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                                       Chapter 5 
Strong Convergence Theorems and Viscosity Approximation with 
Iterative Methods 
 
    In this chapter we consider the problem of finding a common fixed point of a 
nonexpansive mapping and a strictly pseudocontractive mapping and the 
problem of finding a common element of the set of fixed points of a 
nonexpansive mapping and the set of zeros of an inverse-strongly monotone 
mapping. It is shown that	{푥 }	converges strongly to a common element of the 
set of fixed points of nonexpansive mapping and the set of solutions of the 
variational inequality for an inverse strongly-monotone mapping which solves 
some variational inequality. The explicit and implicit iterative algorithms are 
proposed by virtue of the general iterative method with strongly positive 
operators. Under two sets of quite mild conditions, we show the strong 
convergence of these explicit and implicit iterative algorithms to the unique 
common element of the set of fixed points of a nonexpansive mapping and the 
set of solutions of the general variational inequality problem, respectively. 
 
Sec (5.1): Strong Convergence Theorems for Nonexpansive 
Mappings and Inverse-Strongly Monotone Mappings 
 
    Let C be a closed   convex  subset of a real  Hilbert space 퐻	and let 	푃 		be the 
metric  projection of  퐻 onto C.    A mapping 퐴 of 퐶 into 퐻  is called 
monotone if for   all 푥, 푦	 ∈ 	퐶, 〈푥	 − 	푦, 퐴푥	 − 	퐴푦〉 ≥ 0.      The variational 
inequality problem is to find a 	푢	 ∈ 	퐶 such that 
                             〈푣	 − 	푢, 퐴푢〉 ≥ 0		  
for all 푣	 ∈ 	퐶; see [81,82,83,86,91]. The set of solutions of  the variational 
inequality is denoted    by 푉	퐼(퐶, 퐴).    A mapping 퐴	of 퐶  into  퐻	is called 
inverse-strongly   monotone if     there exists a positive real number 훼 such that	
                              〈푥	 − 	푦, 퐴푥	– 	퐴푦〉 	≥ 훼‖퐴푥	 − 	퐴푦‖ 	
for all 푥, 푦	 ∈ 	퐶; see [56,85,57,87]. For such a case, 퐴	is called  훼-inverse-
strongly monotone. A mapping 푆	of 퐶 into it self is called nonexpansive if 
                              푆푥	– 	푆푦	 	≤ ‖푥	 − 	푦‖	
for all 푥, 푦	 ∈ 	퐶; see [90,92,76] for the results of nonexpansive  mappings. We 
denote by 퐹(푆) the set of fixed points of 푆. 
 In this section , we introduce an iterative scheme for finding  a common 
element of the set of fixed points of a non expansive mapping  and  the set of 
solutions of the variational inequality for an inverse-strongly monotone mapping 
in a real Hilbert space. Then we show that the sequence converges strongly to a 
common element of two sets. Using this result, we first obtain a strong 
convergence theorem for finding a common fixed point of a nonexpansive 
mapping and a strictly pseudocontractive mapping. Further, we consider the 
problem of finding a common element of the set of fixed points of a 
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nonexpansive mapping and the set of zeros of an inverse-strongly monotone 
mapping. 
Let 퐻	be a real Hilbert space with inner product 〈. , . 〉 and norm	‖	. ‖, and let 퐶 
be a closed convex subset of 퐻.We write				푥 	⇀ 푥 to indicate that the 
sequence	{		푥 	} converges weakly to 푥. 				푥 → 	푥 implies that 
{		푥 	}	converges strongly to 푥. For every point 푥	 ∈ 	퐻, there exists a unique 
nearest point in 퐶, denoted by 푃 푥, such that  ‖푥 − 푃 푥‖ ≤ ‖푥	 − 	푦‖	for all 
푦	 ∈ 	퐶. 	푃  is called the metric projection of 퐻 onto 퐶		.We know that 	푃  is a 
nonexpansive  mapping of 퐻 onto 퐶.	It is also known that 푃 satisfies 
                     〈푥 − 	푦, 푃 푥	 −	푃 푦	〉 	≥ ‖푃 푥	 −	푃 푦‖ 																																									(1) 
For every 푥, 푦	 ∈ 	퐻. Moreover, 	푃 푥		 is characterized by the properties: 
푃 푥		 ∈ 	퐶 and 〈푥	 − 푃 푥	, 푃 푥		 − 푦〉 ≥ 0 for all 푦	 ∈ 	퐶. In the context of the 
variational inequality problem, this implies that 
                      푢	 ∈ 	푉	퐼(퐶, 퐴) ⟺ 	푢	 = 	푃 (푢	 − 	휆퐴푢),			∀휆 > 0.																								(2)	
It is also known that 퐻 satisfies Opial’s condition [78], i.e., for any sequence 
{		푥 	} with 				푥 	⇀ 푥			the inequality 
                         lim → inf 푥 	– 	푥 < lim → inf 푥 	– 	푦  
holds for every 푦	 ∈ 	퐻	with	푦	 ≠ 푥 .                                                                                          
    We state some examples for inverse-strongly monotone mappings. If  
퐴	 = 	퐼	 − 	푇	, where 푇	푖s a nonexpansive mapping of 퐶 into itself and 	퐼	is the 
identity mapping of 퐻,	then		퐴	is 1/2-inverse-strongly monotone and 
푉	퐼(퐶, 퐴) 	= 	퐹(푇	). A mapping 퐴	of 퐶	into 퐻 is called strongly monotone if 
there exists a positive real number		휂		such that  〈푥	 − 	푦, 퐴푥	– 퐴푦	〉 ≥
휂‖푥	 − 	푦‖ 	 for all 푥, 푦	 ∈ 	퐶. In such a case, we say that	퐴 is 휂	-strongly 
monotone.   If  퐴 is 휂-strongly monotone and 푘-Lipschitz continuous, i.e., 
‖퐴푥	 − 	퐴푦‖ ≤ 푘‖푥	 − 	푦‖ for all	푥, 푦	 ∈ 	퐶,	then 퐴 is 휂/푘 	-inverse-strongly 
monotone. 
 If 퐴 is an 훼-inverse-strongly monotone mapping of 퐶 into 퐻, then it is obvious 
that 퐴 is 1/훼	-Lipschitz continuous.We also have that for all 푥, 푦	 ∈ 	퐶 and 
휆 > 0, 
   ‖(퐼	 − 	휆퐴)푥	 − 	(퐼	 − 	휆퐴)푦‖ 	= 	 ‖(푥	 − 	푦) 	− 	휆(퐴푥	 − 	퐴푦)‖ 	
             = ‖푥	 − 	푦‖ 	− 	2휆〈푥	 − 	푦, 퐴푥	 − 	퐴푦〉 +	휆 ‖퐴푥	 − 	퐴푦‖ 	
             ≤ ‖푥	 − 	푦‖ 	+ 	휆(휆 − 	2훼)‖퐴푥	 − 	퐴푦‖ .																																																(3)	
So, if 휆 ≤ 2훼	, then 퐼	 − 	휆퐴 is a nonexpansive mapping of 퐶 into 퐻. 
A set-valued mapping 푇 ∶ 퐻	 → 	2  is called monotone if for all  푥, 푦	 ∈ 	퐻,
푓	 ∈ 	푇	푥 and g	 ∈ 	푇푦 imply 	〈푥	 − 	푦, 푓	 − 	g〉 ≥ 0.	A monotone mapping 
푇 ∶ 퐻	 → 	2 	is maximal if the graph 퐺(푇	) of 푇 is not properly contained in 
the graph of any other monotone mapping. It is known that a monotone mapping 
푇	is maximal if and only if for  (푥, 푓	) ∈ 	퐻	 × 	퐻, 〈푥	 − 	푦, 푓	 − 	g〉 ≥ 0 for every 
(푦, g) 	 ∈ 	퐺(푇	) implies 푓	 ∈ 	푇	푥. Let 퐴	be an inverse-strongly monotone 
mapping of  퐶 into 퐻 and let 푁 푣		be the normal cone to 퐶	at 푣	 ∈ 	퐶, i.e., 
푁 푣			 = 	 {푤	 ∈ 	퐻 ∶ 	 〈푣	 − 	푢,푤〉 ≥ 0, ∀푢	 ∈ 	퐶}, and define 
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푇	푣	 = 퐴푣	 +	푁 푣	,							푣	 ∈ 	퐶,
∅,																									푣 ∉ 	퐶.

�	

Then 푇	is maximal monotone and 0	 ∈ 	푇	푣 if and only if   푣	 ∈ 	푉	퐼(퐶, 퐴);				see 
[88,89]. 
       In this section, we prove a strong convergence theorem for nonexpansive 
mappings and inverse-strongly monotone mappings. 
Theorem (5.1.1)[67]: Let 퐶	be a closed convex subset of a real Hilbert space 퐻. 
Let 퐴 be an 훼-inverse-strongly monotone mapping of 퐶 into 퐻	and let 푆 be a 
nonexpansive mapping of 퐶	into itself such that  퐹(푆) 	∩ 	푉	퐼(퐶, 퐴) 	≠ 	∅. 
Suppose 푥 = 	푥	 ∈ 	퐶	and {	푥 }	is given by 
             푥 + 1	 = 	훼 푥	 +	(1	 − 	훼 )푆푃 (푥 	−	휆 퐴푥 )	
for every 푛 = 1, 2, . . .,	where	{훼 }	is a sequence in	[0, 1)	and {	휆 	} is a sequence 
in [0, 2훼]. If  {훼 }	 and {	휆 	} are chosen so that		휆 	∈ 	 [푎, 푏] for some 푎, 푏 
with	0 < 푎	 < 푏 < 2훼,	

lim
→ 	

훼 = 0	 , 훼 = ∞ , |훼 − 훼 | < ∞		 푎푛푑 |휆 − 휆 | < ∞ ,	

then	{	푥 }	 converges strongly to 푃 ( )∩ ( , ).푥	. 
Proof . 
 Put 푦 = 푃 (푥 − 휆 퐴푥 ) for every 푛 = 1, 2, . . .. Let  푢	 ∈ 	퐹(푆) ∩ 푉	퐼(퐶, 퐴). 
Since 퐼	 − 	휆 퐴	is nonexpansive and  푢	 = 	푃 (푢	 −	휆 퐴푢) from (2), we have 
 
 ‖푦 − 	푢‖ 	= 	 ‖푃 (푥 	−	휆 퐴푥 ) 	− 	푃 (푢	 −	휆 퐴푢)‖	
                   ≤ ‖(푥 	−	휆 퐴푥 ) −	(푢	 −	휆 퐴푢)‖ 	≤ ‖푥 − 푢‖	
for every 푛	 = 	1, 2, . . .. Then we have 
         ‖푥 	− 	푢‖ 	= 	 ‖훼 푥	 +	 (1	 − 	훼 )푆푦 	− 	푢‖	
                            ≤ 훼 ‖푥	 − 	푢‖ 	+	(1	 − 	훼 )‖푆푦 	− 	푢‖	
                            ≤ 훼 ‖푥	 − 	푢‖ 	+	(1	 − 	훼 )‖푦 	− 	푢‖	
                            ≤ 훼 ‖푥	 − 	푢	‖ +	(1	 −	훼 )‖푥	 − 	푢‖	
                            = ‖푥	 − 	푢‖		.  	
If ‖푥	 − 푢‖ ≤ ‖푥	 − 푢‖		 holds for some  푘	 ∈ 	푵, we can similarly show 
‖푥	 − 푢‖ ≤ ‖푥	 − 푢‖. 
Therefore, {푥 } is bounded. Hence {푦 },			{푆푦 } and {퐴푥 } are also bounded. 
Since 퐼	 − 휆 퐴  is nonexpansive,  
we  also have 
 ‖푦	 −	푦 ‖ 	= 	 ‖푃 (푥	 	− 	휆 퐴푥	 ) 	− 푃 (푥 	−	휆 퐴푥 )‖	
  ≤ ‖(푥	 	− 	휆 퐴푥	 ) 	− 	 (푥 	− 	휆 퐴푥 )‖	
  = ‖(푥	 	− 	휆 퐴푥	 ) 	− 	 (푥 − 	휆 퐴푥 ) 	+ 	(휆 −	휆 )퐴푥 ‖	
  ≤ ‖(푥	 	− 	휆 퐴푥	 ) 	− 	 (푥 −	휆 퐴푥 )	‖ +	|휆 	− 	휆 |‖퐴푥 ‖    
  ≤ ‖푥	 	− 	푥	‖ = 	푛	 +	 |휆 −	휆 |‖퐴푥 ‖																																																					(4)	
for every 푛	 = 	1, 2, . . ..	So, we obtain 
 
 ‖푥	 	− 	푥 ‖ = ‖(훼 푥	 + (1 − 훼 )푆푦 ) −	(훼 푥	 + (1	 −	훼 )푆푦 )‖ 
 
        	= ‖(훼 	−	훼 )(푥	 − 	푆푦 ) + (1	 −	훼 )(푆푦 − 	푆푦 )‖	
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         ≤ |훼 	−	훼 |‖푥	 − 	푆푦 ‖	+	(1	 − 	훼 )‖푆푦 − 	푆푦 ‖	
         ≤ |훼 	−	훼 |‖푥	 − 		푆푦 ‖ 	+	(1	 − 	훼 )‖푦 − 푦 ‖	
         ≤ |훼 	–	훼 | 푥	– 	푆푦 	+	(1	–	훼 )( 푥 	–	푥  
         +	|휆 − 휆 |‖퐴푥 ‖)	
         ≤ (1	 − 	훼 ) 푥 	–	푥 	+ 푀|휆 − 휆 | 	+ 	퐿|훼 	–	훼 |	
for every 푛 = 1, 2, . . .,	where 퐿 = sup{‖푥	 − 푆푦 ‖ ∶ 	푛	 ∈ 	푵} and  푀	 =
sup{‖퐴푥 ‖ ∶ 	푛	 ∈ 	푵}. By mathematical induction, we have 
 

‖푥 	−	푥 ‖ ≤ (1	 −	훼 ) ‖푥 	−	푥 	‖ +	

	푀		 |휆 	− 	휆 | + 	퐿 |훼 − 훼 |	

for every 푛,푚	 = 	1, 2, . . .. So, we obtain 
 
  lim → sup‖푥	푛+1	– 	푥푛‖	 	= 	 lim→ sup 푥 	–	푥  

≤ 푀 |휆 	−	휆 | 	+ 	퐿 |훼 − 훼 |	

for every 푚 = 1, 2, . .. Since		∑ |훼 − 훼 | < ∞and∑ |휆 	−	휆 | < ∞ we 
obtain 
               lim → sup 푥	 	–	푥 				≤ 0 
and hence 
               lim → 푥	 	–	푥 = 0. 
 
From (4) and ∑ |휆 	−	휆 | <∞  , we also obtain ‖푦	 −	푦 ‖ → 0. Since 
              ‖푥 − 	푆푦 ‖ ≤ ‖푥 − 	푆푦 ‖	+ ‖	푆푦 − 	푆푦 ‖	
       																																≤ 훼 ‖푥	 − 	푆푦 ‖	+	‖푦	 −	푦 ‖		,	
we have‖푥 − 	푆푦 ‖ → 0  . For 푢	 ∈ 	퐹(푆) 	∩ 	푉	퐼(퐶, 퐴), from (3), we obtain 
  ‖푥	 − 	푢‖ 	= 	훼 푥	 + 	(1	–	훼 )푆푦 − 	푢 	
  ≤ 훼 ‖푥 − 푢	‖ + (1 − 훼 )‖푆푦 − 푢‖  
  ≤ 훼 ‖푥 − 푢	‖ + (1 − 훼 )‖푦 − 푢‖ 	
  ≤ 훼 ‖푥 − 푢	‖ + (1 − 훼 ){‖푥 − 푢‖ + 휆 (휆 − 2훼)‖퐴푥 − 퐴푢‖ }	
  ≤ 훼 ‖푥 − 푢	‖ + ‖푥 − 푢‖ + (1 − 훼 )푎(푏 − 2훼)‖퐴푥 − 퐴푢‖ . 
Therefore, we have 
   −(1 − 훼 )푎(푏 − 2훼)‖퐴푥 − 퐴푢‖ 	 
    								≤ 훼 ‖푥 − 푢	‖ + ‖푥 − 푢‖ − ‖푥 − 푢‖  
          = 훼 ‖푥 − 푢	‖ + (‖푥 − 푢‖ + ‖푥 − 푢‖) 
          × (‖푥 − 푢‖ − ‖푥 − 푢‖) 
          ≤ 훼 ‖푥 − 푢	‖ + (‖푥 − 푢‖ − ‖푥 − 푢‖) × ‖푥 − 푥 ‖. 
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Since 훼 → 	0	and ‖푥 − 푥 ‖ → 	0, we obtain ‖퐴푥 − 퐴푢‖ 	→ 	0. From (1), 
we have 
  ‖푦 − 	푢‖	 = 	 ‖푃 (푥 	−	휆 퐴푥 ) 	− 	푃 (푢	 −	휆 퐴푢)‖ 	
     ≤ 〈(푥 	−	휆 퐴푥 ) − (푢	 −	휆 퐴푢), 푦 − 	푢〉	
     = 	{	 푥 	–	휆 퐴푥 − 푢	–	휆 퐴푢 + ‖푦 − 	푢‖  

     − 푥 	–	휆 퐴푥 − 푢	–	휆 퐴푢 − (푦 − 	푢) } 
 
          ≤ 	{‖푥 − 푢‖ + ‖푦 − 	푢‖	 − ‖(푥 − 푦 ) − 휆 (퐴푥 − 퐴푢)‖	 } 

          = {‖푥 − 푢‖ + ‖푦 − 	푢‖	 − ‖푥 − 푦 ‖  
           +2휆 〈푥 − 푦 	, 	퐴푥 − 퐴푢〉 − 휆 ‖퐴푥 − 퐴푢‖ 		}.	
So, we obtain 

‖푦 − 	푢‖	 ≤ ‖푥 − 푢‖ − ‖푥 − 푦 ‖ + 2휆 〈푥 − 푦 	, 	퐴푥 − 퐴푢〉
− 휆 ‖퐴푥 − 퐴푢‖  

and hence 
   ‖푥 − 푢‖ = 	훼 푥	 +	 1	–	훼 푆푦 − 	푢  
          ≤ 훼 ‖푥 − 푢	‖ + (1 − 훼 )‖푆푦 − 푢‖  
     ≤ 훼 ‖푥 − 푢	‖ + (1 − 훼 )‖푦 − 푢‖ 	
     ≤ 훼 ‖푥 − 푢	‖ + ‖푥 − 푢‖ − (1 − 훼 )‖푥 − 푦 ‖  

     +2 1	–	훼 휆 〈푥 − 푦 	, 	퐴푥 − 퐴푢〉 − 1	–	훼 휆 ‖퐴푥 − 퐴푢‖ . 
Since 훼 → 	0		, ‖푥 − 푥 ‖ → 	0, and ‖퐴푥 − 퐴푢‖ → 0, we obtain ‖푥 −
푦 ‖ → 0 , Since ‖푆푦 − 푦 ‖ ≤ ‖푆푦 − 푥 ‖ + ‖푥 − 푦 ‖	, we obtain   ‖푆푦 −
푦 ‖ → 0	. 
  Next we show that 

lim
→

sup	〈푥	 − 	푧 		, 푆푦 −	푧 		〉 ≤ 0,	
where		푧 		 	= 	푃 ( )∩ ( , )푥 .To show it, choose a subsequence  {푦 } of {푦 } 
such that 

lim
→

sup 〈	푥	 − 	푧 		, 푆푦 − 	푧 			〉 = 	 lim→ 〈	푥	 − 	푧 		, 푆푦 −	푧 			〉 .	
As {푦 }	is bounded, we have that a subsequence {푦 }	 of {푦 }converges 
weakly to 푧. We may assume without loss of generality that 푦 	⇀ 푧.	 Since  
‖푆푦 − 푦 ‖ → 0		, we obtain 푆푦 	⇀ 푧	.	 Then we can obtain 	푧	 ∈ 	퐹(푆) 	∩
	푉	퐼(C, 퐴). In fact, let us first show that 푧	 ∈ 	푉	퐼(퐶, 퐴). Let 

     푇	푣	 = 퐴푣	 +	푁 푣,							푣	 ∈ 	퐶,
		∅,																							푣 ∉ 	퐶.

�	

Then  푇	 is maximal monotone . Let (푣,푤) 	∈ 	퐺(푇	). Since   푤	 − 	퐴푣	 ∈
	푁 푣	and 푦	 ∈ 	C,  
we have  
                        〈푣	 − 	푦 , 푤	 − 	퐴푣〉 ≥ 0.	
On the other hand, from 푦	 	= 	푃 (푥 	− 휆 	퐴푥 ), we have  
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                     〈푣	 − 	푦	 	, 푦	 	− 	(푥 	− 휆 	퐴푥 )〉 ≥ 0,	
 
and hence 
                          푣	 −	푦 		, 	

+ 퐴푥 	 ≥ 0	.	
Therefore, we have 
   〈푣	–	푦 , 푤〉 	≥ 〈푣	–	푦 , 퐴푣〉 

                        ≥ 〈푣	–	푦 , 퐴푣〉 	− 푣	–	푦	 		,
	

	
+ 퐴푥 	 	 

                        = 푣	–	푦	 		, 퐴푣 − 퐴푥 −
	

	
	 	

                        = 〈푣	–	푦 , 퐴푣 − 퐴푦	 〉 + 〈푣	–	푦 , 퐴푦	 − 퐴푥 〉 

                      − 푣	–	푦 		, 	
 

                       ≥ 〈푣	–	푦 , 퐴푦 − 퐴푥 〉 − 푣	–	푦 		, 	
		. 

