Measurements of Platelets Activity in End Stage Renal Disease Patients in Al-Ribat Hospital – Sudan

From March to May 2014

A dissertation submitted in partial fulfilment for (MSc) degree in haematology and immunohaematology

Submitted by:

Namariq Mohammed Osman Ahmed

B.Sc Honours in Medical Laboratory Science (Haematology)

Al-Zaeim Al-Azhari University

January 2008

Supervisor:

Dr. Mubarak Alsaed Alkarsani M.D

2014
بسم الله الرحمن الرحيم

الآية القرآنية

قال الله تعالى:

وَيَصْلُونَكَ عَنَّ الْرُّوحِ قَلْ الْرُّوحُ مِنْ أَمَّرِي رَبِّي وَمَا أُوتِيَ شَيْءٌ مِنَ الْعَالَمِ إِلَّا قَلِيلًا

سورة الإسراء
Dedication

I dedicate this research:

To my parents who guided me through my early days of life and inspired me to take the road of ever and continuous scientific learning.

To my sister, my brother, and all family members whom help me and being strongly supportive, without their encouragement, this work could not have been completed.

To my friends for being a killer of strength for me when i was weak.

To everyone mentioned directly and indirectly were necessary threads woven in to the fabric of my life.

Namariq
Acknowledgment

I would like to express my appreciation and grateful thanks to Allah at first, then to my supervisor Dr. Mubarak Alsaeed Alkarsani for his continuous supervision, his guidance and encouragement throughout the work period.

Special and grateful thanks are also extended to the administration and staff of Al-Ribat hospital renal dialysis centre.

Thanks are due to all the volunteers who accept being a part of this study.

I am very much indebted to Mr. Telal Babikir whose statistical analysis of this data and the majority of the graphs were instrumental in giving this work its final shape.

Finally thanks to the teaching staff of Sudan University of Science and Technology, Faculty of medical Laboratory Sciences.
Abstract

End stage renal disease (ESRD) is a major health problem in Sudan which is stage five of chronic renal failure leading to many complications. Patients need to dialysis as a treatment to survive.

Haemodialysis leading to platelets abnormalities (chronic platelets activation) while the platelets play a major role in haemostasis and they are natural source of growth factors which are play a significant role in repair and regeneration of connective tissues in healthy individuals.

This analytical descriptive cross sectional case-control study was conducted in Al-Ribat Hospital during the period from March to May 2014. The aim of the study was to determine the changes in platelets activity by measuring platelets count and platelets indices (MPV, PDW, and P-LCR) among Sudanese End Stage Renal Disease Patients attending Al-Ribat Hospital in the renal dialysis unit.

Eighty four blood samples were collected from the patients with end stage renal disease (ESRD) and fifty blood samples were collected from apparently healthy (controls) individuals. 2.5 ml of blood was collected from each patient and control, automated haematological analyzer (Sysmex KX-21N) was used to measure platelets count, MPV, PDW, P-LCR. Informative data of age and gender, were collected using a questionnaire during the period of March to May 2014.

Firstly, the Age in this study was divided to three groups (20-40), (40-60), (60-80) years.
The study results revealed that platelets count was significant decreased and MPV was significant elevated on the end stage renal disease patients. The mean value of patients with end stage renal disease of platelets count (185.25± SD) and mean value of MPV (13.02± SD) respectively . The mean value of Platelets count (274.86± SD) and mean value of MPV (9.36± SD) in control group respectively.

The study concluded that there was a significant effectiveness of platelets count and MPV on ESRD patients, the other parameters (PDW and P-LCR) have no significant effectiveness on ESRD patients.

Also, no significant effectiveness of gender on platelets count, MPV, PDW, and P-LCR of end stage renal disease patients, and there was no significant effectiveness of age on PDW and P-LCR of end stage renal disease patients but there was an age effectiveness on platelets count (inverse relation) and also there was an age effectiveness on MPV (direct relation) of end stage renal disease patients.
مستخلص البحث

أجريت هذه الدراسة التحليلية الوصفية (حالة وحالة ضابطة) بمستشفى الرباط الجامعي خلال الفترة من مايو إلى مارس 2014، حيث هدفت الدراسة إلى تحديد التغيرات في نشاط الصفائح الدموية بين مرضى الحالة الأخيرة من الفشل الكلوي المزمن بالسودان الذين يترددون على مستشفى الرباط الجامعي في وحدة غسيل الكلى، وذلك عن طريق قياس الصفائح الدموية ومؤشراتها (متوسط حجم الصفحات، عرض توزيع الصفحات، نسبة الصفائح الدموية كبيرة الخلوية) نظراً لأن الفشل الكلوي يشكل مشكلة صحية رئيسية في السودان، ومرحلة خامسة في حالة الفشل الكلوي المزمن الذي يدوره قد يؤدي إلى مضاعفات عديدة.

المرضى بحجة إلى الغسيل الكلوي كعلاج للبقاء على قيد الحياة، الغسيل الدموي يؤدي إلى تشوهات الصفائح الدموية (تششيط الصفائح الدموية المزمنة) في حين أن الصفائح الدموية دوراً رئيسياً في عملية تخثر الدم ومصدر طبيعي لعوامل النمو التي تلعب دوراً هاماً في اصلاح وتجديد الأنسجة الضامة في الأشخاص الأصحاء.

تم أخذ (84) عينة دم من المرضى الذين يعانون من الحالة الأخيرة من الفشل الكلوي المزمن و (50) عينة دم تم أخذها من أشخاص أصحاء كمجموعة ضابطة وجمع (2.5) مل من دم كل من المرضى والأصحاء واستعمل جهاز المعمل الأوتوماتيكي Sysmex KX-21N وذلك لقياس عدد الصفائح الدموية وقياس مؤشراتها (متوسط حجم الصفحات، عرض توزيع الصفحات، نسبة الصفائح الدموية كبيرة الخلوية). وقد تم جمعها من خلال استبانة المعلومات حول العمر والجنس وفترة المرض في الفترة الزمنية المحددة.

قسمت الدراسة مرحلياً وفق الأعمار إلى ثلاث مجموعات أولية (40-20)، (60-40) أو (80-60) سنة.

أوضحت نتيجة الدراسة أن عدد الصفائح الدموية قد سجل انخفاضاً كبيراً، وأن متوسط حجم الصفحات سجل قيماً ذات أهمية مرتفعة لمرضى الحالة الأخيرة من الفشل الكلوي المزمن.
أشارت نتيجة الدراسة إلى أن متوسط قيمة عدد الصفائح الدموية كان (185.25 ± 12.09) لمرضى الحالة الأخيرة من الفشل الكلوي المزمن ومتوسط قيمة المتوسط لحجم الصفحات كان (13.02 ± 0.93) على التوالي. وأن متوسط عرض توزيع الصفائح الدموية كان (274.86 ± 13.02) للأسحاك، وقدر تراصها ضبطية على التوالي. وأن متوسط عرض توزيع الصفائح الدموية كان (12.09 ± 22.39) لمرضى الحالة الأخيرة من الفشل الكلوي المزمن ومتوسط نسبة الصفائح الدموية كبيرة الخلية كان (11.66 ± 9.36) على التوالي، وأن متوسط عرض توزيع الصفائح الدموية كان (20.94 ± 11.66) للأصحاء كمجموعة ضابطة على التوالي.

وقد تلاحظ من خلال الدراسة أنه يوجد اختلاف مؤثر لقيم عدد الصفائح الدموية ومتوسط حجم الصفحات لمرضى الحالة الأخيرة من الفشل الكلوي المزمن، وأن قيم المؤشرات الأخرى لم تسجل اختلافاً مؤثراً على هؤلاء المرضى.

وقد استنتجت الدراسة أيضاً أنه لا يوجد اختلاف مؤثر في كل القيم المأخوذة لقياس تبعاً للجنس لمرضى الحالة الأخيرة من الفشل الكلوي المزمن في وحدة غسيل الكلى. وقد وجد أنه لا يوجد علاقة بين عمر المريض واختلاف قيم عرض توزيع الصفائح الدموية ونسبة الصفائح الدموية كبيرة الخلية، إلا أنه وجد تأثير للعمر على عدد الصفائح الدموية (علاقة عكسية) ووجد أيضاً تأثير للعمر على قيم متوسط حجم الصفحات (علاقة طردية) لمرضى الحالة الأخيرة من الفشل الكلوي المزمن في وحدة غسيل الكلى.
List of contents

<table>
<thead>
<tr>
<th>No</th>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dedication</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Acknowledgement</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Abstract (English)</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>Abstract (Arabic)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>List of contents</td>
<td>VII</td>
</tr>
<tr>
<td></td>
<td>List of abbreviations</td>
<td>XII</td>
</tr>
<tr>
<td></td>
<td>List of tables</td>
<td>XIV</td>
</tr>
<tr>
<td></td>
<td>List of figures</td>
<td>XV</td>
</tr>
</tbody>
</table>

