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                                                    Chapter 1 

 One –Dimensional Finite Approximation  

1.1 Variational Formulation of Two-Point Boundary –Value  
Problems 

 In  this  chapter  we   want  to  discuss  a basis  of   finite  element  
approximation and weaker variational  statement of  the  problem.  Moreover,  
to   provide   some  symmetry   in   the   formulation,  we  generally   prefer to 
choose  a  formulation in which the  trial function 	ݑ	and test function  ݒ	have a 
same   degree  of  smoothness   that   is  we   would  like  to  have  a  variational 
statement  in which the highest order  of  derivatives of  ݑ		that  appears  is the  
same that of ݒ. For more details see [1,2,3,4,5] To demonstrate how this to 
done,  consider a boundary –value   problem defined by the system    
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Where the domain is divided into four smooth subdomains  ߗ௜  by the interface 
points   ݔ଴ = 0, ,ଵݔ ,	ଶݔ ସݔ	ଷ andݔ = ݈	. when  

⟦(௜ݔ)ݑ́(௜ݔ)݇⟧ = ݈݅݉
௫→௫೔

శ
−(ݔ)ݑ́(ݔ)݇ ݈݅݉

௫→௫೔
ష  (ݔ)ݑ́(ݔ)݇

Now  we   can  arrive  quite  easily  at   a  variational   statement   of    this  
problem  first   note   that   the   solution   ݑ		is   quite   smooth   inside   each  of 
the  subdomains   ߗ௜ .  Indeed,  by   virtue   of   the   fact   that  the  differential  
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equation  in  (1.1)   must   hold  in   these   subdomains,		ݑ			is    at   least  twice   
differentiable  there,  we construct the residual error function  ݎ.   

(ݔ)ݎ                 ݔ   ,  (ݔ)݂-(ݔ)ݑ(ݔ)ܾ+ (ݔ)ݑ́(ݔ)ܿ+ሖ[(ݔ)ݑ́(ݔ)݇]− = ∊ ,	௜ߗ ݅ = 1,2,3,4                                                                                

 Multiply  ݎ		by   sufficiently   smooth   test   function 	ݒ		defiend  over the 
entire interval  0 ≤ ݔ ≤ ݈, and  integrate  the  first  term  in the  product  ݒݎ	by  
parts over each subdomains .  The result over subdomain  ߗ௜  is of the form: 

 									∫ఆ೔ݒݎ ݔ݀ = ௫೔షభ|ݒ�ݑ́݇−
௫೔ + ∫ఆ೔(݇́ݒ́ݑ + ݒݑ́ܿ + (ݒݑܾ ݔ݀ − ∫ఆ೔݂ݒ  (1.2)           ݔ݀

                                                                                                          ݅ = 1,2,3,4 

 Now , since ݑ	is the solution of our problem , 

																																∫ఆ೔ݒݎ ݔ݀ = 0				and					∑ ∫ఆ೔ݒݎ ݔ݀ = 0ସ
௜ୀଵ                                  (1.3) 

Thus  substituting  (1.2)  into (1.3)  yields: 

න (݇
௟

଴
ݒ́ݑ́ + ݒݑ́ܿ + (ݒݑܾ ݔ݀ + (0)ݒ(0)ݑ́(0)݇ +  (ଵݔ)ݒ⟦(ଵݔ)ݑ́(ଵݔ)݇⟧

(ଶݔ)ݒ⟦(ଶݔ)ݑ́(ଶݔ)݇⟧+ + (ଷݔ)ݒ⟦(ଷݔ)ݑ́(ଷݔ)݇⟧ −  (݈)ݒ(݈)ݑ́(݈)݇

																																																																																																																= ∫ ሚ݂ݒ ௟ݔ݀
଴          (1.4)  

    For  all smooth test functions	ݒ.                      

And  the  function  ሚ݂ appearing  on  the  right-hand side of  (1.4)  is  
understood to be the “smooth part” or integrable part of the source	݂.                                                  
In view of (1.1), 

⟦(ଵݔ)ݑ́(ଵݔ)݇⟧        	= 0											,								 − ⟦(ଶݔ)ݑ́(ଶݔ)݇⟧ = 	 መ݂												 

⟦(ଷݔ)ݑ́(ଷݔ)݇⟧        = (0)ݑ́													,											0 =
ఊబషೠ(బ)ഁబ

ఈబ
(݈)ݑ́   ,											 =

ఊ೗షೠ(೗)ഁ೗
ఈ೗
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Thus (1.4) reduces to																																																																																													 

න ݒ́ݑ́݇) + ݒݑ́ܿ + (ݒݑܾ
௟

଴
ݔ݀	

= 		න ሚ݂
௟

଴
		ݒ ݔ݀ + መ݂ݒ(ݔଶ) −

݇(0)
଴ߙ

଴ߛ]	 − (0)ݒ[଴ߚ(0)ݑ

+
݇(݈)
௟ߙ

௟ߛ]	 −  						(1.5)																																																																		(݈)ݒ[௟ߚ(݈)ݑ

for all admissible test function	ݒ	. 

 A variational  statement   of   the   two-point    boundary-value   problem  
(1.1) now takes on the following form :  find a function ݑ	such that (1.5)  holds 
for all test functions ݒ	in asuitable class of admissible function.                                                               

           This is a rather  remarkable  result . We have  managed  to transform the  
entire  system  of  differential   equations ,   jump   conditions ,  and  boundary 
conditions  in  (1.1)   in  to a single  equation  in which  all of the features of the 
solution and the discontinuous  data are intrinsically present. 

         The  variational  problem (1.5)  characterizes   the solution  as  a  function  
defined over the entire interval  0≤ ݔ ≤ ݈,  rather  than  piecewise  as in  (1.1) . 
Nevertheless,  it is clear that  any solution of (1.1) is  automatically a  solution 
of (1.5), we henceforth view the variational  statement(1.5) as given variation- 
nal  problem .   It   will always   include  the  classical  problem  as  special  case 
whenever the solution is sufficiently smooth . 

         Problem (1.5) is still incompletely defined . Our study established that the 
specification of the appropriate  space of  admissible functions lies at the heart 
of  our  analysis.  In  addition , the  character of  the  boundary terms  in  (1.5) 
deserves   further  comment  . 
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 We  now   list   several  fundamentally  important  observations  which lead 
to  a  more  concrete  definition  of  variational  statement of our problem: 

1- By  integrating   (݇́ݑ)ሖݒ  once  by  part ,  we  have   produced  an   integral  
involving   products   of  the  first   derivatives  of   trial  functions   u  and  
test  function   v . Thus ,  if  we  wish  to  identify  a  class   of    admissible 
functions on which  smoothness  assumptions are  barely strong enough  
to  make  this  integral  well defined,  it is  sufficient  to make u  and v  to 
be members of  a class  of functions,  denoted ܪଵ ,  whose derivatives of 
order 1 and  less  are  square-integrable  over  Ω  . In other  words  a  test 
function v will belong  to ܪଵ if  
 
                                       ∫ ଶ(ݒ́)] + [ଶݒ ݔ݀ < +∞௟

଴                                               (1.6)  
 
With   these   conventions , it  is  clear that  the  variational  statement of  
problem (1.1) is as follows  : Find a function ݑ ∈  ଵ such that (1.5) holdsܪ
for all test function 
 
ݒ																													                                ∈       (1.7)																																																									ଵܪ
																																																										                                                                            
We  also   encounter   frequency   the   subclass   of  functions  in  ܪଵ  that 
vanish at ݔ = ݔ ,0 = ݈  we  denote this class by 	ܪ଴ଵ , that is ݒ =  is (ݔ)ݒ
member of ܪ଴ଵ  if : 

                (a)       ݒ   satisfies  (1.6) 

                (b)     (0)ݒ = (݈)ݒ			,	0 = 0  

In particular , consider  the case  in which  we  have  essential  boundary 
conditions of form  
 
(0)ݑ                                = ఊబ

ఉబ
          and    								ݑ(݈) = ఊ೗

ఉ೗
                                  (1.8) 
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 Instead of the natural boundary conditions in (1.1), then the variational                              
boundary-value problem becomes: 

            Find a function u in ܪଵ satisfying (1.8) such that  

                    ∫ ݒ́ݑ́݇) + ݒݑ́ܿ + (ݒݑܾ ݔ݀ = ∫ ሚ݂ݒ௟
଴

௟
଴ ݔ݀ + መ݂ݒ(ݔଶ)                                  (1.9)  

                                                                                 For all ݒ ∈  ଴ଵܪ

2- Boundary  conditions  for  a  problem such as (1.1)  cannot be arbitrarily 
constructed ;they must be in some sense ,compatible with the governing  
differential equation of  the  problem . For example  the  specification  of 
an arbitrary  set  of  boundary   conditions  to  define  a  specific  solution 
of  a differential equation may  lead  to an  “ill-posed”  problem  in  
which the  solution  does  not  exist  at  all  exists  but  not  uniquely  
defined  or “well-behaved”.  Another useful feature of the variational  
formulation is that  whenever  the  boundary conditions can be  
incorporated naturally into an integration  by-parts formula ,  as was the 
case  in our  derivation of (1.5), they are automatically compatible with 
the differential equation   Thus ,  there  are  intrinsic  features  of   the  
variational  statement  of  a  boundary-value  problem that   serve  to  
characterize  well-posed problems . 

3- Recall that in our discussion of physical origins of  two-point  problems , 
boundary conditions fell into two categories:  
 essential  boundary conditions , in  which  the  value of the solution 	ݑ	 
is specified ,   and  the   natural   boundary   conditions ,  in   which    ́ݑ		or 
a combination  of  ݑ	 and  ݑ	́ 	is  specified . Exactly the same classification 
arises  naturally in variational  formulations  such as (1.5).                                                          
Suppose that  ݑ and	ݒ are  in  class ܪଵ. Then  derivatives   of ݑ		and		ݒ 
and higher may not exist . If ݒ is barely smooth enough to be in ܪଵ, it  is 
impo- ssible to be impose conditions on  derivatives  of ݒ of order 1 or 
higher. From   this   in observation,  it  follows   that  boundary  
conditions    enter  variational  boundary-value  problems of the type in 
(1.5) in two distinct ways : the essential boundary conditions , which 
involve the specification on of values of  the solution,  enter the  
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problem  the definition of the  of   the  space  of  admissible  functions ,  
whereas the natural boundary conditions which involve the   
specification   of  derivatives   of   the  solution,  dictate  the   actual  form   
of   the    variational  equation  . 
Inparticular,  we   see   from  the    form  of   problem   (1.5)   that   
natural boundary  conditions  appear on  the  right-hand   side of  the 
variational  equality  (1.5). 

       To fix ideas,  consider as examples  

           (i)    −(ݔ)″ݑ + (ݔ)ݑ = >0          ,   (ݔ)݂ ݔ < ݈                           

(0)ݑ                    = (݈)ݑ			,								0 = 0                                                                                                      

          (ii)    −(ݔ)″ݑ + (ݔ)ݑ = >0          ,   (ݔ)݂ ݔ < ݈  

(0)ݑ́                   = ,							଴ߛ (݈)ݑ́ =     ௟ߛ

According  (1.5) and  (1.9) ,  the  variational  statements  of    these 
problems  are :  

            (v-i)  find ݑ in ܪ଴ଵ such that  

                                     ∫ ݒ́ݑ́) + (ݒݑ ݔ݀ = ∫ ݒ݂ ଵݔ݀
଴

ଵ
଴      for all     ݒ ∈  ଴ଵܪ

Where  in  ܪ଴ଵ  is  class of  functions  ݒ  satisfying  (1.6) and  vanishing  at  
the boundaries  : 				(0)ݒ = 0 =  .(݈)ݒ

            (v-ii)   find ݑ ∈   ଵ such thatܪ

                                   ∫ ݒ́ݑ́) + (ݒݑ ݔ݀ = ∫ ݒ݂ ݔ݀ − (0)ݒ଴ߛ
ଵ
଴

ଵ
଴ +                             ,   (݈)ݒ௟ߛ

ݒ					݈݈ܽ	ݎ݋݂																																																																																																															 ∈  ଵܪ

Clearly , the   essential  boundary  conditions   (v-i)  enter the variational 
problem   through  the  definition  of    the  class  ܪ଴ଵ		of   admissible    test 
functions ,  whereas  the  natural   boundary  conditions   in  (v-ii)  enter 
as data  on  the right-hand  side of the  equation. 
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 (4)   As   a   final remark ,   we  may  also   define  as  the   energy   norm  
for  problem (1.5) when  ܾ(ݔ) > 0 , 

ா‖ݒ‖                               = ቂ∫ ଶݒ́݇) + (ଶݒܾ ௟ݔ݀
଴ ቃ

ଵ
ଶൗ                                                    (1.10) 

Frequently , we employ the equivalent  ܪଵ − norm  

ଵ‖ݒ‖                                  = ቂ∫ ଶݒ́) + (ଶݒ ௟ݔ݀
଴ ቃ

ଵ
ଶൗ                                                       (1.11) 

This  norm provides a  natural  measure  of  error  in  approximations  to 
problem like (1.5) .  

 

Galerkin Approximations: 

 The Galerkin approximation of  second-order boundary-value problems 
follows exactly the same lines as those discussed for  the  model  problem . We 
identify a finite  set of basis functions  {∅ଵ, ∅ଶ, … , ∅ே} in 	ܪଵ	that define a finite-
dimensional   subspace  of   test  functions  ܪ௛ 	in ܪଵ.  We then  seek a  function 
௛ݑ ∈        : ௛of the formܪ

(ݔ)௛ݑ                                          = ∑ ௝ேߙ
௝ୀଵ ∅௝(ݔ)                                                       (1.12) 

Which     satisfies   the  variational  problem   on   ܪ௛ .  For  problem  (1.5) , this 
procedure  leads to the discrete problem    

   ∫ ௛ݒ௛́ݑ́݇) + ௛ݒ௛ݑ́ܿ + (௛ݒ௛ݑܾ ݔ݀ = ∫ ሚ݂ݒ௛ ݔ݀ + መ݂ݒ௛(ݔଶ)
௟
଴

௟
଴  

																												− ௞(଴)
ఈబ

଴ߛ] − ௛(0)ݒ[଴ߚ௛(0)ݑ +
௞(௟)
ఈ೗
௟ߛ] −  ௛(݈)            (1.13)ݒ[௟ߚ(݈)௟ݑ

                                                                                          For all  ݒ௛ ∈   ௛ܪ

Or , equivalently, 

                                       ∑ ௝ߙ௜௝ܭ = ,					௜ܨ ݅ = 1,2, … , ܰே
௝ୀଵ                                        (1.14) 
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Where the stiffness matrix 	ܭ௜௝  is now of the form  

௜௝ܭ	              = ∫ ൫݇∅ሖ ௜∅ሖ ௝ + ܿ∅ሖ ௜∅௝ + ܾ∅௜∅௝൯ −
௞(଴)ఉబ
ఈబ

ଵ
଴ ∅௜(0)∅௝(0) 

                                             + ௞(௟)ఉ೗
ఈ೗

∅௜(݈)∅௝(݈)                                                             (1.15)                             

And the components of the load vector are: 

௜ܨ           = ∫ ሚ݂∅௜ ݔ݀ + መ݂∅௜(ݔଶ)
௟
଴ − ௞(଴)

ఈబ
଴∅௜(0)ߛ +

௞(௟)
ఈ೗
 ௟∅௜(݈)                             (1.16)ߛ

                                                                               With   1 ≤ ݅, ݆ ≤ ܰ   

Upon   solving  (1.14)  for   the  coefficients  ߙ௝  our  Galerkin  approxima- 
tion  of   the  problem  is  obtained  immediately   from  (1.12)  as  before ,  this 
method  of  approximation   becomes   very   powerful   whenever  we   have  a  
systematic  technique    for   constructing   the    basis    functions   ∅௜	.  Such   a   
systematic  is  provided , by  finite   element   techniques ,  we  note that the  
stiffness  matrix   ݇௜௝ 		is  not  symmetric   whenever  the   coefficient   c   in  
(1.15)  is  not identically zero. 

Minimization of Energy Functionals: 

Our   reference    to  certain  weak  forms   of  boundary-value   problems  
as   “ variation ”   statements    arises    from    the   fact   that ,  whenever    the  
operators  involved   possess  a certain  symmetry    to  be  identified  below ,  a 
weak form of the  problem  can  be  obtained  which  is   precisely   that  arising  
in   standard   problems    in    the    calculus   of    variations .  In   such   cases  ,  
the   variational  boundary-value    problem   represents  a  characterization  of   
the  function   ݑ  which  minimizes  “or maximizes”  the  energy  of the problem 
since   one   may   find   this   interpretation   useful   from   time  to  time ,  we  
summarize  here  some  of these  variational  concepts. 

Let   us  consider   once   again  a   class 		ܪ଴ଵ	 of   functions   ݒ  defined   on  
interval   0 < ݔ < ݈  and  vanishing  at  the  endpoints  .  Suppose that J denotes 
a real valued function defined on ܪ଴ଵ given by  
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(ݒ)ܬ									                      = ଵ
ଶ∫ ݒ́݇)

ଶ + ଶ௟ݒܾ
଴ − (ݒ2݂  (1.17)                                              ݔ݀

 Where	݇		, ܾ	,  and   f   are   given   functions   of  ݔ		,  with    ݇  and    ܾ	 satisfying 
0 < ݇଴ ≤ (ݔ)݇ < ∞  and  ܾ(ݔ) ≥ 0 for all 	ݔ	, ݇଴	 being  a positive constant . We 
may  generally  regard  ܬ  as  energy  of  certain  physical  system , note that ܬ is 
“a function of functions”  (i.e  , the  domain  of			ܬ		is the   class  ܪ଴	ଵ  of admissible 
functions) and that the values of  ܬ		are real numbers .  Any function with these 
properties is called a functional.  

