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                                    Chapter 4 
Maps Preserving the Harmonic Mean and Positive Operators 
 
     In this chapter let 퐻 be a complex Hilbert space. The symbol 퐴!퐵 stands for the 
harmonic mean of the positive bounded linear operators 퐴, 퐵 on	퐻 in the sense of 
Ando. We describe the general form of all automorphisms of the set of positive 
operators with respect to that operation. Let 퐻 be a complex Hilbert space. Denote 
by 퐵(퐻)  the set of all positive bounded linear operators on 퐻. A bijective map 
휙 ∶ 	퐵(퐻) → 	퐵(퐻)  is said to preserve Lebesgue decompositions in both 
directions if  for any quadruple 퐴, 퐵, 퐶, 퐷 of positive operators, 퐵 = 퐶 + 퐷 is an 퐴-
Lebesgue decomposition of 퐵	if and only if 휙(퐵) = 휙(퐶) + 휙(퐷) is a 휙(퐴)-
Lebesgue decomposition of 휙(퐵). 
 
Sec (4.1): Maps Preserving the Harmonic Mean or the Parallel Sum 
of Positive Operators  
 
    Let 퐻 be a complex Hilbert space with inner product 〈. , . 〉	Denote by 퐵(퐻) the 
algebra of all bounded linear operators on 퐻. As usual, an operator 퐴	 ∈ 	퐵(퐻) is 
called positive if  〈퐴푥, 푥〉 ≥ 	0 holds for every 푥	 ∈ 	퐻 and in that case we write  
퐴	 ≥ 	0. The set of all positive operators on 퐻 is denoted by 퐵(퐻) . 
In the recent paper [117] we described the structure of all bijective maps on 퐵(퐻)  
which preserve the geometric mean # introduced by Ando in [111]. It turned out 
that if dimH	 ≥ 	2, any bijective map  휙 ∶ 퐵(퐻) 	→ 	퐵(퐻)  satisfying 
                       휙(퐴#퐵) 	= 	휙(퐴)#휙(퐵)					(퐴, 퐵	 ∈ 	퐵(퐻) )																																				(1)	
is necessarily of the form 휙(퐴) 	= 	푆퐴푆∗,						퐴	 ∈ 	퐵(퐻)  with some invertible 
bounded linear or conjugate-linear operator 푆	on 퐻. The geometric mean is well-
known to have important applications in operator theory but recently it has found 
serious applications in other areas, for example, in quantum information theory as 
well (see [117]). Since #	is an operation which makes 퐵(퐻)  an algebraic structure 
and there is general interest in the study of the automorphisms of algebraic 
structures, this has motivated us in [117] to determine the bijective maps satisfying 
(1). 
    The main aim of this section we consider the same problem for another 
important mean, namely for the harmonic mean of positive operators. This concept 
was introduced in [111] as follows. For arbitrary positive operators	퐴, 퐵	 ∈ 	퐵(퐻) , 
their harmonic mean 퐴! 퐵 is defined by 
             퐴!퐵	 = 	max 푋 ≥ 0: 2퐴 0

0 2퐵 	≥ 푋 푋
푋 푋 	 			 .	
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Just as in [117], we recall that a general axiomatic theory of operator means was 
later developed by Kubo and Ando in [115]. 
  For the rest of  this section we list some important properties of the harmonic 
mean (see [111,115]). In what follows, for arbitrary self-adjoint operators 퐴, 퐵	 ∈
	퐵(퐻) we write	퐴	 ≤ 	퐵	if and only if 퐵	 − 	퐴	 ≥ 	0. 
The set of all nonnegative real numbers is denoted by ℝ . All operators appearing 
in the following list of properties are supposed to belong to 퐵(퐻)   with the 
exception of S appearing in (iv). 
  (i)	퐴! 퐵	 = 	퐵! 퐴.	
  (ii)For	any	휆	 ∈ 	ℝ ,we	have			(휆퐴)! (휆퐵) 	= 	휆(퐴!퐵).	
  (iii)If	퐴	 ≤ 퐶		and			퐵	 ≤ 	퐷, then	퐴! 퐵	 ≤ 	퐶! 퐷.	
  (iv) (Transfer property), we have 푆(퐴!퐵)푆	∗ = 	(푆퐴푆	∗)! (푆퐵푆	∗) for every 
invertible bounded linear or conjugate-linear operator 푆	on 퐻. 
  (v) Suppose 퐴 ≥ 퐴 ≥	·	·	·	≥ 0, 퐵 	≥ 	퐵 ≥·	·	·	≥ 0 and 퐴	 → 	퐴, 퐵 	→ 	퐵 
strongly. Then we have that  퐴	 ! 퐵 	→ 	퐴!퐵 strongly. 
 (vi)퐴! 퐴	 = 	퐴, 퐼! 퐴	 = 	2퐴(퐼	 + 	퐴) 	and	0! 퐴	 = 	0. 
	(vii)	퐴! 퐵	 = 	2퐴(퐴	 + 	퐵) 퐵	if	퐴	or	퐵 is invertible. 
 (viii)	퐴! 퐵	 = 	2(퐴 	+ 	퐵 − 1)  if 퐴	and 퐵 are both invertible. 
    The transfer property shows that for an arbitrary invertible bounded linear or 
conjugate-linear operator S, the transformation 퐴	 ⟼ 	푆퐴푆∗ is a bijective map of 
퐵(퐻)  respecting the operation of the harmonic mean. The content of our main 
result is that the converse is also true: there is no other kind of transformations 
having this property. 
Lemma (4.1.1)[104]: The operator 퐴	 ∈ 	퐵(퐻)  is invertible if and only if 
      {(. . . ((퐴! 푇 )! 푇 )!	. . . ! 푇 ) ∶ 	 푇 , . . . , 푇 	 ∈ 	퐵(퐻) , 푛	 ∈ 	ℕ} 	= 퐵(퐻) .										(2)	
Proof. Let 퐴	 ∈ 	퐵(퐻)  be invertible. In order to verify (2), observe that by the 
transfer property (iv) above there is no serious loss of generality in assuming that 
 	퐴	 = 	퐼. De ine	푓	(푡) 	= 	2푡/(1	 + 	푡), 0	 ≤ 푡	 ∈ 	ℝ.	  
Then by (vi) we have	
            퐼! 푇1	 = 	2푇 (퐼	 +	푇 ) 	= 	푓	(푇 )												(푇 ∈ 	퐵(퐻) ).	
As 푓 ∶ 	 [0, ∞[→ 	 [0, 2[ is a (strictly increasing) continuous bijective function, it 
follows that 퐼! 푇 	(푇 	 ∈ 퐵(퐻) ) runs through the set of all positive operators with 
spectrum contained in [0, 2[. In particular, for any real number 0	 < 휀	 < 	2 there 
exists a 푇	 ∈ 	퐵(퐻) 		such that 
                                 		휀퐼	 = 	퐼! 푇.  
Now, from 
                               (퐼! 푇)! 푇 	= 	 (휀퐼)! 푇 	= 	휀(퐼! ((1/휀)푇 ))	
it follows that (퐼! 푇)! 푇  runs through the set of all positive operators with spectrum 
contained in [0, 2휀[. Consequently, (퐼! 푇 )! 푇 (푇 , 푇 	 ∈ 	퐵(퐻) 	) runs through the 
set of all positive operators with spectrum contained in	[0, 4[. Continuing this 
process,we see that the operators  
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(. . . ((퐴! 푇 )! 푇 )!	. . . ! 푇 )	(푇 , . . . , 푇 	∈ 퐵(퐻) , 푛	 ∈ 	ℕ) run through the whole set 
퐵(퐻) .	
   Next suppose that 퐴 is not invertible. We assert that in that case 퐴! 푇 is non-
invertible for every 푇	 ∈ 	퐵(퐻) . Indeed, if 	푇	is invertible, then by (vii) we have 
                                           퐴!푇	 = 	2퐴(퐴	 + 	푇) 푇	
From which it is apparent that 퐴!푇 is non-invertible. If 푇 is not invertible, then by 
(iii) for any positive 휆	 ∈ ℝ	,we have 퐴! 푇	 ≤ 퐴! (푇	 + 	휆퐼). We already know that 
this latter operator is non-invertible. But this implies that 퐴!푇 is non-invertible, too. 
Consequently, we obtain that in the case when 퐴 is non-invertible, the operators  
(. . . ((퐴! 푇 )! 푇 )!	. . . ! 푇 )(푇 , . . . , 푇 ∈ 	퐵(퐻) , 푛	 ∈ 	푁) are all non-invertible.  □        
In the next lemma we compute the harmonic mean of an arbitrary positive operator 
푇	 ∈ 	퐵(퐻) ,	and any rank-one projection 푃. To do so,we need the concept of the 
strength of a positive operator 퐴 along a ray represented by any unit vector in 퐻. 
This concept was originally introduced by Busch and Gudder in[98] for the so-
called Hilbert space effects in the place of positive operators. Effects play an 
important role in the mathematical foundations of the theory of quantum 
measurements. Mathematically, a Hilbert space effect is simply an operator  
퐸	 ∈ 	퐵(퐻) which satisfies 0	 ≤ 퐸	 ≤ 	퐼. Although in [98] the authors considered 
only effects, it is rather obvious that the following definition and result work also 
for arbitrary positive operators (the reason is simply that any positive operator can 
be multiplied by a positive scalar to obtain an effect). So, let 퐴	 ∈ 	퐵(퐻)   be a 
positive operator, consider a unit vector 휑 in 퐻 and denote by	푃  the rank-one 
projection onto the subspace generated by 휑. The quantity 
                              휆(퐴, 푃 ) 	= 	sup{휆	 ∈ 	ℝ ∶ 	휆푃 	≤ 퐴},	
is called the strength of 퐴 along the ray represented by 휑 According to [98, 
Theorem 4] we have the following formula for the strength: 