CHAPTER ONE

1- Introduction and literature review

<p>| 1.1 | Introduction | 1 |
| 1.1.1 | Blood components and function | 1 |
| 1.2 | literature Review | 1 |
| 1.2.1 | Haematopoiesis | 1 |
| 1.2.1.1 | Haemopoietic stem cells (HS Cs) | 2 |
| 1.2.1.2 | Location of haematopoiesis | 2 |
| 1.2.1.3 | Maturation of haematopoiesis | 3 |
| 1.2.1.4 | Determination of Haematopoiesis | 3 |
| 1.2.1.5 | Haematopoietic growth factors | 4 |
| 1.2.1.6 | Transcription factors | 4 |
| 1.2.1.7 | Haematopoiesis classification | 5 |
| 1.2.1.7.1 | Erythropoiesis | 5 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1.7.2</td>
<td>Leukopoiesis</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1.7.2.1</td>
<td>Lymphopoiesis</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1.7.2.2</td>
<td>Myelopoiesis</td>
<td>6</td>
</tr>
<tr>
<td>1.2.1.7.3</td>
<td>Megakaryopoiesis</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Platelets</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2.1</td>
<td>Platelets definition and their role</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>Platelets structural and functional anatomy</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2.3</td>
<td>Platelets count</td>
<td>10</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Automated technique</td>
<td>10</td>
</tr>
<tr>
<td>1.2.3.1</td>
<td>Principle of automated technique</td>
<td>10</td>
</tr>
<tr>
<td>1.2.3.1.1</td>
<td>Aperture impedance technology</td>
<td>11</td>
</tr>
<tr>
<td>1.2.3.1.2</td>
<td>Light scattering method (electro-optical counting)</td>
<td>12</td>
</tr>
<tr>
<td>1.2.3.2</td>
<td>Disadvantages of automation technique</td>
<td>13</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Platelets parameters</td>
<td>14</td>
</tr>
<tr>
<td>1.2.4.1</td>
<td>Platelets count</td>
<td>14</td>
</tr>
<tr>
<td>1.2.4.1.1</td>
<td>Causes of increase platelet counts</td>
<td>14</td>
</tr>
<tr>
<td>1.2.4.1.2</td>
<td>Causes of decreased platelets count</td>
<td>14</td>
</tr>
<tr>
<td>1.2.4.2</td>
<td>Mean Platelet Volume (MPV)</td>
<td>15</td>
</tr>
<tr>
<td>1.2.4.2.1</td>
<td>Value of MPV</td>
<td>15</td>
</tr>
<tr>
<td>1.2.4.2.2</td>
<td>Causes of raised MPV</td>
<td>16</td>
</tr>
<tr>
<td>1.2.4.2.3</td>
<td>Causes of low MPV</td>
<td>16</td>
</tr>
<tr>
<td>1.2.4.3</td>
<td>Platelet distribution width (PDW)</td>
<td>16</td>
</tr>
<tr>
<td>1.2.4.3.1</td>
<td>Causes of increased PDW</td>
<td>17</td>
</tr>
<tr>
<td>1.2.4.4</td>
<td>Platelet large cell ratio (P-LCR)</td>
<td>18</td>
</tr>
<tr>
<td>1.2.4.5</td>
<td>Pct (platelet crit)</td>
<td>18</td>
</tr>
<tr>
<td>1.2.4.6</td>
<td>Platelets discriminator</td>
<td>19</td>
</tr>
<tr>
<td>1.2.4.7</td>
<td>Platelet histogram</td>
<td>19</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1.2.4.8</td>
<td>Platelet Histogram Error Flag</td>
<td>19</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Physiology of kidneys</td>
<td>20</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Renal disease</td>
<td>20</td>
</tr>
<tr>
<td>1.2.6.1</td>
<td>Definition</td>
<td>20</td>
</tr>
<tr>
<td>1.2.6.2</td>
<td>Classification of kidney disease</td>
<td>21</td>
</tr>
<tr>
<td>1.2.6.2.1</td>
<td>Acute kidney injury</td>
<td>21</td>
</tr>
<tr>
<td>1.2.6.2.2</td>
<td>Chronic kidney disease</td>
<td>22</td>
</tr>
<tr>
<td>1.2.6.3</td>
<td>Causes of renal disease</td>
<td>22</td>
</tr>
<tr>
<td>1.2.6.4</td>
<td>Stages of renal disease</td>
<td>22</td>
</tr>
<tr>
<td>1.2.7</td>
<td>End Stage Renal Disease (ESRD)</td>
<td>23</td>
</tr>
<tr>
<td>1.2.7.1</td>
<td>Causes Of ESRD</td>
<td>24</td>
</tr>
<tr>
<td>1.2.7.2</td>
<td>Main groups at risk for ESRD</td>
<td>24</td>
</tr>
<tr>
<td>1.2.7.3</td>
<td>Symptoms of ESRD:</td>
<td>24</td>
</tr>
<tr>
<td>1.2.7.4</td>
<td>Complication of ESRD</td>
<td>25</td>
</tr>
<tr>
<td>1.2.7.5</td>
<td>Treatment of renal disease</td>
<td>25</td>
</tr>
<tr>
<td>1.2.7.5.1</td>
<td>Dialysis</td>
<td>25</td>
</tr>
<tr>
<td>1.2.7.5.1.1</td>
<td>Principle</td>
<td>26</td>
</tr>
<tr>
<td>1.2.7.5.1.2</td>
<td>Haemodialysis (HD)</td>
<td>27</td>
</tr>
<tr>
<td>1.2.7.5.1.2.1</td>
<td>Complication of haemodialysis</td>
<td>28</td>
</tr>
<tr>
<td>1.2.7.5.2</td>
<td>Kidney transplant</td>
<td>28</td>
</tr>
<tr>
<td>1.2.8</td>
<td>Platelets and end stage renal disease</td>
<td>29</td>
</tr>
<tr>
<td>1.2.9</td>
<td>Previous Studies</td>
<td>30</td>
</tr>
<tr>
<td>1.3</td>
<td>Rationale</td>
<td>32</td>
</tr>
<tr>
<td>1.4</td>
<td>Objectives</td>
<td>33</td>
</tr>
<tr>
<td>1.4.1</td>
<td>General objective</td>
<td>33</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Specific objectives</td>
<td>33</td>
</tr>
</tbody>
</table>
CHAPTER TWO

2. Materials and Methods

2.1 Study design 34
2.2 Study area 34
2.3 Study period 34
2.4 Study population 34
2.5 Inclusion criteria 34
2.6 Exclusion criteria 34
2.7 Sampling 34
2.7.1 Sample collection 34
2.7.2 Sampling method 35
2.8 Data collection 35
2.9 Methodology 35
2.9.1 Materials and equipment's 35
2.9.2 Test applied 36
2.9.2.1 Measurement of platelets parameters 36
2.9.2.2 Data analysis 37
2.9.2.3 Ethical considerations 37

CHAPTER THREE

3. Results 38

x
CHAPTER FOUR

4. Discussion, Conclusion and Recommendation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Discussion</td>
<td>46</td>
</tr>
<tr>
<td>4.2</td>
<td>Conclusion</td>
<td>48</td>
</tr>
<tr>
<td>4.3</td>
<td>Recommendation</td>
<td>49</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
<td>57</td>
</tr>
</tbody>
</table>
List of abbreviations