Now  a  classical minimization  problem in the calculus of variations is to 
seek  a  particular  function  ݑ ∈  assumes   it  is  smallest  value ܬ  ଴ଵ  at   whichܪ
over the whole  class  ܪ଴ଵ	.  In  other  words  , “ݑ	 is  the minimize  of  ܬ	over ܪ଴ଵ	” 
means that  

(ݑ)ܬ                                    ≤ ,					(ݒ)ܬ ݒ			݈݈ܽ	ݎ݋݂ ∈  ଴ଵ                                            (1.18)ܪ

The   minimization    problem   now   reduces   to  one  of   characterizing   
the  minimizing   function  ݑ	.  Toward  this   end ,   we  consider   an  arbitrary  
function  ߟ ∈ ଵ	଴ܪ 	 of  the  form   ƞ= ݑ + ,	ݒ߳   is  a positive	arbitrary,  where   ߳ 	ݒ
number, then ƞ  can  be  made  as  close  to  ݑ as  possible  by  choosing ߳  small 
enough . The “perturbation” ߳ݒ	in	ݑ is called a variation in ݑ and is often 
written	ݑߜ	. The value of energy at ƞ is  

(ߟ)ܬ                              = ݑ)ܬ +  	(ݒ߳

                                       = (ݑ)ܬ + ;ݑ)ܬߜ߳ (ݒ + ߳ଶߜଶ(1.19)                                          (ݒ)ܬ 

Where by a direct calculation using (1.17), 

;ݑ)ܬߜ                        (ݒ = ∫ ݒ́ݑ́݇) + ݒݑܾ − (ݒ݂ ଵݔ݀
଴                                                  (1.20) 

and 

(ݒ)ܬଶߜ                           = ଵ
ଶ∫ ݒ́݇)

ଶ + ଶ)௟ݒܾ
଴  (1.21)                                                          ݔ݀

The quantity  ݑ)ܬߜ;  is called	(ݒ)ܬଶߜ  and  ݑ at ܬ is called the first  variation in	(ݒ
the second  variation  in  ܬ at ݑ	.  It is  clear that  ݑ)ܬߜ;  can also be calculated	(ݒ
using the formula: 
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;ݑ)ܬߜ                                 (ݒ = ݈݅݉ఢ→଴
ଵ
ఢ
ݑ)ܬ] + (ݒ߳ −  [(ݑ)ܬ

                                                 = డ
డఢ
ݑ�)ܬ +   ఢୀ଴                                                       (1.22)|(ݒ߳

 Now  since  ߜଶ(ݒ)ܬ  is , because  of  our  assumptions  on ݇	and	ܾ, always 
greater than or equal to zero, and since ݑ is minimize of ܬ, 

(ݑ)ܬ ≤ ݑ)ܬ + (ݒ߳ = (ݑ)ܬ + ;ݑ)ܬߜ߳ (ݒ + ߳ଶߜଶ(ݒ)ܬ 

Thus, 

;ݑ)ܬߜ (ݒ + (ݒ)ܬଶߜ߳ ≥ 0 

or taking the limit as ߳ goes to zero, 

;ݑ)ܬߜ                                     (ݒ ≥ 0         for all   ݒ ∈  ଴ଵܪ

But this inequality must also hold if  ݒ replaced by  –  is the actual ݑ	so that if ,ݒ
minimize of ܬ, we must have  

;ݑ)ܬߜ                                   (ݒ = 0        for all			ݒ ∈  ଴ଵ                                              (1.23)ܪ

In  other  words ,  the  minimize  of  ܬ	 is   characterized  as  the  solution  of  
the variational boundary-value problem 

                 ∫ ݒ́ݑ́݇) + (ݒݑܾ ݔ݀ = ∫ ݒ݂ ௟ݔ݀
଴

௟
଴           for all ݒ ∈  ଴ଵ                              (1.24)ܪ

We recognize (1.24) as a variational statement of the classical boundary-value 
problem  

ሖ[(ݔ)ݑ́(ݔ)݇]−																� + (ݔ)ݑ(ݔ)ܾ = 0				,(ݔ)݂ < ݔ < ݈		
(0)ݑ = (݈)ݑ				,				0 = 0

ൠ                                 (1.25)     

These  concepts  drawn  from  variation  calculus  are   the  basis  for  our 
use of the term  “variational boundary-value problem”   when  we  refer  to the  
weak statement (1.24) of (1.25) . We continue to refer to problems of the form 
(1.24)  as  variational  problems  even  in those cases in which they  cannot be 
derived from a problem of minimizing some energy functional. 
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It  is  also clear  that  the  problem  of  approximating   the  solution  ݑ		of  
(1.24)  can  be  approached  as   one  of   seeking a minimize of ܬ	in some finite-
dimensional  subspace  ܪ௛	of  ܪ଴ଵ  . Then  

       If     ݑ௛(ݔ) = ∑ ௜ேݑ
௜ୀଵ ∅௜(ݔ),      

(௛ݑ)ܬ                =
ଵ
ଶ
∫ ଶ(௛ݑ́)݇] + ௛ଶݑܾ − [௛ݑ2݂ 	ݔ݀
௟
଴ 												 

                         = ଵ
ଶ
∑ ∑ ௝ேݑ

௝ୀଵ
ே
௜ୀଵ ቂ∫ (݇∅ሖ ௜∅ሖ ௝ + ܾ∅௜∅௝ − 2݂∅௜) ݔ݀

௟
଴ ቃ   ௜            (1.26)ݑ

                         = ଵ
ଶ
∑ ∑ ௜ேݑ

௝ୀଵ
ே
௜ୀଵ ௝ݑ௜௝ܭ − ∑ ௜ேݑ௜ܨ

௜ୀଵ   

Where ݇௜௝ 		and		ܨ௜ are  components  of the stiffness matrix and the load vector, 
respectively: 

௜௝ܭ                  = ∫ ൫݇∅ሖ ௜∅ሖ ௝ + ܾ∅௜∅௝൯ ;			ݔ݀ ௜ܨ			
௟
଴ = ∫ ݂∅௜

௟
଴  (1.27)                                 ݔ݀

  , so that	௜ݑ is minimize by choosing the coefficients (௛ݑ)ܬ

                                    డ௃(௨೓)
డ௨೔

= 0					; 			݅ = 1,2, … , ܰ                                                  (1.28) 

Thus  , once again , we arrive at the system of equations 

                              ∑ ௝ݑ௜௝ܭ = ;			௜ܨ 									݅ = 1,2,… ,ܰே
௜ୀଵ                                            (1.29)                            

  

          The  approximation   scheme  outlined  above  is  called  the  Ritz  method  
We  see  that  the  Ritz  method  can  be  used  as  a  basis for constructing finite 
element approximations  of  variational boundary-value  problems   whenever    
the  problem  is  equivalent  to  finding  a  function  ݑ			which  makes   the   first  
variation of an energy functional  ܬ		vanish for all admissible variations  ݒ . We  
conclude with a final  observation  of  some  importance .  
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         Note  that  the  governing   differential  equation  in   linear   second-order 
problems can be written compactly in the operator form  

ݑܣ                                                                   = ݂                                                           (1.30)    

Where ܣ		is the  differential operator for the problem  . If ݑ	and	ݒ	are arbitrary 
smooth  functions  vanishing  at  ݔ = 0		and		ݔ = ݈	,  the operator ܣ	is said to be 
formally self-adjoint whenever  

                                           ∫ ݑܣݒ ݔ݀ = ∫ ݒܣݑ ௟ݔ݀
଴

௟
଴                                                      (1.31) 

         It can be shown that an energy functional ܬ	of the  type in  (1.1) exists   for 
a given boundary-value problem only when the operator ܣ		for  the problem is 
self-adjoint  . For  self-adjoint   problems   and   therefore,  for   all   problems 
derivable  from  an  energy   functional   in   the  manner  outlined   above ,  the 
stiffness  matrix   (1.27)  resulting  from  a Ritz  approximation  will  always  be 
symmetric .  clearly , when  Ritz’s  method  is  applicable ,  it  leads to the same 
system of  equations  as  Galerkin’s  method .The operator was not self-adjoint. 
For this reason , it is clear that Galerkin’s method is applicable to a wider class 
of problems than is Ritz’s method . 

Finite Element Interpolation: 

         While  we  have  presented   the   finite   element  method   as   a technique 
for systematically  applying  Galerkin’s  method  to  the  approximate   solution   
of boundary-value  problems,  a brief  reflection  reveals  that  the  underlying 
ideas also provide a basis for methods of  interpolation.   

       Indeed  , the  finite element concepts can be used to construct curve-fitting 
schemes  where  in any  given  function g		can  be approximated by a system of 
piecewise   polynomials ,   the   values  of			g		which  coincide with those of g	at  
prescribed  nodal  points  in  the  domain  of  g	. When  viewed  in  this  way ,  a 
variety of choices of element shape  functions  come to mind which are merely 
bases of well-known methods of  interpolating  smooth  functions . 

           Suppose  that  we  are  given a  function  g		defined  on interval  0 ≤ ݔ ≤ ݈ 
and the		g		is  smooth  enough  to  be continuously  differentiated 	݇		times  and  
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that its  derivative  of  order  ݇ + 1			is  bounded  (finite)  on  this  interval  . We 
wish to  construct  a finite element approximation (an interpolant) g௛	of g	that 
coincides  with g	at the nodal points ,  and  we  wish  to  estimate  the  accuracy  
of such approximations . We  begin by   partitioning  the   interval   into  a 
collection of finite elements. Then comes the problem of showing   just   how   
general   shape    functions   can  be   constructed. We   describe   next  a 
technique   for    generating    polynomial    shape    functions    of   any    degree  
݇		( i.e ,  each  shape  function  ߖ௜௘ 	 will  contain  monomials   in  ݔ up   to  ݔ௞	, ݇  
being a positive  integer) .  The  technique  leads  to  the   Lagrange  families  of  
finite   elements , the  name  “Lagrange”   being   borrowed   from  the notion of 
Lagrange interpolation , from which these element families are derived . 

          A Lagrange finite  element employing polynomials of degree ݇	is constru- 
cted as follows: 

1-  We consider a  typical  finite  element ߗ௘ 		isolated  from  the mesh  
and  we   establish  a  local  coordinate   system  ߦ		, with  origin  now  
at the center  of   the   element ,  scaled  so  that  ߦ = −1		at   the  left   
endpoint  and  ߦ = 1			at   the  right  endpoint  ,  this  is   achieved   by  
the   simple   linear stretching transform for  the  general  element   
௘ߗ  

ߦ                                                               = ଶ௫ି(௫೔ା௫೔శభ)
௫೔శభି௫೔

                                          (1.32) 

So that  points 	ݔ		such  that 	ݔ௜ ≤ ݔ ≤  ߦ  ௜ାଵ are  transformed  to  pointsݔ
such that −1 ≤ ߦ ≤ 1	 .  We  perform  our  element  calculations  on   this  
reference  or  “master”  element   ߗ	෡ 	and  denote  the  shape functions on 
the master element by ߖప෡  .	(ߦ)

2- For shape functions of  degree ݇	, we  identify ݇ + 1	nodes  (including 
the endpoints )  which   divide  the   element  into  ݇		equal   segments    
let   ߦ௜	, ݅ = 1,2, … , ݇ + 1	, denote   the  ߦ-coordinates   of  each  node .    
For  each  node   ߦ௜	,  we  form  the   product   of  	݇		linear   functions   
ߦ) − ݆ , (௝ߦ = 1,2, … , ݇ + 1, ݆ ≠ ݅ .  Note  that this product is zero at all 
nodes except ݅ .   
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These functions are of the form: 

              Node 1:       (ߦ − ߦ)(ଶߦ − ߦ)  …  (ଷߦ −  (௞ାଵߦ

 
   Node 2:      (ߦ − ߦ)(ଵߦ − ߦ)(ଷߦ − ߦ)  …  (ସߦ −  (௞ାଵߦ

                                                       . 

                                                       . 

                                                       . 

              Node i :        (ߦ − ߦ)…(ଵߦ − ߦ)(௜ିଵߦ − ߦ)  …  (௜ାଵߦ −  (௞ାଵߦ

                                                       . 

                                                       . 

                                                       . 

              Node k+1:    (ߦ − ߦ)(ଵߦ − ߦ)  …  (ଶߦ −  (௞ߦ

For each  node  i.  We  evaluate  the  corresponding  product  in  step  2 
at  ߦ = ௜ߦ 			 and  divide  the   product   functions  by  this  value . This 
normalizes  the   polynomials  so  that  ߖప෡ (௜ߦ) = 1   and  produces  the  
correct  shape function ߖప෡  corresponding to each node I . For (ߦ)
example ,  

(ߦ)෡ଵߖ =
ߦ)		 − ߦ)(ଶߦ − …(ଷߦ ߦ) − (௞ାଵߦ
ଵߦ) − ଵߦ)(ଶߦ − …(ଷߦ ଵߦ) − (௞ାଵߦ

 

 

(ߦ)෡ଶߖ =
ߦ)		 − ߦ)(ଵߦ − …(ଷߦ ߦ) − (௞ାଵߦ
ଶߦ)		 − ଶߦ)(ଵߦ − …(ଷߦ ଶߦ) − (௞ାଵߦ

 

or , in general , 
 
             

(ߦ)෡௜ߖ                   =
		(కିకభ)(కିకమ)…(కିక೔షభ)(కିక೔శభ)…(కିకೖశభ)
		(క೔ିకభ)(క೔ିకమ)(క೔ିక೔షభ)(క೔ିక೔శభ)…(క೔ିకೖశభ)

																							(1.33) 
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Figure 1.1  (a)   Amaster element ߗ෠  with k=1 nodes ;   (b)    linear shape functions 
corresponding to k=1 and (c) an element with three nodes and piecewise quadratic 
shape functions (k=2) 
 
These functions have the property that  
 

௝൯ߦ෡௜൫ߖ                                 = ൜
1						݂݅	݅ = ݆
0						݂݅	݅ ≠ ݆

� 																																																				(1.34) 

 
Which implies  that  ߖ෡௜(ߦ) is linearly independent . These k+1			functions 
define a basis for the set  of all polynomials  of degree  k  and we say that 
the basis ߖ෡௜ is complete . 
         This implies  that any polynomial  of degree  k or less can be repres- 
ented uniquely in terms of the Lagrange polynomial basis. This property  
carries over to the global basis functions ∅௜ , every polynomial of degree 
≤ ݇		can  be  expressed  in  a  unique  way  as a linear combination of the 
basis  functions  ∅௜ 		generated  using  the  Lagrange  shape  functions    in 
(1.33) . 
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Note  that  for  ݇ = 1			(linear shape  function ) , we  have  two nodes and 
shape functions are : 

																	�
(ߦ)෡ଵߖ =

ߦ − ଶߦ
ଵߦ − ଶߦ

=
1
2
(1 − (ߦ

(ߦ)෡ଶߖ	 =
ߦ − ଵߦ
ଶߦ − ଵߦ

=
1
2
(1 + ⎭(ߦ

⎬

⎫
																																																						(1.35)	

If  we  introduce  the  change  of  coordinates  ߦ = ℎ̸	ݔ2̅ − 1	,  where ̅ݔ = ݔ −   ,௜ݔ
then ߖଵ௘(ݔ) = 1 − (ݔ)ଶ௘ߖ ℎ  and̸	ݔ̅ =  .  Upon connecting  elements  together	ℎ̸	ݔ̅
to  form  the  finite  element mesh , the element functions match up to produce 
piecewise-linear basis functions ∅௜  . 

For ݇ = 2	 ( quadratic shape functions) ,  we  have  three  nodes  and the shape 
functions  

(ߦ)෡ଵߖ         =
ଵ
ଶ
ߦ)ߦ − 1)			, (ߦ)෡ଶߖ = 1 − ,			ଶߦ (ߦ)෡ଷߖ =

ଵ
ଶ
ߦ)ߦ + 1)																			(1.36) 

The corresponding global basis functions ∅௜  . 

         An estimate  of  the  error for piecewise-linear Lagrange interpolation can 
be  obtained  using  Taylor  series  .  

 let ܧ = g − g௛  be  the  interpolation  error function and consider an  arbitrary 
element   ߗ௘  with points 	ݔ௜ ≤ ݔ ≤   has			 in the  mesh . We  assume  that  g	௜ାଵݔ
bounded  second  derivatives . Now ,  on 	ߗ௘ ܧ	,	 = g − g௛ can be expanded in a 
local Taylor series about any interior point ݔ	ഥ : 

(ݔ)ܧ																										 = (ݔ̅)ܧ + ሖܧ ݔ)(ݔ̅) − (ݔ̅ +
1
2
ሖሖܧ ݔ)(ߦ) −  (1.37)																									ଶ(ݔ̅

Where ߦ	is a point between ̅ݔ	and ݔ	. 

           Since  g௛	is  the  interpolant  of  g		, the error  ܧ	is  zero  at  the  endpoints 
௜ݔ ,  .௜ାଵݔ

We  next  select  ̅ݔ		to  be  that  point at which  |ܧ|	 is  maximum .  At this point ,  
ሖܧ (ݔ̅) = 0, so that (1.37)  reduces  to  
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(ݔ)ܧ																															 = (ݔ̅)ܧ +
1
2
ሖሖܧ ݔ)(ߦ) −  	(1.38)																																																ଶ(ݔ̅

                                                                             For 	ݔ௜ ≤ ݔ ≤    .௜ାଵݔ

               

Figure 1.2    piecewise –linear basis functions ∅௜ for a 4-element mesh generated by 
linear shape functions ,ߖଵ௘, ߖଶ௘ defined over each element  

Next  , We set ݔ = ௜ݔ   or ݔ௜ାଵ  whichever  is  closer  to ̅ݔ (say ݔ௜) then  

(ݔ̅)ܧ																																												 = −
1
2
ሖሖܧ	 ௜ݔ)(ߦ) −  	(1.39)																																												ଶ(ݔ̅

hence 

|(ݔ̅)ܧ|		                                         = ଵ
ଶ
ቚܧሖሖ ቚ(ߦ) ௜ݔ) −  (1.40)																																														ଶ(ݔ̅
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Since  ݔ௜ାଵ − ௜ݔ = ℎ , then  |ݔ௜ − |ݔ̅ ≤ ℎ	̸2	 in   (1.37)  and   we   have   the  error 
bound		 

|(ݔ̅)ܧ|                                                 ≤ ௛మ

଼
ቚܧሖሖ ቚ(ߦ) 																																																								(1.41) 

Finally, ܧ = g − g௛  implies	ܧሖሖ = ǵሖ − ǵሖ ௛ = ǵሖ 	 within  ߗ௘ 	. Introducing  this result  
in (1.41)  and maximizing  over  all  the elements , we  obtain the final estimate  

ݔܽ݉																																			
଴ஸ௫ஸ௟

|(ݔ)ܧ| ≤
ℎଶ

8
ݔܽ݉
଴ஸ௫ஸ௟

ห݃́ሖ  (1.42)																																																		ห(ݔ)

Since ݃	ሖ́ is bounded on  the  domain ,  ǵሖ ≤ ܥ ≤ ∞	 in this   inequality , 	ܥ	being a 
constant. 