   			휆(퐴, 푃 ) 	= 퐴 / 휑 				if	휑	 ∈ 	rng 퐴 ;																																																			
		0,																						else																								.																																																							(3)

�	

 (The symbol rng	denotes the range of operators and 퐴 / 	denotes the inverse of 
퐴 / 	on its range). 
Lemma (4.1.2)[104]: For an arbitrary positive operator 푇	 ∈ 	퐵(퐻)  and any rank-
one projection 푃 on 퐻 we have 

푇!푃	 = 	
2휆(푇, 푃)

휆(푇, 푃) 	+ 	1
푃.	

In particular, 푇!푃	is nonzero if and only if 휆(푇, 푃) 	≠ 	0 which is equivalent to 
rng푃	 ⊂ 	rng√푇.	
Proof. Pick a scalar 1	 ≤ 	휆	 ∈ 	ℝ such that 푇	 ≤ 휆퐼. Using (ii), (iii) and (vi) one can 
see that 
                        푇! 푃	 ≤ (휆퐼)! (휆푃) 	= 	휆(퐼! 푃) 	= 	휆푃.	
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As 푃 is a rank-one operator, it follows that 푇! 푃 is a scalar multiple of 푃, i.e., we 
have 
                                         푇!푃	 = 	휀푃																																																																															(4)	
for some scalar 휀 ∈ 	ℝ .  
We show that 휀 is necessarily strictly less than 2. Indeed, this follows from the 
inequality: 
                       푇! 푃	 ≤ 	푇! 퐼	 = 	2푇(푇	 + 	퐼)  
referring  to the fact that the spectrum of 2푇(푇	 + 	1)  is contained in [0, 2[ (see 
the proof of Lemma (4.1.1)). 
   Let 훿	 ∈ 	ℝ  be an arbitrary scalar such that 훿푃	 ≤ 푇. We assert that  2훿/(1	 +
	훿)푃	 ≤ 	푇! 푃 holds true. 
To see this, first observe that (훿푃)! 푃	 ≤ 푇!푃.	We next compute (훿푃)! 푃. Applying 
(vii), for an arbitrarypositive 휆	 ∈ 	푅 we have 
  (훿푃)! (푃	 + 	휆퐼) 	= 	2(훿푃)((1	 + 	훿)푃	 + 	휆퐼) (푃	 + 	휆퐼)	
       = 	2(훿푃)((1	 + 	훿	 + 	휆)푃	 + 	휆푃 ) ((1	 + 휆)푃	 + 	휆푃 ) 	= 	 ( ) 	푃.	
Here, 푃  denotes the projection 퐼	 − 	푃. Letting 휆	tend to 0, by (v) we infer that 
(훿푃)! 푃	 = 	2훿/(1	 + 	훿)푃.	 Therefore, we have 2훿/(1	 + 	훿)푃	 ≤ 푇! 푃	as asserted.	
 Conversely, suppose now that 2훿/(1	 + 	훿)푃	 ≤ 푇!푃. Then we have 
                2(훿푃)(훿푃	 + 	퐼) 	= 	

	 	
푃	 ≤ 	푇! 푃	 ≤ 푇! 퐼	 = 	2푇(푇	 + 	퐼) .	

Setting 푓	(푡) 	= 	2푡/(1	 + 	푡), 0	 ≤ 	푡	 ∈ 	ℝ,we can rewrite the above inequality as  
푓	(훿푃) ≤ 	푓	(푇). As the inverse of the bijective function 푓 ∶ 	 [0,∞[→	 [0, 2[ is the 
function g ∶ 	 [0, 2[→ 	 [0,∞[ defined by g(s) 	= 	s/(2	 − 	s) 	= −1	 + 	2/(2	 −
	s), s	 ∈ 	 [0, 2[ which is clearly operator monotone, it follows that 훿푃	 ≤ 푇. 
Therefore, we have proved that for any 훿	 ∈ 	ℝ  
                              훿푃	 ≤ 푇	 ⟺	

	 	
푃 ≤ 	푇! 푃. 

It now easily follows that for 휀 in (4) we have 	휀 = 	 ( , )
( , )

		 . □ 
Let 퐵(퐻)  denote the set of all invertible positive operators on 퐻. In the next 
lemma we describethe structure of all bijective maps on 퐵(퐻)   which preserve 
the arithmetic mean. 
Lemma (4.1.3)[104]: Let 휓 ∶ 	퐵(퐻) 	→ 	퐵(퐻)   be a bijective map satisfying 
 
                     휓 	 	 = ( ) 	 ( ) 									(퐴, 퐵	 ∈ 	퐵(퐻) 	).																																				(5)	
Then there exists a bounded invertible linear or conjugate-linear operator	S on H 
such that 
                               휓(퐴) = 	푆퐴푆∗								(퐴	 ∈ 	퐵(퐻) 	).	
 
Proof. We first recall that the functional equation (5) above is usually called Jensen 
equation. We learn from the paper [113] that every function from a nonempty ℚ-
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convex subset of a linear space 푋	over ℚ into another linear space 푌 over 
ℚ	satisfying the Jensen equation can be written in the form 푥	 ⟼ 	퐴 	+ 	퐴 (푥), 
where 퐴 	∈ 	푌	and 퐴 ∶ 	푋	 → 	푌 is an additive function. (In fact, the main result in 
[113] concerns more general transformations.) 
   Let 퐵 (퐻) denote the linear space of all self-adjoint operators in 퐵(퐻).	By the 
above mentioned result it follows that there is an operator 푋	 ∈ 퐵 (퐻) and an 
additive map	퐿 ∶ 퐵 (퐻) 	→ 	퐵 (퐻)	such that 
                     휓(퐴) 	= 	퐿(퐴)	+ 	푋						(퐴	 ∈ 	퐵(퐻) ).	
We assert that 퐿 is in fact a continuous linear transformation. First, we know that 
퐿(퐵) 	≥ 	−푋 for every 퐵	 ∈ 	퐵(퐻)   . It follows that for any operator  퐴	 ∈ 	퐵 (퐻) 
with ‖퐴	‖ ≤ 1/2 we have 퐿(퐼	 + 	퐴) 	≥ −푋 implying that  퐿(퐴) 	≥ −퐿(퐼) 	− 	푋. 
Consequently, there is a negative constant  푐	 ∈ ℝ such that  
                   퐿(퐴) ≥ 푐퐼 
holds whenever 퐴	 ∈ 	퐵 (퐻), ‖퐴	‖ ≤ 1/2. Inserting	−퐴 in the place of 퐴, we get 
퐿(−퐴) 	≥ 푐퐼 which yields 퐿(퐴) ≤ −푐퐼. Therefore, we obtain that 
                 푐퐼	 ≤ 	퐿(퐴) 	≤ −푐퐼	
and hence ‖퐿(퐴)	‖ ≤ |푐| holds for every 퐴	 ∈ 	퐵 (퐻), ‖퐴	‖ ≤ 1/2. This clearly 
gives us that the additive map	퐿 is continuous and therefore linear. 
We next prove that 푋	 = 	0.		퐿푒푡	퐴	 ∈ 	퐵(퐻)   be arbitrary. For every 푛	 ∈ 	푁 we 
have 
                         푛퐿(퐴) 	+ 	푋	 = 	퐿(푛퐴)	+ 	푋	 = 	휓(푛퐴) 	≥ 0	
which gives us that 퐿(퐴) 	+ 	(1/푛)푋	 ≥ 0. If n tends to infinity,we obtain  퐿(퐴) 	≥
0. Hencewe have 휓(퐴) 	= 퐿(퐴) 	+ 	푋	 ≥ 푋. Since the range of 휓	푖푠	퐵(퐻)   , it 
follows that 0	 ≥ 	푋. On the other hand, by the continuity of  퐿 we deduce 
                 푋	 = 	푋	 + 	퐿(0) 	= 	푋	 + 	 lim 퐿((1/푛)퐼) 	= 	 lim 휓((1/푛)퐼)	
from which it follows that 푋 ≥ 	0. Consequently, we have	푋	 = 	0	as asserted. So, 
there is a continuous linear transformation 퐿 ∶ 퐵 (퐻) 	→ 	퐵 (퐻) such that 휓(퐴) 	=
	퐿(퐴), 퐴	 ∈ 	퐵(퐻)   .  In the same manner there corresponds a continuous linear 
transformation 퐿 ∶ 	퐵 (퐻) 	→ 	퐵 (퐻) to the transformation 휓 . Clearly,we have 
퐿(퐿(퐴)) 	= 	퐿(퐿(퐴)) 	= 	퐴 for every 퐴	 ∈ 	퐵(퐻) 	. Since 퐵(퐻)   linearly  
generates 퐵 (퐻), it follows that 퐿(퐿(퐴) 	= 	퐿(퐿(퐴)) 	= 	퐴 holds for every 퐴	 ∈
	퐵 (퐻).	This shows that the transformation 퐿	is invertible and its inverse is	퐿.	Next, 
it is easy to see that 퐿 is a bijective linear transformation of 퐵 (퐻) which preserves 
the positive operators in both directions, i.e.,  퐴	 ∈ 		퐵(퐻) 	 if and only if 퐿(퐴) 	∈
	퐵(퐻) 	. Indeed, as 퐿 coincides with 휓	on 퐵(퐻) 	 , it sends invertible positive 
operators to invertible positive operators. Using the continuity of 	퐿	 we obtain that 
퐿 sends positive operators to positive operators. Applying the same argument for 
퐿	, it then follows that 퐿	preserves the positive operators in both directions. Now, 
by a well-known result of  Kadison [114, Corollary 5] stating that every unital 
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linear bijection between C∗-algebras preserving positive elements in both directions 
is necessarily a Jordan ∗-isomorphism, we infer that 퐿 is of the form 
                    퐿(퐴) = 	푆퐴푆∗								(퐴	 ∈ 	퐵 (퐻))	
with some invertible bounded linear or conjugate-linear operator 푆 on 퐻. (We 
remark that a more general result concerning non-linear bijections of 퐵 (퐻) 
preserving the order in both directions was obtained in [116].) This completes the 
proof of the lemma.    □ 
Proposition(4.1.4)[104]: Let 휙 ∶ 	퐵(퐻) 	→ 	퐵(퐻) 	be a bijective map satisfying 
                     휙(퐴훻퐵) 	= 	휙(퐴)훻휙(퐵)							(퐴, 퐵	 ∈ 	퐵(퐻) ).	
Then there exists an invertible bounded linear or conjugate-linear operator S	on H 
such that ϕ is of the form 
                                      휙(퐴) 	= 	푆퐴푆∗					(퐴	 ∈ 	퐵(퐻) ).	
Proof .  A simplified version of the argument given above applies to verify the 
statement.  □ 
  Now we are in a position to prove the main result of this section. 
Theorem(4.1.5)[104]: Let 휙 ∶ 	퐵(퐻) 	→ 	퐵(퐻)  be a bijective map satisfying 
               휙(퐴!퐵) = 휙(퐴)!휙(퐵)																													(퐴, 퐵	 ∈ 	퐵(퐻) ).	
Then there is an invertible bounded linear or conjugate-linear operator S	on H	such 
that ϕ is of the form 
                       휙(퐴) = 	푆퐴푆∗																					(퐴	 ∈ 	퐵(퐻) ).	
 