ARF: Acute Renal Failure

CKD: Chronic Kidney Disease

CSF: Colony Stimulating Factor

EDTA: Ethylene Diamine Tetra Acetic Acid

ESRD: End Stage Renal Disease

fl: femtolitre

G-CSF: Granulocyte Colony Stimulating Factor

GFR: Glomerular Filtration Rate

GM-CSF: Granulocyte -Macrophage Colony Stimulating Factor

HD: Haemodialysis

HIV: Human Immunodeficiency Virus

HSCs: Haematopoietic Stem Cells

LD: Lower Discriminator

M-CSF: Macrophage- Colony Stimulating Factor

MPV: Mean Platelet Volume

Pct: Platelet crit

PDGF: Platelets Derived Growth Factor

PDW: Platelet Distribution Width

P-LCR: Platelet Large Cell Ratio
RBCs: Red Blood Cells

SCCS: Surface Connected Canalicular System

SCF: Stem Cell Factor

TAR: Thrombocytopenia with Absent Radii

TGF beta: Transforming Growth Factor-beta

THPO: Thrombopoietin

TTP: Thrombotic Thrombocytopenic Purpura

UD: Upper Discriminator

□l: Microlitre

□m: Micrometre
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3.1)</td>
<td>Frequency of case and control groups in the study population.</td>
<td>38</td>
</tr>
<tr>
<td>(3.2)</td>
<td>Gender distribution among case and control groups.</td>
<td>38</td>
</tr>
<tr>
<td>(3.3)</td>
<td>Mean , SD, Maximum, Minimum of platelets count and platelets indices in the study population.</td>
<td>39</td>
</tr>
<tr>
<td>(3.4)</td>
<td>Relationship between platelets count and platelets indices in case and control groups in the study population.</td>
<td>40</td>
</tr>
<tr>
<td>(3.5)</td>
<td>Relationship between platelets count and platelets indices in male and female among case group.</td>
<td>41</td>
</tr>
</tbody>
</table>
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.1)</td>
<td>Platelet structure.</td>
<td>9</td>
</tr>
<tr>
<td>(1.2)</td>
<td>Indicate display of PDW.</td>
<td>17</td>
</tr>
<tr>
<td>(1.3)</td>
<td>Indicate display of P-LCR.</td>
<td>18</td>
</tr>
<tr>
<td>(3.1)</td>
<td>Correlation between gender and platelets count among case group.</td>
<td>42</td>
</tr>
<tr>
<td>(3.2)</td>
<td>Correlation between gender and MPV among case group.</td>
<td>42</td>
</tr>
<tr>
<td>(3.3)</td>
<td>Correlation between gender and PDW among case group.</td>
<td>43</td>
</tr>
<tr>
<td>(3.4)</td>
<td>Correlation between gender and P-LCR among case group.</td>
<td>43</td>
</tr>
<tr>
<td>(3.5)</td>
<td>Correlation between age and platelets count among case group.</td>
<td>44</td>
</tr>
<tr>
<td>(3.6)</td>
<td>Correlation between age and MPV among case group.</td>
<td>44</td>
</tr>
<tr>
<td>(3.7)</td>
<td>Correlation between age and PDW among case group.</td>
<td>45</td>
</tr>
<tr>
<td>(3.8)</td>
<td>Correlation between age and P-LCR among case group.</td>
<td>45</td>
</tr>
</tbody>
</table>
CHAPTER ONE

INTRODUCTION AND LITERATURE REVIEW
1. Introduction and literature review

1.1. Introduction:

1.1.1. Blood components and function:

Blood is specialized bodily fluid circulated around the body through blood vessels by the pumping action of the heart. In animals with lungs, arterial blood carries oxygen from inhaled air to the tissues of the body, and the venous blood carries carbon dioxide, a waste product of metabolism produced by cells, from the tissues to the lungs to be exhaled. The blood also regulates the body temperature and the body PH with other coagulation, messenger, hydraulic and immunological functions (Dicken and Scott, 2004).

In vertebrates, it is composed of blood cells suspended in a liquid called blood plasma. Plasma is constitutes 55% of blood fluid, is mostly water (91% by volume), and contains dissolved proteins, glucose, mineral ions, hormones, carbon dioxide (plasma being the main medium for excretory product transportation), platelets and blood cells themselves. The blood cells present in blood are mainly red blood cells and white blood cells including leukocytes, and platelets (Dicken and Scott, 2004).

1.2. Literature Review:

1.2.1. Haematopoiesis:

Haematopoiesis is the formation of blood cellular components. All cellular components are derived from haemopoietic stem cell in healthy adult person, approximately 10^{11}-10^{12} new blood cells are
produced daily in order to maintain steady state levels in the peripheral circulation.

This process mainly include erythropoiesis, leukopoiesis and megakaryopoiesis (Alenzi et al., 2009).

1.2.1.1. Haemopoietic stem cells (HSCs):

Haemopoietic stem cells reside in the medulla of the bone marrow and have the unique ability to give rise to all of the different mature blood cells types.

HSCs are self renewing: when they proliferate, at least some of their daughter cells remain as HSCs, so the pool of stem cells does not become depleted. The other daughters of HSCs (myeloid and lymphoid progenitor cells), however can each commit to any of the alternative differentiation pathways that lead to the production of one or more specific types of blood cells, but cannot self- renew. This is one of vital process in the body (Alenzi et al., 2009).

1.2.1.2. Location of haematopoiesis:

In developing embryos, blood formation occurs in aggregates of blood cells in the yolk sac, called blood islands. As developing processes, blood formation occur in the spleen, liver and lymph node. When bone marrow develops, it eventually assumes the task of forming of the blood cells for entire organism.

However, maturation, activation and some proliferation of lymphoid cells occurs in secondary lymphoid organs (spleen, thymus and lymph nodes). In children, haematopoiesis occurs in the marrow of the long bones such as the femur and tibia. In adults, it occurs mainly in the pelvis, cranium, vertebrae and sternum. In some vertebrates,
haematopoiesis can occur wherever there is a loose stroma of connective tissue and slow blood supply, such as gut, spleen, kidneys or ovaries. In some cases the liver, thymus and spleen resume their haematopietic function, if necessary. This is called extra-medullary haematopoiesis. It may cause these organs to increase in size substantially. During fetal development, since bones and thus the bone marrow, develop later, the liver functions as the main haemopoietic organ. Therefore, the liver is enlarged during development (Alenzi et al., 2009).

1.2.1.3. Maturation of haematopoiesis:

As stem cell matures it undergoes changes in gene expression that limit the cell types that it can become and moves it closer to a specific cell type. These changes can often be tracked by monitoring the presence of proteins on the surface of the cell. Each successive change moves the cell closer to the final cell type and further limits its potential to become a different cell type (Alenzi et al., 2009).

1.2.1.4. Determination of Haematopoiesis:

Cell determination appears to be dictated by the location of differentiation. For instance, the thymus provides an ideal environment for thymocytes to differentiate into a variety of different functional T cells. For the stem cells and other un differentiated blood cells in the bone marrow, the determination is generally explained by the determinism theory of haematopoiesis, saying that colony stimulating factors and other factors of the haematopoietic microenvironment determine the cells to follow a certain path of cell differentiation. This is the classical way of scribing haematopoiesis. In fact, however, it is not really true. The ability of the bone marrow
to regulate the quantity of different cell types to be produced is more accurately explained by a stochastic theory. Un differentiated blood cells are determined to specific cell types by randomness. The haematopoietic microenvironment prevails upon some of the cells to survive and some, on the other hand, to perform apoptosis and die. By regulating this balance between different cells types, the bone marrow can alter the quantity of different cells to ultimately be produced (Alenzi et al., 2009).

1.2.1.5. Haematopoietic growth factors:

Red and white blood cells production is regulated with great precision in healthy humans and the production of granulocytes is rapidly increased during infection. The proliferation and self-renewal of these cells depend on stem cell factor (SCF). Glycoprotein growth factors regulate the proliferation and maturation of the cells that enter the blood from the marrow, and cause cells in one or more committed cell lines to proliferate and mature. Three more factors that stimulate the production of committed stem cells are called are colony-stimulating factors (CSFs) and include granulocyte-macrophage CSF (GM-CSF), granulocyte CSF (G-CSF) and macrophage-CSF (M-CSF). These stimulate much granulocyte formation and are active on either progenitor cells or end product cells. Erythropoietin is required a myeloid progenitor cell to become an erythrocyte.

On the other hand, thrombopoietin makes myeloid progenitor cells differentiate to megakaryocytes (thrombocyte-forming cells)(Alenzi et al., 2009).

1.2.1.6. Transcription factors:
Growth factors initiate signal transduction pathways, altering transcription factors, that in turn activate genes that determine the differentiation of blood cells (Alenzi et al., 2009).

1.2.1.7. Haematopoiesis classification:

1.2.1.7.1. Erythropoiesis:

Erythropoiesis is the process by which red blood cells (erythrocyte) are produced. It is stimulated by decreased \(O^2 \) delivery to the kidneys, which then secrete the erythropoietin hormone. This process occurs either in haemopoietic tissues or extramedullary. In the process of RBCs maturation, a cell undergoes a series of differentiation (Alenzi et al., 2009).

1.2.1.7.2. Leukopoiesis:

Leukopoiesis is a form of haematopoiesis in which white blood cells (WBCs or leukocytes) are formed in bone marrow located in bones in adults and haematopoietic organs in the fetus. White blood cells, indeed all blood cells, are formed from differentiation of pluripotent haematopoietic stem cells which give rise to several cell lines with more limited differentiation potential.

These immediate cell lines, or colonies, are progenitors of red blood cells (erythrocytes), platelets (megakaryocytes), and the two main groups of WBCs, myelocytes and lymphocytes (Pike ., et al 2014).

1.2.1.7.2.1. Lymphopoiesis:

Lymphopoiesis refers to the generation of lymphocytes, one of the five different types of WBCs, and is also more formally called lymphoid haematopoiesis (Pike ., et al 2014).
1.2.1.7.2.2. Myelopoiesis:

Myelopoiesis is the regulated formation of myeloid cells, including eosinophilic granulocytes, basophilic granulocytes, neutrophilic granulocytes and monocytes. In haematology, myelopoiesis is the production of blood cells in the bone marrow. The myeloid progenitor can differentiate in the bone marrow into granulocytes, macrophages (mature monocytes), mast cells (whose blood-bone progenitor is not well defined), and dendritic cells of the innate immune system. The granulocytes also called polymorphonuclear leukocytes because of their oddly shaped nuclei, give rise to three short lived cell types including eosinophils, basophils and neutrophils. Agranulocyte differentiates into a distinct cell type by a process called granulopoiesis. In this process it first transforms from a common myeloblast (myeloid progenitor) to a common promyelocyte. This promyelocyte gives rise to a unique myelocyte that for the first time can be classified as a eosinophil, basophil, or neutrophil progenitor based on the histological staining affinity (eosinophilic, basophilic, or neutral granules). The unique myelocyte next differentiates into a metamyelocyte and then a band cell, with a “c” shaped nucleus, before becoming a mature eosinophil, basophil, or neutrophil. Macrophages come from monoblast progenitors that differentiate into promonocytes, which mature into monocyte. Monocytes eventually enter the tissues and become macrophages (Pike, et al 2014).