          A similar  procedure  can  be  used to  derive  error  bounds  for Lagrange 
elements of higher degree . For a finite element employing complete polynom-
ials of degree , the error bound assumes the form  

∞‖ܧ‖																																								 = ݔܽ݉
଴ஸ௫ஸ௟

|(ݔ)ܧ| ≤  (1.43)																																											ℎ௞ାଵܥ

 . This  estimate  indicates  that the  finite	being  a constant  independent of ℎ ܥ 
element interpolant g௛ of g	will  converge  to  g		(in the ‖•‖∞ −norm) at a rate 
of ݇ + 1 as ℎ  approaches zero . 

         Since , in general ,  the  local  Taylor’s   series  expansion  of  g		will contain 
polynomial terms of  all  degrees up through degree ݇	, it  is important that the 
interpolant (and , hence ,  also the shape functions in each element ) be able to 
represent each of  these  terms ,  if  for  example , the  shape  functions  contain 
independent  terms  proportional  to  ݔ଴	( constant ) ,	ݔଶ	, ,	ଷݔ …	, ௞ݔ	 	but  none 
proportional  to  ݔଵ,  then  the  error  will , in general , be  only  proportional to 
ℎ		instead  of   ℎ௞ାଵ	as  indicated  in  (1.43) .  If  constants  are missing from the 
shape functions , then the  representation  need not  converge at  all .Thus , the 
requirement that the set of shape  functions contain complete polynomial is of 
considerable importance. 
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           As a simple example of the finite element interpolation , consider an 
interpolation of the function  g(ݔ) = ݊݅ݏ on interval 0 	ݔߨ ≤ ݔ ≤ 1 by two 
quadratic elements , the nodes are at  ݔ = 0.0	,0.25	,0.50	,0.75	,		and 1.0 , and 
the value of g	at these nodes 0.0	,0.707	,1.0	,0.707	, and 0.0, so that the finite 
element interpolant is  

																															g௛(ݔ) = 0.707∅ଶ(ݔ) + ∅ଷ(ݔ) + 0.707∅ସ(ݔ)																									(1.44) 

                                

Figure 1.3   Interpolation of g(x)=sinݔߨ using two quadratic elements  

 

To obtain an estimate of the interpolation error ,  note  that  ݉ܽݔ
଴ஸ௫ஸ௟

หǵሖ ห(ݔ) =  ,ଶߨ

so that |g(ݔ) − g௛(ݔ)| ≤ ܿℎଷ, where ܿ = ଶߨ ̸48 . 

         A   final  comment  of   considerable   importance   should    be   made .  In  
arriving at the error bound (1.43) ,  we  assumed that  the  given  function  g	 is 
so smooth that it   has  continuous   derivatives  of  order ≤ ݇	.  Suppose that it 
does not .   Assume,  to  the  contrary, that  	g		has  continuous  derivatives  of  
only  order  s  	where 0 ≤ ݏ ≤ ݇	. Then,  no  matter  how  large the degree k	of 
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our interpolation g௛ 		,  only  its first ݏ	terms  may be effective in approximating  
g	. then instead of (1.43) ,  we have  

ݔܽ݉																																													
଴ஸ௫ஸ௟

|g(ݔ) − g௛(ݔ)| ≤ ܿℎଷ																																												(1.45) 

And the accuracy of our approximation, being  independent  of  ݇		, cannot be 
increased by increasing the degree of the polynomials defining  ߖ௜௘ . We can  
improve the accuracy by reducing  ℎ		as long as ݏ > 0	. 

1.2   Finite Element Approximation 

At  this  point in our study , we have accumulated  sufficient  information  
to  complete   a  detailed  finite  element  analysis  of   second –order two-point 
boundary-value  problems .  In this  section ,  we describe  all of steps through 
which  (1.5)  and  Galerkin  approximation (1.15) can be used as a basis for the 
analysis  of   quite  two-point  boundary-value  problems  by the finite element 
method . The  procedure is outlined as follows . 

 Partitioning ષ and Selection of Shape Functions  

        We  begin by partitioning  ߗ into a number of finite elements  ߗ௘   of length 
ℎ௘ 	(thus ∑ ℎ௘௘ = ݈ ) , we  will , for definiteness , assume  that the domain of the 
exact solution of our problem is composed of the four  natural  smooth  subdo- 
mains . Suppose that  the  concentrated   source  terms  in  ݂		is  located  at  the 
coordinate   ݔ = ݔ̅)ഥ	ݔ = ߪ   ଶ) . Then  the  fluxݔ =  will  experience  a jump  ݑ́݇−
⟦ߪ⟧ = መ݂	 at 	ݔ	ഥ . However , our  element  shape  functions  will  always  have the 
property   that  their   derivatives  are  continuous  within  each  element  and , 
therefore , they cannot accommodate a jump such as this  . For this reason , we  
will always  construct  our  mesh  so that  a  nodal point is located at all  points  
of   discontinuity  of  the   data .  Then  terms   such  as 		 መ݂ݒ௛(̅ݔ)   representing  
prescribed  jumps  will  never  enter  the  local  equations   which  characterize 
the approximation over  individual  elements . These  terms enter the analysis 
when the contributions of individual elements are summed . 

        We now focus our attention on typical element ߗ௘   and  consider  possible  
choices  of  shape  functions   ߖ௜௘	.  We  have  at  our disposal any member of 
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Lagrange families of  shape  functions . We  could , for instance , use  linear,  
quadratic , or cubic shape functions or , for the matter,  shape  functions  
consisting  of  polynomials of  any  degree ݇	.  

          As  ݇		increases , the bandwidth of the resulting stiffness matrix increases 
and thus , in general , so does the computational effort  required in solving the 
final  system  of  equations .  For  this reason , it  is  rare that shape functions 
containing polynomials of degree higher than ݇ = 2	, or	݇ = 3 are used  in  
applications .  We  shall  generally  use  linear or quadratic  shape functions in 
the analysis of one-dimensional problems. 

Calculation of Element Matrices and Equations 

          Having   selected  an appropriate set of shape functions , we now come to 
a crucial  step  in the  analysis,  the  calculation  of   local   approximations   of  
the  problem  over  each  element . To  see how  this is done , note  that in the 
actual problem, for any smooth subdomain ߗ௜  between points ݏଵ		and	ݏଶ, we 
have, for all admissible ݒ	.  

   ∫ ݒ́ݑ́݇) + ݒݑ́ܿ + (ݒݑܾ ݔ݀ = ∫ ሚ݂ݒ௦మ
௦భ

௦మ
௦భ

ݔ݀ + (ଵݏ)ݒ(ଵݏ)ߪ −  (1.46)           (ଶݏ)ݒ(ଶݏ)ߪ

Where 	ߪ(ݏ௜)	 is  the  flux  at  points  ݏ௜	, i=1, 2 .  Again note that the fluxes ߪ(ݏ௜) 
appear as given natural boundary data in the right-hand side of this   equation. 
Now  let  us  consider a  typical  element 	ߗ௘ 	 in  the  finite  element  mesh  with 
endpoints  ݏଵ	௘ܽ݊݀		ݏଶ	௘ . Using (1.46), We  formulate a variatinal statement of 
our problem for this single element independent of whatever boundary 
conditions   might  be  actually  imposed  at		ݔ = 0		and		ݔ = ݈ .  Thus  over each 
element we have a variational boundary-value problem of the form : 

			 න(݇ݑ௛௘´ݒ௛௘´ + ௛௘ݒ´௛௘ݑܿ + (௛௘ݒ௛௘ݑܾ

௦మ೐

௦భ೐
ݔ݀ 								

= න ሚ݂ݒ௛௘
௦మ೐

௦భ೐
ݔ݀ + (ଵ௘ݏ)௛௘ݒ(ଵ௘ݏ)ߪ −  (1.47)																																(ଶ௘ݏ)௛௘ݒ(ଶ௘ݏ)ߪ
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Where ݑ௛௘ 	and	ݒ௛௘  represent  restrictions of  ݑ௛	and		ݒ௛	 to	ߗ௘ 	. It is important to 
realize  that  the  ߪ(ݏ௜௘) are  the  true  values  of  the  flux at  (ݏ௜௘)  and  not  their 
approximations ;  as  explained  earlier,  the  quantities  ߪ(ݏ௜௘)  correspond  to 
natural  boundary  conditions  at  the  endpoints  of  ߗ௘	. Note  also that , unlike 
(1.16) , no point-source terms such as  መ݂ݒ௛௘(̅ݔ)  appear  in  (1.47)  because of 
our decision to locate end nodal points of elements at these points . 

         We  remark  that  we have  chosen  to use a  global x-coordinate system in 
(1.47) only  in  order  to  clarify  how  the  contributions  from  each element 
are actually  summed  together  in generating  the final stiffness and load 
matrices. In actual  computations,  these  contributions   are  generally  
calculated  for  a master  ( reference )  element  in  terms  of  normalized  local  
coordinate   ߦ	 in  ( 1.32)  and   are  then  transformed  to  the  appropriate  
coordinates  for  each element  in  the mesh . Note that ݑ௛௘  in (1.47) is of the 
form  

(ݔ)௛௘ݑ																																																	 =෍ݑ௝௘ߖ௝௘(ݔ)																																																	(1.48)
ே೐

௝ୀଵ

 

Where  ௘ܰ  is the number of  nodes  in  ߗ௘ ௝௘ߖ	,   are  the  shape functions for this 
element , and ݑ௝௘  is the value of ݑ௛௘  at the node ݔ௝௘  of the element  

௝௘ݑ                                        = ௛௘ݑ 	,…,j=1,2    ,   (௝௘ݔ)  ௘ܰ                                                (1.49) 

Upon substituting  (1.48)  into (1.47) and taking ݒ௛௘ = ௜௘ߖ  we arrive at the 
system of linear equations of the  form  

																					෍݇௜௝௘
ே೐

௝ୀଵ

௝௘ݑ = ௜݂
௘ + (ଵ௘ݏ)௜௘ߖ(ଵ௘ݏ)ߪ −  		(1.50)																											(ଶ௘ݏ)௜௘ߖ(ଶ௘ݏ)ߪ

In (1.50) ,  ݇௜௝௘  are  the  entries  in  the  element  stiffness  matrix  and  ௜݂
௘  are 

the components  of  the element load vector for ߗ௘ . 
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݇௜௝௘ = න ൫݇ߖ௜௘́ߖ௝௘́ + ௝௘ߖ௜௘́ߖܿ + ௝௘൯ߖ௜௘ߖܾ ,	ݔ݀
௦మ೐

௦భ೐
 

                                                                                      ݅, ݆ = 1,2, … , ௘ܰ 																								(1.51) 

                                  ௜݂
௘ = ∫ ሚ݂ߖ௜௘ ݔ݀

௦మ೐

௦భ೐
  

         In  actual  finite  element  calculations, the   integrals  in  (1.51)  are  rarely 
evaluated  in  closed  form . Instead, the  entries  ݇௜௝௘   are  generally  computed 
using  numerical  integration rules, which are of sufficient accuracy.  Also, it is 
common  practice to calculate  ௜݂

௘ using the interpolant of ݂ rather than ݂	itself  
for example , if  ሚ݂  is the continuous  part of  ݂	 (excluding point sources) and if  

௛݂
௘(ݔ) =෍ ሚ݂

ே೐

௜ୀଵ

 (ݔ)௜௘ߖ(௜௘ݔ)

Then, instead of the formula in  (1.51), we use  

																																																										 ௜݂௘ = න ௛݂
௘ߖ௜௘

௦మ೐

௦భ೐
ݔ݀ 																																														(1.52) 

In  this  way we  can  define  the  data  ݂		in our approximation by specifying its 
values at the nodal points. 

Element Assembly 

          Having  calculated  the  matrices  and  equations  describing our approxi- 
mation over  each finite element , the next step in our analysis is to assemble  
the equations  describing  the  approximation on the entire mesh by adding up 
the contributions to these equations furnished by each element. 

         To fix  ideas ,  consider  the  special  case in  which linear shape  functions 
of   the  form  in (1.35)  are   used .  Each  element   then  has  two  nodes ,  and 
therefore there are two equations per element of the following form: 

                                           �
݇ଵଵ௘ ଵ௘ݑ + ݇ଵଶ௘ ଶ௘ݑ = ଵ݂

௘ + (ଵ௘ݏ)ߪ
݇ଶଵ௘ ଵ௘ݑ + ݇ଶଶ௘ ଶ௘ݑ = ଶ݂

௘ + (ଶ௘ݏ)ߪ
ൠ																																							(1.53) 
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Here  the  subscripts  1  and  2  are  labels  of  the  endpoint  nodes  on a typical 
element and ߪ(ݏଵ௘)	 and  ߪ(ݏଶ௘) represent the actual values of the  flux ߪ =  ݑ́݇−
at the nodes .  Of course , these subscripts are to be relabeled upon assembling 
the elements so as to coincide with appropriate node numbers  1,2,3,…N in the 
final  mesh . For example ,  if  the  element  is  to  fit  between nodes 6 and 7 in 
a mesh ,  ݑଵ	௘  in (1.53)  is actually  ݑ଺ ,	ݑଶ௘  is ݑ଻,	ߪ(ݏଵ௘) is the of −݇́ݑ  as the node 
at ݔ଺ is approached from the right , and  ߪ(ݏଶ௘) is  −݇ݑ	́ as ݔ଻ approached from 
the left . 

           We   now  assemble  the   equations   describing   the  entire  collection of 
elements  comprising  our  mesh  by  sweeping   through  all  elements ,  one at 
a  time , and  using  (1.53)  to   calculate   the  contributions  of   each  of  them . 
Consider   for   example , a  mesh   containing   N-1  elements   and   N  nodes , 
numbered   consecutively   1,2,…,N . This  means that there results N  
equations  in  N  degrees  of freedom  describing  the assembled  system of 
elements , and we  must   allocate  space  in  the computer  for a  system  of 
this size, thus, we anticipate  calculating  an  ܰ × ܰ  stiffness   matrix   
ܭ = ܰ  ௜௝൧    and   anܭൣ × 1  load  vector		ܨ = { ௜݂}	, ݅, ݆ = 1,2, … ,ܰ. 

       We initiate the assembly process by setting  ܭ௜௝ = 0 and ܨ௜ = 0 for element 
 ଵ, between nodes 1 and 2 , (1.53) yields the equationsߗ

݇ଵଵଵ ଵݑ + ݇ଵଶଵ ଶݑ = ଵ݂
ଵ + (0)ߪ

			݇ଶଵଵ ଵݑ + ݇ଶଶଵ ଶݑ = ଶ݂
ଵ + (ଵିݔ)ߪ

 

Where  (0)ߪ =  is  the  actual  flux  at  node 1 as  this node is approached (0ା)ߪ
from the right and ߪ(ݔଵି) is the flux at the node at ݔଵat this node is approached 
from the left. 
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Figure 1.4    A finite -element mesh with N nodes and N-1 elements and the  assembled 
stiffness matrix with the shaded blocks of entries representing the contributions  of each 
element ; the symbols O represent the fact that outside the diagonal blocks all entries are 
zero 

These  equations are added into the first and second rows of the ܰ × ܰ system 
describing the entire mesh . 

        We  next  go  to  element  ߗଶ	  since  it  lies  between   nodes   2  and   3,  its 
contributions , calculating using  (1.53),  are  added  to  the  equations in rows 
2 and 3 .   Since  two  elements  and  three  nodes  have been (activated ) we 
now have the three equations 

݇ଵଵଵ ଵݑ + ݇ଵଶଵ ଶݑ 																														 = ଵ݂
ଵ + 																																	(0)ߪ

݇ଶଵଵ ଵݑ + (݇ଶଶଵ +݇ଵଵଶ ଶݑ( + ݇ଵଶଶ ଷݑ =		 ଶ݂
ଵ + ଵ݂

ଶ − (ଵିݔ)ߪ + (ଵାݔ)ߪ
 

݇ଶଵଶ ଶݑ + ݇ଶଶଶ ଷݑ 		= ଶ݂
ଶ −  (ଶିݔ)ߪ

 



 
 

26 
 

Continuing  this  process through the entire  system of N elements ,  we  arrive 
at the system : 

 

�

	݇ଵଵଵ ଵݑ + ݇ଵଶଵ ଶݑ 																																																												= ଵ݂
ଵ + 																	(0)ߪ

݇ଶଵଵ ଵݑ + (݇ଶଶଵ +݇ଵଵଶ ଶݑ( + ݇ଵଶଶ ଷݑ 																														= ଶ݂
ଵ + ଵ݂

ଶ + ⟦(ଵݔ)ߪ⟧
																											݇ଶଵଶ ଶݑ + (݇ଶଶଶ + ݇ଵଵଷ ଷݑ( + ݇ଵଶଷ ସݑ 		 = ଶ݂

ଶ + ଵ݂
ଷ + ⟦(ଶݔ)ߪ⟧

																											݇ଶଵଷ ଷݑ + (݇ଶଶଷ + ݇ଵଵସ ସݑ( +⋯										 = ଶ݂
ଷ + ଵ݂

ସ + ⟦(ଷݔ)ߪ⟧
.
.
.