There is a concept closely related to the harmonic mean called parallel sum. For 
arbitrary positive operators 퐴, 퐵	 ∈ 	퐵(퐻) , their parallel sum 퐴 ∶ 	퐵 is expressed as 
                      퐴 ∶ 	퐵	 = (퐴! 퐵).	
This notion originally defined by Anderson and Duffin [108] in a different way has 
many important applications in operator theory and in electrical network theory, 
too. The reason of these latter applications is the following: if 퐴, 퐵 are impedance 
matrices of a resistive 푛-port network, then their parallel sum 퐴 ∶ 	퐵 is just the 
impedance matrix of the parallel connection [107]. For the most classical results 
concerning this operation we refer to the papers [107–110]. As an easy corollary of 
our main result we shall obtain the following description of bijective maps 
preserving the parallel sum. 
Proof . Let 휙 ∶ 	퐵(퐻) 	→ 	퐵(퐻) 	 be a bijective map preserving the harmonic 
mean .By Lemma (4.1.1), 휙 preserves the invertible operators in both directions.   
is invertible if and only if 휙(퐴) is invertible. Therefore, 휙(퐼) is an invertible 
positive operator. Considering the transformation 
                           퐴	 ⟼ 	휙(퐼) / 휙(퐴)휙(퐼) / ,	
by the transfer property we obtain a bijective map on 퐵(퐻)  which preserves the 
harmonic mean and sends  퐼		to		퐼. Hence, there is no serious loss of generality in 
assuming that already 휙 has the property that 휙(퐼) 	= 	퐼. 
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   We next prove that 휙 preserves the projections in both directions. To see this, 
consider the following simple characterization of projections. The operator 
퐴	 ∈ 	퐵(퐻)  is a projection if and only if 퐴! 퐼	 = 	퐴. Indeed, by (vi) we know that 
퐼! 퐴	 = 	2(퐼	 + 	퐴) 퐴. This implies that 퐼! 퐴	 = 	퐴 if and only if   2퐴	 = 	 (퐼	 +
	퐴)퐴	 = 퐴	 +	퐴  which is trivially equivalent to 퐴	 = 	퐴 . By the properties of 휙 
we infer that	휙 indeed preserves the projections in both directions. 
    Proposition 2 in [112] tells us that for any projections P,Q we have P! Q	 = 	P	 ∧
	Q. This implies that 휙 is a lattice-automorphism on the set of all projections on 퐻. 
Consequently, 휙 sends 0	to	0 and it preserves the rank-one and also the corank-one 
projections in both directions. 
   Our next aim is to show that 휙 preserves the rank-one elements of 퐵(퐻)  in both 
directions. Indeed, this follows from the following characterization of rank-one 
operators. The nonzero element 퐴	 ∈ 	퐵(퐻)  is of rank-one if and only if there 
exists a corank-one projection Q such that A!Q	 = 	0. To see this, first suppose that 
퐴	is of rank-one. Then there is a rank-one projection P and a positive scalar 휆	such 
that 퐴	 = 	휆푃. By (ii) and Lemma (4.1.2), one can see that  퐴! (퐼	 − 	푃) 	= 	0. 
Conversely, if 퐴!푄	 = 	0 for some projection Q of corank-one, then by (iii) we 
have 퐴! 푅	 = 	0 for every rank-one subprojection of Q. But by Lemma (4.1.2) again 
this implies that rngQ	 ∩ 	rng√A	= 	 {0}.We then infer that √A	 and hence 퐴 are 
both of rank-one. 
    Now let 푃	be a rank-one projection. We assert that for every 휆	 ∈ ℝ  there is a 
nonnegative scalar 푓	(휆) such that 휙(휆푃) 	= 	푓	(휆)휙(푃). In fact, we know 
that	휙(휆푃) is of rank-one. Moreover, by Lemma (4.1.2) we have (휆푃)! 푃	 ≠ 	0 and 
hence 
                   휙(휆푃)! 휙(푃) 	= 휙((휆푃)! 푃) 	≠ 	0.	
By Lemma (4.1.2) again, we deduce that the range of the rank-one projection 
휙(푃)	has nontrivial intersection with the range of the rank-one operator 휙(휆푃). 
This implies that 휙(휆푃) is a scalar multiple of 휙(푃) and hence there is a 
nonnegative scalar 푓(휆) such that  휙(휆푃) 	= 	푓(휆)휙(푃). As 휙 and 휙   share the 
same properties, it is easy to verify that  푓	 is a bijection of ℝ sending 0 to 0. 
   Let 휆	and 휇	be positive real numbers. By Lemma (4.1.2) we compute 
 

	(휆푃)! (휇푃) 	= 	휇(((휆/휇)푃)! 푃) 	= 	휇
2휆/휇

휆/휇	 + 	1
푃	 = 	

2휆휇
휆	 + 	휇

푃. 

Similarly, we obtain 

                 (푓	(휆)휙(푃))! (푓	(휇)휙(푃)) 	= 	 	( ) 	( )
	( )	 	 	( )

휙(푃).	
 
As 

휙((휆푃)! (휇푃)) 	= 	휙(휆푃)!휙(휇푃) 	= 	 (푓	(휆)휙(푃))! (푓	(휇)휙(푃)),	
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It follows that 

푓
2휆휇
휆	 + 	휇

휙(푃) 	= 	
2푓	(휆)푓	(휇)
푓	(휆) 	+ 	푓	(휇)

휙(푃).	

Consequently, we obtain that 푓	satisfies the functional equation 
 

푓
2휆휇
휆	 + 	휇

=	
2푓	(휆)푓	(휇)
푓	(휆) 	+ 	푓	(휇)

										(0	 < 	휆, 휇	 ∈ 	ℝ).	