1.2.1.7.3. Megakaryopoiesis:

The process of megakaryopoiesis is complex, with the potential for regulation at multiple stages. Megakaryocytes are derived from the haemopoietic stem cell through successive lineage commitment steps,
and they undergo a unique maturation process that includes polyploidization, development of an extensive internal demarcation membrane system and finally formation of pro-platelet processes. Platelets are shed from these processes into vascular sinusoids within the bone marrow. Megakaryocytic differentiation is regulated both positively and negatively by transcription factors and cytokine signalling. Thrombopoietin is the most important haemopoietic cytokine for platelet production. Clinically, acquired and inherited mutations affecting megakaryocytic transcription factors and thrombopoietin signalling have been identified in disorders of thrombocytopenia and thrombocytosis (Schulman et al., 1960).

1.2.2. Platelets:

1.2.2.1. Platelets definition and their role:

Platelets or thrombocytes are small. Regularly-shaped clear cell fragments (i.e. cells that do not have a nucleus containing DNA), 2-3 μm in diameter, which are derived from fragmentation of precursor megakaryocytes cytoplasm (50 μm).

The megakaryocyte matures by endomytotic synchronous nuclear replication, at variable stages in development most commonly at eight nucleus stage, the cytoplasm become granular and platelets are liberated. Each megakaryocyte is responsible for the production of about 4000 platelets. The average life span of a platelet is normally just 5 to 9 days. Platelets play a fundamental role in haemostasis and are a natural source of growth factors such as platelets derived growth factors (PDGF) and TGF beta which are play a significant role in the repair and regeneration of connective tissues with others healing-associated growth factors (Laki, 1972).
They circulate in the blood of mammals and involved in haemostasis, leading to formation of the blood clots. The major regulator of platelets production is thrombopoietin hormone (THPO) which is produced by liver and kidney. Normal platelets count is about \(275\times10^9/l\) (Lewis et al., 2001).

If the number of platelets is too low, excessive bleeding can occur. However, if the number of platelets is too high, blood clots can form (thrombosis), which may obstruct blood vessels and result in such events as a stroke, myocardial infarction, pulmonary embolism or the blockage of blood vessels to other parts of the body, such as the extremities of the arms or legs. An abnormality or disease of the platelets is called a thrombocytopathy, which could be either a low number of platelets (thrombocytopenia), a decrease in function of platelets (thrombasthenia), or an increase in the number of platelets (thrombocytosis). There are disorders that reduce the number of platelets, such as heparin-induced thrombocytopenia (HIT) or thrombotic thrombocytopenic purpura (TTP) that typically cause thrombocytosis, or clots, instead of bleeding (Laki, 1972).

1.2.2.2. Platelets structural and functional anatomy:

Under light microscopy, platelets appear as small, a nucleate (that is lacking of nucleus) fragments with occasional reddish granules, measuring approximately 2\(\mu\)m in diameter with a volume of approximately 8fl. By scanning electron microscopy, circulating platelets appear as flat discs with smooth counters, rare spiny filopodia, and random openings of channel system, the surface-connected canalicular system (SCCS), which investigates throughout the platelet and is conduit by which granular contents exocyt after stimulation. They are roughly discoid in shape and contain
cytoplasmic organelles, cytoskeletal elements, invaginating open-canicular membrane systems, and platelet specific granules called alpha and dense granules. Platelets have numerous intrinsic glycoproteins attached to the outersurface of their plasma membrane that are receptors for such ligands as fibrinogen, collagen, thrombin and thrombospondin to vonwillebrand and fibronectin (White 1971).

In describing detailed platelets anatomy, most information is derived from transmission electron microscopy, and platelets structure is classified in to four general areas (fig.1.1).

- The platelet surface.
- The membranous structure.
- The cytoskeleton (sol-gel-zone).
- The granules (Greer et al.,2004).

Figure (1.1): platelet structure, (Safi 2001).
1.2.2.3. Platelets count:

Platelets count is a test to measure how many platelets you have in your blood, either by manual and automated methods. The number of platelets in your blood can be affected by many diseases. Platelets may be counted to monitor or diagnose diseases, or identify the cause of excess bleeding. Normal results 150,000 to 400,000 platelets per microliter (David and Dugdale, 2012).

The manual method using counting chambers that hold a specified volume of diluted blood (as there are far too many cells if it is not diluted) to calculate the number of cells per liter of blood. The advantages of this method is that the automated analyzers are not reliable at counting abnormal cells. That is, cells that are not present in normal patients and are only seen in the peripheral blood with certain haematological conditions. Manual counting is subject to sampling errors because so few cells are counted compared with automated analysis. The automated method give faster, reliable results but some normal patient’s platelets will clump in EDTA anticoagulated blood, which give false low platelets count. The technician view the slide in these cases will see clumps of platelets and can estimate if there are low, normal, or high numbers of platelets (David and Dugdale, 2012).

1. 2.3. Automated technique:

1.1.3.1. Principle of automated technique:

The blood cells are counted in system based on either Aperture impedance (voltage-pulse) or light-scattering technology (electro-optical counting). It begin as simple counting instrument and has developed in to very sophisticated analyzers capable of producing
simultaneous count of all three blood cells type, haemoglobin values and red cell indices. After that the instrument has been developed that they can produce data related to variation in cell size, as well as being able to produce data on differential white cell count. The most commonly used type in haematology laboratories is the impedance cell counters, firstly describe by Wallace coulter in 1956 (coulter W.H) (Suttor,1995).

1.2.3.1.1. Aperture impedance technology:

The impedance principle depend on the fact that red cells are poor conductors of electricity while certain diluents are good conductors, this difference form the basis of the counting system used in Beckman-coulter, Sysmex, Abbot, Roche, and a number of other instruments. For cell counting, blood is highly diluted in a buffered electrolyte solution. The rate of this diluted sample is controlled by a mercury siphon (as in original coulter system) or by displacement of tightly fitting piston. This measures the volume of sample passing through an aperture tube of specified dimension, by constant source electricity direct current is maintained between two electrodes, one in the sample beaker or the chamber surrounding the aperture tube, and another inside the aperture tube. As a blood cell is carried through the aperture, it displaces some of the conducting fluid and increased the electrical resistance; this produce change in potential between the electrodes, the height of the pulses produced indicates the volume of the cells passing through. The pulses can be displayed on an oscillograph screen. The pulses are led to a threshold circuit provided the minimal pulse height which will count (Suttor, 1995).

The impedance principle is still the most commonly used method even through, it is unable to provide consistently accurate platelets
counting in thrombocytopenia, this is due to progressive loss of linearity, an increase influence of background noise and sample debris. The main problem is that platelet can’t be discriminated from other cellular particles and precipitate that cause similar signals, the main non platelets particles include fragments of RBCs, WBCs, especially myeloblast (M2, M5) and lipid or protein aggregates. In addition, platelet may not be counted if they are too big or too small to fit into the window reserved for normal platelets size (Dickerhoff et al., 1995, Kmoiyama et al., 1997, Throm, 1990).

1.2.3.1.2. Light scattering method (electro-optical counting):

The other method for counting depend on light scattering, these work on a similar principle reverse dark field microscope, the blood cells counted by means of electro-optical detector (Koht et al., 1996).

The diluted cells flow through the aperture so that the cells pass, in single file. In front of a light source, light is scattered by the cell passing through light beam, scatter light is detected by photomultipliers which converts it in to electrical impulses which accumulated and counted (Nisshiyama et al., 2005).

Electro-optical detectors are employed for red cell sizing and counting in Bayer-technician system, and for white cell differential counting in a number of other instruments. The optical method using two dimensions of light scatter are less prone to these problems but there are still some circumstances in which optical analyses may be erroneous. About 70% of sample with an abnormal platelet distribution width showed discrepant value between automated and manual visual counting (Nisshiyama et al., 2005).
1.2.3.2. Disadvantages of automation technique:

Because the instruments that depend on impedance principle are set to count only particles with proper size range for exclusion limit. Any cell or material larger or smaller than size exclusion limit will not be counted. Any object in the proper size range is counted, however, even if it is not a platelet. Electronic counting instruments some time produce artificially wrong platelets count. It may arise from an increase or decrease in counting time or volume, if the platelet and other blood cells pass through the counter at the same time, the instrument will not count the large cell because of the size exclusion limit, which will cause the instrument to accidentally miss the platelets. Clumps of the platelets will not be counted because clumps exceed the upper size exclusion limit for platelets. Re-circulation of cells and recounting, presence of non platelet particle called pseudo platelet such as bubble and another extraneous particle. If the sample has high white blood cell count, electronic counting may yield an unusually low platelet count because white blood cells may filter out some of platelets before the sample counted. On the other hand, if the red cells in the sample have burst, their fragments will be falsely counted as platelets (Baker et al., 1985).