									݇ଶଵேିଶݑேିଶ + (݇ଶଶேିଶ + ݇ଵଵேିଵ)ݑேିଵ + ݇ଵଶேିଵݑே 		= ଶ݂
ேିଶ + ଵ݂

ேିଵ + ⟦(ேିଵݔ)ߪ⟧
																												݇ଶଵேିଵݑேିଵ + ݇ଶଶேିଵݑே = ଶ݂

ேିଵ − (݈)ߪ ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

                                                                                                

                                                                                                                                           (1.54)  

Wherein ൳ߪ൫ݔ௝൯൷ denotes the jump in ߪ at nodes ݆:	 

																									൳ߪ൫ݔ௝൯൷ = ௝ା൯ݔ൫ߪ − ݆								,		௝ି൯ݔ൫ߪ = 2,3, … , ܰ − 1																			(1.55)	 

Recall that ⟦ߪ⟧ = 0 at the interior points at which the flux is continuous . 

If  there are no point sources  in the data ݂	located at interior nodes , all of the 
interior  jump  terms  in  (1.54) must  be  zero  and  only  the  values  of  ߪ  at 
the boundaries remain.  However, a  point source 	 መ݂௝ݔ)ߜ −  ௝) is  prescribed  atݔ
any interior node ݔ௝ , then we must set  

൳ߪ൫ݔ௝൯൷ = መ݂௝ 

In (1.54) 

Let us  assume  that  the  point  source  መ݂ݔ)ߜ − ݔ̅:is located  at  node  3	(ݔ̅ =  ,ଷݔ
then the linear system of equations for the entire mesh assumes the form  : 
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                                     (1.56) 

 

Where the ܰ × ܰ coefficient matrix contains the entries  

 

                           (1.57) 
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And  

																																								

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ F
෨ଵ
Fଶ
Fଷ
.
.
.

F୒ିଵ
F෨୒ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ fଵ

ଵ + σ(0)
fଶଵ + fଵଶ

fଶଶ + fଵଷ + fመ
.
.
.

fଶ୒ିଶ + fଵ୒ିଵ

fଶ୒ିଵ − σ(l) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

																																																						(1.58) 

The  stiffness  coefficients  ෨݇ଵଵ and ෨݇ேே and the load components  ܨ෨ଵ and ܨ෨ேare 
not yet of the general form  described  in (1.15) and (1.16) because they do 
not contain the  boundary  contributions . We discus  modifications  in these 
terms for various choices of boundary conditions subsequently . 

         Notes that the stiffness matrix  in (1.56)  is  sparse (there are many zeros) 
and that the location of the element matrices ,  indicated in the bordered 
blocks  in(1.56),  Overlap in rows and columns corresponding  to  shared  
nodes .  Note  also  that  if the  coefficient  ܿ	 in (1.46)  is  not identically  zero , 
the  matrix  will be unsymmetric . 

1.3   Boundary Conditions  

           An  extremely  important  feature  of   the  development up  to  this  point  
is  that  no  boundary  conditions  have ,  as   yet  been  applied . Thus , (1.56)  
is   applicable  to  a wide  range  of   the  boundary  conditions  .  Consider , for 
instance  the following cases : 

General Natural Boundary Conditions: 

These correspond to the general  case  in  which  a linear combination of 
 : are prescribed ݑ́	and	ݑ
(0)ݑ଴́ߙ														 + (0)ݑ଴ߚ = ,			଴ߛ (݈)ݑ௟́ߙ + (݈)ݑ௟ߚ = ௟ߛ 																		(1.59) 

          

 



 
 

29 
 

   In our approximation of this case,  we set  

௛(0)ݑ́																 =
଴ߛ − ௛(0)ݑ଴ߚ

଴ߙ
						and						́ݑ௛(݈) =

௟ߛ − (݈)௛ݑ௟ߚ
௟ߙ

																		(1.60)		 

             Where, of course,  ݑ௛(0) = (݈)௛ݑ		and	ଵݑ =   . ேݑ

 Then  (1.56) reduces to 

 

 

                                                                                        (1.61) 

If the final ܰ × ܰ stiffness matrix in (1.61) is  invertible , we can  solve (1.60) 
for the unknown nodal values  ݑଵ, ,ଶݑ … ,   ே. Other features of theݑ
approximation, such as the approximate flux 	ߪ௛ =  ௛, can then be easilyݑ́݇−
evaluated . 
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Dirichlet Boundary Conditions : 

       Boundary conditions of the type  

(0)ݑ																																 =
଴ߛ
଴ߚ
(݈)ݑ								,						 =

௟ߛ
௟ߚ
																																															(1.62) 

Follow  as  a  special  case  of  (1.59) when ߙ଴ = ௟ߙ = 0.  Essential boundary 
conditions of this form are usually  called  Dirichlet  boundary conditions of 
and the corresponding boundary-value problem is referred to as a Dirichlet 
problem for the function ݑ	. 

In  this case  ݑ௛(0) = ଵݑ = ଴ߛ ⁄଴ߚ 		 and    ݑ௛(݈) = ேݑ = ௟ߛ ௟ߚ 	⁄  ,   so  that  only 
N-2   unknown   nodal   values    ݑଶ,		ݑଷ		, …		,   ேିଵ  (1.57)   reduces    to   theݑ
(ܰ − 2) × (ܰ − 2) system : 

                

⎣
⎢
⎢
⎢
⎡

Kଶଶ kଶଷ 0								 …
kଷଶ kଷଷ kଷସ 					…
0 kସଷ kସସ 					…

					
0																												 0
0																												 0
0																												 0…………………………………………………………

								0								0									0									… 	k୒ିଵ,୒ିଶ							k୒ିଵ,୒ିଵ	⎦
⎥
⎥
⎥
⎤
	

⎣
⎢
⎢
⎢
⎡
ଶݑ
ଷݑ
ସݑ
⋮

⎦ேିଵݑ
⎥
⎥
⎥
⎤
 

																																																													= 				

⎣
⎢
⎢
⎢
⎢
⎢
⎡ ଶܨ −

݇ଶଵߛ଴
଴ߚ

ଷܨ
ସܨ
⋮

ேିଵܨ −
݇ேିଵ,ேߛ௟

௟ߚ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

																																		(1.63) 

  

And the two auxiliary equations corresponding  to nodes 1 and N ,  

																																						�
					 ෨݇ଵଵ ൬

଴ߛ
଴ߚ
൰ + ݇ଵଶݑଶ 		= ଵ݂

ଵ + (0)ߪ

݇ே,ேିଵݑேିଵ + ෨݇ேே ൬
௟ߛ
௟ߚ
൰ = ଶ݂

ேିଵ − (݈)ߪ
ൢ																													 (1.64) 

The  reduced  stiffness  matrix  in (1.63)  is  nonsingular,  so  that  (1.63)   can 
be solved for the unknown nodal values  ݑଶ	, ,ଷݑ … ,   . ேିଵݑ
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Of course (1.64) also provides useful information . Once		ݑଶ and ݑேିଵ	are 
known, the approximations of  the endpoint fluxes can be computed using  
(1.64). 

Neumann Boundary Conditions : 

When only the derivative of u is speciϐied at each end , (1.59) reduces to  

(0)ݑ́																																					 =
଴ߛ
଴ߙ
																,					 (݈)ݑ́ =

௟ߛ
௟ߙ
																																				 (1.65)					 

Whenever  ߚ଴ = ௟ߚ = 0	. Natural  boundary  conditions  of  this type  are called 
Neumann   boundary   conditions   and   the    corresponding    boundary-value 
problem is referred to as a Neumann problem for the function ݑ	. 

         Neumann  problems  frequently   require  some special considerations for 
certain  forms  of  the  governing  differential equation . In particular , consider 
the case in which the  coefficients 	ܿ = ܾ  and (ݔ)ܿ =  are  identically zero  (ݔ)ܾ
so that the boundary –value  problem  becomes  one  of solving the differential 
equation  

ሖ((ݔ)ݑ́(ݔ)݇)−																																																						 =    (1.66)																																													(ݔ)݂

On  smooth  subdomains ,  subject to the end conditions  (1.65) in this case , 
the solution  ݑ		 is  determined  only  to  within an arbitrary constant  ܿ଴ ; that 
is , if ݑ = ݑ satisϐies (1.65) and (1.66), then (ݔ)ݑ + ܿ଴ is also a solution . 
Because of the analogy of  (1.65) with equations describing  mechanical  
systems , the constant   	ܿ଴ is  sometimes  referred  to as a rigid motion , and 
this rigid motion must be specified if we are to obtain a unique solution to our 
problem . Moreover ,  the finite element approximation(1.56) of this Neumann 
problem will also contain an arbitrary rigid motion . Since solutions to (1.56) 
will  then  be  nonunique , the  stiffness matrix K in (1.57) will necessarily be 
singular  . 

       The presence of a rigid motion in the solution to a Neumann problem leads 
to another consideration of fundamental importance :  the data ݂, ,଴ߛ ,଴ߙ ௟ߛ  and 
௟ߙ   cannot  be specified arbitrarily , they must be compatible in a sense we will 
now make clear .  
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          Since  the  variational  form  of  this  Neumann problem (with ܿ, ܾ ≡ 0)  is 
to find ݑ ∈   ଵ such thatܪ

න ݒ́ݑ́݇ ݔ݀ = න ሚ݂ݒ
௟

଴

௟

଴
ݔ݀ + መ݂(ݔ̅)ݒ 

																																																																	−݇(0) ቀఊబ
ఈబ
ቁ (0)ݒ + ݇(݈) ቀఊ೗

ఈ೗
ቁ  (1.67)             (݈)ݒ

                                                                                                       For all ݒ ∈  ଵܪ

And since ݑ = ܿ଴ = constant  is  a  solution ,  this  equation  must also  hold  for 
ݑ = ܿ଴ and the choice ݒ = 1 . Hence , the data must be such that  

																																											න ሚ݂
௟

଴
ݔ݀ + መ݂ −

଴ߛ(0)݇
଴ߙ

+
௟ߛ(݈)݇
௟ߙ

= 0																														(1.68) 

The compatibility condition (1.68) is a necessary condition for the existence of 
a  solution  to  (1.67) . We  remark   that  from  a  physical  viewpoint  (1.68)   is  
a global conservation law ; it reflects the requirement that the flux ߪ	be conse- 
rved over the entire body ߗ . 

          For  the  discrete  problem  corresponding   to (1.67) ,  this  compatibility 
condition  assumes the form  (see (1.58)) 

෨ଵܨ																																																					 +෍ ௜ܨ

ேିଵ

௜ୀଶ

+ ෨ேܨ = 0																																														(1.69) 

To  eliminate  the rigid motion , we can specify the value ݑ௝  of ݑ௛ and any node 
݆	equal  to  an  arbitrary  constant 	ܿ଴	. For  instance ,  setting  ݑଵ = ܿ଴	 in  
(1.61) (with it understood that ܿ = ܾ = 0) yields the reduced system 

⎣
⎢
⎢
⎢
⎡

Kଶଶ kଶଷ 0								 …
kଷଶ kଷଷ kଷସ 					…
0 kସଷ kସସ 					…

					
0																												 0
0																												 0
0																												 0…………………………………………………………

								0								0									0									… 	k୒,୒ିଵ																						k෨୒୒	⎦
⎥
⎥
⎥
⎤
	

⎣
⎢
⎢
⎢
⎡
ଶݑ
ଷݑ
ସݑ
⋮
⎦ேݑ
⎥
⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎢
⎡
ଶܨ − ଶଵܿ଴ܭ

ଷܨ
ସܨ
⋮

ଶ݂
ேିଵ + ௞(௟)ఊ೗

ఈ೗ ⎦
⎥
⎥
⎥
⎥
⎤

 

                                                                                                                                           (1.70) 
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and the equation  

																															 ෨݇ଵଵܿ଴ + Kଵଶݑଶ = ଵ݂
ଵ −

଴ߛ(0)݇
଴ߙ

																																																			(1.71) 

Equation (1.70) is uniquely solvable for ݑଶ	, ,		ଷݑ … , ேݑ  in terms of  ܿ଴. frequen- 
tly , we simply set ܿ଴=0 . Notice  that we can solve for ݑଶ	using either (1.70) or 
(1.71) .  it  is  remarkable  fact  that the condition (1.69) guarantees  that these 
two systems will be compatible , the value of		ݑଶ	 obtained from  (1.70)  will be 
exactly the same as that of (1.71) whenever (1.69) holds. 

Mixed Boundary Conditions:    

When  an  essential  boundary condition is  applied  at  one boundary  point 
and a natural  boundary  condition  at  the  other,  a mixed  boundary-value 
problem for the  function 	ݑ		is  obtained . For example , one mixed problem 
is characterized by the end conditions 

(0)ݑ																										 =
଴ߛ
	଴ߚ
					,						 (݈)ݑ́ =

௟ߛ
	௟ߚ
																																																	(1.72) 

and another by 
(0)ݑ଴́ߙ																								 + (0)ݑ଴ߚ = (݈)ݑ				,			଴ߛ =

ఊ೗
ఉ೗	
																																	  (1.73) 

Since at least one of these conditions specifies  the  value of ݑ	at  an  endpoint , 
the solution will  contain  no  rigid  motions .  Consider  the  case  (1.72) . Then   
ଵݑ = ଴ߛ (݈)ߪ			,			଴ߚ = −݇(݈)⁄ ௟ߛ ⁄௟ߙ  and  (1.56) reduces to the system  
 

                                          (1.74) 
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and the equation 
																												 ෨݇ଵଵ ቀ

ఊబ
ఉబ
ቁ + Kଵଶݑଶ = ଵ݂

ଵ −  (1.75)																																																						(0)ߪ

          We solve  (1.74) for  ݑଶ	, ,		ଷݑ … ,      -and use (1.75) to obtain an approxim	ேݑ
ation  ߪ௛(0)  of  (0)ߪ	,  if  desired . Conditions  (1.73)  are  handled in a similar 
fashion .  

      This completes  our  description of the  finite element analysis of two-point 
boundary-value  problems  of  the  type  in (1.5) .  What  remains  to be done is 
to implement  the  procedure  described  above  by developing a finite element 
computer  program , which is not port of this thesis .  
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                                            Chapter 2 

                                    

Two-Dimensional Problems 

 

2.1   Introduction : 

          The  principle  ingredients  of  the finite element method for constructing 
approximate solutions of problems are : 

1. The formulation of the  problem in a variational framework in which the 
appropriate space ܪ	of admissible functions is identified . 

2. The  construction  of a  finite  element  mesh  and  piecewise-polynomial 
basis functions defined on the mesh,which generate a finite-dimensional 
subspace of ܪ	. 

3. The construction of an approximation of the variational boundary-value 
problem  on  a   finite   element   subspace   ܪ௛			of  H .  This   entails    the 
calculation of element  matrices  and  the generation  of a sparse  system  
of  linear algebraic  equations  in the  values of the approximate  solution 
at nodal points in the mesh . 

4. The solution of the algebraic system . 
5. The examination of the  characteristics  of the  approximate solution and 

if possible , an estimation of the inherent approximation error .  
 

These  steps from the  basis of most finite  element  methods  for  not  only one 
dimensional problems , but , more importantly ,  for boundary-value problems 
in two and three dimensions. 
        Our objective here is to develop, in a logical manner, the natural extension 
of the earlier developments to two  dimensions .  The  governing   equation  
for the   boundary-value  problem  now  becomes   a  partial  differential  
equation which is to be satisfied by the solution inside some two-dimensional 
domain	ߗ boundary data are thus specified on the curve defining the 
boundary of  ߗ	.	 
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Instead  of  the  line  elements ,  the  finite  elements  now  assume  simple two-
dimensional shapes ,  such as triangles and quadrilaterals , and these elements  
fit  together  to  make  up  the  discretization  ( the  mesh  )  approximating  the 
domain ߗ	of the solution ݑ	. The inherent ability of such elements to represent 
domains  with  very  irregular  geometries  underlies  the practical value of the 
method for the approximate solution  of  difficult  boundary-value problems in 
numerous research and industrial applications . 
 
2.2    Two-Dimensional Boundary-Value Problems 
 
            The  development  of   boundary-value   problems    describing   physical  
phenomena in two dimensions follows  closely the one-dimension  treatment ,  
differing only in aspects dictated by  the higher dimensionality . In this section 
we sketch the development of  linear, elliptic , self-adjoint  second-order 
boundary-value problems , based on classical conservation principles . 
 
Some Preliminaries  
          The domain  ߗത	 of our  problem  is  composed  of  two  parts  , the interior 
 We  consider  only  bounded  domains ( i.e , no part of .	ߗ߲ and the boundary	ߗ
 . extends to infinity  in any direction ) ; with reasonably smooth boundaries ߗ
In general , the boundary can be defined by the parametric equations ݔ =  (ݏ)ݔ
and 	ݕ =  measured  from  some			ߗ߲  is    the  arc  length  along		ݏ  where 	,	(ݏ)ݕ
arbitrary  reference   point  . When  referring  to  the value of a function , say g , 
which is defined at points on the boundary , we will write g(s) ≡ g((ݏ)ݔ,  	((ݏ)ݕ
for s in ߲ߗ	.  
           The  primary  dependant  variable  in  our  problem  is  the  state variable 
ݑ = ,ݔ)ݑ  As an essential condition , we require that u be a smooth function .	(ݕ
in ߗ	. 
 The  degree of smoothness we require depends on the data  of  the problem ,  
including  the  functions  ,  (ݏ)ݔ	(ݏ)ݕ	 that  define  ߲ߗ	.  We  shall  assume 
throughout this section that  all functions are smooth enough for the 
operations we perform to be valid . 
          Our physical statement of the problem will contain expressions involving  
the rate change with respect to position in  ߗ	 of the scalar field  ݑ	.  
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In general , the  value of ݑ	at  a  point  (ݔ,   changes  at  different  rates  as  we(ݕ
move  from  (ݔ,   at a		ݑ in the different  directions .  The  rate  of  change of(ݕ
point		(ݔ,   called  the 	,	ݑ∇  is defined   by  a  vector-valued function , denoted  (ݕ
gradient  of  ݑ	. If i and j denote unit vectors  directed along  the  ݔ- and ݕ-axis , 
respectively then the components  of  ∇ݑ	 at  the  point		(ݔ,   with  respect  to  	(ݕ
these  basis  vectors  are  ߲ݔ)ݑ, (ݕ ⁄	ݔ߲ and ߲ݔ)ݑ, (ݕ ⁄	ݕ߲ , so that  
 
,ݔ)ݑ∇																																														 (ݕ = డ௨(௫,௬)

డ௫
 i+ డ௨(௫,௬)

డ௬
 j                                          (2.1) 

Note that (2.1) can be interpreted as the  construction  of a  vector field  ∇ݑ		by 
operating on ݑ	with the vector differential  operator  

																																																												∇= డ
డ௫
	i+ డ

డ௬
 j                                                          (2.2) 

         The  gradient 	∇ݔ)ݑ, ,ݔ) at	ݑ determines  the  total  rate  of  change of (ݕ  (ݕ
in any direction . In particular , let ݐ		has  components cos and  sin 		ߠ   so  that  ߠ
ݐ = cos +i	ߠ sin  changes  as  one moves from a point	ݑ  j  . The  rate  at  which ߠ
,ݔ)  with respect	ݑ is called the directional derivative of	ݐ  in the direction of (ݕ
to ݐ	and is written ݀ݔ)ݑ, (ݕ ⁄.ݐ݀  The directional derivative is calculated accord- 
ing to  

																					ௗ௨(௫,௬)
ௗ௧

= ,ݔ)ݑ∇ (ݕ ∙ ݐ = డ௨(௫,௬)
డ௫

cos ߠ + డ௨(௫,௬)
డ௬

sin ߠ 																										(2.3)  

        The second quantity of physical   interest in our boundary-value problems 
is   the   flux  ߪ	.  The  flux ,  like  the  gradient of 	ݑ	, is a  vector-valued  function 
or vector field ,  a  flux  field  is  represented  schematically as vectors that very 
in  magnitude  and direction with in  ߗ	ഥ  . The  flux vector  (ݏ)ߪ at the point ݏ	on 
the boundary is shown in Fig.2.1b . 