 
This means simply that 푓			is a bijection of the set of all positive real numbers 
satisfying 푓	(휆! 휇) 	= 	푓	(휆)! 푓	(휇) for all 0	 < 	휆, 휇. Defining g(t) 	= 	1/f	(1/t) for 
any 0	 < 	푡	 ∈ 	ℝ, it is easy to check that g	is a bijective function of  the set of all 
positive real numbers satisfying the Jensen equation. As a very particular case of 
Lemma (4.1.3) we obtain that g as well as  푓	 is a positive scalar multiple of the 
identity. As we have 푓	(1) 	= 	1, it follows that 푓 is in fact the identity on 
ℝ 	.Hence we have proved that 휙(휆푃) 	= 	휆휙(푃) holds for every rank-one 
projection 푃 and scalar 휆	 ∈ 	ℝ 	. 
   After these preliminaries now the proof can be completed as follows. Similarly to 
the case of the scalar function 푓 above, define a bijective transformations 휓 on 
퐵(퐻)  by 
                     휓(퐴) 	= 휙(퐴 ) 							(퐴	 ∈ 	 퐵(퐻) ).	
Using the formula 퐴!퐵	 = 	2(퐴 	+	퐵 )  for invertible operators   퐴,퐵	 ∈
	퐵(퐻)  , it is easy to verify that 휓	satisfies the Jensen equation 
                    휓((퐴	 + 	퐵)/2) 	= 	 (휓(퐴) 	+ 	휓(퐵))/2						(퐴, 퐵	 ∈ 	퐵(퐻) ).	
Then Lemma (4.1.3) applies and we obtain that there exists an invertible bounded 
linear or conjugate-linear operator	푆 on 퐻	such that      
                    휓(퐴) = 	푆퐴푆∗														(퐴	 ∈ 퐵(퐻) ).	
As we have supposed that 휙(퐼) 	= 	퐼, it follows that 푆푆	∗ = 	퐼, i.e., 푆	is either a 
unitary or an antiunitary operator. Denote it by 푈.We easily obtain that 
                    휙(퐴) = 	푈퐴푈∗										(퐴	 ∈ 	 퐵(퐻) ).	
Therefore, considering the transformation 
                           퐴	 ⟼	푈∗휙(퐴)푈,	
We can further assume that 휙(퐴) 	= 	퐴 holds for every 퐴	 ∈ 	퐵(퐻)   . 
   We next prove that 휙 is the identity on the rank-one projections. Let 푃	be a rank-
one projection. Pick an arbitrary operator 퐴	 ∈ 	퐵(퐻)   . By Lemma (4.1.2)  we 
have 
      ( , )

( , )
	휙(푃) 	= 	휙 ( , )

( , )
푃 		

           = 	휙(퐴! 푃) 	= 	휙(퐴)!휙(푃) 	= 	퐴! 휙(푃) 	= 	 ( , ( ))
( , ( ))

	휙(푃).	
It follows that 
                휆(퐴, 푃) 	= 	휆(퐴, 휙(푃))																																																																																					(6)	
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holds for every invertible operator 퐴	 ∈ 	퐵(퐻)   . Moreover, for such operator 
퐴	and arbitrary unit vector 휑	 ∈ 	퐻, applying (3) we compute 

             휆 퐴, 푃 = 	 퐴 휑 	= 	
〈 , 〉

=	 〈 , 〉 =   .	

Therefore, from (6) we deduce that 
                              tr퐴 푃	 = tr퐴 휙(푃)	
holds for every 퐴	 ∈ 	퐵(퐻)  . As 퐵(퐻)    linearly generates 퐵(퐻), we obtain the 
equality 
                               tr푇푃	 = 	tr푇휙(푃)	
for every bounded operator 푇	on 퐻. Inserting rank-one projections into the place of  
푇	we conclude that 
                               〈푥, 푃푥〉 	= 	 〈푥, 휙(푃)푥〉	
holds for every unit vector 푥	in 퐻. This gives us that 휙(푃) 	= 	푃 is valid for any 
rank-one projection 푃 implying that 휙 is the identity on the set of all rank-one 
operators in 퐵(퐻)  . 
   It remains to show that 휙(퐴) 	= 	퐴 holds for every 퐴	 ∈ 	퐵(퐻) 	To see this, let 
퐴	 ∈ 퐵(퐻)  be arbitrary. 
Take any rank-one projection 푃	on 퐻. Applying Lemma (4.1.2), from the equalities 
                            퐴!푃	 = 	휙(퐴! 푃) 	= 	휙(퐴)! 휙(푃) 	= 	휙(퐴)! 푃	
We  infer that 

2휆(퐴,푃)
휆(퐴, 푃) 	+ 	1

푃	 = 	
2휆(휙(퐴), 푃)

휆(휙(퐴), 푃)	+ 	1
푃.	

This implies that 휆(퐴,푃) 	= 	휆(휙(퐴), 푃) holds for every rank-one projection 푃 on 
퐻. since every positive operator is uniquely determined by its strength function [98, 
Corollary 1], we obtain that 휙(퐴) 	= 	퐴. This completes the proof of the theorem.      
   We conclude this section with the simple proof of the corollary. 
Corollary (4.1.6)[104]: Let 휙 ∶ 	퐵(퐻) 	→ 	퐵(퐻)  be a bijective map satisfying 
               휙(퐴 ∶ 	퐵) 	= 	휙(퐴) ∶ 	휙(퐵)												(퐴,퐵	 ∈ 	퐵(퐻) ).	
Then ϕ respects the operation of the harmonic mean . Consequently, there exists an 
invertible bounded linear or conjugate-linear operator S	on H	such that ϕ is of the 
form 
                             휙(퐴) = 	푆퐴푆∗								(퐴	 ∈ 	퐵(퐻) ).	
   Finally, to make our investigation more complete we conclude with the following 
rather simple result concerning the structure of bijective maps of 퐵(퐻)  preserving 
the arithmetic mean 훻.	This operation is defined by 
                                      퐴훻퐵	 = (퐴	 + 	퐵)	
for all	퐴, 퐵	 ∈ 	퐵(퐻) . 
Proof . Let 퐴	 ∈ 	퐵(퐻) . Using (vi) we get 
               휙((1/2)퐴) 	= 	휙(퐴 ∶ 	퐴) 	= 	휙(퐴) ∶ 휙(퐴) 	= 	 (1/2)휙(퐴).	
This implies that 휙(2퐴) 	= 	2휙(퐴) for every  	퐴 ∈ 	퐵(퐻)  . Therefore, we have 
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  휙(퐴!퐵) 	= 	휙(2(퐴 ∶ 퐵)) 	= 	2휙(퐴 ∶ 퐵) 	= 	2(휙(퐴) ∶ 휙(퐵)) 	= 	휙(퐴)! 휙(퐵)	
for all 퐴, 퐵	 ∈ 	퐵(퐻)  . This shows that 휙 preserves the harmonic mean. An 
application of Theorem completes the proof.    □ 
Corollary(4.1.7)[232]: Let 휙 ∶ 	퐵(퐻) 	→ 	퐵(퐻)  be a bijective map satisfying 
   휙 (퐴 + 퐴 + ⋯+ 퐴 ) ∶ 	퐵  
      = 	휙 (퐴 + 퐴 +⋯+ 퐴 ) :	휙(퐵)							((퐴 + 퐴 + ⋯+ 퐴 ), 퐵	 ∈ 	퐵(퐻) ).	
Then ϕ respects the operation of the harmonicmean. Consequently, there exists an 
invertible bounded linear or conjugate-linear operator S	on H	such that ϕ is of the 
form 
     휙(퐴 + 퐴 + ⋯+ 퐴 ) 
             = 	푆(퐴 + 퐴 +⋯+ 퐴 )푆∗								((퐴 + 퐴 + ⋯+ 퐴 ) ∈ 	퐵(퐻) ).	
 
   Finally, to make our investigation more complete we conclude with the following 
rather simple result concerning the structure of bijective maps of 퐵(퐻)  preserving 
the arithmetic mean 훻.	This operation is defined by 
                            (퐴 + 퐴 +⋯+ 퐴 )훻퐵	 = ((퐴 + 퐴 +⋯+ 퐴 ) + 	퐵)	
for all	(퐴 + 퐴 + ⋯+ 퐴 ), 퐵	 ∈ 	퐵(퐻) . 
Proof . Let (퐴 + 퐴 +⋯+ 퐴 ) 	∈ 	퐵(퐻) . Using (vi) we get 
 

    휙 (퐴 + 퐴 + ⋯+ 퐴 )  

                 	= 	휙 (퐴 + 퐴 +⋯+ 퐴 ) ∶ 	 (퐴 + 퐴 +⋯+ 퐴 )  
                  = 	휙(퐴 + 퐴 +⋯+ 퐴 ) ∶ 휙(퐴 + 퐴 +⋯+ 퐴 )	 
                  =	 (1/2)휙(퐴 + 퐴 +⋯+ 퐴 ).	
 
