺ  stands  for ܺ(ଵ)	 ܺ(ଶ)⋯ ܺ() . 

Define the ߉-orthogonal shift ܵ = { ఒܵ}ఒ∈௸	on	ܵଶ (F   , H	  ) by setting 

ఒܵ ቌ  ܽ ܺ
F   

ቍ =  ܽ ఒܺ ܺ
F  

ߣ)								, ∈  (߉

When ߉ = {1} we find again the unilateral shift ܵ defined by 

0

1
1

0n

n
n

n

nS a X a X











  
 
   

which is unitarily equivalent with  the usual unilateral  shift on the Hardy space 

ܦ where (  	H,ܦ)ଶܪ = ݖ} ∈ : |ݖ| < 1}. 

 In the case when ߉ = {1,2} the ߉-orthogonal shift ܵ = { ଵܵ, ܵଶ} will be uni-

tarily equivalent with the shifts {ܵ,  .defined in [133]  on a Fock  space {ܧ

 We recall from [137] that for any sequence T  = { ܶ}∈௸ of noncommuting  
operators on a Hilbert space H   such that *T T 



  H   , there exists a minimalܫ

isometric dilation  (m.i.d.) V   = { ܸ}ఒ∈௸ on a Hilbert  space K    ⊃ H   , which is 
uniquely determined up to an isomorphism,  i.e., the following conditions  hold 

⎩
⎪⎪
⎨

⎪⎪
⎧
(i)		ܿܽܧℎ	ݎݐܽݎ݁		 ܸ(߉)݅ݏ	݊ܽ		ݕݎݐ݁݉ݏ݅,															

(ii)				( ܸ ܸ
∗)ଶ

∈௸

≤ 																																																											   Hܫ

(iii)			ݎܨ	݁ܽܿℎ, ߉, ܸ
∗(H   ) ⊂ H   		ܽ݊݀	 ܸ

∗|H   = ܶ
∗,

	(iv)	K   =ሧ ܸH   
F

,																																																																	

� 											(3)	
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 (see [137]). 

 if we consider  the following  subspaces of K  

										L	 =ሧ( ఒܸ − ఒܶ)
௸

	H  	;L∗ = ൭ܫK  	 − ఒܸ ఒܶ
∗

௸

൱H  
തതതതതതതതതതതതതതതതതതതതതതതതതത

		,												(4)	 

we have the orthogonal decompositions 

																							K		 = R  ⨁ܯF			(L∗) = H 		⨁ܯF		(L  )																								(5) 

and  R  reduces  each  operator ܸ(߉).  

 Moreover, R	 = {0} if and only  if H  = {0}	, where 

																	H  = ቐℎ ∈ H  , lim
→ஶ

 ฮ ܶ
∗ℎฮ

ଶ

∈ி(,௸)

= 0ቑ.																										(6) 

Further, we have 

																													L	 ∩	L∗ = {0}																																																																					(7)	

and  

(L∗)				   Fܯሧ	(L   )		   Fܯ																										 		= K		 ⊝ H ଵ	,																					(8)	

where 

							H ଵ = ቐℎ ∈ H  ,  ฮ ܶ
∗ℎฮ

ଶ

∈ி(ଵା,௸)

= ‖ℎ‖ଶ	݂ݎ	ݕݎ݁ݒ݁	݊ ∈ ܰቑ.					(9) 

For any sequence T  = { ܶ}∈௸ of operators on H		 with 
*T T

 
    we have the		Hܫ 

following orthogonal decomposition ([137]) 

H = H 	H ଵ	H ଶ,	

where H ,H ଵ are given by (6), (7) and H ଶ = H		 ⊝ 	(H 	H ଵ). 

 We shall say that T  ∈ ∋  ൫T	()ܥ ൯ if H ୩()ܥ = {0}	൫H   ,H ୩൯ , where 
݇{0,1,2}. A sequence T  ∈  will be called a completely non-coisometric (ଵ)ܥ
(c.n.c.) sequence. 

 Let E		,E∗ be Hilbert spaces and  ܵ = { ఒܵ}ఒ∈௸ the ߉-orthogonal shift acting 
on ℓଶ(F   ,E		) or ℓଶ(F    ,E∗). 

 An operator ܣ: ℓଶ(F    ,E	) → ℓଶ(F    ,E∗) which commutes with  each ܵ(߉) 
is  uniquely determined by theoperator 
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 ∶ E		ℓଶ(F   ,E∗),  =  . This follows  because  for  every	E|ܣ

݂ ∈ F  , ℎ ∈ E		 we have ܣ ܵℎ = ܵߠℎ  and ⋁ 		 ܵE F = ℓଶ(F   ,E	). 

 Now, let us consider an operator  ∶ E		ℓଶ(F   ,E∗), We define ܯ ∶
ℓଶ(F   ,E	) → ℓଶ(F  ,E∗) by the relation 

ఏܯ ܵℎ = ܵߠℎ = ܵܯఏℎ									(ℎH		, ݂F   ).	

 In this section we only work with   such that ܯఏ is a contraction. One can 
show that 

ఏܯ ቀ൫ℎ൯F
ቁ =  ܵߠℎ

F

   ൫ℎ൯F	ݎ݂	
∈ ℓଶ(F   ,E	). 

Throughout this paper an Operator ߠ:E		ℓଶ(F   ,E∗	) will be called 

(i) inner if ܯఏ  is an isometry, 

(ii) outer if ܯఏℓଶ(F  ,E	)തതതതതതതതതതതതതതതത = ℓଶ(F  ,E∗) 

(iii) purely contractive if ฮ Eܲ∗ߠℎฮ < ‖ℎ‖ for  every ℎH   , ℎ	0. 

Proposition (5.1.1)[132] Let.  ∶ E		ℓଶ(F  ,E∗), be an operator such that ܯఏ is a 
contraction. 

(i)   θ is inner if and only if θ is an isometry  and θE	 is a wandering  subspace 
for  ܵ. 

(ii)   is outer if and only ߠE	  is cyclic for  ܵ, i.e., 

ሧ ܵ(ߠE )
F

= ℓଶ(F  ,E∗) 

 (iii)  is inner and outer if and only if  is a unitary  operator from E  to E∗. 

The version of the Beurling-Lax  theorem  [134], [133] in to  our  setting is.  

Theorem (5.1.2)[132]: A subspace M		ℓଶ(F  ,E	) is invariant for each ܵ(	߉)  if 

and only if there exists a Hilbert space ܵ and an inner operator  ∶

ℎ	ℓଶ(F  ,E	)such that 

M =  ఏℓଶ(F  ,Y  )ܯ

Proof. Using the Wold decomposition for an infinite sequence V = { ܸ}∈௸ of 

isometries with orthogonal  final spaces. ([137]). 

 Let V = { ܸ}∈௸ be a ߉-orthogonal  shift acting  on a Hilbert  space K such 

that L			 ⊂ K			  is wandering subspace for V  	 that is, 
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 K	 = F   (L  )ܯ = ⨁
݂F   

				 ܸ	L		. 

 Denote by ΦL    the unitary operator from ܯF   	(L  ) to ℓଶ(F  ,L   ) defined by 

ΦL ቌ ܸ݈
F

ቍ =  ݈ܵ
F

	ቌ݈ ∈ L		;ฮ݈ฮ
ଶ

F

< ∞ቍ, 

where ܵ = {ܵ}௸ is the ߉-orthogonal  shift acting on ℓଶ(F  ,L   ) . 

 Then for any  	߉ we have 

ΦL	 
ܸ
∗ = ܵΦL . 

 The following extension in [9] will be used in the sequel.  We omit the proof 

which is simple to deduce. 

Lemma (5.1.3)[132] Let V   = { ܸ}∈௸ and V 	   ᇱ 		= { ܸ
ᇱ}∈௸ be ߉-orthogonal shifts 

on the Hilbert spaces K			 and K   ᇱ, with the wandering subspaces L		 and L 	 ᇱ, 
respectively.  

 Let Q  be a contraction of  K			into  K 	  ᇱ such that for any  ∈  ߉

࣫ ܸ = ܸ
ᇱ࣫. 

Then there exists  a contraction of L into ℓଶ(F  ,L	  ᇱ  ) such that 

ΦL 	 ᇲ࣫ =  . ఏΦLܯ

In order that  be 

(a) purely  contractive, 
(b) inner, 
(c) outer, 

(d) a unitory  from L		 to L   ᇱ, 

it is necessary and sufficient that the following conditions hold, respectively: 

(a) ǁܲL 	 ᇲ 	݈࣫ǁ	 < ǁ݈ǁ	݂ݎ		ݕݎ݁ݒ݁	݈	L		, ݈	0, 

(b) ࣫  is an isometry, 

(c) ࣫ K	തതതതത = K 	  ᇱ, 

(d) ࣫  is a unitary. 

 Let  T  = { ܶ}∈௸ be a sequence of noncommuting operators on a Hilbert  

space H  	such that  the matrix  [ ଵܶ, ଶܶ, . . . ] is a contraction. Let us recall from 

[137] that the defect operators of T   are 
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. 

∗ܦ = ቌܫH  −  ܶ ܶ
∗

௸ 

ቍ

ଵ ଶ⁄

; ܦ = ்ܦ , 

where ܶ∗ stands  for the matrix  [ ଵܶ, ଶܶ, . . . ] and ்ܦ = ܫ) − ܶ∗ܶ)ଵ/ଶ. 

 The defect spaces of T    are 

D∗ = ;	H  തതതതതതത∗ܦ 	D = ܦ ቀ ⨁
 ∈ H ቁ߉

തതതതതതതതതതതതതതതതത
, 

where each H  	( ∈ .  is a copy of H (߉  

We define the characteristic function of T    as the operator 

T   :D  ℓଶ(F  ,D∗) by 

T  (ℎ)ߠ = − ܶ ܲℎ
∈௸

+ ఒܵ ቀ൫ܦ∗ ܶ
∗

ܲܦℎ൯F  
ቁ

∈௸

	(ℎ ∈ D), 

where ܲstands for the orthogonal projection of D ⊂ ⨁
 ∈    H  onto H   and ߉

ܵ = {ܵ}	௸   is the ߉-orthogonal  shift acting on ℓଶ(F  ,D∗). 

 It is easy to see that T  is a contraction and moreover T  is purely 

contractive. 

 Let us remark that if T = {ܶ∗}(‖ܶ∗‖ ≤ 1) the “characteristic function” of  

T  is the operator  T   :D ℓଶ(N,D∗) given by the following matrix  

*

*

2

*

*

*

TT

TT

TT

T
D D

D T D

D T D





 

We remark  that ܯఏT 
 is unitarily equivalent to (்ߠ)ା: ାଶܮ (D∗) → ାଶܮ (Dᇲ∗), where 

 ା is(்ߠ)  is the classical characteristic function of the  contraction ܶ  and ்ߠ

defined in [134]. 

 Let us consider another sequence T 		′ = { ܶ
ᇱ}∈௸ on  a Hilbert space H   ᇱ  

such that  the matrix 	[ ଵܶ
ᇱ, ଶܶ

ᇱ, . . . ]  is a contraction. 

 We say that the characteristic functions ߠT  and ߠT 	  ᇲ coincide if there exists 

two unitary operator 

ܹ:D → D 	ᇱ, ∗ܹ:D ∗ → D ∗
	ᇱ  
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Such that 

=  Tߠ∗ௐܯ  ,ᇲܹ	 	 Tߠ

 One can easily show that if T  and T 	  ′ are unitarily quivalent, i.e., ఒܶ
ᇱ =

ܷ ܷܶ∗ for any  ∈  where ܷ is a unitary operator [from H  to H   ᇱ, then their ,߉

characteristic functions  coincide. The converse is not true, at least not in this 

generality. Notice also that if T ∈ = Tߠ then(ଵ)ܥ 0. 

 We are now going to show  that  the  definition  of the  characteristic function  

for T 		    arises in a natural way in the context of the theory of isometric dilation of 

asequence T = { ܶ}∈௸ of noncommuting operators on H   such the matrix  

[ ଵܶ, ଶܶ, . . . ]   is a contraction (see [137]). 

 Let V   = { ܸ}∈௸ be m.i.d of T  on the Hilbert space K	 ⊃ H .  

 By (5) we have that { ܸ|ܯF  ( L	∗)}∈௸ and { ܸ|ܯF  (L	  )}∈௸ are ߉-orthogonal 

shifts acting on ܯF  ( L	∗) and ܯF  (L	  ) ,respectively . 

 Moreover, for each  ∈   ߉

ቀܲL	∗ቚܯF  (L	  )ቁ ൫ ఒܸ
  )൯	F  (Lܯ|∗ = ൫ ఒܸ

∗)൯	F  ( Lܯ|∗ ቀܲL	∗|ܯF  (L	  )ቁ, 

where ܲL	∗ stands  for the orthogonal  projection of K  onto ܯF  ( L	∗). 

       Setting ࣫ = ܲL	∗|ܯF  (L  ), we can  apply  Lemma (5.1.3)  and   we  obtain   that  

there exists a  contraction L   :L  ℓଶ(F  ,L	∗) such that 

ΦL	∗࣫ =     ఏLܯ
ΦL  , 

Hence we deduce that   

=  Lߠ																				 ΦL	∗൫ܲL	∗หL	   ൯൫ߔL	  ൯
∗
|L  .																						(10) 

We remark first that ߠL   is purely contractive. Indeed, if Lܲ	∗
 denotes the orthogonal 

projection onto L	∗, we have ฮ Lܲ	∗ ∗ܲ
L  ݈ฮ < ‖݈‖ for every ݈ ∈ L   , ݈ ≠ 0 . Otherwise 

there would exist an ݈ ∈ L   , ݈ ≠ 0  such that, ݈ = Lܲ	∗ ∗ܲ
L  ݈, ݅. ݁., ݈ ∈ L	∗, and this 

contradicts the relation (7). 

 Let us recall from [137] that the operator Φ∗ defined from L	∗ to D	∗ by 

Φ∗ ൭ܫK 	−  ఒܸ
∗
ఒܶ
∗

∈௸ 

൱ℎ = ;ℎ∗ܦ (ℎ ∈ H  )																					(11) 

is unitary and the operator Φ defined form L			 to D	 by 
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Φ൭ܫK    −( ఒܸ
∗ − ఒܶ

∗)ℎఒ
∈௸

൱ = ௸	(ℎఒ)			;(௸	(ℎఒ))ܦ ∈
⨁

 ∈  (12)	H  ߉

is unitary too. 

 We are ready for proving the following theorem which is a generalization in 
[134]. 

Theorem (5.1.4)[132]: the characteristic function ߠT    for T   coincides with ߠL  . 

Proof. we show that 

=  Lߠ∗ܯ																																  (13)																																										Φ,	  Tߠ

Where Φ∗, Φ are the unitary operators in (11), (12), respectively. For this, it is 
necessarily to prove that 

					 Lܲ	∗ ܵ
=  Lߠ∗ܯ∗ Lܲ	∗ ܵ

݂)			Φ	  Tߠ∗ ∈ F   ),																									(14) 

Where Dܲ	∗ stands for the orthogonal projection of ℓଶ(F  ,D	∗) ontoD	∗. 

 By (10) and by the Wold decomposition (5), the relation (14) is equivalent to 

									Φ∗ Lܲ	∗ ܸ
∗|L 	 = Dܲ	∗ ܵ

݂)				Φ		  Tߠ∗ ∈ F   ),																			(15) 

In what follows we shall prove this relation. First let us notice that 

																				 Dܲ	∗ߠT  = − ܶ ܲ
∈௸

,																																												(16) 

Dܲ	∗ ܵ
∗ܵߠT  = ∗ܦ ܶ

∗
ܲܦ						( ∈ ,߉ ݂ ∈ F   ). 

For ݂ = 0 the relation (15) holds true. Indeed for 

݈ = ( ܸ − ܶ)ℎఒ
∈௸

= Φ∗ܦ ቀ ⨁
 ∈ ൭			ℎఒቁ߉

‖ℎఒ‖ଶ

∈௸

< ∞൱		(17) 

we have that ݈ + ܫ) − ∑ ܸ ఒܶ
∗

∈௸ ) ∑ ܶℎ∈௸ ∈ ⨁
 ∈ ߉ ܸK     and by (15) we obtain that  

Lܲ	∗݈ = −൭ܫ − ܸ ఒܶ
∗

∈௸

൱ ܶℎ
∈௸

. 

Hence, by (16) we have 

Φ∗ Lܲ	∗݈ = ]∗ܦ− ଵܶ, ଶܶ, … ] ቀ
⨁

 ∈ ℎఒቁ߉ =
[ ଵܶ, ଶܶ, … ܦ[ ቀ

⨁
 ∈ ℎఒቁ߉ = −[ ଵܶ, ଶܶ, … ]Φ݈

= Dܲ	∗ߠT  		Φ݈. 

It remains to show that for any ݂ ∈ F     , ∈  ߉
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											Φ∗ Lܲ	∗ ܸ
∗
ఒܸ
∗݈ = Dܲ	∗ ܵ

∗
ఒܵ
݈)				Φ݈		  Tߠ∗ ∈ L   ).															(18) 

Let ݈	be as in (17); then according to (16) the relation (18) becomes 

Φ∗ Lܲ	∗ ܸ
∗
ఒܸ
∗݈ = ∗ܦ ܶ

∗
ܲܦଶ ቀ ⨁

 ∈  .ℎఒቁ߉

Since 

∗ܦ ܶ
∗

ܲܦଶ ቀ ⨁
 ∈ ℎఒቁ߉ = Φ∗ ൭ܫ − ܸ ఒܶ

∗

∈௸

൱ ܶ
∗

ܲܦଶ ቀ ⨁
 ∈  .ℎఒቁ߉

we have only to show that 

									 Lܲ	∗ ܸ
∗
ఒܸ
∗݈ = ൭ܫ − ܸ ఒܶ

∗

∈௸

൱ ܶ
∗

ܲܦଶ ቀ ⨁
 ∈ 					.ℎఒቁ߉

(19) 

Let us notice that for any  ∈  ߉

ܲܦଶ ቀ ⨁
 ∈ ℎఒቁ߉ = − ఒܶ

∗

ఓ∈௸
ఓஷ

ఓܶℎఓ + ்ܦ
ଶ ℎ. 

Consequently, the relation (19) holds if and only if the following relations hold 

Lܲ	∗ ܸ
∗
ఒܸ
∗( ఒܸℎఒ − ఒܶℎఒ) = −൭ܫ − ఒܸ ఒܶ

∗

∈௸

൱ ܶ
ഊ்ܦ∗

ଶ ℎఒ		( ∈  (߉

and 

Lܲ	∗ ܸ
∗
ఒܸ
∗൫ ఓܸℎఓ − ఓܶℎఓ൯ = −൭ܫ − ܸ ఒܶ

∗

∈௸

൱ ܶ
∗
ఒܶ
∗
ఓܶℎఓ		( ≠  .(ߤ

These relations hold since the element  

ܸ
∗
ఒܸ
∗( ఒܸℎఒ − ఒܶℎఒ) − ൭ܫ − ఒܸ ఒܶ

∗

∈௸

൱ ܶ
(		ഊℎఒ்ܦ∗ ∈  (߉

and 

ܸ
∗
ఒܸ
∗൫ ఓܸℎఓ − ఓܶℎఓ൯ + ൭ܫ − ఒܸ ఒܶ

∗

∈௸

൱ ܶ
∗
ఒܶ
∗
ఓܶℎఓ		( ≠  (ߤ

are orthogonal on L	∗. This follows by simple computation .The proof is complete.  

Remark (5.1.5)[132]:  if T  ∈   .T   is innerߠ then  ()ܥ
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Proof. Taking into account [137], it follows that the m.i.d. V      of T   is pure, i.e., 
K  =   .T   is innerߠ ∗). By relation (10) and Theorem(5.1.4) it follows that	F  (Lܯ

In this Section we make the additional assumption that T   is c.n.c. on H   . 

Then the relation (8) implies 

K  =  ∗)	F  (LܯF  (L  )ሧܯ

and consequently, 

൫ܫ − ܲL	∗൯|ܯF  (L  ) = R											൫cf.		(5)൯. 

Consider the operator ∆L 	 defined on ℓଶ(F  ,L   ) by 

∆L 	= ൫ܫ −     ఏLܯ

∗     ఏLܯ
൯
ଵ ଶ⁄

, 

where ߠL     is given by (10). 

 For ݇ ∈  F  (L  ) we haveܯ

ฮ൫ܫ − ܲL	∗൯݇ฮ
ଶ
= ‖݇‖ଶ − ฮܲL	∗݇ฮ

ଶ
= ฮΦL  ݇ฮ

ଶ
− ฮΦL	∗ܲL	∗݇ฮ

ଶ

= ฮΦL  ݇ฮ
ଶ
− ฮܯఏL    

ΦL  ݇ฮ
ଶ
= ฮ∆L  ΦL  ݇ฮ

ଶ
. 

We can define the unitary operator ΦR from R onto ∆L ℓଶ(F   ,L   )തതതതതതതതതതതതതതതതത  by the relation  

ΦR	൫ܫ − ܲL	∗൯݇ = ∆L  ΦL  ݇					൫݇ ∈  .F  (L  )൯ܯ

Consequently, 

Φ = ΦL	∗⨁	ΦR. 

is a unitary operator from space K   =  F   (L ∗) ⨁R  to the Hilbert Spaceܯ

ܭ = ℓଶ(F   ,L	∗)⨁	∆L  ℓଶ(F   ,L   )തതതതതതതതതതതതതതതതതത. 

      Let us find the image of space H   under the operator Φ . Since H = K  ⊖
݇ F   (L  ) and for eachܯ ∈    )	(L	  Fܯ

Φ݇ = ΦL	∗ܲL	∗݇⨁	ΦR	൫ܫ − ܲL	∗൯݇ =     ఏLܯ
ΦL  ݇⨁	∆L  ΦL  ݇ 

we have  

ΦH  = ܪ = ൣℓଶ(F   ,L	∗)⨁	∆L ℓଶ(F   ,L   )തതതതതതതതതതതതതതതതത൧ ⊖ ൛ܯఏL   
;ݑ  L∆	⨁ݑ ݑ	 ∈ ℓଶ(F   ,L   )ൟ. 

         Because ܲL	∗ commutes with each ఒܸ(		߉) it follows that 

ΦR	 ఒܸ൫ܫ − ܲL	∗൯݇ = ΦR	൫ܫ − ܲL	∗൯ ఒܸ݇ = 	∆L  ΦL  
ఒܸ݇ = 	∆L  ఒܵΦL  ݇ 

for every	݇ ∈ ܵ (L  ) , where	  Fܯ = {ܵ}∈௸ is the ߉-orthogonal shift on ℓ
ଶ(F   ,L   )  



145 
 

      Therefore,  

ΦR	 ఒܸ
∗ΦR

∗ 	(∆L  ݒ) = ∆L  ఒܵݒ		൫ݒ ∈ ℓଶ(F   ,L   )൯ 

and 

Φ ఒܸ
∗Φ∗ = ఒܸ

∗ = ఒܵ⨁ܥଵ		݂ݎ	ݕݎ݁ݒ݁			߉, 

where each operator ܥఒ is an isometry defined on ∆L 	ℓଶ(F   ,L   )തതതതതതതതതതതതതതതതതത by the relation 

(ݒ  L∆)ఒܥ = ∆L  ఒܵݒ		ݎ݂	ݒ ∈ ℓଶ(F   ,L   ) 

Now , sinse	�(∑ ( ఒܸ
∗)ଶ∈௸ − R|(ܫ = 0  we have 

ܥఒܥఒ
∗

∈௸

= ,ℓమ(F   ,L   )തതതതതതതതതതതതതതതതതത	 L∆ܫ ∆L ℓଶ(F   ,L   )തതതതതതതതതതതതതതതതത		ℎ݁݊ܿ݁ݓ = ∆L (ℓଶ(F   ,L   )⊖ L   )തതതതതതതതതതതതതതതതതതതതതതതതതതതത. 

It is easy to see that for every ݒℓଶ(F   ,L   )  and ,  ߉	ߤ

ఒܥ
∗൫∆L  ఓܵݒ		൯ = ൜

∆L  ݒ						݂݅								 = ߤ
0												݂݅						 ≠ ,ߤ

� 

According to (3) we have ఒܶ
∗ = ఒܸ

 .where ఒܶ is the transform of ఒܶ by Φ ,ܪ|∗

 Therefore, for ݑ⨁∆L	  ఓܵݒܪ  we can write that  

ఒܶ
∗൫ݑ⨁∆L  ఓܵݒ		൯ = ൜ ఒܵ

								݂݅						ݒ  L∆⨁	ݑ∗ = ߤ
ఒܵ
						݂݅													0⨁	ݑ∗ ≠ ,ߤ

� 

Where ,  .߉	ߤ

 The above results permit us to construct a model for a c.n.c. sequence T	, in 
which the characteristic function occurs explicitly. We obtain a generalization in 
[134], namely: 

Theorem(5.1.6)[132]: Every completely non-isometric sequence T = { ܶ}∈௸ on the 
Hilbert space H    is unitarily equivalent to a sequence ܶ∗ = { ܶ}∈௸ on the Hilbert 
space 

ܪ = ൣℓଶ(F   ,D	∗)⨁	∆L ℓଶ(F   ,D   )തതതതതതതതതതതതതതതതതത൧ ⊖ ൛ܯఏT   
;ݑ  L∆	⨁ݑ ݑ ∈ ℓଶ(F   ,D   )ൟ, 

where ∆T		= ൫ܫ −     ఏTܯ

∗     ఏTܯ
൯
ଵ ଶ⁄

. 

 For each  ∈  the operator ܶ is defined by ߉

ఒࢀ
∗൫ݑ⨁∆T	 ఓܵݒ		൯ = ൜ ఒܵ

ߤ								݂݅						ݑ	 T∆⨁	ݑ∗ = ,
ఒܵ
ߤ						݂݅														0⨁	ݑ∗ ≠ ,

� 

Where ܵ = {ܵ}∈௸ is the ߉-orthogonal shift acting on ℓଶ(F   ,D  )or ℓଶ(F   ,D	∗). 

 If T  ∈   T   is inner, and this model reduces toߠ ,and only in this case ,()ܥ
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ܪ = ℓଶ(F   ,D	∗) ⊖   ఏTܯ
ℓଶ(F   ,D  ); 		 ఒܶ

ݑ∗ = ఒܵ
ݑ)				ݑ∗ ∈  .(ܪ

Proof.  By virtue of the relation (13) it follows that  

   ఏLܯ∗ܯ
=    ఏTܯ

 .ܯ

Hence we obtain that	∆T		=  ∗ܯ  ∆Lܯ

 On the other hand the operators Φ and Φ∗ defined by (11) and (12) generate 
the unitary operator 

ܷ =  ܯ⨁∗ܯ

from the space ℓଶ(F   ,L	∗)⨁	∆L ℓଶ(F   ,L   )തതതതതതതതതതതതതതതതത to the space 

ℓଶ(F   ,D	∗)⨁	∆T   ℓଶ(F   ,D   )തതതതതതതതതതതതതതതതതത Such that 

ܷ൛ܯఏL   
;	ݑ  L∆	⨁ݑ ݑ ∈ ℓଶ(F   ,L   )ൟ = ൛ܯఏT   

;	ݒ  T∆	⨁ݒ ݒ ∈ ℓଶ(F   ,D   )ൟ. 

 By means of this unitary operator we can re write the result obtained before 
this theorem and; in this way, we complete the proof. 

 Let us remark that for T  = {ܶ}, we find a model for completely non-co 
isometric contractions, which coincides with the Sz-Nagy-Foias model. Indeed, if ܶ 
is a completely non-coisometric contraction, that is, if there is no non-zero invariant 
subspace for ܶ∗ on which ܶ∗  is an isometry, then it is easy to see that 

ଶ(D )ܪ்∆ =  ଶ(D )ܮ்∆

 Let us note that the Sz.-Nagy-Foias, model is given for a larger class of 
contraction, namely for completely non-unitary contractions.  

Now show that any contraction ߠ:E		 → ℓଶ(F   ,E	∗) (E		,E	∗ Hilbert spaces) such that 
ܶ ఏ is contraction generates, a c.n.c. sequencesܯ = { ܶ}∈௸ 

 In the case when ߠ is purely contractive and 

								∆ఏℓଶ(F   ,E  )തതതതതതതതതതതതതതതത = ∆ఏ[ℓଶ(F   ,E  ) ⊖ E  ]തതതതതതതതതതതതതതതതതതതതതതതതതത																										(20) 

we shall show that ߠ coincides with the characteristic function of T    . 

 The main result of this section is the following generalization of in [134]. 

Theorem (5.1.7)[132]: Let ߠ be a contraction from E  to ℓଶ(F   ,E	∗) such that ܯఏis a 
contraction. Setting ∆ఏ= ܫ) − ఏܯ

ఏ)ଵܯ∗ ଶ⁄  the sequencesܶ = { ܶ}∈௸ of operator 
defined on the Hilbert space  

ܪ = ൣℓଶ(F   ,E	∗)⨁	∆ఏℓଶ(F   ,E   )തതതതതതതതതതതതതതതതത൧ ⊖ ;	ݓఏ∆	⨁ݓఏܯ} ݓ ∈ ℓଶ(F   ,E   )}. 

by 

ఒܶ(ݑ⨁∆ఏݒ) = ఒܵ
ఒܥ⨁	ݑ∗

∗(∆ఏݒ)							( ∈  ,(߉



147 
 

where each operator ܥఒ is defined by ܥఒ(∆ఏg) = ∆ఏ ఒܵg൫	g ∈ ℓଶ(F   ,E   )൯ and 
ܵ = {ܵ}∈௸ is the  ߉-orthogonal shift action on ℓଶ(F   ,E   ) or ℓଶ(F   ,E	∗) is 
completely Non-coisometric. 

 If   is purely contractive and (20) holds, then  coincides with the 
characteristic function of T    In this case, considering ܪ as a subspace of  

ܭ = ℓଶ(F   ,E	∗)⨁	∆ఏℓଶ(F   ,E   )തതതതതതതതതതതതതതതതത 

we have that the sequence ܸ = { ఒܸ}∈௸ of operator defined on K by 

ఒܸ = ఒܵ⨁ܥఒ					( ∈  (߉

is the minimal isometric dilation of ࢀ∗ 

Proof.  Let us consider the following Hilbert space 

ܭ = ℓଶ(F   ,E	∗)⨁	∆ఏℓଶ(F   ,E   )തതതതതതതതതതതതതതതതത 

ܩ = ;	ݓఏ∆	⨁ݓఏܯ} ݓ ∈ ℓଶ(F   ,E   )} 

and let ܸ = { ఒܸ}∈௸ be a sequence of isometrics defined on ܭ by ఒܸ = SC	( ∈
 where each C is given by ,(߉

ఒ(∆ఏg)ܥ = ∆ఏ ఒܵg							݂ݎ		g ∈ ℓଶ(F   ,E   ) 

It is easy to see that  

 ఒܸ ఒܸ
∗

∈௸

≤  ܫ

and that G is invariant for each ఒܸ( ∈  .(߉

 Setting ܪ = ⊝ܭ ఒࢀ and ܩ
∗ = ఒࢂ

)ܪ|∗ ∈  we see that ܸ is an isometric (߉
dilation of ܶ = { ఒܶ}∈௸. 

 Let us show that ܶ is  c.n.c.  For this, let ݑ⨁∆ఏݒ ∈  such that for every ܪ
݊ ∈ ܰ we have 

													  ฮ ܶ
ฮ(ݒఏ∆⨁ݑ)∗

ଶ

∈ி(,௸)

=  (21)																					ଶ.‖ݒఏ∆⨁ݑ‖

Since 

lim
→ஶ

 ฮ ܵ
ฮݑ∗

ଶ

∈ி(ଵାఢ,௸)

= 0		ܽ݊݀			  ฮܥ∗∆ఏݒฮ
ଶ

∈ி(,௸)

≤ ‖∆ఏݒ‖ଶ 

it follows that ݑ = 0. But, (0⨁∆ఏܯ,ݒఏݓ⨁∆ఏݓ) = 0 for any 

ݓ ∈ ℓଶ(F   ,E  ) implies ∆ఏ= 0. 
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 Thus ܶ is c.n.c. 

  We assume from now on that  is purely contractive and that (20) holds. 

 Let us show that ܸ is m.i.d. of ܶ i.e. 

ܭ = ሧ ܸ
ܪ∗

∈F   

. 

First we note that (20) implies 

																			ܥఒܥఒ
∗

∈௸

=  (22)																																						ഇℓమ(F   ,E   )തതതതതതതതതതതതതതതതത.∆ܫ

Suppose ݑ⨁∆ఏݒ ∈ ݂ and for every ܭ ∈ F  	,				ݑ⨁∆ఏݒ ⊥ (ݒఏ∆⨁ݑ)∗ࢂ ,.i.e ܪ∗ࢂ ∈  .ܩ

 This means that for each ݂ ∈ F		  there exists ݓ() ∈ ℓଶ(F   ,E  )  such that 

(ݒఏ∆⨁ݑ)∗ࢂ =  .()ݓఏ∆⨁()ݓఏܯ

 Therefore, for each  ∈ ,߉ ݂ ∈ F  there exists ݓ(,) ∈ ℓଶ(F   ,E  ) such that  

ࢂ
∗൫ܯఏݓ()⨁∆ఏݓ()൯ =  .(,)ݓఏ∆⨁(,)ݓఏܯ

By using the information of ఒܸ( ∈   we obtain  (߉

൭ ఒܵ ఒܵ
∗

∈௸

൱ܯఏݓ()⨁൭ܥఒܥఒ
∗

∈௸

൱∆ఏݓ() = ఏܯ ൭ ఒܵ
∈௸

൱⨁∆ఏ(,)ݓ ൭ ఒܵ
∈௸

 .൱(,)ݓ

 Hence according to (22), we have  

ఏ߱()ܯ																 = Eܲ	∗ܯఏݓ()		ܽ݊݀		∆ఏ߱() = 0,																			(23) 

Where ߱() stands for ݓ() − ∑ ఒܵ∈௸  (,)ݓ

 Since ܯఏ commutes with each  ఒܵ( ∈   it follows that  (߉

Eܲ	∗ܯఏݓ() = Eܲ	∗ܯఏ Eܲ	ݓ() 

and (23) gives  

																																					߱() = ఏܯ
∗

Eܲ	∗ܯఏ Eܲ	ݓ(),																												(24) 

Hence Eܲ	ݓ() = Eܲ	߱() = Eܲ	ܯఏ
∗

Eܲ	∗ܯఏ Eܲ	ݓ(). 

 Consequently,ฮ Eܲ	ݓ()ฮ = ฮ Eܲ	∗ܯఏ Eܲ	ݓ()ฮ and since  is purely contractive 
it follows that  

																																															 Eܲ	ݓ() = 0.																																														(25) 

 Now, the relation (24) implies ߱() = 0, i.e. 
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()ݓ = ఒܵ
∈௸

݂				ݎ݂					(,)ݓ ∈ F   

Hence, we obtain that  

(ఏ)ݓ = ఒܵ
∈௸

(ఒ)ݓ = ఒܵ
∈௸

ቌ ఓܵ
ఓ∈௸

ቍ(ఒ,ఓ)ݓ =  ܵౝ
∈ி(ଶ,௸)

()ݓ = ⋯

=  ܵ
∈ி(,௸)

݊		ݕ݊ܽ		ݎ݂				()ݓ ∈ ܰ. 

 We deduce that ܵ
(ఏ)ݓ∗ = ݂  for everyݓ ∈ F . By (25) we find Eܲ  (ܵ)

∗ (ఏ)ݓ =
Eܲ  ݓ() = 0  for every ݂ ∈ F . 

 It follows that ݓ(ఏ) = 0 and ݑ⨁	∆ఏݒ = (ఏ)ݓఏ∆	⨁(ఏ)ݓఏܯ = 0, which implies 
the minimality of ܸ. 

  Our next step is to determine 

∗ܮ = ൭ܫு − ܸࢀఒ
∗

∈௸

൱ܪ
തതതതതതതതതതതതതതതതതതതതതതത

. 

Taking into account (22), for	ݑ⨁	∆ఏݒ ∈   we have ܪ

൭ܫு − ܸࢀఒ
∗

∈௸

൱ (ݒఏ∆⨁ݑ) = Eܲ	∗0⨁ݑ 

and hence ܮ∗ ⊂ E	∗⨁{0}. 

