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                                       Chapter 2 
Operators of Bounded and Unbounded Imaginary Powers 
 
      In this chapter we deal with sums of operators in 휉-convex spaces, and here 
the extensions of the Dore-Venni   results are derived. We give an application to 
a Volterra equation in a Banach space, we consist  of an  operator  of positive  
type  in Hilbert  space  without  bounded  imaginary  powers,  and  concerned 
with  the  closedness  of  the  sum of  two  closed operators  in  a Hilbert  space.   
 
Sec(2.1): Operators with Bounded Imaginary Powers in Banach 
Spaces 
    Let 푋 be a complex Banach space and let 퐴,퐵 be closed linear densely 
defined operators in 푋 such that (−∞, 0] is contained in the resolvent sets of 
both operators, such that their resolvents satisfy  
                |(푡 + 퐴) |, |(푡 + 퐵) | ≤ 푀/(1 + 푡	)	for	all	푡 ≥ 0,																										(1)	
Then their purely imaginary powers are bounded, and 
 
											 퐴 ≤ 퐾푒	 | |		, 퐵 ≤ 퐾푒	 | |		for	all		푠 ∈ ℝ																																	(2)	
holds. Recently, it has been shown by Dore and Venni [182] that the sum  
퐴	 + 퐵 with domain 퐷(퐴 + 퐵) = 퐷(퐴) ∩ 퐷(퐵) is closed, if in addition 푋 is 휉-
convex,	퐴 and 퐵 commute and 휃 + 휃 < 휋; a brief explanation of the notion 휉-
convex Banach space' is given at the beginning of this Section. This result has 
important applications to the theory of  partial differential operators since (1) but 
also (2) are known for large classes of such operators; cp. Seeley [206]. In 
another paper the authors also show that 퐴	 + 	퐵 then has properties (1) and (2) 
again, probably with different 푀,퐾 but with 휃 = max(휃 	, 휃 ) + 휀, where 
휀 > 0 can be chosen arbitrarily small. This makes it possible to iterate the 
argument and to consider sums of finitely many operators 퐴 , 푖 = 	1, . . . . . , 푛, 
which are mutually commuting, and are subject to (1), (2), with exponents 
휃 	such that 휃 + 휃 < 휋 for all 푖 ≠ 푗.  
   In many cases, however, (1) is too strong and should be replaced by the 
weaker conditions (−	∞, 0) ⊂ 휌(퐴) 	∩ 	휌(퐵) and  
                      |(푡 + 퐴) |	, |(푡 + 퐵) | ≤ 푀/푡					for	all	푡 > 0.																											(3)	
Examples for this generally come from differential operators on unbounded  
regions, like the Laplace operator or the Stokes operator on exterior domains; of 
Giga and Sohr [198]. In such situations one still has (3) as well as 푁(퐴) = 0 and 
푅(퐴) dense in 푋, but 0 ∈ 휎(퐴). Therefore it is desirable to have also results for 
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this case available, similar to those for the somewhat simpler case considered by 
Dore and Venni [182]. A preliminary version of such a generalization was 
obtained by Giga and Sohr [199], who also gave an application to the Navier-
Stokes equation on an exterior domain. It is the purpose of this section to study 
this extension to the case where only (3) holds thoroughly.  
 At first glance this seems to be an easy task; approximate 퐴	and 퐵	by 휀 + 	퐴 and 
휀 + 	퐵, use the Dore-Venni results and let 휀 → 0. Actually, this approach  
works, however, it is not straightforward. This is due to the fact, that in case we 
have (3) only, the fractional powers 퐴	  are in general unbounded, except for 
푧 ∈ 푖ℝ. For this reason it is not at all obvious whether 휀 + 	퐴 has bounded 
imaginary powers and whether the crucial assumption (2) holds for 휀 + 	퐴	. It 
turns out that this is indeed the case. For the proofs we use the functional 
calculus generated by the group 퐴	 ; it is closely related to the inverse Mellin 
transform; cp. Titchmarsh [209]. Once this functional calculus is put to work it 
is possible to show that (3) also holds for 휀 + 	퐴 with the same	휃 and 퐾 
uniformly in e which is indispensable for the limiting process. By means of this 
method, it is also possible to improve the estimate on (퐴 + 퐵) 		  derived by 
Dore and Venni [196]; we obtain  
                  (퐴 + 퐵) ≤ Kexp(max(휃 	, 휃 )|푠|)			for	all	푠 ∈ ℝ,																							(4)	
provided 휃 	≠ 	휃 , and an additional factor 1	 + |푠| / 	 appears in case 
휃 = 	휃 	.  
Let 푋 be a complex Banach space and let 퐴 denote a closed linear operator in 푋 
with dense domain 퐷(퐴); 	푁(퐴) and 푅(퐴) denote kernel and range of 퐴, and we 
use the notation 휌(퐴) and 휎(퐴) for resolvent set and spectrum of 퐴.		퐵(푋) is the 
space of  bounded linear operators in 푋. The basic assumption on 퐴 is  
(퐻1)		(−	∞, 0) ⊂ 휌(퐴), 푁(퐴) = 0, 푅(퐴) is dense in 푋, and, for some constant 
푀 ≥ 	1, we have  
                   |(푡 + 퐴) | ≤ 푀/푡					forall	푡 > 0.																																																								(5)	
It is well known that operators 퐴 satisfying (H 1) admit not necessarily bounded  
fractional powers of any order 푧	 ∈ ℂ, and for |Rez| ≤ 1, z	 ≠ 	0, and 푥	 ∈
	퐷	(퐴)	∩ 푅	(퐴) .we have the representation  

퐴 푥 =
푆푖푛푧휋
휋

	{푧 푥 − (	1 + 푧) 퐴 푥	 + 	 푡 (푡 + 	퐴) 		퐴 	푥푑푡 

                                                                        

																																																																												+ 	 푡 (푡 + 	퐴) 		퐴	푥푑푡	}; 								(6) 
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cf. Krein [201] or Komatsu [184]. In particular, since sin 휋푧/휋푧 is an entire 
function, it follows that 퐴	 푥 is a holomorphic function of 푧 for   |푅푒푧| < 	1 on 
the set 퐷(퐴) ∩ 푅(퐴); the latter is easily seen to be dense in 푋. In fact, given 
푥 ∈ 푋, choose 푦 ∈ 퐷(퐴) such that 퐴푦 → 푥; this is possible since 푅(퐴)	is 
dense in 푋. Then we have 푥 = 푛(푛 − 퐴) 		퐴푦 ∈ 푅(퐴) ∩ 퐷(퐴) and 푥 → 푥. 
Furthermore, 퐴	 푥	 satisfies the group property  

퐴	 	퐴	 푥 = 퐴	 푥,					푥 ∈ 퐷(퐴) ∩ 푅(퐴), 푅푒푧 , 푅푒푧 , 푅푒(푧 + 푧 ) ∈ (−1, 1).	 
Therefore the following definition makes sense. 
Definition (2.1.1) [186]: A closed linear densely defined operator 퐴 in 
푋	belongs to the  class BIP(푋, 휃), where 휃 ∈ [0, 휋), if 퐴 satisfies (H 1) as well as 
the condition. 
(H2)  For all	푠 ∈ ℝ	, 퐴	 ∈ 퐵(푋), and there is some 퐾 ≥ 	1 such that  
                            퐴	 	≤ 퐾푒	 | |, 푠 ∈ ℝ																																																																			(7)	
In general, it is not quite simple to verify (H2); however there are a number of 
examples which underline the importance of this definition.  
Example (2.1.2) [186]:  (Normal operators in Hilbert space). Let	푋 be a Hilbert 
space and 퐴 a normal operator in 푋	with spectral family {퐸 	}	 ∈ℂ. By the 
functional calculus for normal operators we have  
                                푓(퐴) = 	∫ ( )	푓(휆)푑퐸 ∈ 퐵(푋)	,	
for each Borel-measurable bounded 푓 ∶ 	휎(퐴) → ℂ, and  

|푓(퐴)| = 	sup	{|푓(휆)| ∶ 	휆	 ∈ 	휎(퐴)} = |푓	| 	
holds. Let 푆 	= 	 {휆	 ∈ ℂ:	|arg	휆	| 	< 	훼} ; then we have  
 
                  퐴 ∈ BIP(푋, 휃)		iff		푁(퐴) = 0	and	휎(퐴) ⊂ 푆̅ 	.																																				(8)	
In fact, if 푁(퐴) 	= 	0 then 푅(퐴) 	= 	푋 and with 푓(휆) 	= 	1/(휆	 + 	푡)  
   |(푡	 + 	퐴) | 	≤ sup{1/|휆	 + 	푡|:	휆	 ∈ 	휎(퐴)} 
                          = 	1/dis푡(	−	푡, 휎(퐴)) 	≤ 	1/(푡	sin	휃),	
 
i.e (H 1) holds. Also, with 푓(휆) = 	 휆	 = 	 푒 	 	 we obtain  
 

퐴	 	= 	sup	 휆	 :	휆	 ∈ 	휎(퐴) = 	sup	 푒 ∶ 	휆	 ∈ 	휎(퐴) ≤ 푒	| | 	.	
From this the converse implication is also obvious. 
Example (2.1.3) [186]:  (푚-accretive operators in Hilbert space). Suppose 퐴 is 
an 푚-accretive  linear operator in a Hilbert space 푋	such that 푁(퐴) = 0. Then 
we have 푅(퐴) dense in 푋 and (H 1) holds with 푀 = 	1. Moreover, the functional 
calculus of  퐴	developed by  Foias and Nagy [208] implies 퐴 ∈ BIP(푋, 휋/2), the 
constant 퐾 in (H 2) is 1. 
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Example (2.1.4) [186]:  (Multiplication operators on 퐿 (Ω, 휇)). Let	푋 =
퐿 (Ω, 휇), 1 ≤ 푝 < ∞ , where	(Ω, 휇) denotes a 휎-finite measure space, and 
consider a 휇-measurable function 푚(푥) such that 푚(푥) ≠ 0 휇 -푎. 푒. ; let 퐴 be 
defined as  
           (퐴푢)(푥) = 푚(푥)푢(푥),				푥 ∈ Ω,				퐷(퐴) = 	 {푢 ∈ 푋:	퐴푢 ∈ 푋}.	
This 퐴 is closed linear and densely defined, 푁(퐴) = 0 and 푅(퐴) = 푋. It is not 
difficult to see that  
                             퐴 ∈ BIP(푋, 휃)		iff				푚(푥) ∈ 푆̅ 	푎. 푒.																																										(9)	
Example (2.1.5) [186]:  (푑/푑푡	푖푛	퐿 (ℝ ; 	푌)). Let 푌	denote another Banach 
space, and let  푋 = 퐿 (ℝ ; 	푌), with 1 < 푝 < ∞. Define 퐴푢 = 푑푢/푑푡 for 
푢 ∈ 퐷(퐴) = 푊 , (ℝ ; 	푌);		it is well known that 퐴 is closed linear densely 
defined, and that the a djoint	퐴∗	of	퐴 is given by 퐴∗푢∗ = −푑푢∗/푑푡	for				푢∗ ∈
퐷(퐴∗) = 푤 , (ℝ ;	푌∗), in case 푌	is reflexive, and 푝 + 푞 	= 	1. Therefore 
we have  	푁(퐴) = 푁(퐴∗) = 0, hence  푅(퐴) is dense in 푋. Furthermore, 	
  

(푡 + 퐴) 푓(푥) = 	 푒 ( ) 푓(푦)푑푦,				푡 > 0, 푓 ∈ 푋,	

hence (H 1) follows with 푀	 = 	1. 
   It has been shown recently by Dore and Venni [182] that in case 푌 is  휉-
convex,  the imaginary powers of 퐴	satisfy the estimate  

                        퐴	 	≤ 퐶(푝, 푌)(푙	 + 	푠 )푒	
| |
									푠 ∈ ℝ,																																		(10)	

where the constant C(푝, 푌) > 0 only depends on 푝	and 푌. Thus if 푌 is  휉-convex 
and 1	 < 푝 < 	∞ then 퐴 ∈ BIP(푋, 휋/2	 + 	휀) for each 휀 > 0.  
   Actually, Dore and Venni proved this only for the case of a finite interval 
[0, 푇], however, without any changes their proof carries over to the hairline case.  
Example (2.1.6) [186]:  (Diffusion semigroups). Suppose −퐴	is the generator of 
a positive contraction semigroup 푇(푡)	푖푛	푋 = 퐿 (Ω, 휇), 1	 ≤ 푝 ≤ ∞, where as 
before (Ω, 휇),	 denotes a 휎-finite measure space. Assume that 푇(푡) is selfadjoint 
for 푝 = 2 and that 푇(푡)1	 = 	1 for 푡	 > 	0	in	퐿 (Ω, 휇), where 1 denotes the 
function which is constant 1. Stein [207] proved that then 퐴 ∈ BIP(푋, 휋/2) 
holds, for any 푝 ∈ (1,∞). This result covers elliptic boundary value problems of 
second order; the angle 휋/2, however is not best possible for this case, as the 
results of Seeley [206] show.  
Example (2.1.7) [186]:  (Stokes operator). Let Ω ⊂ ℝ  be a domain with 
compact smooth boundary, consider the space = 	퐿 (Ω;ℝ ), for 	1 < 푝 <
∞	, 푛	 > 	1, and let 푋	 = 	 퐿 (Ω;ℝ )	denote the subspace of  푌 defined by the 
closure of C , ((Ω;	ℝ )} 	= 	 {푢 ∈ C ((Ω;	ℝ ):	div	푢 = 0} in the norm of 푌; 
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here div	푢 means the divergence of the vector field 푢. Then for every 푓 ∈ 	푌 
there exists the unique decomposition  	푓 = 푓 	+ 	grad	휑			with 	푓 ∈ 	푋	 the 
Helmholtz decomposition; grad	휑 is as usual the gradient of  the scalar function 
휑	. The operator 푃:	푌 → 푋 defined by 푃푓 = 푓 		is a bounded linear projection in 
푌 with 푅(푃) = 푋. The Stokes operator 퐵 on 	푋 is then defined by 퐵푢 = −푃Δ,	 
퐷(퐵) = 퐷(Δ) ∩ 푋; here Δ	 denotes the Laplacian on 푌	 with zero boundary 
conditions, i.e. 퐷(Δ) = 푊 , (Ω;	ℝ ) ∩푊 , (Ω;	ℝ ). The Stokes operator 
represents the stationary linear part of the Navier-Stokes equation for the flow of 
an incompressible material with Newtonian viscosity.   
    It is known that (H1) holds for 퐵; cp. Borchers and Sohr [193]. Concerning 
(H2), it has been proved recently that for every 휃 ∈ (0, 휋/2) there is a constant  
퐾 = 퐾(휃, 푝) such that (H2) is satisfied. For the case of bounded domains this 
result is due to Giga [197], while for exterior domains this has been proved by 
Giga and Sohr [198]. Thus 퐵 ∈ BIP(푋, 휃), for any 휃 > 0.  
 Furthermore, 퐵 is even selfadjoint in 퐿 (Ω; ℝ ). It should, however, be noted 
that 퐵 is not covered by Example (2.1.6), since the semigroup generated by 퐵 
cannot be expected to be positive and it is an open question whether it is 
contractive for general 푝. Also, in the case of an exterior domain the Stokes 
operator is not invertible, hence (1) does not hold.  
   Note that the class BIP(푋, 휃),  enjoys the symmetry property  
                         퐴 ∈ BIP(푋, 휃)		iff		퐴 ∈ BIP(푋, 휃)	.																																											(11)	
Let 퐵	denote the generator of the C -group 퐴 ; formally we obtain  	퐵 =
	푖	log퐴,	and so we may use this relation as a definition of 	log퐴.  
Definition (2.1.8) [186]:  Suppose 퐴 ∈ BIP(푋, 휃)		 and let 퐵 be the generator of 
the  C -group 퐴 	. Then the logarithm of 퐴 is defined by  
                        log	퐴	 = 	−	푖퐵.																																																																																			(12)	
Recall the Mellin transform defined by   

																				퐹(휌) = 푓(푡)푡 푑푡		; 																																																																								(13) 