To some extent most of these errors had been limited in automated counters by adjusting volume and time of counting using higher dilutions, filter and sweep flow of counted cells eliminated much of these errors so that automated counters can give more reliable results than manual techniques (Suttor 1995, Frank et al.,1989, Chanarian et al.,1989,Brown,1993).
1.2.4. Platelets parameters:

1.2.4.1. Platelets count:

1.2.4.1.1. Causes of increase platelet counts:

- Inflammatory disorders.
- Myeloproliferative states.
- Acute blood loss.
- Haemolytic anaemias.
- Carcinomatosis.
- Status post-splenectomy.
- Exercise.

1.2.4.1.2. Causes of decreased platelets count:

- decreased platelet production: production defect such as:
 - Wiskott-Aldrich syndrome.
 - May-Hegglin anomaly.
 - Bernard-Soulier syndrome.
 - Chediak-Higashi anomaly.
 - Fanconi's anaemia.
 - A plastic anaemia.
 - Bone marrow replacement.
 - Megaloblastic and severe iron deficiency anaemias.
 - Uraemia.
• Increased platelet destruction or consumption:

- Consumption defects with autoimmune thrombocytopenias.
- Disseminated Intravascular Coagulation.
- Thrombotic Thrombocytopenic purpura.

• Increased splenic sequestration (capturing of circulating platelets in the spleen):

-Hypersplenism (Siamak et al., 2014).

1.2.4.2. Mean Platelet Volume (MPV):

1.2.4.2.1. Value of MPV:

The mean platelet volume is an indication of platelet size, and the most extensively studies platelet activation markers. It is one of platelets indices measured by haematology analyzers (Gurney et al., 2002, Coban et al., 2005). Normal MPV ranges are approximately 7 to 11 fl (Corooran et al., 2002).

The mean platelet volume can be an indication of platelet turnover because younger platelets tend to be larger (Taril et al., 2007).

A spectrum of platelet size is seen in patient with rapid turnover (Corooran et al., 2002).

MPV is recently taken as a determinant for platelet function, as it is positively associated with platelets reactivity function (Bath et al., 2004).

Elevated MPV levels have been identified as independent risk factor for myocardial infarction in patient with coronary heart disease and for death or recurrent vascular event after myocardial infarction.
Moreover, increased platelets size has been reported in patient with vascular risk factor such as diabetes, and smoking. Previous studies have demonstrated higher levels of MPV in patient with acute ischemic stroke than in control subject. In contrast, data regarding the association between MPV and stroke severity or stroke outcome have been controversial (Greisem egger et al., 2004).

1.2.4.2.2. Causes of raised MPV:

- Idiopathic thrombocytopenic purpura.
- Bernard-Soulier disease.
- May-Hegglin anomaly (Ishii et al., 1990).

1.2.4.2.3. Causes of low MPV:

- A plastic anaemia.
- Wiskott-Aldrich syndrome.
- Thrombocytopenia with absent radii (TAR).
- Storage pool disease (Tschope et al., 1991).
- Pernicious anaemia (Lewis et al., 2001).

* Calculation: \(MPV (\text{fl}) = \frac{\text{PLT} (\times 10^3 / \mu \text{L})}{\text{PDW}} \)

1.2.4.3. Platelet distribution width (PDW):

The measure of platelet anisocytosis and the platelet crit which is the product of MPV and platelet count, by analog with the haematocrit may be seen as indicative of the volume of circulating platelets in a unit volume of blood (Lewis et al., 2001).
MPV and PDW are investigated as prospective platelet activation markers. However, not all haematology analyzers examine these indices. Normal PDW is approximately 9-13 fl (Boss et al., 2007, Van Cott et al., 2005).

![Figure (1.2): indicate display of PDW](image)

1.2.4.3.1. Causes of increased PDW:

- Essential thrombocythaemia.

- Polycythaemia rupra vera.

- Chronic granulocytic leukaemia.

- Myelofibrosis.

- Pernicious anaemia (Suttor, 1995).

PDW is normal in normal subject and those with reactive thrombocytosis. (Suttor, 1995).
1.2.4.4. Platelet large cell ratio (P-LCR):

The P-LCR indicates the percentage of large platelets with a volume >12 fl. Aside from the two flexible discriminators which delimit the volume distribution curve, there is additionally a fixed discriminator at 12 fl (Fig. 1.3). The share of platelets >12 fl in the total platelet number is presented in %. The standard range is 15–35%. An increase of the parameter may be an indication for platelet aggregates, microerythrocytes and giant platelets (Sysmex, 2011).

![Diagram of P-LCR](image)

Figure (1.3): Indicate display of P-LCR.

1.2.4.5. Pct (platelet crit):

The platelet crit is equivalent to the sum of platelet impulses which are individually detected by means of the impedance measurement principle and thus it is the equivalent to the haematocrit of the red blood cells (Sysmex, 2011).
1.2.4.6. Platelets discriminator:

As the platelet lower discriminator and upper discriminator, the optimum position 2-6 fl and 12-30 fl, respectively are automatically determined by microcomputer. Platelets are calculated from the particles counted between this lower discriminator and upper discriminator (approx 2-30 fl) (Sysmex Corporation, 1999).

1.2.4.7. Platelet histogram:

Platelet histogram is analyzed using three discriminators: two discriminators (LD) and (UD) determined automatically between 2-6 fl, and between 12-30 fl, respectively and fixed discriminator at 12 fl. Regarding platelet histogram, check is made to see that there are no relative frequency errors at discriminators (LD) and (UD), distribution width error, and there is a single peak (Sysmex Corporation, 1999).

1.2.4.8. Platelet Histogram Error Flag:

When the platelet histogram is not normal, histogram error flag is added to parameters of analysis value. Those histogram error flag used with the parameter analysis unit mounted, are listed in the order of higher priority, when two or more flag are applicable to parameter, the highest priority flag is used (Sysmex Corporation, 1999).

As follows:

PL: Relative frequency for LOWER discriminator (LD) exceeds the range, probable is the effect of noise and etc.

PU: Relative frequency for UPPER discriminator (UD) exceeds the range of platelets agglutination, noise interference, and etc.

MP: Two or more peaks in histogram.
DW: Particle distribution width error for 20% frequency with the peak taken as the 100% when the 20% frequency does not cross the histogram two times, this flag is attached (Sysmex Corporation, 1999).

1.2.5. **Physiology of kidneys:**

The kidneys are playing a major role in the control of the constancy of the internal environment. The blood flowing in the kidneys is first filtered (glomerular filtration) so that all the blood constituents except blood cells and plasma proteins go into micro tubular system. In these tubules, modification of the filtrate take place, so that useful substances include most of the filtered water, is quickly reabsorbed (tubular reabsorption) back in to the blood (Sukkar et al., 2000).

Unwanted substances that escape filtration are actively secreted into the tubular lumen (tubular secretion). The final concentration of electrolytes and other constituents of the urine are adjusted according to requirement of regulation of extracellular fluid composition. Glomerular filtration, tubular reabsorption and tubular secretion are rightly described as renal mechanisms that allow the kidney to undertake its various homeostatic functions (Sukkar et al., 2000).

Several hormones specially antiduretic hormones ADH and aldosterone) act on the kidney to enable it to adjust the final composition of urine in response to changes in the internal environment (Sukkar et al., 2000).

1.2.6. **Renal disease:**

1. 2.6.1. **Definition:**

Renal disease or kidney disease (formerly called renal insufficiency) describes a medical condition in which the kidneys fail to adequately
filter toxins and waste products from the blood. The two forms are acute (acute kidney injury) and chronic (chronic kidney disease), a number of other diseases or health problems may cause either form of renal disease to occur. Renal disease is described as a decrease in glomerular filtration rate (GFR). Biochemically, renal disease is typically detected by an elevated serum creatinine level. Problems frequently encountered in kidney malfunction include abnormal fluid levels in the body, increased acid levels, abnormal levels of potassium, calcium, phosphate, and (in the longer term) anaemia as well as delayed healing in the broken bones. Depending on the cause, hematuria (blood loss in the urine) and proteinuria (protein loss in the urine) may occur. Long-term kidney problems have significant repercussion on other diseases, such as cardiovascular disease (Liao et al., 2012).

1.2.6.2. Classification of kidney disease:

Renal disease can be divided into two categories: acute kidney injury or chronic kidney disease. The type of renal disease is determined by the trend in the serum creatinine. Other factors which may help differentiate acute kidney injury from chronic kidney disease include anaemia and the kidney size on ultrasound. Chronic kidney disease generally leads to anaemia and small kidney size.

1.2.6.2.1. Acute kidney injury:

Acute kidney injury (AKI), previously called acute renal failure (ARF) (Moori et al., 2012, Ricci et al., 2012), is a rapidly progressive loss of renal function, generally characterized by oliguria [decreased in urine production, quantified as less than 400 ml per day in adults (Klahr et al., 1998), less than 0.5 ml/kg/h in children or less than
1ml/kg/h in infants] and fluid and electrolytes imbalance. AKI can result from a variety of causes, generally classified as pre-renal, intrinsic, and post-renal. An underlying cause must be identified and treated to arrest the progress, and dialysis may be necessary to bridge the time gap required for treating these fundamental causes (Klahr et al., 1998).