 Let݁∗E	∗  and let us choose ݑ = ܫ) − ఏܯఏܯ
∗)݁∗ and 

∆ఏݒ = −∆ఏܯఏ
∗݁∗. Since ܯఏ

ݑ∗ = ∆ఏ
ଷݒ = 0 it follows that ݑ⨁	∆ఏݒ ∈  .ܪ

     Thus  

൭ܫு − ܸ ఒܶ
∗

∈௸

൱ (ݒఏ∆⨁ݑ) = ൫ܫE	∗ − Eܲ	∗ܯఏܯఏ
∗൯݁∗⨁0. 

Now the element of the form ൫ܫE	∗ − Eܲ	∗ܯఏܯఏ
∗൯݁∗, (݁∗E	∗), are dense in E	∗. 

 Otherwise there exist an ݁∗ᇱE	∗, ݁∗ᇱ ≠ 0, such that ݁∗ᇱ = Eܲ	∗ܯఏܯఏ
∗݁∗ᇱ	 and hence 

‖݁∗ᇱ‖ = ఏܯ‖
∗݁∗ᇱ‖ = ฮ Eܲ	∗ܯఏܯఏ

∗݁∗ᇱฮ; ݁∗ᇱ = ఏܯఏܯ
∗݁∗ᇱ. Since ܯఏ

∗݁∗ᇱ ∈ E	∗ and  is purely 
contractive it follows that ܯఏ

∗݁∗ᇱ = 0  and ݁∗ᇱ = 0 which is a contradiction. 

 Thus  

∗ܮ																																									 = E	∗⨁{0}																																				(26) 
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and ܯF				(ܮ∗) = ℓଶ(F   ,E	∗)⨁{0}. 

 Denoting by ܲ∗ the orthogonal projection of ܭ onto ܯF				(ܮ∗) we have 
for	ݑ⨁	∆ఏݒ ∈   ܭ

																																												ܲ∗(ݑ⨁∆ఏݒ) =  (27)																							,0⨁ݑ

Φ∗ܲ∗(ݑ⨁∆ఏݒ) = ΦE	∗0⨁ݑ =  .0⨁ݑ

  Next we show that 

ܮ =ሧ( ܸ − ܶ)ܪ
∈௸

= ;	ఏ݁⨁∆ఏ݁ܯ} ݁ ∈ E  }. 

Notice that an element ݑ⨁∆ఏݒ  in ܭ belongs to ܪ if and only if  

ఏܯ																																					
ఏ∆⨁ݑ∗

ଶݒ = 0.																																							(28) 

For ݑ⨁	∆ఏݒ ∈ and   ܪ ∈   we have ߉

ܶ(ݑ⨁∆ఏݒ) = ுܲ ܸ(ݑ⨁∆ఏݒ) = ( ఒܵݑ⨁∆ఏ ఒܵݒ) −  ,(ఒݓఒ⨁∆ఏݓఏܯ)

where each ݓఒ ∈ ℓଶ(F   ,E  ) is defined by  

〈( ఒܵݑ ఒ)⨁(∆ఏݓఏܯ− ఒܵݒ − ∆ఏݓఒ),ܯఏݓᇱ⨁∆ఏݓᇱ〉 = 0 

For every ݓᇱ ∈ ℓଶ(F   ,E  ).  

        Hence, we find that  

ఒݓ = ఏܯ
∗
ఒܵݑ + ∆ఏ

ଶ
ఒܵݒ 

and 

( ܸ − ܶ)(ݑ⨁∆ఏݒ) =  .ఒݓఒ⨁∆ఏݓఏܯ

 By (28) an easy computation shows that〈ݓఒ, ܵ݁∗〉 = 0  for every ݁∗E	∗, 
݂ ∈ F 	, ݂ ≠ 0.Consequently, ݓఒ ∈ E . 

 Let us show that if ݑ⨁∆ఏݒ varies over ܪ and ߣ over ߉, then the corresponding 
elements ݓఒ vary over a set dense in E  . 

 It is easy to see that for ݁ ∈ E and  ∈  the element ߉

ఒݓ = ఏܯ
∗
ఒܵ ఒܵ

ఏ݁ܯ∗ + ∆ఏܥఒܥఒ
∗∆ఏ݁ is the corresponding element of ఒܵ

ఒܥ⨁ఏ݁ܯ∗
∗∆ఏ݁ ∈

 .ܪ

 Thus, for ݁ ∈ E  we have  

ݓఒ
∈௸

= ఏܯ
∗൫ܫ − Eܲ	∗൯ܯఏ݁ + ∆ఏ

ଶ݁ = ݁ − ఏܯ
∗

Eܲ	∗ܯఏ݁ ∈ E . 

It remains to prove that the set 
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൛൫ܫE −ܯఏ
∗

Eܲ	∗ߠ൯݁	; 	݁ ∈ E ൟ 

is dense in E. 

 Indeed, otherwise there exists ݁ᇱ ∈ E , ݁ᇱ ≠ 0 such that 

݁ᇱ = ఏܯ
∗

Eܲ	∗ܯఏ	݁ᇱ .It follows that ‖݁ᇱ‖ = ฮ Eܲ	∗ܯఏ	݁ᇱฮ, which contradicts that  is 
purely contractive.  

  The last step is to prove that the characteristic function of ܶ coincides with . 

  It is easy to see that the operator  defined from E  to ܮ by (݁) =
݁)	ఏ݁⨁∆ఏ݁ܯ ∈ E	 ) is a unitary one. 

 On the other hand, from (26) it follows that the operator ∗  defined from E	∗ 
to ܮ∗ by  ∗(݁∗) = ݁∗⨁0(݁∗ ∈ E	∗) is a unitary too. 

 According to (40), for ݈ = ݁)	ఏ݁⨁∆ఏ݁ܯ ∈ E	 ) we have  

Φ∗ܲ∗(ܯఏe⨁∆ఏ݁) = Φ∗(ܯఏe⨁0) = ఏe⨁0ܯ = ఏ݁ܯ∗ܯ = ߱ߠ∗ܯ
ିଵ݁. 

 Hence, using Theorem (5.1.4), we deduce that characteristic function of ܶ 
coincides with . 

 The proof is completed.  

Proposition (5.1.8)[132]:. Let ߠ:E → ℓଶ(F   ,E	∗) and ߠᇱ:E  ᇱ → ℓଶ൫F   ,E  ∗
ᇱ ൯ be some 

operators such that ܯఏ   and  ܯఏᇲ  be contractions.  

 If ߠ and ߠᇱ coincide, then the sequences ܶ and ܶᇱ which they generate in the 
sense of Theorem (5.1.7) are unitary equivalent.  

Proof. If ߯:E → E  ᇱ and ߯∗:E	∗ → E  ∗
ᇱ

  are unitary operators such that  

ߠ∗ఞܯ =  ᇱ߯ߠ

then ܷ =  such that ′ܪ to ܪ ఞ is a unitary operator fromܯ⨁∗ఞܯ

ܶ
ᇱ = ܷ ܷܶ∗ for every  ∈  .߉

 The proof is just the same as in the particular case considered in the proof of 
Theorem (5.1.6). 

 Applying this result to characteristic function and by using Theorem (5.1.6) we 
obtain a generalization in [134] and [133], namely: 

Theorem (5.1.9)[132]: Tow completely non-coisometric sequences T   and T  	 ᇱ are 
unitarily equivalent if and only if their characteristic function coincide. 

 Finally, let us show when the characteristic function is outer.  
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Proposition (5.1.10)[132]: For a c.n.c. sequence  T   we have that T   is outer if and 
only if T  ∈  .(ଶ)ܥ

Proof. It suffices to prove our assertion for the functional model of T  . 

 Accordingly, let ܶ = { ܶ}ఒ∈௸ be the sequences defined in Theorem (2.1.7). For 
every ݑ ⊕ ∆T  	∈   we have  ܪ

lim
ఢ→∞

 ฮ ܶ
ฮ(ݒ  T∆⨁ݑ)∗

ଶ

∈ி(,௸)

= ‖∆T  ݒ‖ଶ. 

 This shows that ܶ ∈ ݑ if and only if .(ଶ)ܥ ⊕ 0	 ∈ ݑ	implies  ܪ = 0. On the 
other hand, ݑ ⊕ 0	 ∈ ݑ means  ܪ ⊥    ఏTܯ

ℓଶ(F   ,D   ). 

 The last condition implies ݑ = 0 if and only if  

   ఏTܯ
ℓଶ(F   ,D   )തതതതതതതതതതതതതതതതതതതത = ℓଶ(F   ,D ∗), 

i.e., T   is outer. 

 Using our functional model for a c.n.c. Sequences T  = { ܶ}ఒ∈௸ and the lifting 
theorem [135], [134], [136], [133] to our setting [137], we provide explicit forms for 
the commutants of T  . 

 For the sake of simplicity we only consider the case when T  ∈  ,Thus . ()ܥ
assume that ߠ:E → ℓଶ(F   ,E	∗) is a purely contractive inner operator.  

        Let ܶ = { ܶ}ఒ∈௸ be a sequence of operators defined on the Hilbert space  

ܪ = ℓଶ(F   ,E ∗)  ,ఏℓଶ(F   ,E  )ܯ⊖

By 

ఒࢀ
ݑ∗ = ఒܵ

ݑ)																ݑ∗ ∈  (ܪ

for every  ߉.  

 By Theorem (2.1.7), the ߉-orthogonal shift ܵ = { ఒܵ}ఒ∈௸  acting on ܭ =
ℓଶ(F   ,E	∗)  is a minimal isometric dilation of ܶ. 

 Let ܪ′,  etc. corresponding similarly to an operator ′ࢀ

ᇱ:E  ᇱߠ → ℓଶ൫F   ,E  ∗
ᇱ ൯ the same kind. 

 We have that every operator  

ܻ: ℓଶ൫F   ,E  ∗
ᇱ ൯ → ℓଶ(F   ,E ∗) 

such that 

ఒܻܵ = ܻ ఒܵ				( ∈  (߉
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can be represented in the form ܻ = ∗  ఞ ,where ߯:Eܯ
ᇱ → ℓଶ(F   ,E  ) is an operator  

such that ܯఞ  is bounded. 

 Combining this fact in [137], we obtain a generalization. 

Theorem (5.1.11)[132]: every operator  ܺ:ܪ′ܪ satisfying 

																												 ܶܺ = ܺ ఒܶ
ᇱ					݂ݎ		ݕݎ݁ݒ݁		 ∈  (29)																		.߉

can be represented in the form 

ݑܺ																																			 = ுܲܯఞݑ				ݑ) ∈  (30)																									ᇱ),ܪ

where ுܲ is the orthogonal projection of ℓଶ(F   ,E ∗) onto ܪ, and ߯:E  ∗
ᇱ → ℓଶ(F   ,E ∗) 

is an operator such that the following condition hold 

a) ܯఞ is a bounded operator,  
b) ܯఞܯఏ′ℓଶ൫F   ,E  ′൯ ⊂  .ఏℓଶ(F   ,E  )ܯ

 Conversely, every ߯ satisfying the above- mentioned condition yields, by (30), 
and solution ܺ of (29).  

Theorem (5.1.12)[211]:  A subspace M		ℓଶ(F  ,E	) is invariant for each 

ܵ(ఒమିଵ)൫(ߣଶ − 1)	߉൯  if and only if there exists a Hilbert space Y 		and the 

sequence of inner operators ߠ ∶ Y 	ℓଶ(F  ,E	) such that 

M = ∑ܯ ఏೕ
ೕసభ

ℓଶ(F  ,Y  ) 

Proof. Using the Wold decomposition for an infinite sequence V = ൛ (ܸఒమିଵ)
∗ ൟ

(ఒమିଵ)∈௸
 

of isometries with orthogonal  final spaces. ([137]) this proof is a simple extension 

of that of Theorem 3.3 in [134] or Theorem 2 in [133]. 

 Let V = ൛ (ܸఒమିଵ)
∗ ൟ

(ఒమିଵ)∈௸ be a ߉-orthogonal  shift acting  on a Hilbert  space 

K  such that L			 ⊂ K			  is wandering subspace for,  V  	 that is, 

  K	 = F   (L  )ܯ = ⨁
݂F   

				 ܸ
∗ 	L		. 

 Denote by ΦL    the unitary operator from ܯF   	(L	  ) to ℓଶ(F  ,L   ) defined by 

ΦL ቌ ܸ
∗ ݈

F

ቍ =  ݈ܵ
F

	ቌ݈ ∈ L		;  ฮ݈ฮ
ଶ

F

< ∞ቍ, 

where Y	 = ൛ܵ(ఒమିଵ)ൟ(ఒమିଵ)௸ is the ߉-orthogonal  shift acting on ℓଶ(F  ,L   )  

 Then for any  (ߣଶ − 1)	߉ we have 



154 
 

ΦL 
(ܸఒమିଵ)
∗ = ܵ(ఒమିଵ)ΦL . 

 The following extension [132] of Lemma 3.2 in [134] will be used in the 

sequel. 

Theorem (5.1.13)[211]: The sequence of the  characteristic functions ൫ߠ൯T   
 for 

T   coincides with the sequence of ൫ߠ൯L  
. 

Proof. We show that 

∗ܯ		 ቌߠ



ୀଵ

ቍ

L  

= ቌߠ



ୀଵ

ቍ

T  

	Φ,																																																							(31) 

Where Φ∗, Φ are the unitary operators in (11), (12), respectively. For this, it is 
necessarily to prove that 

Dܲ	∗
ଶ

ܵ
∗ ∗ܯ ቌߠ



ୀଵ

ቍ

L  

= Dܲ	∗
ଶ

ܵ
∗ ቌߠ



ୀଵ

ቍ

T  

	Φ			( ݂ ∈ F   ),													(32) 

Where Dܲ	∗
ଶ  stands for the orthogonal projection of ℓଶ(F  ,D	∗) ontoD	∗. 

 By (10) and by the Wold decomposition (5), the relation (32) is equivalent to 

Φ∗ Lܲ 		∗
ଶ

ܸ
∗ |L 	 = Dܲ	∗

ଶ
ܵ
∗ ቌߠ



ୀଵ

ቍ

T  

		Φ				( ݂ ∈ F   ).																						(33) 

           In what follows we shall prove this relation. First let us notice that 

		 Dܲ	∗
ଶ ቌߠ



ୀଵ

ቍ

T  

= −  (ܶఒమିଵ)
∗

(ܲఒమିଵ)
ଶ

(ఒమିଵ)∈௸

,																																									(34) 

Dܲ	∗
ଶ

ܵ
∗ ܵ(ఒమିଵ)ቌߠ



ୀଵ

ቍ

T  

= ∗ܦ ܶ
∗

(ܲఒమିଵ)
ଶ ଶߣ)൫						ܦ − 1) ∈ ,߉ ݂ ∈ F   ൯. 

For ݂ = 0 the relation (33) holds true. Indeed, for 

	݈ =  ൫ (ܸఒమିଵ)
∗ − (ܶఒమିଵ)

∗ ൯ℎ(ఒమିଵ)
(ఒమିଵ)∈௸

										 

= Φ∗ܦ ൬ ⨁
ଶߣ) − 1) ∈ ቌ			ℎ(ఒమିଵ)൰߉  ฮℎ(ఒమିଵ)ฮ

ଶ

(ఒమିଵ)∈௸

< ∞ቍ							(35) 



155 
 

we have that ݈ + ൫ܫ − ∑ (ܸఒమିଵ)
∗

(ܶఒమିଵ)
∗

(ఒమିଵ)∈௸ ൯∑ (ܶఒమିଵ)
∗ ℎ(ఒమିଵ)(ఒమିଵ)∈௸ ∈

⨁
ଶߣ) − 1) ∈ ߉ (ܸఒమିଵ)

∗ K     and by (33) we obtain that  

Lܲ 		∗
ଶ ݈ = −ቌܫ −  (ܸఒమିଵ)

∗
(ܶఒమିଵ)
∗

(ఒమିଵ)∈௸

ቍ  (ܶఒమିଵ)
∗ ℎ(ఒమିଵ)

(ఒమିଵ)∈௸

. 

Hence, by (34) we have 

Φ∗ Lܲ 		∗
ଶ ݈ = ]∗ܦ− ଵܶ

∗, ଶܶ
∗, … ] ൬ ⨁

ଶߣ) − 1) ∈  ℎ(ఒమିଵ)൰߉

																					= [ ଵܶ
∗, ଶܶ

∗, … ܦ[ ൬ ⨁
ଶߣ) − 1) ∈  ℎ(ఒమିଵ)൰߉

																																	= −[ ଵܶ
∗, ଶܶ

∗, … ]Φ݈ = Dܲ	∗ 		
ଶ ቌߠ



ୀଵ

ቍ

T  

		Φ݈. 

It remains to show that for any ݂ ∈ F     , ଶߣ) − 1) ∈  ߉

		Φ∗ Lܲ 		∗
ଶ

ܸ
∗

(ܸఒమିଵ)
∗ ݈ = Dܲ	∗ 		

ଶ
ܵ
∗

(ܵఒమିଵ)
∗ ቌߠ



ୀଵ

ቍ

T  

		Φ݈				(݈ ∈ L   ).									(36) 

           Let ݈	be as in (35); then according to (34) the relation (36) becomes 

Φ∗ Lܲ 		∗
ଶ

ܸ
∗

(ܸఒమିଵ)
∗ ݈ = ∗ܦ ܶ

∗
(ܲఒమିଵ)
ଶ ଶܦ ൬ ⨁

ଶߣ) − 1) ∈  .ℎ(ఒమିଵ)൰߉

Since 

∗ܦ ܶ
∗ ܲ൫ఒమିଵ൯ܦଶ ൬ ⨁

ଶߣ) − 1) ∈ ℎ൫ఒమିଵ൯൰߉

= Φ∗ ቌܫ −  ൫ܸఒమିଵ൯
∗

൫ܶఒమିଵ൯
∗

(ఒమିଵ)∈௸

ቍ ܶ
∗

൫ܲఒమିଵ൯
ଶ ଶܦ ൬ ⨁

ଶߣ) − 1) ∈  ,ℎ൫ఒమିଵ൯൰߉

we have only to show that 

	 Lܲ 		∗
ଶ

ܸ
∗

(ܸఒమିଵ)
∗ ݈ = 

ቌܫ −  (ܸఒమିଵ)
∗

(ܶఒమିଵ)
∗

(ఒమିଵ)∈௸

ቍ ܶ
∗

(ܲఒమିଵ)
ଶ ଶܦ ൬ ⨁

ଶߣ) − 1) ∈ ℎ(ఒమିଵ)൰߉ . (37) 

          Let us notice that for any (ߣଶ − 1) ∈  ߉



156 
 

(ܲఒమିଵ)
ଶ ଶܦ ൬ ⨁

ଶߣ) − 1) ∈ ℎ(ఒమିଵ)൰߉ 	

= −  (ܶఒమିଵ)
∗

(ఒమିଵ)ାఢ∈௸
ఢவ

(ܶఒమିଵ)ାఢ
∗ ℎ(ఒమିଵ)ାఢ + ܦ

൫்ഊమషభ൯
∗
ଶ ℎ(ఒమିଵ). 

        Consequently, the relation (37) holds if and only if the following relations hold 

Lܲ 		∗
ଶ

ܸ
∗

(ܸఒమିଵ)
∗ ൫ (ܸఒమିଵ)

∗ ℎ(ఒమିଵ) − (ܶఒమିଵ)
∗ ℎ(ఒమିଵ)൯

= ቌܫ −  (ܸఒమିଵ)
∗

(ܶఒమିଵ)
∗

(ఒమିଵ)∈௸

ቍ ܶ
∗ ܦ

൫்ഊమషభ൯
∗
ଶ ℎ(ఒమିଵ)		൫(ߣଶ − 1) ∈  ൯߉

and 

Lܲ 		∗
ଶ

ܸ
∗

(ܸఒమିଵ)
∗ ൫ (ܸఒమିଵ)ାఢ

∗ ℎ(ఒమିଵ)ାఢ − (ܶఒమିଵ)ାఢ
∗ ℎ(ఒమିଵ)ାఢ൯																																	 

= −ቌܫ −  (ܸఒమିଵ)
∗

(ܶఒమିଵ)
∗

(ఒమିଵ)∈௸

ቍ ܶ
∗

(ܶఒమିଵ)
∗

(ܶఒమିଵ)ାఢ
∗ ℎ(ఒమିଵ)ାఢ		(߳ > 0). 

These relations hold since the element  

ܸ
∗

(ܸఒమିଵ)
∗ ൫ (ܸఒమିଵ)

∗ ℎ(ఒమିଵ) − (ܶఒమିଵ)
∗ ℎ(ఒమିଵ)൯																																											 

−ቌܫ −  (ܸఒమିଵ)
∗

(ܶఒమିଵ)
∗

(ఒమିଵ)∈௸

ቍ ܶ
∗ ܦ

൫்ഊమషభ൯
∗ ℎ(ఒమିଵ)		൫(ߣଶ − 1) ∈  ൯߉

and 

ܸ
∗

(ܸఒమିଵ)
∗ ൫ (ܸఒమିଵ)ାఢ

∗ ℎ(ఒమିଵ)ାఢ − (ܶఒమିଵ)ାఢ
∗ ℎ(ఒమିଵ)ାఢ൯

+ ቌܫ −  (ܸఒమିଵ)
∗

(ܶఒమିଵ)
∗

(ఒమିଵ)∈௸

ቍ ܶ
∗

(ܶఒమିଵ)
∗

(ܶఒమିଵ)ାఢ
∗ ℎ(ఒమିଵ)ାఢ		(߳ > 0) 

are orthogonal on L	∗. This follows by simple computation . 

The proof is complete.  

Remark (5.1.14)[211]:  if T  ∈   ൯Tߠthen the sequence൫  ()ܥ
 is inner.  

Proof. Taking into account Theorem 2.8 in [137], it follows that the m.i.d. V      of T   
is pure, i.e., K  =  ∗). By relation (10) and Theorem (5.1.13) it follows that the	F  (Lܯ
sequence ൫ߠ൯T  

 is inner.  
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Theorem(5.1.15)[211]: Every completely non-isometric sequence 
T = ൛ (ܶఒమିଵ)

∗ ൟ
(ఒమିଵ)∈௸

 on the Hilbert space H    is unitarily equivalent to a sequence 

∗ࢀ = ൛ࢀ(ఒమିଵ)
∗ ൟ

(ఒమିଵ)∈௸
 on the Hilbert space 

ܪ = ൣℓଶ(F   ,D	∗)⨁	∆L ℓଶ(F   ,D   )തതതതതതതതതതതതതതതതതത൧ ⊖ ቊܯቀ∑ ఏೕ

ೕసభ ቁ

T   

;ݑ   T∆	⨁ݑ ݑ ∈ ℓଶ(F   ,D   )ቋ, 

where ∆T		= ቆܫ − ∑ቀܯ ఏೕ

ೕసభ ቁ

T    

∗ ∑ቀܯ ఏೕ

ೕసభ ቁ

T    

ቇ
ଵ ଶ⁄

. 

 For each (ߣଶ − 1) ∈ (ఒమିଵ)ࢀ the operator ߉
∗  is defined by 

(ఒమିଵ)ࢀ
∗ ൫ݑ⨁∆T	ܵ(ఒమିଵ)ାఢݒ		൯ = ቊ (ܵఒమିଵ)

∗ ߳								if						ݑ	 T∆⨁	ݑ > 0,
ܵ(ఒమିଵ)
∗ ߳								if														0⨁	ݑ > 0,

� 

where Y = ൛ܵ(ఒమିଵ)ൟ(ఒమିଵ)∈௸ is the ߉-orthogonal shift acting on ℓଶ(F   ,D  )or 

ℓଶ(F   ,D	∗). 

 If T  ∈   ൯Tߠand only in this case, the sequence ൫ ,()ܥ
 is inner, and this model 

reduces to  

ܪ = ℓଶ(F   ,D	∗) ∑ቀܯ⊖ ఏೕ

ೕసభ ቁ

T  

ℓଶ(F   ,D  ); (ఒమିଵ)ࢀ		
∗ ݑ = (ܵఒమିଵ)

∗ ݑ)				ݑ ∈  .(ܪ

Proof.  By virtue of the relation (13) it follows that  

∑ቀܯ∗ܯ ఏೕ

ೕసభ ቁ

L   

= ∑ቀܯ ఏೕ

ೕసభ ቁ

T   

 .ܯ

           Hence we obtain that	∆T		=  ∗ܯ  ∆Lܯ

 On the other hand the operators Φ and Φ∗ defined by (11) and (12) generate 
the unitary operator 

ܷ =  ܯ⨁∗ܯ

from the space ℓଶ(F   ,L	∗)⨁	∆L ℓଶ(F   ,L   )തതതതതതതതതതതതതതതതത to the space 

ℓଶ(F   ,D	∗)⨁	∆T   ℓଶ(F   ,D   )തതതതതതതതതതതതതതതതതത Such that 

ܷ ቊܯቀ∑ ఏೕ

ೕసభ ቁ

L   

;	ݑ  L∆	⨁ݑ ݑ ∈ ℓଶ(F   ,L   )ቋ

= ቊܯቀ∑ ఏೕ

ೕసభ ቁ

T   

;	ݒ  T∆	⨁ݒ ݒ ∈ ℓଶ(F   ,D   )ቋ. 

By means of this unitary operator we can rewrite the result obtained before this 
theorem and; in this way, we complete the proof. 
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 Let us remark that for T  = {ܶ∗}, we find a model for completely non-
coisometric contractions, which coincides with the Sz-Nagy-Foias model. Indeed, if 
ܶ∗ is a completely non-coisometric contraction, that is, if there is no non-zero 
invariant subspace for ܶ∗ on which ܶ∗  is an isometry, then it is easy to see that 

ଶ(D ∗)ܪ∗்∆ =  ଶ(D ∗)ܮ∗்∆

 (see Theorem2.3 in [134]). 

 Note that the Sz.-Nagy-Foias, model is given for a larger class of contractions, 
namely for completely non-unitary contractions.  

Theorem (5.1.16)[211]: Let the sequence ߠ be a contraction from E  to ℓଶ(F   ,E	∗) 

such that ܯ∑ ఏೕ

ೕసభ

is a contraction. Setting ∆∑ ఏೕ

ೕసభ

= ൬ܫ ∑ܯ− ఏೕ

ೕసభ

∗ ∑ܯ ఏೕ

ೕసభ

൰
ଵ ଶ⁄

 the 

sequencesࢀ∗ = ൛ࢀ(ఒమିଵ)
∗ ൟ

(ఒమିଵ)∈௸
 of operator defined on the Hilbert space  

ܪ = ቂℓଶ(F   ,E	∗)⨁	∆∑ ఏണ

ണసభ

ℓଶ(F   ,E   )തതതതതതതതതതതതതതതതതതതതതതቃ ⊖ ቄܯ∑ ఏೕ

ೕసభ

∑∆	⨁ݓ ఏೕ

ೕసభ

ݓ;	ݓ ∈ ℓଶ(F   ,E   )ቅ 

by 

(ఒమିଵ)ࢀ
∗ ቀݑ⨁∆∑ ఏೕ


ೕసభ

ቁݒ = (ܵఒమିଵ)
∗ (ఒమିଵ)ܥ⨁	ݑ

∗ ቀ∆∑ ఏೕ

ೕసభ

ଶߣ)൫							ቁݒ − 1) ∈  ,൯߉

where each operator ܥ(ఒమିଵ) is defined by 

(ఒమିଵ)ܥ ቀ∆∑ ఏೕ

ೕసభ ݂ାଵቁ = ∆∑ ఏೕ


ೕసభ

ܵ(ఒమିଵ) ݂ାଵ൫	 ݂ାଵ ∈ ℓଶ(F   ,E   )൯ and Y =

൛ܵ(ఒమିଵ)ൟ(ఒమିଵ)∈௸ is the  ߉-orthogonal shift action on ℓଶ(F   ,E   ) or ℓଶ(F   ,E	∗) is 

completely Non-coisometric. 

 If the sequence ߠ is purely contractive and (20) holds, then the sequence ߠ 
coincides with the characteristic functions of T    In this case, considering ܪ as a 
subspace of  

ܭ = ℓଶ(F   ,E	∗)⨁	∆∑ ఏണ

ണసభ

ℓଶ(F   ,E   )തതതതതതതതതതതതതതതതതതതതതത 

we have that the sequence ࢂ∗ = ൛ࢂ(ఒమିଵ)
∗ ൟ

(ఒమିଵ)∈௸
 of operator defined on ܭ by 

(ఒమିଵ)ࢂ
∗ = ܵ(ఒమିଵ)⨁ܥ(ఒమିଵ)					൫(ߣଶ − 1) ∈  ൯߉

is the minimal isometric dilation of ࢀ∗. 

Proof. A. Let us consider the following Hilbert spaces 

ܭ = ℓଶ(F   ,E	∗)⨁	∆∑ ఏണ

ണసభ

ℓଶ(F   ,E   )തതതതതതതതതതതതതതതതതതതതതത, 

ܩ = ቄܯ∑ ఏೕ

ೕసభ

∑∆	⨁ݓ ఏೕ

ೕసభ

;	ݓ ݓ ∈ ℓଶ(F   ,E   )ቅ, 
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and let ࢂ∗ = ൛ࢂ(ఒమିଵ)
∗ ൟ

(ఒమିଵ)∈௸
 be a sequence of isometries defined on ܭ by 

(ఒమିଵ)ࢂ
∗ 	= 	 S(ఒమିଵ)C(ఒమିଵ)	((ߣଶ − 1) ∈  is given by (ఒమିଵ)ܥ where each ,(߉

(ఒమିଵ)ܥ ቀ∆∑ ఏೕ

ೕసభ ݂ାଵቁ = ∆∑ ఏೕ


ೕసభ

ܵ(ఒమିଵ) ݂ାଵ							݂ݎ		 ݂ାଵ ∈ ℓଶ(F   ,E   ). 

           It is easy to see that  

 ൫ࢂ(ఒమିଵ)
∗ ൯

ଶ

(ఒమିଵ)∈௸

≤ ܫ  

and that ܩ is invariant for each ࢂ(ఒమିଵ)
∗ ଶߣ)) − 1) ∈  .(߉

 Setting ܪ = ⊝ܭ (ఒమିଵ)ࢀ and ܩ
∗ = (ఒమିଵ)ࢂ

∗ ଶߣ)൫ܪ| − 1) ∈  is ∗ࢂ ൯ we see that߉
an isometric dilation of ࢀ∗ = ൛ࢀ(ఒమିଵ)

∗ ൟ
(ఒమିଵ)∈௸. 

 Let us show that ࢀ∗ is  c.n.c.  For this, let ݑ⨁∆∑ ఏೕ

ೕసభ

ݒ ∈  such that for every ܪ

߳ ≥ 0 we have 

										  ቛ ܶ
∗ ቀݑ⨁∆∑ ఏೕ


ೕసభ

ቁቛݒ
ଶ

∈ி(ଵାఢ,௸)

= ቛݑ⨁∆∑ ఏೕ

ೕసభ

ቛݒ
ଶ
.																			(38) 

    Since 

lim
ఢ→ஶ

 ฮ ܵ
∗ ฮݑ

ଶ

∈ி(ଵାఢ,௸)

= 0		ܽ݊݀			  ቛܥ
∗ ∆∑ ఏೕ


ೕసభ

ቛݒ
ଶ

∈ி(ଵାఢ,௸)

≤ ቛ∆∑ ఏೕ

ೕసభ

ቛݒ
ଶ
 

it follows that ݑ = 0. But, ቀ0⨁∆∑ ఏೕ

ೕసభ

∑ܯ,ݒ ఏೕ

ೕసభ

∑∆⨁ݓ ఏೕ

ೕసభ

ቁݓ = 0 for any 

ݓ ∈ ℓଶ(F   ,E  ) implies ∆∑ ఏೕ

ೕసభ

= 0. 

 Thus ࢀ∗ is c.n.c. 

 B. We assume from now on that the sequence  ߠ is purely contractive and that 
(20) holds. 

 Let us show that ࢂ∗ is m.i.d. of ࢀ∗, i.e. 

ܭ = ሧ ܸ
∗ ܪ

∈F   

. 

First we note that (20) implies 

 (ఒమିଵ)ܥ(ఒమିଵ)ܥ
∗

(ఒమିଵ)∈௸

= ∑∆ܫ ഇണ

ണసభ

ℓమ(F   ,E   )തതതതതതതതതതതതതതതതതതതതതതതതത.																																				(39)				 

Suppose ݑ⨁∆∑ ఏೕ

ೕసభ

ݒ ∈ and for every ݂ ܭ ∈ F  	,				ݑ⨁∆∑ ఏೕ

ೕసభ

ݒ ⊥ ࢂ
∗  ,.i.e ܪ
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ࢂ 
∗ ቀݑ⨁∆∑ ఏೕ


ೕసభ

ቁݒ ∈  .ܩ

This means that for each ݂ ∈ F 	 there exists ݓ() ∈ ℓ
ଶ(F   ,E  )  such that 

ࢂ
∗ ቀݑ⨁∆∑ ఏೕ


ೕసభ

ቁݒ = ∑ܯ ఏೕ

ೕసభ

∑∆⨁()ݓ ఏೕ

ೕసభ

 .()ݓ

 Therefore, for each (ߣଶ − 1) ∈ ,߉ ݂ ∈ F	  there exists ݓቀ,(ఒమିଵ)ቁ
∈

ℓଶ(F   ,E  ) such that  

(ఒమିଵ)ࢂ
∗ ቀܯ∑ ఏೕ


ೕసభ

∑∆⨁()ݓ ఏೕ

ೕసభ

ቁ()ݓ = ∑ܯ ఏೕ

ೕసభ

ቀ,(ఒమିଵ)ቁݓ
⨁∆∑ ఏೕ


ೕసభ

ቀ,(ఒమିଵ)ቁݓ
. 

By using the definition of ࢂ(ఒమିଵ)
∗ ଶߣ)) − 1) ∈   we obtain  (߉

ቌ  ܵ(ఒమିଵ) (ܵఒమିଵ)
∗

(ఒమିଵ)∈௸

ቍܯ∑ ఏೕ

ೕసభ

ቌ⨁()ݓ  (ఒమିଵ)ܥ(ఒమିଵ)ܥ
∗

(ఒమିଵ)∈௸

ቍ∆∑ ఏೕ

ೕసభ

()ݓ

= ∑ܯ ఏೕ

ೕసభ

ቌ  ܵ(ఒమିଵ)
(ఒమିଵ)∈௸

ቀ,(ఒమିଵ)ቁݓ
ቍ⨁∆∑ ఏೕ


ೕసభ

ቌ  ܵ(ఒమିଵ)
(ఒమିଵ)∈௸

ቀ,(ఒమିଵ)ቁݓ
ቍ. 

 Hence, according to (39), we have  

∑ܯ		 ఏೕ

ೕసభ

߱() = Eܲ	∗
ଶ ∑ܯ ఏೕ


ೕసభ

∑∆		݀݊ܽ		()ݓ ఏೕ

ೕసభ

߱() = 0,																	(40) 

where ߱() stands for ݓ() − ∑ ܵ(ఒమିଵ)(ఒమିଵ)∈௸ ቀ(,ఒమିଵ)ቁݓ
. 

            Since ܯ∑ ఏೕ

ೕసభ

 commutes with each  ܵ(ఒమିଵ)((ߣଶ − 1) ∈   it follows that  (߉

Eܲ	∗
ଶ ∑ܯ ఏೕ


ೕసభ

()ݓ = Eܲ	∗
ଶ ∑ܯ ఏೕ


ೕసభ Eܲ	

ଶ  ()ݓ	

and (40) gives  

				߱() = ∑ܯ ఏೕ

ೕసభ

∗
Eܲ	∗
ଶ ∑ܯ ఏೕ


ೕసభ Eܲ	

ଶ  (41)																																													,()ݓ	

hence Eܲ	
ଶ ()ݓ	 = Eܲ	

ଶ 	߱() = Eܲ	
ଶ ∑ܯ	 ఏೕ


ೕసభ

∗
Eܲ	∗
ଶ ∑ܯ ఏ�


ೕసభ Eܲ	

ଶݓ(). 