This implies that 휙(2(퐴 + 퐴 +⋯+ 퐴 )) 	= 	2휙((퐴 + 퐴 +⋯+ 퐴 )) for 
every  	(퐴 + 퐴 +⋯+ 퐴 ) ∈ 	퐵(퐻)  . Therefore, we have 
   휙 (퐴 + 퐴 + ⋯+ 퐴 )! 퐵 = 	휙 2 (퐴 + 퐴 +⋯+ 퐴 ) ∶ 퐵  
         = 	2휙 (퐴 + 퐴 +⋯+ 퐴 ) ∶ 퐵 = 	2 휙(퐴 + 퐴 +⋯+ 퐴 ) ∶ 휙(퐵)  
         = 	휙(퐴 + 퐴 +⋯+ 퐴 )! 휙(퐵)	
for all (퐴 + 퐴 +⋯+ 퐴 ), 퐵	 ∈ 	퐵(퐻)  . This shows that 휙 preserves the 
harmonic mean. An application of Theorem completes the proof.    □ 
Corollary(4.1.8)[232]:  For an arbitrary self-adjoint positive operator 푇∗ 	 ∈
	퐵(퐻)  and any rank-one projection 푃  on 퐻 we have 
                                   

푇∗! 푃 	= 	
2휆(푇∗, 푃 )

휆(푇∗, 푃 ) 	+ 	1
푃 .	
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In particular, 푇∗! 푃 	is nonzero if and only if 휆(푇∗, 푃 ) 	≠ 	0 which is equivalent to 
rng푃 ⊂ 	rng√푇.	
Proof. Pick a scalar 1	 ≤ 	휆	 ∈ 	ℝ such that 푇∗ 	≤ 휆퐼. Using (ii), (iii) and (vi) one 
can see that 
                        푇∗! 푃 ≤ (휆퐼)! (휆푃 ) 	= 	휆(퐼! 푃 ) 	= 	휆푃 .	
As 푃  is a rank-one operator, it follows that 푇∗! 푃  is a scalar multiple of 푃 , i.e., 
we have 
                                            푇∗! 푃 = 	휀푃 						 
for some scalar 휀 ∈ 	ℝ .  
We show that 휀 is necessarily strictly less than 2. Indeed, this follows from the 
inequality: 
                       푇∗! 푃 ≤ 	푇∗! 퐼	 = 	2푇(푇∗ 	+ 	퐼)  
referring  to the fact that the spectrum of 2푇∗(푇∗ 	+ 	1)  is contained in [0, 2[ (see 
the proof of Lemma (4.1.1)). 
   Let 훿	 ∈ 	ℝ  be an arbitrary scalar such that 훿푃 	≤ 푇∗. We assert that  2훿/(1	 +
	훿)푃 	≤ 	푇∗! 푃  holds true. 
To see this, first observe that (훿푃 )! 푃 ≤ 푇∗! 푃 .	We next compute (훿푃 )! 푃 . 
Applying (vii), for an arbitrarypositive 휆	 ∈ 	푅 we have 
  
 (훿푃 )! (푃 + 	휆퐼) 	= 	2(훿푃 )((1	 + 	훿)푃 + 	휆퐼) (푃 + 	휆퐼)	
 = 	2(훿푃 )((1	 + 	훿	 + 	휆)푃 	+ 	휆(푃 ) ) ((1	 + 휆)푃 	+ 	휆(푃 ) ) 	= 	 ( ) 	푃 .	
Here, (푃 )  denotes the projection 퐼	 − 	푃 . Letting 휆	tend to 0, by (v) we infer 
that (훿푃 )! 푃 = 	2훿/(1	 + 	훿)푃 .	 Therefore, we have 2훿/(1	 + 	훿)푃 	≤
푇∗! 푃 	as asserted.	
 Conversely, suppose now that 2훿/(1	 + 	훿)푃 ≤ 푇∗! 푃 . Then we have 
        2(훿푃 )(훿푃 + 	퐼) 	= 	

	 	
푃 	≤ 	푇∗! 푃 	≤ 푇∗! 퐼	 = 	2푇∗(푇∗ + 	퐼) .	

Setting 푓	(푡) 	= 	2푡/(1	 + 	푡), 0	 ≤ 	푡	 ∈ 	ℝ,we can rewrite the above inequality as  
푓	(훿푃 ) ≤ 	푓	(푇∗). As the inverse of the bijective function 푓 ∶ 	 [0,∞[→ 	 [0, 2[ is 
the function g ∶ 	 [0, 2[→ 	 [0,∞[ defined by g(s) 	= 	s/(2	 − 	s) 	= −1	 + 	2/(2	 −
	s), s	 ∈ 	 [0, 2[ which is clearly operator monotone, it follows that 훿푃 	≤ 푇∗. 
Therefore, we have proved that for any 훿	 ∈ 	ℝ  
 
                              훿푃 	≤ 푇∗ 	⟺ 	

	 	
푃 ≤ 푇∗! 푃 . 

 
It now easily follows that for 휀 in (4) we have 	휀 = 	 ( ∗, )

( ∗, )
		 . □ 
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Sec (4.2): Maps on Positive Operators Preserving Lebesgue 
Decompositions 
 
     In what follows, 퐻	denotes a complex Hilbert space with inner product 〈. , . 〉and 
퐵(퐻) stands for the algebra ofall bounded linear operators on 퐻. The space of all 
self-adjoint elements of 퐵(퐻) is denoted by 퐵 (퐻). An operator 퐴	 ∈ 	퐵(퐻) is 
called positive if   〈퐴푥, 푥〉 ≥ 	0	holds for every 푥	 ∈ 	퐻 in which case we write 
퐴	 ≥ 	0. (Observe that we use the expression “positive” in the operator algebraic 
sense. For matrices, this is the same as positive semi-definiteness.) The set of all 
positive elements of 퐵(퐻) is denoted by 퐵(퐻) . 
The usual order among  self-adjoint operators is defined by means of positivity  
as follows. For any	푇, 푆	 ∈ 	퐵 (퐻), we write 푇	 ≤ 	푆		if		푆	 − 	푇	 ≥ 	0. 
   In analogy with the Lebesgue decomposition of positive measures, in [97], Ando 
defined a Lebesgue-type decomposition of positive operators, a concept which has 
proved to be very useful in operator theory. To explain that decomposition we need 
the following notions (for details, see [97]).  
  Given a positive operator 퐴	 ∈ 	퐵(퐻) , the positive operator C	 ∈ 	퐵(퐻) is said to 
be 퐴-absolutely continuous if there is a sequence (C ) of positive operators and a 
sequence	(훼 ) of nonnegative real numbers such that C ↑ 	C	and 
 C 	≤ 	 훼 퐴 for every 푛. Here, C ↑ 	퐶 means that the sequence (C ) is monotone  
increasing with respect to the usual order and it strongly converges to C. A positive 
operator C	is called 퐴-singular if for any 퐷	 ∈ 	퐵(퐻) , the inequalities 퐷	 ≤ 	퐴 and 
퐷	 ≤ 	퐶 imply 퐷	 = 	0. Now, for any pair 퐴, 퐵	 ∈ 	퐵(퐻)  of positive operators, by 
an 퐴-Lebesgue decomposition of 퐵 we mean a decomposition 퐵	 = 	퐶	 + 	퐷 where 
퐶, 퐷 are positive operators, C	is 퐴-absolutely continuous and 퐷 is 퐴-singular. Ando 
proved in [97] that such decomposition exists for every pair 퐴, 퐵 of positive 
operators. 
    In this section, we study the problem of characterizing maps on positive 
operators which preserve Lebesgue decompositions. Investigations of this kind, i.e., 
the study of maps on different structures preserving important operations, 
quantities, relations, etc. corresponding to the underlying structures belong to the 
gradually enlarging field of so-called preserver problems. For important surveys on 
preservers in the classical sense, we refer to [99,101,102,106]. For recent results 
concerning preservers in extended sense and defined on more general domains 
(especially on operator structures), we refer to [103] and its bibliography. 
    We say that the bijective map 휙 ∶ 	퐵(퐻) → 	퐵(퐻)  preserves Lebesgue 
decompositions in both directions if it has the following property. For any 
quadruple 퐴, 퐵, 퐶, 퐷 of positive operators, 퐵	 = 	퐶	 + 	퐷 is an 퐴-Lebesgue 
decomposition of 퐵	if and only if 휙(퐵) 	= 	휙(퐶) 	+ 	휙(퐷) is a 휙(퐴)-Lebesgue 
decomposition of 휙(퐵). It is rather clear from the definitions that any 
transformation of the form 퐴 ⟼ 	푆퐴푆∗ for some invertible bounded linear or 
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conjugate-linear operator 푆 on 퐻 preserves Lebesgue decompositions in both 
directions. The aim of this section we show that the reverse statement is also true: 
only transformations of this form have the above preserver property. 
Theorem (4.2.1)[96]: Let 휙 ∶ 	퐵(퐻) → 	퐵(퐻)  be a bijective map preserving 
Lebesgue decompositions in both directions. Then there is an invertible bounded 
linear or conjugate-linear operator 푆	on 퐻	such that 휙 is of the form 
                             휙(퐴) = 	푆퐴푆∗											(퐴	 ∈ 	퐵(퐻) 	).	
Proof. This section is devoted to the proof of the theorem. First we recall some of 
the results in [97] that we shall use in our arguments. In what follows, rng stands 
for the range of operators. Let 퐴,퐵	 ∈ 	퐵(퐻)  . 
  (A1) The operator 퐵 is 퐴-singular if and only if rng퐴 / 	∩ 	rng퐵 / =	 {0} (see 
[97, p. 256]). 
  (A2) The operator 퐵	is 퐴-absolutely continuous if and only if the subspace 
{푥	 ∈ 	퐻 ∶ 	 퐵 / 푥	 ∈ 	rng퐴 / } is dense in 퐻	(see [97, Theorem 5]). 
  (A3) The operator 퐵 has an 퐴-Lebesgue decomposition, which can be constructed 
in the following way. Define [퐴]퐵	 = lim (푛퐴) 	 ∶ 	퐵. Here : denotes the operation 
of parallel sum of positive operators. The sequence ((푛퐴) ∶ 	퐵) of positive 
operators is monotone increasing and bounded by 퐵 from above. Hence, [퐴]퐵 is a 
well-defined positive bounded linear operator on 퐻. Now, according to Theorem 2 
in [97], we have that 
                                      퐵	 = 	 [퐴]퐵	 + 	(퐵	 − 	[퐴]퐵),	
is an 퐴-Lebesgue decomposition of 퐵 and, further, [퐴]퐵 is the maximum of all 퐴-
absolutely continuous positive operators C	with C	 ≤ 	B. 
   (A4) 퐴-Lebesgue decomposition is not unique in general. Namely, according to 
[97, Corollary 7], for a given 퐴	 ∈ 	퐵(퐻) , every positive operator admits a unique 
퐴-Lebesgue decomposition if and only if rng퐴 is closed. 
   We begin the route leading to the proof of the theorem with the following simple 
lemma. 
Lemma (4.2.2)[96]: Let 퐴	 ∈ 	퐵(퐻)  .The range rng퐴	of	퐴 is closed if and only if 
rngA /  is closed, and in this case, we have rngA	 = 	rngA / . 
Proof. It is clear that 