Mellin's  inversion formula reads  

													푓(푡) = (1/2휋푖)	 퐹(휌)푡 푑휌.																																																												(14)		

 (14) will serve for the construction of a functional calculus for operators of 
Class  BIP(푋, 휃)		 . For the convenience of the reader we now collect several 
well known transformation pairs and several useful properties of the Mellin 
transform.  
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    푓(푡)																					퐹(휌)		
    1/(1	 + 	푡)											휋/sin	푧	휌																											0	 < 	Re	휌	 < 	1																												(15)	
      푒	 																					Γ(휌)																																					0	 < 	Re	휌																																						(16)	
    (1	 + 	푡) 										Γ(휌)	Γ(푎 − 휌)/Γ(푎)									0	 < 	Re	휌	 < 	Re	푎																					(17)	

    푓 (푡)푓 (푡)											(1/2휋푖)	∫ 퐹 (휌 − 휎)						퐹 (휎)푑휎																																		(18)	
    
   푓	(훼	푡)																			(1/훼) 	퐹	(휌)																																																																													(19) 
   −(푑/푑푡)푓(푡)							(휌 − 	1)	퐹(휌	 − 	1)																																																																			(20)	
    푡 푓(푡)																				퐹(휌	 + 	푎)																																																																																	(21)	
  Adetailed study of the Mellin transform can be found, e.g., in the classical 
monograph Titchmarsh [209].  
    In the sequel, we let 휃 ∈ 	 [0, 휋) be fixed and 퐴	denotes any element of   
BIP(푋, 휃). Define  

푀 (ℝ) = 	 {휇 ∈ 푀 (ℝ)):	|휇| 	= (1/2휋)	 푒 | | 		|푑휇(푠)| 	< 	∞},	

the Banach space of all complex measures on ℝ	 which are finite w.r. to the 
weight 푒 | | normed by	|	. | 	 ; 푀 (ℝ) becomes a Banach algebra with unit, the 
convolution of measures, scaled by 1/2휋, being the multiplication. Evidently, 
the Dirac measure 훿 	with mass in 푠 ∈ ℝ belongs to 푀 (ℝ)	; 2휋훿 		is the unit of 
the algebra 푀 (ℝ)	. For measures 휇 ∈ 푀 (ℝ)	we define  

							푓(푧) = (1/2휋)	 푧 		푑휇(푠), |arg푧| ≤ 휃;																																								(22)	

 
this map defines an algebra homomorphism from 푀 (ℝ)	into the Banach 
algebra 퐻 	(푆 ) defined by  

퐻 	(푆 ) = 	 {	푓:	푆̅ → ℂ	continuous, holomorphic	in	푆 }		
with norm |푓	| = 	sup{|푓(푧)|:	푧 ∈ 푆̅ }, and pointwise multiplication. This gives 
rise to an algebra homomorphism from 푀 (ℝ)	 into 퐵(푋) defined by  

						푓(퐴) = (1/2휋)	 퐴 		푑휇(푠),																																																																							(23)	

where 휇 and 푓	are related by (22). Choosing  휇 = 2휋훿 	, we obtain 푓(푧) =
푧 			as well as 푓	(퐴) 	= 	퐴 ; in particular (2휋훿 	)(퐴) 	= 	퐼. Moreover,  

	
   (푓 푓 )(퐴) = (1/2휋)	∫ 퐴 		푑(휇 ∗ 휇 )(푠)	 
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                    = (1/2휋) 	∫ ∫ 퐴 		푑휇 (푠 − 푡)푑휇 (푡)	 
                    
                    = (1/2휋) 	∫ 퐴 푑휇 (푡) ∫ 퐴 푑휇 (푠) = 푓 (퐴)	푓 (퐴);		
this proves that the map (23) is multiplicative. 
Theorem (2.1.9) [186]:  Let 휃 ∈ [0, 휋) and 퐴 ∈ BIP(푋, 휃).  
Then (23) defines an algebra homomorphism from M (ℝ) into 퐵(푋) such that 
                        푓(푧) = 푧 		implies	푓(퐴) = 퐴 , 푟 ∈ ℝ.																																(24)	
Moreover, we have the estimate  
                             |푓(퐴)| 	≤ 퐾|휇| 																																																																											(25)	
with 퐾 from (H2). Here 푓	and 휇	 are related by (22). 
   It is left to the reader to translate the properties (19)-(21) into the properties of 
the algebra homomorphism. However, let us state a consequence of (19) for 
future reference.  
Corollary (2.1.10) [186]:  Let  휃 ∈ [0, 휋) and ∈ BIP(푋, 휃), 훼 > 0	 .  Then 
훼퐴 ∈ BIP(푋, 휃) and we have 
                 						푓(훼퐴) 	= 푓 (퐴)																																																																																			(26)	
Where  푓 (푡) = 푓(훼푡) and 	푓	is given by (22). 
    It is to be mentioned that this functional calculus is nothing else than the  
functional calculus of Phillips for the group 	퐴 	, after an exponential change of 
variable; cf. Hille and Phillips [200]. For our purposes, however it is more 
appropriate to have the Mellin-transform as a setting rather than the Laplace-
transform.  
   Unfortunately, our functional calculus is not strong enough to recover the 
resolvent (휆 − 퐴) 	 of 퐴 from the group  퐴 . The reason for this is that the 
Mellin transform of 1/(1	 + 	푡) has poles at 휌	 = 	0, 1. We are going to remove 
this defect. Consider the transform pair (15); the inversion formula (14) then 
holds for each 푐	 ∈ (0, 1) since  |sin	휋휌| 	≥ 	푠	ℎ	휋	|푠	|, 푠 = Im휌	. Let 푥	 ∈
	퐷	(퐴)	∩ 	푅	(퐴); the vector-valued function 퐴 푥, |Re	휌| 	< 	1, is then 
holomorphic and we have the estimate  

|퐴 푥| 	≤ 	 C (푥)푒 | |								, |Re	휌| ≤ 1	 − 휀,	

which easily follows from the representation (6) of 	퐴 푥 and the group property. 
Therefore, the integral  

								푇푥 = (1/2휋푖) (휋/ sin 휋휌)퐴 푥푑휌, 0 < 푐 < 1,															(27)	

Exists as an absolutely convergent integral and by Cauchy's Theorem it is 
independent of 푐. Applying (퐼	 + 퐴) to (27) we obtain  
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           (퐼	 + 	퐴)푇푥	 = 	 (1/2휋푖) ∫ (휋/ sin 휋휌)퐴 푥푑휌 
                                 

                                 +(1/2휋푖) ∫ (휋/ sin 휋휌)퐴 푥푑휌	;	
Using Cauchy's Theorem again, we deform the path of integration in the first 
integral into the contour	훤  , the contour consisting of the intervals 
	(−	푖	∞, −	푖휀],			[푖휀, 푖∞) connected  by the positive halfcircle Γ  of radius 휀 > 0; 
similarly, the path of integration in the second integral is deformed into Γ , the 
intervals (1 − 	푖	∞, 1 − 	푖휀]	푎푛푑	[1 + 푖휀, 1 + 푖∞) connected by the negative 
halfcircle Γ 		of radius 휀 > 0	. Since  sin	휋(1 + 푝) = −sinπρ the contributions 
coming from the straight lines in 훤  cancel each other, and therefore there 
remains  

	(퐼	 + 	퐴)	푇푥 = (1/2휋푖)	 

xdA


1

)sin/( 			

+ (1/2휋푖) 

xdA


2

1)sin/( 		;		

it is easily seen that	(퐼	 + 	퐴)	푇푥	 = 푥 as 휀 → 	0, hence we obtain   푇푥	 =
(퐼	 + 	퐴) 푥		for each 푥 ∈ 퐷(퐴) ∩ 푅(퐴). Shifting the contour to the imaginary 
axis in (27) and applying Corollary (2.1.10) we have shown  

(퐼 + 훼퐴) 푥 = (1/2휋푖)푃푉	 (휋/푠ℎ휋푠)(훼퐴) 	푥푑푠 + (1/2)푥,																	(28)	

for each 푥 ∈ 퐷(퐴) ∩ 푅(퐴). and 훼	 > 	0; here ′	푃	푉′ indicates Cauchy's principal 
value. 
Now consider 휆	 = 	훼	푒 	 with	|휑	| < 	휋	; then (14) with  푓(푡) 	= 	1/(1	 + 	휆푡) 
yields  
       1/(1	 + 	휆푡) = 1/(1	 + 훼푡) 

													+(1/2휋푖) (휋/푠ℎ휋푠)(훼푡) 	(푒 − 1)푑푠;		

the measure	휇	 with density 푑휇/푑푠 = (휋/푠ℎ휋푠)(푒 − 1)	훼  belongs to 
푀 (ℝ), provided |휑| < 휋 − 휃, and |휇| ≤ 푐/(휋 − 휃 − |휑|) holds for some 
constant 푐 which is independent of 휑 and 훼	. Thus by Theorem (2.1.9), 	1, (퐼 +
휆퐴	) 		 exists for each 휆 ∈ ℂ  with 	|arg λ| 		< 	휋 − 휃 and  
                 |(퐼 + 휆퐴	) | ≤ |(퐼 + 훼퐴	) | 	+ 	C	|휇| ≤ 	C	.	
On each sector 	푆̅ 	 with 푣	 < 	휋 − 휃. We have proved 
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Theorem (2.1.11) [186]:  Let 퐴 ∈ BIP(푋, 휃), 0 ≤ 휃 < 휋.	then 휎(퐴) ⊂ 	푆̅ 	 and 
we have the estimate  
                        |(휆 + 퐴	) | ≤ C /|휆|,						휆 ∈ S ,																																																		(29)	
where 푣	 < 	휋 − 휃. In particular, if 0	 < 	휋/2 then −퐴 generates a uniformly 
bounded  analytic C -semigroup 푒 	 in 푋. 
   By means of the transform pair (16) it is possible to obtain a representation  of 
푒  in terms of the imaginary powers 퐴 , but we will not do this here. 
  Suppose 퐴	satisfies (H1); it is then obvious that 휀 + 퐴 = 퐴 	 also satisfies (H 1) 
for each 0	 < 	휀	 < 	1, and there holds the stronger estimate  
          |(푡	 + 	퐴 ) | ≤ 푀/(휀 + 	푡) ≤ (푀/휀)/(1	 + 푡), 푡 > 0.																									(30)	
Therefore, the fractional powers 퐴 	 exist and are bounded for Re	훼 > 0; they  
even form an analytic semigroup. It is much less obvious whether this 
semigroup has boundary values in 퐵(푋) on the imaginary axis. However, this 
can be expected if 퐴	 belongs to BIP(푋, 휃). In fact, we show that then 퐴 ∈
BIP(푋, 휃) for each 휀 > 0; even more is true.  
Theorem (2.1.12) [186]:  Suppose 퐴 ∈ BIP(푋, 휃)		for some 휃 ∈ (0, 휋), and let 
퐴 = 휀 + 퐴	, 휀 > 0 . Then 퐴 ∈ BIP(푋, 휃)		 as well, and the constants 푀 and 
퐾	from (HI) and (H2), respectively, can be chosen uniformly w.r.t, 휀 > 0	. 
Moreover, the group 퐴 	converges  strongly to the group 퐴   as 휀 → 0. 
Proof. The proof  is based on the functional calculus for operators of class  
BIP(푋, 휃)		 . Let 퐴, 휃, 퐴 	, 휀 be as in the theorem and let 푀	and 퐾 denote the 
constants in (H1) and (H2) for 퐴; we first consider the case 휀	 = 	1. The 
transformation pair (17) clearly yields the complex powers of 퐴  with negative 
real part, however, this 퐹(푠) does not give rise to a measure of class 푀 (ℝ)  
since 퐹(푠) has a pole at 푠	 = 0; also we are interested in the case Re	푎 = 	0 and 
so we have to derive a corresponding formula of type (22).  
     First we use the Mellin inversion formula (14) for the pair (17) ,	Re	푎 > 	0. 
Shifting the contour of integration to the imaginary axis yields  

(1 + 푡) =
1
2 +

1
2휋 푃푉	 Γ(푖푠)Γ(푎 − 푖푠)Γ(푎) 	푡 푑푠, 푡 > 0, Re푎 > 0,												(31) 

where again '푃푉′	denotes Cauchy's principal value. To remove the pole at  
푠 = 0, we subtract from (31) the representation of (1	 + 휌푡) 	, 휌 > 0,	i.e. (31) 
with 	푎 = 	1 ; this gives  
   

(1 + 푡) = (1	 + 휌푡) 	+ (1/2휋)	∫
( ) ( )

( ) − ( ) 푡 푑푠	.							(32) 
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Note that the integral now is absolutely convergent since the pole at 푠 = 0 has 
been removed. Next we want to let 푎 → 	푖휌 in equation (32); then 푠 = 휌 
becomes a singularity within the integrand. To avoid this we alter the contour of  
integration once more into 	Γ , consisting of the two rays {푖푠:	푠 ≤ 휌 −
휀}, {푖푠:	푠 ≥ 휌 + 휀}  and the left halfcircle with radius 휀 > 0. Now passage to the 
limit 푎 → 푖휌 can be carried out to the result  
 
 (1 + 푡) = (1	 + 휌푡) 	 
    
               		+(1/2휋푖)	∫ {Γ(푧)Γ(푖휌 − 푧)/Γ(푖휌) − 휋휌 /sin	 휋푧}. 푡 푑푧	.       (33)                                                                                         

Next we let 휀 → 0 and obtain 
  (1 + 푡) = (1	 + 휌푡) + (1/2)푡  
    

																					+(1/2휋)푃푉	
Γ(푖푠)Γ(푖휌 − 푖푠)

Γ(푖휌)
−
휋휌
sin 휋푖푠

푡 푑푠	.																		(34)	

finally, to remove the singularity we add (use (15) and (21))  
 
  휌푡 (휌 + 푡)  
        		= (1/2)푡 + (1/2휋)푃푉	 ∫ {휋휌 /sin휋푖(푠 − 휌)}	 	푡 푑푠											(35)	
to (34)  
  (1	 + 푡) = (1	 + 휌푡) + 푡 − 휌푡 (휌 + 푡)  
                             
                                                       +(1/2휋)	∫ g (푠)푡 		푑푠,																						(36)	
Where 
 
g (푠) 	= 	 {Γ(푖푠)Γ(푖휌 − 푖푠)/Γ(푖휌)}	− {휋휌 /sin	 휋푖푠} 		− 	 {휋휌 /sin	 휋푖(휌 − 푠)},							(37)	
 
with 푠 ∈ ℝ, 휌 > 0. 
   It is not difficult to show that g (푠) 	≤ C 푒	 | |, 푠 ∈ ℝ	, and so g  gives rise  
to a measure 휇 푀 (ℝ)	.This yields the representation 
 
   퐴 = 	휌 	퐴	퐴 / 	+ 	퐴 	− 	휌	퐴 	퐴 	+ 푓 	(퐴),																																					(38)	
where 푓 is given by (22) with 푑휇 /푑푠 = g 	, thanks to Theorem (2.1.9). 
  Thus the functional calculus developed in this   Section shows that the 
imaginary  powers of 퐴 	 exist and belong to 퐵(푋) for each fixed 휌 > 0. We 
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now have to verify estimate (7). It is clear from (38) that it remains to derive the 
desired  bound on 푓 	(퐴),					which means to prove  
 

																				 g (푠) 푒 | |	푑푠 ≤ C푒	 			휌 > 0,																																																				(39)	

where 퐶 only depends on 휃, but not on 휌. The integral in (39) is broken up into 
five parts according to the intervals	(−∞,−휂), (−휂, 휂), (휂, 휌 − 휂),	 
(휌 − 휂, 휌 + 휂) and (휌 + 휂,∞), where 휂 < 휌/2 is fixed, to be chosen lateron. 
These integrals will be named 퐼 , 퐼 	. . . . , 퐼  and estimated separately. In the 
sequel we will use repeatedly the formula  
                        |Γ(푖푠)| 	= 	휋/(푠	푠ℎ	휋푠), 푠 ∈ ℝ,																																																		(40)	
see, e.g., Abramowitz and Stegun [191], p. 77, as well as the elementary 
estimate  
                         푒 /2 ≥ 	푠ℎ	휋푟 ≥ 푐 휂푒 , 푟 ≥ 휂		,																																													(41)	
 
where 푐 > 0 is independent of 휂 > 0. 
퐼 : Here we have by (40) and (41)  
 

g 	(푠) ≤ C 	휂 	푒 | |	, 푠 ≤ −휂	
hence  

													|퐼 | ≤ 	 C 	휂 	푒 푒 		푑푠 ≤ C 	휂 (휋 − 휃) 	.																															(42)	