 Consequently,ฮ Eܲ	
ଶ ฮ()ݓ	 = ቛ Eܲ	∗

ଶ ∑ܯ ఏೕ

ೕసభ Eܲ	

ଶ  ቛ and since the sequence()ݓ	

   is purely contractive it follows thatߠ

																								 Eܲ	
ଶ ()ݓ	 = 0.																																																																		(42) 

 Now, the relation (41) implies ߱() = 0, i.e. 
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()ݓ =  ܵ(ఒమିଵ)
(ఒమିଵ)∈௸

ቀ,(ఒమିଵ)ቁݓ
				ݎ݂					 ݂ ∈ F  . 

Hence, we obtain that  

∑ቀݓ ఏೕ

ೕసభ ቁ =  ܵ(ఒమିଵ)

(ఒమିଵ)∈௸

(ఒమିଵ)ݓ

=  ܵ(ఒమିଵ)
(ఒమିଵ)∈௸

ቌ  ܵ(ఒమିଵ)ାఢ
(ఒమିଵ)ାఢ∈௸

ቀ(ఒమିଵ),(ఒమିଵ)ାఢቁቍݓ

=  ܵశభ
శభ∈ி(ଶ,௸)

(శభ)ݓ = ⋯

=  ܵ
∈ி(ଵାఢ,௸)

߳		any		for				()ݓ ≥ 0. 

 We deduce that ܵ
∗ ∑ቀݓ ఏೕ


ೕసభ ቁ = for every ݂ ()ݓ ∈ F 	. By (42) we find  

Eܲ	
ଶ

ܵ
∗ ∑ቀݓ ఏೕ


ೕసభ ቁ = Eܲ	

ଶݓ = 0  for every ݂ ∈ F . 

 It follows that ݓቀ∑ ఏೕ

ೕసభ ቁ = 0 and 

∑∆	⨁ݑ ఏೕ

ೕసభ

	ݒ = ∑ܯ ఏೕ

ೕసభ

∑ቀݓ ఏೕ

ೕసభ ቁ	⨁	∆∑ ఏೕ


ೕసభ

∑ቀݓ	 ఏೕ

ೕసభ ቁ = 0, which implies the 

minimality of ࢂ∗. 

 C. Our next step is to determine 

∗ܮ = ቌܫு −  (ఒమିଵ)ࢂ
∗ (ఒమିଵ)ࢀ

∗

(ఒమିଵ)∈௸

ቍܪ
തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത

. 

Taking into account (39), for	ݑ⨁	∆∑ ఏೕ

ೕసభ

ݒ ∈   we have ܪ

ቌܫு −  (ఒమିଵ)ࢂ
∗ (ఒమିଵ)ࢀ

∗

(ఒమିଵ)∈௸

ቍቀݑ⨁∆∑ ఏೕ

ೕసభ

ቁݒ = Eܲ	∗
ଶ  0⨁ݑ

and hence ܮ∗ ⊂ E	∗⨁{0}. 

 Let ݁∗E	∗  and let us choose ݑ = ൬ܫ ∑ܯ− ఏೕ

ೕసభ

∑ܯ ఏೕ

ೕసభ

∗ ൰ ݁∗ and 

∆∑ ఏೕ

ೕసభ

ݒ = −∆∑ ఏೕ

ೕసభ

∑ܯ ఏೕ

ೕసభ

∗ ݁∗. Since ܯ∑ ఏೕ

ೕసభ

∗ ݑ + ∆∑ ఏೕ

ೕసభ

ଷ ݒ = 0 it follows that 

∑∆	⨁ݑ ఏೕ

ೕసభ

ݒ ∈  .ܪ

     Thus,  
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ቌܫு −  (ఒమିଵ)ࢂ
∗ (ఒమିଵ)ࢀ

∗

(ఒమିଵ)∈௸

ቍቀݑ⨁∆∑ ఏೕ

ೕసభ

ቁݒ

= ൬ܫE	∗ − Eܲ	∗
ଶ ∑ܯ ఏೕ


ೕసభ

∑ܯ ఏೕ

ೕసభ

∗ ൰ ݁∗⨁0. 

Now the element of the form  ൬ܫE	∗ − Eܲ	∗
ଶ ∑ܯ ఏೕ


ೕసభ

∑ܯ ఏೕ

ೕసభ

∗ ൰ ݁∗, (݁∗E	∗),  are dense in 

E	∗. 

 Otherwise there exist an ݁∗ᇱE	∗, ݁∗ᇱ ≠ 0, such that ݁∗ᇱ = Eܲ	∗
ଶ ∑ܯ ఏೕ


ೕసభ

∑ܯ ఏೕ

ೕసభ

∗ ݁∗ᇱ	 

and hence ‖݁∗ᇱ‖ = ฯܯ∑ ఏೕ

ೕసభ

∗ ݁∗ᇱฯ = ฯ Eܲ	∗
ଶ ∑ܯ ఏೕ


ೕసభ

∑ܯ ఏೕ

ೕసభ

∗ ݁∗ᇱฯ ; ݁∗ᇱ =

∑ܯ ఏೕ

ೕసభ

∑ܯ ఏೕ

ೕసభ

∗ ݁∗ᇱ. Since ܯ∑ ఏೕ

ೕసభ

∗ ݁∗ᇱ ∈ E	∗ and the sequence ߠ is purely contractive it 

follows that ܯ∑ ఏೕ

ೕసభ

∗ ݁∗ᇱ = 0  and ݁∗ᇱ = 0 which is a contradiction. 

Thus   

∗ܮ									 = E	∗⨁{0}																																																																					(43) 

and ܯF				(ܮ∗) = ℓଶ(F   ,E	∗)⨁{0}. 

 Denoting by ܲଶ∗  the orthogonal projection of ܭ onto ܯF				(ܮ∗), we have 
for	ݑ⨁	∆∑ ఏೕ


ೕసభ

ݒ ∈   ܭ

				ܲଶ∗ ቀݑ⨁∆∑ ఏೕ

ೕసభ

ቁݒ =  (44)																																																				,0⨁ݑ

Φ∗ܲଶ∗ ቀݑ⨁∆∑ ఏೕ

ೕసభ

ቁݒ = ΦE	∗0⨁ݑ =  .0⨁ݑ

 D. Next we show that 

ܮ = ሧ ቀࢂ(ఒమିଵ)
∗ − ൫�మିଵ൯ࢀ

∗ ቁܪ
(ఒమିଵ)∈௸

= ቄܯ∑ ఏೕ

ೕసభ

݁⨁∆∑ ఏೕ

ೕసభ

݁	; ݁ ∈ E  ቅ. 

           Notice that an element ݑ⨁∆∑ ఏೕ

ೕసభ

  if and only if ܪ belongs to ܭ in  ݒ

∑ܯ					 ఏೕ

ೕసభ

∗ ∑∆⨁ݑ ఏೕ

ೕసభ

ଶ ݒ = 0.																																																															(45) 

         For ݑ⨁	∆∑ ఏೕ

ೕసభ

ݒ ∈ ଶߣ)  and ܪ − 1) ∈   we have ߉

(ఒమିଵ)ࢀ
∗ ቀݑ⨁∆∑ ఏೕ


ೕసభ

ቁݒ = ுܲ
ଶࢂ(ఒమିଵ)

∗ ቀݑ⨁∆∑ ఏೕ

ೕసభ

ቁݒ

= ቀܵ(ఒమିଵ)ݑ⨁∆∑ ఏೕ

ೕసభ

ܵ(ఒమିଵ)ݒቁ − ቀܯ∑ ఏೕ

ೕసభ

∑∆⨁(ఒమିଵ)ݓ ఏೕ

ೕసభ

 ,ቁ(ఒమିଵ)ݓ

where each ݓ(ఒమିଵ) ∈ ℓଶ(F   ,E  ) is defined by  
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〈ቀܵ(ఒమିଵ)ݑ ∑ܯ− ఏೕ

ೕసభ

∑∆ቁ⨁ቀ(ఒమିଵ)ݓ ఏೕ

ೕసభ

ܵ(ఒమିଵ)ݒ

− ∆∑ ఏೕ

ೕసభ

∑ܯ,൯(ఒమିଵ)ݓ ఏೕ

ೕసభ

∑∆⨁ᇱݓ ఏೕ

ೕసభ

〈ᇱݓ = 0 

for every ݓᇱ ∈ ℓଶ(F   ,E  ).  

        Hence, we find that  

(ఒమିଵ)ݓ = ∑ܯ ఏೕ

ೕసభ

∗ ܵ(ఒమିଵ)ݑ + ∆∑ ఏೕ

ೕసభ

ଶ ܵ(ఒమିଵ)ݒ 

and 

൫ࢂ(ఒమିଵ)
∗ − (ఒమିଵ)ࢀ

∗ ൯ ቀݑ⨁∆∑ ఏೕ

ೕసభ

ቁݒ = ∑ܯ ఏೕ

ೕసభ

∑∆⨁(ఒమିଵ)ݓ ఏೕ

ೕసభ

 .(ఒమିଵ)ݓ

 By (45) an easy computation shows that〈ݓ(ఒమିଵ), ܵ݁∗〉 = 0  for every ݁∗E	∗, 
݂ ∈ F 	, ݂ ≠ 0.Consequently, ݓ(ఒమିଵ) ∈ E . 

 Let us show that if ݑ⨁∆∑ ఏೕ

ೕసభ

ଶߣ) and ܪ varies over ݒ − 1) over ߉, then the 

corresponding elements ݓ(ఒమିଵ) vary over a set dense in E  . 

 It is easy to see that for ݁ ∈ E and (ߣଶ − 1) ∈  the element ߉

(ఒమିଵ)ݓ = ∑ܯ ఏೕ

ೕసభ

∗ ܵ(ఒమିଵ) (ܵఒమିଵ)
∗ ∑ܯ ఏೕ


ೕసభ

݁ + ∆∑ ఏೕ

ೕసభ

(ఒమିଵ)ܥ(ఒమିଵ)ܥ
∗ ∆∑ ఏೕ


ೕసభ

݁ is the 

corresponding element of (ܵఒమିଵ)
∗ ∑ܯ ఏೕ


ೕసభ

(ఒమିଵ)ܥ⨁݁
∗ ∆∑ ఏೕ


ೕసభ

݁ ∈  .ܪ

 Thus, for ݁ ∈ E		 we have  

 (ఒమିଵ)ݓ
(ఒమିଵ)∈௸

= ∑ܯ ఏೕ

ೕసభ

∗ ൫ܫ − Eܲ	∗
ଶ ൯ܯ∑ ఏೕ


ೕసభ

݁ + ∆∑ ఏೕ

ೕసభ

ଶ ݁

= ݁ − ∑ܯ ఏೕ

ೕసభ

∗
Eܲ	∗
ଶ ∑ܯ ఏೕ


ೕసభ

݁ ∈ E . 

It remains to prove that the set 

൞൮ܫE −ܯ∑ ఏೕ

ೕసభ

∗
Eܲ	∗
ଶ ቌߠ



ୀଵ

ቍ൲݁	; 	݁ ∈ E ൢ 

is dense in E. 

 Indeed, otherwise there exists ݁ᇱ ∈ E , ݁ᇱ ≠ 0 such that 

݁ᇱ = ∑ܯ ఏೕ

ೕసభ

∗
Eܲ	∗
ଶ ∑ܯ ఏೕ


ೕసభ

	݁ᇱ .It follows that ‖݁ᇱ‖ = ቛ Eܲ	∗
ଶ ∑ܯ ఏೕ


ೕసభ

	݁ᇱቛ, which 

contradicts that the sequence  ߠ is purely contractive.  
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          E. The last step is to prove that the characteristic functions of ࢀ∗ coincides with 
the sequence ߠ. 

 It is easy to see that the operator  defined from E  to ܮ by 
(݁) = ∑ܯ ఏೕ


ೕసభ

݁⨁∆∑ ఏೕ

ೕసభ

݁	(݁ ∈ E ) is a unitary one. 

 On the other hand, from (43) it follows that the operator ∗  defined from E	∗ 
to ܮ∗ by  ∗(݁∗) = ݁∗⨁0(݁∗ ∈ E	∗) is a unitary too. 

 According to (44), for ݈ = ∑ܯ ఏೕ

ೕసభ

݁⨁∆∑ ఏೕ

ೕసభ

݁	(݁ ∈ E ) we have  

Φ∗ܲ∗ ቀܯ∑ ఏೕ

ೕసభ

e⨁∆∑ ఏೕ

ೕసభ

݁ቁ = Φ∗ ቀܯ∑ ఏೕ

ೕసభ

e⨁0ቁ = ∑ܯ ఏೕ

ೕసభ

e⨁0

= ∑ܯ∗ܯ ఏೕ

ೕసభ

݁ = ∗ܯ ቌߠ



ୀଵ

ቍ߱ିଵ݁. 

Hence, using Theorem (5.1.13) we deduce that characteristic functions of ࢀ∗ 
coincides with the sequence ߠ.The proof is completed.  

Proposition (5.1.17)[211]: Let the sequences ߠ:E → ℓଶ(F   ,E	∗) and ߠᇱ:E  ᇱ →
ℓଶ൫F   ,E  ∗

ᇱ൯ be some operators such that ܯ∑ ఏೕ

ೕసభ

  and  ܯ∑ ఏೕ
ᇲ

ೕసభ
 be contractions.  

 If the sequences  ߠ and ߠᇱ coincide, then the sequences ࢀ∗ and ࢀᇱ which they 
generate in the sense of Theorem (5.1.16) are unitary equivalent.  

Proof. If ߯:E → E  ᇱ and ߯∗ೕ:E	∗ → E  ∗
ᇱ

  are unitary operators such that  

ఞ∗ೕܯ
ቌߠ



ୀଵ

ቍ = ቌߠᇱ


ୀଵ

ቍ߯ 

then ܷ =
ݍ
⨁

݆ = 1
ቀܯఞ∗ೕ

 such that ′ܪ to ܪ ఞೕቁ is a unitary operator fromܯ⨁

∑ ൫ࢀ൯(ఒమିଵ)
ᇱ

ୀଵ = ܷ∑ ൫ࢀ൯(ఒమିଵ)
∗

ܷ∗
ୀଵ  for every (ߣଶ − 1) ∈  .߉

 The proof is the same as in the proof of Theorem (5.1.15) 

 Applying this result to the series of the characteristic functions and by using 
Theorem (5.1.15) we obtain a generalization of Theorem3.4 in [134] and Corollary 2 
in [133], namely (see [132]): 

Proposition (5.1.18)[211]: For a c.n.c. sequence  T   we have that the sequence 
൫ߠ൯T   

 is outer if and only if T  ∈  .(ଶ)ܥ
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Proof. It suffices to prove our assertion for the functional model of T  . 

 Accordingly, let ࢀ∗ = ൛ࢀ(ఒమିଵ)
∗ ൟ

(ఒమିଵ)∈௸
 be the sequences defined in Theorem 

(5.1.16) For every ݑ ⊕ ∆T  	ݒ ∈   we have  ܪ

lim
ఢ→∞

 ฮ ܶ
∗ ฮ(ݒ  	T∆⨁ݑ)

ଶ

∈ி(ଵାఢ,௸)

= ‖∆T	  ݒ‖ଶ. 

 This shows that ࢀ∗ ∈ ݑ if and only if (ଶ)ܥ ⊕ 0	 ∈ ݑ	implies  ܪ = 0. On the 
other hand, ݑ ⊕ 0	 ∈ ݑ means  ܪ ⊥ ∑ቀܯ ఏೕ


ೕసభ ቁ

T   

ℓଶ(F   ,D   ). 

 The last condition implies ݑ = 0 if and only if  

∑ቀܯ ఏണ

ണసభ ቁ

T   

ℓଶ(F   ,D   )തതതതതതതതതതതതതതതതതതതതതതതതതതതത = ℓଶ(F   ,D ∗), 

i.e., the sequence  ൫൯T  
 is outer. 
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Section (5.2): Joint Invariant subspaces: 

In the classical case of a single operator, the connection between the invariant 

subspaces of an operator and the corresponding characteristic function was first 

considered, for certain particular classes of operators, in the work of Livšic, Potapov, 

Šmulyan, Brodskii, etc. (see the references from [143,144]). One of the fundamental 

results in the Sz.-Nagy–Foia¸s theory of contractions [134] states that the invariant 

subspaces of a completely non-unitary (c.n.u.) contraction T on a (separable) Hilbert 

space are in “one-to-one” correspondence with the regular factorizations of the 

characteristic function associated with T . This general result, although influenced in 

part by the work of the authors cited above, was obtained by Sz.-Nagy and Foia¸s in 

[143,144], following an entirely different approach based on the geometric structure 

of the unitary dilation and the corresponding functional model for c.n.u. contractions. 

The main goal of this section is to obtain a multivariable version of the above-

mentioned result, for n-tuples of operators, and to provide a functional model for the 

joint invariant subspaces in terms of the regular factorizations of the characteristic 

function. This comes as a natural continuation of our program to develop a free 

analogue of Sz.-Nagy–Foia¸s theory, for row contractions. 

    An n-tuple T := [T1, . . . , Tn] of bounded linear operators acting on a common 

Hilbert space H is called row contraction if  

.... **
11 ITTTT nn   

A distinguished role among row contractions is played by the n-tuple S := [S1, . . . , 

Sn] of left creation operators on the full Fock space with n generators, F2(Hn), which 

satisfies the noncommutative von Neumann inequality [145] (see also [146,147]) 

),...,(),...,( 11 nn SSpTTp   

for any polynomial p(X1, . . . , Xn) in n noncommuting indeterminates. For the 

classical von Neumann inequality [148] (case n = 1) and a nice survey, we refer to 

Pisier’s book [149]. Based on the left creation operators and their representations, a 

noncommutative dilation theory and model theory for row contractions was 

developed in [150,151,152-153,132,154], etc. In this study, the role of the unilateral 

shift is played by the left creation operators and the Hardy algebra H(D) is replaced 
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by the noncommutative analytic Toeplitz algebra 
nF  . We recall that 

nF  was 

introduced in [145] as the algebra of left multipliers of F 2 (Hn) and can be identified 

with the weakly closed (or w * -closed) algebra generated by the left creation operators 

S1, . . . , Sn and the identity. 

In [132], we defined the standard characteristic function ΘT of a row 

contraction (a multi analytic operator acting on Fock spaces) which, as in the 

classical case (n = 1) [134], turned out to be a complete unitary invariant for 

completely non-coisometric row contractions (c.n.c.). We also constructed a model 

for c.n.c. row contractions, in which the characteristic function occurs explicitly. In a 

very recent paper [155], Ball and Vinnikov introduced an additional invariant LT so 

that the pair (LT ,ΘT ) is a complete unitary invariant for the more general case when 

T is a completely non-unitary (c.n.u.) row contraction. 

In 2000, Arveson [156] introduced and studied the curvature and Euler 

characteristic associated with a row contraction with commuting entries. 

Noncommutative analogues of these numerical invariants were defined and studied 

by the author [157] and, independently, by D. Kribs [158]. We showed in [159] that 

the curvature invariant and Euler characteristic associated with a Hilbert module 

generated by an arbitrary (respectively commuting) row contraction T := [T1, . . . , Tn] 

can be expressed only in terms of the (respectively constrained) characteristic 

function of T. We also proved in [159,160] that the constrained characteristic 

function is a complete unitary invariant for the class of constrained c.n.c. row 

contractions, and we provided a model. 

We continue the study of the characteristic function T  associated with a row 

contraction T := [T1, . . . , Tn] in connection with joint invariant subspaces under the 

operators T1, . . . , Tn, and the joint similarity of T to a Cuntz row isometry W := [W1, . 

. . , Wn], i.e.,W1, . . . , Wn are isometries with 
**

11 ,..., nnWWWW  =I 

We establish the existence of a “one-to-one” correspondence between the joint 

invariant subspaces under T1, . . . , Tn, and the regular factorizations of the 

characteristic function T  associated with a completely non-coisometric row 
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contraction T := [T1, . . . , Tn]. In particular, we prove that there is a non-trivial joint 

invariant subspace under the operators T1, . . . , Tn, if and only if there is a non-trivial 

regular factorization of T . Using the model theory for c.n.c. row contractions, we 

provide a functional model for the joint invariant subspaces in terms of the regular 

factorizations of the characteristic function(see Theorem (5.2.5)). An important 

question related to the main result, Theorem (5.2.4), is to what extent a joint invariant 

subspace determines the corresponding regular factorization of the characteristic 

function. We address this problem in Theorem (5.2.10). 

We prove the existence of a unique triangulation of type  










1

0.

.*
0

c
c

 

for any row contraction T := [T1, . . . , Tn] (see Theorem (5.2.11)), and prove the 

existence of nontrivial joint invariant subspaces for certain classes of row 

contractions. We show that there is a non-trivial joint invariant subspace under T1, . . . 

, Tn whenever the inner–outer factorization of the characteristic function associated 

with T is non-trivial (see Theorem (5.2.18)). We also consider some examples that 

explicitly illustrate the correspondence between joint invariant subspaces and 

factorizations of the characteristic function. 

We obtain criteria for joint similarity of n-tuples of operators to Cuntz row 

isometries. In particular, we prove that a completely non-coisometric row contraction 

T is jointly similar to a Cuntz row isometry if and only if the characteristic function 

of T is an invertible multi-analytic operator (see Theorem (5.2.20)). Moreover, in this 

case, we provide a model Cuntz row isometry for similarity. This is a multivariable 

version of a result of Sz.-Nagy and Foias [160], concerning the similarity to unitary 

operators. 

Extending some results obtained by Sz.-Nagy [161], Sz.-Nagy and Foias [134], 

and the author [152,163], we prove, in particular, that a one-to-one power bounded n-

tuple [T1, . . . , Tn] of operators on a Hilbert space H is jointly similar to a Cuntz row 

isometry if and only if there exists a constant  

c >0 such that 
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,* 22

,

hc
F

hT
kn


  
   h H  

for any k = 1, 2, . . . (see next section for notation). 

[164], Muhly and Solel extended the results from [132] to c.n.c. 

representations of the Hardy algebra H   (E) and their characteristic functions. We 

believe that all the results can be generalized to their setting. 

The existence of a non-trivial joint invariant subspace for T1, . . . , Tn is 

equivalent to the existence of non-trivial regular factorizations for the characteristic 

function T  . This raises the following natural question: does any contractive multi-

analytic operator have a non-trivial regular factorization? While this remains an open 

problem even in the one-variable case, it will be interesting to find, as in the classical 

case, sufficient conditions for the existence of non-trivial regular factorizations in our 

multivariable setting. 

Another natural open problem worth mentioning is the problem of extending , 

concerning c.n.c. row contractions, to the case of c.n.u. row contractions by using the 

complete invariant (LT , T ) from [155]. 

Recently [159,160] we developed a dilation theory on noncommutative 

varieties determined by row contractions [T1, . . . , Tn] subject to constraints such as 

p(T1, . . . , Tn) = 0, p ∈ P, where P is a set of noncommutative polynomials. It would 

be interesting to see to what extent the results of this paper can be extended to 

constrained row contractions and their constrained characteristic functions. 

Let Hn be an n-dimensional complex Hilbert space with orthonormal basis e1, 

e2, ...,en where n ∈ {1, 2, . . .} or n=∞. We consider the full Fock space of Hn defined 

by 
k

n
k

n HHF 




0

2 :)(  

where  1
0 CHn   and k

nH  is the (Hilbert) tensor product of  k  copies of Hn. Define the 

left creation operators Si : )(2
nHF → )(2

nHF , i = 1, . . . , n, by 

Si := ei ,     ∈ )(2
nHF . 
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The noncommutative analytic Toeplitz algebra 
nF and its norm closed version, 

the noncommutative disc algebra An, were introduced by the author [12] in 

connection with a multivariable noncommutative von Neumann inequality 
nF is the 

algebra of left multipliers of )(2
nHF  and can be identified with the weakly closed (or 

w   -closed) algebra generated by the left creation operators S1, . . . , Sn acting on 

)(2
nHF , and the identity. When n = 1, 

1F  can be identified with )(DH  , the algebra 

of bounded analytic functions on the open unit disc. The algebra 
nF can be viewed as 

a multivariable noncommutative analogue of )(DH  . There are many analogies with 

the invariant subspaces of the unilateral shift on )(2 DH ), inner–outer factorizations, 

analytic operators, Toeplitz operators, )(DH  -functional calculus, bounded 

(respectively spectral) interpolation, etc. 

Let 
nF be the unital free semigroup on n generators g1, . . . , gn, and the identity 

g0. The length of α ∈ 
nF is defined by |α| :=k, if α = gi1gi2· · · gik , and |α| :=0, if α = g0. 

e also define eα := ei1ei2 · · · eik and eg0
= 1. It is clear that {eα: α ∈ 

nF } is an 

orthonormal basis of )(2
nHF .If T1, . . . , Tn ∈B(H), the algebra of all bounded linear 

operators on a Hilbert space H, we define Tα := Ti1
Ti2

 ... Tik
 and Tg0

 .ுܫ=:

We need to recall from [132,165,146,166] a few facts concerning multi-

analytic operators on Fock spaces. We say that a bounded linear operator A acting 

from )(2
nHF   K to )(2

nHF )   G is multi-analytic if 

                 A(Si ) = (Si ܫ	  A      for any i = 1,…,n.                  (46)(ீܫ	

Notice that A is uniquely determined by the operator ߠ :K → )(2
nHF G, which is 

defined by ݇ߠ := A(ܫ k), k ∈ K, and is called the symbol of A. We denote A = ܣఏ . 

Moreover, ܣఏ is uniquely determined by the “coefficients” ߠ (α) ∈ B(K,G), which are 

given by 

( α ) α  θ αθ x,y : θ x , e y A (I x) , e y ,         xK, yG,α 
nF , 

where  ~ is the reverse of α, i.e., ~= gik· · · gi1 if α = gi1· · · gik . We can associate with 

A a unique formal Fourier expansion 
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nF

RA


  )(~ , 

where Ri := U*SiU, i = 1,…,n, are the right creation operators on )(2
nHF and U is the 

unitary operator on )(2
nHF  mapping ei1ei2 · · · eik into eik …  ei2  ei1 . Based 

on the noncommutative von Neumann inequality [146], we proved that 

 ,
01

lim


 


k kr

RrSOTA





   

where, for each r ∈ (0, 1) the series converges in the uniform norm. The set of all 

multi-analytic operators in B( )(2
nHF   K, )(2

nHF G) coincides with 
nR ),( GKB  , 

the WOT closed algebra generated by the spatial tensor product, where UFUR nn
  *:  

(see [166,167]). The multianalytic operator Aθ is called: 

(i) inner if ܣఏ is an isometry, 

(ii) outer if  ( *
22 )())((   nn HFHFA , 

(iii) purely contractive if hhP  
*
  for every h ∈  , h   0, 

(iv) unitary constant if A  .W for some unitary operator W ∈ B(K,G)ܫ =

If A : )(2
nHF M→ )(2

nHF N is another multi-analytic operator, we say that A  

coincides with A if there exist two unitary operators 

W : K→M,       *W  :G →N 

such that 

 ܫ) *W  .(W ܫ) ఏ = Aܣ(

For simplicity, throughout this paper, T := [T1, . . . , Tn], n = 1, . . . ,∞, denotes 

either the n-tuple(T1, . . . , Tn) of bounded linear operators on a Hilbert space H or the 

row operator matrix [T1 · · · Tn] acting from H )(n  to H, where H )(n   := Hn
i 1  is the 

direct sum of n copies of H. Assume that  

T := [T1, . . . , Tn] is a row contraction, i.e., 

.... **
11 ITTTT nn   

The defect operators of T are 
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)(:
2/1

1

*
* HBTTI

n

i
iiHT 







 



    and  ),()(: )(2/1*
)(

n
HT HBTTI n   

and the defect spaces of T are defined by 

HD T *:*             and        D:= )(n
T H . 

The characteristic function of the row contraction T := [T1, . . . , Tn] is the multi-

analytic operator *
22 )()(: DHFDHF nnT    with symbol T  is given by 

*
* *

1 1

( ) : ( )   , ,
n

n n

T i i i D T i T
i i F

h T P h S I e T P h h D 
   

 
         

 
    

where Pi denotes the orthogonal projection of H(n) onto the i-component of H(n), and S 

:=[S1, . . . , Sn] is the model multi-shift of left creation operators acting on the full 

Fock space )(2
nHF . 

Using the characterization of multi-analytic operators on Fock spaces (see 

[166,167]), one can easily see that the characteristic function of T is a multi-analytic 

operator with the formal Fourier representation 

 ܫ) + T ܫ− *T )    ,  ,,1

1

1

*
THnH

n

i
ii IIRIRTRI 












   

where R1, . . . , Rn are the right creation operators on the full Fock space )(2
nHF . 

The definition of the characteristic function of T arises in a natural way in the 

context of the theory of noncommutative isometric dilations for row contractions (see 

[153,132]). Let V :=[V1, . . . , Vn], Vi ∈ B(K), be the minimal isometric dilation of T on 

a Hilbert space K ⊃ H. 

Therefore, 

(i) V1, . . . , Vn are isometries with orthogonal ranges; 

(ii) ;,,1,|** niVT Hii   

(iii) .* HVK
nF 

  

Consider the following subspaces of K: 

.:,)(:
1

*
*

1
HTVILHTVL

n

i
iikii

n

i
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According to [153], we have the following orthogonal decompositions of the minimal 

isometric dilation space of T : 

                             )()( * LMHLMRK VV                                        (47) 

where R reduces each operator Vi , i = 1, . . . , n, 

**
*

)( LVLM
nF

V 




       and   LVLM
nF

V 





*

)( . 

Denote by L  the unitary operator from MV (L) to LHF n )(2 defined by 


 













nnn FFF

L LeV








 .,    ,: 2  

One can view L  as the Fourier representation of MV (L) on Fock spaces. Then, for 

any i =1, . . . , n, we have 

,)( L
Lii

L ISV   

where S := [S1, . . . , Sn] is the model multi-shift of left creation operators acting on 

the full Fock space F2(Hn). Similarly, one can define the unitary operator (Fourier 

representation) .)()(: *
2

*
* LHFLM nV

L  We proved in [132] that the characteristic 

function T  coincides with the multi-analytic operator 2: ( )L nF H L    
2

*( )nF H L defined by 

,))((: *
)(|)( *

* L
LMLM

L
L VV

P   

where PMV(L*) denotes the orthogonal projection of K onto MV(L*). 

Let T := [T1, . . . , Tn], n = 1, . . . ,∞ , be a row contraction with  Ti ∈ B(H) and 

consider the subspace Hc ⊂H defined by 













 


... 2, 1,=kany for    :: 22*

k
c hhTHhH


  

We call T a completely non-coisometric (c.n.c.) row contraction if Hc = {0}. We 

proved in [153] that Hc is a joint invariant subspace under the operators ,,..., **
1 nTT  and 

it is also the largest subspace in H on which T * acts isometrically. Consequently, we 

have the following triangulation with respect to the decomposition H =HcHcnc: 
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ni
B

A
T

i

i
i ,....1         ,

*
0









 , 

where [A1, . . . , An] is a coisometry, i.e., ,... **
11 cHnn IAAAA   , and [B1, . . . , Bn] 

is a c.n.c row contraction. We say that T is of class C· 0      (or pure row contraction) if                                                                                              





kk

hT


 0
2*lim    for any h∈H. 

In [132], we constructed the following model for c.n.c. row contractions, in which the 

characteristic function occurs explicitly. 

Theorem (5.2.1)[142]: Every completely non-coisometric row contraction T := [T1, . 

. . , Tn], n = 1, 2, . . . ,∞ , on a Hilbert space H is unitarily equivalent to a row 

contraction T := [T1, . . . ,Tn] on the Hilbert space 
2

*( ) ( ( ) ] n T nH D F H D   2H [(F ⊝ 2
T{ : ( ) }T nf f f F H D     

Where Δ T  := (I – *
T  T  )1/2 and operator Ti , i = 1, . . . , n, is defined by 








 

j.i if              0)(
j.i if        )(

:])([
*

*

* *
*

fIS
gfIS

gISf
Di

Di
DjTi

TT  

i,j=1,…,n and S1, . . . , Sn are the left creation operators on the full Fock space F2(Hn). 

 Moreover, T is a pure row contraction if and only if T  is an inner multi-

analytic operator.In this case the model reduces to 

*( ) )nH D 2H (F ⊝ T ( ) )nH D 2(F      HT  f    ,)(
*

** fISf Dii  

 Any contractive multi-analytic operator   :F2(Hn) ⊗  →F2(Hn) ⊗ ∗ (,∗are 

Hilbertspaces) generates a c.n.c. row contraction T := [T1, . . . ,Tn]. More precisely, 

we proved in [132] the following result. 

Theorem (5.2.2)[142]: Let   :F2(Hn)⊗ →F2(Hn)⊗ ∗ be a contractive multi-

analytic operator and set ∆  := (I −  ∗  )1/2. Then the row contraction T := [T1, . . . 

,Tn] defined on the Hilbert space 
2

*( ) ) ( ( ) )]n nH F H    2H [(F ⊝ 2
g{ : ( ) }ng g F H      

by  

*

* * *( ) : ( ) ( g),  1,...,ni i if g S I f C i      T , 



175 
 

where each operator Ci is defined by 

Ci(  g) :=  (Si ⊗I )g, g  F2(Hn)⊗, 

and S1, . . . , Sn are the left creation operators on F2(Hn), is completely non-

coisometric. 

          If   is purely contractive and 

Δ(ܨଶ(ܪ) ⊗ തതതതതതതതതതതതതതതതതതതതത(ߝ = Δ((ܨଶ(ܪ) ⊗ ⊝(ߝ  ,തതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(ߝ

then   coincides with the characteristic function of the row contraction  

T := [T1, . . . ,Tn]. In this case, considering H as a subspace of 

))(( ))(( 2
*

2    nn HFHFK , 

we have that the sequence of operators V := [V1, . . . ,Vn] defined on K by 

Vi := (Si iCI  )
* ,        i= 1, . . . , n, 

is the minimal isometric dilation of T := [T1, . . . ,Tn] . 

We establish the existence of a “one-to-one” correspondence between the joint 

invariant subspaces under T1, . . . , Tn, and the regular factorizations of the 

characteristic function T  associated with a completely non-coisometric row 

contraction T := [T1, . . . , Tn]. In particular,we prove that there is a non-trivial joint 

invariant subspace under the operators T1, . . . , Tn,if and only if there is a non-trivial 

regular factorization of T  . Using the model theory for c.n.c  row contractions, we 

provide a functional model for the joint invariant subspaces in terms of the regular 

factorizations of the characteristic function. 

Let   : *
22 )()(   nn HFHF  be a contractive multi-analytic operator and 

assume that it has the factorization  

 = 12 , 

Where 2 2
1 : ( ) ( )n nF H F H F    and 2 2

2 *: ( ) ( )n nF H F F H      are contractive 

multi-analytic operators. Define the operator 

))(())(())((: 2
1

2
2

2   nnn HFFHFHFX  

by setting 

                              )(,:)( 2
112 nHFffffX ,               (48) 
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where 2/1)*(:  I  and Δj:= (I −Θ 2/1* )jj , j = 1, 2. Notice that XΘ is an isometry. 

Indeed, since 

),()( 1
*
112

*
2

*
112

*
2

*
1

*  IIII  

we have 

.,)(

,)()(
2*

1
*
112

*
2

*
1

2
1

2
12

2
112

fffI

ffIfI

ffff







 

As in the classical case (see [134]), we say that the factorization 1 2     is regular 

if XΘ is a unitary operator, i.e., 

  ).)(())(()(: 2
1

2
2

2
112  



nnn HFFHFHFfff  

Now let us prove the following technical result which will be very useful in what 

follows. 

Lemma (5.2.3)[142]: Let   : )(2
nHF  → *

2 )( nHF  be a contractive multi-

analytic operator and let C := [C1, . . . , Cn] be the row isometry defined on 

))(( 2  nHF  by setting 

,)(      ,)(: 2    nii HFffISfC  

for each i = 1, . . . , n, where .)(: 2/1* I Then C is a Cuntz row isometry, i.e.,

ICCCC nn  **
11  , if and only if 

              
2( ( ) )nF H    Δ((ܨଶ(ܪ) ⊗ ⊝(ߝ  തതതതതതതതതതതതതതതതതതതതതതതതതതതതതത .                                        (49)(ߝ

Assume that   has the factorization 

                                                          2 1    , 

where 2 2
1 : ( ) ( )n nF H F H F     and 2 2

2 *: ( ) ( )n nF H F F H      are contractive 

multi-analytic operators and let E := [E1, . . . , En] and      F := [F1, . . . , Fn] be the 

corresponding row isometries defined on 2
1( ( ) )nF H    and 2

2( ( ) ).nF H F  , 

respectively. Then 

                            







 X

E
F

CX
i

i
i 0

0
    ,i=1,…,n                            (50)                                            
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where the operator X  is defined by relation (48). Moreover, if the factorization 

2 1     is regular, then C is a Cuntz row isometry if and only if E and F are Cuntz 

row isometries. 