Hence we obtain 〈푣	 − 	푧, 푤〉 ≥ 0	as 푖	 → 	∞.	Since 푇 is maximal monotone, we 
have  푧	 ∈ 	푇 0 and hence 푧	 ∈ 	푉	퐼(C, 퐴). Let us show that 푧	 ∈ 	퐹(푆).	Assume 
푧	 ∉ 	퐹(푆).	From   Opial’s condition, we have 
    lim → inf 푦	 		 − 푧 < lim → inf 푦 		 − 푆푧  
                            = lim → inf 푦 		 − 푆푦 		 + 푆푦 		 − 푆푧  

= lim
→

inf 푆푦 		 − 푆푧 ≤ lim
→

inf 푦 		 − 푧 . 
This is a contradiction. Thus, we obtain 푧	 ∈ 	퐹(푆). Then we have 
 lim → sup	〈푥	 − 	푧 , 푆푦 −	푧 〉 	= 	 lim

→
	〈푥	 − 	푧 , 푆푦 		 −	푧 〉	

                                                         = 	 〈푥	 − 	푧 , 푧 −	푧 〉 ≤ 0.	
Therefore, for any 휀 > 0, there exists 푚	 ∈ 	푵 such that 

〈푥	 − 	푧 , 푆푦 −	푧 〉 ≤ 휀, 훼 ‖푥	 −	푧 ‖ ≤ 휀	
for all 푛 ≥ 푚. For all 푛 ≥ 푚.we have 

‖푥 	 −	푧 ‖ 	= 	 ‖훼 푥	 +	(1	 − 	훼 )푆푦 −	푧 ‖
= 	훼 ‖푥	 − 	푧 ‖ 	+ 	2훼 (1	 −	훼 )〈푥	 − 	푧 , 푆푦 −	푧 〉
+	 (1	 −	훼 ) ‖푆푦 −	푧 ‖
≤ 훼 휀 + 	2훼 (1	 −	훼 )휀 +	(1	 −	훼 )‖푆푦 −	푧 ‖
≤ 3훼 휀 +	(1	 −	훼 )‖푆푦 −	푧 ‖
≤ 3훼 휀	 +	(1	 − 	훼 )‖푥 −	푧 ‖
= 	3휀(1	 −	(1	 − 	훼 )) 	+ 	 (1	 − 	훼 )‖푥 −	푧 ‖ .	

By mathematical induction, we obtain 
 

‖푥 −	푧 ‖ ≤ 3휀 1 − (1	 −	훼 ) + (1	 −	훼 )‖푥 −	푧 ‖ 	. 

Therefore, we have 
lim
→

sup‖푥 −	푧 ‖ ≤ 3휀			. 
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Since 휀 > 0 is arbitrary, we have  lim sup → ‖푥 −	푧 ‖ ≤ 0 and hence  
푥 → 	 푧 								.	                                                                                   □	
Remark(5.1.2)[67]: We obtain Wittmann’s theorem [94] if 퐴	 = 	0 in Theorem 
(5.1.1); see also [84]. Takahashi and Toyoda [93] considered Mann’s type 
iteration: 

       	
		푥 	= 	푥	 ∈ 	퐶,																																																															
		푥 	= 	훼 푥 	+	(1	 − 	훼 )푆푃 (푥 	−	휆 퐴푥 ),

�	

and obtained that the sequence {푥 } converges weakly to   푧	 ∈ 	퐹(푆) 	∩
	푉	퐼(퐶, 퐴). 
As a direct consequence of Theorem (5.1.1), we obtain the following: 
Corollary (5.1.3)[67]: Let 퐶	be a closed convex subset of a real Hilbert space 
퐻. Let	퐴	be an 훼-inverse-strongly monotone mapping of 퐶 into	퐻 such that 
푉	퐼(퐶, 퐴) ≠ 	∅. Suppose 푥 = 푥	 ∈ 퐶	and	{푥 } is given by 
         푥 	= 	훼 푥	 +	(1	 − 	훼 )푃 (푥 	−	휆 퐴푥 )	
 
For   every 푛 = 1, 2, . . .,	where	{훼 }	is a sequence in [0, 1)	and	{휆 }	is a 
sequence in	[0, 2훼]. If {훼 }	 and {휆 }	are chosen so that 휆 	∈ 	 [푎, 푏]	for some 
푎, 푏 with 0 < 푎	 < 푏 < 2훼,	

lim
→

훼 = 0, 훼 = ∞	, |훼 − 훼 | < ∞		푎푛푑 |휆 − 휆 | < ∞	. 

Then {푥 } converges strongly to 푃 ( , )푥. 
In this section, we prove two theorems in a real Hilbert space by using 
Theorem(5.1.1).A mapping 푇 ∶ 퐶	 → 	퐶 is called strictly pseudocontractive if 
there exists 푘 with 0 ≤ 푘 < 1 such that 
        ‖푇	푥	 − 	푇푦‖ ≤ ‖푥	 − 	푦‖ 	+ 	푘‖(퐼	 − 	푇	)푥	 − 	(퐼	 − 	푇	)푦‖ 	
for all 푥, 푦	 ∈ 	퐶. If	푘	 = 	0, then 푇	푖s nonexpansive. Put   퐴	 = 	퐼	 − 	푇	,	where 
푇 ∶ 퐶	 → 	퐶 is a strictly   pseudocontractive mapping with 푘. Then 퐴	is (1 −
푘)/2-inverse-strongly monotone; see [56]. Actually, we have, for all 푥, 푦	 ∈ 	퐶, 
        ‖(퐼	 − 	퐴)푥	 −	 (퐼	 − 	퐴)푦‖ ≤ ‖푥	 − 	푦	‖ + 	푘‖퐴푥	 − 	퐴푦‖ 	.	
On the other hand, since 퐻	is a real Hilbert space, we have 

‖(퐼	 − 	퐴)푥	 −	(퐼	 − 	퐴)푦	‖ = 	‖푥	 − 	푦‖ +	‖퐴푥	 − 	퐴푦‖ 	− 	2〈푥	 − 	푦, 퐴푥	 − 	퐴푦〉 

Hence we have 

〈푥	 − 	푦, 퐴푥	 − 	퐴푦〉 ≥
1	– 푘
2

‖퐴푥	 − 	퐴푦‖ 	.	
Using Theorem (5.1.1), we first prove a strong convergence theorem for finding 
a common fixed point of a nonexpansive mapping and a strictly 
pseudocontractive mapping. 
Theorem (5.1.4)[67]: Let 퐶 be a closed convex subset of a real Hilbert space 퐻. 
Let 푆 be a nonexpansive mapping of 퐶 into itself and let	푇 be a k-strictly 
pseudocontractive mapping of 퐶 into itself such that  퐹(푆)	∩ 	퐹(푇	) 	≠ ∅	. 
Suppose  푥 = 	푥	 ∈ 	퐶 and {푥 }	is given by 
                  푥 = 훼 푥 + (1 − 훼 )푆((1 − 휆 )푥 + 휆 푇	푥 )	
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For every	푛 = 1, 2, . . .,	where	{훼 }	is a sequence in	[0, 1)	and	{휆 } is a sequence 
in [0, 1 − 푘].				If		{훼 }	 and		{휆 }	are chosen so that  휆 	∈ 	 [푎, 푏]				for some 푎, 푏 
with 0 < 푎	 < 푏 < 1	 − 	푘, 

lim
→

훼 = 0, 훼 = ∞	, |훼 − 훼 | < ∞		푎푛푑 |휆 − 휆 | < ∞, 

then {푥 }	converges strongly to 푃 ( )∩ ( 	)푥. 
Proof. Put 퐴	 = 	퐼	 − 	푇	.	Then 퐴 is (1	 − 	푘)/2-inverse-strongly monotone.We 
have 퐹(푇	) 	= 푉	퐼(퐶, 퐴)	and 푃 (푥 	− 휆 퐴푥 ) = (1 − 휆 )푥 	+ 휆 푇	푥 . So, by 
Theorem (5.1.1), we obtain the desired result.                             □ 
Using Theorem (5.1.1), we also have the following: 
Theorem (5.1.5)[67]: Let	퐻 be a real Hilbert space. Let 퐴	be an 훼-inverse-
strongly monotone mapping of 퐻 into itself and let 푆	be a nonexpansive 
mapping of		퐻	into itself such that 퐹(푆) ∩ 	퐴 0	 ≠ 	∅	. Suppose 푥 	= 	푥	 ∈ 	퐻 
and {푥 }	is given by 
      푥 	= 	훼 푥	 +	(1	 − 	훼 )푆(푥 	−	휆 퐴푥 )	
for every 푛 = 1, 2, . . .,	where	{훼 }	 is a sequence in	[0, 1) and {휆 } is a 
sequence in [0, 2훼]. If {훼 }	  and {휆 } are chosen so that 휆 	∈ 	 [푎, 푏] for some 
푎, 푏 with  	0 < 푎	 < 푏 < 2훼, 
 

lim
→

훼 = 0, 훼 = ∞	, |훼 − 훼 | < ∞		푎푛푑 |휆 − 휆 | < ∞	, 

then {푥 }converges strongly to 푃 ( )∩ 푥. 
Proof. We have 퐴 0	 = 	푉	퐼(퐻, 퐴). So, putting 푃 = 	퐼	,	by Theorem (5.1.1), 
we obtain the desired result.       □ 
 
Sec(5.2): Viscosity Approximation Methods for Nonexpansive 
Mappings and Monotone Mappings 
 
    Let 퐶 be a closed convex subset of a real Hilbert space	퐻 and let 푃  be the 
metric projection of 퐻	onto	퐶. Recall that a self-mapping  푓 ∶ 	퐶	 → 퐶		is a 
contraction on 퐶 if there is a constant 푘	 ∈ 	 (0, 1) such that   

‖푓	(푥) 	− 푓	(푦)‖ 	≤ 	푘‖푥	 − 푦‖	,						푥, 푦	 ∈ 	퐶. 
Π  denotes the set of all contractions on 퐶. Note that 푓			has a unique fixed point 
in 퐶.	
  A mapping 퐴 of 퐶	into 퐻 is called monotone if 〈퐴푢	 − 	퐴푣, 푢	 − 	푣〉 ≥ 	0, for 
all	푢, 푣	 ∈ 	퐶.	The variational inequality problem is to find 푢	 ∈ 	퐶 such that  
〈퐴푢, 푣	 − 	푢〉 ≥ 0			  for all 푣	 ∈ 	C (Refs. [56,75]). The set of solutions of the 
variational inequality is denoted by 푉퐼(퐶, 퐴).	A mapping 퐴 of 퐶 to 퐻 is called 
inverse-strongly monotone if there exists a positive real number 훼 such that	
                    〈푥	 − 푦, 퐴푥	 − 퐴푦〉 ≥ 	훼‖퐴푥	 − 	퐴푦‖ 	
for all 푥, 푦	 ∈ 	퐶.	For such a case, 퐴 is 훼-inverse-strongly monotone. 
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  A mapping 푆	of 퐶 into itself is called nonexpansive if  ‖푆푥	 − 	푆푦‖ ≤
‖푥	 − 	푦‖ for all 푥, 푦	 ∈ 	C (Ref. [76]). We denoted by 퐹(푆) the set of fixed 
points of  푆. 
   The viscosity approximation method of selecting a particular fixed point of 
given nonexpansive mapping was proposed by Moudafi [62] who proved the 
following strong convergence of both the implicit and explicit methods in 
Hilbert space. 
Theorem (5.2.1)[68]: In a Hilbert space define {푥 }	by implicit way 
                    푥 = 	

	
푇	푥 	+ 	 푓	(푥 ),	

where 휀  is a sequence in (0, 1) tending to zero. Then	{푥 }	converges strongly 
to the unique solution 푥 	∈ 	퐶 of the variational inequality 
          〈(퐼	 − 	푓	)푥	, 푥 − 	푥〉 ≤ 0 . 
In other words, 푥	is the unique fixed point of 푃 ( 	)푓 . 
Theorem(5.2.2)[68]: In a Hilbert space define	{푥 } by (푥	 ∈ 	퐶	is	arbitrary) 
                      푥 = 	

	
푇	푥 	+ 	 푓	(푥 ),	

Suppose that {휀 }	satisfies the conditions 

lim
→

휀 	= 	0, 휀 = ∞ ;			 lim
→

1
휀
−	

1
휀

= 	0.	

Then {푥 }	converges strongly to the unique solution 푥 	∈ 	퐶 of the variational 
inequality 
         〈(퐼	 − 	푓	)푥	, 푥 − 	푥〉 ≤ 0 . 
In other words, 푥		is the unique fixed point of  푃 ( 	)푓 . 
    Very recently Xu [63] studied the viscosity approximation methods proposed 
by Moudafi [62] for a nonexpansive mapping in a Hilbert space. He proved the 
following theorems. 
Theorem (5.2.3)[68]:  (see Xu[63,theorem 3.1].) Let 퐻 be a Hilbert space, C a 
closed convex subset of 퐻, and 푇 ∶ 퐶	 → 퐶 a nonexpansive mapping with 
퐹(푇	) 	≠ 	∅ and  푓	 ∈ 	훱 .  Let {푥 	} be given by 
 
                      푥 	= 	푡푓	(푥 	) +	 (1 − 	푡)푇	푥 ,				푡 ∈ 	 (0, 1).	
Then: 
 (푖)			푠 − lim → 푥 		= :	 푥		exists;	
 (푖푖)		푥 	= 	푃 푓			(푥	), or equivalently,	푥	is the unique solution in 퐹(푇	) to the 
variational inequality 
 
                    	〈(퐼	 − 	푓	)푥	, 푥 −		푥〉 ≥ 0	, 푥 ∈ 	푆,	
 
where 푆	 = 	퐹(푇	) and 푃 	 is the metric projection from 퐻 to 푆. 
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Theorem (5.2.4)[68]: (see Xu [63,theorem 3.2].)  Let 퐻 be a Hilbert space, 퐶 a 
closed convex subset of  퐻, and 푇 ∶ 퐶	 → 퐶	a nonexpansive mapping with 
퐹(푇	) ≠ 	∅,	and	푓 ∶ 퐶	 → 퐶 a contraction. 
Let  {푥 }	be given by 
                   푥	 ∈ 	퐶, 	푥	 = 	훼 푓	(푥 ) + (1	 − 훼 )푇	푥 ,				푛 ≥ 	0. 
Then under the following hypotheses 
 (퐻1)	훼 → 0;	
 (퐻2)∑ 훼 = ∞	;	
 (퐻3)푒푖푡ℎ푒푟 ∑ |훼 	− 훼 | < ∞ 	or	 lim → = 	1,	
푥 → 	푥, where 	푥	 is the unique solution of the variational inequality 
            〈(퐼	 − 	푓	)푥	, 푥 −		푥〉 ≥ 0	, 푥 ∈ 	푆.	
In this section, we introduce an iterative scheme by viscosity approximation 
method for finding a common element of the set of fixed points of a 
nonexpansive mapping and the set of solutions of the variational inequalities for 
an inverse-strongly monotone mapping in a real Hilbert space. Then we show 
that the sequence converges strongly to a common element of two sets which 
solves some variational inequality. Using this results, we first obtain a strong 
convergence theorem for finding a common fixed point of a nonexpansive 
mapping and a strictly pseudocontractive mapping. Further, we consider the 
problem finding a common element of the set of fixed points of a nonexpansive 
mapping and the set of zeros of an inverse-strongly monotone mapping. 
   Let 퐻 be a real Hilbert space with inner product 〈.		, . 〉 and norm	‖·‖, and 
let	퐶 be a closed convex subset of 퐻. We write 푥 	⇀ 푥 to indicate that the 
sequence	{푥 } converges weakly to 푥. 푥 	→ 푥 implies that {푥 } converges 
strongly to 푥. For every point 푥	 ∈ 	퐻, there exists a unique nearest point in 퐶, 
denoted by 푃 푥, such that 
                     ‖푥	 −	푃 푥‖ 	≤ ‖푥	 − 푦‖,	
for all 푦	 ∈ 	퐶. 푃 	 is called the metric projection of 퐻 to 퐶. It is well known 
that 푃  satisfies 
                      〈푥	 − 푦, 푃 푥	 − 푃 푦〉 ≥ ‖푃 푥	 − 푃 푦‖	 							,																																			(5)	
for every 푥, 푦	 ∈ 	퐻, and 푃  is characterized by the following properties: 
                     〈푥	 − 푃 푥, 푃 푥	 − 푦〉 ≥ 	0,																																																																					(6)	
                     ‖푥	 − 	푦	‖ ≥ ‖푥	 − 푃 푥‖	 + ‖푦	 − 푃 푥‖ 									,																												(7)	
for all	푥	 ∈ 	퐻, 푦	 ∈ 	퐶. In the context of the variational inequality problem,  
This   implies 
                푢	 ∈ 	푉퐼(퐶, 퐴) 	⇔ 	푢	 = 	푃 (푢 − 휆퐴푢), ∀휆 > 0.																																		(8)	
It is well known that 퐻 satisfies the Opial condition (Ref. [78]), i.e., for any 
sequence {푥 }with 푥 	⇀ 푥 the inequality 
                lim → inf 	‖푥 − 푥‖ 	< 	 lim → inf ‖푥 	− 푦‖	
holds for every 푦	 ∈ 	퐻 with	푦	 ≠ 	푥. If 	퐴 is an 훼-inverse-strongly monotone 
mapping of 퐶 to 퐻, then it is obvious that 퐴	푖s  	-Lipschitz continuous. We also 
have that for all 푥, 푦	 ∈ 	퐶 and 휆 > 0, 
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  	‖(퐼	 − 	휆퐴)푥	 −	(퐼	 − 휆퐴)푦‖ 	= 	 ‖(푥	 − 푦) − 휆(퐴푥	 − 	퐴푦)‖ 	
             = ‖푥	 − 푦‖ 	− 	2휆〈푥	 − 푦, 퐴푥	 − 퐴푦〉 +	휆 ‖퐴푥	 − 퐴푦‖ 	
             ≤ ‖푥	 − 푦‖ + 	휆(휆 − 	2훼)‖퐴푥	 − 퐴푦‖ .	
So, if 휆	 ≤ 	2훼, then 퐼	 − 휆퐴	is a nonexpansive mapping of 퐶 into 퐻. 
    A set-valued mapping 푇 ∶ 퐻	 → 2 	is called monotone if for all  푥, 푦	 ∈
	퐻, 푓	 ∈ 	푇	푥 and g	 ∈ 	푇푦		imply 〈푥	 − 	푦, 푓	 − 	g〉 ≥ 0. A monotone mapping 
푇 ∶ 퐻	 → 2  is maximal if graph 퐺(푇	) of 푇 is not properly contained in the 
graph of any other monotone mapping. It is known that a monotone mapping 푇 
is maximal if and only if for  (푥, 푓	) 	 ∈ 	퐻	 × 	퐻, 〈푥	 − 	푦, 푓	 − 	g〉 ≥ 0 for every 
(푦, g) 	 ∈ 퐺(푇	) implies	푓	 ∈ 	푇	푥. Let 퐴 is an inverse-strongly monotone 
mapping of  퐶 to 퐻 and let	푁 푣 be normal cone to 퐶 at 푣	 ∈ 	퐶, i.e.,  
푁 푣 = 	 {푤	 ∈ 	퐻:	〈푣	 − 푢,푤〉 ≥ 0, ∀푢	 ∈ 	C}, and define 
 

                  푇	푣	 = 퐴푣	 +	푁 푣,														푣	 ∈ 	퐶				,						
		∅,																										푣 ∉ 	퐶			,

�	

then 푇 is maximal monotone and 0	 ∈ 	푇	푣	if and only if 푣	 ∈ 	푉퐼(퐶, 퐴) (Ref. 
[78]). 
Lemma (5.2.5)[68]: (see Goebel and Kirk [79])   Let 퐶 be a closed convex 
subset of a real Hilbert space	퐻 and let 푇 ∶ 	퐶	 → 퐶	be a nonexpansive mapping 
such that 퐹푖푥(푇	) 	≠ 	∅. If a sequence {푥 }	in 퐶 is such that 푥 	⇀ 푧 and 
푥 	− 푇	푥 → 0, then 	푧	 = 	푇	푧. 
Lemma (5.2.6)[68]: (see Xu [80].)  Let {푠 } be a sequence of nonnegative real 
numbers such that: 
                   푠 	≤ (1	 − 휆 )푠 + 훽 	,					푛 ≥ 0,	
where {휆 }, {훽 } satisfy the condition 
  
 (푖)	{휆 } 	⊂ 	 (0, 1)	푎푛푑	∑ 휆 = ∞		,	
 (푖푖) lim → sup 	≤ 	0	or			 ∑ |훽 | 	< ∞.	
Then lim → 푠 	= 	0. 
Proposition (5.2.7)[68]: Let 퐶 be a closed convex subset of a real Hilbert space 
퐻. Let 푓 ∶ 퐶	 → 퐶 be a contraction with coefficient 푘	(0	 < 	푘	 < 1), 퐴	an 훼-
inverse-strongly monotone mapping of 퐶 to 퐻	and let 푆 be a nonexpansive 
mapping of 퐶 into itself such that 퐹(푆) ∩ 푉퐼(퐶, 퐴) 	≠ ∅. Suppose {푥 } be 
sequences generated by 
    푥 	∈ 	퐶,				푥 	 = 	훼 푓	(푥 ) + (1	 −	훼 )푆푃 (푥 	− 휆 퐴푥 ) 
for every 푛	 = 	0, 1, 2, . . ., where {휆 } 	⊂ 	 [푎, 푏] and	{훼 } is a sequence in 
(0, 1). 퐼푓	{훼 }	and		{휆 }			are chosen so that 휆 	∈ 	 [푎, 푏] for some 	푎, 푏 with 
0 < 푎	 < 푏 < 2훼, 
 

lim
→

훼 = 0	, 훼 = ∞	, |훼	 − 훼 |	 < ∞	, |휆	 − 휆 | 	< ∞,	
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then {푥 } converges strongly to 푞	 ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴), which is the unique 
solution in the 퐹(푆)	∩ 푉퐼(퐶, 퐴) to the following variational inequality 
            	〈(퐼	 − 	푓	)푞, 푞	 − 푝〉 ≤ 0,						푝 ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴).	
Proof. Put 푦 	 = 	푃 (푥 	− 휆 퐴푥 ) for every 푛	 = 	0, 1, 2, . . ..	Let  푢	 ∈ 	퐹(푆) 	∩
	푉퐼(퐶, 퐴). We have 
              푦 	– 	푢 = 푃 푥 	– 휆 퐴푥 −	푃 (푢 −	휆 퐴푢)  
                             ≤ 	‖(푥 	−	휆 퐴푥 ) − (푢	 − 휆 퐴푢)‖	
                              ≤ ‖푥 − 	푢‖	
for every	푛	 = 	1, 2, 3, . . ..	Then we have 
   ‖푥	 − 푢‖ = 훼 푓	(푥 ) + 1	– 훼 푆푦 	 	− 푢  
      ≤ 훼 ‖푓	(푥 ) − 푢‖ + 1	– 훼 ‖푆푦 	 	− 	푢‖ 
      ≤ 훼 ‖푓	(푥 ) − 푓	(푢)‖ + 훼 ‖푓	(푢) − 	푢‖ +	(1 −	훼 )‖푦 	 	− 푢‖	
      ≤ 훼 푘 푥 	– 푢 + 1	–훼 푥 	– 	푢 + 훼 ‖푓	(푢) − 푢‖ 
      = 1 −	 1	– 푘 훼 푥 	– 	푢 + 훼 푓	(푢)– 푢  
       ≤ max ‖푥 	− 푢‖, ‖푓	(푢) 	− 푢‖ 	 .	
By induction, 
        ‖푥 	− 	푢‖ ≤ 	max 	‖푥 	− 	푢‖,

	
‖푓	(푢) − 	푢‖ ,			푛 ≥ 	0.	