퐼 	: For this integral (40) and (41) yield 
g 	(푠) ≤ C 	휂 	푒 	푒 , 푠 ≥ 휌 + 휂	

hence  

				|퐼 | ≤ C 	휂 	 	푒 ( ) 		푑푠	푒 = C 	휂 (휋 − 휃) 	푒 	.																					(43)	

퐼 : Similarly, here we obtain  
g 	(푠) ≤ C 	휂 [휌/푠(휌 − 푠)] / 	+ 푒 + 푒 ( ) , 휂 ≤ 푠 ≤ 휌 − 휂	,	

and so a simple calculation shows  
 

|퐼 | ≤ C 	휂 	 	 [휌/푠(휌 − 푠)] / 	+ 푒 + 푒 ( ) 	 	푒 	푑푠 

               ≤ C 	휂 { 휌	푒 ∫ [푡(1 − 푡)] / 	 	푒 푑푡 
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               +(휋 − 휃) 				+ (휋 + 휃) 	푒 }		
 
               	≤ C 	휂 (1/√휃)	푒 + (휋 − 휃) + (휋 + 휃) 	푒 .																			(44) 
Note that here we need 휃 > 	0!  
퐼 : Since g 	(푠) is continuous w.r. to 휌	 > 	2	휂	and 푠	and the interval under 
consideration has length 2	휂	 not dependent on 휌 it is clear that |퐼 (휌)| ≤ C	as 
long as  휌	 is bounded. Therefore we may restrict our attention to large values of  
	휌	. We have  

휋휌 / sin 푖휋(휌 − 푠) ≤ C 	휂 푒 ( ) ≤ C 	휂  
and   from  the reflection formula of the gamma function  
                        Γ(푧)	Γ(1 − 	푧) = 	휋/sin	휋푧	.	
We obtain for 푠	 ∈ 	 [−	휂, 휂]  

g 	(푠) ≤ C 	휂 +	|훤(푖	푠)| 훤	(푖	(휌	 − 	푠))/훤(푖	휌) 	− 	휌 	훤(1	 − 	푖	푠) .	
 
Since Γ(푖푠) has a simple pole at 푠	 = 	0 there is a constant 푐	 > 	0 such that  

|푠훤(푖	푠)| ≤ 푐, |훤(1	 − 	푖	푠) − Γ(1)| ≤ 푐|푠|, |푠| ≤ 휂;	
 
note that Γ(1) = 1	. Next we use Stirling's formula  
                       Γ(푧)~푒 푧 / √2휋, |푧| → ∞, |argz| < 휋,	
And for large values of 휌 this yields  
 
        g 	(푠) ≤ C 	휂 + C + 푐	 푒 (1 − 푠/휌) ( ) / 	푒 / − 1	 /푠	 
 
                      ≤ C 	휂 		, |푠| ≤ 휂	, 
hence  
                 |퐼 | ≤ C 	휂 	∫ 	푒 | | 푑푠	 ≤ 2C 	휂 푒 | | ≤ C 	휂 	.	 

퐼 : To treat 퐼  we use the symmetry  g 	(휌 − 	푠) = 	 g 		(푠); thus  
 

|퐼 | ≤ g 	(푠) 	푒 | | 푑푠 ≤ 푒 | | g 	(휌 − 푠) 	푒 | | 푑푠 ≤ 푒 C 	휂 . 

Thus we have shown that (39) holds for 휌 ≥ 2휂, where 휂 > 0 is fixed. For  
휌 ∈ (0,2휂) we have to use a slightly different argument. This time we use the  
representation  
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(1 + 푡) = (1 + 푡) + 푡 − 푡 (1 + 푡)

+ 1/2휋 ℎ (푠)푡 푑푠, 																																																																				(45) 

where  
          ℎ (푠) = 훤(푖	푠)훤 푖휌	– 	푖	푠 /훤(푖	휌) − 휋/ sin 휋푖푠 − 휋/ sin 휋푖(휌 − 푠),	   (46)                        
with 휌 > 0;  
 (45) is derived similarly to (36). This gives again  
                   퐴 = 퐴 	+	퐴 − 퐴 퐴 +	푓 (퐴)																																								(47)	
 
where 푓  now is given by (22) with 푑휇 /푑푠	 = 	 ℎ . To obtain the desired 

estimate  for 퐴 , 휌 < 2휂	 we have to prove  

																			 ℎ (푠) 푑푠 ≤ C,						0 < 휌 < 2휂.																																																							(48) 

We divide the integral in (48) into three parts according to the intervals 
(−	∞, 3휂), (−3휂, 3휂), (3휂,∞); the corresponding integrals are named 퐼 , 퐼 , 퐼 	, 
and are estimated separately. 퐼 	, 퐼 		can be treated as before, we obtain the same 
bounds as in (42) and (43), respectively. On the other hand,	퐼  is easily seen to 
be uniformly bounded, since the integrand	ℎ (푠), is continuous and  bounded 
with respect to both variables  
                            |푠	| ≤ 	3	휂,			0	 < 	휌	 ≤ 	2	휂.	
The case 휌	 < 	0	can be reduced to 휌 > 0	by taking complex conjugates in 
formulas (36) and (45).   
   Finally, let 휀 > 0 be arbitrary and replace 퐴 by 휀퐴 in the above arguments. 
Since the constants 푀 and 퐾	of (H 1), (H2) also apply to 휀퐴	, we obtain uniform 
bounds for (1	 + 	휀퐴) 	.	The strong convergence 퐴 → 	퐴  follows from the 
Banach-Steinhaus theorem and from (6). □ 
Note that in Theorem (2.1.12) we had to exclude the case 휃 = 0. We do not 
know  whether this is essential or only due to the method of  proof employed.  
Recall that a Banach space 푋	is said to be 휉-convex if there is a function 
휉:	푋	 × 	푋	 → 	ℝ	, convex w.r.t, both variables, such that 휉(0, 0) > 	0 and  

휉(푥, 푦) ≤ |푥 + 푦|				for	all	푥, 푦 ∈ 푋			with	|푥| = |푦| = 1.	
Such spaces are of interest here since it is known that 푋 is 휉 -convex iff   the  
Hilbert transform 퐻 on 퐿	 (ℝ, 푋), 1	 < 	푝	 < 	∞, defined by  

(퐻푓)(푡) = (1/휋푖)푃푉	 


 sdsstf /)( , 푡 ∈ ℝ	,	
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is bounded. Hilbert spaces are 휉 -convex (choose 휉(푥, 푦) = 	1 + (푥, 푦) to see 
this), closed subspaces of 휉 -convex spaces have this property again, and if	푋 is 
휉 -convex then 퐿	 	(Ω, 휇; 	푋), 1	 < 푝	 < 	∞, is 휉-convex, where (Ω, 휇) denotes 
any 휎-finite measure space. For the definition and these properties of 휉 -convex 
spaces as well as others we refer to the survey article of Burkholder [194] and 
the references given there.  
  Now, let the Banach space 푋 be 휉 -convex, and suppose 퐴 ∈ BIP(푋, 휃 ), 
퐵 ∈ BIP(푋, 휃 )	, 휃 + 휃 	< 휋, are resolvent commuting, i.e. there are  
 	휆 ∈ 	휌	(퐴), 휇 ∈ 	휌	(퐵)		such that 	
										(휆	 − 퐴) 	(휇 − 	퐵) 		= 	 (휇 − 	퐵) (휆	 − 퐴) 	.																																			(49)	
We want to extend the result of  Dore and Venni [182], Theorem 2.1, to this 
more general setting.  
Theorem (2.1.13)[186]: Let 푋 be 휉-convex, 퐴 ∈ BIP(푋, 휃 ), 퐵 ∈ BIP(푋, 휃 ), be 
resolvent commuting and assume 휃 + 휃 	< 휋. Then the operator 퐴 + 퐵 with 
domain 퐷(퐴 + 퐵) = 	퐷	(퐴) 	∩ 	퐷	(퐵)	is closed and satisfies condition (H I). 
Moreover, there is a constant 퐶	 > 	0 such that  
                 |퐴푢| + |퐵푢| ≤ C|퐴푢 + 퐵푢|, 푢 ∈ 퐷(퐴) ∩ 퐷(퐵)																															(50)	
is satisfied; 푁(퐴	 + 퐵) = 0 and 푅(퐴	 + 	퐵) is dense in 푋. 

Proof. Consider the approximations 퐴	 = 	휀	 + 	퐴, 퐵	 	= 	휀	 + 	퐵 where 
휀	 > 	0; according to Theorem (2.1.12), 퐴	 ∈ BIP(푋, 휃 ),  
퐵	 ∈ BIP(푋, 휃 ),and the constants 푀 ,퐾 	 and 푀 ,퐾 	  appearing in (H1) and 
(H2) can be taken uniformly w.r. to 휀	 > 	0. By virtue of (30), 퐴	 , 퐵	 satisfy the 
assumptions of  Theorem 2.1 in Dore and Venni [182], hence 퐴	 + 퐵	  with 
domain 퐷	(퐴) 	∩ 	퐷	(퐵)	 is closed, and we have the representations  
 

	푆 = (퐴	 + 퐵	 ) = (1/2푖) (퐴 퐵 )/푠푖푛(휋푧) 	푑푧,	 

                                                                                      0 < 푐 < 1,																				(51)	
as well as  

퐴 	푆 푥 = (1/2푖)푃푉	 (퐴 퐵 푥)/푠푖푛(휋푖푠) 푑푠 + (1/2)푥,	 

                                                                                        푥 ∈ 푋;																									(52)	
Observe   that the 휉-convexity of 	푋 is needed for the integral in (52) to exist for 
all 푥 ∈ 푋	. Since 퐴	 + 퐵	 = 2휀 + 퐴 + 퐵 is closed with domain 퐷(퐴 + 퐵) =
퐷(퐴) ∩ 퐷(퐵) we see that 퐴	 + 퐵 is closed as well. Further, the moment 
inequality yields with 푧 = 푐	 + 	푖휌	  
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  |퐴 푥	| ≤ 퐴 |퐴 푥	| 	≤ 퐾 푒 | |	|퐴 푥	| |푥| 	 
                                           ≤ 푀 	퐾 푒 | |휀 	|푥|,	
 
and similarly for 퐵 	. By means of these estimates, (51) yields with  푐	 =
	1/2	 

|푆 | ≤ 푀 	푀 	퐾 퐾 휀 	휀 	 푒( )| | 	푒 | |푑푠 

                                                                              = 푀 /(2휀)	,																						(53)	
i.e. estimates (5) holds also for 퐴	 + 	퐵. Since 휉-convex spaces are reflexive, 
from ergodic theory of linear operators (see, e.g., Hille and Phillips [200], chap. 
18) we even obtain 휀푆 → 	푃 strongly as 휀 → 	0, where 푃	denotes the projection 
onto  푁(퐴	 + 	퐵), and we have the decomposition  
                       푋	 = 	푁(퐴	 + 	퐵) ⊕ 푅(퐴	 + 	퐵).																																																				(54)	
As in Dore and Venni [182] we next use (52) to obtain a constant C independent 
of 휀 > 0 such that  
                       |퐴 	푆 | ≤ C		and				|퐵 	푆 | ≤ C	;																																																					(55)	
this follows from the fact that the Hilbert-transform is continuous on 퐿 (ℝ, 푋),
1 < 푝 < 	∞ whenever 푋 is 휉 -convex, and since the constants 퐾 for 퐴 , 퐵  are 
uniform in 휀 > 0, by Theorem (2.1.12); see Dore and Venni [182], p. 193, for 
details. From (55) we immediately get by (53)  
                       |퐴	푆 | + |퐵	푆 | ≤ C.																																																																											(56)	
 
Let 푥	 ∈ 	퐷	(	퐴	 + 	퐵) 	= 	퐷	(퐴	) 	∩ 	퐷	(	퐵) and put  
푦 = 	 (휀	 + 	퐴	 + 	퐵)	푥;	then 푥	 = 	 푆 	푦  hence  
            |퐴푥	| + 	 |퐵푥| 	= 	 |퐴푆 	푦 | 	+ 	 |퐵푆 	푦 | 	≤ 	C|(휀	 + 	퐴	 + 	퐵)	푥|,	

and passing to the limit 휀 → 0 we obtain (50). Finally, inequality (50) shows that 
푁(퐴 + 퐵) ⊂ 푁(퐴) ∩ 푁(퐵) = 0, and so from (54) we also obtain density of  
푅	(퐴	 + 	퐵) in 푋, i.e. 퐴	 + 	퐵	satisfies (H 1). □ 
Corollary (2.1.14) [186]: Under the assumptions of  Theorem  (2.1.13)we have 
additionally that the  operators 퐴(퐴 + 퐵) 	 and 퐵(퐴 + 퐵) defined on the 
dense set 푅(퐴 + 퐵) are bounded, and so admit bounded extension to all of  푋.  
  A natural question arising in connection with Theorem (2.1.13) is whether the 
sum 퐴 + 퐵 is again of class BIP(푋, 휃) for some 휃 ∈ [0, 휋).  
  A positive answer to this question would lead to the possibility to use an 
induction argument to treat sums ∑ 퐴	푖	 of pairwise commuting operators of  
class BIP(푋, 휃 ). It was recently shown by Dore and Venni [196] that this is 
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indeed the case if  both operators 퐴 and 퐵 are strongly positive in the sense that 
(5) is strengthened to  
                    |(푡 + 퐴) | ≤ 푀/(1 + 푡),				푡 > 0.																																																				(57)	
Their result, however, is not optimal, since they obtain 퐴 + 퐵 ∈ 퐵퐼푃(푋, 휃 + 휀)  
where 휃 = max(휃 , 휃 ). Our next theorem improves and extends Theorem 3.1 
in Dore and Venni [196].  
Theorem (2.1.15) [186]: Suppose 푋	is 휉-convex, 퐴	 ∈ 퐵퐼푃(푋, 휃 ), 퐵 ∈
	퐵퐼푃(푋, 휃 ),	with 휃 +	휃 < 휋, are resolvent commuting, and let 휃 =
max(휃 , 휃 ).  휃 ≠ 	휃 . Then		퐴	 + 	퐵	 ∈ 	BIP(푋, 휃).  
Proof . Let 퐴, 퐵, 휃 , 휃  and 휃 be as in the theorem, w.l.o.g. 휃 < 	휃 and let 
휀 > 0. We claim that 퐴(휀 + 퐵) ∈ BIP(푋, 휃 +	휃 ). In fact, for 푡 > 0 we have  
   |(푡	 + 	퐴(휀 + 	퐵) ) | = |(휀 + 	퐵)(푡휀 + 	푡퐵 + 	퐴) | 
         ≤ 휀|(푡휀 + 푡퐵 + 	퐴) | + |퐵(푡휀 + 푡퐵 + 	퐴) | ≤ 휀푀/(푡휀) 	+ C/푡,	
since 퐴 and 푡퐵 satisfy the assumptions of Theorem (2.1.13); here 푀 and C are 
from (53) and (55). On the other hand, the groups 퐴 	and	(휀 + 퐵) 	 commute 
and we have  
    (퐴(휀 + 퐵) ) ≤ 퐴 (휀 + 퐵) ≤ 퐾 퐾 푒( 	 )| |, 휌 ∈ ℝ.	
Next, using the function g (s) introduced in (37) in the proof of Theorem 
(2.1.12) we have the representation  