The  flux  crossing  the  boundary  at  ݏ		is given  by  the  component  of  (ݏ)ߪ in 
the direction of a unit outward normal n(ݏ) to ߲ߗ	: 

(ݏ)௡ߪ                                                         = (ݏ)ߪ ∙	n(ݏ)                                                 (2.4) 

The  component  in  the  direction  of  the  unit  tangent  ߬(ݏ)  is  	(ݏ)ߪ.  as  ,  (ݏ)߬
indicated in the figure 
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Figure 2.1  : (a) representation of the vector –valued function ߪ = ,ݔ)ߪ  resolution (b) ;(ݕ
of the flux (ݔ)ߪ at appoint s on  ߲ߗ into normal flux ߪ௡(ݏ) and the tangent flux ߪ௥(ݏ) 
components.  

 

           Consider  an  arbitrary  subregion  of  ߗ	,  say 	߱	, containing  the point	 ଴ܲ 
whose   coordinates   are  (	ݔ଴,   ) .  Figure  2.2a   shows   the   distribution   of	଴ݕ
normal  flux  ߪ௡(ݏ)	 across  the boundary ߲߱ . The net (total) flux  crossing  the 
boundary is : 

                                                          ∑ ≡	∫డఠߪ௡(ݏ) ఠݏ݀                                                (2.5)         

If we divide  ∑ ఠݕܾ  the area  ܣఠ  of  the  subregion , we  can  view  the  result as 
the  average value of the amount of  ߪ	 flowing  into  ߱	 per unit area . The limit 
of  this ratio as  ߱	 decreases in size , always containing the point  	 ଴ܲ , is  called  
the divergence of the flux at	 ଴ܲ and is often  abbreviated  div ݔ)ߪ଴,  ଴)  . Takingݕ
as  ߱	the square subregion containing 	 ଴ܲ,  we calculate ∑ = ݕ∆௫ߪ∆ +ఠ  .	ݔ∆௬ߪ∆
then , using the mean-value theorem to expand component  ߪ௫ and  ߪ௬of  ߪ	  
about point  	 ଴ܲ , we divide by the area ∆ݕ∆ݔ and calculate the limit as  ∆ݔ	ݕ∆ ,	   
go to zero . In this way , we obtain the formula for the divergence of the vector 
field ߪ	at the point (ݔ,  (ݕ

 

,ݔ)ߪ	ݒ݅݀																																	 (ݕ =
,ݔ)௫ߪ߲ (ݕ

ݔ߲
+
,ݔ)௬ߪ߲ (ݕ

ݕ߲
																																								(2.6) 
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      Figure 2.2: (a)  distribution of normal flux on boundary ߲߱ of subregion ߱ ;(b)               
magnitude of normal flux on boundary of square region 

Note that by using the vector operator ∇	deϐined in (2.2) , the divergence  of  ߪ	  
can also be written  

ߪ	ݒ݅݀																																																																			 = ∇ ∙  (2.7)																																																		ߪ

Recall  the  definition  of 	∇.  as  the density  of the  net  flux  per  unit area at a	ߪ
point . It follows that the total flux ∑ into the region ߗ	can be written  

																																																											෍ = ∫ఆ 	 ∇ ∙ ߪ ݔ݀ ݕ݀ 																																										(2.8) 

Provided that ߗ and  ߪ	are smooth enough . It  then  follows  from (2.4) , (2.5) , 
and (2.8) that  

																																																		∫ఆ∇ ∙ ߪ ݔ݀ ݕ݀ = ∫డఆߪ ∙ ݊  (2.9)																																						ݏ݀
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        The  relation  between the area integral and the boundary integral in (2.9) 
is an  important  tool  in  applied  mathematics  and is referred to  as the Gauss 
divergence theorem .  Although  we have stated (2.9) in terms of a special vec- 
tor field 	ߪ		defined on a  two-dimensional  domain , the result  is generally the 
same for any vector or tensor  field in any number of dimensions . 

Physical Principles 

        The  physical  situations  we  wish  to  highlight  are  governed  by  a  linear 
constitutive law and the conservation principle . The linear constitutive equat- 
ion in our physical problem establishes that , at each point in the body , the 
flux is proportional to the gradient of the state variable . The factor of 
proportionality  is  denoted  ݇		and  is  referred  to  as  the  material   modulus   
( coefficient or property ) , thus 

,ݔ)ߪ																																												 (ݕ = ,ݔ)݇− ,ݔ)ݑ∇(ݕ  (2.10)																																											(ݕ

Clearly , different  materials  will  be  characterized  by  different  material 
moduli , ݇ = ,ݔ)݇ ,ݔ)݇| we will always assume that, (ݕ |(ݕ > ݇଴ =constant > 0 
throughout ߗത . 

         The conservation principle (or balance law)states that within any portion  
of domain ,  the  net  flux  across the boundary of that part must equal the total  
quantity produced by internal  source  . The  mathematical implications  of the 
balance law takes different forms for different parts of the domain. 

          Let us next examine the implications of the conservation principle  consi- 
der,  for  example,  a  portion  ߱		of  material  surrounding  a  point  ଴ܲ		inside 
 in  which  the  material  properties  are  smooth . The  balance  law  (fig  2.3)		ߗ
defined  earlier establishes that the net flux across the boundary  ߲߱	 given  by 
(2.5) ,  must  be balanced by the total quantity supplied by sources within  ߱	 .  
If ݂	denotes the source per unit area , then we must have  

																																																						∫డఠߪ ∙ ݊ 	ݏ݀ = ∫ఠ݂ ݔ݀ 																																		ݕ݀ (2.11) 
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                    Figure 2.3    Domain of a two-dimensional boundary-value problem  

Using the divergence theorem  (2.9) to transform the surface integral in (2.11) 
to an area integral , we have  

																																																			∫ఠ(∇ ∙ ߪ − ݂) 	ݔ݀ ݕ݀ = 0																																									(2.12) 

For   all   subregion ߱	in ߗ	.  Since  ߱	is  an arbitrary  region  in  which ∇ ∙  and	ߪ
݂	are  smooth , the integrand in (2.12)  must be zero at all point interior  to ߱ . 
Thus , with  in such “smooth ” regions the local form of the balance law is  

																																																									∇ ∙ ,ݔ)ߪ (ݕ = ,ݔ)݂  (2.13)																																											(ݕ

For completeness , we suppose that , in addition to ݂	, there may exist internal 
sources with an intensity proportional to ݑ	. 

 Letting the proportionality factor be –ܾ(ݔ,  becomes (2.13) ,(ݕ

 

                                         ∇ ∙ ,ݔ)ߪ (ݕ + ,ݔ)ܾ ,ݔ)ݑ(ݕ (ݕ = ,ݔ)݂  (2.14)																												(ݕ
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        Examples of  sources  proportional  to  ݑ		include  temperature-dependent 
exothermic chemical  reactions and   distributed   elastic   supports   of   elastic 
membranes. 

       The  conservation  principle  takes  on  a  different  form  at  interfaces  and 
boundaries . To fix ideas, let us consider the particular case in which the body 
 ଵ andߗ   is composed of two distinct materials,  one occupying  a  subregion	തߗ
the other subregion ߗଶ.Within each of these regions, the modulus ݇	is 
assumed to given  by  smooth  functions  (constant)  ݇ଵ	 and  ݇ଶ	 . The  curve 
defining the interface  between  ߗଵ	 and  ߗଶ	is  denoted   ߁	.  Similarly , we 
suppose that the boundary  ߲ߗ		of the body is naturally divided into two parts  
  ଶ, on which conditions are imposed which characterize the  effectߗ߲ ଵ andߗ߲
of  the  surroundding exterior medium on the behavior of the body . On  ߲ߗଵ	,  
we  suppose that the values of  the state variable ݑ	are prescribed as 
(ݏ)ݑ =  that essential boundary		ߗ߲  so that it is on this portion of ,(ݏ)ොݑ
conditions are prescribed. Natural boundary conditions arising from  the  
conservation  law  will  be  specified  on  ߲ߗଶ , as will be explained below . 

       Consider the point  ௜ܲ on the interface  Γ,  as  shown in ϐigures   2.3 and 2.4 
shows a material strip of the  body  containing  ௜ܲ		. This  strip is assumed to be 
sufficiently  narrow  that  the flux across its  ends and the source( proportional  
to  the area) can be  neglected  compared  to the net flux across the sides of the 
strip.  As the thickness of the strip shrinks to zero ,  the balance law for this 
strip assumes the form  

෍= න (ି)ߪ−) ∙ ݊ + (ା)ߪ ∙ ݊) ݏ݀ = 0
௦మ

௦భ
 

Where ݏଵ and	ݏଶ are the endpoints of the strip. Because the  region  of  integra- 
tion is arbitrary ,  the  local balance  law at  points  on the  interface  reduces to 
conditions on the jump in ߪ ∙ ݊ =  : across Γ	௡ߪ

⟦(ݏ)	௡ߪ⟧																																				 = ௡ߪ
(ା)(ݏ) − ௡ߪ

(ݏ)(ି) = 0									, ݏ ∈   (2.15)																			߁
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           Figure 2.4     A strip of the domain containing a portion of the interface Γ in the  
neighborhood of ݌௜            

We now turn to the boundary conditions on ߲ߗଶ.  A region containing a typical 
boundary point ௕ܲ shown in  ϐig 2.5 

                                      

         Figure 2.5     A strip of the domain containing a portion of the boundary  ߲ߗଶ  in the    
neighborhood of point ݌௕  
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The value of the normal flux ߪො(ݏ) through  the  surrounding  material  immedi- 
atly adjacent to the boundary is assumed to  be  proportional  to the difference 
between  the  value  (ݏ)ݑ	 on  the  boundary  and  the  given  value  ݑො(ݏ)  in  the 
exterior medium . Thus , if (ݏ)݌ is the factor of proportionality at ݏ	, 

(ݏ)ොߪ ≡ (ݏ)ݑ](ݏ)݌ −  [(ݏ)ොݑ

Balancing the flux in the strip containing ௕ܲ gives  

(ݏ)௡ߪ																																															 ≡ (ݏ)ߪ ∙ (ݏ)݊ =  (2.16)																																								(ݏ)ොߪ

Hence , 

(ݏ)௡ߪ																								 = (ݏ)ݑ](ݏ)݌	 − ,															[(ݏ)ොݑ ݏ ∈  (2.17)																																												ଶߗ߲

The physical situation often dictates other forms of the  boundary  conditions , 
which can be viewed as  special  cases  of  (2.16)  or  (2.17) .  For example ,  we 
recover the essential  boundary condition on ݑ	from (2.17) by taking the limit 
as  (ݏ)݌ → ∞   while 	ߪ௡(s)  remains  bounded .  This procedure corresponds to  
a two-dimensional version of the penalty method . Boundary conditions (2.16) 
and (2.17) , which are consequences of the conservation  principle  ,  are called 
natural boundary conditions .  Boundary  conditions  that  prescribe  the  state 
variable are essential boundary conditions. 

2.3     Statement of the Boundary-Value Problem 

            The  final  mathematical  statement  of  our  boundary-value  problem  is 
obtained by eliminating ߪ	and ߪ௡from(2.14) through (2.17) using the constitu- 
tive equation (2.10). The data deϐining  the problem consist of the following : 

1. The boundaries ߲ߗଵ , ߲ߗଶ, and the interface Γ defined by the parametric 
equations  

ݔ                                         = ݕ					,										(ݏ)ݔ = ݏ						(ݏ)ݕ ∈ ݏ or    ߗ߲ ∈  ߁

2. The source distribution ݂ = ,ݔ)݂ ,				௜ߗ in (ݕ ݅ = 1,2. 
3. The material coefficients 	݇௜ = ݇௜(ݔ, 		 and (ݕ ௜ܾ = ܾ௜(ݔ, ,ݔ) for  (ݕ (ݕ ∈ ௜ߗ , 

݅ = 1,2	. 
4. The  prescribed  value   ݑො(ݔ)  for   ݏ ∈  . ଵߗ߲
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5. The value of boundary coefficient (ݏ)݌and ݑො(ݔ)on ߲ߗଶ or the prescribed 
value ߪො(ݏ) for ∈  . ଶߗ߲	

     Given the following data , the problem is to  find  the  function   ݑ = ,ݔ)ݑ	             	(ݕ
that satisfies : 

1. The   governing  partial  differential  equation  at  points  interior  to  the 
smooth subdomains   ߗଵ and  ߗଶ , 

																		 
																						−∇ ∙ ൫݇(ݔ, ,ݔ)ݑ∇(ݕ ൯(ݕ + ,ݔ)ܾ ,ݔ)ݑ(ݕ (ݕ = ,ݔ)݂   (2.18)           (ݕ
  
																																																																										      For (ݔ, (ݕ ∈ ௜ߗ , ݅ = 1,2     
                                                                                                               

2. The jump condition  at points on the interface Γ , 
      
ݑ∇݇⟧																																															 ∙ ݊⟧ = ݏ					,					0 ∈  (2.19)																													߁

 
 

3. The essential boundary condition on ߲ߗଵ, 
 
(ݏ)ݑ																																							 = ݏ												,					(ݏ)ොݑ ∈  (2.20)																															ଵߗ߲
 

4. The natural boundary condition on ߲ߗଶ , 
 

									�
(ݏ)݇−

(ݏ)ݑ߲
߲݊

= (ݏ)ݑ](ݏ)݌ − ݏ			,	[(ݏ)ොݑ ∈ ଶߗ߲
																																																																																																						ݎ݋

(ݏ)݇−
(ݏ)ݑ߲
߲݊

= ݏ			,																								(ݏ)ොߪ ∈ 	ଶߗ߲ ⎭
⎪
⎬

⎪
⎫

											(2.21) 

           
          The  special case  of  problem  (2.18) ,  in  which  ܾ ≡ 0  and  only  natural 
boundary conditions of the form   –݇(ݏ)[߲(ݏ)ݑ ߲݊⁄ ]    are  specified  and   (ݏ)ොߪ =
ଶߗ߲ =  requires  two qualifying  remarks . First , we  note that (2.18) Then ,	ߗ߲
determines  the  solution  ݑ	only  to  within  an  additive  constant . The second 
point  is that , in order for a solution ݑ	 to exist at all , the  data 	݂		and   ߪො  must 
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satisfy a  compatibility   relation .  This  relation  is  simply  a  statement  of  the 
conservation principle for the entire domain ߗ	 and requires  that 	݂	 and ߪො		be 
such that 
 
																																																					∫ఆ݂ ݔ݀ ݕ݀ = ∫డఆߪො            (2.22)																																													ݏ݀
 
           The development and  statement  of  the  boundary-value  problem  have 
been  made  assuming  that  all functions  were  as smooth as necessary for the 
operations  indicated  to  be  valid . The  only  consideration  made  for  lack  of 
smoothness  in  any  of  the  data  was the treatment of the material interface Γ 
across which the coefficients ݇	, ܾ	 and the source ݂	 may be discontinuous .   
 
2.4    Variational Boundary-Value Problems  
 
         The  construction of  our  variational  formulation  of  the  boundary-value 
problem (2.18) begins , as usual , by defining the residual ݎ	: 
 
,ݔ)ݎ																										 (ݕ = −∇ ∙ ,ݔ)݇] ,ݔ)ݑ∇(ݕ [(ݕ + ,ݔ)ܾ ,ݔ)ݑ(ݕ (ݕ − ,ݔ)݂        (ݕ
 
To “test” the residual over arbitrary subregions , we multiply  ݎ	by a 
sufficiently smooth test function ݒ	, integrate  over  each  domain in  which  ݒݎ	 
is  smooth , and set the resulting weighted average of ݎ	equal to zero .  For 
problem whose domain  is  shown  in  ϐig  2.3 ,  we  must  integrate separately 
over ߗଵ  and  ߗଶ 	 since the second derivatives of ݑ are not  integrable  along  
the interface Γ  this procedure gives  
    
     
  ∫ఆభ[−∇ ∙ (ݑ∇݇) + ݑܾ − ݒ[݂ ݔ݀ ∇−]ఆమ∫ +  ݕ݀ ∙ (ݑ∇݇) + ݑܾ − ݒ[݂ ݔ݀ ݕ݀ = 0                               
                                                                                                                                           (2.23) 
          A two-dimensional  “integration-by-parts formula”   is  needed  to  reduce 
the first term in each of these integrals to terms  containing  only  first  deriva- 
tives .  
 