Therefore, {푥 }	is bounded, {푦 }, {푆푦 }, {퐴푥 }, {푓	(푥 )} are also bounded. Since 
퐼	 − 	휆 퐴 is nonexpansive and 푢	 = 	푃 (푢	 − 휆 퐴푢), we also have 

‖푦	 − 푦 ‖ ≤ 	‖(푥	 	− 휆 퐴푥	 ) − (푥 −	휆 퐴	푥 )‖	
   	≤ ‖(푥	 	− 휆 퐴푥	 ) − (푥 	−	휆 퐴푥 )‖ +	|휆 −	휆 |‖퐴푥 ‖	
    ≤ ‖푥	 	− 푥 	‖ +	|휆 − 휆 |‖퐴푥 ‖	
 
for every 푛	 = 	1, 2, 3, . . ..	So we obtain 

‖푥	 	− 푥 	‖ = ‖훼 푓	(푥 ) +	 (1	– 훼 )푆푦 	
�	

      �−	훼 푓	(푥 ) 	− 	(1 − 훼 )푆푦 	‖ 
      =	 훼 	– 훼 (푓	(푥 ) − 	푆푦 	) + 1	– 훼 (푆푦 	 	− 	푆푦 	)� 
      �+	훼 푓	(푥 ) − 	푓	(푥 )  
      ≤ |훼 	−	훼 |‖푓	(푥 ) − 푆푦 ‖ + (1	 − 훼 )‖푦 	 	− 	푦 ‖	
      +	훼 푘‖푥 	−	푥 ‖	
      ≤	 1	– 훼 푥 	– 푥 	+	 |휆 	− 휆 |‖퐴푥 ‖  
      +	|훼 	− 훼 |‖푓	(푥 ) 	− 푆푦 ‖ +	훼 푘‖푥 	−	푥 ‖	
      ≤ (1	 − (1	 − 푘)훼 )‖푥 	−	푥 ‖ + 퐿|휆 	− 휆 | 	+ 푀|훼 	− 훼 |	
for every	푛	 = 	0, 1, 2, . . ., where 퐿 = sup 푓	(푥 )– 	푆푦 :	푛	 ∈ 	푁 , 푀	 =
	sup{‖퐴푥 ‖:	푛	 ∈ 	푁}, since  ∑ 휆 	– 휆 	< 	∞, ∑ |훼 	− 훼 | 	< 	∞ 
in view of Lemma (5.2.6), we have lim → ‖푥	 − 푥 ‖ = 0. Then we also 
obtain   ‖푦 	−	푦 ‖ → 0 
   ‖푥 − 푆푦 ‖ ≤ ‖푥 − 	푆푦 ‖ + ‖푆푦 	− 푆푦 ‖	
                     ≤ 훼 ‖푓	(푥 ) − 푆푦 ‖ + ‖푦 	− 푦 ‖,	
we have ‖푥 − 푆푦 ‖ → 0. For	푢	 ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴), 
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 푥	 	– 	푢 	= 훼 푓	(푥 ) + 1	– 훼 푆푦 	– 푢  
  ≤ 훼 ‖푓	(푥 ) − 푢‖ + (1	 − 훼 )‖푦 	− 	푢‖ 	
  ≤ 훼 ‖푓	(푥 ) − 푢‖ 	+ (1	 − 훼 )[‖푥 − 푢‖ 	+	휆 (휆 	− 2훼)‖퐴푥 	− 퐴푢‖ ]	
 
  ≤ 훼 ‖푓	(푥 ) − 푢‖ + ‖푥 	− 푢‖ + (1	 − 훼 )푎(푏	 − 2훼)‖퐴푥 	− 퐴푢‖ .	
So, we obtain 
  −(1	 − 훼 )푎(푏	 − 2훼)‖퐴푥 	− 	퐴푢‖ 	
  ≤ 훼 ‖푓	(푥 ) − 	푢‖ 	+ (‖푥 	− 푢‖ + ‖푥 	− 푢‖)(‖푥 	− 푢‖ − ‖푥 	− 	푢‖)	
  ≤ 훼 ‖푓	(푥 ) − 	푢‖ + (‖푥 	− 푢‖ + ‖푥 	− 푢‖)‖푥 	− 푥 ‖.	
Since 훼 → 0 and ‖푥 − 푥	 ‖ → 0,			then ‖퐴푥 	− 	퐴푢‖ → 0, 푛 → ∞. Further, 
from (5), we obtain 
  ‖푦 	 − 	푢‖ = ‖푃 (푥 	− 휆 퐴푥 ) −	푃 (푢 −	휆 퐴푢)‖ 	
          ≤ 〈푥 	– 휆 퐴푥 − (푢 −	휆 퐴푢), 푦 	– 	푢〉 
          = 	 	 푥 	– 휆 퐴푥 − (푢 −	휆 퐴푢) �	
        	+‖푦 	− 푢‖ �−	‖(푥 	− 휆 퐴푥 ) − (푢 −	휆 퐴푢) −	(푦 	− 푢)‖ }	
          ≤ {‖푥 − 푢‖ � 	+ ‖푦 − 푢‖ − ‖푥 	− 푦 ‖  
         +�2휆 〈푥 	− 	푦 , 퐴푥 	− 퐴푢〉 − 휆 ‖퐴푥 	− 	퐴푢‖ 	.	
So, we obtain 
  푦 	– 푢 ≤ ‖푥 − 푢‖ − 푥 	– 푦  
                   +2휆 〈푥 	−	푦 , 퐴푥 	− 퐴푢〉 −			휆 ‖퐴푥 	− 	퐴푢‖ . 
And hence 
  ‖푥 − 푢‖ ≤ 훼 ‖푓	(푥 ) − 	푢‖ + 1	– 훼 푆푦 	– 푢  
  ≤ 훼 ‖푓	(푥 ) − 푢‖ + (1	 − 훼 )‖푦 	− 	푢‖  
  ≤ 훼 ‖푓	(푥 ) − 	푢‖ + ‖푥 − 푢‖ − (1	 − 훼 ) 푥 	– 푦  
  +2(1	 − 훼 )휆 〈푥 	−	푦 , 퐴푥 	− 퐴푢〉 − (1	 − 훼 )휆 ‖퐴푥 	− 	퐴푢‖ . 
Since 훼 → 0, ‖푥 − 푥	 ‖ → 0 and ‖퐴푥	 	− 퐴푢‖ → 0, we obtain 
	 푥 	– 푦 → 0.	Choose a subsequence {푦 }	표푓	{푦 }  
such that  

lim
→

	sup 〈푓	(푞) − 푞, 푆푦 	− 푞〉 = 	 lim
→

〈푓	(푞) − 	푞, 푆푦 − 	푞〉	
As {푦 } is bounded, we have that a subsequence {푦 }of {푦 }converges 
weakly to 푧	. We may assume without loss of generality that  푦 		⇀ 푧. 
Since	‖푆푦 	−	푦 ‖ → 0, we obtain 푆푦 		⇀ 푧. Then we can obtain 푧	 ∈
	퐹(푆) 	∩ 	푉퐼(퐶, 퐴). In fact, let us first show that  푧	 ∈ 	푉퐼(퐶, 퐴).	 
Let 

         푇	푣	 = 퐴푣	 +	푁 푣,									푣	 ∈ 	퐶			,
		∅,																										푣 ∉ 	퐶			,

�	

Then 푇 is maximal monotone. Let (푣, 푤) 	∈ 	퐺(푇	). Since  푤	 − 	퐴푣	 ∈ 	푁 푣 
and 푦 ∈ 	퐶 we have  
            〈푣	 − 푦 	, 푤	 − 퐴푣〉 	≥ 0.	
 



١٣٠ 
 

On the other hand, from 푦 	= 	푃 (푥 −	휆 퐴푥 ),	we have 〈푣	 − 	푦	 , 푦	 	−
	(푥	 − 	휆 퐴푥	 )〉 ≥ 0 and hence 
 
             〈푣	 − 푦 , 	 	 	 + 퐴푥 〉 ≥ 0			.	
Therefore, we have 
  〈푣	 − 푦 , 푤〉 ≥ 〈푣	 − 푦 , 퐴푣〉	

                      ≥ 〈푣	 − 푦 , 퐴푣〉 	− 푣	 − 푦 	,
	

+ 퐴푥 	

                      = 푣	 −	푦 	, 퐴푣	 − 퐴푥 − 	 	

                      = 	〈푣	– 푦 , 퐴푣	– 	퐴푦 〉 +	 〈푣	–	푦 , 퐴푦 − 	퐴푥 〉 

                      − 푣 −	푦	 ,
	 	 	

	

           ≥ 〈푣	 −	푦 	, 퐴푦 − 	퐴푥 〉 −	 푣	 − 	푦	 	,
	

			. 

Hence we have 〈푣	 − 푧,푤〉 ≥ 	0 as 푖 → ∞. Since 푇 is maximal monotone, we 
have 푧	 ∈ 	푇 0 and hence 푧	 ∈ 	푉퐼(퐶, 퐴) 
  푥	 	– 	푆푥	 	≤ 푥	 	– 푆푦	 + 푆푦	 	– 푆푥	 	     
                          ≤ 	‖푥	 	− 	푆푦	 ‖ + ‖푥	 −	푦	 ‖,	
we have ‖푥	 	− 	푆푥	 ‖ → 0. In view of Lemma (5.2.5), we obtain 푧	 ∈ 	퐹(푆) 
  lim → sup	〈푓	(푞) − 푞, 푆푦	 	– 푞〉 = 	 lim → 〈푓	(푞) − 	푞, 푆푦 − 	푞〉 
                           						= 〈푓	(푞) − 푞, 푧	 − 	푞〉 ≤ 0,	
 ‖푥	 − 푞	‖ = 훼 푓	(푥 ) +	(1 −	훼 )푆푦 	– 	푞  

         =	훼 푓	(푥 )	– 푞 + 2훼 (1 − 훼 )〈푓	(푥 ) − 	푞, 푆푦 − 	푞〉	
         +(1	 − 훼 ) ‖푆푦 − 푞‖ 	
         ≤ (1	 − 2훼 	+	훼 )	‖푥 − 푞‖ 	+ 훼 ‖푓	(푥 ) − 	푞‖ 	
         +2훼 (1	 − 훼 )〈푓	(푥 )– 푓	(푞)	, 푆푦 	– 푞〉 
         +2훼 (1	 − 훼 )〈푓	(푞) − 	푞, 푆푦	 	− 	푞〉	
         ≤ 1	 − 2훼 	+	훼 + 	2푘훼 1	– 훼 푥 	– 푞	  

         +훼 ‖푓	(푥 ) − 	푞‖ 	
         +2훼 (1	 − 훼 )〈푓	(푞) − 푞, 푆푦 	− 푞〉	
         =	 (1 −	훼 )‖푥 	− 푞‖ 	+	훼 훽̅ 	,	
where 
        훼 	= 	훼 [2	 − 훼 	− 2푘(1 −	훼 )],	
 

훽̅ 	=
훼 ‖푓	(푥 ) − 	푞‖ 	+ 	2(1 −	훼 )〈푓	(푞) − 푞, 푆푦 	− 푞〉

2 −	훼 − 	2푘(1 − 훼 )
		 .	

	
It is easily seen that 훼 	→ 0, ∑ 훼 	= ∞, and  limsup → 훽̅ ≤ 0, by 
Lemma (5.2.6) we obtain 푥	 → 푞. This completes the proof. □ 
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   S is a nonexpansive mapping, 퐴 is an 훼-inverse strongly monotone, and 
푓	 ∈ 	훱 . Thus, by Banach contraction mapping principle, there exists a unique 
fixed point 

푧 	= 	훼 푓 푧 	 + (1	 − 훼 )푆푃 푧 		− 휆 퐴푧 	, 훼 	∈ 	 (0, 1).	
For simplicity we will write 푧 	for	푧 	provided no confusion occurs. Next we 
prove the convergence of {푧 }, while they claim the existence of the 푞	 ∈
	퐹(푆) 	∩ 	푉퐼(퐶, 퐴) which solves the variational inequality 
    	〈(퐼	 − 	푓	)푞, 푞	 − 	푝〉 ≤ 	0,				푓 ∈ 	훱 , 푝	 ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴).	
Theorem (5.2.8)[68]: Let 퐶 be a closed convex subset of a real Hilbert space 
퐻. Let 푓 ∶ 퐶	 → 퐶 be a contraction with coefficient 푘	(0	 < 	푘	 < 1), 퐴	an 훼-
inverse-strongly monotone mapping of 퐶 to 퐻 and let 푆 be  a nonexpansive 
mapping of 퐶 into itself such that 퐹(푆) ∩ 푉퐼(퐶, 퐴) 	≠ ∅. Suppose {푧 },  be 
sequences generated by 
        푧 	= 훼 푓	(푧 ) +	(1 − 	훼 )푆푃 (푧 	− 휆 퐴푧 ),				훼 ∈ 	 (0, 1),	
where {휆 } 	⊂ 	 [푎, 푏]	and {훼 } is a sequence in [0, 1). If  {훼 } and {휆 }	are 
chosen so that		휆 	 ∈ [푎, 푏] for some 푎, 푏	with	0 < 푎	 < 푏 < 2훼, when 
lim → 훼 	 	= 	0	, 푧  converges strongly to 푞, and such that the variational 
inequality 
          	〈(퐼	 − 	푓	)푞, 푞	 − 	푝〉 ≤ 0,				푓 ∈ 	훱 	,			푝	 ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴).	
Proof.  Put  푦 	= 	푃 (푧 	− 	휆 퐴푧 ) for every 푛	 = 	0, 1, 2, . . ..	Let  푢	 ∈
	퐹(푆) 	∩ 	푉퐼(퐶, 퐴). We have 
  ‖푦 − 푢‖ = ‖푃 (푧 	− 		휆 퐴푧 ) − 푃 (푢 −	 		휆 퐴푢)‖	
                     ≤ 	‖(푧 − 		휆 퐴푧 ) − (푢	 − 		휆 퐴푢)‖ 
                     ≤ ‖푧 	− 푢‖,	
 for every 푛	 = 	1, 2, 3, . . ..	Then we have 
 
  ‖푧 	− 푢‖ = ‖훼 푓	(푧 ) 	+ (1	 − 훼 )푆푦 	− 	푢‖ 
            ≤ 훼 ‖푓	(푧 ) 	− 푢‖ + (1	 − 훼 )‖푆푦 − 푢‖	
            ≤ 훼 ‖푓	(푧 ) 	− 푓	(푢)‖ +	훼 ‖푓	(푢) 	− 푢‖ + (1	 − 훼 )‖푦 	− 푢‖	
            ≤ 훼 푘‖푧 − 	푢‖ + (1	 −	훼 )‖푧 	− 푢‖ + 훼 ‖푓	(푢) 	− 푢‖.	
Hence, 
             ‖푧 	− 푢‖ ≤

	
‖푓	(푢) 	− 푢‖,	

and {푧 } is bounded, {푦 }, {푆푦 }, {퐴푧 }	and {푓	(푧 )}	are also bounded. 
  ‖푧 	− 푢‖ 	= ‖훼 푓	(푧 ) 	+ (1	 − 훼 )푆푦 	− 	푢‖  
   ≤ 훼 ‖푓	(푧 ) 	− 푢‖ + (1	 − 훼 )‖푦 − 푢‖ 	
  ≤ 훼 푓	(푧 )– 푢 	 + 1	–	훼 푧 	– 푢 	+ 휆 (휆 	− 2훼) 퐴푧 	–퐴푢  

  ≤ 훼 푓	(푧 )– 푢 	 + 1	–	훼 푧 	– 푢 	 
  + 1	–	훼 푎(푏	 − 	2훼) 퐴푧 	–퐴푢 . 
Therefore, we have 
  − 1	–	훼 푎(푏	 − 	2훼) 퐴푧 	–퐴푢 ≤ 	훼 푓	(푧 )– 푢 	 + ‖푧 	− 푢‖ .	
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Since 훼 → 0	(푛 → ∞), and {푓	(푧 )}, {푧 } are bounded, we obtain 
   퐴푧 	–퐴푢 → 0						(푛 → ∞).	
From (5) we have 
  ‖푦 	 − 	푢‖ = ‖푃 (푧 	− 휆 퐴푧 ) −	푃 (푢 −	휆 퐴푢)‖ 	
                      ≤ 〈푧 	− 휆 퐴푧 − (푢 −	휆 퐴푢), 푦 	− 	푢〉 
                      = 	 	 푧 	– 휆 퐴푧 − (푢 −	휆 퐴푢) � + ‖푦 	− 푢‖ 	
                     	�−	‖(푧 	− 휆 퐴푧 ) − (푢 −	휆 퐴푢) −	(푦 	− 푢)‖ }	
                      ≤ {‖푧 − 푢‖ � 	+ ‖푦 − 푢‖ − ‖푧 	− 푦 ‖  
                    +�2휆 〈푧 	− 	푦 	, 퐴푧 	− 퐴푢〉 − 휆 ‖퐴푧 	− 	퐴푢‖ 	.	
So, we obtain 
   ‖푦 	 − 	푢‖ ≤ ‖푧 − 푢‖ − ‖푧 	− 푦 ‖  
                     +2휆 〈푧 	− 	푦 	, 퐴푧 	− 퐴푢〉 − 휆 ‖퐴푧 	− 	퐴푢‖ 		.	
So we have 
  ‖푧 	− 푢‖ ≤ 훼 ‖푓	(푧 ) 	− 푢‖ +(1	 − 훼 )‖푆푦 	− 	푢‖ 	
        ≤ 훼 ‖푓	(푧 ) 	− 푢‖ + (1	 − 훼 )‖푦 − 푢‖ 	
        ≤ 훼 푓	(푧 )–푢 	 + 1	–	훼 푧 	– 푢 − 1	–	훼 ‖푧 	− 푦 ‖  
       +2(1	 − 훼 )휆 〈푧 	− 	푦 	, 퐴푧 	− 퐴푢〉 − (1	 − 훼 )휆 ‖퐴푧 	− 	퐴푢‖ . 
Hence, 
  (1	–	훼 )‖푧 	− 푦 ‖ ≤ 훼 ‖푓	(푧 ) 	− 푢‖ − 훼 ‖푧 	− 푢‖  

        +2(1	 − 훼 )휆 〈푧 	− 	푦 	, 퐴푧 	− 퐴푢〉 − 휆 ‖퐴푧 	− 	퐴푢‖ . 
Since 훼 → 0, ‖퐴푧 	− 	퐴푢‖ → 0, we obtain	‖푧 	− 푦 ‖ → 0	(푛 → ∞). By the 
proof of  Proposition (5.2.7), we have 푦 	⇀ 푞 and 푞	 ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴),	so 
푧 	⇀ 푞 
  푧 	− 푞 	= 훼 푓	(푧 ) 	+ (1	 − 훼 )푆푦 	− 	푞  
          = 〈훼 푓	(푧 ) − 푞 + 1	 − 훼 푆푦 	– 	푞 , 푧 	− 푞〉 
          = 훼 〈푓	(푧 ) − 푞, 푧 	− 푞〉 + 1	 − 훼 〈푆푦 	– 	푞, 푧 	− 푞〉 
          ≤ 1	 − 훼 푧 	− 푞 + 훼 〈푓	(푧 ) − 푞, 푧 	− 푞〉. 
Hence 
    푧 	− 푞 ≤ 〈푓	(푧 ) − 푞, 푧 	− 푞〉 
                      = 〈푓	(푧 ) − 푓(푞), 푧 	− 푞〉 + 〈푓	(푞) − 푞, 푧 	− 푞〉 
                      ≤ 푘 푧 	− 푞 + 〈푓	(푞) − 푞, 푧 	− 푞〉 . 
This implies that 
      푧 	− 푞 ≤ 〈푧 − 푞, 푓	(푞) 	− 푞〉	. 
But 푧 ⇀ 푞, it follows that 푧 	→ 푞. Now we show that 푞 solves the 
variational inequality 
 
   	〈(퐼	 − 	푓	)푞, 푞	 − 	푝	〉 ≤ 0,					푓 ∈ 	훱 	, 푝	 ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴).	
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Because 
       푧 − 푓	(푧 ) = − (푧 	− 	푆푦 ),	
for any 푝	 ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴) and notice	푝	 = 	푃 (푝	 −	휆 퐴푝),	we infer that 
   〈푧 	– 푓	(푧 ), 푧 	– 	푝〉   = − 〈푧 	– 푆푃 푧 	– 휆 퐴푧	 , 푧 	– 푞〉      

= −
1 − 훼
훼

〈푧 	– 푆푃 (푧 	– 휆 퐴푧 ) − 푝	– 푆푃 (푝	– 휆 퐴푝) , 푧	 	– 	푝〉 

          ≤ 0	, 
	

since  퐼	 − 푆푃 (퐼	 − 	휆 퐴) is strong monotone. Let 푖 → ∞, we have 
              〈푞	 − 푓	(푞), 푞	 − 푝〉 ≤ 0.																																																																																(9)	
Assume that there exists another subsequence {푧 } of {푧 } such that 푧 → 푞∗	,
so	푞∗ ∈ 	퐹(푆) 	∩ 푉퐼(퐶, 퐴), and from〈푧 − 	푓(푧 ), 푧 	− 푝〉 ≤ 0, let 푗	 → ∞  We   
have 
         〈푞∗ 	− 푓(푞∗), 푞∗ 	− 	푝〉 ≤ 0		, 푝 ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴).																					(10)	
Setting   푝	 = 	 푞∗		in (9), we have 
         〈푞	 − 푓	(푞), 푞	 − 푞∗〉 ≤ 0,																																																																							(11)	
and setting 		푝	 = 	푞 in (10), we obtain 
                   〈푞∗ 	− 푓(푞∗), 푞∗ 	− 	푞〉 ≤ 	0.																																																																	(12)	
Inequality (11) and (12) yield 
                    ‖푞	 − 푞∗‖ ≤ 〈푓	(푞) − 푓(푞∗), 푞	 − 	푞∗〉 ≤ 푘‖푞	 − 푞∗‖ 		,	
 
which implies that	푞	 = 	 푞∗,since 푘	 ∈ 	 (0, 1).Thus, 푧 → 푞	as	푛 → ∞			and 
푞	 ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴) is unique. And		푞	 is the unique solution of variational 
inequality 
                     〈푞	 − 	푓	(푞), 푞	 − 푝〉 ≤ 0, 푝 ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴).	
 