(1 + 퐴(휀 + 퐵) ) 	= (1	 + 휌퐴(휀 + 퐵) ) − 휌(퐴(휀	 + 퐵) )  
                                 × (휌 + 퐴(휀 + 퐵) ) 	+ (	퐴(휀 + 퐵) )  
                                 +(1/2휋) ∫ g (s)(	퐴(휀 + 퐵) ) 푑푠, 								휌 > 0.  
Multiplying this equation by (휀 + 퐵)  we obtain for  
 푥	 ∈ 	퐷	(퐴)	∩ 	퐷	(퐵) 	∩ 	푅	(퐴	 + 	퐵)		
   (휀 + 퐴 + 퐵) 푥 = (휀 + 퐵) (1 + 퐴(휀 + 퐵) ) 	푥 
                     = (휀 + 퐵) (휀 + 퐵)(휀 + 휌퐴 + 퐵) 푥 + 퐴  
                     −퐴 휌(휀 + 퐵)(휌휀 + 퐴 + 휌퐵) 푥 
                       
                     +(1/2휋) ∫ g (s)퐴 (휀 + 퐵) ( )푥푑푠, 								휌 > 0. 
Passing to the limit 휀 → 	0 for such 푥 we arrive at the representation  
  (퐴	 + 	퐵) 	푥	 = 	퐵 	퐵(휌	퐴	 + 	퐵) 	푥	 + 	퐴 	퐴(퐴	 + 	휌	퐵) 	푥		
    
                        +(1/2휋) ∫ g (s)퐴 퐵 ( )푥푑푠 	,							휌 > 0.																								(58) 
It is therefore sufficient to estimate the integral  

						 g (s) 푒 | |푒 | |푑푠 ≤ C푒 | | 	,							휌 > 0.																																											(59) 
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By Corollary (2.1.14) this implies the desired estimate for  (퐴	 + 	퐵) 	, i.e. we 
obtain  퐴 + 퐵 ∈ BIP(푋, 휃). For this purpose we use the estimates on g (s) 	 
obtained in the proof of Theorem (2.1.12). We divide the integral into 퐼 , 푗 =
	1, . . . , 5 as there and get  
   |퐼 | ≤ C 	휂 	∫ 	푒 푒 푒 ( )		푑푠 ≤ C 	휂 	푒 	(휋 − 휃 − 휃 ) 	;				 
   |퐼 | ≤ C 	휂 	∫ 	푒 		푒 	푒 푒 ( )푑푠 ≤ C 	휂 	푒 	(휋 − 휃 − 휃 ) 	;				 

  |퐼 | ≤ C 	휂 	∫ ([휌/푠(휌 − 푠)] / +	푒 +	 	푒 ( ))	푒 푒 ( )푑푠  

         ≤ C 	휂 {	푒 휌 ∫ [푡/(1 − 푡)] / 	 	푒( ) 푑푡 
         +(휋 − 휃 − 휃 ) 	푒 + (휋 + 휃 − 휃 ) 	푒 }	 

≤ C 	휂 	푒 /(휃 − 휃 ) / + (휋 + 휃 − 휃 ) 	푒
+ (휋 + 휃 − 휃 ) 	푒 };												 

    |퐼 | ≤ C 		∫ 	푒 | | 푒 ( | |)푑푠	 ≤ 2C 	푒 	푒 ,	 
and finally by symmetry 

|퐼 | ≤ 2C 		푒 푒 .	 
Thus the estimate (59) follows for large  휌; for small 휌 use ℎ (푠) instead of  
g (s). The theorem is proved. □ 
   There are two interesting corollaries to this result; the first one deals with 
products of operators of class BIP(푋, 휃).  
Corollary (2.1.16)[186]: Let X be 휉-convex, 퐴	 ∈ BIP(푋, 휃 ), 퐵 ∈ BIP(푋, 휃 ) 
with   0	 ≤ 	휃 +	휃 	< 	휋		be resolvent commuting. Define the product 퐴퐵	of 퐴 
and 퐵 by means of  

(퐴퐵)푥	 = 퐴퐵푥, 퐷(퐴퐵) 	= 	 {푥 ∈ 퐷(퐵):	퐵푥 ∈ 퐷(퐴)}.	
Then 퐴퐵 is closable and its closure 퐴퐵 belongs to BIP(푋, 휃 +	휃 ). If in 
addition  퐴 is invertible then 퐴퐵 is closed. 
Proof: Since 퐵 ∈ BIP(푋, 휃 ) implies 퐵 ∈ BIP(푋, 휃 ), by Theorem (2.1.13) 
we know  that 퐴 + 퐵  with domain 퐷(퐴) ∩ 푅(퐵) is closed, 푁(퐴 + 퐵 ) =
0		and	|퐴푥| + |퐵 푥| ≤ C|퐴푥 + 퐵 푥| on 퐷(퐴) ∩ 푅(퐵). Suppose 푥 ∈
퐷(퐴퐵) = 퐵 	퐷(퐴), 푥 → 0  and 퐴퐵푥 → 푦. Since 퐴 and 퐵	commute with 
(퐼 + 퐵) 	 we obtain  

퐴퐵(퐼 + 퐵) 푥 → 푧, 퐵(퐼 + 퐵) 푥 → 0, 푧 = (퐼 + 퐵) 푦	
 
Hence  (퐼 + 퐵) 푦 = 0	, by closedness of 퐴, and so 푦 = 0. This shows that 퐴퐵 
is closable. Since 퐴	and 퐵 are resolvent commuting, it is also easy to see 
that		퐴퐵 is densely defined, has dense range and is also injective.  
Next we obtain 	
             |(푡	 + 	퐴퐵) | = |퐵 (푡퐵 	+ 	퐴) | ≤ C/푡.	
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By Corollary (2.1.14), hence 퐴퐵 satisfies (H 1). Finally, the relation  
 
             (퐴퐵) 푥 = 퐴 	퐵 	푥, 푥 ∈ 퐷(퐴) ∩ 푅(퐴) ∩ 퐷(퐵) ∩ 푅(퐵)	
shows the estimate  
               (퐴퐵) 	≤ 퐴 	 퐵 	≤ 	퐾 		푒 | |퐾 		푒 | |, 휌 ∈ ℝ,	
hence (H 2) holds and 퐴퐵 belongs to BIP	(푋, 휃 +	휃 ).  
   To see that 퐴퐵 is already closed in case	퐴 is invertible, let  (푥 ) ⊂ 퐷(퐴퐵), 
푥 → 	푥, and 퐴퐵푥 → 	푧. Then 퐵푥 → 퐴 	푧 since 퐴  is bounded, hence 
푥 ∈ 퐷(퐵) and 퐵푥 = 퐴 푧 by closedness of 퐵; but this in turn implies 퐵푥 ∈
퐷(퐴) and 푧	 = 퐴퐴 푧	 = 	퐴퐵푥, closedness of 퐴. Hence 퐴퐵 is closed.      □ 
   The next corollary deals with sums of n commuting operators.  
Corollary (2.1.17)[186]: Suppose 푋 is 휉-convex, 퐴 ∈ BIP(푋, 휃 ), 푖 =
	1	. . . . , 푛, such that, for each pair 푖 ≠ 푗, 퐴 and 퐴 	are resolvent commuting and 
satisfy 휃 + 휃 < 휋 Let  휃 = 	max	휃  and assume that there is only one i with  
휃	 = 	휃 .	 
  Then 퐴 = 	∑ 퐴 	 with domain 퐷(퐴) = 	⋂ 퐷(퐴 )	 is closed and belongs to the 
class BIP(푋, 휃). Moreover, there is a constant 푐	 > 	0	such that  
 

																 |퐴 푥| ≤ C|퐴푥|, 푥 ∈ 퐷(퐴)																																																													(60)	

 
is satisfied. In particular, 푁(퐴) = 0 and 푅(퐴) is dense in 푋. Corollary (2.1.17) 
follows by induction from Theorems (2.1.13) and (2.1.15). Before we conclude 
this section we want to make another remark. Suppose we are in the situation  of  
Theorem  (2.1.13) or more generally of Corollary (2.1.17). If one of the 
operators 퐴 	 is invertible then we obtain from (60) the estimate  
 

|푥| ≤ C|퐴푥|, 푥 ∈ 퐷(퐴);		
 
in other words the range of 퐴 is closed. Since 푅(퐴) is dense in 푋 this implies 
that 퐴 itself is invertible. 
Will show the applications. Let 푌	be a 휉-convex Banach space, 퐵 	a closed 
linear densely defined operator in  푌	, and 푎 ∈ 퐵푉 (ℝ ), i.e. a scalar-valued 
function of  bounded variation on each interval [0, 푇]. As an application of the 
theory developed above, we consider the abstract  Volterra  equation of 
convolution type  
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	(푑/푑	푡)	푢	(푡) 	+ 	 퐵 	푢	(푡 − 	휏) 	푑푎	(휏) 	= 	 g(푡	– 	휏) 		푑	푎(휏),			푡 ∈ 퐽	

                                                                                    푢(0) = 0																									(61)	
where 퐽 = 	 [0, 푇] or 퐽 = ℝ 	, and g:	퐽 → 	푌 is measurable; in the sequel 
convolution of  the functions 푓 and g will be denoted by 푓 ∗ g. Given g ∈
퐿 (퐽; 	푌), a continuous function 푢:	퐽 → 	푌 is called a strong solution of (61) if 
푢(푡) ∈ 퐷(퐵 )  for a.e. 푡 ∈ 퐽, 퐵 	푢(∙) ∈ 퐿 (퐽; 	푌), 푢 ∈ 푊 , (퐽; 	푌), and (61) is 
satisfied almost everywhere on 퐽	.  
     (61) arises naturally in the theory of  linear incompressible viscoelastic 
materials; there 퐵 	 is the Stokes operator introduced in Example (2.1.7) and 
푌 = 퐿 (Ω;ℝ ). The kernel 푑푎 is called the stress relaxation modulus and is in 
general of the form 	

								푎(푡) = 푎 + 푎 	푡 +	 푎 (휏) 푑휏, 푡 ≥ 0,																																																	(62)	

where 푎 	≥ 0 is a Newtonian viscosity, 푎 ≥ 0 the stationary elasticity 
modulus, and the relaxation function 푎 (푡)is nonnegative, nonincreasing, of 
positive type, and 푎 (푡) → 0 as 	푡 → ∞.We refer to Pipkin [202] for the physical 
background  and to Priiss [203-205] for a detailed study of the properties of 
(61), as well  as to the references given there. 
In virtue of the properties of the Stokes operator our main assumption  
on 퐵 	 is  
 (V1)   퐵 ∈ BIP(푌, 휃 ) for some 휃 ∈ 	 [0, 휋/2);  
concerning the kernel we assume 
(V2) 푎(푡)	is of the form (62) with 푎 , 푎 ≥ 0 and 푎 (푡)	 completely monotonic  
on (0,∞), 푎 (푡) → 0	as 푡	 → ∞. 
In the following we shall denote the class of kernels 푎(푡) satisfying (V2) by  
퐂퐌. The assumption on the kernel (V2) could be relaxed to some extent, 
however, we will not do this here since on the one hand complete monotonicity 
of 푎  is a quite reasonable assumption which holds for many materials (if not for 
all), and on the other hand, we want to keep our treatment of (61) as simple as 
possible, and still obtain significant results. Note that the case of an ordinary 
Cauchy problem as studied in Giga and Sohr [199] is contained in (61) by 
choosing 푎(푡) ≡ 1.  
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  We want to study (61) in the space 푋 = 퐿 (퐽; 	푌), 1	 < 푝 < 	∞ which is again 
휉-convex; cp. the remarks at the beginning of  this Section. For this purpose we  
first introduce an operator 퐵 in 푋	by means of the definition 

(퐵푢)(푡) = 퐵 푢(푡), 푡 ∈ 퐽, 퐷(퐵) = {푢 ∈ 푋: 푢(푡) ∈ 퐷(퐵 )		푎. 푒.		 
                                                                               on	퐽, 퐵푢 ∈ 푋};																					(63)	
it is easy to verify that 퐵 is a closed linear densely defined operator in 푋 which 
belongs to BIP(푋, 휃 ). The latter follows from (V1) and the fact that 퐵  is 
independent of  푡;	the constants 푀,퐾, 휃	for 퐵	in 푋	are in fact the same as those 
for 퐵  in 푌. To obtain a reformulation of (61) to which Theorem (2.1.13) can be 
applied we have to invert the convolution with the kernel 푑푎. If (V2) holds, this 
can be done since then there is a kernel 푘(푡) of class 퐂퐌 such that  

																						 푘(푡 − 휏) 	푑푎(휏) = 푡, 푡 ≥ 0,																																																					(64)	

holds; this is a theorem which basically is due to Reuter; cp. Clement and Prüss  
[195] for the reference and a discussion of this result. In viscoelasticity the 
function 푘(푡) is called the creep compliance of the material. Now suppose 푢	is a 
strong solution of (61); convolving (61) with 푑푘 and differentiating we then 
obtain the equation  
      퐷(푑푘 ∗ 퐷푢)(푡) + 퐵 	푢(푡) = g(푡), 푡 ∈ 퐽,	
                                         푢(0) = 0, (푑푘 ∗ 퐷푢)(0) 	= 0; 																																		(65)	
here we used 퐷 = 푑/푑푡 for short. On the other hand, if 푢 ∈ 퐷(퐵) ∩
푊 , (퐽; 	푌)			is such that 푑푘 ∗ 퐷푢 ∈ 푊 , (퐽; 	푌)	and (65) holds almost 
everywhere on 퐽, convolving (65) with 푑푎 we see that 푢	is a strong solution of 
(61). Thus (61) and (65) are completely equivalent. We therefore define an 
operator 퐴 in 푋		by means of  
  (퐴푢)(푡) = 퐷(푑푘 ∗ 퐷푢)(푡), 푡 ∈ 퐽,	
      퐷(퐴) = 	 {푢 ∈ 퐿 (퐽; 	푌):	푢, 푑푘 ∗ 퐷푢 ∈ 	푊 , (퐽; 	푌), 퐴푢 ∈ 푋, 
      푢(0) = (푑푘 ∗ 퐷푢)(0) = 0}.																																																																																(66)	
퐴 is a densely defined linear operator in 푋 which is also closed. In fact, let  
푢 → 푢, 푢 ∈ 퐷(퐴), and 퐴푢 → 푧 in 푋; put 푤 = 푑푘 ∗ 퐷푢 . Then convolving 
퐴푢 .  with 푑푎 we obtain with (64) and 푤 (0) = 0 the convergence  퐷푢 →
푣	in	퐿 (퐽; 	푌), for some 푣 ∈ 퐿 (퐽; 	푌),		 hence 푢 ∈ 푊 , (퐽; 	푌)	 and 푣 = 퐷푢, 
by closedness of 퐷. Therefore, we get 푤 → 	푤 = 	푑	푘 ∗ 퐷푢	푖푛	퐿 (퐽; 	푌) and 
since 퐴	푢 	= 	퐷	푤 → 	푧, the closedness of 	퐷 yields 푤 ∈ 푊 , (퐽; 	푌) and 
푧 = 퐷푤 = 퐷(푑푘 ∗ 퐷푢) = 퐴푢, i.e. 푢 ∈ 퐷(퐴). It is also easy to see that 푁(퐴) =
0, this follows from the initial conditions  푢(0) 	= 	 (푑푘 ∗ 	푢)(0) = 	0. 
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Convolving the equation 퐴	푢	 = 	푣 with 푑	푎 we derive 퐴 푣	 = 	푎 ∗ 	푣, for each  
푣 ∈ 	푅	(퐴) 	= 	퐷(퐴 ) 	= 	 {푣	 ∈ 	푋:	푎 ∗ 푣	 ∈ 푋); in particular, 퐴 is invertible  Iff 
퐽 is bounded since 푎(푡) is never integrable on ℝ 		. Equation (61) can now be 
rewritten in abstract form in the Banach space 푋 as  
                                   퐴푢	 + 	퐵푢 = g.																																																																						(67)	

To prove 퐴 ∈ BIP(푋, 휃 ) for some 휃 > 0	, we will need the following lemma 
which in simpler form was derived in Prüss [203, 205]; for the sake of 
completeness a proof is included here.  
Lemma (2.1.18) [186]: Suppose 푎 ∈ 퐿 (ℝ ),  satisfies (V2). Then there is a 
function 푐 ∈ 퐂퐌  with c = 0 such that 푎 = 	퐷푐 ∗ 퐷푐 holds. 
Proof .  Let 푎 ∈ 퐂퐌 and put 푓(휆) = 휆푎(휆), 휆 > 0, where the hat indicates 
Laplace transform. Define operators 퐿 , 푘	 = 	0, 1, 2, . . ., by means of  
  
    (퐿 푓)(휆) = (−1) (푑/푑휆) [휆 푓(휆)], 휆 > 0, 푘 = 푙, 2	. . . ,	
    (퐿 	푓)(휆) = 	푓	(휆), 휆	 > 	0;																																																																																(68)	
Then  푎 ∈ 퐂퐌 is characterized by 푓 ∈ C (0,∞) and 퐿 푓(휆) ≥ 0 for all 푘 ≥ 0, 
휆 > 0. This is a kind of  Bernstein's theorem for the Stieltjes transform; cp. the 
monograph of  Widder [210], Theorems 18b, 14b.  
   Let 푎 (푡) = 푎(푡) + 푠푡, 푡, 푠 > 0, and let 푘 ∈ 퐂퐌 denote the solution of (64) 
with  푎(푡) replaced by 푎 (푡); the convolution theorem for the Laplace transform 
and (64) imply the relation  

g (휆) = 휆푘 (휆) = [휆푓(휆) + 푠] 		, 휆 > 0.	
 