1.2.6.2.2. Chronic kidney disease:

Chronic kidney disease (CKD) can develop slowly and, initially, show few symptoms. CKD can be the long term consequence of irreversible acute disease or part of a disease progression, the most common causes of CKD are diabetes mellitus and uncontrolled hypertension (Kes et al., 2011).

1.2.6.3. Causes of renal disease:

The loss of kidney function in the acute renal disease can occur following:

- A traumatic injury with blood loss.
- Damage from certain drugs or toxins.
- Obstruction of urine flow.
- Pregnancy complication.

In the chronic stage, there is a kidney damage and decreased function that last longer than 3 months with no symptoms and the most common causes are immune system conditions such as lupus and chronic viral illness (e.g. HIV), urinary tract infections, inflammation, poly cystic kidney disease, drugs and toxins (Kimball Johnson, 2005).

1.2.6.4. Stages of renal disease:

Glomerular filtration rate (GFR) is the amount of blood which the kidneys filter in one minute, which should be at least 90 milliliters per
minute. The National Kidney Foundation established the five stages of chronic renal failure based on GFR. In stage one of CR, diminished renal reserve, the only clinical finding is protein in the urine with a normal GFR and patients have no symptoms. Stage two shows a decreased GFR between 60 to 89 mL/min. According to Scott and White hospital patient information on kidney disease, patients may not have symptoms until the condition is advanced. Early symptoms include a general feeling of illness, fatigue, dry and itchy skin, headaches, a loss of appetite and nausea (Israni et al., 2011). Stages three and four are referred to as the renal insufficiency stage where the GFR can be as low as 15 mL/min. Azotemia increases. Symptoms are more severe with difficulty concentrating, weakness, easy bruising, swelling, insomnia, muscle twitching and almost no urine output. End-stage renal disease (ESRD) is stage five of chronic renal failure. Patients need dialysis if they wish to survive. When GFR is less than 10 mL/min, patients may apply to become a candidate for a kidney transplant (Durford et al., 2013).

1.2.7. End Stage Renal Disease (ESRD):

A diagnosis of end-stage kidney disease means the final stage of kidney disease, and the kidneys are not functioning well enough to meet the needs of daily life. The kidneys are responsible for filtering waste and excess water from the blood in the form of urine. At end-stage kidney disease, also referred to as end-stage renal disease (ESRD), kidneys are functioning below 10 percent of their normal function. This may mean that the kidneys are barely functioning or not functioning at all. Kidney disease is usually progressive. It typically does not reach the end stage until 10 to 20 years after diagnosed with
chronic kidney disease, which may also develop slowly (Christine Dimaria and Marijane Leonard, 2012).

1.2.7.1. Causes of ESRD:

Many types of kidney diseases attack the nephrons which are the tiny units in the kidneys that actually do the filtering. The result is blood not being filtered properly and, eventually, ESRD. Diabetes and hypertension (high blood pressure) are the two most common causes of ESRD. Diabetics cannot break down glucose (sugar) correctly, and levels remain high in the blood. High levels of glucose in the blood damage the glomeruli in the nephrons. If there is hypertension, the increased pressure that is forced upon the small vessels in the kidneys leads to damage that makes the vessels unable to perform their blood filtering duties (Christine Dimaria and Marijane Leonard, 2012).

1.2.7.2. Main groups at risk for ESRD:

The two main groups at risk for ESRD are diabetics and those with hypertension, also more likely to develop the condition if you have relatives with the disease. The risk of developing ESRD also rises when you have any type of kidney disease or condition, including: polycystic kidney disease, interstitial nephritis, pyelonephritis, certain autoimmune conditions, such as lupus (Christine Dimaria and Marijane Leonard, 2012).

1.2.7.3. Symptoms of ESRD:

A wide range of symptoms including: a decrease in urine output, inability to urinate, Fatigue, general ill feeling, headaches, unexplained weight loss, loss of appetite and other symptoms. ESRD can be treated by dialysis or kidney transplant (Christine Dimaria and Marijane Leonard, 2012).
1.2.7.4. Complication of ESRD:
There are many complications including skin infections, hyperparathyrodism, hepatitis, dialysis related amyloidosis and other complications.
End-stage kidney disease is not preventable, but should keep the blood glucose levels and the blood pressure of the patient under control (Christine Dimaria and Marijane Leonard, 2012).

1.2.7.5. Treatment of renal disease:

1.2.7.5.1. Dialysis:
One of the methods of treatment of renal failure (renal disease) is dialysis. In medicine, dialysis (from Greek dialysis, meaning dissolution, die, meaning through. And lyses’ meaning loosing or splitting) is a process from removing waste and excess water from the blood, and is used primarily to provide an artificial replacement for lost kidney function in people with renal failure (William et al., 2014).

Dialysis may be used for those with an acute disturbance in kidney function (acute kidney injury, previously acute renal failure), or progressive but chronically worsening kidney function-a state known as chronic kidney disease stage 5 (previously chronic renal failure or end-stage renal disease). The latter from may develop over months or years, but in constant to acute kidney injury is not usually reversible, and dialysis is regarded as a “holding measure” until a renal transplant can be performed, or sometimes as the only supportive measure in those for whom a transplant would be in appropriate (Pendse et al., 2008).

The kidneys have important roles in maintaining health. When healthy, the kidneys maintain the body’s internal equilibrium of water
and minerals (sodium, potassium, chloride, calcium, phosphorus, magnesium, sulphate). The acidic metabolism end-products that the body cannot get rid of via respiration are also excreted through the kidneys. The kidneys also function as a part of the endocrine system, producing erythropoietin and calcitirol. Erythropoietin is involved in the production of red blood cells and calcitirol plays a role in bone formation (Brundage, 1992).

Dialysis is an imperfect treatment to replace kidney function because it does not correct the endocrine functions of the kidney. Dialysis treatments replace some of these functions through diffusion (waste) removal and ultra filtration (fluid removal (Robert, 2011).

1.2.7.5.1.1. Principle:

Dialysis works on the principles of the diffusion of solutes and ultra filtration of fluid across a semi-permeable membrane. Diffusion describes a property of substances in water. Substances in water tend to remove from the area of high concentration to an area of low concentration (Mosby, 2006).

Blood flows by one side of semi-permeable membrane, and dialysate, or special dialysis fluid, flow by the opposite side. A semi-permeable membrane is a thin layer of material that contains holes of various sizes, or pores. Smaller solutes and fluids pass through the membrane, but the membrane blocks the passage of larger substances (for example, red blood cells and large proteins). This replicates the filtering process that takes place in the kidneys, when the blood enters the kidneys and the larger substances are separated from the smaller ones in the glomerulas (Mosby, 2006).
1.2.7.5.1.2. Haemodialysis (HD):

- Haemodialysis schematic

- Haemodialysis and home Haemodialysis:

In haemodialysis the patient’s blood is pumped through the blood compartment of a dialyzer, exposing it to a partially permeable membrane. The dialyzer is composed of thousands of tiny synthetic hollow fibers. The fiber will act as the semi-permeable membrane. Blood flows through the fibers, dialysis solution flows around the outside the fibers, and water and wastes move between these two solutions. (Ahmed et al., 2008).

The cleaned blood is then returned via the circuit back to the body. Ultra filtration occurs by increasing the hydrostatic pressure across the dialyzer membrane. This usually is done by applying a negative pressure to the dialysate compartment of the dialyzer. This pressure gradient causes water and dissolved solutes to move from blood to dialysate, and allows the removal of several liters of excess fluid during a typical 3-to 5-hour’s treatment. In the US, haemodialysis treatments are typically given in a dialysis center three times per week (due in the US to Medicare reimbursement rules); however, as of 2007 over 2.500 peoples in the US are dialyzing at home more frequently for various treatment lengths (Pfuntner et al., 2011).

Studies have demonstrated the clinical benefits of dialyzing 5 to 7 times a week, for 6 to 8 hours. This type of haemodialysis is usually called “nocturnal daily haemodialysis”, which a study has shown a significant improvement in both small and large molecular weight clearance and decrease the requirement of taking phosphate binders (Rocco, 2007).
1.2.7.5.1.2.1. Complication of haemodialysis:

Access create significant problems for renal practitioners the health care system and especially for individuals living with end stage renal disease.

Chronic haemodialysis complications include thrombosis infection, ischemic steal syndrome, aneurysms, venous hypertension hematomas, heart failure and prolonged bleeding and result in frequent interventions and morbidity and mortality. In addition access interventions are often costly challenging and may require special Surgical expertise (Oliver, 2008). Approximately, 100 white individuals per million populations (pmp) require renal replacement therapy in the United Kingdom each year. The corresponding figure among people of African and Asian origin in the United Kingdom is 300-400 pmp (Kumarp et al., 2002). With 70-80 new patients, pmp accepted for long term dialysis annually (Edwardi et al., 1992).