This completes the proof.    □ 
In this section we prove two theorems in a Hilbert space by using Proposition 
(5.2.7) and Theorem (5.2.8). 
   A mapping 푇 ∶ 퐶	 → 퐶 is called strictly pseudocontractive if there exists 푘 
with 0	 ≤ 푘	 < 	1  such that 
          ‖푇	푥	 − 푇푦‖ ≤ ‖푥	 − 푦	‖ + 푘	‖(퐼	 − 푇	)푥	 − (퐼	 − 푇	)푦‖ 	
for every	푥, 푦	 ∈ 	퐶.	If 푘	 = 	0,then 푇	푖s nonexpansive. Put 퐴	 = 	퐼	 − 	푇	,	where 
푇 ∶ 퐶	 → 퐶 is a strictly pseudocontractive mapping with 푘.	Then 퐴 is ( ) -
inverse-strongly monotone. Actually, 
we have, for all 푥, 푦	 ∈ 	퐶, 
       ‖(퐼	 − 	퐴)푥	 − (퐼	 − 	퐴)푦‖ 	≤ ‖푥	 − 	푦	‖ + 푘‖퐴푥	 − 	퐴푦‖ .	
On the other hand, since 	퐻	 is a real Hilbert space, we have 
   	 퐼	– 	퐴 푥	– 퐼	– 	퐴 푦  
                                = ‖푥	 − 	푦	‖ + ‖퐴푥	 − 	퐴푦‖ − 2〈푥 − 푦, 퐴푥	 − 퐴푦〉.	
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Hence we have 

〈푥	 − 푦, 퐴푥	 − 퐴푦〉 ≥
1 − 푘
2

‖퐴푥	 − 	퐴푦‖ .	
Using Proposition (5.2.7) and Theorem (5.2.8), we first prove a strong 
convergence theorem for finding a common fixed point of a nonexpansive 
mapping and a strictly pseudocontractive mapping. 
Theorem (5.2.10)[68]: Let 퐶 be a closed convex subset of a real Hilbert space 
퐻. Let 푓	 be a contractive mapping of 퐶	 into itself with coefficient 푘	 ∈ 	 (0, 1), 
푆 be a nonexpansive mapping of 퐶 into itself and let 푇 be a strictly 
pseudocontractive mapping of 	퐶	into itself with α, such that 퐹(푆) 	∩ 퐹(푇	) 	≠ ∅ 
Suppose 푥 = 	푥	 ∈ 	퐶 and {푥 } is given by 
         푥 	= 	훼 푓	(푥 ) + (1	 − 훼 )푆((1	 −	휆 )푥 	+ 휆 푇	푥 )	
for every	푛	 = 	1, 2, . . .,	where	{훼 } is a sequence in	[0, 1) and {휆 } is a 
sequence in	[0, 1 − 훼).	If {훼 }  and {휆 } are chosen so that 휆 	∈ 	 [푎, 푏] for 
some 푎, 푏	with 0 < 푎	 < 푏 < 1 − 	훼, 

lim
→

훼 = 	0, 훼 = ∞, |훼	 − 훼 | < ∞, |휆 − 휆	 | 	< ∞,	

 
then {푥 } converges strongly to 푞 ∈ 	퐹(푆) 	∩ 	퐹(푇	), such that 
         〈푓	(푞) − 푞, 푞	 − 푝〉 ≤ 0,								푝 ∈ 	퐹(푆) 	∩ 	퐹(푇	).	
Proof.  Put 퐴	 = 	퐼	 − 	푇	. Then 퐴 is  -inverse-strongly monotone. We have 
퐹(푇	) 	= 	푉퐼(퐶, 퐴) and 푃 (푥 	− 휆	 퐴푥 ) 	= 	 (1 − 휆	 )푥 	+ 휆	 푇	푥 . So by 
Proposition (5.2.7) and Theorem (5.2.8), we obtain the desired result.        □ 
Theorem (5.2.11)[68]: Let 퐻 be a real Hilbert space	퐻. Let 푓 be a contractive 
mapping of 	퐻 into itself with coefficient 푘	 ∈ 	 (0, 1), 푆 be a nonexpansive 
mapping of  퐻 into itself and let 퐴	be a 훼-inverse strongly monotone mapping 
of  퐻 into itself such that 퐹(푆) 	∩ 	퐴 0	 ≠ 	∅. Suppose 푥 	= 	푥	 ∈ 	퐶 and 
{푥 }	is given by 
            푥 	= 	훼 푓	(푥 ) +	(1 − 	훼 )푆(푥 	− 휆	 퐴푥 ),	
for every 푛	 = 	1, 2, . . ., where	{훼 } is a sequence in [0, 1) and	{휆	 } is a 
sequence in [0, 2훼). If {훼 } and {휆 } are chosen so that 휆 	∈ 	 [푎, 푏]	for some 
푎, 푏 with 0 < 푎	 < 푏 < 2훼, 

lim
→

훼 = 	0, 훼 = ∞, |훼	 − 훼 | < ∞, |휆 − 휆	 | 	< ∞,	

then {푥 }	 converges strongly to 푞	 ∈ 	퐹(푆) 	∩ 	퐴 0, such that 
   〈푓	(푞) − 푞, 푞	 − 푝〉,				푝 ∈ 	퐹(푆) 	∩ 	퐴 0.	
Proof. We have 퐴 0	 = 	푉퐼(퐶, 퐴). So putting 푃 	= 	퐼	, by Proposition (5.2.7) 
and Theorem (5.2.8), we obtain the desired result.  
Corollary(5.2.12)[232]: Let 퐶 be a closed convex subset of a real Hilbert space 
퐻. Let 푓 ∶ 퐶	 → 퐶 be a contraction with coefficient (1 − 휖)	(0	 < 	휖	 < 1), 퐴	an 

-inverse-strongly monotone sequence of mapping of 퐶 to 퐻	and let 푆 be a 
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nonexpansive sequence of mapping of 퐶 into itself such that 퐹(푆) ∩ 푉퐼(퐶, 퐴) 	≠
∅. Suppose {(푢 ) } be sequences generated by (푢 ) 	∈ 	퐶,	 
(푢 ) 	 = 	 푓	((푢 ) ) + (1	 −	 )푆푃 ((푢 ) 	− 휆 퐴(푢 ) ), 

for every 푛	 = 	0, 1, 2, . . ., where {휆 } 	⊂ 	 [푎, 푏] and	  is a sequence in 

(0, 1). 퐼푓	 	and		{휆 }			are chosen so that 휆 	∈ 	 [푎, 푏] for some 	푎, 푏 
with 0 < 푎	 < 푏 < 	 (휆 + 휖), 

lim
→

휆 + 휖
2

= 0	,
휆 + 휖
2

= ∞	, |
휆 + 휖
2

	 −
휆 + 휖
2

|	

< ∞	, |휆	 − 휆 | 	< ∞,	

then {(푢 ) } converges strongly to 푞	 ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴), which is the unique 
solution in the 퐹(푆)	∩ 푉퐼(퐶, 퐴) to the following variational inequality 
            	〈(퐼	 − 	푓	)푞, 휖〉 ≤ 0,						(푞 − 휖) ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴).	
 
Proof. Put (푢 ) 	 = 	푃 ((푢 ) 	− 휆 퐴(푢 ) ) for every 푛	 = 	0, 1, 2, . . ..	Let  
푢 	∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴). We have 
 
   (푢 ) 	–	푢 = 푃 (푢 ) 	– 휆 퐴(푢 ) −	푃 (푢 −	휆 퐴푢 )  
                                ≤	‖((푢 ) 	− 	휆 퐴(푢 ) ) − (푢 	− 휆 퐴푢 )‖	
                                ≤ ‖(푢 ) −	푢 ‖	
 
for every	푛	 = 	1, 2, 3, . . ..	Then we have 
   ‖(푢 ) − 푢 ‖ = 푓	((푢 ) ) + 1	– 푆(푢 ) 	 	− 푢  

      ≤ ‖푓	((푢 ) ) − 푢 ‖ + 1	– ‖푆(푢 ) 	 	− 	푢 ‖ 

      ≤ ‖푓	((푢 ) ) − 푓	(푢 )‖ 

     + ‖푓	(푢 ) −	푢 ‖ +	(1 −	 )‖(푢 ) 	 	− 푢 ‖	

      ≤ (1 − 휖) (푢 ) 	– 푢 + 1	– (푢 ) 	–	푢  

      + ‖푓	(푢 ) − 푢 ‖ 

      = 1 − 	휖 (푢 ) 	–	푢 + 푓	(푢 )– 푢  

       ≤ max ‖(푢 ) 	− 푢 ‖, ‖푓	(푢 ) 	− 푢 ‖ 	.	
By induction, 
        ‖(푢 ) 	−	푢 ‖ ≤ 	max 	‖(푢 ) 	−	푢 ‖, ‖푓	(푢 ) −	푢 ‖ ,			푛 ≥ 	0.	
Therefore, {(푢 ) }	is bounded,{(푢 ) }, 
{푆(푢 ) }, {퐴(푢 ) }, {푓	((푢 ) )} are also bounded. Since 퐼	 − 	휆 퐴 is 
nonexpansive of sequence and 푢 	= 	푃 (푢 	− 휆 퐴푢 ), we also have 
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  ‖(푢 )	 − (푢 ) ‖ 
    ≤ 	‖((푢 )	 	− 휆 퐴(푢 ) ) − ((푢 ) −	휆 퐴	(푢 ) )‖	
   	≤ (푢 )	 	– 휆 퐴(푢 )	 − (푢 ) 	–	휆 퐴(푢 )  
    +	|휆 −	휆 |‖퐴(푢 ) ‖	
    ≤ ‖(푢 )	 	− (푢 ) 	‖ +	|휆 − 휆 |‖퐴(푢 ) ‖	
 
for every 푛	 = 	1, 2, 3, . . ..	So we obtain 

‖(푢 ) 	− (푢 ) 	‖ =
휆 + 휖
2

푓	((푢 ) ) +	 1	–
휆 + 휖
2

푆(푢 ) 	
�	

      �−	 푓	((푢 ) ) 	− 	(1 − )푆(푢 ) 	    
  
=

	– (푓	((푢 ) ) − 	푆(푢 ) 	) +

									 1	– (푆(푢 ) 	 	− 	푆(푢 ) 	)� 

       �+ 	 푓	((푢 ) ) − 	푓	((푢 ) )  

      ≤ 	–	 ‖푓	((푢 ) ) − 푆(푢 ) ‖ 

      +(1	 − )‖(푢 ) 	 	− 	 (푢 ) ‖	

      +	 (1 − 휖)‖(푢 ) 	− 	(푢 ) ‖	
 
      ≤	 1	– (푢 ) 	– (푢 ) 	+ 	 |휆 	− 휆 |‖퐴(푢 ) ‖  

      +	 	– 푓	((푢 ) )– 푆(푢 )  

      +	 (1 − 휖)‖(푢 ) 	− 	(푢 ) ‖	

      ≤ 1	 − 휖 (푢 ) 	–	(푢 )  

    +퐿|휆 	− 휆 | 	+ 푀| 	− |	

For every	푛	 = 	0, 1, 2, . . ., where	퐿 = sup 푓	((푢 ) )– 	푆(푢 ) :	푛	 ∈ 	푁 ,
푀	 = 	sup{‖퐴(푢 ) ‖:	푛	 ∈ 	푁}, since  ∑ 휆 	– 휆 	< 	∞, ∑ | 	−

| 	< 	∞ in view of Lemma 2, we have lim → ‖(푢 )	 − (푢 ) ‖ =
0. then we also obtain   ‖(푢 ) 	− 	 (푢 ) ‖ → 0 
  
 ‖(푢 ) − 푆(푢 ) ‖ ≤ ‖(푢 ) − 	푆(푢 ) ‖ 
  +‖푆(푢 ) 	− 푆(푢 ) ‖ 
   ≤ ‖푓	((푢 ) ) − 푆(푢 ) ‖ + ‖(푢 ) 	− (푢 ) ‖,	
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we have ‖(푢 ) − 푆(푢 ) ‖ → 0. For	푢 	∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴), 
  (푢 ) 	–	푢 	 

  = 푓	((푢 ) ) + 1	– 푆(푢 ) 	– 푢  

 ≤ ‖푓	((푢 ) ) − 푢 ‖ + (1	 − )‖(푢 ) 	− 	푢 ‖ 	

 ≤ ‖푓	((푢 ) ) − 푢 ‖  

 	+ 1	– [‖(푢 ) − 푢 ‖ 	+	휆 (휆 	− (휆 + 휖))‖퐴(푢 ) 	− 퐴푢 ‖ ]	

 ≤ ‖푓	((푢 ) ) − 푢 ‖ + (푢 ) 	– 푢  

 + 1	 − 푎 푏	 − (휆 + 휖) ‖퐴(푢 ) 	− 퐴푢 ‖ .	
So, we obtain 
 −(1	 − )푎(푏	 − (휆 + 휖))‖퐴(푢 ) 	− 	퐴푢 ‖ 	

 ≤ ‖푓	((푢 ) ) −	푢 ‖ 	 
 + (푢 ) 	– 푢 + ‖(푢 ) 	− 푢 ‖ (‖(푢 ) 	− 푢 ‖ − ‖(푢 ) 	− 푢 ‖)	

 ≤ ‖푓	((푢 ) ) −	푢 ‖  

 + (푢 ) 	– 푢 + ‖(푢 ) 	− 푢 ‖ ‖(푢 ) 	− (푢 ) ‖.	
Since → 0 and ‖(푢 ) − (푢 ) ‖ → 0,			then ‖퐴(푢 ) 	− 	퐴푢 ‖ →
0, 푛 → ∞. Further, from (1), we obtain 
 
  ‖(푢 ) 	 −	푢 ‖ = ‖푃 ((푢 ) 	− 휆 퐴(푢 ) ) −	푃 (푢 −	휆 퐴푢 )‖ 	
          ≤ 〈(푢 ) 	–휆 퐴(푢 ) − (푢 −	휆 퐴푢 ), (푢 ) 	–	푢 〉 
         = 	 	 (푢 ) 	–휆 퐴(푢 ) − (푢 −	휆 퐴푢 ) �  
       	+‖(푢 ) 	− 푢 ‖    
        �−	‖((푢 ) 	− 휆 퐴(푢 ) ) − (푢 −	휆 퐴푢 ) −	((푢 ) 	− 푢 )‖ }	
        ≤ {‖(푢 ) − 푢 ‖ � 	+ ‖(푢 ) − 푢 ‖ − ‖(푢 ) 	− (푢 ) ‖  
        +�2휆 〈(푢 ) 	−	(푢 ) , 퐴(푢 ) 	− 퐴푢 〉 − 휆 ‖퐴(푢 ) 	− 	퐴푢 ‖ 	.	
So, we obtain 
  (푢 ) 	– 푢 ≤ ‖(푢 ) − 푢 ‖ − (푢 ) 	– (푢 )  
        +2휆 〈(푢 ) 	−	(푢 ) , 퐴(푢 ) 	− 퐴푢 〉 −			 휆 ‖퐴(푢 ) 	− 	퐴푢 ‖ . 
And hence 
  ‖(푢 ) − 푢 ‖ ≤ ‖푓	((푢 ) ) −	푢 ‖  

  + 1	– 푆(푢 ) 	– 푢  

  ≤ ‖푓	((푢 ) ) − 푢 ‖ + (1	 − )‖(푢 ) 	− 	푢 ‖  

  ≤ ‖푓	((푢 ) ) −	푢 ‖ + ‖(푢 ) − 푢 ‖  

  −(1	 − ) (푢 ) 	– (푢 )  
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  +2 1	– 휆 〈(푢 ) 	–	(푢 ) , 퐴(푢 ) 	– 퐴푢 〉 

  − 1	 − 휆 ‖퐴(푢 ) 	− 	퐴푢 ‖ . 
 
Since → 0, ‖(푢 ) − (푢 ) ‖ → 0 and ‖퐴(푢 ) 	− 퐴푢 ‖ → 0, we 

obtain 	 (푢 ) 	– (푢 ) → 0.	Choose a subsequence 
{(푢 ) }	of	{(푢 ) }  such that  

lim
→

	sup 〈푓	(푞) − 푞, 푆(푢 ) 	− 푞〉 = 	 lim
→

〈푓	(푞) − 	푞, 푆(푢 ) − 	푞〉	
As {(푢 ) } is bounded, we have that a subsequence {(푢 ) }of 
(푢 ) 	converges weakly to (푢 )	. We may assume without loss of 

generality that  (푢 ) 		⇀ (푢 ).  
Since	‖S(푢 ) 	− 	(푢 ) ‖ → 0, we obtain 푆(푢 ) 		⇀ (푢 ). Then 
we can obtain 푢 	∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴). In fact, let us first show that  푢 	∈
	푉퐼(퐶, 퐴).	Let 

                푇	푢 =
퐴푢 	+	푁 푢 ,									푢 	 ∈ 	퐶			,
								∅,																																	푢 ∉ 	퐶			,

�	

Then 푇  is maximal monotone sequence. Let (푢 , 푢 ) 	∈ 	퐺(푇	). Since  
푢 	− 	퐴푢 	∈ 	푁 푢  and (푢 ) ∈ 	퐶 we have  
  
               〈푢 	− (푢 ) 	, 푢 	− 퐴푢 〉 	≥ 0.	
On the other hand, from (푢 ) 	= 	푃 ((푢 ) −	휆 퐴(푢 ) ),	we have 
〈푢 	− 	(푢 ) , (푢 ) 	− 	((푢 ) −	휆 퐴(푢 ) )〉 ≥ 0 and hence 
 
               〈푢 	− (푢 ) , ( )	 	 ( ) + 퐴(푢 ) 〉 ≥ 0			.	
Therefore, we have 
  〈푢 	− (푢 ) , 푢 〉 ≥ 〈푢 	− (푢 ) , 퐴푢 〉	
                      ≥ 〈푢 	– (푢 ) , 퐴푢 〉	 

                      − 푢 	− (푢 ) 	,
( ) 	 ( )

+ 퐴(푢 ) 	

                      = 푢 	−	 (푢 ) 	, 퐴푢 	− 퐴(푢 ) −
( ) ( )

	 	

                      = 	〈푢 	– (푢 ) , 퐴푢 	– 	퐴(푢 ) 〉 
                     +	〈푢 	–	(푢 ) , 퐴(푢 ) − 	퐴(푢 ) 〉 

                      − 푢 −	(푢 ) ,
( )	 	 ( )	

	

                     ≥ 〈푢 	–	(푢 ) 	, 퐴(푢 ) − 	퐴(푢 ) 〉 

                    −	 푢 	−	(푢 )	 	,
( ) 	 ( )

			. 

Hence we have 〈푢 	− 푢 , 푢 〉 ≥ 	0 as 푖 → ∞. since 푇 is maximal 
monotone sequence, we have 푢 	∈ 	푇 0 and hence 푢 ∈ 	푉퐼(퐶, 퐴) 
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  (푢 ) 	– 	푆(푢 ) 	≤ (푢 ) 	– 푆(푢 ) + 푆(푢 ) 	– 푆(푢 ) 	     
                                    ≤ 	‖(푢 ) 	− 	푆(푢 ) ‖ + ‖(푢 ) −	(푢 ) ‖,	
 
we have ‖(푢 ) 	− 	푆(푢 ) ‖ → 0. In view of Lemma 1, we obtain 푢 	∈
	퐹(푆) 

lim
→

sup	〈푓	(푞) − 푞, 푆(푢 )	 	– 푞〉 = 	 lim
→

〈푓	(푞) − 	푞, 푆(푢 ) − 	푞〉 
                     = 〈푓	(푞) − 푞, 푢 	− 	푞〉 ≤ 0,	
 
 ‖(푢 ) − 푞	‖ = 푓	((푢 ) ) +	 1 −	 푆(푢 ) 	– 	푞  

      =	 푓	((푢 ) )– 푞  

      +2 (1 − )〈푓	((푢 ) ) − 	푞, 푆(푢 ) − 	푞〉	

      +(1	 − ) ‖푆(푢 ) − 푞‖ 	

      ≤ 1	 − 2 	+	 	‖(푢 ) − 푞‖  

     	+ ‖푓	((푢 ) ) − 	푞‖ 	

     +2 1	 − 〈푓	((푢 ) )– 푓	(푞)	, 푆(푢 ) 	– 푞〉 

     +2 (1	 − )〈푓	(푞) − 	푞, 푆(푢 ) 	− 	푞〉	

     ≤ 1	 − 2 	+	 + 	2(1 − 휖) 1	– (푢 ) 	– 푞	  

     + ‖푓	((푢 ) ) − 	푞‖ 	

     +2 (1	 − )〈푓	(푞) − 푞, 푆(푢 ) 	− 푞〉	

     = 	 (1 −	 )‖(푢 ) 	− 푞‖ 	+	 훽̅ 	,	
where 
      

        	= 	 2	 − 	− 2(1 − 휖) 1 −	 ,	
 
훽̅

=

휆 + 휖
2 ‖푓	((푢 ) ) − 	푞‖ 	+ 	2(1 −	 휆 + 휖

2 )〈푓	(푞) − 푞, 푆(푢 ) 	− 푞〉

2 −	 휆 + 휖
2 − 	2(1 − 휖)(1 − 휆 + 휖

2 )
		.	