Note that g  satisfies (68) for each 푠 > 0 since 푘 ∈ 퐂퐌. Define  ℎ ∈ C (0,∞) 
by  ℎ(휆) 	= 	 휆 	푎(휆) / 	; the formula  
 

푟 	 / = 휋 (푟 + 푠) 푠 	 / 푑푠,					푟 > 0,	

Then yields the representation  
 

    ℎ(휆) = 휋 ∫ 휆푠 + 푓(휆) 푠 	 / 푑푠 
            
             = 휋 ∫ (푟 + 휆푓(휆)) 푟 	 / 푑푟,																																																												(69) 
 
where the change of variables 푠 = 푟/휆  has been used. Applying the operators  
퐿 	to (69) and interchanging differentiation with integration, we obtain  
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								(퐿 ℎ)(휆) = 휋 퐿 g (휆) 푠 푑푠, 휆 > 0, 푘 = 0, 1, . . . . ; 																		(70)	

note that all integrals are absolutely convergent. Since g 	 satisfies (68) for each 
푠 > 0, (70) shows that ℎ also has this property hence there is a 푏 ∈ 퐂퐌 such that 
ℎ(휆) = 휆푏(휆) for 휆 > 0. Finally, let 푐 ∈ 퐂퐌 denote the solution of (64) with  
푎(푡) replaced by 푏(푡); then  

휆푐̂(휆) = 휆 푏(휆) = 휆ℎ(휆) = 푎(휆) / 	,							휆 > 0,	
 
and 	c = 	 lim → 휆푐̂(휆) 	= 0. This shows that the function 퐷푐(푡) = 푐 + 푐 (푡) 
satisfies	퐷	푐 ∗ 퐷	푐	 = 	푎, by the convolution theorem of the Laplace transform. □  
Let C	denote the closed linear operator in 푋	defined by means of  

 
(C푢)(푡) = (퐷푐 ∗ 푢)(푡), 푡 > 0, 퐷(C) = 	 {푢 ∈ 푋 ∶ 	C푢 ∈ 푋}	; 																													(71) 

in Clement and Prüss [195] it has been shown that C ∈ BIP(푋, 휃 + 휀) for any  
휀	 > 	0, where 
     					휃 	= 	sup	{|arg 휆푐̂(휆)|:	R푒		휆 > 	0} 	≤ 	휋/2,																																													(72)	
 
and the constants 	푀  and 퐾   can be chosen independent of 퐽, since  
퐿 (퐽; 	푌)		are closed subspaces of 퐿 (ℝ 	; 	푌); however, they do depend on 
휀	 > 	0. 
  Obviously, since 퐷푐 ∗ 퐷푐 = 푎	holds, 퐴 	 is a closed linear extension of C   ;  
note that C   is always closed since 휌(C) ⊃ (−∞, 0). We show next that even 
퐴 = C    holds; for the case 퐽 = 	 [0, 푇] this is trivial since 푐	 ∈ 	푊 , 	(퐽). For 
the case 퐽 = ℝ , we have to show that 푢 ∈ 푋 and 푎 ∗ 푢 ∈ 푋	imply C푢 = 퐷푐 ∗
푢 ∈ 푋; this, however, follows from the identity  
C푢 = 퐷푐 ∗ 푢 = (휆 + C) (푎 ∗ 푢 − 휆 푢), 휆 > 0, 푢 ∈ 푅(퐴),																							(73)	
which evidently is true for each finite interval  퐽	 = 	 [0, 푇],	but with 푇 → ∞	 also  
for ℝ 	. If in addition  
                휃	 = 	sup	{|arg	푎(휆)|:	Re	휆 > 0} 	= 	2휃	 < 	휋																																(74)	
 
is satisfied then by Corollary (2.1.16), 퐴 as well as 퐴  belong to  BIP	(X, 휃	 	+
	ε).		From Theorem (2.1.13) we can now derive  
Theorem (2.1.19) [186]: Let 푌 be a 휉-convex Banach space, 푝 ∈ (1,∞), 퐵 ∈
BIP(푌, 휃	 ), 푎 ∈ 퐂퐌,  and let 휃	 +	휃	 	< 	휋 hold, where 휃	  is defined by 
(74). Then, for every g	 ∈ 퐿	 (ℝ ; 	푌) there exists a unique function us 
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푊	 , (ℝ ; 	푌) 	∩ 퐿	 (ℝ ; 	퐷(퐵 ))  which is a strong solution of (61) on each 
finite interval 퐽 = 	 [0, 푇] (here 퐷(퐵 )	is equipped  with the graph norm of 퐵 ), 
and for each 푇 > 0 there is a constant 푐(푇) > 0 such that for each g ∈
퐿	 (ℝ ; 	푌),we have the estimate  

  ∫ |푢(푡)| 	 	푑푡	 + 	∫ |퐷푑푘 ∗ 퐷푢(푡)|	 푑푡	 + 	∫ |퐵 푢(푡)| 	푑푡 
                                            
                                                        														≤ 푐(푇) ∫ |g(푡)|	 푑푡.																					(75)	
If, in addition, 퐵  is invertible, then 푐(푇) can be chosen independently of 
푇 > 0.		Moreover, if g ∈ 퐿 (ℝ ; 	푌) then 퐷푑푘 ∗ 퐷푢, 퐵 	푢 ∈ 퐿 (ℝ ; 	푌)as well, 
and there is a constant 푐	 > 	0, independent of 	푇 > 	0, such that 	
 
       ∫ |(퐷푑푘 ∗ 퐷푢)(푡)|	 푑푡	 + 	∫ |퐵 푢(푡)| 	푑푡 

                                                ≤ 푐 ∫ |g(푡)|	 푑푡		for	all		0 < 푇 ≤ ∞	.													(76) 
 
Proof . Let 퐽	 = 	 [0, 푇] be finite, first. Then 퐴	and 퐵	satisfy the assumptions of  
Theorem (2.1.13) and 퐴 is invertible; consequently 퐴	 + 	퐵 is again invertible, 
i.e. for  each g ∈ 푋 = 퐿 (퐽; 	푌) there exists a unique solution 푢 ∈ 퐷(퐴) ∩
퐷(퐵)				of	(67), i.e. of (65) which in turn is equivalent to (61), as we have seen 
above. Furthermore, we have the estimates 

	|푢| +	 |퐴푢| +	|퐵푢| 	≤ 	 푐 (푇)|g|	and	|퐴푢| +	|퐵푢	| ≤ 	 푐 |g|, where	

푐 	is independent of 	푇	; the latter follows from the fact that the constants 
푀 , 푀 , 퐾 	, 퐾 	 as well as 휃 , 	휃 	are independent of  푇	and therefore the 
constant   C	in Theorem (2.1.13) is also independent of  푇. Now consider 
g ∈ 퐿 (ℝ ; 	푌) then  g ∈ 퐿 (퐽; 	푌) for each 퐽 = [0, 푇] hence there is a unique 
strong solution 	푢	 of (61) on 퐽. Since the restriction of a solution on 	퐽	to a 
smaller interval 퐽 	= [0, 푇 ] is again a strong solution on this smaller interval, 
by uniqueness we obtain  a unique 푢	 ∈ 푊 , (ℝ ; 	푌) ∩ 	퐿 (ℝ ; 	퐷(퐵 )) 
which satisfies 푑	푘 ∗ 	퐷	푢	 ∈ 푊 , (ℝ ; 	푌) and (61) on ℝ . This proves the 
local part of Theorem (2.1.19) as well as estimate (75). To prove the second 
part, let g ∈ 퐿 (ℝ ; 	푌); Since 푐  is independent of  푇 we conclude that 푢 is then 
even a strong solution on ℝ 		 and that estimate (76) holds. The last assertion is 
also clear since in case 퐵 	 is invertible in 푌,퐵 is so in 푋	and 	|퐵	 | = 	 |퐵 | 
for any interval   퐽	 = 	 [0, 푌], 0	 < 	푇	 ≤ ∞.   □ 
   In the case where 퐵 	  is the Stokes operator from Example (2.1.7) we may 
choose  	휃 > 0	 as small as we want. To apply Theorem (2.1.19) in this case we 
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thus only need  휃 < 휋	. Note that 휃 ≤ 휋 always holds, even more is true, 
namely |arg	푎(휆)| < 휋 for each 휆 ∈ ℂ, 휆 ≠ 0, Re	휆 ≥ 0, provided 푎(푡) ≠ 푎 	푡 ; 
this excludes the purely elastic case, only. Thus we have to study the limits 
	휃 = lim| |→ sup|arg	푎(휆)|		and 	휃 = lim| |→ sup|arg	푎(휆)|		 in the half 
plane	Re	휆 > 0, but it is enough to do this for 휆 = 	푖휌, 휌	 > 0	, since the Laplace 
transform of 푎(푡) is holomorphic on ℂ\(−∞, 0] and 푎(푡) is real.  
   Define 풳:	(0,∞) → ℝ  by means of 풳(휌) = lm	푎(푖휌)/Re	푎(푖휌); note that 
푎(푖휌)  belongs to the third quadrant for 휌 > 0.  
We then have   	푡g		휃 = lim → inf	풳(휌)	,			i.e.  
   	휃 < 휋			iff			푣 = lim → inf 풳(휌) > 0				푎푛푑	 
                         푣 = lim → inf	풳(휌)	 > 0.																																																											(77)	
 
The following estimate is taken from Prüss [204].  

    푐 풳(휌) ≤ 푎 −	∫ 푡퐷푎 (푡)/ 	푑푡]/[푎 /2휌 + 휌 ∫ 푡푎 (푡)/ 	푑푡 	 
           
                 ≤ c 풳(휌),						휌 > 0.																																																																																	(78) 
Passing to the limits 휌 → ∞, 0	, it becomes apparent that 푣 > 0 implies 푎 > 0	 
or 푎 (0 +) = ∞	and 푣 > 0 yields	푎 = 0; thus these conditions are necessary  
for 	휃 < 휋	. On the other hand, if 푎 > 0	 then 푣 = ∞, and if 푎 = 0	  but  
− lim → 푡퐷푎 (푡)/푎 (푡) 	> 0 then 푣 > 0	by the rule of de l'Hospital; 
similarly, if 푎 = 0	and − lim → 푡퐷푎 (푡)/푎 (푡) 	> 0 then 푣 > 0. Obviously, 
these conditions are  satisfied if 푎 (푡) behaves like 푡 	 for  푡 → ∞	 and like 푡  
for 푡 → 0	, for some 훼, 훽 ∈ (0, 1). Note also that 푎 = 0	and 푎 ∈ 퐿 (ℝ ) 
imply 푣 > 0	since then 푎	(휆)~	(푎 +	∫ 푎 (푡) 		푑	푡)/휆	as	휆	 → 	0.  
In case 퐵  is also invertible (i.e. if the domain Ω	in Example(2.1.7) is bounded) 
or if the interval 퐽 under consideration is finite then the behavior of 푎	(휆)	near 
휆 = 0 is of no importance. In fact, if 퐵 ∈ 퐵퐼푃(푋, 휃 ) is invertible then 퐵 =
퐵	 − 휂 ∈ BIP(푋, 휃 + 휀) for 휂 > 0	 sufficiently small; this can be shown by a 
simple Neumann-series argument. Thus we may replace 퐵	by	퐵  and 퐴 by 
퐴 + 휂  in (67), in particular both operators are invertible. For the Laplace 
transform  of  퐴 + 휂  we obtain the symbol 푎(휆) + 휂  , hence the analog of 
(74) becomes  
                 휃(퐴	 +	휂 ) = 	sup	{arg	(푎(휆) 	+ 	휂 ): 푅푒	휆 > 0} 	< 휋.													(79)	
 
Since 푎(휆)	is never negative real unless 푎 (푡) = 푎 = 0 and 푎(휆) 	→ ∞	as 
휆 → 0	, Re	휆 ≥ 0, similar to the derivation above, we obtain 휃(퐴 + 휂 ) <
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휋		iff		푣 > 0; thus in this case the behavior of 푎(푡) at zero alone determines 
whether Theorem (2.1.19) is applicable.  
  For the case of a finite interval 퐽 = 	 [0, 푇], we observe that by the change of 
variables 푣(푡) = 푢(푡)	푒  the kernel 푎(푡)	is transformed into 푎(푡)	푒  ; the  
Laplace transform of this kernel is given by 푎(휆 + 훽), Re	휆 > 0.  
Thus (74) is changed into  
                 휃 	= 	sup	{arg	(푎(휆)):	Re	휆	 > 훽} 	< 	휋;																																										(80)	
 
it is clear from this that 휃 	< 휋		iff		푣 > 0, and so in this case the behavior  of 
푎(푡) at zero alone is important for applicability of Theorem (2.1.19). Let us 
summarize this as  
Corollary (2.1.20) [186]: Let Ω ⊂ ℝ	  be an open domain with smooth and 
compact boundary 	휕	Ω	for 푝 ∈ (1,∞) let 퐵 ∈ BIP(푌, 휀)	denote the Stokes 
operator in 푌 = 퐿 (Ω	;	ℝ	 ),  and let 푎 ∈ 퐂퐌 be such that either 푎 	> 	0 or 
− lim → 푡퐷푎 (푡)	/푎 	(푡) > 0 holds. Then, for every g ∈ 퐿 (ℝ	 ; 	푌) there 

exists a unique function  푢 ∈ 푊 , (ℝ	 ; 	푌) ∩	퐿 (ℝ	 ; 	퐷(퐵 )) which is a 
strong solution of (61) on each finite interval  퐽 = [0, 푇], and for each 푇 > 0 
there is a constant 푐(푇) > 0	such that Estimate  (75) holds. If in addition Ω is 
bounded then 푐(푇) can be chosen independently of  푡 > 0. If Ω is unbounded 
but 푎 = 0 and − lim → 푡퐷푎 (푡) 	/푎 	(푡) > 0	or  푎 ∈ 퐿 (ℝ	 ) as well as 
g ∈ 퐿 (ℝ	 ; 푌), then 퐷푑푘 ∗ 퐷푢 and 퐵 	푢 ∈ 퐿 (ℝ	 ; 푌), and there is a constant 
푐	 > 	0, independent of 푇 > 	0, such that Estimate (76) is satisfied. Theorem 
(2.1.19) and Corollary (2.1.20) generalize recent results of Giga and Sohr [199] 
who considered the case of a purely Newtonian fluid  푎(푡) = 푎 = 	1, i.e. 
푎 = 푎 	(푡) = 0. Note that the conditions on 푎(푡) at 푡 = 0 mean physically that 
a sufficiently strong viscosity must be present while the condition on 푎(푡) at 
푡 = 	∞ prohibits the presence of a stationary elasticity modulus; the case where 
푎 = 0 and 푎 ∈ 퐿 (ℝ	 ) corresponds to a fluid while the material is called 
solid otherwise; cf. Pipkin [202].  
Corollary(2.1.21)[232]: Let X be 휉-convex, 퐴	 ∈ BIP(푋, 휃 ), (퐴 + 휖) ∈
BIP(푋, 휃( )) with   0	 ≤ 	휃 +	휃( ) 	< 	휋		be resolvent commuting. Define 
the product 퐴퐵	of 퐴 and (퐴 + 휖) by means of  
     퐴(퐴 + 휖) 푥	 = 퐴(퐴 + 휖)푥, 퐷 퐴(퐴 + 휖)  
                           	= 	 {푥 ∈ 퐷((퐴 + 휖)):	(퐴 + 휖)푥 ∈ 퐷(퐴)}.	
Then 퐴(퐴 + 휖) is closable and its closure 퐴(퐴 + 휖) belongs to BIP(푋, 휃 +
	휃( )). If in addition  퐴 is invertible then 퐴(퐴 + 휖) is closed. 
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Proof: Since (퐴 + 휖) ∈ BIP(푋, 휃( )) implies (퐴 + 휖) ∈ BIP(푋, 휃( )), by 
Theorem (2.1.13) we know  that 퐴 + (퐴 + 휖)  with domain 퐷(퐴) ∩ 푅(퐴 + 휖) 
is closed, 푁(퐴 + (퐴 + 휖) ) = 0		and	|퐴푥| + |(퐴 + 휖) 푥| ≤ C|퐴푥 +
(퐴 + 휖) 푥| on 퐷(퐴) ∩ 푅(퐴 + 휖). Suppose 푥 ∈ 퐷(퐴(퐴 + 휖)) = (퐴 +
휖) 	퐷(퐴), 푥 → 0  and 퐴(퐴 + 휖)푥 → 푦. Since 퐴 and (퐴 + 휖)	commute with 
(퐼 + (퐴 + 휖)) 	 we obtain  