rngA	 ⊂ 		rngA / ⊂		 rngA / 	 = 	 rng	A	,	
where the last equality follows from the easy fact that ker	A / 	 = 	ker퐴. 
Therefore, we see that  if		rngA is closed, then so is rngA / and they coincide. 
Conversely, if rngA /  is closed then we have 
퐴(퐻) 	= 	A / (A / (퐻)) 	= 	A / (rngA / ) 	= 	A / ((kerA / ) ) 	= 	rngA / .	

The proof is complete.  □ 
      By (A2), we immediately have the following. 
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Corollary (4.2.3)[96]: Let 퐴, 퐵	 ∈ 	퐵(퐻)  be operators with closed ranges. Then 퐵 
is 퐴-absolutely continuous if and only if  rngB	 ⊂ 	rngA. Therefore, we have  
rngB	 = rngA if and only if 퐵 is 퐴-absolutely continuous and 퐴	푖푠	퐵-absolutely 
continuous. 
  In the  proof  of  our  theorem, we need the following additional corollary which 
gives a characterization of invertibility of positive operators. 
Corollary (4.2.4)[96]: Let 퐴	 ∈ 	퐵(퐻) . Then 퐴	is invertible if and only if rngA is 
closed and for every 퐵	 ∈ 	퐵(퐻)  with closed range, we have that 퐵	is 퐴-absolutely 
continuous. 
   In the next lemma, we compute the Lebesgue decomposition of an arbitrary 
positive operator with respect to a rank-one element of 	퐵(퐻)  (recall that by (퐴4), 
in this case, we have unique Lebesgue decomposition). To do so, we need the 
concept of the strength of a positive operator 퐴 along a ray represented by a unit 
vector in 퐻. This  concept was originally introduced by Busch and Gudder in [98] 
for the so-called Hilbert space effects in the place of positive operators. Effects 
play a basic role in the mathematical foundations of the theory of quantum 
measurements. Mathematically, a Hilbert space effect is simply an operator 
퐸	 ∈ 	퐵(퐻) that satisfies 0	 ≤ 	퐸	 ≤ 	퐼. Although in [98] the authors considered 
only effects, it is rather obvious that the following definition and result work also 
for arbitrary positive operators (the reason is simply that any positive operator can 
be multiplied by a positive scalar to obtain an effect). So, let 퐴	 ∈ 	퐵(퐻) , consider 
a unit vector 휑	in 퐻	and denote by 푃 	the rank-one projection onto the subspace 
generated by 휑 The quantity 
                             휆(퐴, 푃 ) 	= 	sup{휆	 ∈ 	ℝ ∶ 	휆푃 ≤ 	퐴}	
is called the strength of 퐴 along the ray represented by 휑.	(ℝ  stands for the set of 
all non-negative real numbers.) According to [98, Theorem 4], we have the 
following formula for the strength: 

휆(퐴,푃 ) 	= 	 퐴 휑 , if	휑	 ∈ 	rng 퐴 													

					0,											else																																																		,
� 																																								 (7)	

where 퐴 / 	denotes the inverse of 퐴 /  on its range. 
   Clearly, every positive rank-one operator can be written in the form 휇푃,	where 
푃	is a rank-one  projection and 휇	is a positive real number. 
Lemma (4.2.5)[96]: Let 푃 be a rank-one projection, 휇	a positive real number and 
퐵	an arbitrary positive operator. Then we have 
                                          [휇푃]퐵	 = 	휆(퐵, 푃)푃.	
Therefore, the	(휇푃)-Lebesgue decomposition of  퐵	is 
                                  퐵	 = 	휆(퐵,푃)푃	 + 	(퐵	 − 	휆(퐵, 푃)푃).	
In particular, the (휇푃)-Lebesgue decomposition of  퐼	is 
                                  퐼	 = 	푃	 + 	(퐼	 − 	푃).	



110 
 

Proof. In paper [104], we presented structural results for the automorphisms of 
퐵(퐻)  with respect to the operation of the harmonic mean or that of the parallel 
sum. We recall that the harmonic mean 푇	! 푆 of the positive operators 푇, 푆 is the 
double of their parallel sum 푇 ∶ 	푆. In [104, Lemma 2] we proved that for any  
푇	 ∈ 	퐵(퐻)  and rank-one projection 푃, we hav e 

푇	! 푃	 =
2휆(푇, 푃)

휆(푇, 푃) 	+ 	1
푃.	

Using this, we compute 

[휇푃]퐵	 = 	 lim(푛휇푃) ∶ 	퐵	 = 	 lim
(푛휇푃)!퐵

2 	
 

		= lim
퐵! (푛휇푃)

2
= 	 lim푛휇

(퐵/(푛휇))! 푃
2

= 	 lim푛휇
휆(퐵/(푛휇), 푃)

휆(퐵/(푛휇), 푃) 	+ 	1
푃														(8)	

 

= lim푛휇
(1/(푛휇))휆(퐵, 푃)

(1/(푛휇))휆(퐵, 푃) 	+ 	1
푃	 = 	휆(퐵, 푃)푃.	

Here, we use the following properties of the harmonic mean and the strength 
function: for any 푇, 푆	 ∈ 	퐵(퐻) , rank-one projection 푃,	and nonnegative number 훼, 
we have  
      푇	! 푆	 = 	푆! 푇, (훼푇)! (훼푆) 	= 	훼(푇	! 푆), 휆(훼푇,푃) 	= 	훼휆(푇, 푃).     □	
  In the proof of our theorem, the solution of the following functional equation will 
play an important role. 
Lemma (4.2.6)[96]: Let 푓 ∶ ℝ 	→ 	ℝ 	 be a bijective function with 푓(0) 	= 	0, 
and  휑 ∶ 	 [0, 1] 	→ 	 [0, 1] be a function such that 

푓
1

(1/휆)훼	 + 	(1/휇)(1	 − 	훼)

=
1

(1/푓(휆))휑(훼)	+	(1/푓(휇))(1	 − 휑(훼))
	.																																								(9)	

holds for every 0	 < 	휆, 휇	 ∈ 	ℝ and 훼	 ∈ 	 [0, 1].		If		푓(1) 	= 	1, then 푓, 휑 are the 
identities on their domains. 
  Proof . First choose 훼	 = 	1/2. For 훼	́ = 	휑 		푎푛푑	훽 = 	1 −	 훼́, we have 

							푓
2

(1/휆) 	+	(1/휇)
=

1
(1/푓(휆))훼	́ 	+ 	(1/푓(휇))훽	

.																																								 (10)	

 
Define 푔(λ) 	= 	1/푓(1/λ) for every positive 휆. Then 푔	is a bijection of the set of 
all positive real numbers, and (10) turns into 

1

푔	 (1/휆) + (1/휇)
2 	

=
1

푔(1/휆)훼́ + 	푔(1/휇)훽
	.	
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Therefore, we have that 