It is easily seen that 	→ 0, ∑ 	= ∞, and  limsup → 훽̅ ≤ 0, 

by Lemma 2 we obtain (푢 ) → 푞. This completes the proof. □ 
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Corollary(5.2.13)[232]: Let 퐶 be a closed convex subset of a real Hilbert space 
퐻. Let 푓 ∶ 퐶	 → 퐶 be a contraction with coefficient (1 − 휖)(0	 < 휖 < 1), 퐴	an 

-inverse-strongly monotone sequence of mapping of 퐶 to 퐻 and let 푆 be  a 
nonexpansive sequence of mapping of 퐶 into itself such that 퐹(푆) ∩ 푉퐼(퐶, 퐴) 	≠
∅. Suppose {(푢 ) },  be sequences generated by 
    (푢 ) 	= 푓	((푢 ) ) 

                 +	(1 −	 )푆푃 ((푢 ) 	− 휆 퐴(푢 ) ),				 ∈ 	 (0, 1),	

where {휆 } 	⊂ 	 [푎, 푏]	and  is a sequence in [0, 1). If  { } and 
{휆 }	are chosen so that		λ 	∈ [푎, 푏] for some 푎, 푏	with	0 < 푎	 < 푏 < (휆 + 휖), 
when lim → 	 	= 	0	, (푢 )  converges strongly to 푞, and such that 
the variational inequality 
            	〈(퐼	 − 	푓	)푞, 휖〉 ≤ 0,				푓 ∈ 	훱 	,			(푞 − 휖) 	∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴).	
Proof.  Put  (푢 ) 	= 	푃 ((푢 ) 	− 	휆 퐴(푢 ) ) for every 푛	 =
	0, 1, 2, . . ..	Let  푢 	∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴). We have 
 
 ‖(푢 ) − 푢 ‖ = ‖푃 ((푢 ) 	− 		휆 퐴(푢 ) ) − 푃 (푢 −	 		휆 퐴푢 )‖	
                              ≤	‖((푢 ) − 		휆 퐴(푢 ) ) − (푢 	− 		휆 퐴푢 )‖ 
                              ≤ ‖(푢 ) 	− 푢 ‖	
 
for every 푛	 = 	1, 2, 3, . . ..	Then we have 
  ‖(푢 ) 	− 푢 ‖ = 푓	((푢 ) ) 	+ (1	 − )푆(푢 ) 	−	푢  

            ≤ ‖푓	((푢 ) )	− 푢 ‖ + (1	 − )‖푆(푢 ) − 푢 ‖	

            ≤ 푓	((푢 ) )–푓	(푢 )  

            +	 ‖푓	(푢 )	− 푢 ‖ + (1	 − )‖(푢 ) 	− 푢 ‖	

           ≤ (1 − 휖)‖(푢 ) −	푢 ‖ + 1	–	 (푢 ) 	– 푢  

           + ‖푓	(푢 ) 	− 푢 ‖.	
Hence, 
             ‖(푢 ) 	− 푢 ‖ ≤ ‖푓	(푢 ) 	− 푢 ‖	
 
and {(푢 ) } is bounded, {(푢 ) }, {푆(푢 ) }, {퐴(푢 ) }	and 
{푓	((푢 ) )}	are also bounded. 
  (푢 ) 	– 푢 	 

  = 푓	((푢 ) ) 	+ (1	 − )푆(푢 ) 	− 	푢  

  ≤ ‖푓	((푢 ) ) 	− 푢 ‖ + (1	 − )‖(푢 ) − 푢 ‖ 	

  ≤ 푓	((푢 ) )– 푢 	  
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+ 1	–	 (푢 ) 	– 푢 	+ 휆 휆 	− (휆 + 휖) 퐴(푢 ) 	– 퐴푢  

≤ 푓	((푢 ) )– 푢 	 + 1	–	 (푢 ) 	– 푢 	 

+ 1	–	 푎(푏	 −	 (휆 + 휖)) 퐴(푢 ) 	– 퐴푢 . 
Therefore, we have 
  − 1	–	 푎 푏	–	(휆 + 휖) 퐴(푢 ) 	– 퐴푢  

  ≤ 	 푓	((푢 ) )– 푢 	 + ‖(푢 ) 	− 푢 ‖ .	

Since → 0	(푛 → ∞), and {푓	((푢 ) )}, {(푢 ) } are bounded, we 
obtain  
                퐴(푢 ) 	– 퐴푢 → 0						(푛 → ∞).	
From (1) we have 
  ‖(푢 ) 	 −	푢 ‖ = ‖푃 ((푢 ) 	− 휆 퐴(푢 ) ) −	푃 (푢 −	휆 퐴푢 )‖ 	
   ≤ 〈(푢 ) 	− 휆 퐴(푢 ) − (푢 −	휆 퐴푢 ), (푢 ) 	−	푢 〉 
=
	 	 (푢 ) 	– 휆 퐴(푢 ) − (푢 −	휆 퐴푢 ) � + ‖(푢 ) 	− 푢 ‖ 			�−	‖((푢 ) 	−
휆 퐴(푢 ) ) − (푢 −	휆 퐴푢 ) −	((푢 ) 	− 푢 )‖ }     
			≤ {‖(푢 ) − 푢 ‖ � 	+ ‖(푢 ) − 푢 ‖ − ‖(푢 ) 	− (푢 ) ‖     
			+�2휆 〈(푢 ) 	−	(푢 ) 	, 퐴(푢 ) 	− 퐴푢 〉 − 휆 ‖퐴(푢 ) 	− 	퐴푢 ‖ 	. 
 
So, we obtain 
   ‖(푢 ) 	 −	푢 ‖ ≤ ‖(푢 ) − 푢 ‖ − ‖(푢 ) 	− (푢 ) ‖  
                                    +2휆 〈(푢 ) 	–	(푢 ) 	, 퐴(푢 ) 	–퐴푢 〉 
                                    −휆 ‖퐴(푢 ) 	− 	퐴푢 ‖ 		. 
 
So we have 
 
  (푢 ) 	– 푢 ≤ 푓	((푢 ) )– 푢  

+(1	 − )‖푆(푢 ) 	− 푢 ‖  

       ≤ ‖푓	((푢 ) ) 	− 푢 ‖ + (1	 − )‖(푢 ) − 푢 ‖ 	

       ≤ 푓	((푢 ) )– 푢 	 + 1	–	 (푢 ) 	– 푢  

       − 1	–	 ‖(푢 ) 	− (푢 ) ‖  

      +2 1	– 휆 〈(푢 ) 	–	(푢 ) 	, 퐴(푢 ) 	– 퐴푢 〉 

      − 1	 − 휆 ‖퐴(푢 ) 	− 	퐴푢 ‖ . 
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Hence, 
  1	–	 (푢 ) 	– (푢 )  

       ≤ ‖푓	((푢 ) ) 	− 푢 ‖ − ‖(푢 ) 	− 푢 ‖  

       +2 1	– 휆 〈(푢 ) 	–	(푢 ) 	, 퐴(푢 ) 	– 퐴푢 〉 

       −휆 ‖퐴(푢 ) 	− 	퐴푢 ‖ . 
 
Since → 0, ‖퐴(푢 ) 	− 	퐴푢 ‖ → 0, we obtain	‖(푢 ) 	−
(푢 ) ‖ → 0	(푛 → ∞). By the proof of  Proposition 3.1we have (푢 ) 	⇀
푞 and 푞	 ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴),	so (푢 ) 	⇀ 푞 

 (푢 ) 	− 푞 	= 푓	((푢 ) ) 	+ (1	 − )푆(푢 ) 	− 	푞  

         = 〈 푓	 (푢 ) − 푞 + 1	 − 푆(푢 ) 	– 	푞 , (푢 ) − 푞〉 

         = 〈푓	 (푢 ) − 푞, (푢 ) 	– 푞〉 

         	+ 1	 − 〈푆(푢 ) 	– 	푞, (푢 ) 	− 푞〉 

         	≤ 1	– (푢 ) 	– 푞  

        		+ 〈푓	((푢 ) ) − 푞, (푢 ) 	− 푞〉. 

Hence 
   (푢 ) 	– 푞 ≤ 〈푓	 (푢 ) − 푞, (푢 ) 	– 푞〉 
                               = 〈푓	 (푢 ) − 푓(푞), (푢 ) 	– 푞〉 

                               +〈푓	(푞) − 푞, (푢 ) 	– 푞〉 ≤ (1 − 휖) (푢 ) 	– 푞  
                               +〈푓	(푞) − 푞, (푢 ) 	− 푞〉 . 
This implies that 
          (푢 ) 	− 푞 ≤ 〈(푢 ) − 푞, 푓	(푞) 	− 푞〉	. 
But (푢 ) ⇀ 푞, it follows that (푢 ) 	→ 푞. Now we show that 푞 solves 
the variational inequality 
         	〈(퐼	 − 	푓	)푞, 휖	〉 ≤ 0,					푓 ∈ 	훱 	, (푞 − 휖) 	∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴).	
Because 

          (푢 ) − 푓	((푢 ) ) = − ((푢 ) 	− 	푆(푢 ) ),	

For any (푞 − 휖) ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴) and notice	(푞 − 휖) 	= 	푃 ((푞 − 휖) 	−
	휆 퐴(푞 − 휖)),	we infer that 
   〈(푢 ) 	– 푓	((푢 ) ), (푢 ) 	–	(푞 − 휖)〉 



١٤٣ 
 

                  

= − 〈(푢 ) 	– 푆푃 (푢 ) 	– 휆 퐴(푢 ) , (푢 ) 	– 푞〉  

 

 																	= − 〈(푢 ) 	– 푆푃 (푢 ) 	– 휆 퐴(푢 ) −

		 (푞 − 휖)	– 푆푃 (푞 − 휖)	– 휆 퐴(푞 − 휖) , (푢 )	 	–	(푞 − 휖)〉 ≤ 0	, 
Since  퐼	 − 푆푃 (퐼	 − 	휆 퐴) is strong monotone sequence. Let 푖 → ∞, we have 
                   〈푞	 − 푓	(푞), 휖〉 ≤ 0.																												
Assume that there exists another subsequence {(푢 ) } of {(푢 ) } such 
that (푢 ) → 푞∗	, so	푞∗ ∈ 	퐹(푆) 	∩ 푉퐼(퐶, 퐴),and from〈(푢 ) −
	푓((푢 ) ), (푢 ) 	− (푞 − 휖)〉 ≤ 0, let 푗	 → ∞  We   have 

〈푞∗ 	− 푓(푞∗), 푞∗ 	− 	(푞 − 휖)〉 ≤ 0		, (푞 − 휖) ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴).						
Setting   (푞 − 휖) 	= 	 푞∗		in (5), we have 
                 〈푞	 − 푓	(푞), 푞	 − 푞∗〉 ≤ 0,																															
 
and setting 		휖	 = 	0 in (6), we obtain 
                〈푞∗ 	− 푓(푞∗), 푞∗ 	− 	푞〉 ≤ 	0.												
Inequality (7) and (8) yield 
        ‖푞	 − 푞∗‖ ≤ 〈푓	(푞) − 푓(푞∗), 푞	 − 	푞∗〉 ≤ (1 − 휖)‖푞	 − 푞∗‖ 		,	
Which implies that	푞	 = 	 푞∗	,since 0 < 휖 < 1Thus, (푢 ) → 푞	as	푛 →
∞			and 푞	 ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴) is unique. And		푞	 is the unique solution of 
variational inequality 
                     〈푞	 − 	푓	(푞), 휖〉 ≤ 0, (푞 − 휖) ∈ 	퐹(푆) 	∩ 	푉퐼(퐶, 퐴).	
This completes the proof.    □ 
Corollary(5.2.14)[232]: Let 퐶 be a closed convex subset of a real Hilbert space 
퐻. Let 푓	 be a contractive mapping of 퐶	 into itself with coefficient 0 < 휖 < 1	, 푆 
be a nonexpansive sequence of mapping of 퐶 into itself and let 푇  be a strictly 
pseudocontractive and projection mapping of 	퐶	into itself with , such that 
퐹(푆 )	∩ 퐹(푇 	) 	≠ ∅ .Suppose (푢 ) = 	푢 	∈ 	퐶 and {(푢 ) } is given by 
     (푢 ) 	= 	 푓	((푢 ) ) + (1	 − )푆 ((1	 − 	휆 )(푢 ) 	+ 휆 푇 	(푢 ) ) 

For every	푛	 = 	1, 2, . . .,	where	  is a sequence in	[0, 1) and {휆 } is a 

sequence in	[0,� � ( ) .	If   and {휆 } are chosen so that 휆 	∈ 	 [푎, 푏] 
for some 푎, 푏	with 0 < 2푎	 < 2푏 < 2 − (휆 + 휖), 

lim
→

휆 + 휖
2 = 0	,

휆 + 휖
2 = ∞	, |

휆 + 휖
2 	 −

휆 + 휖
2 |	 < ∞	, |휆 − 휆	 | 		< ∞,	

then {(푢 ) } converges strongly to 푞 ∈ 	퐹(푆 ) 	∩ 	퐹(푇 	), such that 
  
  〈푓	(푞) − 푞, 휖〉 ≤ 0,								(푞 − 휖) ∈ 	퐹(푆 ) 	∩ 	퐹(푇 	).	
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Proof.  Put 퐴 = 	퐼	 − 	푇 	. Then 퐴  is ( ) -inverse-strongly monotone 
sequence. We have퐹(푇 	) 	= 	푉퐼(퐶, 퐴 )and	푃 ((푢 ) 	− 휆	 퐴 (푢 ) ) 	=
	(1 − 휆	 )(푢 ) 	+ 휆	 푇 	(푢 ) .So by Proposition 3.1and Theorem 3.1, we 
obtain the desired result.        □ 
Corollary(5.2.15)[232]: Let 퐻 be a real Hilbert space	퐻. Let 푓 be a contractive 
mapping of 	퐻 into itself with coefficient 0 < 휖 < 1	, 	푆  be a nonexpansive 
sequence mapping of  퐻 into itself and let 퐴 	be a contraction and projection of 
a -inverse strongly monotone sequence of mappings of  퐻 into itself such 
that 퐹(푆 )	∩ 	(퐴 ) 0	 ≠ 	∅. Suppose (푢 ) 	= 	 (푢 ) 	∈ 	퐶 and {(푢 ) }	is 
given by 
   (푢 ) 	= 	 푓	((푢 ) ) +	(1 −	 )푆 ((푢 ) 	− 휆	 퐴 (푢 ) ) 

for every 푛	 = 	1, 2, . . ., where	  is a sequence in [0, 1) and	{휆	 } is a 

sequence in [0, 휆 + 휖). If { } and {휆 } are chosen so that 휆 	∈ 	 [푎, 푏]	for 
some 푎, 푏 with 0 < 푎	 < 푏 < (휆 + 휖), 

lim
→

휆 + 휖
2 = 	0,

휆 + 휖
2 = ∞, |

휆 + 휖
2 	 −

휆 + 휖
2 | < ∞, |휆 − 휆	 | 	< ∞,	

then {(푢 ) }	 converges strongly to 푞	 ∈ 	퐹(푆 ) 	∩ 	(퐴 ) 0, such that 
    〈푓	(푞) − 푞, 휖〉,				(푞 − 휖) ∈ 	퐹(푆 ) 	∩ 	(퐴 ) 0.	
Proof. We have (퐴 ) 0	 = 	푉퐼(퐶, 퐴 ). so putting 푃 	= 	퐼	, by Proposition 3.1 
and Theorem 3.1, we obtain the desired result.    □ 
 
Sec (5.3): A General Iterative Method with Strongly Positive 
Operators for General Variational Inequalities 
 
    Let 퐻 be a real Hilbert space with norm ‖	. ‖and inner product〈. , . 〉, 
respectively. Let 퐶	be a nonempty closed convex subset of 퐻 and let 푃  be the 
metric projection of 퐻	onto 퐶. Let 푆 ∶ 	퐶	 → 	퐶	be a self-mapping on 퐶. Recall 
that 푆 is called Lipschitz continuous if there exists a constant 퐿	 > 	0 such that 
‖푆푥	 − 	푆푦	‖ ≤ 퐿‖푥 − 	푦‖ for all 푥; 	푦	 ∈ 	퐶. Whenever 0	 < 	퐿	 < 	1, 푆 is a 
contraction on 퐶; whenever 퐿 = 	1, 푆 is a nonexpansive mapping on	퐶. We 
denote by Fix(푆) the set of fixed points of  푆. Π 	 denotes the set of all 
contractions on 퐶. Note that each  푓	 ∈ Π 	has a unique fixed point in 퐶.  
   Recall that a mapping 푇 ∶ 	퐶	 → 	퐻 is called monotone if 〈푇푥	 − 	푇푦, 푥	 −
	푦〉 ≥ 	0 for all 푥; 	푦	 ∈ 	퐶. A mapping 푇 ∶ 	퐶	 → 	퐻 is called 훼-inverse-strongly 
monotone if there exists a positive real number 훼 > 0 such that 
            〈푇푥	 − 	푇푦, 푥	 − 	푦〉 ≥ 훼‖푇푥	 − 	푇푦‖ ,					∀푥, 푦	 ∈ 	C.	
In this case, it is clear that 푇 is monotone and Lipschitz continuous. Moreover, 
every mapping 	g ∶ 	퐶	 → 	퐻, which is both 훿-strongly monotone  (i. e. , 〈g(푥) −
	g(푦), 푥 − 	푦〉 ≥ 	훿‖푥 − 	푦‖ , ∀푥, 푦	 ∈ 	C, for some 훿	 > 	0)	and 휎-Lipschitz 
continuous (푖. 푒. , ‖g(푥) − 	g(푦)‖ 	≤ 휎‖푥 − 	푦‖, ∀푥, 푦	 ∈ 	C, for	some	휎	 >
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	0), 푖푠	훿/휎 -inverse-strongly monotone. Recall that the classical variational 
inequality problem is to find an  푥∗ ∈ 	퐶 such that 
                            〈푇푥∗, 푥 −		푥∗〉 ≥ 0, ∀푥	 ∈ 	퐶		; 																																														(13푎) 
 
see [56,57]. The set of solutions of the variational inequality (13a) is denoted 
푏푦	푉퐼(퐶, 푇	).	
  In this section  , we consider the following problem of finding 푥∗ ∈ 	퐶 such 
that g(푥∗) ∈ 	퐶  and 
                            〈푇푥∗, 푥 − 		g(푥∗)〉 ≥ 0, ∀푥	 ∈ 	퐶	,																																										(13푏)	
which is called a general variational inequality problem. The set of solutions of 
the general variational inequality (13b) is denoted by 퐺푉퐼(퐶, g	, 푇	). The general 
variational inequality problem (13b) was introduced and studied by Noor [58] 
and Isac [59]. Subsequently, Zeng and others (see, e.g., [60]) further considered 
iterative algorithms for finding its solutions and established some convergence 
results for iterative algorithms. Whenever g(푥) = 	푥 for all 푥	 ∈ 	퐶, the general 
variational inequality problem (13b) reduces to the variational inequality 
problem (13a). 
   The iterative methods for nonexpansive mappings have been extensively 
studied and recently applied to solving convex minimization problems and other 
problems; see, e.g., [61,73] and the references therein. A typical problem is to 
minimize a quadratic function over the fixed point set of a nonexpansive 
mapping on 퐻: 

min
∈ ( )

1
2
〈퐴푥, 푥〉 − (푥 − 	푏), 

where Fix(푇)	 denotes the fixed point set of a nonexpansive mapping 푇 on 퐻, 
and 푏 is a given point in 퐻. Assume that 퐴	is strongly positive; that is, there is a 
constant 훾̅ 	> 	0 with the property 
                                  〈퐴푥, 푥〉 ≥ 훾̅		‖푥	‖ ,						∀푥	 ∈ 퐻.	
We assume that Fix(푇) ≠ ∅. It is well known that Fix(푇)is closed and convex 
(cf. [74]). In [65], it was proved that the sequence {푥 }	defined by the iterative 
method below, with the initial guess	푥 	 ∈ 	퐻 chosen arbitrarily, 
                          푥 = (퐼	 − 훼 퐴)푇푥 + 훼 푏,					∀푛	 ≥ 0,	
converges strongly to the unique solution of the minimization problem as above 
provided the sequence {훼 } satisfies certain suitable conditions. 
   Furthermore, Moudafi [62] introduced the viscosity approximation method for 
nonexpansive mappings (see [63] for further development in both Hilbert and 
Banach spaces). Let 푓	be a contraction on 퐻. Starting with an arbitrary initial 
푥 	∈ 	퐻, define a sequence {푥 }	 recursively by 
                        푥 = (1 −		휎 )푇푥 + 휎 푓	(푥 ),				∀푛	 ≥ 	0,	
where {휎 }	  is a sequence in (0,1)	. It was proved in [62,63] that under certain 
appropriate conditions imposed in {휎 }	  , the sequence {푥 }	  strongly 
converges to the unique solution 푥	in		Fix(푇) to the variational inequality 

〈(퐼	 − 	푓)	푥, 푥	 − 푥〉 ≥ 0,				∀푥	 ∈ 	Fix(푇). 
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 Very recently, Marino and   Xu [66] combined the iterative method in [65] with 
the viscosity approximation method in [62,63] and introduced the following 
general iterative method: 
                 푥 = (퐼	 − 훼 퐴)푇푥 + 훼 훾	푓	(푥 ),					∀푛	 ≥ 	0,																											(14)	
They proved that if the sequence {훼 } of parameters satisfies appropriate 
conditions, then the sequence {푥 } generated by (14) converges strongly to the 
unique solution of the variational inequality 
                            〈(퐴	 − 	훾푓)	푥, 푥	 − 푥〉 ≥ 0,				∀푥	 ∈ 	Fix(푇).	
which is the optimality condition for the minimization problem 

min
∈ ( )