Proof. First, notice that since   is a multi-analytic operator, i.e., 

  )()(  
* ISIS ii ,    i =  1, . . . , n, 

we have 

gfgfI

gfISIISgCfC

ijij

ijji









,,)(

,))()((,
*

**



  

for any f, g ∈ )(2
nHF  and i, j = 1, . . . , n. This shows that the operators C1,…,Cn 

are isometries with orthogonal spaces. Due to the definition of  

Ci , it is clear that ICCCC *
nn

*
11  if and only if the range of the operator  

[C1, . . . , Cn] coincides with  )(( 2
nHF ,which is equivalent to (49). 

On the other hand, for each i = 1, . . . , n, and f ∈ 2 ( )nF H E , we have 

,
0

0
)(

0
0

)()(
)()()()(

112

112112

112

fX
E

F
ff

E
F

fEfFfISfIS
fEISfISfISXfCX

i

i

i

i

iiiFi

ciiii































 

which proves relation (35). If the factorization   = 2 1  is regular, then X   is a 

unitary operator. Consequently, we have 

X  






























n

i
ii

n

i
iin

i
ii

EE

FF
XCC

1

*

1

*

*

1

*

0

0
)( , 

which implies that C := [C1, . . . , Cn] is a Cuntz row isometry if and only if E := [E1, . 

. . , En] and F := [F1, . . . , Fn] are Cuntz row isometries. This completes the proof.  

Theorem (5.2.4)[142]: Let T := [T1, . . . , Tn], Ti ∈ B(H), be a completely non-

coisometric row contraction and let   : *
22 )()(   nn HFHF be a contractive 

multi-analytic operator which coincides with the characteristic function of T . If H1 ⊂ 

H is a joint invariant subspace under the operators T1, . . . , Tn, then there exists a 
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regular factorization  = 2 1 , where 1 : FHFHF nn  )()( 22   and 2 :

*
22 )()(  nn HFFHF are contractive multi-analytic operators such that T := [T1, . 

. . , Tn] is unitarily equivalent to a row contraction     T := [T1, . . . ,Tn] defined on the 

Hilbert space 
2 2 2

* 2 1: [( ( ) ) ( ( ) ) ( ( ) )]n n nF H F H F F HH         ⊝

 2
2 1 2 1 1 : ( )nf f f f F H         

by setting 

,        ,)(:)( ****
*

HfEFfISfT iiii     

for any i = 1, . . . , n, where the operators Fi and Ei are defined in Lemma (5.2.3) and 

S1,...,Sn are the left creation operators on F2(Hn). Moreover, the subspaces 

corresponding to H1 and H2 :=H⊖H1 are 

 2 2
1 2 2 1:  : ( ) , ( ( ) )n nH f f g f F H F g F H           ⊖

 2
2 1 2 1 1 : ( )  nf f f f F H       

 
and  

 2 2
2 * 2: [( ( ) ) ( ( ) ) 0 ]n nH F H F H F     ⊝   2

2 2 0 : ( ) ,nf f f F H F      

respectively. Conversely, every regular factorization 2 1     generates via the above 

formulas the subspaces H1 and H2 with the following properties: 

(i) H1 is invariant under each operator Ti , i = 1, . . . , n; 

(ii) H2 = H⊝H1. 

Under the above identification, H1 corresponds to a subspace H1 ⊂H which is 

invariant under each operator Ti , i = 1, . . . , n. 

Proof. Part I. Let T := [T1, . . . , Tn], Ti ∈ B(H), be a row contraction and let V :=[V1, 

. . . , Vn],Vi ∈ B(K), be its minimal isometric dilation on a Hilbert space HvVK
nF  



. Since V1,...,Vn are isometries with orthogonal ranges, the noncommutative Wold 

decomposition [153] provides the orthogonal decomposition 

                           K =R )( *LV ,                                                                (51) 

where 
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Moreover, R is the maximal subspace of K which is reducing for the operators 

V1,…,Vn and the row contraction [V1|R, . . . , Vn|R] is a Cuntz row isometry. 

Let H1⊂H be an invariant subspace under the operators T1,...,Tn. Since 

,**
iHi TV  i = 1,…, n, we deduce that the subspace H2 = H⊝H1 is invariant under the 

operators **
1 ,..., nVV . Therefore, the subspace G:=K⊝H2 is invariant under V1,…,Vn. 

Applying again the noncommutative Wold decomposition to the row isometry                 

[V1|G, . . . , Vn|G], we obtain the orthogonal decomposition  

                                1 ( Q)vG R  ,                                        (52) 

where 




 








 

ok k
GVR 


:1        and             






 



GVG i

n

i
 

1
 θ :Q . 

Since R1 reduces the operators V1, . . . , Vn and [V1|R1, . . . , Vn|R1] is a Cuntz row 

isometry, we deduce that R1 ⊂ R. Notice that R2 := R⊝R1 is also a reducing subspace 

for V1, . . . , Vn and [V1|R2, . . . , Vn|R2] is a Cuntz row isometry. Using relations (51) 

and (52), we infer that  

   2H k ⊝      * 1 2 *( )  θ (Q) ( )   (Q).V V V VG R L R R L        

Hence, we deduce that 

                             ).()Q( *2 LR VV                                                     (53) 

On the other hand, due to (47), we have 

).()( * LHLRK VV   

Hence, we obtain 

 *( )VH R L  ⊝ ( ).V L  

Since H2 ⊂H, the above representations of H and H2 imply 

 2 *( )VR L ⊝  *(Q) ( )V VR L   ⊝ ( ).V L  

Taking into account that R=R1 R2, we have 

 2 *( )VR M L ⊝  2 *(Q) ( )V VM R M L  ⊝  1 (Q) .VR M    

Consequently, we deduce that 

                            )(LMV ⊂R1 )Q(VM                                                         (54)                                                 
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and         

1H H ⊝  2 1 (Q)VH R M  ⊝ ( )V L G  ⊝ ( ).V L  

Let
21*

       ,,,, )Q()( RRRMLM PandPPPP
VV

, be the orthogonal projections onto the 

corresponding spaces. According to relations (53) and (54), for any x ∈ )Q(VM  and y 

∈ )(LMV , we have 

             x = xPxP LMR V )( *2
    and         y= yPyP

VMR )Q(1
  .              (55) 

In particular, if x := yP
VM )Q(  and y ∈ )(LMV , we deduce that 

            yPPyPPyPy
VVV MLMMRR )Q()()Q( *21

                                (56)         
Hence and taking into account that the subspace R1 R2 = R is orthogonal to )( *LM V , 

we deduce that 

          yPPyPyPandyPPyP
VVVV MRRRMLMLM )Q()Q()()( 21**

                       (57) 
for any y ∈MV (L). Due to relation (51), we have 

                                 kfffP LR         ,P1 )(M *V .                          (58)                                     
On the other hand, relations (54) and (53) imply 

                           )(     ,P1 )Q(MV1
LMyyyP VR                            (59) 

and 

                        )Q(    ,P1 )(M *V2 VLR MxxxP                     (60) 
Assume now that [T1, . . . , Tn] is a c.n.c. row contraction. In this case, we have 

(see [153]) 

K = ),()()( ** LMRLMLM VVV   

which implies 

                  RLMPLMP VLMVR V
 )(1()( )( *

.                                     (61) 

Hence and using the second relation in (57), we deduce that 

,)()( 2)Q(1 21
RLMPPandRLMP VMRVR V

  

and, consequently, 

                      21 )Q()(
21

RMPandRLMP VRVR  .                     (62) 

Part II. Consider the following contractions: 



181 
 

),()Q(::

),Q()(::

),()(::

*)Q(|)(2

)(|)Q(1

*)(|)(

*

*

LMMPQ

andMLMPQ

LMLMPQ

VVMLM

VVLMM

VVLMLM

VV

VV

VV







 

Since )( *LM V , )(LM V , and )Q( VM  are reducing subspaces for the operators V1, . . . , 

Vn, we deduce that, for each i = 1, . . . , n, 

. )|()|(

, )|()|(

, )|()|(

2)()Q(2

1)Q()(1

)()(

*

*

QVVQ
andQVVQ

QVVQ

LMiMi

MiLMi

LMiLMi

VV

VV

VV







 

Let *
2

* )()(:* LHFLM nV
L   be the Fourier representation of the subspace )( *LM V  

,i.e., 

* : ,
n n

L

F F

V e   
   

 
    

 
    

where  


2
*

nF

andL


  Notice that 

,,,1,)()|( *

**

*
)( niISV L

LiLMi
L

V
  

where S1, . . . , Sn are the left creation operators on F2(Hn). Similarly, we define the 

Fourier representations of the subspaces MV (L) and MV (Q), respectively. Now, due 

to the above intertwining relations satisfied byQ  , Q1, and Q2, the operators 

                  

*

*

2 2 *
*

2 2 Q *
1 1 1

2 2 Q *
2 * 2 2

: ( ) ( ) , : ( ) ,

: ( ) ( ) Q, : ( )

: ( ) Q ( ) , : ( )

L
L n n L

L
n n

L
n n

F H L F H L Q L
F H L F H Q and
F H F H L Q

 



       

    

     

             (63)                                                                                   

are contractive and multi-analytic. Hence and using the first equation in (42), we have 

* *

*

*

*

*

*

* *
( ) ( )

*
( ) (Q) ( )

Q * Q *
( ) (Q) (Q) ( )

Q * Q *
2 1

2 1

( ) ( | )( )

( | )( )

( | )( ) ( | )( )

( ) ( )

.

V V

V V V

V V V V

L LL L
L M L M L

L L
M L M M L

L L
M L M M M L

L L

Q P

P P

P P

Q Q
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Due to (58) and (61), there exists a unique unitary operator 

))((: 2 LHFR nLR   such that 

                          ),(,: LMP V
L

LRR                                           (64) 

where 2/1* )(: LLL I   Indeed, we have 

  

 * *

*

*

2 22
( ) ( )

22

( )

2 2

 
V V

V

M L M L

LL
M L

L L
L

I P P

P

     

     

      

 

                                                               
2L

L             

Consequently, 

                                                    := R
L  *                                                          (65) 

is a unitary operator from the dilation space K =MV (L∗)R onto the Hilbert space 

   .)()(:~
*

2
*

2 LHFLHFK nLn   

The image of the space H = K ⊝ ( ).V L MV (L) under the operator   is 

 2 2
*: ( ) ( ( ) )n L nF H L F H L        

 ⊝  2: ( ) .L L nf f f F H L     

The row contraction T := [T1, . . . , Tn] is transformed under the unitary operator   

into the row contraction ]~,,~[:~
1 nTTT    where 

nigCfISgfT LiLiLi ,1),(~)(:)(~ ***
*

 , 

and each operator iC~ is defined by 

. )(,)()(~ 2 LHFggISgC nLiLLi   

Notice that, using relations (59), (60), and (62), one can show that there are some 

unitary operators 

1 1 2 2

2 2
1 2: ( ( ) ) : ( ( ) Q)R n R nR F H L and R F H          

uniquely defined by the relations 

                     
),Q(,:

),(,:
Q

222

111

VRR

V
L

RR

MyyyP

LMxxxP








                                        (66) 
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where 2/1* )(: jjI
j

 for j=1,2. Consequently, since R=R2R1 and due to 

relation (64), the operator 

))(()Q)(())((: 222
12

LHFHFLHFx nnnLL    

defined by 
*)( :

12 RRRLx                                                  (67) 

is unitary. Due to relations (64), (57), (66), and (63), we deduce that 

yy

yyP

yPyPP
yPyPxyx

LL

L
M

RMRRR

RRRRRL
L

LL

V

V













12

12

1212

12

1

)Q(
Q

)Q( ))((

)(

 

for any y ∈MV (L). Hence, we have 

.)(, 2
1 12

LHFffffx nLL                         (68) 

Since XL is a unitary operator, we also deduce that 

  .))(()Q)(()(, 222
1 1212

LHFHFLHFfff nnn    

Due to (65) and (67), we have 

 ).(
12

* *
RRL

L X   

Now, we need to find the images 2121
~~ HandHofHandH  respectively, under the 

unitary operator  . To find 2
~H , notice first that, due to relation (67), we have 

              )0()0)((
212

**  zXzXz RLRRLR                                (69) 

for any z ∈R2. Hence and using (64), we infer that 

 )0)Q)((())((

)())((
2*

*
2

2*2*

2

*





 nLn

RV
L

V

HFXLHF

RLMRLM
 

and, due to (55), 

 )Q(:)Q(
2*

*
)( VRRLM

L
V MffPfPM

V
  

Hence, and using relations (48), (51), and (54), we obtain 

 .Q)(:)0()Q( 2*
L2 2

  nV HFuuXuM  

Now, using the representation of H2 from part I, i.e., 
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 2 * 2( )VH M L R  ⊝ (Q).VM  

We obtain 

 
2

2 * 2
2 *( ( ) ) ( ( ( ) Q)) 0n L nF H L X F H

        
 ⊝

 2

* 2
2 ( 0) : ( ) Q .L nf X f f F H       

Since 1    ⊝ 2 , we deduce that 

 2 1

* 2 2
1 2 ( ) : ( ) Q, ( ( ) )L n nf X f g f F H g F H L           ⊝

 2: ( ) .L nw w w F H L     

The characteristic function T  of the row contraction T coincides with L , and 

therefore with  . Via this identification, the regular factorization 2 1L   

corresponds to a regular factorization 2 1    , where 1 : FHFHF nn  )()( 22   

and 2  : FHF n )(2  → *
2 )( nHF are contractive multi-analytic operators. Now, it is 

easy to see that, under the above identification, the subspaces 1
~ and 2

~ correspond to 

the subspaces 

 2 * 2
2 * 2( ( ) ) ( ( ( ) )) 0n nF H X F H F 

                                                                                                                                      

.                                              ⊝  * 2
2 2( 0) : ( )nf X f f F H F             (70) 

and 
* 2 2

1 2 2 1{ ( ) : ( ) , ( ( ) )}n nf X f g f F H F g F H                                                                                       

.                                                            ⊝ 2: ( ) ,nF H               (71) 

respectively, where 2,1,)(: 2/1*  jI jjj  Moreover, under the same identification, 

the row contractionT~  is unitarily equivalent to the row contraction T := [T1, . . . ,Tn] 

defined on the Hilbert space 
2 2

*: ( ( ) ) ( ( ) )n nF H F H 
      ⊝ 2: ( ) ,ng g g F H       

and 
* * *

*( ) : ( ) ( ), 1,..., ,i i iT f g S I f C g i n        

where each operator ܥ is defined by 

,)(,)(:)( 2    nii HFggISgC  
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and S1, . . . , Sn are the left creation operators on )(2
nHF . 

Since the factorization 2 1     is regular, X  is a unitary operator which 

identifies the subspace ))(( 2  nHF  with  ))(( 2
2 FHF n  

))(( 2
1  nHF and the operator ܥ with 









i

i

E
F
0

0 , for each i = 1, . . . , n. Under this 

identification the Hilbert spaces H, H1, and H2 are identified with H, H1, and H2, 

respectively, and the row contraction T is unitarily equivalent to the row contraction 

T. 

Part III. We prove the converse of the theorem. Due to the above identification, it is 

enough to assume that the factorization 2 1     is regular and the subspaces H1 and 

H2 are defined as above by relations (71) and (70), respectively. Since X  is a unitary 

operator and using Lemma (5.2.3), we have 

Hence, we obtain 

1 2G  ⊝ 2: ( ) .nF H         

On the other hand, we have 

 2 2
*( ) ( ( ) )n nF H F H 

    ⊝ܩଶ 

   2 * 2 2
* 2 1( ) ( ) ( ( ) )n n nF H X F H F F H 

         
ଶܩ⊝

     2 * 2
* 2( ) ( ) 0n nF H X F H F 

        
⊝   * 2

2 2( 0 ) : ( ) .nf X f f F H F       

Consequently, 

 2 2
2 *( ) ( ( ) )n nH F H F H 

     ⊝ܩଶ . 

Hence, and taking into account the definition of 1H , we deduce that H = 21 HH  . 

It remains to prove that the subspace H2 is invariant under the operators 
**

1 ,..., nTT . If f∈ *
2 )( nHF and g∈ ))(( 2

2 FHF n  , then the vector x:=f )0(*   gX is in 

H2 if and only if  

                                                  .02
*
2  gf                                          (72)                                     

Indeed, using relation (70), one can prove that the condition 

FHFanyforXgXf n   )(0)0(),0( 2
2

*
2

*   
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is equivalent to (72). Since 

)0()())0(( ******
*

  gXCfISgXfTxT iiii   

for each  i = 1, . . . , n, to prove that xTi
* ∈ H2, it is enough to show that 

0)0()),0(()( 2
*

2
***

*
   XgXCfIS ii  

for any FHF n  )(2 Since   is a multi-analytic operator, the latter condition is 

equivalent to 

            ,0)0()( **
12

*
2

*   gXCXPfIS iFi                            (73) 

where P1 is the orthogonal projection of the direct sum  )(()(( 2
1

2
2 nn HFFHF  

onto FHF n  )(( 2
2  Using Lemma (5.2.3) and the definition of the operators ܥ,  , ܧ

and ܨ, we deduce that 
*

* * *
2 1 2 1 *

* *
2 2

0
( 0) ( 0)

0

( ) .

i
i

i

i i F

F
P X C X g P X X g

E

F g S I g

   

 
     

 
    

 

Hence, and using relation (72), we have 

     ,0)0( 2
*
2

***
12

*
2

*   gfISgXCXPfIS FiiFi  

which proves relation (73). This shows that 22
* HHTi   for any i=1,…,n. 

Consequently,the subspace H1= H⊝H2is invariant under the operators nTT ,...,1 . This 

completes the proof of the theorem.  

Now we can reformulate Theorem (5.2.4) in terms of the functional model of a 

c.n.c. row contraction provided by Theorem (5.2.2). This version will be useful later 

on. 

Theorem (5.2.5)[142]: Let   : *
22 )()(   nn HFHF be a purely contractive 

multi-analytic operator such that 

 2 ( )nF H   △ (ܪ)ଶܨ)] ⊗ ⊝(ߝ  തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത[ߝ

and let T := [T1, . . . ,Tn] be defined on the Hilbert space 

   2 2
* 2: ( ) ( )n nF H F H          ⊝ 2: ( ) ,ng g g F H      

and 
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*

* * *( ) : ( ) ( ), 1,..., ,i i iT f g S I f C g i n        

where each operator Ci is defined by 

,)(,)(:)( 2    nii HFggISgC  

and S1, . . . , Sn are the left creation operators on )(2
nHF . 

 If H1 ⊆ H is an invariant subspace under each operator Ti , i = 1, . . . , n, then 

there is a regular factorization 

2 1     

where 2 2
1 : ( ) ( )n nF H F H F    and 2 2

2 *: ( ) ( )n nF H F F H      are contractive 

multi-analytic operators such that, if ܺ  is the operator defined by (33), then the 

subspaces H1and H2 := H⊝H1 have the representations: 

   * 2 2
1 2 2 1( ) : ( ) , ( ( )n nf X f g f F H F g F H            

⊝  2: ( )nF H        

and 

     2 * 2
2 * 2( ) ( ( ) ) 0n nF H X F H F 

         
 

⊝  * 2
2 2( 0) : ( )nf X f f F H F       

Conversely, every regular factorization 2 1     generates via the above formulas the 

subspaces H1 and H2 with the following properties: 

(i) H1 is an invariant subspace under each operator Ti , i = 1, . . . , n; 

(ii) H2 = H⊝H1. 

In what follows we need the following factorization result for contractive multi 

analytic operators [168]. 

Lemma (5.2.6)[142]: Let ),( GBRn    be a contractive multi-analytic operator. 

Then   admits a unique decomposition  =   with the following properties: 

(i)  ),( 00 GBRn   is purely contractive,.e hhPG  
0
  for any 0,0  hh   

(ii) Λ = I ),( uun GBRU    is a unitary operator; 

(iii)                    0 0 .u uan d G G G     
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Moreover, the purely contractive part of an outer or inner multi-analytic operator is 

also outer or inner, respectively. 

The next result is an addition to Theorem (5.2.2) 

Proposition (5.2.7)[142]: Let  : *
22 )()(   nn HFHF  be a contractive multi-

analytic operator such that 

 2 ( )nF H   △ (ܪ)ଶܨ)] ⊗ ⊝(ߝ  തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത[ߝ

and let T := [T1, . . . ,Tn] be the functional model associated with  , as in Theorem 

(5.2.2). 

(i) The characteristic function of T := [T1, . . . ,Tn] coincides with the purely 

contractive part of  . 

(ii) The space H defined in Theorem (5.2.2) is different from {0} if and only if 

there is no unitary operator UB *( , )  such that .I U   

Proof. According to Lemma (5.2.6), the multi-analytic operator  admits the 

decomposition Θ = ),( 0*0  BRwithA n    purely contractive and A = ܫ 

),(),,( ** uuuun BUwhereBRU     is a unitary operator,  = 	⨁௨	ܽ݊݀	 ∗
	=  ௨ . Notic that∗ߝ⨁∗ߝ

).)(())(()(

))(())(()(

0
222

0*
2

*
2

*
2









nunn

nunn

HFHFHF
andHFHFHF

 

On the other hand, we have 

   .)(:))(()(: 0
2

*
22    nunn HFHFHFggg  

Now, using the definition of the Hilbert space H, one can identify H with 

 2 2
0 *0 0: ( ) ( ( ) )n nH F H F H 

      ⊝  2
0: ( ) .nF H        

Due to this identification, the row contraction T := [T1, . . . ,Tn] is unitarily equivalent 

to ],,...,[: 00
1

0
nTTT  which is defined on H0 in the same manner as T is defined on H. 

Since 0,      it is easy to see that 

 2 ( )nF H   △ (ܪ)ଶܨ)] ⊗ ⊝(ߝ  തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത[ߝ
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According to the second part of Theorem (5.2.2) the characteristic function of 

T0 coincides with the multi-analytic operator   which coincides with the 

characteristic function of T. 

We prove now part (ii). If Θ = I   U for some unitary operator U  B( , * ), 

then ߂ = 0 and 
2

*[ ( ) ]nF H  H ⊝ 2( ( ) ) {0}.nF H     

If Θ is not a unitary multi-analytic operator, then, according to Lemma (5.2.6) it has a 

non-trivial purely contractive part. By part (i), Theorems   

dim *D = dim *0,       dim D = dim 0, 

where  and *0 are not both equal to {0}. Since *D H and D H(n), we deduce that 

H≠{0}.This completes the proof.  

The following result is an important addition to Theorem (5.2.5) (and hence 

also to Theorem (5.2.4). 

Theorem (5.2.8)[142]: Under the conditions of Theorem (5.2.8), let H = H1   H2 be 

the decomposition corresponding to the regular factorization 12 , and let 

ni
B

A
T

i

i
i ,...,1                 ,

0
*









  

be the corresponding triangulation of T := [T1, . . . ,Tn]. Then the characteristic 

functions of the row contractions A := [A1, . . . ,An] and      B := [B1, . . . ,Bn] coincide 

with the purely contractive parts of the multi-analytic operators 1  and 2 , 

respectively. 

Moreover, the invariant subspace H1 under the operators T1, . . . ,Tn is non-

trivial if and only if the regular factorization 12 is non-trivial, i.e., each factor is 

not a unitary constant. 

Proof. Define the operator U from the Hilbert space 

   2 * 2
* 2( ( ) ) ( ( ) 0 )n nF H X F H F       

to 

 2 2
* 2( ( ) ) ( ( )n nF H F H F     
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by setting 
*( ( 0)) :U f X g f g     

for any f  *
2 )( nHF  and g   FHF n  )(( 2

2 . Since XΘ is unitary, so is U. Using 

the definition of H2 (see relation (70)), we deduce that  UH2 = 2Ĥ , where 

2 2
2 * 2

ˆ : [( ( ) ) ( ( ) )]n nH F H F H F    ⊝  2
2 2 : ( ) .nF H F         (74) 

Set niUUBii ,...,1,: ***   and denote by P1 the orthogonal projection of the direct sum

))(())(())(( 2
2

2
1

2
2 FHFontoHFFHF nnn   . Using Lemma (5.2.3), we 

deduce that 

gF
g

E
F

PgXCXP i
i

i
i

*
*

*

1
**

1 00
0

)0( 















  

for any g  ))(( 2
2 FHF n  and i = 1, . . . , n. Hence and using the definitions for the 

row contraction [T1, . . . ,Tn] and the unitary operator U, we have 

*

*

*

* * *

* * *

* * *
1

* *

( ) ( ( 0))

[( ) ( 0)]

( ) ( 0)

( )

i i

i i

i i

i i

f g UT f X g
U S I f C X g

S I f P X C X g

S I f F g











 

    

   

   

  

 

for any f  *
2 )( nHF  and g  ))(( 2

2 FHF n   such that f g H2, and i=1,…,n . 

Since 

 2 ( )nF H   △ (ܪ)ଶܨ)] ⊗ ⊝(ߝ  ,തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത[ߝ

one can use again Lemma (5.2.3) to deduce that 

.))(())(( 2
2

2
2 FHFFHF nn   

Now, due to Proposition (5.2.7), we infer that the characteristic function of the row 

contraction [߁ଵ , . . . , ,[߁ ߁ 	 ∈ )ܤ	 2Ĥ )	(and hence also [B1, . . . ,Bn]), coincides with the 

purely contractive part of the multi-analytic operator 2 . 

Taking into account the definition of the subspace H1 (see relation (71)) and 

the fact that 2 1    , one can see that, for each f 2( )nF H F  and 2
1 ( ) ,ng F H  

the vector *
2 2( )f X f g     is in H1 if and only if 
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0)(),( 112
*

122
*

2    XgfXf  

for any   )(2
nHF . The latter equation is equivalent to 

01
2
2

*
12

*
2

*
1  gff  

Since 2
*
2

2
2  I the above equation is equivalent to 

 01
*
1  gf                                                               (75) 

If x := 12
*

2 )( HgfXf   , then we have 

)()( 2
**

2*
** gfXCfISxT iii    

for each i = 1, . . . , n. Since Θଶ is a multi-analytic operator and 





n

j
Fjj ffISSf

1

* ),0()(  

where f (0) := fP F1 , we deduce that 
* * * * *

2 * 2 2( ) ( ) (0) ( )

,
i i F i iT x S I f S I f C X f g

u v

           
 

 

where 
* * * *

2 2: ( ) ( ( ) )i F i F iu S I f X S I f E g          

and 

*

* * * * * *
2 2 2: ( ) (0) ( ) ( ( ) ) .i i i F iv S I f C X f g X S I f E g               

Now notice that u  H1. Indeed, using the above characterization of the elements of 

H1, it is enough to show that 

nigEfIS iFi ,...,1        0)( *
1

**
1                                      (76) 

Using relation (75) and the definition of ܧ, we have 

0))(()( 1
*
1

**
1

**
1  gfISgEfIS iiFi   

which proves (76) and therefore u  H1. 

Now we prove that v  H2. First, notice that due to Lemma (5.2.3), we have 

,))((),0()0( 2
1

****   nii HFggEXgXC , 

and therefore 

   .)0)(()0()0()( *
2

*
2

**
2*

*   fISXfXCfISv Fiii             (77) 

Using again Lemma (5.2.3) and the definition of Fi , we infer that 
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).0)0(()0)((

)0)0(()0)((

)0)0((0

)0)0((0)0()0(
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2
*

2
***
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**
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**
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fFXfISX
fXCfISX

fXCfISSFX

fXCfISSXCfXC

iFi

iFi

i

n

j
Fjji

i

n

j
Fjjii

 

Consequently, relation (77) implies 

)0)0(()0()( 2
**

2
*

*
  fFXfISv ii   

Due to the definition of the subspace H2, to prove that v  H2, it is enough to show 

that 

0)0()0()( 2
*

22
**

2 *
 fFfIS ii   

for each i = 1, . . . , n. Since 

niISF Fii ,...,1,)( 2
**

2   

and Θଶ is multi-analytic, we have 

.0)0()(

)0())(()0()0()(
*

2
22

*
2

*
2

*
22

**
2 *





fIS

fISfFfIS

Fi

Fiii 
 

Hence, v  H2. Now, using the fact that vuxTi *  and the definitions for u and v, 

we deduce that the operator 
11

|: **
HiHi TPA  satisfies the equation 

 ))(()())(( **
2

**
22

*
2

* gEfISXfISgfXfA iFiFii              (78) 

for any )( 2
*

2 gfXf    ∈ H1 and i = 1, . . . , n. 

   ))((,)(:)(  2
1

2
2

*
2   nn HFgFHFfgfXf  

to the direct sum ))(())(( 2
1

2  nn HFFHF by setting 

    Ω .:))(( 2
*

2 gfgfXf                                            (79) 

Since 

,

,

)()(

2

22
22

*
2

2

2
*2

2

2

2
*

2

gf

gfff

gfXfgfXf





 

 

it is clear that Ω is a unitary operator. Notice also that 
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*
2 1 2 1 1

1 1

 ( )  ( ( )X    
 

           

  
 

for any   )(2
nHF . Consequently, Ω 1H  = 1Ĥ , where 

2 2
1 1

ˆ : ( ( ) ) ( ( ) )n nH F H F F H      ⊝  2
1 1 : ( ) .nF H         (80) 

Setting Ai := ΩAi
* relation (63) implies 

,,)()( 1
*** HgfgEfISgfA iFii   

for any i = 1, . . . , n. Once again, Lemma (5.2.3) implies 

 2
1 ( )nF H   △1 ܨ)]

ଶ(ܪ) ⊗ (ߝ ⊝  തതതതതതതതതതതതതതതതതതതതതതതതതതതതതത[ߝ

Now, using Proposition (5.2.7), we infer that the characteristic function of the row 

contraction [A1, . . . , An], Ai  B( Ĥ 1) (and hence also [A1, . . . ,An]), coincides with 

the purely contractive part of the multi-analytic operator Θଵ. Due to the relations (74), 

(80), and Proposition (5.2.7),the subspaces Ĥ 1 and Ĥ 2 (and hence also H1 and H2) 

are different from {0} if and only if both multi-analytic operators Θଵ and Θଶ are not 

unitary constant, i.e., the factorization Θ = ΘଶΘଵ is non-trivial. This completes the 

proof.  

Now, combining Theorems (5.2.4) and (5.2.8), we can deduce the following 

result. 

Theorem (5.2.9)[142]: Let T:=[T1, …, Tn] be a completely non-coisometric row 

contraction on a separable Hilbert space H. Then, there is a non-trivial invariant 

subspace under each operator T1,…, Tn if and only if the characteristic function Θ  

has a non-trivial regular factorization.  

Concerning the uniqueness in Theorem (5.2.5) (and also Theorem (5.2.4)), we 

can prove the following result, which shows the extent to which a joint invariant 

subspace determines the corresponding regular factorization of the characteristic 

function. 

Theorem (5.2.10)[142]: Under the conditions of Theorem (5.2.5) let 

 1212 and  
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be two regular factorizations of the purely contractive multi-analytic operator Θ, and 

let  ,F, * and *,,  F   be the corresponding Hilbert spaces. Let  H1 H and H1  H be 

the invariant subspaces under each operator  Ti , i = 1, . . . , n, corresponding to the 

above factorizations. If HH1, then there is a multi-analytic operator 
2 2: ( ) ( )n nF H F F H F      such that 

11     
Moreover, if H = H1   

101 )(  I  
for some unitary operator ),(0 FFB  and, consequently, the multi-analytic operators 

Θ and 1 coincide. 

Proof. We associate with the factorization Θ = 12 the subspace 







   ))(2(1,)(2:)2(*

2 : nHFgFnHFfgfXfM . 

Similarly, we define the subspace M  associated with the factorization Θ =  12  H1 

 H1 relation (71) and its analogue for H1 imply M  M Consequently, for each 

FHFf n  )(2 , there exist FHFf n  )(2  and ))(( 2
1  nHFg   such that 

                        ( * *
2 2 2 2( 0) ( ).f X f f X f g 

                         (81) 

Hence and using the definition of the unitary operators X  and 
X , we have 

.)(  )( 22
2

2
*

2

2

2
*

2
2 gfgfXfgfXff 



  

Therefore, it makes sense to define the contraction Q : FHFFHF nn  )()( 22 and 

R :  FHF n )(2 ))(( 2
1  nHF by setting Qf := f   and Rf := g ,respectively. Now, 

we show that Q  is a multi-analytic    QISISQ FiFi )()(  ,   i = 1, . . . , n. 

Let f1, . . . , fn be arbitrary elements in )(2
nHF . Taking into account the 

definitions for ܥ and X , and the fact that 

njiISIS ijFiFj ,...,1,,)()( 2
2

2
2

*    

we deduce that 
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Hence, and taking into account that 

 2 ( )nF H   △ (ܪ)ଶܨ)] ⊗ ⊝(ߝ  തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത[ߝ

we deduce that 

      .)()0)(()0( 2
2

*
2

* FHFfanyforfISXfXC nFii    (82) 

Similar calculations show that 

     ))(0()0( 1
*

1
*  ISXXC ii                                  (83)     

for any ϕ  )(2
nHF and i = 1, … , n. Moreover, similar relations to (82) and (68) 

hold with 1,X ,and 2  instead of 1,X and 2 , respectively. Since 

))(0()0( 1
*

1
*  ISXXC ii                   (84) 

for any   )(2
nHF and i = 1, . . . , n, by taking appropriate limits, we deduce that 

).))((}0({)))((}0({ 2
1

*2
1

*    nni HFXHFXC  

Consequently, for each ))(( 2
1  nHFg there exists ))(( 2

1  nHFg  such that 

 * *(0 ) (0 )iC X g X g       .                                   (85) 

Now, notice that using relations (82), (81), (84), and (85), we obtain 
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for any f  F FHF n )(2 . Hence and using the definition of Q , we deduce that  

,)(2,  )()()( FnHFffQFIiSfFIiSfFIiSQ   

which proves that Q  is a multi-analytic operator.  

Since MM  , we have 

* *
0 0

( ) ( )
k kk k

S I C M S I C M     
 

 

  

             .              (86) 

Using Lemma (5.2.3), definition (79) of the unitary operator Ω, and relations (82), 

(83), one can prove that 

 
*

* *( ) ( ) .i i i F iS I C S I E          

Indeed, we have 
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*
1

*
2 2 1
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S I C f

S I f C X f
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for any .)()( 22   nn HFandFHFf  

Now, due to the fact that [ FnF ISIS  ,...,1 ] is a multi-shift and [ nEE ,...,1 ] is a 

Cuntz row isometry, the noncommutative Wold decomposition implies 
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A similar relation can be obtain for the set on the right-hand side of the inclusion 

(86). Hence and using relation (86), we obtain 

}.))((:)0(0{}))((:)0(0{ 2
1

*2
1

*    nn HFggXHFggX  

Consequently, for each g  ))(( 2
1  nHF  there exists ))(( 2

1  nHFg  such that 

                                ).0()0( ** gXgX                                (87) 

Since  XandX are unitary operators, we can define the isometry 

))(())((: 2
1

2
1   nn HFHFV  

by setting haveweHFeachForgVg n ,)(.: 2    

 *
2 1 2 1 1( ). (73)X                  

On the other hand, using the operators Q ,R,V and relation (81), we deduce that 
*

2 1 2 1 1

* *
2 1 2 1 1

( )

( 0) 0 (0 )

X

X X

    

  
 

 

        

               
          . 

                  
* *

2 1 2 1 1 1

*
2 1 2 1

( ) 0 (0 )

( ),

Q X Q R X V

Q X Q y

   

 

 



                    
       

 

where y := .))(( 2
111   nHFinisVR Using the latter relation and (88), we 

obtain 

.12121212   QandQ  

Since the mapping fff  22  is isometric, we deduce that 

 ,)(, 2
11   nHFQ                                 (89) 

which proves the first part of the theorem. 

Now assume that H1 = H1 A closer look at the above proof reveals that 

))(( 2 FHFQ n  = FHF n )(2 and V is a unitary operator. Taking into account relations 

(87) and (81), we obtain 

* * *( 0) ( 0) 0 (0 )2 2 2 2
* * *( 0) 0 (0 )2 2

f X f f X f X g

f X f X V g

                            
                        .