퐴(퐴 + 휖) 퐼 + (퐴 + 휖) 푥 → 푧, (퐴 + 휖) 퐼 + (퐴 + 휖) 푥 → 0,		 
      		푧 = (퐼 + (퐴 + 휖)) 푦	
hence (퐼 + (퐴 + 휖)) 푦 = 0	, by closedness of 퐴, and so 푦 = 0. This shows that 
퐴(퐴 + 휖) is closable. Since 퐴	and (퐴 + 휖) are resolvent commuting, it is also 
easy to see that		퐴(퐴 + 휖) is densely defined, has dense range and is also 
injective.  
Next we obtain 	
            |(푡	 + 	퐴(퐴 + 휖)) | = |(퐴 + 휖) (푡(퐴 + 휖) 	+ 	퐴) | ≤ C/푡	
by Corollary (2.1.14), hence 퐴(퐴 + 휖) satisfies (H 1). Finally, the relation  

(퐴(퐴 + 휖)) 푥 = 퐴 	(퐴 + 휖) 	푥, 푥 ∈ 퐷(퐴) ∩ 푅(퐴) ∩ 퐷(퐴 + 휖) ∩ 푅(퐴+ 휖)	
shows the estimate  
     (퐴(퐴 + 휖)) 	≤ 퐴 	 (퐴 + 휖) 	≤ 	퐾 		푒 | |퐾( )		푒 ( )| |, 휌 ∈ ℝ,	

hence (H 2) holds and 퐴(퐴 + 휖) belongs to BIP	(푋, 휃 +	휃( )).  
   To see that 퐴(퐴 + 휖) is already closed in case	퐴 is invertible, let  (푥 ) ⊂
퐷(퐴(퐴 + 휖)), 푥 → 	푥, and 퐴(퐴 + 휖)푥 → 	푧. Then (퐴 + 휖)푥 → 퐴 	푧 since 
퐴  is bounded, hence 푥 ∈ 퐷(퐴 + 휖) and (퐴 + 휖)푥 = 퐴 푧 by closedness of 퐵; 
but this in turn implies (퐴 + 휖)푥 ∈ 퐷(퐴) and 푧	 = 퐴퐴 푧	 = 	퐴(퐴 + 휖)푥, 
closedness of 퐴. Hence 퐴(퐴 + 휖) is closed.      □ 
 
Sec (2.2): Examples of Unbounded Imaginary Powers of 
Operators 
      In a recent section, Dore and Venni [182] have used imaginary powers of 
operators in connection with the problem of the closedness of the sum of two 
operators. Roughly speaking, if 퐴 and 퐵 are two commuting closed operators in 
a UMD-space, then their sum is closed provided that the following condition 
holds: 
 

																	 퐴 ≤ 푀푒 | |		푎푛푑	 퐵 ≤ 푀푒 | |, 푠 ∈ ℝ
푤푖푡ℎ			휔 + 휔 < 휋.																																														

																																(81)� 
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The UMD-spaces are precisely the Banach spaces	푋	for which the vector valued 
Hilbert transform is bounded in 퐿 (ℝ; 	푋) [179,180]. In particular, the Hilbert 
spaces and 퐿 -spaces, 1 < 	푝	 < 	∞, are UMD-spaces. 
    The growth condition (81) implies that the spectrum of 퐴 (resp. 퐵) lies in a 
sector of “angle” 휔  (resp. 휔 ). 
      In [182], the question was raised whether the converse is true. The Example 
(2.2. 1)  below shows that this is not the case, even in a Hilbert space. 
    However, in a Hilbert space, the conditions for the closedness of the sum can 
be weakened, as shown again by Dore and Venni [182]. Based on a 
characterization of the domain of fractional powers together with an earlier 
result of   Da  Prato and Grisvard [181], they proved the following result. 
    If 퐴  is a 푐 -group of bounded operators (without any assumption on 퐵 ), 
then 퐴	 + 	퐵 is closed provided that the sum of the “angles” 휔   and 휔  is less 
than 휋. 
  In Example (2.2.2)		we give two operators 퐴 and 퐵 in a Hilbert space which 
satisfy the “angle condition” such that 퐴	 + 	퐵 is not closed. This shows again 
that 퐴  and 퐵 are not 푐 -groups of  bounded operators. Moreover this implies 
that some extra condition is needed for the closedness of the sum. 
   In this Section, we state the main results. also , we introduce the main tools for 
the examples, in particular the notion of spectral family [178,183], also we 
construct the Example (2.2.1) inspired by Example 5.10,p. 168, of Berkson and 
Gillespie [ 187]. 
    Finally we give Example (2.2.2) we are convinced that the method used to 
can lead to other examples. 
Let	(푋, ‖	. ‖)	be a complex Banach space, and let 퐴 ∶ 	퐷(퐴) 	⊂ 	푋	 → 	푋 be a 
closed and densely defined operator with domain 퐷(퐴) and range 푅(퐴). As 
usual, we denote the resolvent set of 퐴	by 휌(퐴) and its spectrum by 휎(퐴). The 
operator 퐴 is called positive [182,190] if 
  (푖)			(−∞, 0) ⊂ 휌(퐴)	
  (ii) there exists 푀 ≥ 	1 such that ‖(퐼 − 푡	퐴) 	‖ ≤ 	푀	, for every 푡	 > 	0. 
In particular, if  푀 = 	1, then 퐴 is called 푚-accretive. 
For 휃 ∈ 	 [0, 휋), we define the sector 

  as 

: = 	 {푧 ∈ ℂ\{0};	|arg푧| 	≤ 휃}.	

The operator 퐴 is said to be of type (휔,푀) [ 189], if there exist 0	 < 	휔	 < 	휋 
and 푀 ≥ 	1 such that 
 (i) 휎(퐴) ⊂ ∑ ∪ {0}; 



٥٨ 
 

 (ii) for every 휃 ∈ 	 [0, 휋 − 휔), there exists 푀(휃) 	≥ 	1 with 푀(0) 	= 	푀, such 
that ‖(퐼 + 푧퐴) ‖ ≤ 푀(휃) for any 푧 ∈ ∑ . 
  We recall that if the operator	퐴 is positive, then there exist 휃 ∈ 	 (0, 휋) and 
푀	 ≥ 	1 such that 퐴 is of type (휃,푀) [ 190]. 
  We also recall that if 퐴 is 푚-accretive, then 퐴 is of type (휋/2, 1) [ 189]. 
Moreover if 퐴 is of type (휔,푀) for some 휔 ∈ 	(0, 휋/2) and  푀	 ≥ 	1, then – 퐴 
generates an analytic semigroup on the space 푋. 
     If 퐴 is a bounded positive operator with 0	 ∈ 	휌(퐴), then the fractional 
powers of 퐴 denoted by 퐴	  with 푧	 ∈ ℂ	are usually defined by the Dunford 
integral 

                              퐴	 =  



 dAz )( 1

, 

where the contour Γ does not meet (	−	∞, 0] and contains the spectrum of 퐴. 
Then for 푧	 ∈ ℂ	, 퐴	  is a bounded operator satisfying the group property 
 
          퐴	 = 	퐴 퐴 	, 푧 , 푧 ∈ ℂ,with	퐴 = 퐼	푎푛푑	퐴 = 퐴.	
The function 푧	 ⟼ 퐴	  is also holomorphic. Moreover, one has the other 
representations of 퐴	  [186], 

퐴	 푥	 = 	
푠푖푛	휋푧
휋

	 푧	 푥 − (1 + 푧) 퐴	 푥 + 푡	 (푡 + 퐴) 퐴	 푥푑푡

+ 푡	 (푡 + 퐴) 퐴푥푑푡 				for		|Re	푧| < 1, 푧	 ≠ 0,																			(82)	

 	퐴 푥 = 푥	. 
Or equivalently 

퐴	 푥	 = 	
푠푖푛	휋푧
휋

	 푧	 푥 − (1 + 푧) 퐴	 푥 + (1 − 푧) 퐴푥

+ 푡	 (1 + 푡 퐴) 퐴	 푥푑푡

− 푡	– (1 + 푡 + 퐴 ) 퐴푥푑푡 					 

                                     	for		|Re	푧| < 1, 푧 ≠ 0,																																																						(83)	
 	퐴 푥 = 푥	. 
  If the positive operator 퐴 satisfies only 푁(퐴) = {0} and 푅(퐴) dense in 푋, 
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then for every 푥	 ∈ 	퐷(퐴) 	∩ 	푅(퐴), which is dense in 푋, the function 푧	 ⟼ 퐴	 푥 
defined by (82) or (83) is holomorphic and satisfies the group property 
퐴	 푥 = 	퐴 퐴 	푥 = 퐴 퐴 	푥		for every 푥 ∈ 퐷(퐴 ) ∩ 푅(퐴 ) and  
[|Re	푧 |, |Re	푧 |, |Re(	푧 + 푧 )| 	< 	1 [186]. 
   For 푠	 ∈ ℝ\{0}, we say that 퐴	  is bounded if the operator 퐴	 defined by (82) 
(or (83)) is bounded on 퐷(퐴) 	∩ 푅(퐴). Then it can be uniquely extended to 푋, as 
a bounded operator. 
    Following PrüB and Sohr [186], the operator 퐴 is said to belong to the class 
BIP(푋, 휃) for some 휃 ∈ 	 [0, 휋) if: 
  (i)  퐴	is positive; 
  (ii) 푁(퐴) = {0} and 푅(퐴) dense in 푋; 
 (iii) 퐴	 ∈ 	퐵(푋) for every 푠 ∈ ℝ and there exists 푀 > 	0 such that  퐴	 ≤
	푀푒 | |, 푠	 ∈ ℝ. 
   In the case where 퐴	is positive, 푁(퐴) = {0} implies the density of 푅(퐴) in 푋	if 
푋	is a reflexive Banach space (a Hilbert space, for example). 
It is proven in [186], that if 퐴	 ∈ 	퐵퐼푃(푋, 휃) then 퐴	is of type (휃,푀) for some 
푀 ≥ 	1. In Example (2.2.1), we show in particular that the converse is not true 
even if the space 푋 is a Hilbert space. 
Example (2.2.1)[177]: There exists an operator 퐴 in a Hilbert space which is of 
type (휔,푀) for some 푀 > 	1 and for all 휔 ∈ 	 (0, 휋) and such that the imaginary 
powers 퐴	 	are not bounded for all 푠	 ∈ ℝ\{0} . 
Let 퐴 and 퐵 be two positive operators in a Banch space	(푋, ‖	. ‖	). The operators 
퐴 and 퐵	are called resolvent commuting if (퐼 + 	푡퐴) 	 and (퐼 + 	푠퐵)  
commute for some 푡 and 푠	 > 	0 (equivalently for all 푡 and 푠	 > 	0). 
 Building upon results of  Dore and Venni [182], PrüB and Sohr [186] have 
proven that if 퐴 ∈ 	퐵퐼푃(푋, 휃 ), 푖 = 	1,2 with 휃 ≠ 휃 , 휃 + 휃 	< 휋	,	are 
resolvent commuting and if 푋	is a UMD-space, then 퐴 + 퐴 		∈ 퐵퐼푃(푋, 휃) 
where 휃 = 	max(휃 , 휃 ). 
  Da Prato and Grisvard [181] have proved that if 	퐴  are of type (휃 ,푀 ), 
푖 = 	1,2, 휃 + 휃 	< 휋	, resolvent commuting (hence 퐴 + 퐴 closable) then the 
closure of 퐴 + 퐴  is of type (휃,푀) with 휃 = 	max(휃 , 휃 )	for some 푀 ≥ 	1. 
 Therefore a natural question is to know whether the sum of two operators 퐴 and 
퐵 satisfying the assumptions of  Da Prato and Grisvard in a UMD-space is 
closed. In the Hilbert space, Da Prato and Grisvard [181] gave a sufficient 
condition for this to be the case, namely if the interpolation spaces 퐷 (휃, 2) and 
퐷 ∗(휃, 2)are equal for some 휃 ∈ 	 (0, 1). For the definition of  these spaces, we 
refer the reader to the original paper [181]. Since 퐴	 + 	퐵 is closed if and only if 
퐼 + 	퐴	 + 	퐵 is closed, we may assume without loss of generality that 0	 ∈ 휌(퐴) 
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and 0	 ∈ 휌(퐵). Under these assumptions Dore and Venni [182, p. 194], have 
shown that if the imaginary powers 퐴	 	are uniformly bounded for 푠	 ∈
	[	−	1, 1], then 퐴	 + 	퐵 is closed. We have: 
Example (2.2.2)[177]: There exist two resolvent commuting operators 퐴 and 퐵 
in a Hilbert space which are of type (휔,푀) for some 푀 > 	1	and for every 
휔 ∈ 	 (0, 휋) such that 퐴	 + 	퐵 is not closed. 
Remark (2.2.3)[177]: (i) It follows from Da Prato and Grisvard [181] that 
퐷 (휃, 2) 	≠ 	퐷 ∗(휃, 2)	푎푛푑	퐷 (휃, 2) 	≠ 	퐷 ∗(휃, 2)	 for every 휃 ∈ 	 (0, 1). 
  (ii) It follows from Dore and Venni [182] that both 퐴	  and 퐵	  are not 
uniformly bounded on [	−	1, 1]. 
We recall the notion of spectral family of projections in a Hilbert space 퐻 
[178, 183]. 
Definition (2.2.4)[177]: A spectral family of projections in 퐻	is a uniformly 
bounded projection-valued function 퐹:	ℝ → 	퐵(퐻) (the algebra of bounded 
linear operators in	퐻) such that: 
    (i) 퐹	is right-continuous on ℝ in the strong operator topology, 
    (ii) 퐹 has a strong left-hand limit at each 푠 ∈ ℝ	, 
   (iii) 퐹(푠)	퐹(푡) 	= 	퐹(푡)	퐹(푠) 	= 	퐹(푠)	for	푠	 ≤ 	푡, 
   (iv) 퐹(푠) 	→ 0	(resp. 퐹(푠) 	→ 	퐼) in the strong operator topology as 
  푠 → −∞	(resp. as	푠 → +∞).	
If there is a compact interval [푎, 푏]	such that 퐹(푠) 	= 0 for 푠	 < 	푎 and 퐹(푠) 	=
	퐼 for 푠	 ≥ 	푏, then we say that 퐹 is concentrated on [푎, 푏]. Following [	178,183], 
if 퐹 is a spectral family concentrated on [푎, 푏], each complex valued function 
푓	 ∈ 	C[푎, 푏] 	∩ 퐵푉[푎, 푏] defines a bounded operator 퐴 in 퐻 (퐵푉 stands for 
bounded variation): 

                      퐴푥	 = 	  ],[ ba
	푓(휆)	푑퐹(휆)푥,							푥 ∈ 퐻,																																													(84)	

 
by means of convergence of  Riemann-Stieltjes sums. Moreover the norm of 퐴 
can be estimated by 
                    ‖퐴‖ 	≤ |푓(푏)| 	+ 	(|푓(푎)| 	+ 	Var[푓;	[푎, 푏]).		‖퐹‖,																							(85)	
where 

                                  ‖푓‖ ∶= 	sup

	‖퐹(휆)‖	.																																																								(86)	

 
If 퐹 is concentrated on [0,∞) and 푓	 ∈ 	C[0,∞) ∩ 퐵푉[0,∞),	then 
푠	ـ	 lim →  ],0[ N

	푓(휆)	푑퐹(휆)	 exists. This limit defines a bounded operator 퐴 

in	퐻 satisfying 
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                  ‖퐴‖ 	≤ |푓(∞)| 	+ 	 (|푓(0)| 	+ 	Var[푓;	[0,∞]).		‖퐹‖,																							(87)	
where ‖퐹‖	is defined by (86) and 푓	(∞) 	= 	 lim → 푓(휆)	which exists since   
푓 ∈ 퐵푉[0,∞). 
If 푓, g ∈ C[0,∞) ∩ 퐵푉[0,∞) and 

퐴푥 = 	  ),0[
	푓(휆)	푑퐹(휆)푥, 퐵푥 = 	  ),0[

	g(휆)	푑퐹(휆)푥, 푥 ∈ 퐻,	

then (퐴	 + 	퐵)푥	 = 	   ),0[
	푓(휆) + g(휆) 푑퐹(휆)푥. 