1
2
〈퐴푥, 푥〉 − ℎ(푥) ,	

where ℎ is a potential function for 훾푓	(i. e. , ℎ(푥) = 		훾푓(푥)	for	all	푥	 ∈ 퐻).      
On the other hand, let C be a closed convex subset of a real Hilbert space 퐻. 
Let	푓 ∶ 	퐶	 → 	퐶	be a contraction with coefficient 푘	 ∈ (0, 1)	, let	푇 ∶ 	퐶	 → 	퐻	 be 
an 훼-inverse-strongly monotone mapping and let 푆	be a nonexpansive self-
mapping on C	such that Fix(푆) 	∩ 푉퐼(퐶, 푇) ≠ ∅	. Chen, Zhang and Fan [68] 
introduced the explicit and implicit iterative schemes by the viscosity 
approximation method. 
 (I) Explicit iterative scheme [68]: define a sequence {푥 }	  by 
      푥	 ∈ 	퐶,			푥 = (퐼	 − 훼 )푆푃 	(푥 	− 휆 푇푥 )+훼 푓	(푥 )	,				∀푛	 ≥ 	0, 
 
where {휆 } is a sequence in(0,2훼)and {훼 } is a sequence in (0, 1). 
 (II) Implicit iterative scheme [68]: define a sequence {푧 } by 
 
         푧 = (퐼	 − 훼 )푆푃 (푧 	− 휆 푇푧 )+훼 푓	(푧 )	,					∀푛	 ≥ 	0,	
where  {휆 } is a sequence in (0, 2훼) and {훼 } is a sequence in [0, 2). Under 
some very mild conditions, they proved that the sequences {푥 } and{푧 }  
generated by algorithms (I) and (II), respectively, converge strongly to 푞 ∈
	Fix(푆) ∩ 푉퐼(퐶, 푇)	, which is the unique solution in the Fix(푆) ∩ 푉퐼(퐶, 푇) to the 
following variational inequality 
         〈(퐼	 − 	푓)	푞, 푞	 − 푝〉 	≤ 0,							∀푝 ∈ Fix(푆) ∩ 푉퐼(퐶, 푇).	
  In this section , motivated and inspired by the iterative algorithms (14), (I) and 
(II), we suggest and analyze a more general iterative method with strongly 
positive operators for finding solutions of the general variational inequality 
problem (13b) in a real Hilbert space. The explicit and implicit iterative 
algorithms are proposed by virtue of the general iterative method with strongly 
positive operators. Let 푆 be a nonexpansive self-mapping of a nonempty closed 
convex subset 퐶 of a real Hilbert space 퐻, 푓 be a contraction on C	with 
coefficient 푘	 ∈ (0, 1) and 퐴, 퐵 ∶ 	퐻	 → 	퐻 be two strongly positive linear 
bounded operators with coefficients 훾̅ ∈ (0, 1) and 훽 > 	0, respectively. Let  
0	 < 		훾 < 	  . For an arbitrary initial 	푥 	 ∈ 	퐶, we define a sequence {푥 }	  via 
the explicit iterative scheme 
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푦 = 	푃 	[푥 − g(푥 ) +	푃 	(g(푥 ) 	− 휆 푇푥 )]			,																																												
푥 = 푃 (퐼 −	훼 퐴)푆푦 + 훼 푆푦 − 훽 퐵푆푦 	− 	훾푓(푥 ) , ∀푛	 ≥ 0

�	

	
where	{훼 } ∈ (0,1], {훽 } 	⊂ (0	,min{1, ‖퐵‖ }], {휆 } ⊂ (0,2훼), g: 퐶 → 퐻  is 
both 훿-strongly monotone and 휎 -Lipschitz continuous, and  푇	 − 	퐼 ∶ 	퐶	 → 퐻 is 
an inverse-strongly monotone mapping of 퐶 into 퐻. Furthermore, we also define 
a sequence {푧 } via the implicit iterative scheme 
  푧 = 	푃 {(퐼	 − 훼 퐴)푆푃 	[푧 	− 	g(푧 ) + 푃 (g(푧 ) −		휆 푇푧 )] 			+
		훼 [푆푃 	[푧 − 	g(푧 ) + 	푃 (g(푧 ) −	휆 푇푧 )]	
  −훽 (퐵푆푃 [	푧 	− g(푧 ) +	푃 (g(푧 	) − 휆 푇푧 )] − 	훾푓	(푧 ))]}.	
 
It is shown that under appropriate conditions the sequences {푥 } and {푧 } 
converge  strongly to a unique common element of the set of fixed points of the 
nonexpansive mapping 푆 and the set of solutions of the general variational 
inequality (13b) in a Hilbert space. The results presented in this section may be 
viewed as the improvement, extension and development of 
some earlier and recent results in the literature including, for instances, the 
corresponding results of  Marino and Xu [66], Iiduka and Takahashi [67], Chen, 
Zhang and Fan [68]. 
   Let 퐻 be a real Hilbert space with inner product 〈. , . 〉 and norm ‖	. ‖, and let	C 
be a closed convex subset of 퐻. We write 푥 ⇀ 	푥 to indicate that the sequence 
{푥 } converges weakly to 푥. The notation 푥 → 	푥 means that {푥 } converges 
strongly to 푥.	For every point 푥	 ∈ 	퐻, there exists a unique nearest point in C, 
denoted by 푃 푥, such that 
            ‖푥 − 푃 푥‖ ≤ ‖푥 − 푦‖		,					∀푥	 ∈ 퐶.	
푃  is called the metric projection of 퐻 to C. It is well known that 푃  satisfies 
          〈푥 − 푦, 푃 푥 − 푃 푦〉 	≥ ‖푃 푥 − 푃 푦‖ ,					∀푥, 푦	 ∈ 	퐻,																														(15)	
 
And   푃   is  characterized by the following properties: 
   〈푥 − 푃 푥	, 푃 푥 − 푦〉 	≥ 0		,		 
   ‖푥 − 푦‖ ≥ ‖푥 − 푃 푥‖ + ‖푦 − 푃 푥‖ , 
For  all 푥	 ∈ 	퐻, 푦	 ∈ 	퐶. In the  context of the variational inequality problem 
(13a), this implies 
           푥∗ ∈ 	푉퐼(퐶, 푇	) ⇔	푥∗ = 	푃 (푥∗ − 휆푇푥∗),									∀	휆 > 	0.																					(16푎)	
Further, in the context of  the general variational inequality problem (13b), this 
also implies 
          푥∗ ∈ 	GVI(퐶, g	, 푇	) ⇔ 	g(푥∗) = 	푃 (g(푥∗) − 휆푇푥∗),				∀	휆 > 	0.								(16푏) 
Proposition (5.3.1)[55]: Let C be a nonempty closed convex subset of a real 
Hilbert space 퐻. Let 푇 ∶ 	C	 → 	퐻	be a mapping such that 푇 − 	퐼 ∶ 	C	 → 	퐻 be 훼-
inverse-strongly monotone, and let	g ∶ 	C	 → 	퐻	be both 훿-strongly monotone 
and 휎-Lipschitz continuous. If 2√1 − 		2훿 + 휎 	< 	휆	 < 	2훼/(1 + 	2훼), then 
for each 푥, 푦	 ∈ 	퐶 
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 ‖푃 	[푥	 − g(푥) +	푃 (g(푥) − 		휆푇푥)] −		푃 	[푦 − 	g(푦) +	푃 (g(푦)	− 휆푇푦)]‖ 
                                            
                                                             ≤ 1− 휆 − 2√1 − 		2훿 + 휎 	 ‖푥 − 푦‖.	
Proof. Utilizing the 훿-strong monotonicity and 휎-Lipschitz continuity of 
g ∶ 	퐶	 → 	퐻, we have 
  ‖푥 − 	g(푥) 	− (푦	 − g(푥))‖ ≤ √1 − 		2훿 + 휎 	‖푥 − 푦‖	,			∀푥, 푦	 ∈ 	C.	
 
Since 2√1 − 		2훿 + 휎 < 휆	 < 	2훼/(1 + 	2훼), and 푇 − 	퐼 ∶ 	C	 → 	퐻 is 훼-
inverse-strongly monotone, so we obtain 휆 − 2훼(1 − 휆) < 	0 and 
  ‖(1 − 휆)(푥	 − 푦) − 휆[(푇 − 		퐼)푥	 − (푇 − 		퐼)푦]‖ 	
     = (1 − 휆) ‖푥 − 푦‖ 	− 2휆(1 − 휆)〈(푇 − 		퐼)푥 − (푇 − 		퐼)푦, 푥 − 푦〉 
     +휆 ‖(푇 − 		퐼)푥 − (푇 − 	퐼)푦‖  
     ≤ (1 − 휆) ‖푥 − 푦‖ + 휆 휆 − 2훼(1 − 휆) ‖(푇 − 		퐼)푥 − (푇 − 	퐼)푦‖  
     ≤ (1 − 휆) ‖푥 − 푦‖  , 
which implies that 
  (1 − 휆)(푥 − 푦) − 휆 (푇 − 		퐼)푥	– (푇 − 		퐼)푦 ≤ (1 − 휆)‖푥 − 푦‖,	       ∀푥, 푦	 ∈ 	C	. 
Therefore, we get for each 푥, 푦	 ∈ 	퐶. 
 

�‖푃 	[푥 − 	g(푥) +	푃 (	g(푥) − 휆푇푥)] − 	푃 [푦 − g(푦) +	푃 (g(푦) −	�푇푦)]‖ 
  ≤ ‖푥 − 	g(푥) + 푃 (	g(푥) − 휆푇푥) − [푦 − g(푦) +	푃 (g(푦) − 휆푇푦)]‖ 	
  ≤ 	2 푥 − 	g(푥) − 푦 − 	g(푦)  
  +‖(1 − 휆)(푥	 − 푦) − 휆[(푇 − 		퐼)푥	 − (푇 − 		퐼)푦]‖ 
   ≤ 2√1 − 		2훿 + 휎 	‖푥 − 푦‖ + (1 − 휆)‖푥 − 푦‖ 
   = 1 − 휆 − 2√1 − 		2훿 + 휎 	 ‖푥 − 푦‖. 
This completes the proof.    □ 
The following lemmas will be used for the proof of our main results in what 
follows. 
Lemma (5.3.2)[55]: (see [64,lemma 2.1].)Let {푆 } be a sequence of 
nonnegative numbers satisfying the condition 
          푆 ≤ (1 − 훼 )푆 + 훼 훽 		,						∀푛 ≥ 0, 
where {훼 }	, {훽 }  are sequences of real numbers such that 
 
  (i)						{훼 } 	⊂ [0,1]and		∑ 훼 = ∞		, or	equavalently	,∏ (1 − 훼 ) = 0; 
 (ii)		 		lim sup → 	훽 ≤ 0				 or 
 (ii)\ 		∑ 푎 훽 				is	convergent	.	 
 Then, lim → 푆 = 0. 
Lemma (5.3.3)[55]: (see Goebel and kirk [64].)   Demiclosedness Principle. 
Assume that 푇 is a nonexpansive self-mapping of a closed convex subset C	of a 
Hilbert space	퐻.	If 푇	has a fixed point, then 퐼 − 	푇 is demiclosed. That is, 
whenever {푥 }		 is a sequence in 퐶 weakly converging to some	푥	 ∈ 	퐶	and the 
sequence {(퐼 − 	푇)푥 } strongly converges to some 푦, it follows that (퐼 − 푇	)푥 =
	푦. Here 퐼 is the identity operator of   퐻. 
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Lemma (5.3.4)[55]: (see [66,lemma 2.3]) .Let 퐶 be a closed convex subset of a 
Hilbert space 퐻, 푓 ∶ 	퐶 → 	퐶 be a contraction with coefficient	푘	 ∈ (0,1),	and 퐵 
be a strongly positive linear bounded operator with coefficient	훽	 > 	0. Then, for 
0	 < 훾		 < 	  

〈푥 − 	푦, (퐵 − 		훾푓	)푥 − (퐵 − 	훾	푓	)푦〉 ≥ (훽 − 		훾푘	)‖푥 − 	푦‖ , ∀푥, 푦	 ∈ 	퐶.	
 
That is, 퐵 − 		훾푓 is strongly monotone with coefficient 훽 − 		훾푘. 
Lemma (5.3.5)[55]: (see [66,lemma 2.5]) Assume that 퐴 is a strongly positive 
linear bounded operator on a Hilbert space 퐻 with coefficient 훾	 	> 	0 and  
0	 < 	휌 ≤ ‖퐴‖ 	. Then	‖퐼 − 휌퐴‖ ≤ 1 − 휌	훾		. 
    Throughout the rest of this section, we always assume that 푓 ∶ 	C → 	C	is  a 
contraction on 퐶 with coefficient	푘	 ∈ (0,1),	and 퐴, 퐵 are two strong positive 
bounded linear operators with coefficients	훾	 		 ∈ (0,1),	and 훽	 > 	0, respectively. 
Let	0	 < 훾		 < 	  and   lim → 훽 = 휂 ∈ ( 	 , 	 ). Then, we may assume 

without loss of generality that there exists  c ∈ ( 	 , 	 ) such that 

                         	 	< 푐 ≤ 훽 < 	 			,			∀푛 ≥ 0.																																												(17) 
Let 푇 ∶ 	C	 → 	퐻 be a mapping such that 푇 − 	퐼:		C	 → 	퐻 is 훼-inverse-strongly 
monotone, and let g ∶ 	퐶	 → 	퐻 be both 훿-strongly monotone and 휎-Lipschitz 
continuous. Let 푆	be a nonexpansive self-mapping on 퐶. Let 2√1 − 		2훿 + 휎 <
휆 < 	, {훼 } 	⊂ (0,min{1, ‖퐴‖ }]		and			{훽 } 	⊂ (0,min{1, ‖퐵‖ }]. For 
each  푛	 ≥ 	0, consider a mapping 푉 ∶ 	퐶 → 	퐶 defined by 
  푉 푥 = 	푃 {	(퐼 − 훼 퐴)푆	푃 	[푥 − 	g(푥) +	 	푃 (	g(푥) − 휆 푇푥)]						 
       		+	훼 [푆	푃 [푥	 − g(푥) +	 	푃 (	g(푥) −	휆 푇푥)]	
         −훽 (퐵푆	푃 	[푥 − 	g(푥) + 	푃 	(g(푥) −	휆 푇푥)] − 훾푓(푥))]}	,																				(18)	
for all 푥	 ∈ 	퐶. Indeed, by Proposition (5.3.1) and Lemma (5.3.5) we have 
 
  ‖푉 푥 − 푉 푦‖ = 	‖	푃 {	(퐼 − 훼 퐴)푆	푃 	[푥 − 	g(푥) +	 	푃 (	g(푥) − 휆 푇푥)]�	
                      +	훼 [푆	푃 푥	– g(푥) + 	 	푃 (	g(푥) −	휆 푇푥)  
                      −훽 (퐵푆	푃 	[푥 − 	g(푥) + 	푃 	(g(푥) −	휆 푇푥)] − 훾푓푥)]} 
                     	−	푃 {	(퐼 − 훼 퐴)푆	푃 	[푦 − 	g(푦) +	 	푃 (	g(푦) − 휆 푇푦)] 
                      +	훼 [푆	푃 푦	– g(푦) +	 	푃 (	g(푦) −	휆 푇푦)  
                      −훽 (퐵푆	푃 	[푦 − 	g(푦) + 	푃 	(g(푦) −	휆 푇푦)] − 훾푓푦)]}	 
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≤ 	(퐼 − 훼 퐴)푆	푃 	[푥 − 	g(푥) +	 	푃 (	g(푥) − 휆 푇푥)]
+ 훼 푆	푃 [푥	– g(푥)
+	 	푃 (	g(푥) −	휆 푇푥)]−훽 퐵푆	푃 	[푥 − 	g(푥)
+ 	푃 	(g(푥) −	휆 푇푥)] − 훾푓(푥)
− {(퐼 − 훼 퐴)푆	푃 	[푦 − 	g(푦) +	 	푃 (	g(푦) − 휆 푇푦)]
+	훼 [푆	푃 [푦	 − g(푦) + 	 	푃 (	g(푦) −	휆 푇푦)]−훽 (퐵푆	푃 	[푦
− 	g(푦) + 	푃 	(g(푦) −	휆 푇푦)] − 훾푓(푦))]}
≤ ‖(퐼 − 훼 퐴)푆	푃 	[푥 − 	g(푥) +	 	푃 (	g(푥) − 휆 푇푥)] 				
− (퐼 − 훼 퐴)푆	푃 	[푦 − 	g(푦) +	 	푃 (	g(푦) − 휆 푇푦)]‖ 

    + 훼 푆	푃 푥	– g(푥) +	 	푃 (	g(푥) −	휆 푇푥) −훽 퐵푆	푃 	[푥 − 	g(푥) +
	푃 	(g(푥) −	휆 푇푥)] − 훾푓(푥) − 훼 푆	푃 [푦	 − g(푦) +	 	푃 (	g(푦) −
	휆 푇푦)]−훽 퐵푆	푃 	[푦 − 	g(푦) + 	푃 	(g(푦) −	휆 푇푦)] − 훾푓(푦)  

≤ ‖퐼 − 훼 퐴‖‖푆	푃 [푥	 − g(푥) +	 	푃 (	g(푥) − 	휆 푇푥)]
− 푆	푃 [푦	 − g(푦) +	 	푃 (	g(푦) −	휆 푇푦)]‖ 

   +훼 ‖(퐼 − 훽 퐵)(푆	푃 	[푥 − 	g(푥) +	 	푃 (	g(푥) − 휆 푇푥)] 				− 푆	푃 	[푦 −
	g(푦) +	 	푃 (	g(푦) − 휆 푇푦)] + 훽 훾(푓(푥) − 푓(푦))‖ 
       ≤ (1 − 훼 훾̅)[1 − (휆 − 2√1 − 		2훿 + 휎 )]‖푥 − 푦‖ 
+훼 [(1 − 훽 퐵) 1 − 휆 − 2 1 − 		2훿 + 휎 ‖푥 − 푦‖ + 훽 훾푘‖푥 − 푦‖] 

    = [1 − 훼 (훾̅ − 1 + 훽 (훽 − 훾푘))]‖푥 − 푦‖ 
     = (1 − 훼 휏 )‖푥 − 푦‖ , 
where  휏 ≔ 훾̅ − 1 + 훽 (훽 − 훾훼)Since  푐 ∈ 	 , 	  .we have 
휏 ≔ 훾̅ − 1 + 푐(훽 − 훾훼) ∈ (0,1)	and 
 

휏 = 훾̅ − 1 + 훽 (훽 − 훾푘) ≥ 훾̅ − 1 + 푐(훽 − 훾푘) = 휏	. 
Hence we get 
                     ‖푉 푥 − 푉 푦‖ ≤ (1 − 훼 휏)‖푥 − 푦‖	.																																																(19)	
This shows that 푉  is a contraction. Therefore, by the Banach contraction 
principle, 푉  has a unique fixed point 푧 ∈ 	퐶 such that 

푧 = 	 	푃 	(퐼 − 훼 퐴)푆	푃 	[푧 − 	g(푧 ) +	 	푃 (	g(푧 ) − 휆 푇푧 )]
+	훼 푆	푃 [푧 	− g(푧 )
+	 	푃 (	g(푧 ) −	휆 푇푧 )]−훽 퐵푆	푃 	[푧 − 	g(푧 )
+ 	푃 	(g(푧 ) −	휆 푇푧 )] − 훾푓(푧 ) .	

Note that 푧  indeed depends on 푓 as well, but we will suppress this dependence 
of 푧  on 푓 for simplicity of notation throughout the rest of this section. We will 
also always use 훾 to mean a number in  0, 	.  
   In this section, we first prove a strong convergence result on the explicit 
iterative algorithm for the general variational inequality problem (13b). 
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Theorem (5.3.6)[55]: Let	퐶 be a nonempty closed convex subset of a real 
Hilbert space 퐻. Let 푓 ∶ 퐶	 → 	퐶 be a contraction with coefficient 푘	 ∈
(0, 1)	, 푙푒푡	푇 ∶ 	퐶	 → 	퐻 be a mapping such that 푇 − 퐼 ∶ 	퐶	 → 	퐻 is  훼-inverse-
strongly monotone, and let g ∶ 	퐶	 → 	퐻 be both 훿-strongly monotone and 휎-
Lipschitz continuous. Let 푆 be a nonexpansive self-mapping on 퐶	such that 
Fix(푆) 	∩ 	GVI(퐶, g, 푇) 	≠ ∅. Let	퐴, 퐵 be two strong positive bounded linear 
operators with coefficients 훾̅ ∈ (0,1) and 훽 > 	0, respectively. Let 0	 < 	훾	 <
	 		. Assume that {푥 } and {푦 } are sequences in 퐶 generated by 푥 	∈ 	퐶 and 

		
푦 = 	 	푃 	[푥 − 	g(푥 ) + 	 	푃 (g(푥 ) −	휆 푇푥 )],																																				
푥 = 	푃 {(퐼 − 훼 퐴)푆푦 + 훼 [푆푦 −훽 (퐵푆	푦 − 훾푓(푥 ))]},			∀푛 ≥ 0	

�	

 
where {훼 } ⊂ (0,1), {훽 } 	⊂ (0,min{1, ‖퐵‖ }] and		2√1 − 		2훿 + 휎 + 휉 ≤
휆 < 2훼/(1 + 2훼) for some 휉 > 	0. Suppose that there hold the conditions: 
  (i)	lim → 훼 = 0,∑ 훼 = ∞ 			푎푛푑		 ∑ |훼 − 훼 | < ∞	; 
  (ii) lim → 훽 = 휂 ∈ 	 , 	 			푎푛푑	 ∑ |훼 훽 − 훼 훽 | < ∞	;	 

 (iii)	∑ |휆푛+1 − 휆푛| < ∞	.∞
푛=0  

Then both {푥 }and {푦 } converge strongly to the unique element of Fix(푆) ∩
	GVI(퐶, g, 푇	).	
Proof. First, we may assume that 훼 < ‖퐴‖  due to lim → 훼 = 	0. By 
Lemma (5.3.5), we obtain ‖퐼 − 훼 퐴‖ ≤ 1 − 훼 훾̅  . Also, Since  lim → 훽 = 휂 ∈

	 , 	  ,we may assume that for some constant		푐 ∈ 1−훾	

훽−훾푘
,
2−훾	

훽−훾푘
  . 