 

Hence, we get 
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).02(*
2))*(2(*

2  fXfgVfXf  

Taking the norms, we have 

.222 fgf   

Combining this with .222 gff  , we obtain .ff  , which shows that  is a 

unitary multi-analytic operator. Due to [166], this implies Q=	ܫΨ, for some unitary 

operator ΨB(F, F  ) Using relation (89), we complete the proof.  

We prove the existence of a unique triangulation of type 

                                                










1.*
00.

C
C

                                (90) 

for any row contraction T := [T1, . . . , Tn], and prove the existence of joint invariant 

subspaces for certain classes of row contractions. 

We need a few definitions. A row contraction ܶ:= [ ଵܶ, . . . , ܶ], ܶ(ܪ)ܤ, is of 

class C·1 if 

.0,0
2*lim 




kk

hHhanyforhT


  

We say that a row contraction T := [T1, . . . , Tn], TiB(H), has a triangulation of type 

(90) if there is an orthogonal decomposition 

H= 10 HH   with respect to which 

ni
B

A
T

i

i
i ,...,1,

*
0









  

and the entries have the following properties: 

(i) ;,...,100
* nianyforHHTi   

(ii)   ;,...,: 0.1 CclassofisAAA n  

(iii)   1.1 ,...,: CclassofisBBB n  

The type of the entry denoted by * is not specified. 

Theorem (5.2.11)[142]: Every row contraction ܶ:= [ ଵܶ, . . . , ܶ], ܶ(ܪ)ܤ, has a 

triangulation of type 










1.

0.

*
0

C
C
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Moreover, this triangulation is uniquely determined. 

Proof. First, notice that the subspace 













 
 kk

hTHhH


 0::
2*

0 lim  

is invariant under each operator *
iT , i= 1, . . . , n. The decomposition H = 10 HH  , 

where 1 :H H ⊝ 0H , i yields the triangulation 

,,...,1,
0

*
*

*
* ni

B
A

T
i

i
i 








  

where .,...,1 |:|:
110

**** nieachforTPBandTA HiHiHii   Since 

,,0 0

2*2* limlim HhhThA
kkkk

 
 




  

the row contraction A:= [A1, . . . , An] is of class C.0. Now, we need to show that 

.0,0 1

2*lim 


hHhallforhB
kk 

  

Let V := [V1, . . . , Vn], Vi  B(K), be the minimal isometric dilation of the row 

contraction T :=[T1, . . . , Tn] .For every m = 1, . . . , the isometries  Vα,|α| = m, have 

orthogonal ranges. Therefore, we have 

 

  

 

  

























m k
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m
H

km
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hTPT

hTPTVhTPTVV

 














2**

2

**

2

**

0

00

 

For any h H since PH0 T*
 hH0w e have 

0

2* * 0.lim H
k k

T P T h 
 

                            (91) 

According to [134], we have 

 



kk

R HhanyforhTVhP


   *lim                  (92) 

Where  PR is the orthogonal projection of the minimal isometric dilation space K on 

the subspace R in the Wold decomposition ܭ = ܴ )( *LM V . Now, using relations 

(91) and (92), we obtain 
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Hence, we deduce that 
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2*2*

2*

2

*2

1

11

 

for any h  H. Let  h H1 ,h 0,and assume that 0
2*lim 

 mm
hB


 . 

The above relation shows that PRh=0 and, due to (91), we deduce that ℎܪ, 

which is a contradiction. 

Now, we prove the uniqueness. Assume that there is another decomposition 

H= 10 MM   which yields the triangulation 

ni
D

C
T

i

i
i ,...,1,

*
0









  

of  type .0

.1

0
,

*
C

C
 
 
 

 where 
0

* *: |i i MC T  and 
1 1

* *: |i M i MD P T for each i = 1, . . ., n. To 

prove uniqueness, it is enough to show that ܪ =  , then, dueܯ. Notice that if ℎܯ

to the fact that the row contraction [C1, . . . , Cn] is of class  C· 0 , we have 

 
 


m mmm

hChT
 

 0
2*2* limlim  

Hence,	ℎܪ, which proves that ܪ ⊆ ܪ	. Assume now that ℎܯ  . Sinceܯ⊝

ℎܯଵ, we have 

  
  


m m mm

M
mm

hThTPhD
  

 0
2*2*2* limlimlim 1

 

Consequently, since the row contraction [D1, . . . , Dn] is of class C·1, we must have  

ℎ = 0. Hence,we deduce that ܪ⊝ܯ = {0}, which shows that  ܯ =  . Thisܪ

completes the proof.  
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Corollary (5.2.12)[142]: If T := [T1, … , Tn] is a row contraction such  

TC 0 and T C·1, then there is a non-trivial joint invariant subspace under 

 T1, . . . , Tn. 

Any row contraction admits a triangulation of type 










cnc

c

C
C
*

0
 

where Cc (respectively Ccnc) denotes the class of coisometric (respectively c.n.c.) row 

contractions. Notice that Cc  C·1. Combining this result with the triangulation of 

Theorem (5.2.11), we obtain another triangulation for row contractions, that is, 

















 1.

0.

**
0*
00

CC
C

C

cnc

c  

Corollary (5.2.13)[142]: If T := [T1, . . . , Tn], Ti  B(H), is a row contraction such 

I... **
11  nnTTTT  

and there is a non-zero vector h H such that 



k

hhT



22*

for any k = 1, 2,…, 

then there is a non-trivial invariant subspace under the operators  

T1, . . . , Tn. 

We recall from [163] that if 

I... **
11  nnTTTT  

then a subspace M is invariant under T1, . . . , Tn if and only if 

MnMnM PTPTTPT  **
11 ...  

where MP  is the orthogonal projection on M. We also mention that the case when T  

C.0 is treated in the next corollary. 

Lemma (5.2.14)[142]: Let  : *
22 )()(   nn HFHF  be a contractive multi-

analytic operator and assume that it has the factorization 

12  

where 1 : FHFHF nn  )()( 22   and 2 : FHF n )(2 → *
2 )( nHF  are 

contractive multi-analytic operators. 
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(i) If 2  is inner, then the factorization 12 is regular. 

(ii) If   is inner, then the factorization 12 is regular if and only if 1  and 2  

are inner multi-analytic operators. 

(iii) If rank ߂ < ∞, then  

12   rankrankrank  

if and only if the factorization 12 is regular. 

Corollary (5.2.15)[142]: If T := [T1, . . . , Tn] is a row contraction of class  C· 0, then 

the non-trivial joint invariant subspaces under T1,…, Tn are parametrized by the non-

trivial inner factorizations of the characteristic function T  of T (i.e., 2 1T     with 

1  and 2  inner multi-analytic operators). Moreover, the subspaces H1 and H2 in 

Theorem (5.2.4) become 

 2
1 2 : ( )nf f F H F    ⊝  2: ( )     andT nf f F H D     2

2 *( )nF H D 

⊝  2
2 : ( )nf f F H F    

where D and *D are the defect spaces of T . 

Now, we consider some examples that explicitly illustrate the correspondence 

between joint invariant subspaces and factorizations of the characteristic function. 

Example (5.2.16)[142]: Let  := 2 2
1 2 1 21 / 2 ( ),R R R R where 1 2,R R  are the right 

creation operators on 2
2( )F H  the full Fock space with 2 generators. Since

* , , 1,2i j ijR R I i j  we have * I .On the other hand, is a purely contractive inner 

multi-analytic operator. Define the Hilbert space 
2

2: ( )H F H ⊝ 2 2 2
2 2 1 2 1[ ( ) ( )]F H e e e e     

and the row contraction T := [T1,T2], where :i H i HT P S I and 1 2,S S are the left creation 

operators on )( 2
2 HF . According to Theorem (5.2.2), the characteristic function of T 

coincides with the multi-analytic operator  . 

We consider now some regular factorizations of T  and write down the 

corresponding joint invariant subspaces for T1, T2. First, notice that 

 2
2211 2/12/1 RRRRT   
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and the multi-analytic operators 1 := 2
221 2/12/1 RRR  and 2 := R1 are isometries on 

)( 2
2 HF . Therefore, due to Lemma (5.2.14), the factorization T  = 2 1  is regular. 

Taking into account Corollary (5.2.15), we deduce that the joint invariant subspace 

under T1, T2 corresponding to the above factorization is 
2

2 1: ( )M F H e   ⊝ 2 2 2
2 2 1 2 1( ) ( )F H e e e e       

Another regular factorization of T is 

  .2/12/1 221
2

1 RRRRT   

As above, one can see that this is a regular factorization and the corresponding joint 

invariant subspace for T1, T2 is 
2 2

2 1 2 1: ( ) ( )N F H e e e     ⊝
2 2 2

2 2 1 2 1( ) ( )F H e e e e      . 

Let us consider a class of examples when the regular factorizations have 

factors which are not multi-analytic operators with scalar coefficients. 

Example (5.2.17)[142]: Let  B( ))(2
nHF be an inner multi-analytic operator with 

 (0) = 0.Due to the structure of multi-analytic operators,we have  = R1ϕ1 +·· 

·+Rnϕn for some multi-analytic operators ϕ1, . . . , ϕn  B( ))(2
nHF . Since 

njiIRR ijji ,...,1,,*    it is clear that   is inner if and only if 

* *
1 1 ... .n n I                     (93) 

In this case,  is purely contractive and we have the factorization 2 1    , where 

 n

n

RRand ,...,:: 12

1

1 




















  

are inner multi-analytic operators. Clearly, the factorization 2 1     is regular. 

Define the Hilbert space ܪ:= )(2
nHF ߆⊝ )(2

nHF  and the row contraction T := 

[T1,...,Tn], where Ti := nHiH SSandSP ,...,| 1 are the left creation operators on the full 

Fock space )(2
nHF . According to Theorem (5.2.2), the characteristic function of T 

coincides with the multi-analytic operator ߆. 

The joint invariant subspace under T1, . . . , Tn corresponding to the regular 

factorization 12T  is 
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2 2
1( ) ... ( )n n nM F H e F H e      ⊝

2 ( )nF H  

As examples of ϕ1, . . . , ϕn satisfying relation (63), one can take niVn ii ,...,1,/1  , 

where Vi is any isometry in 
nR (e.g., any product Rα, α  F 

n )  

We remark that if Ψ		B( ))(2
nHF  is an inner multi-analytic operator  with 

Fourier representation  


m
mRa

  ,...2,1, ,then it admits the regular 

factorization 

  ,:
)(






















m
mR






   

Where )(  B( ))(2
nHF are multi-analytic operators such that 


m

I
  .)(

*
)(  

Now,one can write Example (5.2.17) in this more general setting. For examples of 

inner multi-analytic operators we refer to [169,170]. 

We recall [165] that any multi-analytic operator admits an essentially unique 

inner–outer factorization. 

Theorem (5.2.18)[142]: Let T:= [T1,…, Tn] be a completely non-coisometric row 

contraction. The inner–outer factorization of the characteristic function T  induces 

(cf. Theorem (5.2.8) the triangulation of type 










1.

0.

*
0

C
C  

for the row contraction T . 

 In particular, if the inner–outer factorization of the characteristic function is 

non-trivial, then there is a non-trivial joint invariant subspace under the operators 

T1,...,Tn. 

Proof. Suppose that the multi-analytic operator߆: *
22 )()(   nn HFHF    

coincides with the characteristic function of the c.n.c. row contractionܶ: =

	[ ଵܶ, . . . , ܶ]. Θ	ݐ݁ܮ = Θ୧Θ be the canonical inner–outer factorization of ߆. Since ߆  

is inner, Lemma (5.2.14) implies that the factorizationis regular. Therefore, according 

to Theorem (5.2.4) (see also Theorem (5.2.5)) and Theorem (5.2.8), the above 

factorization yields a triangulation 
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ni
A

B
T

i

i
i ,...,1,

*
0









  

of T := [T1, . . . , Tn], the functional model of T , such that the characteristic functions 

of B:=[B1, . . . ,Bn] and A := [A1, . . . ,An] coincide with the purely contractive parts of 

߆  and ߆, respectively. Due to Lemma (5.2.6), the purely contractive part of an outer 

or inner multi-analytic operator is also outer or inner, respectively. We recall from 

[132] that a c.n.c. row contraction is of class C·0 (respectively C·1) if and only if the 

corresponding characteristic function is inner (respectively outer) multi-analytic 

operator. Finally, using the last part of Theorem (5.2.8), we can complete the proof.  

We obtain criteria for joint similarity of n-tuples of operators to Cuntz row 

isometries. In particular, we prove that a completely non-coisometric row contraction 

T:= [T1, . . . , Tn] is jointly similar to a Cuntz row isometry if and only if the 

characteristic function of T is an invertible multi-analytic operator. This is a 

multivariable version of a result of Sz.-Nagy and Foias [161], concerning the 

similarity to unitary operators. 

Extending some results obtained by Sz.-Nagy [161], Sz.-Nagy, Foias [134], 

and the author [152,163]  we provide necessary and sufficient conditions for a power 

bounded n-tuple of operators on a Hilbert space to be jointly similar to a Cuntz row 

isometry. 

We need the following well-known result (see, e.g., [134]). 

Lemma (5.2.19)[142]: Let M , N, X and Y be subspaces of a Hilbert space H such 

that 

H = MN = XY	

if 

      ,     ,M MP X M and P x c x x X    

for some constant c >0, then 

.,    YyycyPandNYP NN   

We recall a few facts concerning the geometric structure of the minimal 

isometric dilation of a row contraction. Let T := [T1,…, Tn], 
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Ti  B(H), be a row contraction and let V := [V1, . . . , Vn] be its minimal isometric 

dilation on a Hilbert space K  H. In [153], we proved that )( *LMRK V  and 

 



kk

R HhhTVhP


 ,,*lim                (94) 

where PR is the orthogonal projection of K onto R. Moreover, if T is a one-to-one row 

contraction, then 

                                       RHPR  .                                                         (95) 

The next result provides necessary and sufficient conditions for a c.n.c. row 

contraction to be jointly similar to a Cuntz row isometry, in terms of the 

corresponding characteristic function. 

Theorem (5.2.20)[142]: Let T := [T1, . . . , Tn], Ti  B(H), be a completely non-

coisometric row contraction.Then T is jointly similar to a Cuntz row isometry W := 

[W1, . . . , Wn], WiB(W), i.e., 

(i) ;... **
11 Wnn IWWWW   

(ii) STi =WiS, i = 1, . . . , n, for  invertible operator S :H→W, 

if and only if the characteristic function ்߆ is an invertible multi-analytic operator. 

 In this case, 

 1 1 1 1
1min : ,...,T nX X X T X X T X is aCuntz row isometry        . 

Proof. Suppose that the row contraction T := [T1, . . . , Tn] is jointly similar to a 

Cuntz row isometry W := [W1, . . . , Wn], Wi  B(W), i.e., 

Wnn IWWWW  **
11 ...  

and Ti = niSWS i ,..,1,1  , for some invertible operator S :H→W. Since STα =WαS and 

haveweanyforWSST n ,F****      

I
S

WW
SS

WSSWSTTS
kkk

21

*
11*

**** 11
























  

for any k = 1, 2, . . . . Therefore, 

2 2* * 1
2 2 21 * 1

1 1, ,
k

T T h h S h h
S S S
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which, due to relation (94), implies 

1

1 ,RP h h h H
S S 

  .                                     (96) 

Notice that the operator [T1, . . . , Tn] is one-to-one. Indeed, the relation 

0... 1
11

1  
nn ShWSShWS ,    hiH,  i=1,…,n, 

implies 

0...11  nn ShWShW  

Since Wi are isometries with orthogonal ranges, we have 

ii ShW =0,      i= 1, . . . , n, 

whence hi = 0, i = 1, . . . , n. Therefore [T1, . . . , Tn] is one-to-one. According to (95), 

we have HPR = R. Due to relation (96), the subspace PRH is closed. Therefore, HPR = 

R and the operator 

X := PR|H :H→R 

is invertible. According to (94), we have 

hTPhTVTVhTVVhPV iR
k

i
kk

i
k

Ri
*

1

***** limlim  
 




  

for any h H and i = 1, . . . , n. Consequently, we have 

,,...,1,** niWXXT ii   

where Wi := Vi |R, i = 1, . . . , n. Due to the noncommutative Wold decomposition 

applied to the row isometry [V1, . . . , Vn], the subspace R is reducing under each 

isometry Vi , i = 1, . . . , and [W1, . . . , Wn] is a Cuntz row isometry. 

Now, due to the geometric structure of the minimal isometric dilation of T, we 

have (see relation (47)) 

)()( * LMHLMRK VV   

Since HPR  =R, we can use relation (96) and Lemma (5.2.19) to deduce that 

.)(,1)()(
1)(*)( **

LMxx
SS

xPandLMLMP VLMVVLM VV


  

Therefore, the operator 
)()(:)(|: *)( *

LMLMLMPQ VVVLM V
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is an invertible contraction with 11   SSQ . Since Q  is unitarily equivalent to the 

characteristic function ்߆  of T , we deduce that  ்߆  is an invertible multi-analytic 

operator and  1
T

1SS . 

Conversely, assume that the characteristic function ்߆ (and hence Q) is an 

invertible contraction and  1
T c

1  for some constant c >0. Applying again 

Lemma (5.2.19), we deduce that 

., HhhcHPandRHP RR   

This shows that the operator X := HRP | : H→R is invertible and cX 11   . As in the 

first part of the proof, we have ** )|( XTRVX ii   for any i = 1, . . . , n. This proves the 

similarity to a Cuntz row isometry. Notice also that, since 1X , we have 

.11*1*

c
XXXX    

To prove the last art of the theorem, let c > 0 be such that 
cT
11   The 

converse of this theorem implies the existence of on invertible operator X such that 

 XTXXTX n
1

1
1 ,...,   is a Cuntz row isometry and 

.1 11   Tc
XX  

On the other hand, using the first part of the proof, we have 

.11   XXT  

Therefore, 1T = 1XX and the proof is complete. 

Corollary (5.2.21)[142]: If T := [T1, . . . , Tn], Ti  B(H), is a completely non-

coisometric row contraction jointly similar to a Cuntz row isometry, then T is jointly 

similar to the Cuntz part in the Wold decomposition of the minimal isometric dilation 

of T . Moreover, in this case, T is similar to the model row contraction C := [C1,..., 

Cn],where for each i = 1, … , n, 

))(())((: 22 DHFDHFC nni TT
   

is defined by 
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,)(,)(:)( 2 DHFffISfC nDii TT
   

and 2
1* )(: TTI

T
  where T  is the characteristic function of T . 

Proof. The first part of the theorem follows from the proof of Theorem (5.2.20). 

Now, using the model theory for c.n.c. row contractions (see Theorems (5.2.1) and 

(5.2.2), one can complete the proof. 

Now we consider the case when T := [T1, . . . , Tn] is an arbitrary row 

contraction. 

Theorem (5.2.22)[142]: Let T := [T1, . . . , Tn], Ti  B(H), be a row contraction. 

Then T is jointly similar to a Cuntz row isometry W := [W1, . . . , Wn], Wi  W, if and 

only if T is one-to-one and the operator 

 
2

1

*lim: 









 

 kk
TTSOTP


              (97) 

is invertible. 

Moreover, if this is the case, then the row contraction T := [T1, . . . , Tn] is 

jointly similar to the Cuntz part R := [R1, . . . , Rn] in the Wold decomposition of the 

minimal isometric dilation of T . 

Proof. Assume T is a similar to W, i.e., there exists an invertible operator S :H →W 

such that Ti = niSWS i ,...,1,1   As in the proof of Theorem (5.2.20), one can show that 

the operator [T1, . . . , Tn] is one-to-one. According to (95), we have HPR = R. On the 

other hand, due to relation (94), we deduce that 

                      
22 2* ,limR

k k
P h T h Ph h H

 

   ,                (98) 

where operator P is well defined by (97), due to the fact that { 
 1

*}kk
TT

  is a 

decreasing sequence of positive operators. Notice that, since {W}|ఈ|ୀ are isometries 

with orthogonal ranges, we have 

2
1

221

21*2121**212*

hSS

hSShSWShT
k k






 










 
 



 

for any h H. Therefore 



210 
 

 22 PhhPR
2

1
221 hSS


 





  

for any h H. Hence, it follows that the operators P and PR|H are one-to-one and have 

closed ranges. Since HPR  =R, it is clear that the operator X:H→R is invertible. 

According to relation (94), we have 

hTPhTTVhPV i
k

Ri
k

Ri
*

1

*** lim 





  

for any h H and i = 1, . . . , n. Consequently, we deduce that 

                                * * , 1, ...,i iX T R X i n  ,                                         (99) 
where X := PR|H and Ri := Vi |R, i = 1, . . . , n. Therefore, T := [T1, . . . , Tn] is jointly 

similar to R := [R1, . . . , Rn]. 

Conversely, assume that the row contraction [T1, . . . , Tn] is one-to-one and the 

operator P is invertible. Then relation (98) implies PR|H is one-to-one and has closed 

range. On the other hand, by (95), we have ோܲܪ	തതതതതത = 	ܴ. Therefore, the operator X := 

PR|H:H→R is invertible and, due to relation (69), the row contraction [T1, . . . , Tn] is 

jointly similar to the Cuntz row isometry [V1|R, . . . , Vn|R]. The proof is complete.  

We recall [163] that an n-tuple [T1, . . . , Tn], of operators Ti B(H), is power 

bounded if there is a constant M >0 such that 

,,222*



k

HhhMhT


  

for any k = 1, 2, . . . . 

Theorem (5.2.23)[142]: Let [T1, . . . , Tn] be a one-to-one power bounded n-tuple of 
operators on a Hilbert space H such that, for any non-zero element h   H, 

k
hT




2*

does not converge to 0 as k→∞. Then there exists a Cuntz row isometry [W1, . . . , 
Wn], Wi B(H), such that  

TiX =XWi,          i= 1, . . . , n, 

for some one-to-one operator X   B(H) with range dense in H. 

Proof. For each h H, h  0, denote 

.:)(
2

1
2*

,...2,1
inf 










 

 kk
hThc


  

Since [T1,…, Tn] is a power bounded n-tuple of operators, there is a constant M >0 

such that 
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2 2* 2 , ,

k
T h M h h H

 

                                              (100) 

for any k = 1, 2, . . . . If c(h) = 0 and  >0, then there is k0 such that 

.
2

1
2*

0
M

hT
k




 












 

Hence and using (100), we deduce that 

2*2

**2*

0

0 0

,

,






 





















  



  

k

km k m

hhTTM

hhTTTThT
 

for any m 0. Consequently, 2*lim 0
k

k

T h





 , which contradicts the hypothesis. 

Therefore, we must have c(h)  0 for any h H, h  0. 

Now, for each h, hH, we define 
* *[ , ] : lim ,

k k
h h T h T h 






    

where LIM is a Banach limit. Due to the properties of the Banach limit, [·,·] is a 

bilinear form on H and we deduce that 

 
22*, : lim ( ) 0 0

k k
h h T h c h if h H h






      

and [h,h] 22 hM . Moreover, we have 

.,],[],[
1

** HhhThThh
n

i
ii 


 

Due to a well-known theorem on bounded Hermitian forms, there exists a self-adjoint 

operator P B(H) such that 

 ,,,],[ HhhanyforhPhhh   
and, due to the above considerations, we have 

                              .0,,,0 22  hHhhMhPh            (101) 

Now, we show that  


n

i ii PTTP
1

*

 Indeed, we have 
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i

n

i
ii

n
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n
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ii

k

n

i k
i

kk

hhPTT

hThPThThT

hTThThPh

1 1

*

1

**

1

**

1 1

2**2*

,

],[],[

, limlim
 



 

for any h   H, which proves our assertion. Notice that relation (101) shows that the 

operator X:= 2
1

P is one-to-one and has range dense in H. Since 


n

i i XhhXT
1

22*

for any h H, it is clear that 

 
 

n

i i xxXXT
1

221*  
for any x in the domain on 1X . Hence and due to the fact that the domain on 1X  is 

dense in H, the operators ,,...,1,: 1** niXXTV ii   can be extended by continuity on 

H. Using the same notation for the corresponding extensions, we have 

,,
1

22*



n

i
i HhhhV  

and niXTXV ii ,...,1,**  .This shows that [V1, . . . , Vn] is a co-isometry from )(nH  to H 

such that  

TiX = XVi ,        i= 1, . . . , n. 

Assume now that hi   H and 


n

i iihV
1

0 . Then  


n

i ii XhT
1

0 . Since  [T1,…, Tn] 

and X are one-to-one operators, we must have hi = 0 for each  

i = 1,…, n. Consequently, [V1,…, Vn] is a one-to-one co-isometry, and therefore a 

unitary operator from )(nH  to H. This implies that V1,…, Vn are isometries on H with 

Hnn IVVVV  **
11 ...   .ு. The proof is completeܫ=

As a consequence of Theorem (5.2.23), we deduce the following criterion for 

joint similarity of a power bounded n-tuple of operators to a Cuntz row isometry. 

Corollary (5.2.24)[142]: Let [T1,…, Tn] be a one-to-one power bounded 

n-tuple of operators on a Hilbert space H. Then [T1,…, Tn] is jointly similar to a 

Cuntz row isometry if and only if there exists a constant c >0 such that 

 ,,22* HhhchT
k




                 (102) 
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for any k = 1, 2, . . . . 

Proof. The direct implication can be extracted from the proof of Theorem (5.2.20). 

Conversely, if condition (102) holds, then, using the proof of Theorem (5.2.23), we 

have 

.0,,)(  hHhhchc  

Moreover, the positive operator PB(H) has the properties 

,,...,1,2
1

2
1

niVPPT ii   

where [V1, . . . , Vn] is a Cuntz isometry, and 

0,,, 2  hHhhchPh  

Since the latter inequality shows that P1/2 is an invertible operator, the result follows. 
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Chapter 6 

Minimal-Volume Projections with Sufficient Enlargements of Minimal-Volume 

A symmetric with respect to 0 bounded closed convex set ܣ in a finite 

dimensional normed space ܺ is called a sufficient enlargement for ܺ (or of ܤ(ܺ)) if 

for arbitrary isometric embedding of ܺ into a Banach space ܻ there exists a projection 

ܲ: ܻ → ܺ such that ܲ൫ܤ(ܻ)൯ is a subset of ܣ (by ܤ(ܺ) we denote the unit ball).  In 

particular the author investigate sufficient enlargements whose support functions are 

in some directions close to those of the unit ball of the space, sufficient enlargements 

of minimal volume, sufficient enlargements for euclidean spaces. We devoted to a 

description of the shape of such images of the cube. The shape is characterized in 

terms of zonotopes spanned by scalar multiples of rows of totally unimodular 

matrices. The main results of the chapter: (1) Each minimal-volume sufficient 

enlargement is linearly equivalent to a zonotope spanned by multiples of columns of 

a totally unimodular matrix. (2) If a finite-dimensional normed linear space has a 

minimal-volume sufficient enlargement which is not a parallelepiped, then it contains 

a two-dimensional subspace whose unit ball is linearly equivalent to a regular 

hexagon. 

 

Section (6.1): Normed Linear Spaces and Sufficient Enlargements: 

Definition (6.1.1)[171]: A in a finite dimensional normed space X is called a 

sufficient enlargement  for X  (or of B(X)) if for arbitrary isometric embedding  

X⊂Y  (Y is a Banach space) there exists a projection P :Y → X such that  

P(B(Y ))⊂A. A minimal sufficient enlargement is defined to be a sufficient 

enlargement no proper subset of which is a sufficient enlargement. 

The notion of sufficient enlargement is implicit in B.Grünbaum’s in [82], it 

was explicilty introduced by the present author in [76].  

The notion of sufficient enlargement is of interest because it is a natural 

geometric notion, it characterizes possible shadows of symmetric convex body onto 

a subspace, whose intersection with the body is given. 
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The main purpose of the present section is to continue investigation of 

sufficient enlargements started in [76].  We investigate sufficient enlargements 

whose support functions are in some directions close to those of the unit ball of the 

space, we have devoted to sufficient enlargements for euclidean spaces. We have 

refer to [172] and [78] for background on Banach space theory and to [83] for 

background on the theory of convex bodies. 

Let X and Y be finite dimensional normed spaces and T:X→Y be a linear 

operator. An l − factorization of T is a pair of operators u1 : X → l  and u2 : l → Y  

satisfying T=u2u1. The l −factorable norm of T is defined to be the inf ‖ݑଵ‖‖ݑଶ‖, 

where the if is taken over all. l −factorizations.  

An absolute projection  constant  of a finite dimensional  normed linear space 

X is defined to be the smallest positive real number  λ(X ) such that for every  

isometric embedding X⊂Y there  exists  a continuous  linear  projection P:Y →X 

with ‖ܲ‖ ≤  .(ܺ)ߣ

We shall use the following observations. 

Proposition (6.1.2)[171]: [76]  Let  A be a ball in  a finite  dimensional  normed  

linear  space X.  The space X  normed  by the gauge functional  of A will be denoted  

by XA. The ball A is a sufficient enlargement for X if and only if the ܮ∞- factorable 

norm of the natural identity mapping from X to XA is ≤ 1. 

Proposition (6.1.3)[171]: [82] A symmetric with respect to 0 parallelepiped 

containing  B(X) is a sufficient  enlargement  for X . 

Proposition  (6.1.4)[171]: [82] Convex  combination   of  sufficient  enlargements  

for  X  is  a sufficient  enlargement  for X . 

Theorem (6.1.5)[171]: Let X  be an n − dimensional normed  space.  Let 

*)(}{ 1 XSf n
ii   be a basis of X∗  and let vectors xi ∈ S(X ) be such that fi(xi) = 1 

and for some c2 > 0 and each f ∈ B(X∗)  there  exists  at most  one  element  i in  

the set  {1, . . . , n} for which |f (xi)| ≥ 1 − c2. 
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Let A be a sufficient enlargement for X such that for some c1 ≥ 0 it is 

contained in the parallelepiped {x : |fi(x)| ≤ 1 + c1,  i ∈ {1, . . . , n}} 

Let 1
2

2
3

21 c
c

cc 
 . Suppose c3 > 0. Then A contains the parallelepiped  

Q : = {x :  |fi(x)| ≤ c3,  i ∈ {1,  . . , n}}. 

Proof. Let 
 1}{ niif ⊂ S(X∗) be such that (∀x ∈ X ) (||x|| = sup{|fi(x)|:i  N}). 

Then the operator E : X → l  defined  by  Ex :=  
1}{ iif  is an  isometric 

embedding.  Let P: l  → E(X) be a projection for which 

P (B( l )) ⊂ E(A). 

The condition of the theorem imply that there exists a partition of N into 

subsets F1, . . . , Fn such that for i ∈ Fj  we have fi(xk ) < 1 − c2 for 

k   j. 

Let us show that P (B( l )) contains E( Q). Observe that the first n coordinate 

functionals on l   are norm-preserving extensions of functional fi E−1 : E(X ) → R. 

Therefore  in  order  to prove  that A   Q   it  is sufficient  to prove  that 

for every collection n
ii 1}{  , θ1= ±1 there exists a vector  

zθ B( l ) and real  numbers b1, . . . , bn  ≥ c3 such that 

Pzθ = (θ1b1, θ2b2, . . . , θnbn, bn+1, bn+2, . . . ) 

for some bn+1, bn+2, · · ·  ∈ R. 

 We introduce zθ as the sequence 
 ,1}{ kkd where dk = θj fk(xj ) if k Fj. In 

particular, d1 = θ1, . . . , dn = θn. Let us show that P zθ satisfies the requirement 

above.  Let 

Pzθ = (α1, . . . , αn,αn+1,. . . ). 

Suppose that for some m ∈ {1, . . . , n} we have αm  [θmc3, θm∞). Let us 

consider the family of vectors 

yδ = (1 + δ)θmE(xm ) − δzθ  (δ > 0). 
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i=1

When δ > 0 is small enough, then yδ ∈ B( l ). More precisely, by the conditions 

of the theorem it happens at least when (1−c2)(1+δ)+δ≤ 1, that is, when 

.
2 2

2

c
c


  

On the other hand the m−th coordinate of P yδ is equal to 

(1 + δ)θm  − δαm  = θm + δ(θm  − αm). 

So for 0 ≤ δ ≤ c2/(2 − c2) we have |θm + δ(θm  − αm )| ≤ 1 + c1. Hence 

.1
2

2
313

2

2 211)1(
2

1 c
c

ccorcc
c

c 



  

This contradicts the condition on c3. 

Corollary (6.1.6)[171]: Let X  be an  n-dimensional normed space  and Q  be a 

parallelepiped circumscribed  about B(X).  Suppose there exist points  n

iix 1}{   on faces 

of Q  (one point  on the union of each pair of symmetric faces)  such that xi  B(X ) and 

for every pair (xi , xj ),  xi   xj  and every f  B(X*) at least one of the numbers |f (xi)| is 

less than 1. Then Q  is a minimal sufficient enlargement for X . 

Proof.  By Proposition (6.1.3) only minimality requires a proof.  Let n

iif 1}{   B(X*) be 

such that Q  = {x :  |fi(x)| ≤ 1,  i  {1, . . . , n}}. 

By compactness of B(X*) there exists c2 > 0 satisfying the condition of 

Theorem (6.1.5). Let A  Q  be a sufficient enlargement for X. Applying Theorem 

(6.1.5) with c1 = 0 we get A  Q .  Hence the sufficient enlargement Q  is minimal.   

The next result shows that the condition of the Corollary is not necessary for 

Q  to be a minimal sufficient enlargement. 

Theorem (6.1.7)[171]: There exist a two-dimensional normed linear space X and 

functionals f1, f2  B(X*) such that the following conditions  are satisfied: 

(i) There exists precisely one point x1  B(X) such that f1(x1)=1 and precisely one 

point  x2  B(X ) such that f2(x2) = 1. 

(ii) The parallelogram C= {x:|f1(x)|≤1,|f2(x)|≤ 1} is a minimal  sufficient 

enlargement. 
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(iii) There exist a linear functional  f3  B(X*) such that |f3(x1)| = |f3(x2)| = 1. 

Proof. Consider the space whose unit ball is the euclidean disc intersected with the 

strip 

{(a1, a2) : |a1 − a2| ≤ 1}. 

Let x1= (1, 0), x2 = (0, 1) and let f1 and f2 be the coordinate functionals.  It is 

clear that Condition (i) of the theorem is satisfied. 

In our case C = {(a1, a2) :  |a1 | ≤ 1,  |a2 | ≤ 1}. 

It is clear that the functional f3(a1, a2)=a1− a2 satisfies Condition (iii) of 

the theorem. 

It remains to show, that C is a minimal sufficient enlargement. 

Let   *)(4 XSiif 


 be such that (xX) (||x||= sup{|fi(x)| : i N}). Then the 

operator E : X → l   defined by Ex: =  1)( ixif  is an isometric embedding. 

Now, if we suppose that C is not a minimal sufficient enlargement, then there 

exists a projection P : l → E(X ), such that the closure of its image is a proper part of 

E(C).  We show that this. gives us a contradiction. 

Consider the vectors 

x1(ε) := (cos ε, sin ε),  x2(ε) := (sin ε, cos ε)  B(X ),  0 < ε < π/4. 

It is clear that for 0<ε< π/4  the following is true (the reader  is advised  to draw 

the picture):  for each f B(X*) either 

|f (x1(ε))| ≤ 1 − tan ε  or  |f (x2(ε))| ≤ 1 − tan ε. 

Therefore  there  exists  a  partition N = A1(ε)  A2(ε)  such  that |fi(x1(ε))|  ≤ 

1− tan ε for i  A2(ε)  and |fi(x2(ε))| ≤ 1 − tan ε for i  A1(ε). 

Now for θ = (θ1, θ2), where θ1= ±1, θ2 = ±1, we define zθ (ε)  l  as the 

vector, whose i−th coordinates coincide with the coordinates of θ1Ex1(ε) for i  

A1(ε) and with the coordinates of θ2Ex2(ε) for i  A2(ε). 

It is clear that ݖ	ܤ(݈∞). Let 

Pz θ (ε) = (α1, α2, . . . , αn, . . . )  l . 