 
 

47 
 

By product  rule for differentiation , we find that : 
 

�																																										
	∇ ∙ (ݑ∇݇ݒ) = ݑ∇݇ ∙ ݒ∇ + ∇ݒ ∙ (ݑ∇݇)

																																																																														ݎ݋
∇ݒ ∙ (ݑ∇݇) = ∇ ∙ (ݑ∇݇ݒ) − ݑ∇݇ ∙ ݒ∇

ൡ																	 (2.24) 

 
Substitution (2.24) in to (2.23)  yields  
 
			∫ఆభ(݇∇ݑ ∙ ݒ∇ + ݒݑܾ − ݕ݀ݔ݀(ݒ݂ + ∫ఆమ(݇∇ݑ ∙ ݒ∇ +   ݒݑܾ

ݕ݀ݔ݀(ݒ݂−                                                − ∫ఆభ∇ ∙  (2.25)                             ݕ݀ݔ݀(ݑ∇݇ݒ)

                                                                         −∫ఆమ∇ ∙ ݕ݀ݔ݀(ݑ∇݇ݒ) = 0 
 
         The  last two integrals in (2.25) can be transformed into boundary 
integrals using the divergence theorem (2.9) with (ݑ∇݇ݒ) used in place of ߪ	. 
We obtain 
 

−∫ఆభ∇ ∙ (ݑ∇݇ݒ) ݔ݀ ݕ݀ − ∫ఆమ∇ ∙ (ݑ∇݇ݒ) ݔ݀  ݕ݀
                                                                                                                                           (2.26)                                                                                       

                                                             = −∫డ(ఆభ)݇
డ௨
డ௡
ݏ݀	ݒ − ∫డ(ఆమ)݇

డ௨
డ௡
   ݏ݀	ݒ

 
Where ߲(ߗଵ) and 	߲(ߗଶ) are boundaries of subregions 	ߗଵ and	ߗଶthe direction 
of integration is counterclockwise in each of 	ߗଵand		ߗଶ,	  and  ߲ݑ ߲݊ = ݑ∇ ∙ ݊⁄  . 
We must be careful to identify the functions in (2.26)  with the domains on 
which they are  define. In  ϐig  2.6 which  shows  ߗଵ  and 	ߗଶ		separated  for  
clearly ,  the   boundary  of  each  domain  is  divided  into  two  parts-the  parts  
of ߲(ߗ௜) 	that  do not  coincide with the interface Γ are  denoted 	߲(ߗ௜) − ,߁
݅ = 1,2 .  We  decompose  each of  the  boundary  integrals  in  (2.26)  into two  
corresponding parts, obtaining  
 

−∫డ(ఆభ)ି௰݇
డ௨
డ௡
ݏ݀	ݒ − ∫డ(ఆమ)ି௰݇

డ௨
డ௡
   ݏ݀	ݒ

                                                                                                                                           (2.27) 
                                              +∫௰(−݇

డ௨
డ௡
)ଵݒ	ݏ݀ + ∫௰(−݇

డ௨
డ௡
)ଶݒ	ݏ݀         
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Where in the notation  
 

                                ቀ−݇ డ௨
డ௡
ቁ
௜
  indicates that   ቀ−݇ డ௨

డ௡
ቁ 

 
Is  to  be  evaluated  on  region ݅	.  Noting  that  the  outward  normal  ݊ଵ to  
region		ߗଵ is the negative of  ݊ଶ at each point on Γ , we  rewrite  the  sum  of  
the  last  two integrals in (2.27) as  
 

																																				∫௰ ቂ−݇
(ା) డ௨(శ)

డ௡
+ ݇(ି) డ௨

(ష)

డ௡
ቃ ݒ   (2.28)																																										ݏ݀

 
 
 

                           
Figure 2.6   Decomposition of regions of integration for boundary integrals around ߲(ߗଵ) 
and ߲(ߗଶ) 
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Where  we  have  used  the  notation  introduced  in the preceding section . We 
recognize that  the  integrand  (2.28)  is  exactly  ݒ⟦ߪ௡(ݏ)⟧		, which , according 
to (2.19) , is zero . Hence , the integral in (2.28) vanishes . 
        Returning to (2.27) , we note that  the first two integrals can be  combined  
into a  single  integral  over  the  entire  boundary  ߲ߗ	. We  also  note  that  the 
integrals  of  the  first  two integrals in (2.25) contain at most first derivatives 
of  ݑ	and  ݒ	, so, if  ݑ	and ݒ  are  smooth enough, these integrals can be  
combined  into  a  single integral over the entire domain ߗ	. The result is  
 

																				∫ఆ(݇∇ݑ ∙ ݒ∇ + ݒݑܾ − ݕ݀ݔ݀(ݒ݂ − ∫డఆ݇
ݑ߲
߲݊

ݏ݀	ݒ = 0																					(2.29) 

 
Substitution of natural  boundary  condition  in  (2.21) ,  for  example  ,  into  
the boundary integral in(2.29) gives the variational equation  
 
                  			∫ఆ(݇∇ݑ ∙ ݒ∇ + ݒݑܾ − ݕ݀ݔ݀(ݒ݂ + ∫డఆݑ)݌ − ݏ݀ݒ(ොݑ = 0													(2.30)  
 
Which must hold  for  all  admissible  test  functions 	ݒ	. Since  we  require  that 
ݑ = ොݑ  on ߲ߗଵ 
 

∫డఆݑ)݌ − ݏ݀ݒ(	ොݑ = ∫డఆమݒݑ݌	ݏ݀ − ∫డఆమݒߛ	ݏ݀	 
 
Where we have denoted  ߛ = ොݑ݌  , Hence , our problem becomes one of  finding 
a function ݑ	such that ݑ = ොݑ  on ߲ߗଵ and  
 
   ∫ఆ(݇∇ݑ ∙ ݒ∇ + ݕ݀ݔ݀(ݒݑܾ + ∫డఆమݒݑ݌	ݏ݀ = ∫ఆ݂ݒ	ݕ݀ݔ݀ + ∫డఆమݒߛ	ݏ݀							(2.31) 
 
for all admissible test functions ݒ	. 
        As  in earlier discussions  , we  will regard (2.31)  as  the  given  boundary-
value problem . Then ,  if (2.31) holds for all smooth test functions  ݒ	 and  if  
the data and the solution  ݑ	are sufficiently smooth , a solution of (2.31) will 
also be a solution of (2.18) . Conversely , any solution of (2.18) will always 
automatically satisfy (2.31). 
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        There remains  the  important  issue of specifying  the appropriate class of 
admissible  functions for  problem (2.31) . We observe that the area integrals 
in (2.31) are well defined whenever  ݑ	and 	ݒ	and their first partial derivatives 
are smooth  enough to  be square-integrable  over  ߗ	. Thus ,  we  require  that  
all  admissible functions ݒ	be such that  
 

                                          ∫ఆ ൤ቀ
డ௩
డ௫
ቁ
ଶ
+ ቀడ௩

డ௬
ቁ
ଶ
+ ଶ൨ݒ ݕ݀ݔ݀	 < ∞	                            (2.32) 

 
Adopting a minor modification in the notation used in  previous  chapter , we 
refer to the class of functions  satisfying   (2.32)  as 	ܪଵ(ߗ) the  superscript  “1” 
reflecting  the  fact  that first derivatives are square-integrable and (ߗ)	 indica- 
ting the domain over which these functions are defined . 
          As was the case  with  one-dimensional  problems ,  note  that  the natural 
boundary conditions  (the conditions on  ߲ߗଶ) enter  (2.31)  in  the statement 
of the  problem  itself .  These  conditions  appear  in  the  term   ∫డఆమݒݑ݌	ݏ݀	 

and ∫డఆమݒߛ	ݏ݀ .  
        The  essential  boundary  conditions  enter the problem in the definition of 
the  classes  of  admissible functions . We choose as test functions  ݒ		in  ܪଵ(ߗ)	 
such that ݒ = 0 on ߲ߗଵ .  The solution ݑ	must be a function in ܪଵ(ߗ)	 such that 
ݑ = ොݑ   on ߲ߗଵ.  
        Our  variational  boundary-value  problem  can  now be stated concisely in 
the following form: 
 
                          Find a function ݑ ∈ ݑ such that 	(ߗ)ଵܪ = ොݑ  
                           on  ߲ߗଵand (4.9) holds for all ݒ ∈  (2.33)                                  	(ߗ)ଵܪ
                           such that ݒ = 0 on ߲ߗଵ. 
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                                                              Chapter 3 
 
                               Finite Element Interpolation  
 
3.1  Discretization  
 

This  stage  of  our analysis  represents  a direct but nontrivial extension 
of  the  ideas   discussed  earlier   for  one –dimensional   problems . Having   a 
variational  statement of  our  model problem, we proceed to construct a finite 
element mesh  representing  ߗ	.  In  the  one-dimensional   problem , this  
amounted  to partitioning  an  interval  into  line  elements connected at  nodal 
points  at  their  ends .  For two-dimensional  problems ,  the  discretization  of 
 . is less straightforward		ߗ	

The  basic  idea  is  to  continue  to  represent  approximate  solutions  ݑ௛ 
and test  functions 	ݒ௛ 	 by   polynomials  defined  piecewise over geometrically 
simple  subdomins  of  subregion  ߗ௛ ,  with 	ߗ௛	now in the x,y-plane . Our first 
concern is to choose a  discretization  that  will  be  general to  model  irregular 
domains  but consist  of  element  simple   enough  to  minimize computational 
effort . In  ϐig 3.1  simple  triangles  and  or quadrilaterals can be used  for  this  
purpose .  If 	߲ߗ	  is  curved ,  as   in  the  figure ,  there  will  always   be   some 
discretization   error ,   since  the   finite   element   mesh  ߗ௛ 	,   constructed  as 
collection   of  triangular   or  quadrilateral   elements ,   will    not    perfectly 
coincide   with  the   given  domains  ߗ	. However ,  as the  mesh  is refined ,  ߗ௛ 
can approximate ߗ	with increasing  accuracy . 

 Another   reason  for  considering   elements  of  simple  shapes  such  as 
traingles   is  that   there  is a  natural  correspondence   between   the   number  
and location  of  nodal  points  in an element  and   the   number of  terms  used 
in  the  local   polynomial   approximation .   Recall  that   the   piecewise-linear  
approximations   in  one  dimension ,  the  restriction  of  a test  function  to  an 
element  ߗ௘ 	was a linear function of the form 
 

(ݔ)௛௘ݒ = ଵߙ +  ݔଶߙ
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 ଶ being constants . Since  the  element has two nodes , the constantsߙ  ଵ  andߙ
௛௘ݒ    are  uniquely   determined   by   specifying   the   value	ଶߙ	 ଵ  andߙ	 		 at   the 
endpoints of the   element .  Having  done  this , a  continuous  function  ݒ௛		 is  
produced  by demanding  that  functions 		ݒ௛௘	  and   ݒ௛௘ାଵ  in  adjacent  elements 
have same value at their common node. 

 An  analogous  situation  exists  in two dimensions .  A linear function in 
two  dimensions  of  form 
 

,ݔ)௛ݒ (ݕ = ଵߙ + ݔଶߙ +  ݕଷߙ
 
With three constants  :  ߙଵ	,  .  Thus ,  three  independent  values  of	ଷߙ  , and	ଶߙ
௛ݒ   must  be  specified to  determine  these  constants ,  which  means  that  the 
element should  have  three  nodes ,  suggesting  a  triangle  with  nodes  at  the  
vertices  . Moreover ,  if  two  adjacent  triangles  in  the  mesh  share  one   side 
(and , hence , share two nodes) ,  a function continuous across  the  interface  
of these  elements  will be  produced  by demanding  that  the linear  functions 
on the each element have the same values at the common nodes . 
         Similarly , a bilinear function 
 

,ݔ)௛ݒ (ݕ = ଵߙ + ݔଶߙ + ݕଷߙ +  ݕݔସߙ
 
Has  four constants and might qualify as a shape function for  an element  with 
four nodes (a rectangle) . Likewise the quadratic  
 

,ݔ)௛ݒ (ݕ = ଵߙ + ݔଶߙ + ݕଷߙ + ଶݔସߙ + ݕݔହߙ +  ଶݕ଺ߙ
 
Having  six parameters ,  could be used to construct an element with six nodes 
(e . g , a triangle  with  a  node  at each vertex and at the midpoint of each side), 
and so on . 

We   now   furnish   some   details    as   to   how   such    two-dimensional   
finite   element   representations   can   be   constructed ,   it   is   formative   to 
consider  the  finite   element  concept  as  a  device   for  interpolating  a  given 
function g	=	g(ݔ,   .	ߗ  defined  on  (ݕ
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 As  before , our aim is to construct an interpolant  g௛ of g of the form 

																																														g௛(ݔ, (ݕ = ෍g௝∅௝(ݔ, ,ݔ)						,					(ݕ (ݕ ∈
ே

௝ୀଵ

Ω௛ 															(3.1) 

 
 Where  ∅ଵ(ݔ, ,ݔ)ଶ∅	,(ݕ ,ݔ)ே∅  ,… ,(ݕ  are  basis  functions  defined  over  (ݕ
  satisfying		௛ߗ
 

																																																								∅௜൫ݔ௝, ௝൯ݕ = ൜
1							݂݅	݅ = ݆	
0						݂݅	݅ ≠ ݆	

�                                    (3.2) 

 
where   (ݔ௝ ,  .  are  coordinates  of  nodal  points  in  the finite element mesh	௝)ݕ
When  (3.2)   holds ,  we  have  
 
                                                       g௛൫ݔ௝ , ௝൯ݕ = g௝						,	݆ = 1,2, … ,ܰ																												(3.3) 
 
So by setting   g௝=g൫ݔ௝ ,  g௛ will coincide with (and , therefore , interpolate)		௝൯ ,ݕ
the given function g at the nodes . We must deal with two basic requirements: 

1. The  construction  of   the  local  shape  functions 		ߖ௜௘  defined  over  each 
element  Ω௘   in  the  mesh , must  be  such  that  when  patched together , 
they produce basis functions satisfy (3.2). 

2. In anticipation of solving our model problem ,  the resulting  basis  func- 
tions 		∅௜	must  be   square-integrable   and  have  square-integrable  first 
partial derivatives ; that is , they must satisfy  

 

																							∫ఆ೓ ൤ቀ
డ∅೔
డ௫
ቁ
ଶ
+ ቀడ∅೔

డ௬
ቁ
ଶ
+ ∅௜ଶ൨ 	ݕ݀ݔ݀	 < ∞		, ݅ = 1,2, … ,ܰ																(3.4)   

 
This requirement is satisfied by constructing the functions ∅௜ to be continuous 
across interelement boundaries . 
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3.2   Piecewise-Linear Interpolation on Triangles 
 
Since the linear function , 
 

,ݔ)௛ݒ (ݕ = ଵߙ + ݔଶߙ +  ݕଷߙ
 
Determines a  plane  surface , the  use  of  linear interpolation on a triangle will 
result in the approximation of a  given  smooth function ݒ	 by a planar function 
of the type shown in fig 3.1 . Suppose that ߗ௛ consists of a collection of E train- 
gular elements and that we consider such  a linear interpolation over a  typical 
finite element ߗ௘ 	. Then the restriction of ݒ௛  to ߗ௘  will be of the form  
 
,ݔ)௛௘ݒ																																								 (ݕ = ଵߙ + ݔଶߙ + ,ݔ) for        ݕଷߙ (ݕ ∈ ௘ߗ                (3.5)  
 
We determine the three constants from the conditions  
 

ଵݒ = ,ଵݔ)௛௘ݒ	 (ଵݕ = ଵߙ + ଵݔଶߙ +  ଵݕଷߙ
 

ଶݒ = ,ଶݔ)௛௘ݒ	 (ଶݕ = ଵߙ + ଶݔଶߙ +  ଶݕଷߙ
 

ଷݒ = ,ଷݔ)௛௘ݒ	 (ଷݕ = ଵߙ + ଷݔଶߙ +  ଷݕଷߙ
 
Where  (ݔ௜ , ,		(௜ݕ ݅ = 1,2,3  are coordinates  of the three vertices of the triangle . 
solving this system for ߙଵ ,	ߙଶ, and ߙଷ we find  

ଵߙ =
1
௘ܣ2

ଷݕଶݔ)ଵݒ] − (ଶݕଷݔ + ଵݕଷݔ)ଶݒ − (ଷݕଵݔ + ଶݕଵݔ)ଷݒ −  [(ଵݕଶݔ

ଶߙ =
1
௘ܣ2

ଶݕ)ଵݒ] − (ଷݕ + ଷݕ)ଶݒ − (ଵݕ + ଵݕ)ଷݒ −  																									[(ଶݕ

ଷߙ =
1
௘ܣ2

ଷݔ)ଵݒ] − (ଶݔ + ଵݔ)ଶݒ − (ଷݔ + ଶݔ)ଷݒ −  																								[(ଵݔ

where  ܣ௘  is  the  area of element  ߗ௘  . Thus , eliminating  ߙଵ,	 ߙଶ,  and  ߙଷ from 
(3.5)  yields  
 
௘	௛ݒ                        ,ݔ) (ݕ = ,ݔ)ଵ௘ߖଵݒ (ݕ + ,ݔ)ଶ௘ߖଶݒ (ݕ + ,ݔ)ଷ௘ߖଷݒ     (3.6)																								(ݕ
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           Figure 3.1     Illustration of the idea that the three values of ݒ௛௘ at the vertices of a 
triangular element ߗ௘  determine a plane which intersects surface v=v(x,y) at three points 
 
Where  ߖ௜௘(ݔ,   ,are the element shape functions (ݕ
 

										�

,ݔ)ଵ௘ߖ (ݕ =
1
௘ܣ2

ଷݕଶݔ)] − (ଶݕଷݔ + ଶݕ) − ݔ(ଷݕ + ଷݔ) − 			[ݕ(ଶݔ

,ݔ)ଶ௘ߖ (ݕ =
1
௘ܣ2

ଵݕଷݔ)] − (ଷݕଵݔ + ଷݕ) − ݔ(ଵݕ + ଵݔ) − 		[ݕ(ଷݔ

,ݔ)ଷ௘ߖ (ݕ =
1
௘ܣ2

ଶݕଵݔ)] − (ଵݕଶݔ + ଵݕ) − ݔ(ଶݕ + ଶݔ) − 		[ݕ(ଵݔ ⎭
⎪⎪
⎬

⎪⎪
⎫

													(3.7) 
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Notice that  
 

௝ݔ௜௘൫ߖ                                     , ௝൯ݕ = ൝
1								݂݅	݅ = ݆	
																										
0								݂݅	݅ ≠ ݆	

�          ݅, ݆ = 1,2,3                       (3.8) 

 
 Now  let us  determine  the  type  of   “global”   basis   functions   ∅௜(ݔ,   (ݕ

that these shape functions  produce . The basis  functions 	∅௜(ݔ,  ( i=1,2,…,N ) (ݕ
are constructed  in  the same manner , the  shape  functions  ߖ௜௘  corresponding 
to  adjacent elements in the  mesh  are  simply  patched  together , to produced 
a “pyramid”   function  ∅௜ at  each  nodal  point  in  the  mesh .  Clearly  , each ∅௜ 
is  piecewise-linear ,  it  is assumes  a value  of unity  at  node  (ݔ௜ ,  ௜) ,  and it  isݕ
zero  at   all  other  nodes   (ݔ௝ , , (௝ݕ ݆ ≠ ݅   and  therefore ,  satisfies  (1.2) .  For a 
boundary node , we have an analogous situation in that ∅௜ assumes the form 
of a portion of a  “pyramid”  . Of equal importance ,  the functions produced in 
this  way  are  continuous  across  interelement  boundaries   and ,  therefore  ,  
over  ߗ௛	;  their  first   partial  derivatives  are  step  functions  and ,  hence , are 
square-integrable . Thus , such basis functions  would  be  appropriate  choices  
for  constructing   finite  element  approximations of the model problems . 
 