If moreover	푓. g	 ∈ 	퐵푉[0,∞),	then 

퐴퐵푥	 = 	퐵퐴푥	 =  ),0[
푓(휆)g(휆)푑퐹(휆)푥.	

If 푓(휆) ≠ 0	, for every 휆 ≥ 0 and 휆 ⟼ 푓(휆)  belongs to 퐵푉[0,∞), then 
0 ∈ 휌(퐴) and 

퐴 푥 =  ),0[
	푓(휆) 	푑퐹(휆)푥.	

For the construction of a spectral family in ℓ (ℕ) which is not a spectral 
measure, we shall use, as in [ 178], a conditional basis which can be found 
in Singer [187]. For the sake of completeness, we give it here explicitly. 
Conditional Bases in ℓ (ℕ) .The sequences {푓 }	  and {ℎ }	  in ℓ (ℕ) 
defined by 

푓 = 푒 	+	 훼 푒 	 , 푓 = 푒 , (푛	 = 	1, 2, . . . )																		(88)	

     

ℎ = 푒 	, ℎ = −	 훼 푒 + 푒 	,		 

                                                                                  (푛	 = 	1, 2, . . . )																	(89)	
 
where {푒 }	 is the canonical basis of ℓ (ℕ) and 훼 	≥ 	0, 푛	 = 	1, 2, . . .. 
∑ 푗훼 	< 	∞, ∑ 훼 = 	+∞		(e.g., one can take 훼 = 	1/푛	log(푛	 + 	1))	are 
biorthogonal conditional bases of ℓ (ℕ)	.	Defining  푃 ∈ 	퐵(ℓ (ℕ)) by 
 
                        푃 푥 = (푥, ℎ )푓 	, 푥 ∈ ℓ (ℕ), 푛 = 	1,2, . . . ,	
where (. , . ) is the scalar product, then each 푃  is a projection with 푃 푃 	= 	0 
for 푚	 ≠ 푛 satisfying 

																							 lim
→

푃 푥 =	 푥, 푥 ∈ ℓ (ℕ).																																															(90)	
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Moreover 

																							sup	 푃 = ∞.																																																																													(91)	

 
For the proofs of (90)-(91), see Singer [187]. 
In the Example (2.2.1) We construct an example of a positive operator 퐴 in a 
Hilbert space 퐻 such that the imaginary powers 퐴 	 are not bounded for 
푠 ∈ 	ℝ\{0}, although 퐴 is of type (휔,푀) for some 푀	 > 	1 and for every 
휔 ∈ 	 (0, 휋). In order to do that, we construct the operator 퐴 on a Hilbert product. 
   Let {퐻 , ‖	. ‖ } ∈ℤ be a family of complex Hilbert spaces. Let (퐻, ‖	. ‖	) be the 
Hilbert product 

퐻 = 	 퐻
∈ℤ ퟐ

= 푥 = (푥 ), 푥 ∈ 퐻 , ‖푥‖ = ‖푥 ‖ < ∞
∈ℤ

				 .	

   The family {퐴 } ∈ℤ of bounded operators on 퐻 	, defines the following closed 
densely defined operator 퐴 on 퐻: 

																퐷(퐴):= 푥 = (푥 ), 푥 ∈ 퐻 , ‖퐴 푥 ‖ < ∞
풌∈ℤ

																																	(92)	

 
                (퐴푥) := 퐴 푥 , 푘 ∈ ℤ			for	푥 = (푥 ) ∈ 퐷(퐴). 
 
Moreover 퐴 is bounded if and only if Sup ∈ℤ	‖퐴 ‖ 	< 	∞	 and if this is the 
case ‖퐴‖ = 	 Sup ∈ℤ	‖퐴 ‖	. 
We say that the family of positive operators {퐴 } ∈ℤ		satisfies Property (P) if : 
  (i)	σ(퐴 ) ⊂ [0,∞); 
  (ii)   for every 휃 ∈ 	 [0, 휋),	there is 푀(휃)	independent of 푘, such that ‖(퐼 +
푧퐴 ) ‖ 	≤ 푀(휃) for every 푘 ∈ ℤ			and every 푧 ∈ ∑ . 
We have 
Lemma (2.2.5)[177]: Let {퐴 } ∈ℤ		 be a family of bounded positive operators 
on 퐻 , 푘 ∈ ℤ			, satisfying Property (P). Then there exists 푀 ≥ 	1, such that the 
operator 퐴 defined by (92), is of type (휔,푀) for every 휔 ∈ 	 (0, 휋). 
  Moreover if 푁(퐴) 	= 	 {0}, then for every 푥	 = 	 (푥 ) ∈ 퐷(퐴) 	∩ 	푅(퐴),	and 
푠 ∈ 	ℝ\{0}, we have 푥 ∈ 퐷(퐴 ) 	∩ 	푅(퐴 ),	 and (퐴 푥) = 	 (퐴 ) 푥 , 푘 ∈ ℤ. 
Proof (i) Let 푧	 ∈ 	ℂ\(	−	∞, 0] and let 휃 = 	arg	푧. Let 푦	 = 	 (푦 ) 	∈ 퐻. Since 퐴 
satisfies Property	(푃), −푧 	∉ 	휎(퐴 )	and there exists   푥 	∈ 	퐻 , 푘 ∈ ℤ		such 
that 
                              (퐼 + 	푧퐴 	)푥 = 	푦 ,					푘 ∈ ℤ	.	
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Since ‖푥 ‖ 	≤ 푀(휃)‖푦 ‖ , we have 푥 = (푥 ) ∈ 퐷(퐴) and ‖푥‖ 	≤ 푀(휃)‖푦‖. 
Moreover  since 푁(퐼 + 	푧퐴 ) 	= 	 {0},	we have 푁(퐼 + 	푧퐴) 	= 	 {0}, −푧 ∈
	휌(퐴), and	‖(퐼 + 	푧퐴) ‖ ≤ 푀(휃).	This implies that 퐴 is of type (휔,푀) with 
푀	 = 	푀(0),	for every 휔 ∈ 	 (0, 휋). 
   (ii) Assume 푁(퐴) 	= 	 {0}, then 푁(퐴 	) = 	 {0}  for every 푘 ∈ ℤ. Let 푥	 =
	(푥 ) 	∈ 	퐷(퐴) 	∩ 푅(퐴). Then clearly, 푥 	∈ 퐷(퐴 ) 	= 	퐻 . Since 푥	 = 	퐴푦	for 
some 푦	 ∈ 	퐷(퐴), we have 푥 	= 	퐴 	푦  hence 푥 ∈ 	푅(퐴 ). Therefore 퐴 푥 and 
(퐴 ) 푥 	are well-defined by (82), for  
 푠 ∈ 	ℝ\{0},Since ((퐼 + 푡퐴) 푥) = (퐼 + 푡퐴 ) 푥 , 푡	 > 	0, 푥	 = 	 (푥 ) 	∈ 퐻, 
we obtain (퐴 푥) = 	 (퐴 ) 푥 , 푘 ∈ ℤ. This completes the proof of  
Lemma(2.2.5).  
     Next, we construct a family of bounded positive operators {퐴 } ∈ℤ		  in 
ℓ (ℕ), such that 0 ∈ 휌(퐴 ) and satisfying Property (P). Notice that the 
imaginary powers 퐴 	, 푠 ∈ 	ℝ, are then bounded. We give a necessary condition 
for sup ∈ℤ	 퐴  to be finite for some 푠 ∈ 	ℝ\{0}. 
Lemma (2.2.6)[177]: Let {푓 } 		  be a (Schauder) basis of ℓ (ℕ), with 
corresponding  projections {푃 }  . 
    Let F:	ℝ	 + 	B(ℓ (ℕ), ) be fhe spectralfamily concentrated on [0, 1] defined 
by 
                  퐹(휆) = 0				푓표푟					휆 < 1/2	

퐹(휆) = 푃 					for	
푛

푛 + 1
≤ 휆 <

푛 + 1
푛 + 2

			for	푛 = 1,2, … 

            
                 퐹(휆) = 퐼		for	휆 ≥ 1.	
Then for every 푘 ∈ ℤ and every 푥 ∈ ℓ (ℕ), 

퐴 푥 =  ]1,0[
	푒 	푑퐹(휆)푥					푖푠		well	de ined					

and 
    (i) The family of operators {퐴 } ∈ℤ		  satisfies Property (P) and   0 ∈ 휌(퐴 ),
푘 ∈ ℤ. 
    (ii) For every 푠 ∈ ℝ, the imaginary power 퐴 	 is bounded and  
퐴 푥 =  ]1,0[

	푒 	푑퐹(휆)푥		, 푥 ∈ ℓ (ℕ), 푘 ∈ ℤ			. Moreover 퐴 = 퐴 . 

    (iii) If for Some 푠 ∈ 	ℝ\{0}, sup ∈ℤ	 퐴 < ∞, then the basis {푓 } 		 is 
unconditional. 
 (iv) If the basis {푓 } 		  is unconditional, then for all ∈ ℝ, sup ∈ℤ	 퐴 < ∞	. 
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Proof. (i) For every  푘 ∈ ℤ, the function 휆 ⟼ exp{푘휆} is continuous, bounded, 
increasing, hence of bounded variation on [0, 1	]. Therefore 퐴  is well-defined 
and bounded on ℓ (ℕ), as well as 퐴 푥. Moreover 퐴 = 퐴 . 
 Let 푧 ∈ ℂ\(∞, 0] and 휃 = arg푧. Then the function	휆 → 푎(휆; 푘, 푧): =
(1	 + 	푧	exp(푘휆))  is continuous, bounded, and of bounded variation on [0, 1	]. 

Indeed 1	 + 푧푒 = 	 1	 +	 |푧|푒 푒 , then |푎(휆; 	푧, 푧)| 	≤ 푚 (휃)  , 
where 

푚 (휃) ≤

⎩
⎨

⎧ 1									when				0 ≤ |휃| ≤
휋
2.

1
sin|휃|

									when						|휃| >
휋
2
		 .

� 

Moreover 

    
 ]1,0[ ]1,0[
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                             = ∫
| | ( )

( ) , ,

| | 푑휆 ≤ ∫
| | ( )

| | ( ) 	 

            
                             ≤ ∫ = 푚 (휃)					푤푖푡ℎ 

 

푚 (휃) =

1																			if				휃 = 0																			
.

휃
sin 휃

										if			0	 < 	 |휃| < 휋				.		
� 

 
Let 푀(휃) = 푚 (휃) + (푚 (휃) + 푚 (휃)). ‖퐹‖. We observe that 푀(−휃) =
푀(휃) and 푀(휃) increases on 0	 ≤ 휃	 < 	휋. 
  Therefore −	푧 	∈ 휌(퐴 ) and  ‖(퐼 + 푧퐴 ) ‖ ≤ 푀(휃), which implies that the 
family {퐴 } ∈ℤsatisfies Property (P). 
   (ii) Let 푏(휆; 	푘, 푠) ∶= 	exp(푖푠푘휆)	for 휆 ∈ 	 [0, 1], 푘 ∈ ℤ, and 푠 ∈ ℝ. Then 
|푏(휆; 	푘, 푠)| ≤ 	1 and 

              .),;(),;(
1

0),0[
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Hence   )(
]1,0[

dFeisk
  defines a bounded operator C ,  in ℓ (ℕ),  for every 

푠 ∈ ℝ and 푘 ∈ ℤ. For 푥	 = 	 (푥 ) 	∈ 푐  (finite sequences in ℓ (ℕ)), we have 
   C , 푥	 = 	∑ 	 exp(푖푠푘퐼)푃 푥    for some 푚 ∈ 	ℕ depending on	푥. 
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By using the Dunford integral for the imaginary power  퐴 푥, we obtain 

퐴 푥 =
1
2푖휋

휆 (휆 − 퐴 ) 푥	푑휆	
.

																										 

 

							=
1
2푖휋

휆 	 (휆 − exp(푘퐼)) 푃 푥	푑휆
.

 

                        

			=
1
2푖휋

휆 (휆 − exp(푘퐼)) 푃 푥	푑휆
.

	 

                                 
                                = C , 푥	. 
Since both 퐴  and C , 	are bounded on ℓ (ℕ) and 푐   is dense in ℓ (ℕ), we 
have  C , 	= 퐴 . We also have 퐴 = 퐴 . 
 (iii) If sup ∈ℤ	 퐴 < ∞	 for some 푠 ∈ ℝ	\{0} ,then sup ∈ℤ	 퐴 < ∞	  
and without loss of generality, we may assume 푠	 > 	0. We also have 퐴 =
(퐴 ) . By using a result of Nagy [185,188], there exists an equivalent 
Hilbertian norm  ‖	. ‖ on 퐻	such that 	퐴 = 1, for every 푘 ∈ ℤ. (Take, e.g.,  

‖푥‖ = lim → 퐴 푥 ) / where Lim is a Banach limit in ℕ) Then 퐴  is 
unitary in (퐻, ‖	. ‖)	and {푓 }   are eigenvectors corresponding to the 
eigenvalues 
                                휇 = 푒 /( )	, 푛 = 1,2, … .	
Then for 푚, 푛	 > 	푠/2휋, 푚	 ≠ 	푛, we have 휇 ≠ 휇  Therefore {푓 } /  is an 
orthogonal system in (퐻, ‖	. ‖),	hence {푓 } is an unconditional basis in 
(퐻, ‖	. ‖)	and also in (퐻, ‖	. ‖). 
   (iv) Suppose the basis {푓 }  is unconditional. By using a characterization of 
unconditional bases, see, e.g., [187, Theorem 17.1.6], there exits a constant 
C > 	0 such that   ‖∑ 훼 푓 ‖ ≤ 퐶‖∑ |훼 |푓 ‖for every 푛	 ∈ ℕ and every finite 
scalar sequence {훼 }. 
For 푥	 ∈ 퐻 	(the linear dense subspace spanned by {푓 } ), 푘 ∈ ℤ, 푠 ∈ ℝ. 
We  have 퐴 푥 = ∑ exp	(	푖푠푘	푛/(푛	 + 	퐼	))푃 푥, the sum is finite. Hence  
퐴 푥 ≤ 퐶‖∑ |exp(	푖푠푘	푛/(푛	 + 	퐼	))|푃 푥‖ = 퐶‖푥‖	. Then 퐴 푥 ≤ 퐶. 