Let us show that 
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θ1α1  ≥ cos ε − 2(1 − cos ε)/ε,                                        (1) 

                               θ2α2  ≥ cos ε − 2(1 − cos ε)/ε.                                                (2) 

Because ε >0 and θ = (θ1, θ2) = (±1, ±1) are  arbitrary(1) and (2)  imply  

P (B( l ))  E(C),  so we get a contradiction. 

Suppose that either (1) or (2) is not satisfied.  Without loss of generality, we 

may assume that (1) is not satisfied. 

Consider the family of vectors 

θ1E(x1(ε)) − δzθ (ε)  l(δ + 1) =ࢾݕ (δ > 0). 

From the definition of zθ (ε) it is easy to derive that 

 .max{1, (1 + δ)(1 − tan ε) + δ} ≥  ∞|�|	ࢾݕ||

Hence if δ is such that 2δ/(1+δ)≤tan ε, then ||ࢾݕ	1 ≥∞|�|. In particular, 

ቛࢿݕ

ቛ

∞
≤ 1. Since P (B( l ))  E(C), then the modulus  of the first coordinate of 

Pyε/2   l   is ≤ 1. On the other hand, we have 

 .ఌ/ଶ  = (1 + ε/2)θ1E(x1(ε)) − (ε/2)P zθ(ε)ݕܲ

Hence the first coordinate of ܲݕఌ/ଶ is 

(1 + ε/2)θ1 cos ε − (ε/2)α1. 

We have 

|(1 + ε/2)θ1 cos ε − (ε/2)α1| = |(1 + ε/2) cos ε − (ε/2)θ1α1| > 

(1 + ε/2) cos ε − (ε/2)(cos ε − 2(1 − cos ε)/ε) = 1. 

This contradiction implies that (1) and (2) are valid. Theorem (6.1.7) is 

proved.  

By a prism in Rn we mean the Minkowski sum of a set A lying in an 

(n−1)−dimensional hyperplane and a line segment that is not parallel to the 

hyperplane. The set A is called a basis of the prism. 

 It turns out  that if a sufficient enlargement A for X  is such that its  boundary 

intersects S(X) in a smooth point, then A should contain a prism,  which is also a 

sufficient enlargement, so the investigation of such enlargement  can be in certain 

sense reduced  to investigation of (n−1)−dimensional  sufficient enlargement. 
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Theorem (6.1.8)[171]: Let  X  be an n − dimensional normed  space and let x1  S(X 

) be a smooth  point  and h  S(X*) be its supporting  functional.  Let  n
iix 2}{   S(X ) 

be such that n
iix 1}{   is a basis in X and h(xi) =0 for i {2, . . . , n}. Suppose that A is 

the a sufficient enlargement for X , which is contained in the set { xX: |h(x)  1 }. 

Then there  exists  a symmetric with  respect  to  0 prism  M  with  basis  parallel to 

lin{x2, . . . , xn} such that 

(i) M  A; 

(ii) M  is a sufficient  enlargement  for X . 

Proof. We consider the natural isometric embedding E of X into C(S(X*)):  every 

vector is mapped onto its restriction (as a function on X*) to S(X*).  We introduce 

the following notation: C = C(S(X*)) and 

BC = B(C(S(X *))). 

Since A is a sufficient enlargement for X , then there exists a projection  

P:C → lin n
iiEx 1}{   , such that 

P (BC )  E(A)                                                         (3) 

Projection P can be represented as ii
n
i ExffP )()( 1  , where µi  are measures on 

S(X*). 

Inclusion (3) implies that ||µ1|| ≤ 1. Since P is a projection we have µj (Exi ) 

= δi,j (i, j= 1, . . . , n).  In particular,  µ1(Ex1) =1. Because x1 is a smooth point, 

the function |Ex1|C attains its maximum only at h and −h. Hence µ1  can be 

represented  as µ1 = b1,1δh + b2,1δ−h,  where δh and  δ−h  are Dirac  measures, b1,1 ≥ 

0, b2,1 ≤ 0 and b1,1 − b2,1 = 1. 

Now, for i = 2, . . . , n we find representations 

µi  = b1,iδh + b2,iδ−h + νi, 

where νi  don’t have atoms in h and −h.  To unify the notation we set ν1 = 0. 

We introduce new measures 

ωi  := (b1,i − b2,i)δh + νi. 
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It is clear that ωj (Exi)= δi,j (i, j =1, . . . , n).  Hence Q(f ) ii
n
i Exf )(: 1   is also a 

projection onto lin n
iiEx 1}{    

Let us show that 

Q(BC )  cl(P (BC ))                                                            (4) 

Let f  BC . Since νi  don’t have atoms in ±h, then for every ε > 0 there 

exists a function g  BC  such that g(−h) = −f (h),  g(h) = f (h)  and  |νi(f ) − νi(g)| < ε 

for all i  {1, . . . , n}. This implies that 

i  {1, . . . , n} |ωi(f ) − µi(g)| < ε. 

Since ε > 0 is arbitrary (4) follows. Hence Q(BC )  E(A).  Now we shall show 

that M:= E
−1

(cl( Q(BC ))) is the required prism. 

The fact that M is a sufficient enlargement follows by a standard argument 

from the fact that C is an L∞-space (see [172, 78,173]). 

It remains to show that E(M ) is a prism with basis parallel to lin {Ex2, . . . , 

Exn}. 

We have 

).:)()()()({)(
2

,2
2

,11 c

n

i
iiii

n

i
i BfExfvExhfbbExhfclME  



 

It is clear that the closures of the sets 

})(,:)({:
2

  


hfBfExfv ci

n

i
i  

don’t depend  on α. So M  is a prism of required form. The theorem is proved. 

Definition (6.1.9)[171]:A sufficient enlargement A for nl2
 is said to be small if 

),2(
)(

)2()()( nlB
nO

nlTdAT    

where µ is the normalized Haar measure on the orthogonal group O(n)  and λ

 2
nl  is the absolute projection constant. 

 The following result supplies us with a wide and interesting class of small 

sufficient enlargements. 

Theorem (6.1.10)[171]: Let G be a finite subgroup of  O(n)  such that each linear 
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operator on Rn co mmuting with all elements  of G is a scalar multiple  of the identity. 

Then for every y  S( nl2 ) the Minkowski  sum of segments 





Gg

ygyg
G
nA )](),([

}|
 

is a small sufficient enlargement  for nl2 . 

Proof. First we prove 





Gg

n ygygx
G
nxx )5()).()(,

||
()( R  

Let us introduce a linear operator T : nl2
 → nl2

 by the equality 





Gg

ygygxTx )6()()(,  

Let us show that hT= Th for each h  G.  In fact 

( ) , ( ) ( ) ( ), ( ) ( )

( ), ( ) ( ) ( ).
g G g G

g G

hT x x g y hg y h x gh y hg y

h x g y g y T h x
 



  



 


 

Hence ܶ =  .for some λ  R ܫߣ

The equality of traces in (6) shows that λn = |G|.  Hence .||
n
G

 The assertion 

(5) follows. 

Now, (5) implies that the identity operator on nl2
 admits factorization ܫ= T2T1, 

where T1 : Glnl 2   and T2 : nlGl 2   are defined as follows 

).(
||

)}({2})(,{)(1 yg
Gg ga

G
n

GggaTandGgygxxT 


  

It is clear that ‖ ଵܶ‖ = 1 and A=T2(B( Gl )), therefore A is a sufficient 

enlargement (see Proposition (6.1.2). 

The enlargement A is small by the following observation.  A calculation of B. 

Grünbaum [82] shows that 

|| || ( )2([ , ]) ( ) ( ) (7)2 2( )

nz ln nz l T z z d T B lO n n


     

Therefore 
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2 2 

|| ( ) || ( )2( ) ( ) ( ) ( ) ( ).2 2 2| |( )

ng y ln n n nT A du T B l l B l
G nO n g G


 


 

Theorem (6.1.11)[171]: Let A be a sufficient enlargement  for 
mlnlmnl 222   and 

suppose that  the images  A1  and A2  of A by the orthogonal projections  onto  nl2  and 

ml2  are small sufficient enlargements for nl2  and nl2 .  Then A = A1 + A2 (Minkowski  

sum). 

Proof:   We claim: if A1 and A2 are small sufficient enlargements for ln and lm, then  

A1 + A2  mnl  2  is a small sufficient enlargement. 

At the moment we do not need the fact that A1 + A2 is a sufficient enlargement, 

but because the proof is simple, we sketch it. By Proposition (6.1.2) the fact that A1  

is a sufficient enlargement for ln means that the L∞−factorable norm of the identical 

embedding of nl2   nto Rn  normed  by the gauge functional of A1  is not greater than 

1, the analogous assertion is valid  for ml2  and A2. Now, it is easy to see that the L∞− 

factorable norm of the identical embedding of mlnl 222   into Rn+m normed by the 

gauge functional of 

A1 + A2 is ≤ 1. 

The fact that the sufficient enlargement A1 + A2 is small can be proved in the 

following way: 









)())2(2)
)( 2(2)1(1)
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(1(
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(here µ1  and µ2  are normalized Haar measures  on O(n)  and O(m)  respectively) 
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(here Q1  and Q2  are cubes cicumscribed  about B( nl2 ) and B( ml2 ) respectively) 
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2

( ) ( ) ( ) ( )1 2 2 2( )
n m n mT Q Q d T l B l

O n m
    


 

(by B.Grü nbaum’s result [82]). 

Let X be a finite dimensional  normed  linear  space.  Denote by M the set of 

all sufficient enlargements of minimal volume for X. Results of [87](Theorem 

6.1.12) imply the following result. 

Theorem (6.1.12)[171]: The set M contains  a parallelepiped. Easy examples (e.g. 

two dimensional space whose ball is regular hexagon) show that M may contain 

balls which are not parallelepipeds. But it turns out that for Euclidean spaces M 

contains only parallelepipeds. 

Theorem (6.1.13) [171]:  If A is a sufficient enlargement of minimal volume for nl2 , 

then A is a cube circumscribed  about B( nl2 ). 

Proof. Let A be a sufficient enlargement for nl2
 and volA = 2n.We may assume 

without loss of generality (see Proposition (6.1.2) that A is a zonoid. Therefore (see 

[83), its support function can be represented in the form 

nR


xforvdvxxAh
nS

)(|,|),(
1

  

with some even measure  ρ on Sn−1. 

We denote by D the set of all smooth points on the boundary of A. It is known 

(see [83]) that the complement of D in the surface of A has zero surface measure.  

Let T:D → Sn−1 be the spherical  image map  (see [83]), that is: T (d)  is the unique  

outer  unit normal  vector  of A at d.  Let µ be the measure on Sn-1 defined by 

() = mn-1 (T-1)( )), 

where mn−1 is the surface area measure  on the boundary of A.  

It is clear that 

).()(,1)(),(1
1 11

xdvdvx
n

xdxAh
n

volA
n nn S SS

  
 

  

The (n−1)−dimensional volume of the orthogonal projection of A onto the 

hyperplane orthogonal to   Sn−1 can be computed as 
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).(,
2
1)(

1

xdx
nS

 


  

We proceed by induction on the dimension. The case n = 1 is trivial.  Suppose that 

we have proved the result for n − 1. Now, let A be a sufficient enlargement for nl2 2 

and vol A = 2n. 

By Fubini  theorem 

.
1

)()(212 



nS

d
n

volAn   

Since A is a sufficient enlargement, it is easy to derive from (7) that var(ρ) ≥ n.  

 It is clear that an orthogonal projection of A onto an (n−1)−dimensional  

subspace is a sufficient enlargement for 1
2
nl . It is clear also that every 

parallelepiped containing B( 1
2
nl ) has volume ≥2n−1. Therefore by Theorem 

(6.1.12) α()  ≥ 2n−1. It follows that almost everywhere (in the sense of ρ) α()  

= 2n−1.  

 By induction hypothesis orthogonal projections in directions w for which 

α() = 2n−1  are  cubes.  Let  us choose one such  direction,  say 1, and  let  us 

denote  by 2, 3, . . . , n  an  orthonormal  basis  in the subspace  orthogonal  to 

1  such  that the orthogonal projection of A onto lin{2, . . . , n} is 

[−2, 2] + · · · + [−n, n]. 

In particular 

A   {x : | x,  | 1}.2   

By Theorem (6.1.8) . A contains a prism M  with the basis parallel  to  

lin {1, 3, 4, . . . , n} 

such that M  is a sufficient en largement for nl2 . Since A is a sufficient 

enlargement of minimal volume then M =A. Let  N = A∩ lin{1, 3, 4, . . . , n} 

It is easy to see that N is a sufficient enlargement for 1
2
nl and volnA = 

2voln−1N. Hence voln−1N = 2n−1. By induction hypothesis N is a cube. Hence A is also 

a cube. 
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Section (6.2): Cubes and Totally Unimodular Matrices: 

 Let  Km Rm  be  defined  by  Km = {(x1,..., xm) : |x | 1 for every  i {1,..., 

m}}. We refer to Km  as an m-cube. Let L be a linear subspace in Rm  and P : Rm → 

L be a linear projection onto L. The set P(Km) will be called a projection of Km in L. 

Using a compactness argument it can be proved that for every m N and for every 

subspace  

L  Rm there exists a linear rojection that minimizes the volume of P (Km).  In such a 

case the set P (Km) will be called a minimal-volume projection of Km  in L. 

 Volumes of projections of convex sets and related optimization problems is 

one of the natural objects of study in convex geometry. Many problems of this type 

have been already studied, see [175–181,182,183,89], and references therein. 

 Usually only orthogonal projections are considered and the standard 

optimization problem is to find a subspace such that the volume of the orthogonal 

projection onto it is minimal or maximal. 

 We consider a different problem. It arises in the study of Projections in 

normed linear spaces, see [171]. The problem is to characterize the shape of 

minimal-volume projections of cubes. Some steps in this direction were made in [89], 

where some classes of minimal-volume projections of Km were found and the normed 

linear spaces corresponding to them were studied. 

 We say that subsets A and B of linear spaces X and Y , respectively, are 

linearly equivalent if there exists a linear isomorphism T between the subspace 

spanned by A in X and the subspace spanned by B in Y such that T (A) = B. 

 We give a complete description of the set of minimal-volume projections of 

Km  up to linear equivalence. To present the description we need some definitions. 

 A real matrix A with entries 0, 1, and −1 is called totally unimodular if 

determinants of all submatrices of A are equal to −1, 0 or 1. See [184,95] for survey of 

results on totally unimodular matrices and their applications. 

 A Minkowski sum of (finitely many) line segments in Rn is called a zonotope 

(see [185,83,94,92] for basic facts on zonotopes). We shall consider zonotopes that 
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are sums of line segments of the form [−x, x]. Let a1, . . . , am  be some collection of 

vectors in Rn.The Minkowski  sum 

],
1
[ iaia

m

i


  

will be called the zonotope spanned by a1,..., am. 

Observe that any projection of the m-cube is a zonotope spanned by m 

vectors. The main result of this section he following 

We denote by miie 1  the standard basis in Rm. The proof of the theorem is based 

on the following observation: 

Lemma (6.2.1)[171]: (Minimality condition). Let S :Rm → L be a linear projection 

onto. Le t{x1,..., x l  } be an orthonormal basis in L and let{q1,...,qm− l } be an 

orthonormal basis in the kernel of S. The set S(Km)  is a minimal-volume projection 

of Km  in L if and only if 

| det[x1,..., x l  , q1,..., qm− l  ]|  =  |det[x1,..., x l  , ei(1),..., ei(m− l )]| 

det[ ,... , .... ]1 (1) ( )( (1),..., ( )} (1,.... }
q q e em l j j lj j l m

 


  

where {i(1), . . . , i(m − l )} are chosen to maximize 

|det[x1,..., x l  , ei(1),..., ei(m− l )]|. 

Lemma (6.2.2)[171]: (Image shape lemma). Let P : Rm → Rm  be a linear projection. 

Let q1,..., qm− l be an orthonormal basis in its kernel ker P. Let 1
~q ,..., lq~  be such that 

1
~q ,..., lq~ , 1q ,..., lmq   is an orthonormal basis in Rm. Then P (Km) is linearly equivalent 

to the zonotope spanned by rows of the matrix Q~ = [ 1
~q ,..., lq~ ]. 

Proof. It is enough to observe that: 

Images of Km under two linear projections with the same kernel are linearly 

equivalent. Hence P(Km) is linearly equivalent to the image of the orthogonal 

projection with the kernel ker P . 

The matrix Q~  TQ~ , where by TQ~  we denote the transpose of Q~ , is the matrix of 

the orthogonal projection with the kernel ker P . 
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Theorem (6.2.3)[171]:  An l -dimensional zonotope Z  is linearly equivalent to a 

minimal- volume projection of Km  if and only if it is linearly equivalent to the 

zonotope spanned by multiples of rows of a totally unimodular m × r matrix of rank l . 

Proof. The lemmata imply that in order to prove the “if” part it is enough to show 

that for every totally unimodular m× r matrix A of rank l and for every diagonal 

m×m matrix D with positive entries on the diagonal there exists an orthonormal 

sequence 1
~q , . . . , lq~ such that 

(i) The zonotope spanned by rows of [ 1
~q , . . . , lq~ ] is linearly equivalent to the    

zonotope spanned by rows of DA. 

(ii) If q1, . . . , qm− l  are such that 1
~q , . . . , lq~ , q1, . . . , qm− l  is an orthonormal basis in 

Rm, then there exists an orthonormal sequence x1, . . . , xl  such that [x1, . . . , xl ] 

and [q1, . . . , qm − l ] satisfy the minimality condition of Lemma (6.2.1). 

We rearrange columns of A in order to get a matrix whose first l columns are 

linearly independent. It is clear that the zonotope spanned by rows of D× (the obtained 

matrix) is linearly equivalent to the zonotope spanned by rows of DA.  

Hence without loss of generality we may assume that the first l columns of A 

are linearly independent, where l is the rank of A. Also it is clear that if the first l 

columns a1, . . . , al of A are linearly independent, then the zonotope spanned by 

rows of [a1, . . . , al ]is linearly equivalent to the zonotope spanned by rows of A.  So 

without loss of generality we may assume that A is an m× l matrix of rank l. 

Using the Gram–Schmidt orthonormalization process we get that there exists 

an invertible l × l matrix C1 such that columns of AC1 form an rthonormal set. This 

set will play the role of x1, . . . , xl  in the construction (see (ii)). 

Using the Gram– Schmidt orthonormalization process again we get that there 

exists an invertible l × l matrix C2 such that columns of DAC2 form an orthonormal 

set. This set will play the role of 1
~q , . . . , lq~ in our construction (see (i)). 

The condition (i) is satisfied because the matrix C2 is invertible. 

 Let 1q , . . . , lmq  ∈ Rm be such that 1
~q , . . . , lq~ , 1q , . . . , lmq   form an orthonormal 

basis in Rm. It remains to show that (ii) is satisfied. 
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Let )(m
lM   We denote by ui  (i = 1,...,M) the ll  minors of [x1,..., x l ] 

(ordered in some way). We denote by i (i = 1,...,M) the ll  minors of [ 1
~q ,..., lq~ ] 

ordered in the same way as the ui . We denote  by ))(,...,1( Mm
lmiiv   their 

complementary (m− l ) × (m − l ) minors of [q1, . . . , qm− l ]. Using the word 

complementary we mean that all minors are considered as minors of the matrix [ 1
~q

,..., lq~ ,..., lmq  ], see [93]. 

By the Laplacian expansion (see [93]), 

det[ ,..., , ]1 1,..., 1

M
x x q q u vl m l i i ii

  
 

and 

det[ ,..., , ] (8)1 1,..., 1

M
q q q q vl m l i i ii

   
   

for proper signs ߠ. 

Since the matrix ],...,1,~,...,1
~[ lmqqlqq  is orthogonal, then 

det ],...,1,~,...,1
~[ lmqqlqq  = ±1.                                                   (9) 

We need one result on compound matrices. We refer to [93] for necessary definitions 

and background. The result that we need is 

A compound matrix of an orthogonal matrix is orthogonal (see [93]). 

This result implies, in particular, that the Euclidean norms of the vectors M
ii 1}{   and 

M
iiv 1}{  in RM   are equal to 1. 

From (8) and (9) we get that either 

(i)   i  = θi vi  for every i 

      or 

(ii)   i  = −θi vi  for every i. 

Without loss of generality we assume that i  = θi vi  for all i (we replace q1 by – q1 if 

it is not the case). 

Observe that 

[x1, . . . , xl ] = D
−1

[ 1
~q , . . . , lq~ ] C2

−1 C1. 
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Hence ui  = βi i det C2
−1 det C1, where βi  are some positive numbers determined by 

the diagonal entries of D
−1

. Denote det C2
−1 det C1 by α. We get 

. (10)ui i i    

On the other hand [x1, . . . , xl ] = AC1 and A is totally unimodular. Therefore ui is 

equal to det C1, 0 or − det C1  for every i. Let    = {i : ui   0}, then |ui | is the same 

for all i ∈  . 

The minimality condition of Lemma (6.2.1) (that we need to verify) can be written as 

)11(.
1

max
1







M

i iviu
i

M

i iviui  

We have 

1

.
M

i i i i i i
i i

u v u v 
 

    

(we use (a), (10), and βi  > 0) 

2 2β α β α .i i i i ii Ω i Ω
    

 
 

(we use (a), (10), and the fact that |ui | is constant when i∈ ) 

max v .ii Ω i Ω
iu v ui ii

 
  

 

It remains to observe that from (a) and (10) ui = 0 if and only if vi = 0. Hence 

max max v .ii Ω i 1

M
u v uii ii i

 
 

 

Hence (11) is proved and the proof of the “if” part of Theorem (6.2.3) is finished.  

Proof of the “only if”: Let a linear projection P: Rm→ Rm be such that P (Km) is 

a minimal-volume projection of Km. Let { 1q ,... , lmq   } be an orthonormal basis in ker 

P . Let {x1, . . . ,xl} be an orthonormal basis in the image of P , and let { 1
~q ,..., lq~ } be 

such that { 1
~q ,..., lq~ , 1q ,..., lmq  } is an orthonormal basis in Rm. According to Lemma 

(6.2.2) it is enough to show that the zonotope spanned by rows of Q~ = [ 1
~q ,..., lq~ ] is 

linearly equivalent to the zonotope spanned by multiples of rows of some totally 
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unimodular  m×l matrix. It is clear that it is enough to show that Q~ = DAC, where D 

is a diagonal m×m matrix,  A is a totally unimodular  m×l matrix, and C is an 

invertible ݈ × ݈ matrix.  

 We let )(m
lM     and introduce the numbers ui , vi , and i (i = 1, . . . , M) in the 

same way as in the first part of the proof. Since P (Km) is a minimal-volume 

projection, then the minimality condition from Lemma (6.2.1) is satisfied, that is  

max . (12)
1 1

M M
u v u vi i i i iii i

  
 

 

Also, as in the first part of the proof, either 

(i) i  = θi vi  for every i 

or 

(ii)  i  = − θi vi  for every i. 

Let  = {i : vi  0} = {i : i   0}. The equality (12) is satisfied if and only if 

the following three conditions are satisfied: 

(iii) the numbers {ui }i  have the same absolute value, let us denote it by µ; 

(iv) the numbers {ui vi θi }i∈  have the same sign; 

(v)  |ui |  µ if i  . 

By (i) and (ii) the condition (iii) is equivalent to 

(iv')   the numbers  {ui i }i∈  have the same sign. 

 Our approach to finding matrices D and C mentioned above is the following. 

Let X = [x1,... x l ]. 

 First we find invertible ݈ × ݈ matrices C1 and C2, and a permutation m× m 

matrix R such that the first ݈ rows of ܳ∗ = R Q~  C1 and X∗ = RXC2 are identity ݈ × ݈ 

matrices, and conditions similar to (iii), (iv`), and (iv) are satisfied. 

 The second step is to show that replacing some of the entries of X∗  by zeros 

we get a totally unimodular matrix A~  satisfying ܳ∗= SAD ~~~ , where D~  is a diagonal 

m×m matrix and S~ is a diagonal ݈ × ݈ matrix. Hence 

Q~  = R
−1

Q∗C1
−1

= R
−1

SAD ~~~ C1
−1 = DAC, 
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s

where  D = R
−1

D~  R, A = R-1 A~ , C = S~ C1
−1

. 

The first step. The condition (iv') implies that either ui = µ sign i for all i∈  or ui =−µ 

sign i for all i ∈ . Therefore there exists i such that ui  0 and i  0. Therefore we 

can multiply both X and Q~  by invertible ll   matrices from the right, and by the same 

permutation m×m matrix from the left (observe that ultiplication by such permutation 

matrix is equivalent to simultaneous permutation of rows of X and Q~ ) to get matrices 

Q * and X* satisfying the conditions: 

(i) The first l  rows in each of them form an ll   identity matrix. 

(ii) Absolute values of  ll   minors of X* are at most 1. 

(iii) If some ll  minor ω of Q * is nonzero, then the corresponding ll  minor (the 

minor with the same rows) in X∗ is equal to sign ω. 

 Let e1. . ,el be the rows of the identity matrix of order  ݈. Let x i∗ be rows of X∗, 

and let *
iq  be rows of Q *. 

We show that the conditions (i) and (iii)) imply that if *
ijq   is a nonzero entry of 

Q Q *,then *
ijx   = sign *

ijq  , where by *
ijx   we denote the corresponding entry of X∗. 

To prove this statement we apply (iii) to the minors corresponding to the 

submatrices with rows 

e1, . . . , ej −1, ej +1, . . . , el  , x i∗ 

and 

e1, . . . , ej −1, ej +1, . . . ,el , qi∗ 

in X∗ and Q *, respectively. 

In a similar way we get 

(ii+) Absolute values of all minors of X∗ are at most 1. 

and 

(iii+) some minor (of any order) of Q * is equal to ω 0, then the corresponding 

minor in X∗ is sign ω. 

For each  sub matrix *
sQ  of Q * (in particular for Q *  itself) we introduce a 
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graph ܩ൫	 *
sQ ൯ whose vertices are nonzero entries of  *

sQ ; two vertices are adjacent in 

G( *
sQ ) if and only if the corresponding (nonzero) entries are either in the same row or 

in the same column of  *
sQ . Edges joining two entries in one row will be called 

horizontal, edges joining two entries in one column will be called vertical. 

A sub matrix  *
sQ  will be called connected if the following two conditions are 

satisfied: 

(I)  Each column and each row of  *
sQ  contains a nonzero entry. 

(II) The graph G( *
sQ ) is connected. 

A sub matrix  *
sQ  of *Q   is called a connected component of *Q   if it is a maximal 

connected submatrix of *Q . 

It is clear that there are two types of zero entries of *Q : some of them are 

entries of some connected components of *Q   and some are not. 

Lemma (6.2.4)[171]:  If *
ijq  = 0 and *

ijq  is an entry of some connected component of 

*Q , then *
ijx  = 0. 

Proof. We shall prove this statement for each connected submatrix using the  

induction on the number of columns of a submatrix. For connected submatrices  *
sQ  

of *Q   with one column there is nothing to prove: all entries of  *
sQ  should be 

nonzero by (I) in the definition of a connected submatrix. 

Consider a connected submatrix  *
sQ  with two columns. There should be a row, 

let it be the row number k, such that both entries of  *
sQ  in that row are nonzero. 

Consider the 2 × 2 submatrix of  *
sQ  formed by rows number k and i.  

Since *
ijq =0 and *

sQ  is connected, then the 2 × 2 submatrix has exactly 3 nonzero 

entries. Hence its determinant is nonzero. Using (iii+) we get that the determinant of 

the corresponding submatrix in X∗ is ±1. 

On the other hand, since in *Q  this submatrix has exactly 3 nonzero entries, 

then the corresponding submatrix in X∗ has at least three entries equal to ±1. 

Therefore its determinant can be ±1 if and only if the remaining entry is 0, that 
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is *
ijx   = 0. 

Suppose that we have already proved the result for connected submatrices with 

k columns (k  2). Let us prove it for a connected submatrix with k + 1 columns. 

Assume the contrary. Let  *
sQ  be a minimal connected submatrix with k + 1 

columns that violates the condition, that is it contain a zero entry *
ijq such that *

ijx   0. 

Such *
ijq  will be called a violator. The word minimal here means that after removal 

of any row we get either a disconnected submatrix or a submatrix without violators. 

By *
sx  we denote the corresponding submatrix in X∗. 

 So let *
ijq be a violator. Let *

itq and *
jrq  be nonzero entries in *

sQ . Such nonzero 

entries exist by the part (I) of the definition of a connected matrix. Let P be a shortest 

path in G( *
sQ )  joining *

itq and *
jrq . It is clear that in a shortest path vertical and 

horizontal edges are alternating and that a shortest path contains at most 2 vertices in 

each row of *
sQ  and atmost 2 vertices in each column of *

sQ . Using another choice of 

*
itq  and *

jrq if necessary we may assume that the first edge is vertical and the last edge 

is horizontal. 

 Let us consider the minimal submatrix V of *Q   containing *
ijq  and all entries 

of the path. The submatrix V is connected and is a submatrix of  *
sQ . Since V contains 

a violator, it implies that V= *
sQ . Hence the path has vertices in each column of  *

sQ

and in each row of  *
sQ . It is easy to see that it implies that  *

sQ   is of size (k + 1) 

×(k + 1) and that columns and rows of  *
sQ  can be renumbered in such a way that for 

the obtained matrix 1
1,}{ 
 k

jiijtT the path (presented by listing its vertices) is 

t1,1, t2,1, t2,2, t3,2, t3,3, . . . , tk,k , tk+1,k , tk+1,k+1, 

and  *
ijq corresponds to t1,k+1. 

It is clear that all other entries of T (and, hence, *
sQ ) are zeros, because 

otherwise there is a shorter path. (We skip an elementary proof of this step. It can be 
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obtained by sketching pictures corresponding to the situation ti,j  0, i j , i j + 1 

for the cases i<j and i>j . Observe that we need to use the condition k + 1 3). 

Therefore det T   0 and det  *
sQ   0.  

Let W be the matrix obtained from *
sx  by the same renumbering that was used 

to get T from  *
sQ . Observe that by the minimality and by the inductive hypothesis 

*
ijq  is the only violator in  *

sQ . Therefore the only nonzero entries in W are 

1,1, 2,1, 2,2, 3,2, 3,3, . . . , k,k , k+1,k , k+1,k+1, and 1,k+1. 

By (iii+) the absolute values of all of these entries, except, possibly, 1,k+1 are equal to 

1. By (ii+) |1,k+1 |  1. Hence |det  |≠1 and |det *
sX |≠1 .We get a contradiction with 

the condition (iii+). 

We replace all entries in X∗ that correspond to those zero entries of *Q  that do 

not belong to any connected component of *Q  by zeros and denote the obtained 

matrix by A~ . 

Let us show that the matrix A~   is totally unimodular, that is all of its minors 

are equal to 0, 1, or −1. 

Connected components of A~  are defined in the same way as for *Q .  Observe 

that by Lemma (6.2.4) and the definition of A~ ,  the graphs G( A~ )  and G( *Q ) are 

the same. 

First consider a minor of A~  corresponding to a submatrix of a connected 

component of A~ . By the definition of A~  it follows that the minor is a minor of X∗ 

also. By Lemma (6.2.4) and (iii+) it follows that all entries of the minor are 0 or ±1. 

Hence the minor is an integer. Since it is a minor of X∗, by (ii+) the absolute value of 

this integer is at most 1. Hence the integer should be equal to 0, 1, or −1. 

 Observe that the definition of a connected component implies that two 

different connected components cannot have entries in the same row or in the same 

column. By the definition of A~  all entries of A~  that are not in any of the connected 

components are equal to 0. Hence each minor of A is either 0 or is a product of 

minors corresponding to square submatrices of some connected components. Hence 
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A~  is totally unimodular . 

 The discussion above implies also that each minor of *Q  is either 0 or is a 

product of minors corresponding to square submatrices of some components. 

Therefore A~ and *Q  satisfy the condition: 

)
~

(iii  If some minor of *Q  is equal to ω  0, then the corresponding minor in A~  

is equal to sign ω. 

Note: We have not proved that, if some minor of *Q  is zero, then the corresponding 

minor of A~  is also zero. 

Lemma (6.2.5)[171]: There exist a diagonal ݈ × ݈ matrix S~  and a diagonal m × m 

matrix D~  with positive entries on the diagonals such that *Q = SAD ~~~ . 

Proof. Assume the contrary. Let  *
sQ  be a minimal submatrix of *Q  such that it 

cannot be multiplied by diagonal matrices with positive diagonals from both sides in 

order to get the corresponding submatrix sA~ of  A~ . Saying minimal we mean that each 

submatrix of  *
sQ  can be multiplied by the diagonal matrices in such a way that we 

get the corresponding submatrix of A~ . 

It is clear that the minimality condition implies that each row and each column 

of  *
sQ  (and sA~ ) contains at least two nonzero entries. 

Simultaneously renumbering rows and columns of  *
sQ and sA~ we get two 

matrices, say vu
jijiZZandvu

jijiyY 1,1},{1,1},{  , satisfying the following 

conditions. 

(I) 1{ } , ( 0) { } ,( 0)1 1
u vd d s si i i j j j

     such that ,.y d z si j i i j j for all 1,....,i u

and 1,..., 1.j v   Such { } 1
udi i   and 1{ } 1

Vs j j


  are not unique, but we fix some choice of 

them at this time.  

 (II) ∀ sv  ∈ R, sv  > 0, ∃i ∈ 1, . . . , u  such that yi,v    dizi,vsv. 

By Lemma (6.2.4) and (iii+) the definition of A~  implies 

zi,j = sign yi,j .                                                              (13) 

Hence we get from (I) and (II) that there exist pairs (i1, i2) of integers in {1, . . . , u} 
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such that 

1 1 2 2

1 1 . (14), ,d y d yi i v i i v
   

We call such pairs of integers incompatible. 

Let us remove the last column from Y and consider connected omponents of the 

obtained matrix Ys . 

An incompatible pair (i1, i2) will be called connected in Ys if there exists a 

path in the graph G(Ys ) joining an entry in the i1th row of Ys with an entry in the i2 th 

row of Ys . Otherwise the pair (i1, i2) will be called disconnected in Ys . 

Let us show that if all incompatible pairs are disconnected in Ys , then we can 

find positive numbers v
jjsandu

iid 1}~{1}~{   such that 

{1,... } {1,..., }, (15), ,y d z s i u j vi j i i j j       

contrary to the assumption. 

In fact, different connected components cannot have nonzero entries in the 

same row or in the same column. Therefore there exist partitions {VC } and {HC } of 

the sets {1, . . . , v−1} and {1, . . . ,u}, respectively, where C runs over the set of all 

components of Ys , VC  is the set of numbers of all columns intersecting the 

component C, HC  is the set of numbers of all rows intersecting C. The observation 

above (about at least two nonzero entries in each row and column of  *
sQ ) implies 

that C VC = {1, . . . , v − 1} and C HC  = {1, . . . , u}. 

If all in compatible pairs are disconnected in Ys, then the nonzero values of 

viyid ,
1  are the same for all i ∈ HC , where C is any component of G(Ys ). 

If there exist nonzero values of the form viyid ,
1  (i ∈ HC ), we let r(C) be their 

common value. If all numbers viyid ,
1  (i ∈ HC ) are equal to 0, we let r(C) = 0. 

Let 










 0)().(
,0)(~

CrandcHiifidCr
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CrandcVjifjs

is  

Straightforward verification shows that (15) is satisfied. 

Hence the assumption that  *
sQ  is a minimal submatrix of *Q  such that there 

are no diagonal matrices satisfying the condition described at the begining of the 

lemma implies that there exist incompatible pairs (i1, i2) that are connected in Ys . For 

each such pair we choose a shortest path among all paths in G(Ys ) joining a nonzero 

entry in the i1th row of Ys and a nonzero entry in the i2th row of Ys . We minimize 

the length of the path over all incompatible pair(s), connected in Ys . 

So let (i1, i2) be an incompatible, connected in Ys pair and P be a path in G(Ys) 

joining a nonzero entry in the i1th row of Ys and a nonzero entry in the i2th row of Ys 

and such that any other path joining two nonzero entries from rows corresponding to 

incompatible pairs is at least of the same length as P. It is clear that vertical and 

horizontal edges are alternating in P , and the first and the last edges are vertical. 

Let  be the minimal submatrix of Y containing viyviy ,,, 21
and all entries 

corresponding to vertices of P. We renumber columns and rows of  in such a way 

that in the obtained matrix (we shall keep the notation  for it) the path P 

corresponds to 

1,1, 2,1, 2,2, 3,2, 3,3, . . . , m−1,m−1, m,m−1, 

the entry vy i ,1
corresponds to 1,m, and the entry viy ,2

corresponds to m,m. 