Other  Triangle  Elements  
 

 Other  triangle elements involving higher-degree polynomial in ݔ	 and ݕ 
can  be  easily  constructed .  Let  us  firstly   display   the  terms  appearing   in 
polynomials    of  various  degree  in  two  variables   in  the   following   tabular 
form :  
 
                                                               1                          degree 0 
 degree 1                      	ݕ		ݔ                                                             
 ଶ                  degree 2ݕ		ݕݔ		ଶݔ                                                       
 ଷ            degree 3ݕ		ଶݕݔ		ݕଶݔ		ଷݔ                                                 
 ସ       degree 4ݕ		ଷݕݔ		ଶݕଶݔ		ݕଷݔ		ସݔ                                           
                                                               .  
                                                               .   
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This  triangular  array  is  called   Pascal’s triangle . Note that a complete  poly- 
nomial of degree ݇	in ݔ	and ݕ	will have exactly భమ(݇ + 1)(݇ + 2) terms . Thus , a 
polynomial of degree  ݇		can  be uniquely determined by specifying its value at  
భ
మ
(݇ + 1)(݇ + 2)	 points  in  the  plane .   Moreover , the  location  of  entries  in 

Pascal’s triangle  suggests  a  symmetric  location  of  nodal points in triangular 
elements  that  will  produce  exactly  the  right  number  of  nodes  to  define  a 
polynomial   interpolant   of   any   degree .  For  instance ,  the  six  terms  in  a 
quadratic polynomial will be determined by  specifying  the  value of  ݒ௛௘ 	 at six 
nodal points in a triangle , one  at  each vertex  and  one at a  midpoint  of  each  
side-precisely  the   location  of entries   in  the  triangle  formed  by  the  quad- 
ratic  in  Pascal’s  triangle .  Similarly,  a  complete  cubic,  having 10  terms, 
leads  to  a  triangular  element   with  10  nodes .  The   location  of  nodes   is ,  
again,  determined   by  Pascal’s  triangle :   one  at  each  vertex  , two  on each 
side  dividing  each  side  into three  equal  lengths,  and  one  at  the centroid .  
Similarly,  a  complete  quartic   leads  to 15  nodes ,  and so  on . The family of 
finite elements generated in this manner is illustrated in  Fig 3.2a . 

Another  important   feature  of   these  elements   is  that  they  produce , 
for polynomials   of   degree > 0	,  basis  functions   that  are   continuous   over  
the  domain  and, therefore ,  have  square-integrable  first partial derivatives 
Consider,  for  example,  two  adjacent  six  node triangles ߗ௘   and ߗ௘ାଵin  the  
mesh . The  local   interpolants   ݒ௛௘	 and  ݒ௛௘ାଵ are  quadratic  polynomials  that 
must  coincide  at  the   three  nodal   points   common  to  each  element  .  
However,  the specification  of  three  values  of a quadratic  in one dimension  
uniquely   determines    that  quadratic .  Hence ,  ݒ௛௘  and  	ݒ௛௘ାଵ will   coincide  
everywhere   on  the  common  boundary  of   the  two  elements  ,  and  ݒ௛   will 
therefore ,  be  continuous  across   this  boundary . The  idea  is  illustrated  in 
Fig  3.2b .  Similarly ,  for  cubic  elements ,  values  at  four nodes are matched 
on  common  boundaries .  Since  a one –dimensional  cubic  is  determined  by 
specifying  four independent  values , a continuous piecewise cubic function is 
formed by patched together . 
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Figure 3.2  (a) use of Pascal’s triangle to generate various triangular elements over which 
complete polynomial shape of any degree k are deϐined ;  (b)  illustrations for the case  k=2 , that  
basis  functions  produced   by  such   elements  are  continuous   across  interelement boundaries  
 
 

3.3   Rectangular Elements 
  

 By  taking   the  “product”   of   sets   of   polynomials   in  ݔ		with   sets  of 
polynomials in 	ݕ	,  shape  functions  for a  variety  of rectangular elements can 
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be  obtained ,  we  show  these  ideas can be used to construct general quadric- 
lateral elements .  
For  examples ,  a linear  polynomial  in ݔ	is characterized by a linear combina- 
tion of monomials (1,	ݔ) . The  tensor product with monomials (1,  produced (ݕ
the matrix of four functions  
 

                                                      ቂ1ݔቃ
[ݕ		1] = ൤1 ݕ

ݔ  ൨                                                 (3.9)ݕݔ

 
And  a  linear combination  of  entries in  this  matrix  produces a  local bilinear 
polynomial of the form  
 
,ݔ)௛௘ݒ																																								 (ݕ = ଵߙ + ݔଶߙ + ݕଷߙ +      (3.10)                                 ݕݔସߙ
 
There  are  four  constants in (3.10)  and four elements in the tensor product 
(3.9) Thus ,  if  we  visualize  a  rectangular  element  with  four  nodes ,  one at 
each corner,  the function 	ݒ௛௘ 		in (3.10) is completely and uniquely determined 
by specifying  its  values  at  these  four  nodal  points . Moreover , along the 
sides ݔ =constant and  ݕ =constant  , ݒ௛௘ is linear in  ݔ	ݎ݋	ݕ . Thus , if two such 
rectangular elements  ߗ௘   and  ߗ௘ାଵ  have  a  common side in mesh , a function 
that is continuous  across  their  common interelement boundary will be 
produced by demanding  that 	ݒ௛௘ and 	ݒ௛௘ାଵ assume  the  same  values  at  
nodes  common to each element . Hence , shape functions obtained using 
(3.10) will produce basis functions ∅௜  which have square-integrable first 
derivatives over ߗ௛ . 

 By  considering   tensor  products   of   polynomials   of   higher  degree , 
element shape  functions   can  be  constructed  which  contain  polynomials  of 
any  desired  degree  and  which  lead  to  basis  functions  that  are continuous 
throughout 	ߗ௛ . For  example ,  the  product   of two quadratics yields a matrix 
with nine entries : 
 

                                 ൥
1
ݔ
ଶݔ		

൩ [1 ݕ [ଶݕ = ቎
1 ݕ ଶݕ

ݔ ݕݔ ଶݕݔ

ଶݔ ݕଶݔ ଶݕଶݔ
቏																																(3.11) 
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A biquadratic local interpolant 	ݒ௛௘ is obtained by forming a linear combination 
of  all  nine  terms  in  this  matrix . By constructing a rectangular element with 
nine nodes ,  one node located in the element at the point corresponding to the 
location of each entry in the foregoing matrix ,  an  element is produced which 
leads to piecewise-biquadratic basis functions continuous on all ߗ௛ . Similarly , 
a  tensor  product  of  cubics  leads  to  an  element  with 16 nodes  and  bicubic 
shape functions ; and so on . Various rectangular elements produced by tensor 
products of polynomials are illustrated in Fig 3.3 
 
Interpolation Error  
 

 Suppose  that  a  smooth  function  g  is given . Further ,  assume that we 
wish to  interpolate  g  by  a finite  element  representation  g௛  which  contains 
complete polynomials of degree ݇	. As in the one-dimensional ,  if partial  
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Figure 3.3  matrix containing terms of a tensor product of polynomials and various rectangular 
elements obtained using such tensor products . 

 

derivatives  of  g  of  order  ݇ + 1  are  bounded  in  ߗ௘  the  interpolation  error 
satisfies  
 

																													‖g − g୦‖ஶ,ఆ೐ = max
(௫,௬)∈ఆ೐

|g(ݔ, (ݕ − g௛(ݔ,  																				|(ݕ

                                                                                                                                           (3.12) 
≤  							,							ℎ௘௞ାଵܥ

 
 
where  C  is a positive  constant  and ℎ௘  is the  “diameter”  of  ߗ௘  ;  that is , ℎ௘  is 
the largest distance between any two points in ߗ௘  .  As  in the one-dimensional 
case  note that this estimate holds only if all terms in a complete polynomial of 
degree ݇	appear in g௛ . Similarly , 
 
                 ቛப୥

ப௫
− ப୥೓

డ௫
ቛ
ஶ,ఆ೐

≤ ଵℎ௘௞ାଵ   and    ቛப୥ܥ	
ப௬
− ப୥೓

డ௬
ቛ
ஶ,ఆ೐

 ଶℎ௘௞ାଵ          (3.13)ܥ	≥
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The ܪଵ-norm in two dimensions is defined by  
 

                                           ‖g‖ଵଶ = ∫ఆ ൤g
ଶ + ቀப୥

ப௫
ቁ
ଶ
+ ቀப୥

ப௬
ቁ
ଶ
൨  (3.14)                      ݕ݀	ݔ݀	

 
Suppose that ߗ௛ =  is  the  maximum  diameter  of  all elements in the	and  ℎ  ߗ
mesh . It can  also be shown  that for  reasonable  meshes  and  refinement , 
 
                                                        
																																												‖g − g௛‖ଵ ≤  (3.15)																																																													ଷℎ௘௞ܥ
 
for  ℎ		sufficiently  small . This  estimate  holds  only  if  g௛ contains a complete 
polynomial  of  degree  ݇	. For  example , if  g௛ is piecewise-linear  on triangles 
݇ = 1  and we say that  the  ܪଵ-interpolation error  is  ܱ(ℎ) .  Similarly if 	g௛	 is 
piecewise-bilinear ,  so  that  	g௛௘ = ଵߙ + ݔଶߙ + ݕଷߙ +  then (3.15)  holds  , ݕݔସߙ
with  ݇ = 1	 even though  g௛௘   contains a quadratic term ݕݔ	. The key is that  g௛௘   
contains a complete polynomial of degree  ݇ = 1 but not  ݇ = 2	 ;  the terms ݔଶ 
and ݕଶ are missing .  Similarly ,  if   g௛௘  is a tensor product of quadratics ,  it will 
only  contain  complete  polynomials  of  degree ݇ = 2	,  even though cubic and 
quadratic   terms  appear  in  such  shape  functions . These  extra terms 
furnish enough nodal points for  the  element  to  provide  for  the  generation 
of  continuous  basis  functions ,  but  they  do  not  contribute  to  asymptotic  
rate   of convergence of the interpolation error .              
 
3.4  Finite Element Approximations: 
           
 Approximation  of  Two-Dimensional Boundary-Value Problems  
   

 Let  us   now  return   to  the   problem  described  previously  sections   .  
In  particular ,   consider   the   general  variational   boundary-value   problem  
(2.33) .  let   ܪଵ(ߗ)	denote  the  class  of functions satisfying (2.32) and defined 
over the whole  domain  Ω .  Our problem  is  then to find a function ݑ	in ܪଵ(ߗ) 
such that  ݑ =   ଵ and  such thatߗ߲	  on	ොݑ
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∫ఆ ቂ݇ ቀ

డ௨
డ௫

డ௩
డ௫
+ డ௨

డ௬
డ௩
డ௬
ቁ + ቃݒݑܾ  ݏ݀	ݒݑ݌డఆమ∫+ ݕ݀ݔ݀

                                                                                                                                           (3.16) 
                                                                             =  ∫ఆ݂ݒ	ݔ݀	ݕ݀+∫డఆమݒߛ	ݏ݀    
 
For all ݒ ∈ ݒ such that 	(ߗ)ଵܪ = 0 on ߲ߗଵ and  where  ߛ = ොݑ݌ . 
 

The   approximation of  (3.16)   follows   the  pattern  now  familiar . We 
replace Ω by a domain  ߗ௛  that consist of a collection of  E   finite elements and 
N  nodal  points  and we  define  an  N-dimensional  subspace  ܪ௛		of ܪଵ(ߗ௛) by  
constructing  an  appropriate  set  of  global basis  functions  ∅௜	, ݅ = 1,2, … , ܰ .  
Since the   shape  functions  are   continuous   within  each  element ,  they can 
not  modal  a jump  in  material  properties   there . Hence ,  we  always choose 
the  location  of  nodes  and  element  boundaries  to  coincide  with   interfaces  
at  which jumps in  the  modulus  ݇		occur ,  as  indicated  in  ϐig  3.4 .  A  typical  
test  function in ܪ௛	will be of the form  
 
,ݔ)௛ݒ                                                        (ݕ = ∑ ,ݔ)௝∅௝ݒ ே(ݕ

௝ୀଵ 	                                 (3.17) 
 
Where ݒ௝ = ௝ݔ)௛ݒ , ොݑ	௝). In general , the Dirichlet dataݕ  given on ߲ߗଵ is approxi- 
mated by its interpolant ݑො௛(ݏ) = ,(ݏ)ݔ)	ො௝∅௝ݑ∑  the  sum being taken over ((ݏ)ݕ
all nodes on the approximation ߲ߗଵ௛ of ߲ߗଵ . 
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   Figure 3.4 (a) the domain Ω for the modal problem and (b) its finite element 
discretization  ߗ௛ 
 
 Our approximation (3.16) then consists of seeking a function ݑ௛ in ܪ௛ , 
 

,ݔ)௛ݑ																																																								 (ݕ =෍ݑ௝∅௝(ݔ, (ݕ
ே

௝ୀଵ

																																		(3.18)	 

 
Such that ݑ௝ = ො௝ݑ  at the nodes on ߲ߗଵ௛ and  
 
∫ఆ೓ ቂ݇ ቀ

డ௨೓
డ௫

డ௩೓
డ௫

+ డ௨೓
డ௬

డ௩೓
డ௬
ቁ + ௛ቃݒ௛ݑܾ ௛ݒ௛ݑ݌డఆమ೓∫+ ݕ݀ݔ݀  ݏ݀	

                                                                                                                                           (3.19) 
                                                                            =  ∫ఆ೓݂ݒ௛ ௛ݒߛడఆమ೓∫+ݕ݀	ݔ݀	     ݏ݀	
 
For  all  ݒ௛ ∈ ௛ܪ ,  such  that 	ݒ௛ = 0 on ߲ߗଵ௛. Here ߲ߗଵ௛ and ߲ߗଶ௛ approximate 
 . ଶ , respectivelyߗ߲ ଵ andߗ߲
 

 Upon  substituting (3.17)  and  (3.12)  into  (3.19)  and  simplifying  
terms , we arrive at the linear algebraic system of equations  
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                                       ∑ ௝ேݑ௜௝ܭ
௝ୀଵ = ௜ܨ 						,					݅ = 1,2, … , ܰ                                   (3.20) 

 
Where ܭ௜௝  are the elements of stiffness matrix for the problem , 
 

௜௝ܭ   = ∫ఆ೓ ቂ݇ ቀ
డ∅೔
డ௫

డ∅ೕ
డ௫

+ డ∅೔
డ௬

డ∅ೕ
డ௬
ቁ + ܾ∅௜∅௝ቃ ௜∅௝∅݌డఆమ೓∫+ ݕ݀ݔ݀  (3.21)                  ݏ݀	

 
and  ܨ௜  are the components of the load vector, 
 
௜ܨ                                          = ∫ఆ೓݂∅௜ ௜∅ߛడఆమ೓∫+ݕ݀	ݔ݀	  (3.22)                                    ݏ݀	
 
We  next  modify  the  equations (3.20) to  accommodate  the Dirichlet data 
and finally  solve  the  resulting  system for  the  unknown  nodal values ݑ௝  
there by determining the finite element approximation of the solution ݑ	to 
(3.16) . 

The  procedure  we have just outlined , of course , closely parallels that for 
one-dimensional  problems .  Fortunately ,  most  of  the  other features of the 
one-dimensional  analysis  carry  over ,  with minor modifications , to this two-
dimensional case :  

1. The  stiffness  matrix  K is sparse . Since the global basis functions ∅௜  and 
∅௝ 		and  their derivatives  are  nonzero  only  on  “ patches ”  of  elements 
containing  nodes  ݅	, ݆ ,  the entry  ܭ௜௝  will be nonzero only when there is 
an element containing both node ݅	and node ݆ . 

2. In the present case , K is  symmetric  (owing to the fact that the operator 
is self-adjoint) . Note also that if a judicious numbering of nodes is used , 
K  will be  banded  ;  that is  the nonzero  elements  in K  will form a band 
containing  the  main  diagonal  of  the  matrix . The fact that K is sparse , 
symmetric  matrix   can  be  thoroughly  exploited  in  designing  efficient 
algorithms for solving linear systems of the form (3.20). 