In Sudan according to ministry of health records, the prevalence is increasing through the few past years, approximately 70-140 new patient pmp undergo dialysis each year. This frequency is thought to be due to epidemic malarial infection which as well known to cause glomerulonephritis (Abboud etal., 1989).

1.2.7.5.2. Kidney transplant:

Kidney transplant surgery involves removing the diseased kidneys and replacing them with a donated organ. One healthy kidney is need. This means that donors are often living because they can donate one and continue to function normally. Kidney transplants are among the most-common transplant surgeries in the U.S. (Christine Dimaria and Marijane Leonard, 2012).
1.2.8. Platelets and end stage renal disease:

Patients with end-stage renal disease (ESRD) develop haemostatic disorders mainly in the form of bleeding diatheses. Haemorrhage can occur at cutaneous, mucosal, or serosal sites. Retroperitoneal or intracranial haemorrhages also occur. Platelet dysfunction is the main factor responsible for hemorrhagic tendencies in advanced kidney disease. Anaemia, dialysis, the accumulation of medications due to poor clearance, and anticoagulation used during dialysis have some role in causing impaired haemostasis in ESRD patients. Platelet dysfunction occurs both as a result of intrinsic platelet abnormalities and impaired platelet–vessel wall interaction. The normal platelet response to vessel wall injury with platelet activation, recruitment, adhesion, and aggregation is defective in advanced renal failure. Dialysis may partially correct these defects, but cannot totally eliminate them. The haemodialysis process itself may in fact contribute to bleeding. Haemodialysis is also associated with thrombosis as a result of chronic platelet activation due to contact with artificial surfaces during dialysis. Desmopressin acetate and conjugated estrogen are treatment modalities that can be used for uremic bleeding. Achieving a hematocrit of 30% improves bleeding time in ESRD patients (Dinker Kaw and Deepak Malhotra, 2006).
1.2.9. Previous Studies:

A study using Coulter Model S-Plus Counter provides a measure of the platelet count and the mean platelet volume (MPV). An analysis of 5000 unselected blood specimens showed an inverse relationship between the number of circulating platelets and their MPV. In nearly 95% of normal adults the platelet count varied from 150 to 450*10^9/L and the MPV from 7.0 to 10.5 fL. Thrombocytosis was found in iron deficiency anaemia, after trauma and acute blood loss and in rheumatoid arthritis. Although there is a normal platelet distribution in pregnancy, patients with pre-eclampsia and uncomplicated hypertension in late pregnancy tended to have lower platelet counts and larger platelets than controls. A variable platelet pattern was found in infection, renal failure and treated malignant disease (Giles, 1981).

A second retrospective study of 78 patients with chronic renal failure undergoing either haemodialysis (n=57) or intraperitoneal dialysis (n=21) was aimed to investigate effect of erythropoietin treatment over six months on the patients compared with other control groups. The result showed there was a significant increase in MPV (p<0.01) over six months period, but no change in either total platelets count or PDW in the patients receiving erythropoietin and the control groups showed no significant change in MPV. The study concluded that erythropoietin affect thrombopoiesis and may be a part of humoral factors contributing to megakaryocyte development and maturation. Larger platelets are more reactive and may contribute to the increased risk of thrombosis associated with erythropoietin (Sharpe et al., 1994).
A third study was aimed to investigate whether an increase in platelet size was present before the manifestation of the disease and therefore could be used to predict the progression of the disease before it is clinically apparent. It is concluded that increasing platelet size can predict which patients are likely to progress to severe disease before it becomes clinically obvious (Walker et al., 1989).

A fourth study done by Vamseedhar Annam with others at 2011 to evaluate the platelet indices and platelet counts and their significance in pre-eclampsia and eclampsia. The result showed that, the platelet counts were lower while the mean platelet volume, platelet distribution width and platelet large cell ratio were increased in pre-eclampsia and eclampsia as compared to control group and concluded a relationship between platelet indices and severity of pre-eclampsia. The estimation of platelet count and platelets indices can be considered as an early, simple and rapid procedure in the assessment of severity of pre-eclampsia (Vamseedhar Annam et al., 2011).
1.3. Rationale:

End stage renal disease is a major health problem and greatly affects the economic and social status of affected patients worldwide. In Sudan, according to ministry of health records, the prevalence of ESRD is increasing through the few past years and might cause many complications of high mortality and morbidity.

Few data is available about the effect of ESRD on the platelets count and platelets indices, this study was designed to determine to which extend changes occur in platelets activity by measuring platelets count and platelets indices (MPV, PDW, and P-LCR) in Sudanese individuals with ESRD attending Al-Ribat Hospital in haemodialysis unit.
1.4. Objectives:

1.4.1. General objective:

To assess platelets activity change using platelets count and platelets indices in Sudanese patients at end stage renal disease referred to University Al-Ribat Hospital from March up to May 2014.

1.4.2. Specific objectives:

- To measure platelets count and platelets indices (MPV, PDW, and P-LCR) in Sudanese patients at end stage renal disease.

- To demonstrate the variation in these parameters between patients and control group.

- To determine platelets count, MPV, PDW, and P-LCR in Sudanese patients at end stage renal disease according to gender effect.

- To determine platelets count, MPV, PDW, and P-LCR in Sudanese patients at end stage renal disease according to age effect.
CHAPTER TWO

MATERIALS AND METHODS
2. Materials and methods

2.1. Study design:
Non-interventional analytical case control study.

2.2. Study area:
The study was conducted in (Al- Ribat) Hospital at renal dialysis unit.

2.3. Study period:
Three months during the period of March to May (2014).

2.4. Study population:
A total of (84) patients with ESRD who attended (Al- Ribat) Hospital, already diagnosed as cases and (50) healthy individuals as control were included in this study. The selected patients and healthy subject had included both genders with three age groups (20-40)-(40-60)-(60-80) years old. The patients were (56) males and (28) females.

2.5. Inclusion criteria:
All patients with ESRD available at the time of the study with no medical condition or drugs that affect the results were included in the study.

2.6. Exclusion criteria:
Healthy individuals with known haematological parameters and newly diagnosed patients with acute renal disease were excluded from the study.

2.7. Sampling:

2.7.1. Sample collection:
2.5ml of venous blood were collected from each individual using disposable syringe from anticubital vein cleaned by 70% alcohol and transferred to labeled containers containing sequestered EDTA. Gentle mixing of the specimens was achieved to avoid haemolysis and clotting or platelets aggregation. Any haemolyzed, turbid, clotted samples were rejected.

2.7.2. Sampling method:
Probability sampling (simple random sampling).

2.8. Data collection:
The data were collected using a direct interviewing questionnaire. The questionnaire was used to collect data regarding patient number, age and gender (See appendix -1).

- Laboratory investigations to obtain the platelet parameters.

2.9. Methodology:

2.9.1. Materials and equipments:

● Sysmex KX-21(1992)
● Cell packed reagent
● Rotary mixer (Machine)
● Cotton
● 70% alcohol (spirit)
● Syringes
● Tourniquet
● K₂ EDTA containers
• Examination gloves

2.9.2. Test applied:

2.9.2.1. Measurement of platelets parameters:

A blood cell counter, Sysmex KX-21 was used to measure platelets parameters.

All measurements (Platelets count, Mean Platelet Volume, Platelet Distribution Width and Platelet-large cell ratio) were measured in whole blood anticoagulated with K$_2$EDTA.

All measurements of collection were made between half and hour of collection. The whole blood mode (WB) was selected to analyze the whole blood sample without pre-dilution. The sample number was entered before each sample, this procedure was followed:

• A well mixed anticoagulated sample was set to the sample probe, and the start switch was pressed till the aspirating process was finished (volume aspirate approximately 50 L).

• The sample was removed straight down and the sample probe was automatically cleaned.

• The aspirated sample was then automatically suspended in to different blocks and different parameters were measured.

• The results of parameters were then viewed on the screen and subsequently printed out.

* Quality control: Sysmex(Kx-21) device was calibrated daily using control sera before analysis was made.
2.9.2.2. Data analysis:

The data was collected in master sheet paper, (raw data) subjected to statistical analysis using Statistical Professional for Social Science (SPSS) computed program, version (16).

2.9.2.3. Ethical considerations:

- The hospital permission was taken prior to data and sample collection.
- Verbal consent was obtained from all participants.
- No names were published and data will be kept confidentially.
CHAPTER THREE

RESULTS
3. Results

Table (3.1): The frequency of case and control groups in the study population.

<table>
<thead>
<tr>
<th>Study population.</th>
<th>Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>84</td>
<td>50</td>
</tr>
<tr>
<td>Percentage</td>
<td>62.7</td>
<td>37.3</td>
</tr>
</tbody>
</table>

Table (3.2): Gender distribution among case and control groups.