We renumber {di } in the corresponding way and get  m
iit 1 . 

The minimality property of P implies that the only nonzero entries of  are 

1,1, 2,1, 2,2, 3,2, 3,3,..., m−1,m−1, m,m−1, m,m,  and 1,m. 

(The existence of other nonzero entries would imply the existence of a shorter path of 

the same type. It is easy to verify this for all possible cases. Observe that in the case 

when additional nonzero entries are in the last column we need to consider another 

incompatible pair.) 
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Let us show that det     0. Assume the contrary, that is det  = 0. 

The condition (14) corresponds to 
1 1 . (16),1 1,t tm m mm    

On the other hand 

.,1.
1

1 .1
1)1(

1 ,det m
m

i ii
mm

i ii  










 



  

Hence det  = 0 implies that 

1
. . (17)1,, 1,1 1

m m
mi i i ii i

  
 

    
 

The conditions (I) and (13) imply that 

,
1

1,

ti i i
tii i









 

Hence (17) implies 

1.1 ,
.

t m
tm m m




  

We get a contradiction to (16). Hence det  0. 

On the other hand, consider the submatrix U of Z corresponding to  . Let us 

renumber entries of U in the same way as we did it for . Then the condition (13) 

implies that the only nonzero entries of U are 

u1,1, u2,1, u2,2 , u3,2 , u3,3 ,…,um−1,m−1 ,um,m−1 ,um,m , and u1,m. 

Hence 
11det ( 1) . 1, .,. 1,1 1

m mmU u u u mi i i ii i

        
 

Since all nonzero entries of U are equal to ±1, and U is totally unimodular (as a 

matrix obtained by renumbering of columns and rows of a submatrix of a totally 

unimodular matrix), then det U = 0. 

Since renumbering of rows and columns can change the signs of determinants 

only the equalities det U=0 and det    0 contradict the condition 
~

( )iii . This 

contradiction proves the lemma and the “only if” part of the theorem.   



240 
 

  



241 
 

Section (6.3): Finite-dimensional Normed Linear Spaces: 

We devoted to a generalization of the main results of [187], where similar 

results were proved in the dimension two.  We refer to [187, 188] for more 

background and motivation. 

All linear spaces considered will be over the real's. By a space we mean a 

normed linear space, unless it is explicitly mentioned otherwise. We denote by BX 

(SX) the unit ball (sphere) of a space X. We say that subsets A and B of finite- 

dimensional linear spaces X and Y, respectively, are linearly equivalent if there exists 

a linear isomorphism T between the subspace spanned by A in X and the subspace 

spanned by B in Y such that T(A)=B. By a symmetric set K in a linear space we 

mean a set such that x∈K implies −xK. 

Our terminology and notation of Banach space theory follows [189]. By ܤ,  

1 ≤ p ≤ ∞, n∈N we de note the closed unit ball of ℓ Our terminology and notation 

of convex geometry follows [83]. 

We use the term ball for a symmetric, bounded, closed, convex set with interior 

points in a finite-dimensional linear space. 

Definition (6.3.1)[186]: (See [76]) .A ball A in a finite-dimensional normed space X 

is called a sufficient enlargement (SE) for X (or of BX) if, for an arbitrary  isometric 

embedding of X into a Banach space Y, there exists a projection P :Y→X such that 

P(BY)⊂A. A sufficient enlargement A for X is called a minimal-volume sufficient 

enlargement (MVSE) if vol A ≤ vol D for each SE D for X. 

It can be proved, using a standard compactness argument and Lemma (6.3.10) 

below, that minimal-volume sufficient enlargements exist for every finite- 

dimensional space. 

Recall that a real matrix A with entries −1, 0, and 1 is called totally unimodular 

if all minors (that is, determinants of square submatrices) of A are equal to −1, 0, or 

1. See [184] and [190] for a survey of results on totally unimodular matrices and their 

applications. 

A Minkowski sum of finitely many line segments in a linear space is called a 

zonotope (see [191,185,192,83,94] for basic facts on zonotopes). We consider 
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zonotopes that are sums of line segments of the form I(x) = {λx :  − 1 ≤ λ ≤ 1}.  For a 

d × m totally unimodular matrix with columns τi (i = 1, . . . , m) and real numbers ai  

we consider the zonotope Z in Rd given by 

).(
1




m

i
iiaIZ   

 The set of all zonotopes that are linearly equivalent to zonotopes obtained in 

this way over all possible choices of m, of a rank d totally unimodular d × m matrix, 

and of positive numbers ai (i = 1, . . . , m) will be denoted  by Td.  Observe that 

each element  of Td is d-dimensional in the sense that it spans a d-dimensional  

subspace. It is easy to describe all 2 × m totally unimodular matrices and to show that 

T2 is the union of the set of all symmetric  hexagons and the set of all symmetric 

parallelograms. 

The class Td of zonotopes has been characterized  in several different ways, 

see [193, 194, 195, 196, 174, 197]. We shall use a characterization of Td in terms of 

lattice tiles. Recall that a compact set K ⊂ Rd is called a lattice tile if there exists a 

basis  diix 1  in Rd such that 


Z

R























dmm

K
d

i ixim
,....,1

,
1

d  

and the interiors of the sets Kiximd
i   )1(  are disjoint. The set 
















 Zdmmix
d

i imA ,...,1:
1

 

is called a lattice. The absolute value of the determinant of the matrix whose columns 

are the coordinates of diix 1  is called the determinant of A and is denoted d(A), see 

[198] . 

Theorem (6.3.2)[186]:  [194,196] A d-dimensional  zonotope is a lattice tile if and 

only if it is in Td. 

It is worth mentioning that lattice tiles in Rd do not have to be zonotopes,  see 

[199, 200, 201], and [202]. 
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The main result of [174] can be restated in the following way. (A 

finitedimensional normed space is called polyhedral if its unit ball is a polytope.)  

Theorem (6.3.3)[186]: A ball Z is linearly equivalent to an MVSE for some d-

dimensional  polyhedral space X if and only if Z  Td. 

In [187] it was shown that for d = 2 the statement of Theorem (6.3.3) is 

valid without the restriction of polyhedrality of X.  The main purpose is to prove the 

same for each d  N. It is clear that it is enough to prove 

Lemma (6.3.4)[186]: (See [187,90]). The set of all sufficient enlargements for a 

finite-dimensional normed space X is closed with respect to the Hausdorff metric. 

Theorem (6.3.5)[186]: Each MVSE for a d-dimensional  space is in Td. 

Using Theorem (6.3.4) we show that spaces having non-parallelepipedal MVSE 

cannot be strictly convex or smooth. More precisely, we prove 

Proof. (We assume that Lemmas (6.3.6) and (6.3.7) have been proved.) Let X be  

a d-dimensional space and let A be an MVSE for X. 

Let  1nn  be a sequence satisfying ߰ௗ >	 ߝ > 0 and εn  ↓ 0 Let 1nnY  be a 

sequence of polyhedral spaces satisfying 

)19(
1

1
xB

nYBxB
n


 

 

Then A is an SE for Yn. Let Bn be an MVSE for Yn.  Then (1 + εn)Bn is an SE for X. 

Since A is a minimal-volume SE for X, we have 

volA ≤ vol ((1 + εn)Bn) = (1 + εn)d vol Bn. 

By Lemma (6.3.7) for every n  N there exists an SE nn yforA~  satisfying 

AAn 
~  

and 

)20()(),~( ndtnTnAd   

for some Tn   Td. 

 The condition (19) implies that (1 + εn) nA~   is an SE for X. 

The sequence {(1+ εn) 
1}~

nnA  is bounded (all of its terms are contained in (1 

+ ε1)A). By the Blaschke selection theorem [83] the sequence {(1 + εn 
1}~

nnA  
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2

contains a subsequence convergent with respect to the Hausdorff metric. We denote 

its limit by D, and assume that the sequence {(1 + εn) 
1}~

nnA  itself converges to D. 

Observe that each nA~ contains (1/(1 + ε1))BX  and is contained in A. By (20) 

we may assume without loss of generality that Tn  are balls in X satisfying 

1

1 ( ) ( ) (21)
1

B A T t A t Ax n n d n n d n 


   


   

It is clear that D is the Hausdorff   limit of { 
1}~

nnA . From (21) we get that D 

is the Hausdorff limit of {Tn}
1n

.  By Lemma (6.3.6) we get D  Td. 

By Lemma (6.3.4) the set D is an SE for X.  Since (1 + εn) nA~  (1 + εn)A, 

and (1 + εn)A is Hausdorff convergent to A, we have D  A. On the other hand, A 

is an MVSE for X, hence D = A and A  Td. 

Lemma (6.3.6)[186]: Let Tn ⊂ Rd, n ∈ N be such that Tn ∈ Td, and  1nnT  

converges with respect to the Hausdorff metric to a d-dimensional set T . Then T∈ Td. 

Proof. By Theorem (6.3.2) the sets Tn are lattice tiles. Let {An} 
1n  be lattices 

corresponding to these lattice tiles. Since volume is continuous with respect to the 

Hausdorff metric (see [83]), the supremum  supn vol(Tn) is finite. Since Tn  is a lattice 

tile with respect to An, the determinant of An  satisfies d(A n) = vol(Tn).  (Although I 

have not found this result in the stated form, it is well known. It can be proved, for 

example, using the argument from [198].) Hence supn d(A n) <∞. Since T is d-

dimensional, there exists r > 0 such that drB2
   T .  Choosing a smaller r>0, if 

necessary, we may assume that drB2  Tn  for each n. Therefore the lattices {A n} 
1n  

satisfy the conditions of the selection theorem of Mahler (see, for example, [198], 

where the reader can also find the standard definition of convergence for 

lattices).Hence the sequence {A n} 
1n contains a subsequence which converges to some 

lattice A . It is easy to verify that T tiles Rd with respect to A. 

On the other hand, the number of possible distinct columns of a totally 

unimodular matrix with columns from Rd is bounded from above by 3d, because 
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each entry is 0, 1, or −1. (Actually a much better exact bound is known, see [190].) 

Using this we can show that T is a zonotope by a straightforward argument. Also we 

can use the argument from [83] and the observation that a convergent sequence of 

measures on the sphere of d
2 , each of whom has a finite support of cardinality ≤ 3d, 

converges to a measure supported on ≤ 3d points. Thus, T is a zonotope and a lattice 

tile. Applying Theorem (6.3.2) again, we get TTd. 

Lemma (6.3.7)[186]: (Main lemma)  For each  d ∈  N there  exist ߰ௗ > 0 and a 

function td  : (0, ߰ ௗ) → (1, ∞) satisfying the conditions: 

(i)  limε↓0 td(ε) = 1; 

(ii) If Y  is a d-dimensional  polyhedral  space, B is an MVSE for Y , and A is an SE 

for Y  satisfying 

Vol A ≤ (1 + ε)d vol B                                                    (18) 

for some 0 < ε < ߰ௗ, then A contains a ball Ã  satisfying the conditions: 

 (i) d(Ã, T ) ≤ td(ε)  for some T ∈ Td, where by d(Ã, T ) we denote the  Banach– Mazur 

distance; 

     (ii) Ã is an SE for Y . 

Proof. In our argument the dimension d is fixed. Many of the parameters considered 

below depend on d, although we do not reflect this dependence in our notation. 

 Since Y  is polyhedral, we can consider Y  as a subspace of m


 .  

Let P: Ym   

be a linear projection satisfying ABP m  )(  (such a projection exists because A is an  

SE). Let A~  = )( mBP  . It is easy to see that A~  is an SE for Y . It remains to show that  

A~  is close to some T  T d with respect to the Banach–Mazur distance. 

We consider the standard inner product on m


 . (The unit vector basis is an 

orthonormal basis with respect to this inner product.) 

Let },...,{ 1 dmqq  be an orthonormal basis in ker P. Let {y1,…, yd} be an 

orthonormal basis in Y. Let dqq ~,...,~
1  be such that dqq ~,...,~{ 1 },...,, 1 dmqq   is an 

orthonormal basis in m


. 
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Lemma (6.3.8)[186]: (Image  Shape Lemma) Let P  and dqq ~,...,~
1 be as above. 

Denote by Q~ ]~,...,~[ 1 dqq  the matrix whose columns are dqq ~,...,~
1 .  Let z1, . . . , zm be the 

columns of the transpose matrix TQ~ . Then )( mBP  is linearly equivalent to the 

zonotope d
izIm

i R  )(1 . 

Proof:  It is enough to observe that: 

(i) Images of mB
 under two linear projections with the same kernel are linearly 

equivalent. Hence, )( mBP  is linearly equivalent to the image of the orthogonal 

projection with the kernel ker P . 

(ii) The matrix TQQ ~~ is the matrix of the orthogonal projection with the kernel ker 

P.  By Lemma (6.3.8) we may replace A~                      by 

)22()(
1 izI

m

i
Z 


  

in the estimate (i) of Lemma (6.3.7). 

Let )(m
dM   We denote by ui  (i = 1, . . . , M ) the  d × d minors of [y1, . . . , yd] 

(ordered in some way). We denote by wi  (i = 1, . . . , M ) the d × d minors of  

[ dqq ~,...,~
1 ] ordered in he same way as the u. We denote by ))(,...,1( Mm

dmiiv  their 

complementary (m − d) × (m − d) minors of [ dmqq 
~,...,~

1 ].  Using the word 

complementary we mean that all minors are considered as minors of the matrix  

[ dqq ~,...,~
1 , dmqq 

~,...,~
1 ], see [93]. 

By the Laplacian expansion (see [93]) 

  iviu
M

i idmqqdyy 


 1
,...,1,,...1det   

and 

det ,... , , ..., (23)1 1 1

M
q q q q w vd m d i i ii

     
   

for proper signs θi. 

Since the matrix [ dqq ~,...,~
1 , dmqq ,...,1 ] is orthogonal,  we have 

dqq ,...,det[ 1 dmqq ,...,, 1 ] = ±1.                                                     (24) 
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 We need the following result on compound matrices. (We refer to [93] for 

necessary definitions and background.) 

A compound matrix of an orthogonal matrix is orthogonal  (see [93]). 

This result implies, in particular, that the Euclidean norms of the vectors  Miiw 1

and M
iv 1}{   in RM are equal to 1. 

From (23) and (24) we get that either 

(i) wi  = θivi  for every i or  

(ii) wi  = −θivi  for every i. 

Without loss of generality, we assume that wi  = θivi  for all i (we replace q1  by 

−q1  if it is not the case). 

We compute the volume of A~  and B with the normalization that comes from 

the Euclidean structure introduced above. It is well known (see [89]) and is easy to 

verify that with this normalization 

||2~
1

1


 




M

i
i

iii
M
i

d

v
vu

Avol


 

and 

||max
2

iui

d
Bvol   

for each MVSE B for Y. 

Remark (6.3.9)[186]: After the publication of [89] I learned that the formula for the 

volume of a zonotope used in [89] can be found in [203]. 

Since vol A~  ≤ volA, the inequality(18)  implies that 

max | | | | (1 ) (25)
1 1

M Mdu v u vi i i ii i i
   

 
 

By (a) the inequality (25) can be rewritten as 

max | | | | (1 ) (26)
1 1

M Mdu w u wi i i ii i i
  

 
 

We need the following two observations: 
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(i) ||12 iw
M

i
d       is the volume of  Z in Rd. 

(ii) The vector M
iiu 1}{   is what is called the Grassmann coordinates, or the Plucker 

coordinates of the subspace Y   Rm, see [204]  and [205]. Recall that Y is 

spanned by the columns of the matrix [y1, . . . , yd]. It is easy to see that if we 

choose another basis in Y , the Grassman (Plucker) coordinates will be multiplied 

by a constant. 

We denote by Zε (ε >0) the set of all d-dimensional zonotopes in Rd  

satisfying the condition (26) with  an equality. More precisely, we define Zε  as  the 

set of those d-dimensional  zonotopes Z in Rd for which 

(i) There exists m  N and a rank d matrix Q~  of size m × d such that, )(1 izIm
iZ    

where zi   Rd, i = 1, . . . , m, are rows of  Q~ . 

(ii) There exists a rank d matrix Y of size m × d such that, if we denote the d × d 

minors of Q~ by 
1}{ iiw   where )(m

dM   and the d × d minors of  Y , ordered in 

the same way as the wi, by 
1}{ iiu   then 

max | | | | (1 ) (27)
1 1

M Mdu w u wi i i ii i i
  

 
 

and there is no Y  for which 

max | | | | (1 )
1 1

M Mdu w u wi i i ii i i
  

 
 

Many objects introduced below depend on Z and ε, although sometimes we do 

not reflect this dependence in our notation. 

Let Z∈Zε.  We shall change the system of coordinates in Rd twice.  First we 

introduce in Rd a new system of coordinates such that the unit (Euclidean) ball dB2  

of Rd is the maximal volume ellipsoid in Z. now on we consider the vectors zi 

introduced in Lemma (6.3.8) as vectors  in Rd and not as d-tuples of real numbers. 

It is easy to see that the support function of Z is given by 
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( ) | , |.
1

m
h x x zz ii

 


 

It is more convenient for us to write this formula in a different way. We 

consider the set 

)28(.
||||

....,
||1||

1,
||||

,....,
||1||

1













mz
mz

z

z

mz
mz

z

z
 

If the vectors in (28) are pairwise distinct, we let µ to be the atomic measure on the 

unit (Euclidean) sphere S whose atoms are given by µ(zi/ǁziǁ) = µ(−zi/ǁziǁ) =ǁziǁ/2.  It 

is easy to see that 

)29().(|,|)( zdzxxh
S

z   

The defining formula for µ should be adjusted in the natural way if some of the 

vectors in (28) are equal. 

Conversely, if µ is a nonnegative measure on S supported on a finite set, then 

(29) is a support function of some zonotope (see [83] for more information on this 

matter). 

Dealing with subsets of S we use the following terminology and notation. Let  

x0  ∈ S, r>0. The set ∆(x0, r):= {x∈S : ǁx −  x0ǁ<r or ǁx + x0ǁ<r},  where  ǁ . ǁ is the 

2 -norm, is called a cap. If 0< r < 2 , then  

∆(x0, r) consists of two connected components. In such a case both x0  and -x0  will 

be considered as centers of ∆(x0, r). 

We are going to show that if ε > 0 is small, then the inequality (26) implies that 

all but a very small part of the measure µ is supported on a union of small caps 

centered at a set of vectors which are multiples of a set of vectors satisfying the 

condition: if we write their coordinates with respect to a suitably chosen basis, we get 

a totally unimodular matrix. Having such a set, it is easy to find T∈Td which is close 

to Z with respect to the Banach–Mazur distance, see Lemma (6.3.29). 

For any two numbers ω, δ > 0 we introduce the set 

Ω(ω, δ) := {x ∈ S: µ(∆(x, ω)) ≥ δ} 

(recall that by S we denote the unit  sphere of d
2 ).  In what follows c1(d), c2(d), . . . , 
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C1(d), C2(d), . . . denote quantities depending on the dimension d only. Since d is 

fixed throughout our argument, we regard them as constants. 

First we find conditions on ω and δ under which the set Ω(ω, δ) contains a 

normalized basis d
iie 1}{   whose distance to an orthonormal basis can be estimated  in 

terms of d only. 

Lemma (6.3.10)[186]: There exist 0<c1(d), C1(d), C2(d)<∞, such that for 1
6d

   

1
1( ) dc d    there is a normalized basis d

iie 1}{   in the space Rd satisfying the 

conditions: 

(i) µ(∆(ei, ω)) ≥ δ. 
(ii) If d

iio 1}{    is an orthonormal basis in Rd , then the operator N:Rd Rd  given 

by N oi= ei  satisfies ‖ܰ‖ ≤ C1(d) and ‖ܰିଵ‖≤ C2(d), where the norms are the 

operator norms of  N, N −1  considered as operators from d
2

  into d
2 . 

Proof. We need an estimate for µ(S).  Observe that if  K1  and K2  are two symmetric 

zonotopes and K1  K2,  then µ1(S)  ≤ µ2(S)  for the corresponding  measures µ1   and 

µ2  (defined as even measures  satisfying (29) with Z = K1 and Z  = K2,  respectively) 

.To prove this statement we integrate the equality (29) with respect to x over the 

Haar  measure on S. 

Now we use the assumption that dB2  is the maximal volume ellipsoid in Z.  

Let is the maximal volume ellipsoid in Z. Let ixixi
n
i  

1   be the F. John 

representation of the identity operator corresponding to Z (see [42]). Then 

Z  {x :  | x, xi | ≤ 1 i  {1, . . . , n}} . 

Since ixiixxn
ix ,1  for each x ∈ Rd, we have  .,1 ixiixi

n
iZ    Since

  ,1 di
n
i   this implies µ(S) ≤ d. 

Using the well-known computation, which goes  back to B. Grünbaum  ([206], 

see, also, [207]) one can find estimates for µ(S) from below, which imply µ (S)≥ d

For our purposes the trivial estimate µ(S)≥1 is sufficient (this estimate follows 

immediately from Z⊃ dB2 , because this inclusion implies hZ (x) ≥ǁxǁ). 
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We denote the normalized Haar measure on S by η. It is well known that there 

exist c2(d) > 0 such that  

η(∆(x, r)) ≥ c2(d)rd−1         r  (0, 1) x  S.                                   (30)  

Using a standard averaging argument and µ(S) ≥ 1, we get that there exists e1∈ S 

such that 

µ(∆(e1, ω)) ≥  c2(d)ωd−1.  

Consider the closed )
3
1( 
d

 -neighborhood (in the d
2
  metric) of the line L1  spanned 

by e1. Let ∆1 be the intersection of this neighborhood with S. Our purpose is to 

estimate µ(S\∆1) from below. Let x ∈ S be orthogonal  o e1. Then 

1 ≤ hZ (x) ≤ 1.· µ(S\∆1) + )
3
1( 
d

.d, 

where the left-hand side inequality follows from the fact that Z contains dB2 . 

Therefore µ(S\∆1) ≥ 1 − )
3
1( 
d

d. 

We erase all measure µ contained in ∆1, use a standard averaging argument 

again, and find a vector e2 such that 

µ(∆(e2, )\∆1) ≥ c2(d)   d−1 






  d
d

)
3
11(  . 

Since µ(∆(e2, ω)\∆1) > 0, the vector e2 is not in the 
d3
1  -neighborhood of  L1. 

Let ∆2   be the intersection of S with the closed 
d3
1( ) - neighborhood of L2 

= lin{e1, e2} (that is, L2  is the linear span of {e1, e2}).  Let x ∈ S be orthogonal to 

L2. Then 

1 ≤ hZ (x) ≤ 1. µ (S\∆2)+ ,).
3
1( d
d

  

where the left-hand side inequality follows from the fact that Z contains dB2 . 

Therefore 

µ(S\∆2) ≥ 1 − )
3
1( 
d

d. 
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 Using the standard averaging argument in the same way as in the previous step 

we find a vector e3 such that 

µ(∆(e3, )\∆2) ≥ c2(d)   d−1 .
3
11 















  d
d

  

Since µ(∆(e3,  )\∆2) > 0, the vector e3 is not in the 
d3
1 -neighborhood of  L2. 

 We continue in an obvious way. As a result we construct a normalized basis 

{e1,…, ed} satisfying the conditions. 

(i)  µ(∆( ,ie  )) ≥ ܿ ଶ(d)   d−1 ).)
3
11( d
d

  

(ii) dist(ei , lin ,,...,2,
3
1}{ 1

1 di
dje i

j 
  where dist(·, ·)  denotes the distance from 

a vector to a subspace. 

If 
d6
1  the inequality (i) implies 

µ(∆( ,ie  )) ≥ 1
2 )(1

2
ddc  , 

and we get the estimate (i) of Lemma (6.3.10) with c1(d) = c2(d)/2. 

 To estimate ||N || and ||N −1||, we let d
iio 1}{   be the basis obtained from {ei} are 

using the Gram–Schmidt orthonormalization process.  Let N : Rd  → Rd  be defined 

by N oi  = ei.The estimate ||N ||  ≤ C1(d) with C1(d)  = d   follows because the 

vectors d
iie 1}{   are normalized  and the vectors d

iio 1}{   form an orthonormal set . 

 To estimate ||N −1|| we observe that the matrix of N with respect to the basis 

{oi} is of the form 





















dd

d

d

N

NN
NNN

N







00

0 222

11211

 

and that the inequality (ii)  implies .
3
1
diiN   We have 
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100

10

1
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00

00
00

22

2

11

1

11

12

22

11

U
N
N
N
N

N
N

ID

N

N
N

T d

d

dd




























































 

where I is the identity matrix, 



























































0000

000

00

0

1.1

.1

1.2

1.1

22

2

22

11

1

1111

12

.

00

00
00

22

11

















dd

dd

d

d

N
N

N
N

N
N

N
N

N
N

N
N

d

d

Uand

N

N
N

D

dd

 

Therefore 

N −1 = (I + U )− 1  D−  1  = (I − U + U 2 − · · · + (−1)d−1 U  d −    1 )D−   1,        (31) 

the identity  (I + U )−1  = (I − U + U 2 − · · ·  + (−1)d−1U d−1) follows from the 

obvious equality U d=0. The definition of U and .
3
1
diiN   imply that columns of U 

are vectors with Euclidean norm at most 3d, hence ||U || ≤ 2
3

3d . Therefore the identity 

Therefore the identity (31) implies the following estimate for ||N −1||: 

.3.
13

13.
1
1

2
3

2
3

11 d
d

dD
U

UN
d

dd







   

Denoting the right-hand side of this inequality by C2(d) we get the desired estimate. 

Lemma (6.3.11)[39]: Let c2(d) be the constant from (30), then  

µ(S\((Ω(ω, δ))ω)) .
)( 1

2
 ddc 

  

Proof. Assume the contrary, that is, µ(S\(൫Ω( , ൯(ߜ
	)) .

)( 1
2

 ddc 
  Then, using 

a standard averaging argument as in Lemma (6.3.10), we find a point x such that 

µ(∆(x,  )\ (൫Ω( , ൯(ߜ
	)) ≥ c2(d)   d−1 · 1

2 )(
. ddc 

 = δ. 

By the definition of Ω( , δ) this implies x∈ Ω( , δ).  On the other hand, since the 



254 
 

d

set  ∆(x,  )\(൫Ω( , ൯(ߜ
	) is non-empty, it follows that  

x ∈/ Ω( , δ).  We get a contradiction. 

For each Z ∈ Zε   we apply Lemma (6.3.10) with ω = ω(ε) = ε4k and  

δ =δ(ε)= ε4dk , where 0 < k < 1 is a number satisfying the conditions 

)32(,242

1
246

1

dd
kand

d
k





  

we choose and fix such number k for the rest of the proof. It is clear that there is  

ߌ = ,݀)ߌ ݇) > 0 such that  the conditions    (ε)  
d6
1  and  

δ(ε) ≤ c1(d)(   (ε))d−1  are satisfied for all ߝ ∈ (0,  ), where c1(d) is the constantߌ

from Lemma (6.3.10).  In the rest of the argument we consider ߝ ∈ (0,  ) only. Letߌ

d
iie 1){   be one of the bases satisfying the conditions of Lemma (6.3.10) with the 

described choice of ω and δ. Now we change the system of coordinates in Rd   Z the 

second time. The new system of coordinates is such that d
iie 1){  is its unit vector 

basis. We shall modify the objects introduced so far (Ω, µ, etc.) and denote their 

versions corresponding to the new system of coordinates by   Ω̌, µ̌, etc. All these 

objects depend on Z, ε, and the choice of d
iie 1}{  . 

 We denote by Š the Euclidean unit sphere in the new system of coordinates. 

We denote by N : S → Š the natural normalization mapping, that is, N(z) = z/ǁzǁ, 

where ǁzǁ is the Euclidean norm of z with respect to the new system of coordinates. 

The estimates for ǁNǁ and ǁN−1ǁ from Lemma (6.3.10) imply that the Lipschitz 

constants of the mapping N and its inverse N−1  : Š → S can be estimated in terms of 

d only. 

 We introduce a measure µ̌ on Š as an atomic measure supported  on a finite set 

and such that  µ̌  (N(z)) = µ(z) ǁzǁ for each z∈S , where ǁzǁ is the norm of z in the new 

system of coordinates. Using the definition of the zonotope Z it is easy to check that the 

function 


s

dxxzh ),ž(µ|ž,)( 
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i=1

where .,. is the inner product in the new coordinate system, is the support function 

of  Z in the new system of coordinates. 

 We define Ω̌ = Ω̌ (ω, δ) as N(Ω(ω, δ)).  It is clear that ei  ∈ Ω̌ .  Everywhere 

below we mean coordinates in the new system of coordinates (when we refer to || · ||, 

∆, etc). 

 The observation that N and N−1 are Lipschitz, with Lipschitz constants 

estimated in terms of d only, implies the following statements: 

(i) There exist C3(d), C4(d) < ∞ such that 

( \ (( ( , )) )) ( ) (33)4( ) ( ) 13
S C dd dc

     
  

   

(we use Lemma (6.3.11). 

(ii) There exist c3(d) > 0 and C5(d) < ∞ such that 

  (∆(x, C5(d)ω)) ≥ c3(d)δ   ∀x ∈ Ω̌ (ω, δ)                               (34) 

(we use the definitions of Ω(ω, δ) and Ω̌ (ω, δ)). 

(iii)There exists a constant C6(d) depending on d only, such that 

vol(Z) ≤ C6(d).                                                               (35) 

 Let Q
  be the transpose of the matrix whose columns are the coordinates of zi 

in the new system of coordinates. We denote by iw (i = 1, . . . , M ) the  d × d minors of 

Q
  ordered in the same way as the iw . The vector M

iiw 1}{ 
 is a scalar multiple of

M
iiw 1}{  . Therefore (27) implies 

 

max (1 ) . (36)
1 1

MM du w u wi i i i ii i
   

 

   

The volume of Z in the new system of coordinates is 2 .1
Md wi i 

  

To show that  if ε > 0 is small, then the inequality (36) implies that  all but a 

very small part of the measure   is supported “around” multiples of vectors 

represented by a totally unimodular matrix in some basis, we need the following 
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lemma. It shows that the inequality (36) implies that the measure µ̌ cannot have non-

trivial “masses” near (d + 2)-tuples of vectors satisfying certain condition. 

Lemma (6.3.12)[186]: Let χ(ε),σ(ε), and π(ε) be functions satisfying the following 

conditions: 

(i) limఌ↓ (ߝ)߯ = limఌ↓ (ߝ)ߪ = limఌ↓ (ߝ)ߨ = 0; 

(ii) ε = o((χ(ε))2(σ(ε))d) as ε ↓ 0; 

(iii) π(ε) = o(χ(ε)) as ε ↓ 0; 

(iv) There is a subset Φ	(0, Ξ) such that the closure of Φ contains 0, and 

for each εΦ there exist ZZε  and points x1, . . . , xd−2, p1, p2, p3, p4 in the 

corresponding Š , such that 

µ̌(∆(z, π(ε))) ≥ σ(ε)  z {x1, . . . , xd−2, p1,p 2, p3, p4}.                           (37) 

 Let u0 be the set of pairs (ε, Z) in which εΦ and Z satisfies the condition from 

(iv). Let ΦଵΦ be the set of those εΦ for which there exists (ε, Z)u0 such that the 

corresponding points x1, . . . , xd−2, p1, p2, p3, p4 satisfy the condition . 

| det(Hα,β )| ≥ χ(ε)                                                  (38) 

for all matrices Hα,β  whose columns are the coordinates of {x1, . . . , xd−2, pα, pβ }, α, 

β {1, 2, 3, 4}, α  β, with respect to an orthonormal basis d
iie 1}{   in Rd . Then there 

exists Ξଵ > 0 such that Φଵ⋂(0, Ξଵ) = ∅ 

Proof. We assume the contrary, that is, we assume that 0 belongs to the closure of 

Φଵ. For each ε Φଵ we choose Z  Zε  such that (ε, Z)u0 and the condition (37) is 

satisfied. We show that for sufficiently small ε > 0 this leads to a contradiction. 

 We consider the following perturbation of the matrix Hα,β : each column 

vector z in it is replaced by a vector from ∆(z, π(ε)).  We denote the obtained 

perturbation of the matrix Hα,β   by  .,
pH    We claim that 

| det ( pH  , )| ≥ χ(ε) − d . π(ε).                                               (39) 

 To prove this claim we need the following lemma, which we state in a bit more 

general form than is needed now, because we shall need it later. 
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Lemma (6.3.13)[186]:  Let x1, . . . , xd, z d
2

  be such that max2  ≤  i≤ d ||xi || ≤ m and ||z 

− x1|| ≤ I. Then 

|det[z, x2, . . . , xd] − det[x1, x2, . . . , xd]| ≤ I.md−1. 

This lemma follows immediately from the volumetric interpretation of determinants.  

 To get the inequality (39) we apply Lemma (6.3.13) d times with m=1 and 

I=π(ε). 

 Since Z  Zε, it can be represented in the form  iZ I(zi).  First we 

complete our proof in a special case when the following condition is satisfied: 

 All vectors zi  whose normalizations zi/ǁziǁ belong to the sets ∆(z, π(ε)), z  {x1, … 

,xd−2, p1, p2, p3, p4}, have the same norm τ and there are equal amounts of such 

vectors in each of the sets ∆(z, π(ε)), z{x1, . . . , xd−2, p1, p2, p3, p4}, we denote the 

common value of the amounts by F . 

 The inequality (37) implies 

F . τ ≥ σ(ε) . 

 We denote by A the set of all numbers i{1, . . . , M } satisfying the 

condition: the normalizations of columns of the minor  w̌i  form a matrix  of the form 
PH  , , for some α, β{1, 2, 3, 4}. 

 We need an estimate for .||Ai iw  The inequality (39) implies || iw  ≥ τ d(χ(ε) − 

d · π(ε)) for each i  A   

On the other hand, the cardinality |A| of A is 6Fd. In fact there are Fd−2 choose 

two of the sets ∆(pj , π(ε)), j = 1, 2, 3, 4, and there are F2  ways to choose one vector 

zi/||zi|| in each of them. Therefore | A | = 6Fd and 


Ai

పݓ| | ≥ 6F dτ d(χ(ε) − d · π(ε)) ≥ 6(σ(ε))d(χ(ε) − d · π(ε)).        (40) 

 We assume for simplicity that maxi |ui| = 1 (if it is not the case, some of the 

sums below should be multiplied by maxi |ui|). The ui are defined above the equality 

(27). Then the condition (36) can be rewritten as 
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)41(.
1

)1( 









Ai iw

Ai iw
M

i iwiud   

On the other hand, 

(1 ) (1 ) (1 ) . (42)
1

Md d du w u w wi i i i ii i A i A
        

  

    

From (41) and (42) we get 

(1 ) | | ((1 ) 1) . (43
1

)d du w w wi i i ii i A i A
        

  

    

As is well known, iwM
i

d 
 12  is the volume of Z, hence 

M
i 1 iw ≤ 2−d C6(d). 

Using this observation and the inequalities (40) and (43) we get 

((1 ) 1) ( )21 6 .
6( ( )) ( ( ) . ( ))(1 )

d dC d
u w wi i d idi A d i A



     

          

   

(We use the fact that χ(ε) − d · π(ε) > 0 if ε > 0 is small enough.) The conditions (19) 

and (20) imply that there exists ߰ > 0 such that  

)44())).)((04.01(
))(.)(())((6

2)(6)1)1((

)1(

1







d

dd

ddCd

d 






















 

is satisfied if ε  (0, ߰). The right-hand side is chosen in the form needed below. 