     After these preparations, we can easily construct the operator 퐴. Construction 
of  퐴. Let 퐻 = 	ℓ (ℕ), 푘 ∈ ℤ,	and let {푓 }  be a conditional basis of ℓ (ℕ) 
for example, the basis defined in (88). Define 퐴 , like in Lemma (2.2.6), then 
for every 푠 ∈ ℝ	\{0}, sup ∈ℤ	 퐴 = ∞	 . Then define the operator 퐴, like in 
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Lemma (2.2.5). The operator 퐴 is of type (휔,푀) for some 푀	 ≥ 	1 and for every 
휔 ∈ 	 (0, 휋). Moreover for 푠 ∈ ℝ	\{0}, 퐴  cannot be bounded, otherwise 
sup ∈ℤ	 퐴  would be finite. Therefore the operator 퐴 satisfies all the required 
properties. 
In this section, we construct an example of two resolvent commuting, closed 
operators 퐴 and 퐵, in a Hilbert space 퐻 such that 퐴 and 퐵 are of type (휔,푀) for 
some 푀 > 	1 and every 휔 ∈ 	 (0, 휋), with 퐴	 + 	퐵 not closed. Let 퐻 =
	ℓ (ℕ)	, {푓 }  be a (Schauder) basis in ℓ (ℕ), and {푃 } be the associated  
projections. 
We shall denote by 퐻  the linear dense subspace spanned by {푓 }  Let 
퐹:	ℝ	 → 	퐵(퐻) be the spectral family defined by 

퐹(휆) = 	0				for			휆 < 1	
  퐹(휆) 	= 	∑ 푃[ ]   ,  where [휆] denotes the greatest integer ≤ 휆. 
We define ‖퐹‖ 	= 	 sup 	‖퐹(휆)‖ < ∞. 
Lemma (2.2.7)[177]: Let 퐻,퐻 ,and 퐹  be as a above .Let ℎ: [0,∞) → [1,∞) be 
a continuous and increasing function. For any 푥	 ∈ 퐻 , let 

															푇 푥 = 	 ℎ(푛)	푃 푥, (푡ℎ푒	푠푢푚	푖푠	푓푖푛푖푡푒	).																																			(93)	

Then, for every 휃 ∈ 	 (	−	휋, 휋), there exists 푀(휃) 	> 	0 such that for every 
푧	 ∈ ∑ , 	퐼	 + 	푧푇  is a bijection in 퐻 	and 
 
            ‖(퐼	 + 	푧푇 ) 푥‖ ≤ 푀(휃)‖푥‖    holds for every 푥	 ∈ 퐻 .                   (94) 
 
   Moreover 푇  is closable and its closure 푇 is of type (휔,푀) for some 푀	 > 	1, 
for euery 휔 ∈ 	 (0, 휋) and satisfies 0	 ∈ 휌(푇). 
Proof (i). Proof of (94). For every 푧	 ∈ ℂ\(	−	∞, 0], we define 푆 푥 =
∑ (1/(1 + 푧ℎ(푛)))	푃 푥, 푥 ∈ 	퐻 . We get	(퐼 + 푧푇 )푆 = 푆 (퐼 + 	푧푇 ) 	=
	퐼| . The spectral representation of 푆 is given by 

푆 푥 =
1

1 + 푧ℎ(휆)

.

[ , )

푑퐹(휆)푥,										푥 ∈ 	퐻 . 

By using (87), we have 

‖푆 푥‖ ≤
1

|1 + 푧ℎ(∞)|
+

1
|1 + 푧ℎ(0)|

‖퐹‖ + Var[ , )
1

1 + zh(. )
. ‖F‖ ‖푥‖, 

 
for every 푥 ∈ 	퐻 , ℎ(∞) 	= lim → ℎ(휆) 	= sup 	ℎ(휆), which may be 
infinite. 
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Var[ , )
1

1 + zh(. )
≤

푑푡
|1 + 푒 푡|

≤ ∞		 		with			z = |z|푒 . 

Then we get (94). 
    (ii) Closure of  푇 . It is known, see, e.g., [181], that (94) implies that 푇  is 
closable and that its closure 푇	satisfies the same inequality. For the sake of 
completeness, we prove that 푇  is closable. 
   Let 푥 ∈ 	퐻 . be such that 푥 → 	0 and 푇 	푥 → 푦 for some 푦	 ∈ 퐻. We have 
to prove 푦 = 0. Let 푣 ∈ 	퐻 , then for 푡 > 0, we have ‖푥 	+ 푡푣‖ ≤
푀‖푥 		+ 	푡푣	 + 	푡푇 (푥 + 	푡푣)‖ and ‖푡푣‖ ≤ 	푀‖(푡(푣	 + 	푦) 	+ 	푡 푇 	푣‖ by 
taking the limit. Hence  ‖푣‖ ≤ 푀‖푥 + 푦 + 푡푇 	푣‖ and ‖푣‖ ≤ 푀‖푣 + 푦‖ by 
letting 푡 ↓ 0 for every 푣 ∈ 	퐻 . Since 퐻 is dense in  퐻,			푦	 = 	0. 
  (iii) Type of  푇. From (94), we get ‖푦‖ 	≤ 푀(휃)	‖(퐼 + 	푧푇)	푦‖ for every 
푦 ∈ 퐷(푇) and 푧 ∈ ∑ , which implies that 퐼 + 푧푇 is injective and that 푅(퐼 + 푧푇) 
is closed, hence 푅(퐼 + 	푧푇) 	⊃ 퐻 = 	퐻. Therefore 푧 ∈ 휌(푇) and ‖(퐼 +
푧푇) 푥‖ ≤ 푀(휃)‖푥‖ holds for every 푥	 ∈ 	퐻. 
   (iv) 0 ∈ 휌(푇) Let 퐿 푥 = ∑ (1/ℎ(푛))	푃 푥		for 푥 ∈ 퐻 . 퐿  is the inverse of 
	푇 . By using (87), we get 

‖퐿 푥‖ ≤
1

ℎ(∞)
+ 2 −

1
ℎ(∞)

‖퐹‖ ‖푥‖					for	every	푣 ∈ 	퐻 		. 

 
Then 퐿   is bounded and densily defined. This implies that the closure of 퐿  is 
the inverse of  푇.  
   Next, we consider properties of two operators 퐴   and 퐵   of the form given by 
Lemma (2.2.7). 
Lemma (2.2.8)[177]: Let	푓 and g be two continuous, increasing functions from 
[0,∞) into [	1,∞). Let 퐴  and 퐵  be the corresponding operators in 퐻  defined 
by 퐴 	푥 = 	∑ 푓(푛)		푃 푥   and 퐵 	푥 = 	∑ g(푛)	 	푃 푥   for every 푥 ∈ 	퐻 . 
Let 퐴	and 퐵 be their closure in 퐻.Then, we have: 
(i)  퐴 	(퐴 		+ 	퐵 ) 		= 	 (퐴 	+	퐵 	) 퐴 		표푛		퐻 	; 
(ii)  퐴 and 퐵	are resolvent commuting; 
(iii)  퐴	 + 	퐵 is closable and 퐴 + 퐵	 = 	퐴 	+	퐵 	. 

Proof. (i) We have 퐴 		퐵 푥 = (∑ 푓(푛)푃 )(∑ g(푚)푃 푥) =  
∑ 푓(푛)g(푛)푃 푥 = 퐵 퐴 	푥  for every 푥 ∈ 	퐻 . Since	퐴 	+ 	퐵 	 is a bijection on 
	퐻  it follows that 	퐴  and (	퐴 	+ 	퐵 ) 	  commute. 
 (ii) As is well known, it suffices to prove (퐼 + 퐴) (퐼 + 	퐵) =  (퐼 +
	퐵) (퐼 + 퐴)  . But this is a consequence of the commutatively of (퐼 + 	퐴 	)  
and (퐼 + 	퐵 	)  on 퐻 . together with their boundedness. 
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  (iii) First we prove that 퐴	 + 	퐵 is closable. Let 푥 ∈ 퐷(퐴) 	∩ 	퐷(퐵) be such 
that	푥 → 0 and 푦 ∶= 	 (퐴	 + 	퐵)푥 → 	푦 with 푦	 ∈ 퐻	. Then 
 
  (퐼 + 퐴) (퐼 + 	퐵) 푦 = (퐼 + 퐴) (퐼 + 	퐵) 퐵푥  
                                        +(퐼 + 퐵) (퐼 + 	퐴) 퐴푥  
   
    = (퐼 + 	퐴) [퐼 − (퐼 + 	퐵) ]푥 + (퐼 + 	퐵) [퐼 − (퐼 + 	퐴) ]푥 → 0. 
Hence (퐼 + 퐴) (퐼 + 	퐵) 푦 = 0, and 푦 = 0. 
  Since the closure of 	퐴 	+ 	퐵  is contained in the closure of 퐴	 + 	퐵, we only 
have to prove 퐴	 + 	퐵 ⊂ 	 	퐴 +	 	퐵  or	퐴 + 퐵 ⊂ 	 	퐴 +	 	퐵 .	Let 푥	 ∈ 	퐷(퐴) 	∩
	퐷(퐵) 	= 	퐷(퐴	 + 	퐵). Then there are two sequences 푥 , 푥́ → 푥 and 퐴 푥 →
	퐴푥 and 퐵 푥́ → 	퐵푥. Set ℎ	 = 푥́ − 푥 We have 
        푥 = (퐴 + 퐵 ) (퐴 푥 + 퐵 푥́ ) − 퐵 (퐴 + 퐵 ) 	ℎ 																											(95)	
by using part (i). Since (퐴 + 퐵 )  is bounded by Lemma (2.2.7), we obtain 
that the sequence 퐵 (퐴 + 퐵 ) 	ℎ  converges to some 푣 ∈ 퐻 Moreover 
(퐴 + 퐵 ) 	ℎ → 0	,then 푣	 = 	0 since 퐵 	is closable by Lemma (2.2.7). 
Rewriting (95), we get 
                    (퐴 + 퐵 )(푥 + 퐵 (퐴 + 퐵 ) 	ℎ 	) 	= 	퐴 푥 + 퐵 푥́ 	
Which   implies by passing to the limit 

푥 ∈ 퐷(퐴 + 퐵 )								푎푛푑								(퐴 + 퐵 )푥 = 	퐴푥 + 	퐵푥.	 
Now we give a lemma which characterizes the closedness of 퐴	 + 	퐵. 
Lemma (2.2.9)[177]: Let the operators 퐴 and 퐵 be defined as in Lemma (2.2.8). 
Then 퐴	 + 	퐵 is not closed if and only if there exists a sequence 푥  in 퐻  such 
that 
             ‖푥 ‖ 	≤ 1	and		Sup ‖퐴 (퐴 + 퐵 ) 	푥 ‖ 		= 	∞.																												(96)	
Proof. (i) Let  퐸 = 퐷(퐴) ∩ 퐷(퐵). We define two norms on 퐸: 
          ‖푥‖ ∶= 	 ‖푥‖ +	‖퐴푥‖	+	‖퐵푥‖							and		 
   
          	‖푥‖ 	= 	 ‖푥‖ +	‖(퐴 + 퐵)푥‖	,					푥	 ∈ 	퐸.	
 
Clearly ‖푥‖ ≤ ‖푥‖  for  푥	 ∈ 	퐸. Since 퐴	and 퐵 are closed, 퐸 is complete with 
respect to the norm  ‖	. ‖ . Moreover 퐸 is complete with respect to ‖	. ‖  if and 
only if 퐴	 + 	퐵 is closed, By using the open mapping theorem (for one 
implication), one has 퐴	 + 	퐵 is closed if and only if there exists C	 > 	0 such 
that 
                    ‖푥‖ ≤ C‖푥‖    for every 푥	 ∈ 	퐸.																																																					(97) 
 (ii) Let 푥 ∈ 	퐻  be such that ‖푥 ‖ ≤ 1	and 푦 = 	 (퐴 + 퐵 ) 푥  with 
Sup ‖퐴 	푦 ‖ 		= +∞.		 Then (97) cannot hold. Indeed, we have 
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    ‖푦 ‖ = ‖푦 ‖ + ‖(퐴 + 퐵 )푦 ‖ 
                = ‖(퐴 + 퐵 ) 푥 	‖ + ‖푥 ‖ ≤ ‖(퐴 + 퐵 ) ‖ + 1 
and 
                           ‖푦 ‖ ≥ ‖퐴 푦 ‖   which is unbounded. 
Hence 퐴	 + 	퐵 is not closed. 
 (iii) Assume C = 	Sup{	‖퐴 (퐴 + 퐵 ) 	푦‖,			‖푦‖ ≤ 1, 푦	 ∈ 퐻 } 	< 	∞. By 
triangular inequality, there is C > 0 such that 
            
            ‖퐵 (퐴 + 퐵 ) 	푦‖ ≤ C ‖푦‖		,	 for every 푦	 ∈ 퐻 . 
Then if  푥	 = 	 (퐴 + 퐵 )	푦, we have 
   ‖푦‖ = ‖푦‖ + ‖퐴 푦‖ + ‖퐵 푦‖ 
            
            = ‖푦‖ + ‖퐴 (퐴 + 퐵 ) 	푥‖ + ‖퐵 (퐴 + 퐵 ) 	푥‖ 
      
            ≤ ‖푦‖ + (C + C )‖푥‖ ≤ (1 + C + C )‖푦‖   for every 푦	 ∈ 퐻 . 
Then the  norms ‖	. ‖  and ‖	. ‖ are equivalent on 퐻 . Observe that 퐻 =
	퐷(퐴 + 퐵 ) which is dense in 퐷(퐴 + 퐵 )	with respect to the norm 
‖푥‖ ∶= 	 ‖푥‖ +	 (퐴 + 퐵 )		푥 , 푥	 ∈ 	퐷(퐴 + 퐵 )	. Notice that  퐸 =
	퐷(퐴	 + 	퐵) ⊂ 퐷(퐴 + 퐵 )	 = 퐷(퐴 + 퐵)	.	Hence 퐻  is dense on	퐸 with respect 
to ‖	. ‖  for 푥	 ∈ 	퐸, there exists 푥 ∈ 퐻 	such that ‖	푥 − 푥 ‖ 	→ 0 and   
‖	푥‖ = lim → ‖	푥 ‖ = lim → ‖	푥 ‖ = ‖	푥‖  , by using the continuity of 
‖	. ‖  on  퐸. It follows that the norms ‖	. ‖  and ‖	. ‖ 	are equivalent on 퐸.  
   Construction of the Example (2.2.2). It is enough to choose 퐴	and 퐵 as in 
Lemma (2.2.7) and (2.2.8) such that condition (96) of  Lemma (2.2.9) is 
satisfied, i.e., to find two functions	푓 and g as in Lemma (2.2.7) such that 
 

													sup
푓(푛)

푓(푛) + g(푛)
푃 푥 , 푥 ∈ 퐻 , ‖푥‖ ≤ 1 = ∞.																											(98) 

We show that this is possible. 
   First we choose for {푓 }  the conditional basis of example (88) which 
satisfies 

sup 	 푃 	= +∞		.	

 
If we impose the following conditions on	푓 and  g, 
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푓(푛)

푓(푛) + g(푛)
=

⎩
⎪
⎨

⎪
⎧ 1
4
												for	푛		odd

.
3
4
											for	푛	even		

																																																											(99)� 

 

     Then ∑ ( )
( ) ( ) 	푃 푥 = 	 ∑ 푃 푥 + (1/2)∑ 푃 푥, which 

satisfies (98). 
    Finally, we give one possible choice of functions 푓 and g	satisfying the 
hypothesis of Lemma (2.2.7) and condition (99). 
Set ℎ(푡) = + cos(휋푡), 푡	 ≥ 	0. 
We construct 푓	and g by induction: 

푓(0) = 3						푎푛푑							g(0) 	= 	1.	
Suppose we know the functions between [0, 2푛],			푛	 = 	0, 1, 2, . .. then we define 
for 푡	 ∈ 	 (2푛, 2푛	 + 	1	] 

               푓(푡) = 푓(2푛)						and						g(푡) 	= 푓(2푛)
( )
− 1 .	

And for 푡	 ∈ 	 (2푛 + 1, 2푛	 + 	2	] 

푓(푡) = 	g(2푛 + 	1)
ℎ(푡)

1 − ℎ(푡)
								and										g(푡) 	= 	g(2푛	 + 	1).	

Then, 푓, g are continuous on [0,∞)  nondecreasing, not less than one with 
푓(푡)/(푓(푡) 	+ 	푔(푡)) 	= 	ℎ(푡).	  ■ 