<table>
<thead>
<tr>
<th>Study groups</th>
<th>Case</th>
<th>Control</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency (%)</td>
<td>Frequency (%)</td>
<td>Frequency (%)</td>
</tr>
<tr>
<td>Male</td>
<td>56</td>
<td>69.1</td>
<td>25</td>
</tr>
<tr>
<td>Female</td>
<td>28</td>
<td>52.8</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>84</td>
<td>62.7</td>
<td>50</td>
</tr>
</tbody>
</table>
Table (3.3): The Mean, SD, Maximum and Minimum values of platelets count and platelets indices in the study population.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Platelets count *10³/µl</td>
<td>274.86</td>
<td>81.93</td>
</tr>
<tr>
<td>MPV (fl)</td>
<td>9.36</td>
<td>0.94</td>
</tr>
<tr>
<td>PDW(fl)</td>
<td>11.66</td>
<td>1.64</td>
</tr>
<tr>
<td>P-LCR (%)</td>
<td>20.94</td>
<td>6.54</td>
</tr>
</tbody>
</table>
Table (3.4): The relationship between platelets count and platelets indices in case and control group in the study population.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Samples</th>
<th>Number</th>
<th>Mean</th>
<th>SD</th>
<th>P.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelets count *10³/µl</td>
<td>Case</td>
<td>84</td>
<td>185.25</td>
<td>62.72</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>50</td>
<td>274.86</td>
<td>81.93</td>
<td></td>
</tr>
<tr>
<td>MPV (fl)</td>
<td>Case</td>
<td>84</td>
<td>13.02</td>
<td>12</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>50</td>
<td>9.36</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>PDW(fl)</td>
<td>Case</td>
<td>84</td>
<td>12.09</td>
<td>2.17</td>
<td>0.222</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>50</td>
<td>11.66</td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>P-LCR (%)</td>
<td>Case</td>
<td>84</td>
<td>22.39</td>
<td>7.47</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>50</td>
<td>20.94</td>
<td>6.54</td>
<td></td>
</tr>
</tbody>
</table>

Number of cases 84, Control 50

P.value significant at P < 0.01, Non significant at P > 0.05
Table (3.5): The relationship between platelets count and platelets indices in male and female among case group.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Gender</th>
<th>Frequency</th>
<th>Mean</th>
<th>SD</th>
<th>P.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelets count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$*10^3/\mu l$</td>
<td>Male</td>
<td>56</td>
<td>177.02</td>
<td>57.88</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>28</td>
<td>201.71</td>
<td>69.63</td>
<td></td>
</tr>
<tr>
<td>MPV(fl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>56</td>
<td>9.5</td>
<td>1.14</td>
<td>0.327</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>28</td>
<td>9.79</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>PDW(fl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>54</td>
<td>12.04</td>
<td>2.15</td>
<td>0.728</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>28</td>
<td>12.21</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>P-LCR (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>56</td>
<td>22.43</td>
<td>7.22</td>
<td>0.951</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>28</td>
<td>22.32</td>
<td>8.08</td>
<td></td>
</tr>
</tbody>
</table>

Number of cases 84 , Control 50

P.value significant at P < 0.01 , Non significant at P > 0.05
Figure (3.1): Shows correlation between gender and platelets count among case group (P.value = 0.09).

Figure (3.2): Shows correlation between gender and MPV among case group (P.value = 0.33).
Figure (3.3): Shows correlation between gender and PDW among case group (P.value = 0.73).

Figure (3.4): Shows correlation between gender and P-LCR among case group (P.value = 0.95).
Figure (3.5): Shows correlation between age and platelets count among case group (P.value =0.002).

Figure (3.6): Shows correlation between age and MPV among case group (P.value =0.000).
Figure (3.7): Shows correlation between age and PDW among case group (P.value =0.94).

Figure (3.8): Shows correlation between age and P-LCR among case group (P.value =0.99).
CHAPTER FOUR

DISCUSSION

CONCLUSION

RECOMMENDATION
4. Discussion, Conclusion and recommendation

4.1. Discussion:

This study involved a total of eighty four end stage renal disease patients, and fifty healthy persons as control presented in table (3.1). The study group responded to our questionnaire, the frequency of the study participants in case and control groups according to gender, the males were 56 (69.1%), females were 28 (52.8%), table (3.2).

The study reflects that mean Platelets count, MPV, PDW, PLCR of case group were 185.25, 13.02, 12.09, and 22.39 respectively, presented in table (3.3). The results obtained from normal healthy control group revealed that the mean of Platelets count, MPV, PDW, PLCR were 274.86, 9.36, 11.66, and 20.94 respectively, presented in table (3.3).

The study showed that, the mean of platelets count level in Sudanese end stage renal disease patients is significantly lower than the mean of control group (P value < 0.05) showed in table (3.4) and the mean of MPV level is significantly higher than the mean of control group (P.value < 0.05) showed in table (3.4) which was agreed with the first study using Coulter Model S-Plus Counter which obvious that an inverse relationship between the number of circulating platelets and their MPV (Giles, 1981).

The study explained that MPV level in Sudanese ESRD patients was higher than values obtained from control group, showed in table (3.4) which similar to the results of the second retrospective study of chronic renal failure undergoing haemodialysis (Sharpe et al., 1994).
The study explained affecting of ESRD on platelets count (lower), MPV (higher) as compared to control group which similar to the results of the third study done by Walker with others (Walker et al., 1989), and the results of the fourth study done by Vamseedhar Annam (Vamseedhar Annam et al., 2011).

The apparent variation in Platelets count, MPV seen in this study was mostly attributed to the anisocytosis which due to platelets activity abnormalities due to contact with artificial surface during dialysis in the end stage renal disease patients.

The study explained no effectiveness of gender on platelets count and platelets indices (MPV, PDW, P-LCR) on ESRD patients, showed in table (3.5), figures (3.1), (3.2), (3.3), and (3.4) respectively according to result finding.

The study explained no effectiveness of age on PDW and P-LCR of ESRD patients, showed in figures (3.7), and (3.8) respectively, but there was an effectiveness of age on platelets count (inverse relation) of ESRD patients, also there was an age effect on MPV (direct relation) of ESRD patients, showed in figures (3.5) and (3.6) respectively.
4.2. Conclusion:

- There is a significant effect of Platelets count (low), MPV(high) on the end stage renal disease patient and the other parameters (PDW and P-LCR) have no significant effect on ESRD patient.

- No significant effectiveness of gender on Platelets count, MPV, PDW and P-LCR of end stage renal disease patient.

- No significant effectiveness of age on (PDW and P-LCR) of end stage renal disease patient but there is an age effectiveness on Platelets count and MPV of that patients.
4.3. Recommendation:

-More research is needed to elaborate on the important of platelets count and platelets indices in end stage renal disease diagnosis to cover more population with different categories.

-This study can be purposeful in the diagnosis as laboratory finding on end stage renal disease patient (when platelets count was decreased and MPV was increased, the patient request renal function test for check).
References

Dicken Weatherby, Scott Farguson, (2004), blood chemistry and CBC analysis.

Greisem egger S, Endeler Getla,(2004), IS Elevated Mean Platelet volume Associated with a worse out count in Patient with Acute Ischemic Cerebra Vascular Events, Stroke,35:1688.

Liao, Min-Tser; Sung, Chih-Chien; Hung, Kuo-Chin; Wu, Chia-Chao; Lo, Lan; Lu, Kuo-Cheng (2012). "Insulin Resistance in Patients with Chronic Kidney Disease". Journal of Biomedicine and Biotechnology, 1-5.

Mosby’sDictionary of medicine,(2006),Nursing and health professions.
Nissshiyama M, Hayashi S, Futsukaichi Y, Suchia E, Kurata Y., (2005), Fragmented red cell are the major cause of seriously high platelet counts in patients with fragmented red cells when counts are obtained by automated cell counter. Rinsh Byori., (10):898.

Sysmex-europe.com, Sysmex Xtra online/2011, platelets distribution curves; interpretation, potentials and limitation.

APPENDICES
Appendices

Appendix (1): questionnaire

Sudan University of Science and technology

Collage of graduate studies

Department of hematology and immunohematology

Questionnaire

1- Patient number

2- Age

3- Tel.No

4- Gender:

Male () Female ()

5- Duration of disease

6- Results:

 A- Platelets count\(\times 10^3\) l

 B- MPV

 C- PDW

 D- PLCR

* Worker sign

57
Appendix (2): Consent form

بسم الله الرحمن الرحيم

جامعة السودان للعلوم والتكنولوجيا

كلية الدراسات العليا

دراسة لنيل درجة الماجستير

الاسم/الرقم...

سيتم أخذ عينة من الدم بحجم 2.5 مل من الوريد بواسطة حقنة الطعن ، وذلك بعد تعقيم منطقة أخذ العينة بواسطة مظهر.

جميع الأدوات المستخدمة لأخذ العينة معقمة ومتبغ فيها كل سبل السلامة العملية وليس هناك آثار جانبية للعملية، ربما يحدث تورم بسيط في منطقة أخذ العينة وسوف يزول بعد فترة قصيرة.

الغرض من أخذ العينة هو البحث العلمي وسوف يسلم المريض نسخة من النتائج في سرية تامة.

وافق أنا المذكور أعلاه على أخذ عينة دم لإجراءات الدراسة.

..

الامضاء..

..

tاريخ..

..