푔
휆	 + 	휇
2

2 = 	푔(휆)훼́ 	+ 	푔(휇)	훽	
holds for all positive numbers 휆, 휇. Interchanging 휆 and 휇, we get 

푔(휇)훼́ 		+ 	푔(휆)훽 	= 	푔(휆)훼́ 		+ 	푔(휇)훽	
0	 < 	휆, 휇. Since 푔 is injective, we infer that 훼́ 	 = 	 훽	and then it follows that  
훼́ 			= 	훽 	= 1/2. Thus, we obtain that g satisfies the so-called Jensen equation 

푔
휆	 + 	휇
2

= 	
푔(휆) 	+ 	푔(휇)

2
	

on the set of all positive real numbers. From [100] we learn that every real-valued 
function defined on a convex subset of ℝ  with nonempty interior which satisfies 
the Jensen equation can be written as the sum of a real-valued additive function 
defined on the whole ℝ   and a real constant. This gives us that there exist an 
additive function 푎 ∶ 	ℝ	 → 	ℝ and a constant 푑	 ∈ ℝ such that 푔(λ) 	= 	a(λ) 	+ 	d 
holds for every positive 휆. As 푔	takes only positive values, it follows that 푎 is 
bounded from below on the set of positive real numbers. It is a classical result of 
Ostrowski from 1929 [105] that any additive function of  ℝ that is bounded from 
one side on a set of positive measure is necessarily a constant multiple of the 
identity. Hence, we have a constant 푐	 ∈ 	ℝ such that 푎(휆) 	= 	푐휆 for every 휆	 ∈ 	ℝ. 
As 푔 is a self-bijection of the set of all positive numbers with 푔(1) 	= 	1, one can 
easily verify that 푐	 = 	1 and 푑	 = 	0. Clearly, this implies that 푓	is the identity on 
ℝ . Finally, it immediately follows from (9) that 휑 is the identity on [0, 1].    □ 
  After this preparation, we are now in a position to prove Theorem (4.2.1). 
Proof . Let 휙 ∶ 	퐵(퐻) 	→ 	퐵(퐻)  be a bijective map which preserves Lebesgue 
decompositions in both directions. 
    First we show that 휙	 sends 0	to	0. Indeed, 0	 = 	0 + 0 is a 0-Lebesgue 
decomposition of  0. This implies that 휙(0) 	= 	휙(0) 	+ 	휙(0) is a 휙(0)-Lebesgue 
decomposition of  휙(0). We have 휙(0) 	= 	0. 
   Next, we assert that 휙  preserves absolutely continuity in both directions. This 
means that for any pair 퐴, 퐵 of positive operators, 퐵	is 퐴-absolutely continuous if 
and only if 휙(퐵) is 휙(퐴)-absolutely continuous. In fact, this follows from the 
preserver property of 휙	 and from the easy fact that 퐵 is 퐴-absolutely continuous if 
and only if 퐵	 = 	퐵	 + 	0 is an 퐴-Lebesgue decomposition of 퐵. In a similar way, 
one can check that 휙 preserves singularity in both directions. 
By the criterion (A4) of uniqueness of Lebesgue decompositions, 휙 preserves the 
elements of 퐵(퐻)  with closed range in both directions. This means that the 
operator 퐴	 ∈ 	퐵(퐻)  has closed range if and only if 휙 has closed range. 
Now, by Corollary (4.2.3), for arbitrary operators 퐴, 퐵	 ∈ 	퐵(퐻) with closed 
ranges, we have 
                           rng	퐵	 ⊂ 	rng	퐴	 ⟺ 	rng	ϕ(퐵) 	⊂ 	rng	ϕ(퐴),	
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and hence, 
                             rng퐵	 = 	rng퐴	 ⟺ 	rng	ϕ(퐵) 	= 	rngϕ(퐴).	
  We next prove that ϕ preserves the rank of finite rank operators. In fact, this 
follows from the following characterization of the rank. The positive operator 퐴 is 
of rank	푛	(1	 ≤ 	푛	 ∈ 	푁) if and only if it has closed range, there exists a sequence 
퐴 , 퐴 , . . . , 퐴  of positive operators with closed range of length 푛 such that 
                             rng퐴 ⊊ 	rng퐴 ⊊	. . . ⊈ rng퐴 	⊊ rng퐴 
and there is no similar sequence of  length 푛	 + 	1. The already verified properties 
of ϕ  imply that ϕ preserves the rank. 
   As ϕ preserves the positive operators with closed range in both directions, by 
Corollary (4.2.4), we obtain that ϕ preserves the invertible elements of 퐵(퐻)  in 
both directions. Therefore, ϕ	(퐼) is an invertible positive operator. Consider the 
transformation 
                                 퐴	 ⟼ 	ϕ	(퐼) / ϕ	(퐴)ϕ	(퐼) / 	.																																													(11)	
Referring to the already mentioned fact that any transformation of the form 
퐴	 ⟼ 푆퐴푆∗ with some invertible bounded linear or conjugate-linear operator 푆 on 
퐻 preserves Lebesgue decompositions in both directions, we see that the 
transformation in (11) is a bijective map on 퐵(퐻)  which has the same preserver 
property and, in addition, it sends 퐼	to	퐼. Hence, there is no serious loss of 
generality in assuming that already ϕ satisfies ϕ(퐼) 	= 	퐼. 
  We prove that 휙 preserves the rank-one projections in both directions. Let 푃 be a 
rank-one projection. By Lemma (4.2.5), the	푃-Lebesgue decomposition of 퐼 is 
퐼	 = 	푃	 +	(퐼	 − 	푃). As 휙 preserves the rank, 휙(푃) is a rank-one operator. Hence, 
we have ϕ(푃) 	= 	휇푄 with some rank-one projection Q and positive number 휇. 
Now, on one hand, by the original preserver property of ϕ, the ϕ(푃)-Lebesgue 
decomposition of  ϕ(퐼) is  
                                         퐼	 = 	ϕ(퐼) 	= 	ϕ(푃) 	+ 	ϕ(퐼	 − 	푃). 
But on the other hand, by Lemma (4.2.5), the (휇푄)-Lebesgue decomposition  of 
퐼	is 
                                              퐼	 = 	푄	 +	 (퐼	 − 	푄).	
Using the uniqueness of  the Lebesgue decomposition with respect to positive 
operators having closed range, we obtain that 휙(푃) 	= 	푄 and  	휙(퐼	 − 	푃) 	= 	퐼	 −
	푄	 = 	퐼	 − 	휙(푃). Consequently, 휙(푃) is a rank-one projection, and we also have 
	휙(퐼	 − 	푃) 	= 	퐼	 − 	휙(푃). 
    We show that ϕ preserves the orthogonality among rank-one projections. Let 
푃,푄 be orthogonal rank-one projections. It is easy to see that the 푄-Lebesgue 
decomposition of (퐼	 − 	푃)	푖푠	퐼	 − 	푃	 = 	푄	 +	 (퐼	 − 	푃	 − 	푄). Therefore, we have 
휙(퐼	 − 	푃) 	= 휙(푄) + 휙(퐼	 − 푃	 − 푄) 	≥ 	휙(푄). But from the previous paragraph 
of the proof we know that 휙(퐼	 − 	푃) 	= 	퐼	 − 	휙(푃). Therefore, we obtain  퐼	 −
	휙(푃) 	≥ 	휙(푄), which means that the projections 휙(푃) and 휙(푄) are orthogonal 
to each other. 
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   We assert that for any rank-one projection 푃, we have a bijective function	푓  on  
ℝ	 such that 휙(휆푃) 	= 	푓 	(휆)휙(푃). This follows from the fact that for any 
positive 휆, the ranges of the rank-one operators 휙(휆푃) and 휙(푃)	coincide which is 
a consequence of rng	λ푃	 = 	rng푃. 
   We next prove that the functions 푓  are all the same. In order to verify this, first 
consider an arbitrary rank-one projection 푃. By Lemma (4.2.5), for any positive 휆, 
the 푃-decomposition of 휆퐼	is 
                                             휆퐼	 = 	휆푃	 + 	휆(퐼	 − 	푃).	
Therefore, we obtain 
                             휙(휆퐼) = 	푓 	(휆)휙(푃) + 	휙 휆(퐼	 − 	푃) .																																						(12)	
The range of  휆(퐼	 − 	푃) is equal to the range of 퐼	 − 	푃, and hence, we obtain that 
        rng	휙 λ(I	 − 	P) = 	rng	휙(I	 − 	P) = 	rng I	 − 	휙(P) = 	rng	휙(P) 	.	
Consequently, the operators on the right hand side of (12) act on orthogonal 
subspaces. This means that the range of the rank-one projection 휙(푃) is an 
eigensubspace of 휙(휆퐼). As 푃 is an arbitrary rank-one projection, and hence, 
휙(푃)	runs through the set of all rank-one projections, we infer that 휙(휆퐼) is a 
scalar operator. Again by (12), we see that this scalar is 푓 	(휆). So, we have  
휙(휆퐼) 	= 	푓 		(휆)퐼. This shows that the bijection 푓   of ℝ	 	in fact does not depend 
on 푃. We conclude that there is a bijective function 푓 on ℝ	 such that for every 
rank-one projection 푃	and nonnegative real number 휆, we have   휙(휆푃) 	=
	푓(휆)휙(푃). 
    Let 푃, 푄 be orthogonal rank-one projections and 휆, 휇 positive real numbers. Set 
퐵	 = 	휆푃	 + 	휇푄. The 푃-Lebesgue decomposition of 퐵 is 퐵	 = 	휆푃	 + 	휇푄. 
Therefore, we have 
   휙(휆푃	 + 	휇푄) 	= 	휙(퐵) 	= 	휙(휆푃) 	+ 	휙(휇푄) 	= 	푓(휆)휙(푃) 	+ 	푓(휇)휙(푄).	
In particular, we obtain that 휙(푃	 + 	푄) 	= 	휙(푃) 	+ 	휙(푄). Next, let 푅 be an 
arbitrary rank-one subprojection of 푃	 + 	푄. Then we infer that 휙(푅) is a 
subprojection of 휙(푃) 	+ 	휙(푄)	(휙 preserves the inclusion of ranges of operators 
with closed range). As we have seen in Lemma (4.2.5), the absolutely continuous 
part in the 푅-Lebesgue decomposition of 퐵 is 휆(퐵, 푅)푅. We compute the quantity 
휆(퐵, 푅) in the following way. Let 푟 be a unit vector in the range of R. By (7), we 
have 