 
         	 < 푐 ≤ 훽 < 	 					, ∀푛 ≥ 0	. 
Let 푝	 ∈ 	Fix(푆) 	∩ 	GVI(퐶, g	, 푇)	. Then 푝 = 	푆푝 and 푝 is a solution of the 
general variational inequality (13b). Hence utilizing (16b) we have   
 
          푃 =	푃 	[푝 − 	g(푝) +		푃 (g(푝) −	휆푛푇푝)], ∀푛	 ≥ 	0. 
Thus utilizing Proposition (5.3.1) we obtain 
 
‖푦 − 	푝‖ =	‖푃퐶	[푥 − g(푥 )+푃퐶(g(푥 )−	휆 푇푥 )] −	푃퐶	[푝 − 	g(푝)+푃퐶(g(푝)

− 휆 푇푝)]‖	
                           ≤ [1 − (휆 − 2√1 − 		2훿 + 휎 )]‖푥푛 − 푝‖ 
                        ≤ ‖푥푛 − 푝‖ 
 
for every 푛 = 	0, 1, 2, … ..			Observe that 

푉 푝 =	푃 {	(퐼 − 훼 퐴)푆	푃 	[푝 − 	g(푝) + 	 	푃 (	g(푝) − 휆 푇푝)]
+	훼 [푆	푃 [푝	 − g(푝) +	 	푃 (	g(푝) −	휆 푇푝)]
− 훽푛(퐵푆	푃 	[푝 − 	g(푝) + 	푃 	(g(푝) −	휆 푇푝)] − 훾푓(푝))]		)} 

                    = 푃 	(퐼 − 훼 퐴)푝 + 훼 푝 − 훽푛 퐵푝 − 훾푓(푝) . 
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Then from (19) we have 
‖푥 − 	푝‖ = ‖푉 푥 − 푉 	푝 +	푉 푝 − 푝	‖	

  ≤ ‖푉 푥 − 푉 	푝‖ + ‖푉 푝 − 푝‖	
  ≤ (1 − 훼 휏)‖푥 − 푝‖ 
  + 푃 {	(퐼 − 훼 퐴)푝 + 훼 	 푝 −	훽푛 퐵푝 − 훾푓(푝) }−푃 푝  
  ≤ (1 − 훼 휏)‖푥 − 푝‖ + (퐼 − 훼 퐴)푝 + 훼 푝 − 훽푛 퐵푝 − 훾푓(푝) − 푝  
  ≤ (1 − 훼 휏)‖푥 − 푝‖ + 훼 −퐴푝 + 푝 − 훽푛 퐵푝 − 훾푓(푝)  
  ≤ (1 − 훼 휏)‖푥 − 푝‖ + 훼 [‖퐴 − 퐼‖‖푝‖ + ‖퐵‖‖푝‖ + 훾‖푓(푝)‖], 
which hence implies that 
 

‖푥 − 	푝‖ ≤ max ‖푥 − 	푝‖,
‖퐴 − 퐼‖‖푝‖ + ‖퐵‖‖푝‖ + 훾‖푓(푝)‖	

휏 	, ∀푛 ≥ 0	. 

So, {푥푛} is bounded and we also obtain that 푦푛 		, 푆푦푛 		, {푇푥푛}		 and 푓(푥푛)  are 
bounded. Since each 푃 [푥 − g(푥)+푃 (g(푥)−휆 푇푥)]	is nonexpansive according 
to Proposition (5.3.1), we also have	
 
‖푦 −	푦 ‖ ≤ 	‖푃 	[푥 − g(푥 ) + 푃 g(푥 ) −	휆 푇푥 )] −
	푃 	[푥 − 	g(푥 ) + 푃 (g(푥 ) − 휆 푇푥 )]‖ 	

≤ ‖푃 	[푥푛+1 − g(푥푛+1) + 푃 (g(푥푛+1) −	휆푛+1푇푥푛+1)] −	푃 	[푥푛 − 	g(푥푛)
+ 푃 (g(푥푛) − 휆푛+1푇푥푛)]‖ 

+‖푃 	[푥푛 − g(푥푛) + 푃 (g(푥푛) −	휆푛+1푇푥푛)] −	푃 	[푥푛 − 	g(푥푛) + 푃 (g(푥푛) − 휆푛푇푥푛)]‖ 
 
     ≤ ‖푥푛+1 −	푥푛‖ + ‖푃 (g(푥푛) − 휆푛+1푇푥푛) − 푃 (g(푥푛) − 휆푛푇푥푛)‖ 
      ≤ ‖푥 −	푥 ‖ + |휆 −	휆 |‖푇푥 ‖ 
for every 푛 = 	0,1, 2,… .. Thus it follows that 
푃 	(퐼 − 훼 퐴)푆푦 + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푥푛)

− 푃 	(퐼 − 훼 퐴)푆푦 + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푥푛−1)  
 ≤ 	(퐼 − 훼 퐴)푆푦 + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푥푛) − 	(퐼 − 훼 퐴)푆푦 +
훼 푆푦 −훽 퐵푆푦 	− 훾푓(푥푛−1)  
 = ‖(퐼 − 훼 퐴)푆푦 − (퐼 − 훼 퐴)푆푦 + 훼 [(퐼−훽 퐵)푆푦 − (퐼−훽 퐵)푆푦 +
훽 훾(푓(푥 ) − 푓(푥 ))]‖ 
 ≤ ‖퐼 − 훼 퐴‖‖푆푦 − 푆푦 ‖ 
 +훼 [‖퐼−훽 퐵‖‖푆푦 − 푆푦 ‖ + 훽 훾‖푓(푥 ) − 푓(푥 )‖] 
 ≤ (1 − 훼 훾̅)‖푦 − 푦 ‖ + 훼 (1−훽 퐵)‖푦 − 푦 ‖ 
 +훼 훽 훾푘‖푥 − 푥 ‖ 
  ≤ [(1 − 훼 훾̅) + 훼 (1−훽 퐵)][‖푥 − 푥 ‖ + |휆푛 −	휆푛−1|‖푇푥푛−1‖]		 
 	+훼 훽 훾푘‖푥 − 푥 ‖ 
 = 1 − 훼 훾̅ − 1 + 훽 (훽 − 훾푘) ‖푥 − 푥 ‖ 
 +[(1 − 훼 (훾̅ − 1 + 훽 퐵))]|휆푛 −	휆푛−1|‖푇푥푛−1‖ 

≤ 1 − 훼 훾̅ − 1 + 훽 (훽 − 훾푘) (‖푥 − 푥 ‖ + |휆푛 −	휆푛−1|‖푇푥푛−1‖) 
  = (1 − 훼 휏 )(‖푥 − 푥 ‖ + |휆푛 −	휆푛−1|‖푇푥푛−1‖) 
  ≤ (1 − 훼 휏)‖푥 − 푥 ‖ + |휆푛 −	휆푛−1|‖푇푥푛−1‖.																																														(20) 
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Furthermore, note that 
 푃 	(퐼 − 훼 퐴)푆푦 + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푥푛−1) −
푃 	(퐼 − 훼 퐴)푆푦 + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푥푛−1)  
 ≤ 	(퐼 − 훼 퐴)푆푦 + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푥푛−1) − 	(퐼 −
훼 퐴)푆푦 + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푥푛−1)  
  = ‖(퐼 − 훼 (퐴 − 퐼))푆푦 − 훼 훽 퐵푆푦 + 훼 훽 훾푓(푥푛−1) − (퐼 − 훼 (퐴 −
퐼))푆푦 + 훼 훽 퐵푆푦 − 훼 훽 훾푓(푥푛−1)‖ 
 ≤ |훼 − 훼 |‖(퐴 − 퐼)푆푦 ‖ + |훼 훽 − 훼 훽 |‖퐵푆푦 ‖ 
 +|훼 훽 − 훼 훽 |	훾‖푓(푥푛−1)‖ 
 ≤ 푀|훼 − 훼 | + 푀|훼 훽 − 훼 훽 |		,																																																								(21) 
where	푀 is a positive constant such that 푀	 ≥ ‖(퐴 − 퐼)푆푦 ‖ + ‖퐵푆푦 ‖ +
	훾‖푓(푥푛)‖				for	every	푛 = 	0, 1, 2, … . . So	from	(20)푎푛푑		(21) we derive	
 
 ‖푥 −	푥 ‖ =	 푃퐶 	(퐼 − 훼푛퐴)푆푦푛 +훼푛 푆푦푛−훽푛 퐵푆푦푛 	− 훾푓(푥 ) −
푃퐶 	(퐼 − 훼푛퐴)푆푦푛−1 +훼푛 푆푦푛−1−훽푛 퐵푆푦푛−1 	− 훾푓(푥 )  
 + 푃 	(퐼 − 훼 퐴)푆푦 + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푥푛−1) −
푃 	(퐼 − 훼 퐴)푆푦 + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푥푛−1)  
 ≤ (1 − 훼 휏)‖푥 − 푥 ‖ + |휆푛 −	휆푛−1|‖푇푥푛−1‖ 
 +푀|훼 − 훼 | + 푀|훼 훽 − 훼 훽 |		 
 ≤ (1 − 훼 휏)‖푥 − 푥 ‖ + 퐿|휆푛 −	휆푛−1| 
 +푀|훼 − 훼 | + 푀|훼 훽 − 훼 훽 |		 
for every 푛 = 	0, 1, 2, … . ., where 퐿 is a positive constant such that  퐿	 ≥ ‖푇푥 ‖ 
for every 푛 = 	0, 1, 2, … ..Since  ∑ 훼 = ∞		, ∑ |휆푛+1 −	휆푛| <
∞		, ∑ |훼푛+1 −	훼푛| < ∞		,  and ∑ |훼푛+1훽 −	훼푛훽 | < ∞		,  in view of 
Lemma (5.3.2) we have lim → ‖푥푛+1 −	푥푛‖ = 0. Then we also obtain 
lim → 푦푛+1 −	푦푛 = 0	. 
  Since by Proposition (5.3.1) we have for each 푛	 ≥ 	0	
      

  ‖푦 − 	푝‖ ≤ 1 − 휆 − 2√1 − 		2훿 + 휎 ‖푥 − 푝‖, 
we deduce that for p	 ∈ 	Fix(S) 	∩ GVI(C, g, T)	,	
 ‖푥 − 	푝‖ = 푃 	(퐼 − 훼 퐴)푆푦 + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푥 ) − 푝  
                   ≤ (퐼 − 훼 퐴)푆푦 + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푥 ) − 푝  
                     = (퐼 − 훼 퐴)(푆푦 − 푝) + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푥 ) − 퐴푝  
                  = ‖(퐼 − 훼 퐴)(푆푦 − 푝)‖ + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푥 ) − 퐴푝  
                     +2훼 〈(퐼 − 훼 퐴)(푆푦 − 푝), 푆푦 −훽 퐵푆푦 	− 훾푓(푥 ) − 퐴푝〉 
                     ≤ (1 − 훼 훾̅) ‖푦 − 푝‖ + 훼 ‖(퐼 − 훽 퐵)푆푦 + 훽 훾푓(푥 ) − 퐴푝‖  
                     +2훼 (1 − 훼 훾̅)‖푦 − 푝‖‖(퐼 − 훽 퐵)푆푦 + 훽 훾푓(푥 ) − 퐴푝‖ 
                     ≤ ‖푦 − 푝‖ + 훼 ‖(퐼 − 훽 퐵)푆푦 + 훽 훾푓(푥 ) − 퐴푝‖  
                     +2훼 ‖푦 − 푝‖‖(퐼 − 훽 퐵)푆푦 + 훽 훾푓(푥 ) − 퐴푝‖ 
                  ≤ ‖푦 − 푝‖ + 훼 [(1 − 훽 퐵)‖푆푦 ‖ + 훽 훾‖푓(푥 )‖ + ‖퐴푝‖]  
                     +2훼 ‖푦 − 푝‖[(1 − 퐵훽 )‖푆푦 ‖ + 훽 훾‖푓(푥 )‖ + ‖퐴푝‖] 
                  ≤ ‖푦 − 푝‖ + 훼 [‖푆푦 ‖ + 훾‖푓(푥 )‖ + ‖퐴푝‖]                
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                     +2훼 ‖푦 − 푝‖[‖푆푦 ‖ + 훾‖푓(푥 )‖ + ‖퐴푝‖] 
                    ≤ 1 − 휆 − 2√1 − 		2훿 + 휎 ‖푥 − 푝‖	  

                 +훼푛2 푆푦푛 + 훾‖푓(푥푛)‖ + ‖퐴푝‖
2
 

                     +2훼 ‖푦 − 푝‖[‖푆푦 ‖ + 훾‖푓(푥 )‖ + ‖퐴푝‖]													                                   
               ≤ 1 − 휆 − 2√1 − 		2훿 + 휎 ‖푥푛 − 푝‖  
               +훼 [‖푆푦 ‖ + 훾‖푓(푥 )‖ + ‖퐴푝‖]  
 
                 +2훼 ‖푦 − 푝‖[‖푆푦 ‖ + 훾‖푓(푥 )‖ + ‖퐴푝‖]	.																																		(22) 
Thus we obtain 

휉‖푥 − 	푝‖ ≤ 휆 − 2 1 − 		2훿 + 휎 ‖푥 − 푝‖  
    ≤ ‖푥 − 푝‖ − ‖푥 − 푝‖ + 훼 [‖푆푦 ‖ + 훾‖푓(푥 )‖ + ‖퐴푝‖]  
    +2훼 ‖푦 − 푝‖[‖푆푦 ‖ + 훾‖푓(푥 )‖ + ‖퐴푝‖] 
   ≤ (‖푥 − 푝‖ − ‖푥 − 푝‖)‖푥 − 푥 ‖ 
   +훼 [‖푆푦 ‖ + 훾‖푓(푥 )‖ + ‖퐴푝‖]  
   +2훼 ‖푦 − 푝‖[‖푆푦 ‖ + 훾‖푓(푥 )‖ + ‖퐴푝‖]. 
Since	훼푛 → 	0 and ‖푥 − 푥 ‖→ 	0 as 푛	 → ∞, and since {푥 }, {푦 }		, {푆푦 } and  
{푓(푥 )} are bounded, so we know that ‖푥 − 푝‖ → 0 as 푛	 → ∞. Note that 
‖푦 − 푝‖ ≤ ‖푥 − 푝‖ for all	푛 ≥ 0.  Consequently, ‖푦 − 푝‖ → 0 as 푛	 → ∞. 
Moreover, there is no doubt that Fix(S) ∩ GVI(C, g, T	) = {푝}. This completes 
the proof.    □ 
푆 is a nonexpansive mapping, 푇 − 	퐼 is 훼-inverse-strongly monotone, g	is both 
훿-strongly monotone and 휎-Lipschitz continuous, 푓 ∈ Π  , and 퐴, 퐵	are two 
strongly positive bounded linear operators. Thus, in terms of (19), the Banach 
contraction principle guarantees that there exists a unique fixed point 
    푧 = 푃 {(퐼 − 훼푛퐴)푆푃 	 푧 � − 	g 푧 +	푃 g 푧 − 휆 푇푧  
        +훼푛[푆푃 푧 − 	g 푧 + 푃 (g 푧 − 휆 푇푧 ]	
        −훽 (퐵푆푃 푧 − g 푧 + 푃 g 푧 − 휆 푇푧 − 훾푓 푧 )]}, 
 
Where	{훼 } ⊂ (0,min{1, ‖퐴‖ }]	,	{훽 } ⊂ (0,min{1, ‖퐵‖ }] 
,	2√1 − 		2훿 + 휎 < 휆 < 2훼/(1 + 2훼) and 	 < 푐 ≤ 훽 < 	  . For 

simplicity we will write  푧 for 푧  provided no confusion occurs. Next we will 
prove the strong convergence of {푧 }. 
Remark (5.3.7)[55]:According to the definition of strongly positive 
operator,	퐴	is strongly positive, that is, there is a constant 훾	 		> 	0 with the 
property 
                   〈퐴푥, 푥	〉 ≥ 훾		‖푥‖ 					for	all	푥	 ∈ 퐻.	
 
Beyond question, we may assume without loss of generality that  훾	 		< 	1. 
Consequently, whenever 0	 < 	훾		 < 	 		 		 , 퐵 = 퐼		and		훽 = 1		,	 
Then   we have	
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               	 = 	 < 1 < 	 = 	  .  
 
Thus, we can pick 훽 = 1 for all 푛	 ≥ 0 and so, as an immediate consequence of 
Theorem (5.3.6) we obtain 
Corollary(5.3.8)[55]: Let 퐶 be a nonempty closed convex subset of a real 
Hilbert space 퐻. Let 푓 ∶ 	퐶	 → 	퐶 be a contraction with coefficient 푘	 ∈
(0, 1), let	푇 ∶ 	퐶	 → 	퐻 be a mapping such that 푇 − 퐼 ∶ 퐶	 → 	퐻	is 훼-inverse-
strongly monotone, and let g ∶ 	C	 → 	H be both 훿-strongly monotone and 휎-
Lipschitz continuous. Let 푆 be a nonexpansive self-mapping on	퐶 such that 
Fix(S) ∩ 	GVI(C, g, T) ≠ ∅. 
Let 퐴 be a strong positive bounded linear operator with coefficient   훾	 		> 0	. Let 
0	 < 	훾	 < 	 훾		 . Assume that {푥 }	and {푦 } are sequences in C generated by	푥 ∈
퐶 and 

		
푦 = 	 	푃 	[푥 − 	g(푥 ) + 	 	푃 (g(푥 ) −	휆 푇푥 )],																																				
푥 = 	푃 {(퐼 − 훼 퐴)푆푦 + 훼 훾푓(푥 )	},			∀푛 ≥ 0																															 	

�	

 
where  {훼 } ⊂ (0,1) and  2√1 − 		2훿 + 휎 + 휉 ≤ 휆푛 < 2훼/(1 + 2훼) for some 
휉 > 	0. Suppose that there hold the conditions: 
 (i)	lim → 훼 = 0,∑ 훼 = ∞ 			푎푛푑		 ∑ |훼 − 훼 | < ∞	; 
 (ii)	∑ |휆푛+1 − 휆푛| < ∞	.∞

푛=0  
Then both {푥 } and {푦 } converge strongly to the unique element of Fix(S) ∩
	GVI(C, g	, T)	.	 
Corollary (5.3.9)[55]: Let C be a nonempty closed convex subset of a real 
Hilbert space 퐻. Let 푓 ∶ 	퐶	 → 	퐶 be a contraction with coefficient k	 ∈
(0, 1), let	T ∶ 	C	 → 	H be a mapping such that T − 	I ∶ 	C	 → 	H is both 휇-strongly 
monotone and 휈-Lipschitz continuous, and let g:	C	 → H be both 훿-strongly 
monotone and 휎-Lipschitz continuous. Let 푆	be a nonexpansive self-mapping on 
C	such that Fix(S) ∩ 	GVI(C, g	, T) ≠ ∅. Let 퐴,퐵 be two strong positive bounded 
linear operators with coefficients 훾̅ 		 ∈ (0, 1) and 훽 > 	0, respectively. Let  
0	 < 	훾		 < 	 훽	 . Assume that {푥 }	and {푦 } are sequences in C generated by 
	푥 ∈ 퐶 and 

  		
푦 = 	 	푃 	[푥 − 	g(푥 ) +	 	푃 (g(푥 ) −	휆 푇푥 )],																																				
푥 = 	푃 {(퐼 − 훼 퐴)푆푦 + 훼 [푆푦 −훽 (퐵푆	푦 − 훾푓(푥 )]},			∀푛 ≥ 0	

�	

 
where {훼 } ⊂ (0,1),  {훽 } ⊂ (0,min{1, ‖퐵‖ }] and 	2√1 − 		2훿 + 휎 	+ 휉 ≤ 휆푛 <
2휇/휈2

1+2휇/휈2  for some 휉	 > 	0. Suppose that there hold the conditions: 
  (i)	lim → 훼 = 0,∑ 훼 = ∞ 			푎푛푑		 ∑ |훼 − 훼 | < ∞	; 
  (ii) lim → 훽 = 휂 ∈ 	 , 	 			푎푛푑	 ∑ |훼 훽 − 훼 훽 | < ∞	;	 

 (iii)	∑ |휆푛+1 − 휆푛| < ∞	.∞
푛=0  
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Then both {푥 } and {푦 } converge strongly to the unique element of Fix(S) ∩
	GVI(C, g	, T).	 
Proof. Note that 푇 − 	퐼 ∶ 퐶 → 	퐻 is 휈-Lipschitz continuous, that is, 
        ‖(푇 − 퐼)푥 − (푇 − 	퐼)푦‖ ≤ 휈‖푥 − 	푦‖,								∀푥, 푦	 ∈ 퐶	.	
 