 Let ߰ > 0 be such that the statement above is true. Then for ε (0, ߰) we have 

)45(.)))(.)((04.01( 



 Ai

iwd
Ai

iwiu    

 Recall that ui are d × d minors of some matrix [y1,…, yd]. We need the Plucker 

relations, see [204] or [205].  The result that we need can be stated in the following 

way: if γ1, . . . , γd−2, κ1, κ2, κ3, κ4  are indices of d + 2 rows of [y1, . . . , yd], then 

t1,2t3,4 − t1,4t3,2 + t2,4t3,1 = 0,                                              (46) 

where tα,β  is the determinant of the ݀ × ݀ matrix whose rows are the rows of [y1, . . . , 

yd] with the indices γ1,…, γd−2, κα, and κβ . Note that (46) can be verified by a 

straightforward computation (which is very simple if we make a suitable change of 

coordinates before the computation). 
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− Now we Show that (45) cannot be satisfied. Let ߰ be a set Consist in   g of d 

+2  vectors 
214321

,...,,,,
dkkkk zzzzzz  , formed in the following way. We choose 

vectors,    (
ikz  /||

ikz ||)   ∆(pi, π(ε)),  i = 1, 2, 3, 4, and choose vectors (
i

z /ǁ
i

z ǁ)   

∆(xi, π(ε)), i = 1, . . . , d − 2. To each such selection there corresponds a set of 6 

minors w̌ i of the form τd det( PH  , ), we denote this set of six minors by {w} ( )i M 
  

 One of the immediate consequences of the Plücker relation (46) is that for any 

such (d + 2)-tuple ߰ 

                    |ui| ≤ 
2

1   for some iM (Ψ).                         (47) 

(Here we use the assumption that maxi |ui| = 1.) 

 For each ߰ we choose one such i  M (߰) and denote it by s(߰).  The estimate 

(39) and the condition (I) imply that 

τ d ≥ |w̌ i | ≥ τ d(χ(ε) − d · π(ε))                                                 (48) 

for every i  A. 

 Hence for every (d + 2)-tuple ߰ of the described type we have 

1 2 1( ) | | | ( ) |
2 2( \( ( )) ( )( )

u w w w w ws sii i ii M s i Mi M
 

  


    

 

      

( 2 1 ( )
| | 1

( ) 2 | |( )

( 2 1) ( ( ) . ( ))| | 1
( ) 2.6

| | (1 0.04)( ( ) . ( ))).
( )

w sw ii M w ii M
d dw i di M

w dii M






    
 

   


 
       

  
      

  











 

Thus 

(1 0.04)( ( ) . ( ))). (49)
( ) ( )

u w w di i ii M i M
   

 
   

 
   

Recall that F is the number of vectors zi corresponding to each of the sets ∆(z, π(ε)), 

z{x1,…,xd−2,p1,p2,p3,p4}. Simple counting shows that for an arbitrary 

collection {ϒi}iA  of numbers we have 
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2

( )
Fi i

i M i A 
   

  .
 

Using (49) we get that 

2
( ) ( )

(1 0.04( ( ) . ( )))
( )

2 | |(1 0.04( ( ) . ( ))).

F u w u w u wi i i i i ii A i M i M

w dii M

F w di
i A

  

   
 

   

     
  

   


  


  





 

If ε  (0, ߰ ), we get a contradiction with (45). 

 To see that the general case can be reduced to the case (I) we need the 

following observation: 

 Let τ1, τ2 > 0 be such that τ1 + τ2 = 1. We replace the row with the 

coordinates of zj  in Q
  by two rows, one of them is the row of coordinates of τ1zj  

and the other is the row of coordinates of τ2zj . The zonotope generated by the rows 

of the obtained matrix coincides with Z. In the matrix [y1, . . . , yd] we replace the jth  

row by two copies of it. It is easy to see that if we replace the sequences { M
iiu 1}{   and 

M
iiw 1}{ 

  by sequences of ݀ × ݀ minors of these new matrices, the condition (36) is 

still satisfied. 

 We can repeat this ‘cutting’ of vectors zj  into ‘pieces’ with (36) still being 

valid.  

 Therefore, we may assume the following: among zj corresponding to each of 

the sets ∆(z, π(ε)), z  {x1, . . . , xd−2, p1, p2, p3, p4}  there exists a subset Φ(z, π(ε))  

consisting of vectors having the same length τ , and such that the sum of norms of 

vectors from  Φ(z, π(ε)) is ≥ 
2

)( , moreover, we may assume that the numbers of 

such vectors in the  subsets Φ(z, π(ε)) are the same for all z  {x1, . . . , xd−2, p1, p2, 

p3, p4}. 

Lemma (6.3.12) in this case can be proved using the same argument as before, 
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but with A being the set of those minors w̌ i for which rows are from Φ(z, π(ε)). 

Everything starting with the inequality (40) can be  shown in the same way as before;  

only some constants will be changed (because we need to replace σ(ε) by ).
2

)(  

Let ρ(ε) = εk , ν(ε) = ε3k . For a vector s we denote its coordinates with respect 

to { } 1
dei i   by  { } 1

dsi i   

Lemma (6.3.14)[186]: If 
1 (50)26 4

k
d




 

then there  exists ߌଶ > 0 such that for ε ∈  (0, ߌଶ),  s, t  ∈  Ω̌ (ω(ε), δ(ε)),  and α, β  ∈  

{1, . . . , d}, the inequality   

min{|sα|, |sβ |, |tα|, |tβ |} ≥ ρ(ε),                                     (51) 

implie 

)(det 


 vts
ts











                                             (52) 

Proof: Assume the contrary, that is, there exists a subset Φ2 (0, 1), having 0 in its 

closure and such that for each ε Φ2 there exist Z  Zε, s, t  Ω̌ (ω(ε), δ(ε)) and α, 

β satisfying the condition (51), and such that 

)52()(det 


 vts
ts











 

We apply Lemma (6.3.12) with {x1, . . . , xd−2} =  ,}{ iie , {p1, p2, p3, p4} = {eα, 

eβ , s, t}.  Using a straightforward determinant computation we see that the condition 

(38) is satisfied with χ(ε) = min{1, ρ(ε), ν(ε)} = ε3k  (we consider ε < 1).  

 The inequality (34) implies that the condition (iv) of Lemma (6.3.12) is 

satisfied with π(ε) = C5(d)ω(ε) = C5(d)ε4k  and σ(ε) = c3(d)δ(ε) = c3(d)ε4dk .  It is 

clear that the conditions (ii) and (iii)  of  Lemma (6.3.12) are satisfied. To get (19) 

we use the condition (50). Applying  Lemma (6.3.12), we get the existence of the 

desired ߌଶ. 

 For each vector from Ω̌ (ω(ε), δ(ε)) we define its top set as the set of indices of 
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coordinates whose absolute values ≥ ρ(ε). 

 The collection of all possible top sets is a subset of the set of all subsets of 

{1,…,d}, hence its cardinality is at most 2d. We create a collection Θ(ω(ε), δ(ε))  Ω 

ˇ (ω(ε), δ(ε)) in the following way: for each subset of {1, . . . , d} which is a top set 

for at least one vector from Ω̌ (ω(ε), δ(ε)), we choose one of such vectors; the set 

Θ(ω(ε), δ(ε)) is the set of all vectors selected in this way. 

 In our next lemma we show that each vector from Ω̌ (ω(ε), δ(ε)) can be 

reasonably well approximated by a vector from Θ(ω(ε), δ(ε)).  Therefore (as we shall 

see later), to prove Lemma (6.3.7) it is sufficient to find a “totally unimodular” set 

approximating Θ(ω(ε), δ(ε)). 

Lemma (6.3.15)[186]: Let ρ(ε) and ν(ε) be as above and let k and 2ߌ be numbers  

satisfying the conditions of Lemma (6.3.14).  Let ε  (0,	ࢮ), Z   Zε, and let s, t  

Ω̌ (ω(ε), δ(ε))  be two vectors with the same top set Σ. Then 

( ) 2min{ , } 2 4 ( ) . (53)2( ( ))
vt s t s d  
 

     

Proof. Observe that if ρ(ε) = εk >
d

1  , the statement of  the lemma is trivial.  

Therefore we may assume that ρ(ε) ≤ 
d

1   . In such a case Σ contains at least one 

element. 

 First we show that the signs of different components of s and t “agree” on Σ in 

the sense that either they are the same everywhere on Σ, or they are the opposite 

everywhere on Σ.   In fact, assume the contrary, and let α, β  Σ be indices for which 

the signs “disagree”. Then, as is easy to check, 















ts
ts

det  |sα| | tβ | + |sβ | | tα| ≥ 2(ρ(ε))2> ν(ε), 

and we get a contradiction.  We consider the case when the signs of tα and sα are the 

same for each α  Σ, the other case can be treated similarly (we can just consider −s 

instead of s). 

 We may assume without loss of generality that |tα | ≥ |sα | for some α  Σ.  We 
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show that in this case 

 
 svt 








 2))((

)(1  

for all β  Σ. In fact, if |tβ | < 







 2))((

)(1

v | sβ | for some β  Σ, then 

ν(ε) > 













ts
ts

det
 
 |tα| |sβ | − |sα| |tβ | ≥ |sα | |sβ | 2))((

)(

v ≥ ν(ε), 

a contradiction. 

We have 

||t − s||2  = ||t||2 + ||s||2 − 2(t, s) ≤ 2 − 2 22
2 )(2

))((
)(1( 


 

 






sv  

                                                           .)(4
))((
)(2)(4

))((
)(2 2

2
2
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Let Θ(ω(ε),δ(ε))= J
jjb 1}{  , where 2≥ܬd. We may and shall assume that 


d
iie 1)}({   Θ(ω(ε), δ(ε)) (see Lemma (6.3.10) We denote d · 2d by ݊ and 

introduce d · n  functions: 1(ε), . . . , d·n(ε), such that 

1(ε) ≥ · · ·  ≥ d·n(ε) = ρ(ε) =  εk  ,                                       (54) 

α(ε) = (α+1(ε)) .
1

1
d .                                              (55) 

We consider the matrix X whose columns are J
jjb 1}{   We order the absolute 

values of entries of this matrix in non-increasing order and denote them by a1 ≥ a2 ≥ · · 

·  ≥ ad·J . Let j0  be the least index for which 

d·j0 (ε) > aj0 .                                                              (56) 

The existence of j0 follows from 
d
iie 1)}({  Θ(ω(ε), δ(ε)).  The definition of j0 

implies that aj  ≥ d·j (ε) for j < j0, hence aj ≥ d·(j0−1) (ε) for j ≤ j0-1. 

We replace all entries of the matrix X except a1, . . . , aj0−1 by zeros and denote 

the obtained matrix by G = (Gij), i = 1, . . . , d, j = 1, . . . , J , and its columns by 
J
jjg 1}{  . It is clear that 
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ǁgj  − bj ǁ≤ d ·
0jd  (ε).                                                         (57) 

We form a bipartite graph G on the vertex set {1ത,  . . . , d̄ }  {1, . . . , J}, where 

we use bars in 1̄, . . . , d̄  because these vertices are considered as different from the 

vertices 1, . . . ,d, which are in the set {1, . . . , J}.   The edges of G are defined in the 

following way: the verticesi and j are adjacent if and only if Gij  0. So there is a 

one-to-one correspondence between edges of G and non-zero entries of G. We choose 

and fix a maximal forest F in G (We use the standard terminology, see, e. g. [90].) 

 For each non-zero entry of G we define its level in the following way:   

(i) The level of entries corresponding to edges of F is 1. 

(ii) For a non-zero entry of G which does not correspond to an edge in F we 

consider the cycle in G formed by the corresponding edge and edges of F. We 

define the level of the entry as the half of the length of the cycle (recall that the 

graph G is bipartite, hence all cycles are even). 

Observation (6.3.16)[186]: One of the classes of the bipartition has d vertices. 

Hence no cycle can have more than 2d edges, and the level of each vertex is at most 

d. 

To each entry Gij of level f we assign a square submatrix G(ij) of G all other 

entries in which are of levels at most f−1. We do this in the following way. To entries 

corresponding to edges of F we assign the 1 × 1 matrices containing these entries. For 

an entry Gij which does not correspond to an edge in F we consider the corresponding 

edge e in G and the cycle C formed by e and edges of F. Then we consider the entries 

in G corresponding to edges of C and the minimal submatrix in G containing all of 

these entries. Now we consider all edges in G corresponding to non-zero entries of 

this submatrix. We choose and fix in this set of edges a minimum-length cycle M 

containing e. We define G(ij) as the minimal submatrix of G containing all entries 

corresponding to edges of M. It is easy to verify that: 

(i) G(ij) is a square submatrix of G. 

(ii) Non-zero entries of G(ij) are in one-to-one correspondence with entries of M. 

(iii) The expansion of the determinant of G(ij) according to the definition contains 

exactly two non-zero terms. 
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(iv) All non-zero entries of G(ij) except Gij  have level ≤ f − 1. 

Lemma (6.3.17)[186]: Let k < 1/(2d + 4d2). If ε > 0 is small enough, then there exists 

a d×J matrix G~  such that: 

(i) If some entry of G is zero, the corresponding entry of G~  is also zero. 

(ii) The entries of level 1 of G~  are the same as for G; 

(iii) All other non-zero entries of G~  are perturbations of entries of G 

satisfying the following conditions: 

(I) If Gij  is of level f , then |Gij −G~ ij| < d·j0−f +1(ε). 

(II) For each non-zero entry Gij of level ≥ 2 of G the determinant of the 

submatrix  G~ (ij) of G̃ corresponding to G(ij) is zero. 

Proof. Let Gij  be an entry of level f.  Since, as it was observed above, all entries of 

G(ij) have level ≤ f − 1, we can prove the lemma by induction as follows. 

(i) We let G̃ij  = Gij  for all Gij  of level one. 

(ii) Let f ≥ 2.  

We assume that for all entries Gij of levels  (Gij) satisfying 2≤  (Gij)≤ f−1 we have 

found perturbations G̃ij satisfying 

|Gij  − G̃ij | ≤ బ− ݈ (Gij )+1(ε), 

such that det(G̃ (ij)) = 0. (Note that this assumption is vacuous if f = 2.) 

 

Inductive step: Let Gij be an entry of level f. If ε > 0 is small enough we can find a 

number G̃ij such that |G̃ij−Gij|≤  ݀బିାଵ(ε) and det(G̃(ij))=0. Observe that by the 

induction hypothesis and the observation that all other entries of G(ij) have levels ≤ 

f−1, all other entries of G̃ (ij) have already been defined. 

So let Gij be an entry of level f, and G(ij) be the corresponding  square 

submatrix. Renumbering rows and columns of the matrix G we may assume that the 

matrix G(ij) looks like the one sketched below for some h ≤ f . 
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ijG
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00...21

0...01

)(   

Therefore the matrix G (possibly, after renumbering of columns and rows) has the 

form 

0 0 0 0 0 0 1 01
0 0 0 0 0 0 0 11 2

0 0 0 0 0 0 0 0 01
0 0 0 0 0 0 0 0 (58)1
* * * * 1 0 0 0 0 0
* * * * 0 1 0 0 0 0

* * * * 0 0 1 0 0 0
* * * * 0 0 0 1 0 0

a Gij
b a

ah
b ah h

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

  

  

            
  

  

  
  

            
  
  

 

We have assumed that we have already found entries 1{ } { }1 1
h ha and bn nn n


 

 of G̃ 

which are perturbations of 1
1}{1}{ 


h
nnbandh

nna . The entries 1 shown (58) are the 

only non-zero entries in their columns, therefore the corresponding edges of G should 

be in F . Let us denote the perturbation of Gij we are looking for by G̃ij . The 

condition (II) of Lemma (6.3.17) can be written as 

                     
)59(.0~.

1

1
~)1(

1
~ 1 







 ijGnbna
h

n
hh

n
 

So it suffices to show that the number G̃ ij , found as a solution of (59) satisfies 

|G̃ ij −Gij|< d.j0−f +1(ε). To show this we assume the contrary. Since there are finitely 

many possibilities for j0 and f, the converse can be described as existence of j0 and f, 

such that there is a subset Φ3(0,1), whose closure contains 0, satisfying the 

condition: 

For each ε  Φ3 there is ZZε such that after proceeding with all steps of 
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the construction we get: all the conditions above are satisfied, but 

1 11( 1) . ( ) (60). 0 1
1 1 1

h h hha b G bd j fn n ij n
n n n

 
      

  

   

We need to get from here an estimate for |det(G(ij))| from below. To get it we observe 

that the inequality (60) is an estimate from below of the determinant of the matrix 
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     To get from here an estimate for det(G(ij)) from below we observe the following: 

The  2 -norm of each column of Gij is ≤1, the ݈-distance between a column of Gij 

and the corresponding column of G(ij) is at most 2dj0−f +2(ε). Hence the  2-norm of 

each column of G(ij) is ≤ 1 + 2dj0−f +2(ε).  Applying Lemma (6.3.13) h times we 

get 

| det(G(ij))| ≥ | det(ܩᇱ(ij))| − h · 2dj0−f +2(ε)(1 + 2dj0−f +2(ε))h-1 

The induction hypothesis implies 

|	 పܾ
෩ | ≥ d(j0−1)(ε) − dj0−f+2(ε), 

we get 

| det(G(ij))| ≥ dj0−f +1(ε) · (d(j0−1)(ε) − dj0−f +2(ε)) h−1                   (61) 

— h · 2dj0−f +2(ε)(1 + 2dj0−f +2(ε)) h−1. 

Let us keep the notation J
jjg 1}{   for columns of the matrix (58).  We  consider 

the following six d×d minors of this matrix: the corresponding  submatrices  contain 

the columns {g2, . . . , gh−1, gh+1, . . . , gd}, and two out of the four columns {g1, gh, 

gd+1, gd+2}. Observe that gh+1  = eh+1, . . . , gd = ed, gd+1 = e1, gd+2 = e2. 

 The absolute values of the minors are equal to 

1 1 1
det ( ) . , , . , , (62)12 1 2 2 2

h h h h h
G ij a b a b b bn n n n n

n n n n n

  
    
    

 

 The first number in (62) was estimated in (61). All other numbers are at least 
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(d(j0−1)(ε))h−1 , it is clear that this number exceeds the number from (61). 

We are going to use Lemma (6.3.12) with {x1, . . . , xd−2} = {N(g2), . . . , 

N(gh−1), N(gh+1), . . . , N(gd)}  and {p1, p2, p3, p4}  = {N(g1), N(gh), N(gd+1), 

N(gd+2)}. (Recall that N(z) =z/ǁzǁ.) Our definitions imply that ǁbjǁ= 1 and ǁgjǁ≤ 1, 

because gj is obtained from bj  by replacing some of the coordinates by zeros. Hence 

the inequality (61) and the remark above on the numbers (62) imply that the 

condition (38) is satisfied with 

χ(ε) = dj0−f +1(ε) . (d(j0−1)(ε) − dj0−f +2(ε)) h−1  

                          — h . 2dj0−f +2(ε)(1 + 2dj0−f +2(ε)) h−1 .                                  (63) 

 The inequality (57), the inclusion bj  Ω̌ (ω(ε), δ(ε)) and (34) imply that the 

condition (37) is satisfied with π(ε) = 2d . dj0 (ε) + C5(d)ω(ε) and σ(ε) = 

c3(d)δ(ε).  So it remains to show that the condition (55) implies that the conditions 

(ii) and (iii) of Lemma (6.3.12) are satisfied. 

By (55), (63), the inequality 2 ≤ h ≤ f ≤ d, and the trivial observation that all 

functions α(ε) do not exceed 1 for 0 ≤ ε ≤ 1, we have 

(dj0−f +1(ε))d = O(χ(ε)).                                           (64) 

Now we verify the condition (iii) of Lemma (6.3.12). The part (II) can be 

verified as follows. The conditions (54) and (38), together with f≥2 and ω(ε) = ε4k, 

imply that π(ε) = O(dj0  (ε)) = o ((dj0- f+1(ε))d)  = o(χ(ε)). 

To verify the condition (ii) of Lemma (6.3.12) it suffices to observe that (64) 

and (54) imply (ρ(ε))d= O(χ(ε)). Hence (ii) is satisfied if 2dk + 4d2k < 1. This 

inequality is among the conditions of Lemma (6.3.17). Hence we can apply Lemma 

(6.3.12) and get the conclusion of Lemma (6.3.17). 

Now let G̃ be an approximation of G by a matrix satisfying the conditions of 

Lemma (6.3.17). We use the same maximal forest F in G as above.  It is easy to show 

(and the corresponding result is well known in the theory of matroids, see, for 

example, [208]) that multiplying columns and rows of G̃ by positive numbers we can 
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make entries corresponding to edges of F to be equal to ±1. Denote the obtained 

matrix byG


. 

Lemma (6.3.18)[186]: If   G̃ satisfies the conditions of Lemma (6.3.17)., then G


 is a 

matrix with entries −1, 0, and 1. 

Proof. Assume the contrary, that is, there are entries is a matrix with entries ijG


 which 

are not in the set {−1,0,1}. Let ijG


 be one of such entries satisfying the additional 

condition: the level  (Gij ) is the minimal possible among all entries ijG


which are not 

in {−1, 0, 1}.  Denote by G


(ij) the submatrix of G


 which corresponds to G(ij). 

Then, by observations preceding Lemma (6.3.17), the expansion of det G


(ij) 

contains two non-zero terms: one of them is 1 or −1, the other is ijG


 or − ijG


. Our 

assumptions imply that det G


 (ij)  0. This contradicts det G̃(ij)= 0, because G


 is 

obtained from G̃ using multiplications of columns and rows by numbers. 

In Lemma (6.3.19) we show that for functions α(ε) chosen as above, the 

matrixG


should be totally unimodular for sufficiently small ε. In Lemma (6.3.22) we 

show how to estimate the Banach–Mazur distance between Z and Td in the case when 

G
  is totally unimodular. 

Lemma (6.3.19)[186]: If ε > 0 is small enough, the matrix G
  is totally unimodular. 

Observation (6.3.20)[186]: Each d×d minor of G̃ is a product of  the corresponding 

minor of G
  and a number ζ satisfying (d(j0−1)(ε)/2)d ≤ ζ ≤ 1. 

Proof. Consider a square submatrix S~ in G̃ and the corresponding submatrix S

in G


. 

If the corresponding minor is zero, there is nothing to prove. If it is non-zero, we 

reorder columns and rows of S~ in such a way that all entries on the diagonal  become 

non-zero, and do the same reordering  with S


.  Let i , cj  > 0 be such that after 

multiplying rows of S
  by i and columns of the resulting matrix by cj  we get S


.  

Then 
ˆdet( ) det( ) .i j

i j
S S c    

On the other hand, ici  ≥ d(j0−1)(ε)/2, because the diagonal entry of S
  is ±1, and the 



270 
 

absolute value of the diagonal entry of S~  is ≥ d(j0−1)(ε)/2.  The conclusion follows. 

Lemma (6.3.21)[186]: Let D be a d×J matrix with entries −1, 0, and 1, containing a 

d × d identity submatrix. If D is not totally unimodular, then it contains d+2 columns

 432121 ˆ,ˆ,ˆ,ˆ,ˆ...,ˆ ppppxx d  such that far all six choices of two vectors from the set 

}ˆ,ˆ,ˆ,ˆ{ 4321 pppp  minors obtained by joining them to }ˆ...,ˆ{
2

,1 d
xx are non-zero. 

Proof. Our argument follows [209] (see, also, [190]), where a similar statement is 

attributed to R. Gomory. 

Suppose that D  is not totally  unimodular, then it has a square submatrix S 

with |det(S)|≥ 2. Let S be of size h × h. Reordering columns and rows of D (if 

necessary), we may assume that D is of the form: 

,*0*
*0














hdI
hIS

D  

where Ih and Id−h  are identity matrices of sizes h × h and (d − h) × (d − h), 

respectively, 0 denote matrices with zero entries of the corresponding dimensions, 

and * denote matrices of the corresponding dimensions with unspecified entries. 

We consider all matrices which can be obtained from D by a sequence of the 

following operations: 

(i)  Addition or subtraction a row to or from another row, 

(ii) Multiplication  of a column by −1, 

provided that after each such operation  we get a matrix with entries −1, 0, and 1. 

Among all matrices obtained from D in such a way we select a matrix D̂ which 

satisfies the following conditions: 

(i) Has all unit vectors among its columns; 

(ii) Has the maximal possible number ξ of unit vectors among the first d 

columns. 

Observe that ξ < d because the operations listed above preserve the absolute 

value of the determinant and at the beginning the absolute value of the determinant 

formed by the first d columns was ≥ 2. Let dr be one of the first d columns of D̂  

which is not a unit vector. Let {i1, . . . , it} be indices of its non-zero coordinates. 
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Then at least one of the unit vectors 
1i

e , . . . , 
ti

e  is not among the first d columns of 

D̂  (the first d columns of D̂ are linearly independent). Assume that 
1i

e  is not among 

the first d columns of D̂ . We can try to transform D̂ adding subtracting the row 

number i1 to from rows number i2, . . . , it (and multiplying the column number r by 

(−1), if necessary) into a new matrix D̃ which satisfies the following conditions: 

(i)  Has among the first d columns all the unit vectors it had before; 

(ii)  Has 
1i

e as its column number  r; 

(iii) Has all the unit vectors among its columns. 

It is not difficult to verify that the only possible obstacle is that there exists another 

column dt  in D̂ , such that for some s {2, . . . , t} 

)65(,2det 11 

















t
s

ir
s

i

tri
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iDD

 

where by Dij we denote entries of D̂ . By the maximality assumption, a submatrix 

satisfying (65) exists. It is easy to see that letting 

}4ˆ,3ˆ,2ˆ,1ˆ{ pppp ={dr  ,ds , 
1i

e ,
s

ie }and }2ˆ...,...,1̂{ dxx ={e1, . . . , ed}\{
1i

e  , 
s

ie }, 

we get a set of columns of  D̂  satisfying the required condition. 

Since the operations listed above preserve the absolute values of d×d minors, 

the corresponding columns of D form the desired set. 

We continue our proof of Lemma (6.3.19). Assume the contrary.  Since there 

are finitely many possible values of j0, there is j0 and a subset 

 Φ4  (0, 1), whose closure contains 0, satisfying the condition: 

For each εΦ4 there is Z Zε such that following the construction, we get the 

preselected value of  j0, and the obtained matrix Ĝ  is not totally unimodular. 

Since the entries of Ĝ  are integers, the absolute values of the minors are at 

least one. We are going to show that the corresponding minors of G are also 

‘sufficiently large’, and get a contradiction using Lemma (6.3.12). 

By the observation above the corresponding minors of G̃are at least 

(d(j0−1)(ε)/2)d. The Euclidean norm of a column in G̃ is at most 1 + dd(j0−1)+1(ε).  
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Applying Lemma (6.3.13) d times we get that the corresponding minor of G are at 

least 

(d(j0−1)(ε)/2)dε –d2 d(j0−1)+1(ε) · (1 + dd(j0−1)+1(ε))d-1
. 

We are going to (use Lemma 6.3.12) for x1, . . . , xd−2, p1, p2, p3, p4 defined in 

the following  way.  Let  x̌ 1, . . . , x̌d−2, p̌1, p̌2, p̌3, p̌4  be the columns of G 

corresponding to the columns 4ˆ,3ˆ,2ˆ,1ˆ,2ˆ,...,1ˆ ppppdxx  of Ĝ  and x1, . . . , x d−2,  p    

1,p2,p3,p4  be their normalizations (that is, x1  = x̌1/||x̌1||, etc). Since norms of columns 

of G are ≤ 1, the condition (38) of Lemma (6.3.12) is satisfied with 

χ(ε) = (d(j0−1)(ε)/2)d –d2 d( j0−1)+1(ε) . (1 + dd(j0−1)+1(ε))d-1. 

Now we recall that columns {gj } of G satisfy (57) for some vectors bj Ω̌ (ω(ε), 

δ(ε)). Hence the distance from x1, . . . , xd−2, p1, p2, p3, p4 to the corresponding vectors 

bj  is ≤ 2ddj0 (ε). By (34) the condition (37) is satisfied with 

π(ε) = 2ddj0 (ε) + C5(d)ω(ε) 

and 

σ(ε) = c3(d)δ(ε). 

The fact that the conditions (ii) and (iii) of Lemma (6.3.12) are satisfied is verified in 

the same way as at the end of Lemma (6.3.17), the only difference is that instead of 

(64) we have (ϕd(j0−1)(ε))d = O(χ(ε)). This does not affect the rest of the argument. 

Therefore, under the same condition on k as in Lemma (6.3.23), we get, by Lemma 

(6.3.12), that Ĝ  should be totally unimodular if ε > 0 is small enough. 

Lemma (6.3.22)[186]: If Ĝ is totally unimodular, then there exists a zonotope TTd 

such that 

d(Z, T ) ≤ td(ε), 

where td(ε) is a function satisfying limε↓0 td(ε) = 1. 

Proof. Observe that the matrix  G̃can be obtained from Ĝ  using multiplications of 

rows and columns by positive numbers. Hence, re-scaling the basis {ei}, if 

necessary, we get: columns of G̃ with respect to the re-scaled basis are of the form 

aiτi, where τi are columns of a totally unimodular matrix. 
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We are going to approximate the measure µ̌ by a measure   supported on 

vectors which are normalized columns of G̃.  Recall that µ̌ is supported on a finite 

subset of Š . 

The approximation is constructed in the following way. We erase the measure 

µ̌ supported outside (Ω̌ (ω(ε), δ(ε)))C3(d)ω(ε). The total mass of the measure erased in 

this way is small by (33). As for the measure supported on B:= (Ω̌ (ω(ε), 

δ(ε)))C3(d)ω(ε), we approximate each atom of it by the atom of the same mass 

supported  on the nearest normalized column of G̃. We denote the nearest to zsupp 

 normalized column of G̃ by A(z). If there are several such columns, we choose one ߤ̌

of them. 

Now we estimate the distance from a point of (Ω̌ (ω(ε), δ(ε)))C3(d)ω(ε) to the  

nearest normalized column of G̃. The distance from this point to Ω̌ (ω(ε), δ(ε)) is 

C3(d)ω(ε), the distance from a point from Ω̌ (ω(ε), δ(ε)) to the point from Θ(ω(ε), 

δ(ε)) with the same top set (or its opposite), by Lemma (6.3.2), can be estimated from 

above by  2
2 4

))((
)(2 


 dv

 the distance from a point in Θ(ω(ε), δ(ε)) to the 

corresponding column of G is estimated in (57), it is ≤ d .dj0 (ε), so it is ≤ d .1(ε), 

and the distance from a column of G to the corresponding column of G̃ is ≤ d.d ( 

j0−1)+1(ε) ≤ d.1(ε). Since we have to normalize this vector, the total distance from a 

point of (Ω̌ (ω(ε), δ(ε)))C3(d)ω(ε) to the nearest normalized column of G̃ can be 

estimated from above by 

  ).(1.424
2))((

)(2)()(3 


 ddvdC   

It is clear that this function, let us denote it by ζ(ε), tends to 0 as ε ↓ 0, recall that  ρ(ε) 

=ek , ν(ε)= ε3k , ω(ε) = ε4k , ϕ1(ε) = 
11

1

d n

d
 

   . The obtained measure corresponds 

to a zonotope from Td. Let us denote this zonotope by T . 

Since the dual norms to the gauge functions of Z and T are their support 
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functions, we get the estimate 

( ) ( )( , ) sup . sup
( ) ( )

.T
h u h uzd T Z

u S u Sh u h uT z


 

 
    

So it is enough to show that 

1 2

( )
( , ) ( , ), (66)
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where limε↓0 C1(d, ε) = limε↓0 C2(d, ε) = 1. 

 Observe that Lemma (6.3.10) implies that there exists a constant  

0 < C7(d) < ∞ such that 

C7(d) ≤ ȟZ (u),   u  Š.                                       (67) 

We have 
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In a similar way we get 

ˆ( ) , ( ) , ( ) ( , , ( ) ) ( )
sup

( ) ( ) ( ), .

T
S B

Z

h u u z d z u z d z u z u A z z
z p B

h u S u S

  


  

    
 

   



  


 
        

Using (67) we get 
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It is an estimate of the form (66). 

It is clear that Lemma (6.3.22) completes our proof of Lemma (6.3.7). 

Theorem (6.3.23)[186]: Let X be  a finite-dimensional normed linear space having an 

MVSE that is not a parallelepiped. Then X contains a two-dimensional subspace 

whose unit ball is linearly equivalent to the regular hexagon. 

Proof. We start by proving Theorem  (6.3.5)  for polyhedral X. In this case we can 
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consider X as a subspace of m
   for some mN.  Since X has an MVSE which is not 

a parallelepiped, there exists a linear projection P: Xm   such that P ( mB  ) has the 

minimal possible volume, but P ( mB ) is not a parallelepiped. Let d = dim X,  let 

{q1, . . . , qm−d} be an orthonormal basis in ker P and let {q̃1, . . . , q̃d} be an 

orthonormal basis in the orthogonal complement of ker P . As it was shown in 

Lemma (6.3.8), P( mB ) is linearly equivalent to the zonotope spanned by rows of Q~  

= [q̃1, . . . , q̃d].  By the assumption this zonotope is not a parallelepiped. It is easy to 

see that this assumption is equivalent to:  there exists a minimal linearly dependent 

collection of rows of Q~ containing ≥3 rows. This condition implies that we can 

reorder the coordinates in m
  and multiply the matrix Q~  from the right by an 

invertible d × d matrix C1 in such a way thatQ~ C1 has a submatrix of the form 

,

21

100

010
001























daaa 






 

where a1   0 and a2  0. Let  be a matrix whose columns form a basis of X. The 

argument of [205] implies that can be multiplied from the right by an invertible d × 

d matrix C2 in such a way that  C2 is of the form 





































*21

100

010
001

asignasign

 

where at the top there is an d × d identity matrix, and all minors of the matrix  C2  have 

absolute values ≤ 1. 

 Changing signs of the first two columns, if necessary, we get that the subspace X 

 m
  is spanned by columns of the matrix 
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The condition on the minors implies that |bi| ≤ 1, |ci| ≤ 1, and |bi  − ci|≤1 for each i. 

Therefore the subspace, spanned in m
  by the first two columns of the matrix (68) is 

isometric to R2 with the norm 

||(α, β)|| = max(|α|, |β|, |α + β|).  

It is easy to see that the unit ball of this space is linearly equivalent to a regular 

hexagon. Thus, Theorem (6.3.23) is proved in the case when X is polyhedral. 

Proving the result for general, not necessarily polyhedral, space, we shall 

denote the space by Y. We use Theorem (6.3.5). Actually we need only the following 

corollary of it: 

Each MVSE is a polyhedron.   

Lemma (6.3.24)[186]: Let Y be a finite dimensional  space and let A be a polyhedral 

MVSE for Y . Then there exists another norm on Y such that the obtained normed 

space X satisfies the conditions: 

(i) X is polyhedral; 

(ii) BX  BY ; 

(iii) A is an MVSE for X. 

So we consider the space Y as being embedded into a polyhedral space X with 

the embedding satisfying the conditions of Lemma (6.3.24).  

By the first part of the proof the space X satisfies the conditions of Theorem 

(6.3.23) and we may assume that X is a subspace m
   in the way described in the first 
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part of the proof.  So X is spanned by columns - let us denote them by e1, . . . , ed - of 

the matrix (68) in m
  . It is easy to see that to finish the proof it is enough to show 

that the vectors e1, e2, e1 − e2 are in BY . 

It turns out each of these points is the center of a facet of a minimum-volume 

paral-lelepiped containing BX . In fact, let m
iif 1}{   be the unit vector basis of m

  . Let 

P1 and P2 be the projections onto Y with the kernels lin{fd+1, . . . , fm} and lin{f1, fd+2, 

. . . , fm}, respectively (recall that Y, as a linear space, coincides  with X). The 

analysis from [89] shows that P1( mB  ) and P2( mB  ) have the minimal possible 

volume among all linear projections of mB  into X.  It is easy to see that P1( mB  ) and 

P2( mB  ) are parallelepipeds. 

We show that e1, e2 are centers of facets of P1( mB  ), and that e1 − e2 is the 

center of a facet of P2( mB  ). In fact, the centers of facets of P1( mB ) coincide with 

P1(f1), . . . , P1(fd), and it is easy to check that  P1(fi)  = ei  for i = 1, . . . , d.  As for P2, we 

observe that e1 − e2  lin{f1, f2, fd+2, . . . , fm}, and the coefficient near f2  in the expansion 

of e1 − e2 is ±1. Therefore P2(f2) = ±(e1 − e2). 

Since the projections P1 and P2  satisfy the minimality  condition from [174] 

(see, also [89]), the parallelepipeds P 1( mB  )and P2( mB  ) are MVSE for X.  Hence, by 

the conditions of Lemma (6.3.24), they are MVSE for Y also. Hence, they are 

minimum-volume parallelepipeds containing BY. On the other hand,   it is known, see 

[210], that centers of facets of minimal-volume parallelepipeds containing BY should 

belong to BY , we get e1, e2, e1 − e2 ∈ BY .  
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