3. Each  of  the integrals  in (3.21)  and (3.22)  can be calculated as the sum 
of contributions  furnished  by  each  element  in  the  mesh .  However , 
the interpretation  of  such  a  procedure  is  interesting  and  deserves  
some elaboration . Let  ߗ௘  denote  a typical finite element in the mesh . 
On ߗ௘ , the exact solution ݑ	of our boundary-value problem satisfies  
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∫ఆ೐(݇∇ݑ ∙ ݒ∇ + ݕ݀ݔ݀(ݒݑܾ = ∫ఆ೐݂ݒ	ݔ݀	ݕ݀ − ∫డఆ೐ߪ௡ݒ	ݏ݀   

 
For  every  admissible  ݒ	, where  ߪ௡ is  the  normal  component  of  flux  at  the 
element boundary . Next , let ݑ௛௘  and ݒ௛௘ denote the restrictions of the  approxi- 
mations 	ݑ௛ and  ݒ௛ 	 to  	ߗ௘  then   the  local   approximation  of  the   variational 
boundary-value problem over ߗ௘  assumes the form  

         ∫ఆ೐(݇∇ݑ௛
௘ ∙ ௛௘ݒ∇ + ݕ݀ݔ݀(௛௘ݒ௛௘ݑܾ = ∫ఆ೐݂ݒ௛

௘ ݕ݀	ݔ݀	 − ∫డఆ೐ߪ௡ݒ௛
௘	݀(3.23)         ݏ 

Here ߪ௡ is the actual (exact) flux across ߲ߗ௘  and , although not given as data in 
the original problem , appears as data in natural boundary conditions on  ߲ߗ௘ . 
Since  ݒ௛=0  on  ߲ߗଵ௛ ,  there  will  be  no  contribution  to  the  last  integral  of 
(3.23) from elements  with  sides  coincident with  ߲ߗଵ௛	 . Since 	ݑ௛௘  and  ݒ௛௘	 are  
of the form  

,ݔ)௛௘ݑ                   (ݕ = ∑ ௝௘ߖ௝௘ݑ
ே೐
௝ୀଵ ,ݔ) ,ݔ)௛௘ݒ				,				(ݕ (ݕ = ∑ ௝௘ߖ௝௘ݒ

ே೐
௝ୀଵ ,ݔ)   				(ݕ

௝௘ߖ  being the local shape  functions  for  ߗ௘   and  ௘ܰthe number of nodes in ߗ௘  , 
(3.23) leads to the linear system  

                                      ∑ ݇௜௝௘ ௝௘ݑ
ே೐
௝ୀଵ = ௜݂

௘ − ௜௘ߪ 		, ݅ = 1,2, … , ௘ܰ                              (3.24)  

Where 

                                 ݇௜௝௘ = ∫ఆ೐ ൤݇ ൬
డఅ೔

೐

డ௫

డఅೕ
೐

డ௫
+ డఅ೔

೐

డ௬

డఅೕ
೐

డ௬
൰ + ௝௘൨ߖ௜௘ߖܾ    (3.25)            	ݕ݀ݔ݀

 
                      ௜݂

௘ = ∫ఆ೐݂ߖ௜
௘  (3.26)                                             																							ݕ݀ݔ݀	

 
௜௘ߪ                      	= ∫డఆ೐ߪ௡ߖ௜

௘	݀ݏ		(3.27)                                                                     
 

Here  ݇௜௝௘	 and  ௜݂
௘ are  the  components of the element stiffness matrix and load 

vector , respectively , for element ߗ௘  and ߪ௘ is an element flux vector, obtained 
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by assigning to node ݅	of ߗ௘  a weighted average 	∫డఆ೐ߪ௡ߖ௜
௘	݀ݏ of the actual flux 

 . ௘ߗ߲ ௡ acrossߪ
 Formally, the global system of equations (3.20) is obtained by summing  

(3.24) over  all  ܧ elements  in the  mesh . We  expand  the  element  matrices  
in (3.25), (3.26), and (3.27) to ܰ × ܰ and ܰ × 1	order matrices corresponding 
to the order of global matrices in (3.21) and (3.22) . For example , 	݇௘will 
become an ܰ × ܰ matrix ݇௘will zeros everywhere except those rows and 
columns corresponding to nodes within element  ߗ௘  and  ݂௘  and  ߪ௘  will be 
expanded to ܰ × 1 vectors ܨ௘  and  ∑௘  with  nonzero  entries  only in those 
rows corresponding to nodes in  ߗ௘ . Then the first terms in the global matrices 
in  (3.21) and  (3.22) are obtained as the sums  
 

        �
∑ ∫ఆ೐ ቂቀ

డ∅೔
డ௫

డ∅ೕ
డ௫

+ డ∅೔
డ௬

డ∅ೕ
డ௬
ቁ + ܾ∅௜∅௝ቃ ݕ݀	ݔ݀ = ∑ ݇௜௝௘ா

௘ୀଵ
ா
௘ୀଵ 						

∑ ∫ఆ೐݂
ா
௘ୀଵ ∅௜ ݕ݀ݔ݀	 = ∑ ௜௘ܨ 				,				݅, ݆ = 1,2, … , ܰா

௘ୀଵ 																	
ቑ                  (3.28) 

 
And  
 
                   ∑ (݇௜௝௘ ௝ݑ − ௜௘ܨ +∑ ) = 0				,								݅ = 1,2௘

௜ , … , ܰா
௘ୀଵ                               (3.29) 

 
          Notice  that  the  contributions  to  ܭ௜௝   and  ܨ௜ from  boundary  conditions 
(  recall  (3.21)  and  (3.22)   )  must  enter  the  problem  through  the  terms    
∑ .௘௜   Continuing we node that the sum of the contour integrals can be written 
in the form  
 
                     ∑ ∑ = ௜ܵ

(଴) +௘
௜

ா
௘ୀଵ ܵ௜

(ଵ) + ௜ܵ
(ଶ)		,								݅ = 1,2, … ,ܰ                             (3.30) 

 
Where  
 
                                     ܵ௜

(଴) = ∑ ∫డఆ೐ିడఆ೓ߪ௡∅௜
ா
௘ୀଵ   ݏ݀

                                     ܵ௜
(ଵ) = ∫డఆభ೓ߪ௡∅௜	݀ݏ	(3.31)                                                                

                                     ܵ௜
(ଶ) = ∫డఆమ೓ߪ௡∅௜	݀ݏ  
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 Here ߲ߗ௘ − ௘ߗ߲  is the portion of the boundary	௛ߗ߲ 	 of ߗ௘ 	 not on ߲ߗ௛ 	(i.e, the 
part  of  		߲ߗ௘  that   consists  of  interelement  boundaries  ) . We  interpret  the 
quantities in (3.31) as follows . 
       ௜ܵ

(଴) :Since only involves terms on ߲ߗ௘ −  ௛ , this vector is defined only atߗ߲

interior nodes ݅	. To interpret  ௜ܵ
(଴), consider an interior patch of four elements 

having  node 1  in  common  such  as  that  indicated in Fig 3.5 . Using (3.23) 
and (3.29) , we easily verify that , for this node ,  ଵܵ

(଴) has the form  
 

ଵܵ
(଴) = ∑ ∫డఆ೐

ସ
௘ୀଵ   ݏ݀	௡∅ଵߪ

 
         = ∫௰భ⟦ߪ௡⟧∅ଵ		݀ݏ + ∫௰మ⟦ߪ௡⟧∅ଵ		݀ݏ + ∫௰య⟦ߪ௡⟧∅ଵ		݀ݏ + ∫௰ర⟦ߪ௡⟧∅ଵ		݀ݏ  
 

                   
 
 
                Figure 3.5   An interior patch of four elements sharing node 1 
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From  the  conservation  law,  ⟦ߪ௡⟧ = 0  across an interface where no point  or 
line sources are applied . Thus ,  if ݂	is  smooth  in  the  patch shown in Fig. 3.5, 
we have  

                                                               ܵଵ
(଴) = 0																																																												(3.32) 

 

Naturally ,  there  is  no need to evaluate  these  zero  contributions (3.29) and 
(3.30) ,  so that they may be excluded from element calculations . 

 An  exception  to (3.32) occurs  when  the  source  function ݂	contains  a 
line  source  or  concentrated  point  source . Then  ⟦ߪ௡⟧  equals   the  intensity 
of the line  source  and  is no  longer  zero .  In  the  case  of  a point source , our 
present variational  formulation is not strictly  applicable .  However , we  can  
include  the   effects   of  point   sources   in  the  finite  element   analysis  if  we 
proceed as follows .  Suppose that ݂	has the form  

,ݔ)݂                                 (ݕ = ሚ݂(ݔ, (ݕ + መ݂ݔ)ߜ − ௜ݔ , ݕ −                                   (3.33)		௜)ݕ

Where  ሚ݂ is  smooth  (integrable)  part  of  ݂		and  መ݂ݔ)ߜ − ௜ݔ , ݕ −   denotes  a	௜)ݕ
point  source  of  intensity  መ݂	 at  a  point  (ݔ௜ , ∋(௜ݕ - . As  in  our  study of one	௛ߗ
dimensional  problems , that the mesh  ߗ௛ is  always constructed so that nodal 
points are located at points  where  point  sources  act . Then  only  the smooth  
part ሚ݂ of ݂	appears in the integrals in (3.23)  and (3.26) . In this case ,  note 
that for the interior node in Fig . 3.5, 

                                ଵܵ
(଴) = ∑ ∫డఆ೐ߪ௡∅ଵ

ସ
௘ୀଵ ݏ݀ = ∑ ∫௰೘⟦ߪ௡⟧∅ଵ

ସ
௠ୀଵ   ݏ݀

The presence of the basis function ∅ଵ indicates that ଵܵ
(଴) represents the weigh- 

ted   average  of  these  jumps  at  the  interior  node 1 . We  choose  to  balance 
nonzero jumps  in flux  by concentrated  sources መ݂ , we set  

                                                                     ܵଵ
(଴) = መ݂  
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Whenever  ݂(ݔ, (ݕ = ሚ݂(ݔ, (ݕ + መ݂ݔ)ߜ − ௜ݔ , ݕ −  ௜) .  We  remark  that the pointݕ
sources   in   two-dimension   problems   leads   to   very   irregular  ( singular ) 
solutions ݑ	 . 

          ௜ܵ
(ଵ) :  According  to  the  essential  boundary  conditions , the values of ݑ௛ 

prescribed at nodes on ߲ߗଵ௛	 . Since ߪ௡	 is not known on  ߲ߗଵ௛ ,  ܵ௜
(ଵ) cannot be 

prescribed there . However , once all of the nodal  displacements   ݑଵ, ,ଶݑ … , ேݑ  
have  been  determined  ,  an  approximation  of  ௜ܵ

(ଵ) can be calculated directly 
from (4.14) , if desired . 

         ௜ܵ
(ଶ) : On ߲ߗଶ௛  , the natural boundary condition is specified . There we set  

(ݏ)௡ߪ                                                      = (ݏ)௛ݑ(ݏ)݌ −      (ݏ)ߛ

So that , approximately , 

                                        ܵ௜
(ଶ) ≈ ∫డఆమ೓ൣ݌∑ ௝∅௝ேݑ

௝ୀଵ −   ݏ൧∅௜݀ߛ

                                                                                                                                           (3.34) 

                                                 = ∑ ௝ேݑ௜௝݌
௝ୀଵ −   ௜ߛ

where  

௜ߛ                                 = ∫డఆమ೓ߛ∅௜ ݏ݀	 = ∑ ∫డఆమ೓೐ ௜∅ߛ
ா
௘ୀଵ ݏ݀	 = ∑ ௜௘ாߛ

௘ୀଵ               (3.35) 

and  

௜௝݌                    = ∫డఆమ೓݌∅௜∅௝ ݏ݀	 = ∑ ∫డఆమ೓೐ ௜∅௝∅݌
ா
௘ୀଵ ݏ݀ = ∑ ௘																௜௝݌ 				(3.36)ா

௘ୀଵ       

Here ߲ߗଶ௛௘  is aportion of  ߲ߗ௘  intersecting ߗଶ௛ . 

        Returning now to (3.29) , we arrive at the system of equations , 

                                        ∑ ௜௝ேܭ
௝ୀଵ ௝ݑ = ௜ܨ − ௜ܵ

(ଵ)						,				݅ = 1,2, … , ܰ                     (3.37) 

where  

௜௝ܭ                                                   = ∑ ௜௝௘ܭ) + ௜௝௘݌ )ா
௘ୀଵ                                                 (3.38) 
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௜ܨ                                                     = ∑ ௜௘ܨ) + ௜௘)ாߛ
௘ୀଵ                                                   (3.39) 

We now impose boundary conditions on ߲ߗଵ௛  and proceeds to solve the resul- 
ting system of equations for the unknown nodal values . 

 

An Example  

We  shall  briefly  outline  the  analysis  of  a  simple  example   problem  . 
Consider the formulation of a finite element approximation of problem  

 

	�

,ݔ)ݑ∆−												 (ݕ = ,ݔ)݂ 											ߗ	݊݅													(ݕ
ݑ																											 = 						ସଵ߁	݊݋																						0

																																																			డ௨
డ௡
= ,ଵଶ߁݊݋																					0 ,	ଶହ߁ ,଺଻߁ ଻ସ߁		݀݊ܽ

																							డ௨
డ௡
+ ݑߚ = 															ହ଺߁	݊݋																				ߛ

	 ⎭
⎪
⎬

⎪
⎫

       (3.40) 

 

Where  Ω  is the polygonal domain shown in Fig .3.7a and ߁ସଵ,	߁ଵଶ,…,	߁଻ସ are the 
segments  of  the  boundary . In  this  case ,  ߲ߗଵ =  ଶ consists  of theߗ߲	 ସଵ and߁
segments ߁ଵଶ, ,ଶହ߁  ଻ସ . Our  analysis  of  this  problem  proceeds  as߁ ଺଻ and߁ , ହ଺߁
follows: 

1. We partition the  domain  into  six  triangular  elements ,  as  in Fig .3.6b , 
over  which  linear  approximations 	ݑ௛  of  the  solution  ݑ	of  (3.40)  are 
defined .  The  six  elements  and  seven  nodes are numbered as shown . 
Note that ߲ߗଵ = ଵ௛ߗ߲  and ߗଶ =  . ଶ௛ߗ߲
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Figure 3.6  (a) The polygonal domain Ω in problem (4.25)and (b) a finite-element model 
of this domain  

2. Next ,we use (3.25) and (3.26) to   compute the element matrices ܭ௘  and 
௘ܨ  , e=1,2…,6 , and expand these to 7 × 7 matrices : 
 
Element 1 
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Element 2  

                                  

Element 6  

                                 

3. As the contributions from  each  element  are  calculated ,  strating  from 
element 1  and  continuing  through  element 6, they  are  added to their 
appropriate locations in the global stiffness and  load  matrices .  At  this 
stage , we have the system : 

                                                                                                                          

 (3.41)       
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Where  ܨଵ = ݂	ଵଵ + ݂	ଵଶ			, ଶܨ = ݂	ଶଵ + ݂	ଶ	ଷ ,   etc ,  and  the  ∑௜	 are  defined  using 
(3.30) .  the  entries  market  with  ~   will  be  modfied  in  the  final  system  of 
equations upon the application of the natural boundary conditions on ߁ହ଺  .  

4. Since nonhomogeneous conditions are applied only on the segment 
connecting node 5 and 6, the matrices ߛ	and ܲ deϐined in (3.35) and 
(3.36) are of the form  
 

                                              (3.42) 
 
Thus (3.41) becomes  
 

                   (3.43) 
 
Wherein  
 
ହହܭ = ෩ହହܭ + ହܲହ  ,   ܭହ଺ = ෩ହ଺ܭ + ହܲ଺   ,     ܨହ = ෨ହܨ +  .ହ        etcߛ
 

5. We now impose the essential  conditions   ݑଵ=ݑସ=0  on  ߁ସଵ . In this way , 
we obtain the invetible system of five equations and five unknown   
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                                                          (3.44) 
 
 

 Which  we solve for the nodal values  ݑଶ,	ݑଷ,	ݑହ,	ݑ଺ and ݑ଻ .The remaining pair 
of equations can then be used to calculate the approximate fluxes ∑ଵ and ∑ସ at 
1 and 4 : 

                                  �−∑ଵ = ݇ଵଶݑଶ + ݇ଵଷݑଷ + ݇ଵସݑସ − ଵܨ
−∑ସ = ݇ସଷݑଷ + ݇ସ଻ݑ଻ − 																						ସܨ

ൠ                                    (3.45) 

 
Other features of the solution can now be evaluated since , by (3.18) ,  ݑ௛  is  
now completely determined . 
 
Solution  let : 

                              a൫ߖ௜ , ௝൯ߖ = ൞
	ଶ
௛
																						݅ = ݆

ିଵ
௛
												 |݅ − ݆| = 1

	݁ݏ݅ݓݎℎ݁ݐ݋										0

	�		 

 
then element 1 
 

=
1
ℎ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
2 −1 −1
−1 2 −1
−1 −1 2

					
0 0 0
0 0 0
0 0 0

						
0
0
0																																	

	0							0									0							0					0					0						0
0							0									0							0					0					0						0
0							0									0							0					0					0						0
0							0									0							0					0					0						0⎦

⎥
⎥
⎥
⎥
⎥
⎤
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Element  2 
 

=
1
ℎ

⎣
⎢
⎢
⎢
⎢
⎢
⎡

2 0 −1
0 0 0
−1 0 2

					
−1 0 0
0 0 0
−1 0 0

						
0
0
0																																	

−1						0			 − 1									2				0					0						0	
				0							0							0										0				0					0						0		
	0							0							0										0				0					0						0
	0							0							0										0				0					0						0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

⋮ 
⋮ 
⋮ 
⋮ 

 
Element  6 
 

=
1
ℎ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0
0 0 0
0 0 2

					
0 0 0
0 0 0
0 −1 −1

						
0
0
0																																	

0					0					0						0						0							0								0
	0					0					0						0						0							0								0
		0				0			 − 1				0						2				 − 1						0

					0						0			 − 1				0				 − 1						2					0				
	 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
As the contributions from each element are calculated , starting from 

element 1 and continuing throught element 6, they are added to their 
appropriate locations in the global stiffness and load matrices . 

After imposing the boundary conditions , we solve the resulting system 
for the unknown nodal values ݑ௝  by writing a program code using matlab or 
any programming  languages , which is not part of this thesis . 
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