휆(퐵, 푅) 	= 	 퐵 / 푟
	
=

1
〈퐵 푟, 푟	〉

=
1

〈((1/휆)푃	 + 	(1/휇)푄)푟, 푟〉
	

 

=
1

(1/휆)〈푃푟, 푟〉 + 	(1/휇)〈푄푟, 푟〉
	=

1
(1/휆)	tr푃푅	 + 	(1/휇)	tr푄푅

				 .	
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Therefore, we obtain 

휆(퐵, 푅)푅	 =
1

(1/휆)	tr푃푅	 +	(1/휇)	tr푄푅 푅.	

Similarly, the absolutely continuous part in the 휙(푅)-Lebesgue decomposition of  
휙(퐵) = 	푓(휆)휙(푃) + 	푓(휇)휙(푄)					is 
      휆 휙(퐵),휙(푅) 휙(푅) 	=

( / ( ))	 	 ( ) ( )	 	( / ( ))	 	 ( ) ( )
휙(푅).	   

 
As 휙 preserves Lebesgue decompositions, it follows that 
 
                                            휙(휆(퐵, 푅)푅) 	= 	휆(휙(퐵),휙(푅))휙(푅). 
Hence, using	휙(휆(퐵, 푅)푅) 	= 	푓(휆(퐵,푅))휙(푅),	we have the following functional 
equation: 

푓
1

(1/휆)	tr푃푅	 +	(1/휇)	tr푄푅

=
1

(1/푓(휆))	tr	휙(푃)휙(푅)	+	(1/푓(휇))	tr	휙(푄)휙(푅)
	 ,	

which can be rewritten as 
 

푓
1

(1/휆)훼	 + 	(1/휇)(1	 − 	훼)
=

1
(1/푓(휆))훼	́ + 	 (1/푓(휇))(1	 − 	훼́)	

			,													(13)	

where 휆, 휇 are arbitrary positive numbers, 훼	 ∈ 	 [0, 1]	is also arbitrary and   훼́ 	 ∈
	[0, 1].	It is clear from the discussion above that 훼́ does not depend on 휆, 휇, and 
thus, by (13), it depends only on 훼. Hence, we can write (13) into the following 
form 

푓
1

(1/휆)훼	 +	 (1/휇)(1	 − 	훼)
=

1
(1/푓(휆))휑(훼) 	+	 (1/푓(휇))(1	 − 	휑(훼))

	

 
 (휆, 휇	 > 	0, 훼	 ∈ 	 [0, 1]). Here, 푓 is a bijective map on ℝ	 	sending 0	to	0 and  
1	to	1, and 휑 ∶ 	 [0, 1] 	→ 	 [0, 1] is a function. We apply Lemma (4.2.6) and 
conclude that 푓, 휑 are the identities on their domains. What concerns 휑, this gives 
us that 
                                     tr푃푄	 = 	tr	휙(푃)휙(푄).	
This means that the transformation 휙, when restricted onto the set of all rank-one 
projections, is a bijective map preserving the trace of products. This latter quantity 
appears in the mathematical foundations of quantum mechanics and is usually 
called there transition probability. Transformations on the set of rank-one 
projections which preserve the transition probability are holding the name quantum  
mechanical symmetry  transformations, and they play a fundamental role in the 
probabilistic aspects of quantum mechanics. A famous theorem of Wigner 
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describes the structure of those transformations. It says that every such map is 
implemented by a unitary or antiunitary operator on the underlying Hilbert space. 
This means that we have a unitary or antiunitary operator 푈	on 퐻 such that 
                                                휙(푃) 	= 	푈푃푈∗ 
holds for every rank-one projection 푃 on 퐻. (For generalizations of Wigner’s 
theorem concerning different structures, we refer to this   Section 2.1, 2.3  of [103]; 
see also the references therein.) Therefore, considering the transformation 
 퐴	 ⟼	푈∗휙(퐴)푈  if necessary, we can further assume without serious loss of 
generality that 휙(푃) 	= 	푃  holds for every rank-one projection 푃. 
   We complete the proof by showing that 휙(퐵) 	= 	퐵 holds for every positive 
operator 퐵. Indeed, we already know that for an arbitrary rank-one projection 푃, the 
absolutely continuous part in the 푃-Lebesgue decomposition of 퐵 is 휆(퐵, 푃)푃. As 
휙 preserves Lebesgue decompositions, we obtain that the absolutely continuous 
part in the 휙(푃) −Lebesgue decomposition of 휙(퐵) is 휙(휆(퐵, 푃)푃).	Since  푓 is the 
identity on ℝ	 	 and 휙(푃) 	= 	푃, we have 휙(휆(퐵, 푃)푃) 	= 	휆(퐵, 푃)푃. On the other 
hand, the absolutely continuous part in the 푃-Lebesgue decomposition of 휙(퐵) is 
휆(휙(퐵), 푃)푃.	Therefore, we have	
                           휆(휙(퐵), 푃)푃	 = 	휙(휆(퐵, 푃)푃) 	= 	휆(퐵, 푃)푃.	
This gives us that 
                                        휆(퐵, 푃) 	= 	휆(휙(퐵), 푃)	
holds for every rank-one projection 푃. Since according to [98, Corollary 1], every 
positive operator is uniquely determined by its strength function, we obtain that 
휙(퐵) 	= 	퐵.	This completes the proof of the theorem.     □ 
Corollary(4.2.7)[232]: Let 푃  be a rank-one projection, 휇	a positive real number 
and 퐵	an arbitrary positive operator. Then we have 
                                          [휇푃 ]퐵	 = 	휆(퐵, 푃 )푃 .	
Therefore, the	(휇푃 )-Lebesgue decomposition of  퐵	is 
 
                                  퐵	 = 	휆(퐵,푃 )푃 	+	(퐵	 − 	휆(퐵, 푃 )푃 ).	
In particular, the (휇푃 )-Lebesgue decomposition of  퐼	is 
                                            퐼	 = 	푃 	+	(퐼	 −	푃 ).	
Proof. In paper [104], we presented structural results for the automorphisms of 
퐵(퐻)  with respect to the operation of the harmonic mean or that of the parallel 
sum. We recall that the harmonic mean 푇	! 푆 of the positive operators 푇, 푆 is the 
double of their parallel sum 푇 ∶ 	푆. In [104, Lemma 2] we proved that for any  
푇	 ∈ 	퐵(퐻)  and rank-one projection 푃 , we hav e 
 

푇	! 푃 	=
2휆(푇, 푃 )

휆(푇, 푃 )	+ 	1
푃 .	

Using this, we compute 
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      [휇푃 ]퐵	 = 	 lim (푛휇푃 ) ∶ 	퐵	 = 	 lim ( )! 	
 
                   		= lim !( ) = 	 lim푛휇 ( /( ))! =	 lim푛휇 ( /( ), )

( /( ), )	 	
푃 		

 
                     = lim푛휇 ( /( )) ( , )

( /( )) ( , )	 	
푃 	= 	휆(퐵, 푃 )푃 .	

 
Here, we use the following properties of the harmonic mean and the strength 
function: for any 푇, 푆	 ∈ 	퐵(퐻) , rank-one projection 푃 ,	and nonnegative number 
훼, we have  
      푇	! 푆	 = 	푆! 푇, (훼푇)! (훼푆) 	= 	훼(푇	! 푆), 휆(훼푇,푃 ) 	= 	훼휆(푇, 푃 ).     □	
 
 
 