Since 푇 − 	퐼 ∶ 퐶 → 	퐻 is also 휇-strongly monotone, we have 
〈(푇 − 퐼)푥 − (푇 − 	퐼)푦, 푥 − 푦〉 ≥ 휇‖푥 − 	푦‖ 	≥

휇
휈
‖(푇 − 퐼)푥 − (푇 − 	퐼)푦‖	 ,

∀푥, 푦 ∈ 퐶. 
This implies that 푇 − 	퐼 ∶ 퐶 → 	퐻 is 휇/휈 -inverse-strongly monotone. Hence, all 
conditions in Theorem (5.3.6) are satisfied. Therefore the conclusion follows 
immediately from Theorem (5.3.6).     □ 
Theorem (5.3.10)[55]: Let C be a nonempty closed convex subset of a real 
Hilbert space 퐻. Let 푓 ∶ 	퐶 → 	퐶	be a contraction with coefficient k	 ∈
(0, 1), let	T ∶ 	C	 → 	H be a mapping such that	T − 	I ∶ C → 	H is 훼-inverse-
strongly monotone, and let g ∶ 	C	 → 	H be both 훿-strongly monotone and 휎-
Lipschitz continuous. Let	푆 be a nonexpansive self-mapping on C such that 
Fix(S) ∩ 	GVI(C, g	, T) ≠ ∅. 
Let 퐴, 퐵 be two strong positive bounded linear operators with coefficients 
훾̅ 		 ∈ (0, 1) and 훽 > 	0,respectively. Let 0	 < 	훾		 < 	 	  .Assume that {푧 } is a 
sequence in C generated by 
  푧 = 	 	푃 {	(퐼 − 훼 퐴)푆	푃 	[푧 − 	g(푧 ) +	 	푃 (	g(푧 ) − 휆 푇푧 )] +
	훼 [푆	푃 [푧 	− g(푧 ) +	 	푃 (	g(푧 ) −	휆 푇푧 )]−훽 (퐵푆	푃 	[푧 − 	g(푧 ) +
	푃 	(g(푧 ) −	휆 푇푧 )] − 훾푓(푧 ))]}	
 
where {훼 } ⊂ [0,1)	, {훽 } ⊂ (0,min{1, ‖퐵‖ }]			and  2√1 − 		2훿 + 휎 + 휉 ≤
휆푛 < 2훼/(1+ 2훼)  for some		휉	 > 	0 . 
If lim → 훼 = 0,	 and  lim → 훽 = 휂 ∈ 	 , 	 			. Then {푧 } converges 
strongly to the unique element of  Fix(S) ∩ 	GVI(C, g	, T). 
Proof. First, we may assume that 훼 < ‖퐴‖  due tolim → 훼 = 0, By 
Lemma (5.3.5), we obtain ‖퐼 − 훼 퐴‖ ≤ 1 − 훼 훾̅		 . Also, since		lim → 훽 =

휂 ∈ 	 , 	 			, we may assume that for some constant  푐 ∈ 	 , 	 			. 
 
           	 < 푐 ≤ 훽 < 	 					,									∀푛 ≥ 0	. 
 
Put 푦 = 	 	푃 	[푧 − 	g(푧 ) +	 	푃 (	g(푧 ) − 휆 푇푧 )] for every  푛 = 0,1,2, …. Let 
푝 ∈ Fix(S) ∩ 	GVI(C, g	, T)	. Then utilizing Proposition (5.3.1) we obtain 
‖푦 − 	푝‖ =	‖푃퐶	[푧 − g(푧 )+푃퐶(g(푧 )−	휆 푇푧 )]−	푃퐶	[푝 − 	g(푝)+푃퐶(g(푝)

− 휆 푇푝)]‖	
                       ≤ [1 − (휆 − 2√1 − 		2훿 + 휎 )]‖푧푛 − 푝‖ 
                       ≤ ‖푧푛 − 푝‖ 
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for every 푛 = 0,1,2, …. Observe that 
 

푉 푝 = 	푃 {	(퐼 − 훼 퐴)푆	푃 	[푝 − 	g(푝) +	 	푃 (	g(푝) − 휆 푇푝)]
+ 	훼 [푆	푃 [푝	 − g(푝) +	 	푃 (	g(푝) −	휆 푇푝)]
− 훽푛(퐵푆	푃 	[푝 − 	g(푝) + 	푃 	(g(푝) − 	휆 푇푝)] − 훾푓(푝)]		)} 

                    = 푃 	(퐼 − 훼 퐴)푝 + 훼 푝 − 훽푛 퐵푝 − 훾푓(푝) . 
Then from (19) we have 
 ‖푧 − 	푝‖ = ‖푉푛푧푛−푉푛	푝 +	푉푛푝 − 푝	‖	
  ≤ ‖푉 푧 − 푉 	푝‖ + ‖푉 푝 − 푝‖	
  ≤ (1 − 훼 휏)‖푧 − 푝‖ 
  + 푃 	(퐼 − 훼 퐴)푝 + 훼 	 푝 −	훽푛 퐵푝 − 훾푓(푝) − 푃 푝  
  ≤ (1 − 훼 휏)‖푧 − 푝‖ + (퐼 − 훼 퐴)푝 + 훼 푝 − 훽푛 퐵푝 − 훾푓(푝) − 푝  
  ≤ (1 − 훼 휏)‖푧 − 푝‖ + 훼 −퐴푝 + 푝 − 훽푛 퐵푝 − 훾푓(푝)  
  ≤ (1 − 훼 휏)‖푧 − 푝‖ + 훼 [‖퐴 − 퐼‖‖푝‖ + ‖퐵‖‖푝‖ + 훾‖푓(푝)‖]. 
Hence, 
                    ‖푧 − 	푝‖ ≤ 	[‖퐴 − 퐼‖‖푝‖ + ‖퐵‖‖푝‖ + 훾‖푓(푝)‖	]. 
This implies that  {푧 } is bounded, and so are 푦푛 		 푆푦푛 , 푇(푧푛) 	and 푓(푧푛) . 
For 푝 ∈ Fix(S) ∩ 	GVI(C, g	, T). 
  ‖푧 − 	푝‖ = 푃 	(퐼 − 훼 퐴)푆푦 + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푧 ) − 푝  
                 ≤ (퐼 − 훼 퐴)푆푦 + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푧 ) − 푝  
                   = (퐼 − 훼 퐴)(푆푦 − 푝) + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푧 ) − 퐴푝  
                = ‖(퐼 − 훼 퐴)(푆푦 − 푝)‖ + 훼 푆푦 −훽 퐵푆푦 	− 훾푓(푧 ) − 퐴푝  
                   +2훼 〈(퐼 − 훼 퐴)(푆푦 − 푝), 푆푦 −훽 퐵푆푦 	− 훾푓(푧 ) − 퐴푝〉 
                   ≤ (1 − 훼 훾̅) ‖푦 − 푝‖ + 훼 ‖(퐼 − 훽 퐵)푆푦 +훽 훾푓(푧 ) − 퐴푝‖  
                   +2훼 (1 − 훼 훾̅)‖푦 − 푝‖‖(퐼 − 훽 퐵)푆푦 + 훽 훾푓(푧 ) − 퐴푝‖ 
                   ≤ ‖푦 − 푝‖ + 훼 ‖(퐼 − 훽 퐵)푆푦 + 훽 훾푓(푧 ) − 퐴푝‖  
                   +2훼 ‖푦 − 푝‖‖(퐼 − 훽 퐵)푆푦 + 훽 훾푓(푧 ) − 퐴푝‖ 
                ≤ ‖푦 − 푝‖ + 훼 [(1 − 훽 퐵)‖푆푦 ‖ + 훽 훾‖푓(푧 )‖ + ‖퐴푝‖]  
                   +2훼 ‖푦 − 푝‖[(1 − 훽 퐵)‖푆푦 ‖ + 훽 훾‖푓(푧 )‖ + ‖퐴푝‖] 
                ≤ ‖푦 − 푝‖ + 훼 [‖푆푦 ‖+ 훾‖푓(푧 )‖ + ‖퐴푝‖]                
                   +2훼 ‖푦 − 푝‖[‖푆푦 ‖ + 훾‖푓(푧 )‖ + ‖퐴푝‖] 
                   ≤ [ 1 − 휆 − 2√1 − 		2훿 + 휎 ‖푧 − 푝‖]  

                +훼푛2 푆푦푛 + 훾‖푓(푧푛)‖ + ‖퐴푝‖
2
 

                   +2훼 ‖푦 − 푝‖[‖푆푦 ‖ + 훾‖푓(푧 )‖ + ‖퐴푝‖]																								 
                   ≤ 1 − 휆 − 2√1 − 		2훿 + 휎 ‖푧 − 푝‖  
                +훼푛2 푆푦푛 + 훾‖푓(푧푛)‖ + ‖퐴푝‖

2 
                   +2훼 ‖푦 − 푝‖[‖푆푦 ‖ + 훾‖푓(푧 )‖ + ‖퐴푝‖]	.																																																						(23) 
So, we obtain 
 휉‖푧 − 	푝‖ 	 ≤ 휆 − 2√1 − 		2훿 + 휎 ‖푧 − 푝‖ 	 
                   ≤ 훼푛

2 푆푦푛 + 훾‖푓(푧푛)‖ + ‖퐴푝‖
2
 

                   +2훼 ‖푦 − 푝‖[‖푆푦 ‖ + 훾‖푓(푧 )‖ + ‖퐴푝‖]. 
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Since 훼 → 0	(푛 → ∞) ,and 푦푛 , 푆푦푛  and {푓(푧푛)} are bounded, we derive   
‖푧 − 	푝‖ → 0		푎푠		푛 → ∞		. Moreover, there is no doubt that  Fix(S) ∩
	GVI(C, g	, T) = {p}. This completes the proof.   □ 
In terms of  Remark (5.3.7) we can take 퐵 = 퐼, 훽 = 	1	and 훽 = 	1, ∀푛 ≥ 0	in 
Theorem (5.3.10). Then we get 
Corollary  (5.3.11)[55]: Let C be a nonempty closed convex subset of a real 
Hilbert space H. Let 푓 ∶ 	퐶	 → 	퐶 be a contraction with coefficient k	 ∈
(0,1), let	T:	C	 → 	H	be a mapping such that 푇 − 퐼 ∶ 	퐶	 → 	퐻 is 훼-inverse-
strongly monotone, and let g:	C	 → 	H be both 훿-strongly monotone and 휎-
Lipschitz continuous. Let 푆 be a nonexpansive self-mapping on C such that 
Fix(S) ∩ 	GVI(C, g	, T) ≠ ∅. 
Let A be a strong positive bounded linear operator with coefficient 훾̅ 	> 	0. Let 
0	 < 	훾		 < 	   .Assume that {푧푛},		 is a sequence in C generated by 
   푧 = 	 	푃 {	(퐼 − 훼 퐴)푆	푃 	[푧 − 	g(푧 ) +	 	푃 (	g(푧 ) − 휆 푇푧 )] 
                +훼 훾푓(푧 )} 
 
where {훼 } ⊂ [0,1)	 and 2√1 − 		2훿 + 휎 + 휉 ≤ 휆푛 < 2훼/(1+ 2훼)  for 
some		휉		 > 	0. If  lim → 훼 = 0,	  then {푧푛}, converges strongly to the unique 
element of  Fix(S) ∩ 	GVI(C, g	, T). 
Corollary (5.3.12)[55]: Let C be a nonempty closed convex subset of a real 
Hilbert space H. Let 푓 ∶ 	퐶 → 	퐶 be a contraction with coefficient k	 ∈
(0,1), let	T ∶ 	C	 → 	H be a mapping such that 푇 − 	퐼 ∶ 	퐶 → 	퐻 is both 휇-strongly 
monotone and 휈-Lipschitz continuous, and let g ∶ 	C	 → 	H be both 훿-strongly 
monotone and 휎-Lipschitz continuous. Let 푆 be a nonexpansive self-mapping on 
C such that  Fix(S) ∩ 	GVI(C, g	, T) ≠ ∅. Let 퐴,퐵 be two strong positive bounded 
linear operators with coefficients 훾̅ 	 ∈ (0,1) and 훽 > 	0, respectively. Let  
0	 < 	훾		 < 	  . Assume that {푧푛},  is a sequence in C	generated by 
  	푧 = 	 	푃 {	(퐼 − 훼 퐴)푆	푃 	[푧 − 	g(푧 ) +	 	푃 (	g(푧 ) − 휆 푇푧 )] 
        +	훼 [푆	푃 [푧 	− g(푧 ) +	 	푃 (	g(푧 ) −	휆 푇푧 )] 
        −훽 (퐵푆	푃 	[푧 − 	g(푧 ) + 	푃 	(g(푧 ) −	휆 푇푧 )] − 훾푓(푧 ))]} 
 
Where   {훼 } ⊂ [0,1)	, {훽 } ⊂ (0,min{1, ‖퐵‖ }]		and  2√1 − 		2훿 + 휎 + 

휉 ≤ 휆푛 <
2휇/휈2

1+2휇/휈2  for some		휉		 > 	0 . if lim → 훼 = 0	and  lim → 훽 = 휂 ∈
	 , 	

			, Then  {푧 }		  converges strongly to the unique element of  
Fix(S) ∩ 	GVI(C, g, T). 
Proof. Observe that 푇 − 	퐼 ∶ 	퐶	 → 	퐻 is 휇/휈 -inverse-strongly monotone. 
Moreover, it is easy to see that all conditions in Theorem (5.3.10) are satisfied. 
Therefore the conclusion follows immediately from   Theorem (5.3.10).    □ 
A mapping 푉 ∶ 	C	 → 	C is called strictly pseudocontractive if there exists 
푘	 ∈ [0,1)	such that 
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‖푉푥 − 푉푦‖ ≤ ‖푥 − 푦‖ + 푘‖(퐼 − 푉)푥 − (퐼 − 푉)푦‖ 	,				∀푥, 푦 ∈ C. 
If 푘 = 	0, then 푉 is nonexpansive. Put 푇 = 	2퐼 − 	푉, where 푉 ∶ 	C	 → 	C is a 
strictly pseudocontractive mapping with 푘. Then T − 	I	is	  -inverse-strongly 
monotone. Actually, we have 
  
 ‖(2퐼 − 푇)푥 − (2퐼 − 푇)푦‖ ≤ ‖푥 − 푦‖ + 푘‖(푇 − 퐼)푥 − (푇 − 퐼)푦‖ 			, ∀푥, 푦 ∈ 퐶. 
On the other hand, since 퐻 is a real Hilbert space, we have for all 푥, 푦 ∈ 퐶 
             
 ‖(2퐼 − 푇)푥 − (2퐼 − 푇)푦‖ = ‖푥 − 푦‖ + ‖(푇 − 퐼)푥 − (푇 − 퐼)푦‖  
                                              −2〈푥 − 푦, (푇 − 퐼)푥 − (푇 − 퐼)푦〉	. 
Hence we have 

〈푥 − 푦, (푇 − 퐼)푥 − (푇 − 퐼)푦〉 ≥
1 − 푘
2 	‖(푇 − 퐼)푥 − (푇 − 퐼)푦‖ , ∀푥, 푦 ∈ 퐶. 

Utilizing Theorem (5.3.6) we first establish a strong convergence theorem for 
finding a fixed point of mapping 	푉 where 푉 ∶ 	퐶	 → 	퐶 is strictly 
pseudocontractive. 
Theorem (5.3.13)[55]: Let C be a nonempty closed convex subset of a real 
Hilbert space 퐻. Let 푓 ∶ 	퐶	 → 	퐶 be a contraction with coefficient 푘	 ∈ (0,1),	let 
푆 be a nonexpansive self-mapping on C and let  푉 ∶ 	C	 → 	C be a strictly 
pseudocontractive self-mapping on C with, such that Fix(푆) ∩ 	Fix( 	푉) ≠ ∅ . 
Let 퐴, 퐵 be two strong positive bounded linear operators with coefficients  
훾̅ 	 ∈ (0,1) and 훽	 > 	0, respectively.Let 0	 < 	훾		 < 	 .   Suppose that {푥 }and 
{푦 }	are sequences in	C generated by	푥 ∈ 	C and 

  		
푦 = 	 	푃 	[(1 − 휆푛)푥 +	휆푛(푉 − 퐼)푥 ],																																																									
푥 = 	푃 {(퐼 − 훼 퐴)푆푦 + 훼 [푆푦 −훽 (퐵푆	푦 − 훾푓(푥 )]},			∀푛 ≥ 0	

�	

 

where {훼 } ⊂ (0,1)	, {훽 } ⊂ (0,min{1, ‖퐵‖ }] and  휉 ≤ 휆푛 < (1 − 훼)/(2− 훼) 
for some 휉 > 0 . Suppose that there hold the conditions: 
  
 (i)	 lim → 훼 = 0, ∑ 훼 = ∞ 			푎푛푑		 ∑ |훼 − 훼 | < ∞	; 
 (ii) lim → 훽 = 휂 ∈ 	 , 	 푎푛푑	 ∑ |훼 훽 − 훼 훽 | < ∞	;	 
 (iii)	∑ |휆 − 휆 | < ∞	. 
 
Then both {푥 }, and{푦 }	converge strongly to the unique element of   Fix(푆) ∩
	Fix( 	푉)  . 

 Proof.   Put g = 	I and 푇 = 2퐼 − 	푉. Then  훿 = 휎 = 1 and 푇 − 	퐼 is   -
inverse-strongly monotone. In this case, the condition  휉 ≤ 휆푛 <

1−훼
2−훼		 is 

equivalent to the one 2√1 − 		2훿 + 휎 + 휉 ≤ 휆푛 <
2.1−훼2

1+2.1−훼2
 .Moreover ,   푦 =

	푃퐶(푥푛−	휆푛푇푥푛) = 	푃퐶[(1− 휆푛	)푥푛−	휆푛(푉− 퐼)푥푛]. Note that VI(C, 푇	) =
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	Fix( 	푉) So by Theorem (5.3.6), we obtain the desired result.  Utilizing 
Theorem (5.3.6), we also establish another strong convergence theorem for 
finding a zero of mapping T ∶ 	H	 → 	H with the property that 푇 − 	퐼 is 훼-
inverse-strongly monotone. 
Theorem (5.3.14)[55]: Let 푓 ∶ 	퐻	 → 	퐻 be a contraction with coefficient 
푘	 ∈ (0,1),	 let T ∶ 	H	 → 	H be a mapping such that 푇 − 	퐼 is an 훼-inverse-
strongly monotone mapping and let 푆 ∶ 	퐻	 → 퐻 be a nonexpansive mapping 
such that Fix(푆) ∩	푇 0 ≠ ∅. Let 퐴, 퐵 be two strong positive bounded linear 
operators with coefficients 훾̅ 	 ∈ (0,1) and 훽	 > 	0, respectively. Let 0	 < 	훾		 <
	   .Suppose that 푥 ∈ 	퐻 and {푥 } is generated by 

		
푦 = 푥 	−	휆 푇푥 ,																																																																																											
푥 = (퐼 − 훼 퐴)푆푦 + 훼 [푆푦 −훽 (퐵푆	푦 − 훾푓(푥 )],			∀푛 ≥ 0									

�	

 
where {훼 } ⊂ (0,1)	, {훽 } ⊂ (0,min{1, ‖퐵‖ }] and 	휉 ≤ 휆푛 < 2훼/(1+ 2훼) for 
some 휉 > 	0. Assume that there hold the conditions: 
  (i) 	lim → 훼 = 0,∑ 훼 = ∞ 			푎푛푑		 ∑ |훼 − 훼 | < ∞	; 
  (ii) lim → 훽 = 휂 ∈ 	 , 	 푎푛푑 ∑ |훼 훽 − 훼 훽 | < ∞	;	 
 (iii)	∑ |휆 − 휆 | < ∞	. 
Then both {푥 }  and {푦 }  converge strongly to the unique element of Fix(푆) ∩
	푇 0. 
Proof . We have T 0 = 	VI(C, T	). So putting 푃 = 퐼, by Theorem (5.3.6),, we 
obtain the desired result.    □ 
  Corollary(5.3.15)[232]: Let C be a nonempty closed convex subset of a real 
Hilbert space 퐻. Let 푇 ∶ 	C	 → 	퐻	be a mapping such that 푇 − 	퐼 ∶ 	C	 → 	퐻 be 훼-
inverse-strongly monotone, and let	g ∶ 	C	 → 	퐻	be both 훿-strongly monotone 
and 휎-Lipschitz continuous. If 2√1 − 		2훿 + 휎 	< 	휆	 < 	2훼/(1 + 	2훼), then 
for each 푥, 푥 + 휖	 ∈ 	퐶 
          ‖푃 	[푥	 − g(푥) +	푃 (g(푥) − 		휆푇푥)] −		푃 	[(푥 + 휖) − 	g(푥 + 휖) +
																																													푃 (g(푥+ 휖	) 	− 휆푇푥+ 휖	)]‖ 
                                           ≤ 1 − 휆 − 2√1 − 		2훿 + 휎 	 휖.	
Proof. Utilizing the 훿-strong monotonicity and 휎-Lipschitz continuity of 
g ∶ 	퐶	 → 	퐻, we have 
  ‖푥 − 	g(푥) 	− ((푥 + 휖) 	− g(푥))‖ ≤ √1 − 		2훿 + 휎 	휖	,			∀푥, 푥 + 휖		 ∈ 	C.	
 
Since 2√1 − 		2훿 + 휎 < 휆	 < 	2훼/(1 + 	2훼), and 푇 − 	퐼 ∶ 	C	 → 	퐻 is 훼-
inverse-strongly monotone, so we obtain 휆 − 2훼(1 − 휆) < 	0 and 
  ‖(휆 − 1)휖 − 휆[(푇 − 		퐼)푥	 − (푇 − 		퐼)(푥 + 휖)]‖ 	
     = (1 − 휆) 휖	 − 2휆(1 − 휆)〈(푇 − 		퐼)푥 − (푇 − 		퐼)(푥 + 휖), 휖〉 
     +휆 ‖(푇 − 		퐼)푥 − (푇 − 	퐼)(푥 + 휖)‖  
     ≤ (1 − 휆) 휖 + 휆 휆 − 2훼(1 − 휆) ‖(푇 − 		퐼)푥 − (푇 − 	퐼)(푥 + 휖)‖  
     ≤ (1 − 휆) 휖 , 
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which implies that 
  (휆 − 1)휖 − 휆 (푇 − 		퐼)푥	– (푇 − 		퐼)(푥 + 휖) ≤ (1 − 휆)휖,	       ∀푥, (푥 + 휖) ∈ 	C	. 
Therefore, we get for each 푥, (푥 + 휖) 	 ∈ 	퐶. 
 
�‖푃 	[푥 − 	g(푥) +	푃 (	g(푥) − 휆푇푥)] −	푃 [(푥 + 휖) − g(푥 + 휖) +	푃 (g(푥 + 휖) −	�푇(푥 + 휖))]‖ 

      ≤ 푥 − 	g(푥) + 푃 (	g(푥) − 휆푇푥) − [(푥 + 휖) − 				g(푥 + 휖) +	푃 g(푥 + 휖) − 휆푇(푥 + 휖) ]  	
                               ≤ 	2 푥 − 	g(푥) − (푥 + 휖) − 	g(푥 + 휖)  
                               +‖(휆 − 1)휖 − 휆[(푇 − 		퐼)푥	 − (푇 − 		퐼)(푥 + 휖)]‖ 
                               ≤ 2√1 − 		2훿 + 휎 	휖 + (1 − 휆)휖 
                               = 1 − 휆 − 2√1 − 		2훿 + 휎 	 휖 
This completes the proof.    □ 
 

 


