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                                     Chapter 1  

Transference and Spectral Decompositions 
    In this chapter every  uniformly  bounded  one-parameter group  on  퐿 (휇),   is  
the  Fourier-Stieltjes  transform  of  a  projection-valued  mapping  of  ℝ ,and  that  
every  hermitian-equivalent  operator  on  퐿 (휇),		 is  well bounded  of  type  (퐵).  
In  the  setting  of  an  arbitrary  Banach  space  푋, power-bounded operators  with  
a  logarithm  of  the  form 	푖퐴  with  퐴		well bounded  of  type  (퐵)  are studied.  It  
is  shown  that  if 	푈 is  such  an  operator on  푋,  then  for  every  function 푓of 
bounded  variation  on  the  unit circle,	∑ 푓(푛)푈   converges  in  the  strong 
operator  topology.  This  result, which  formally  is  a  transference  by  푈  of  
Stečkin’s Theorem,  makes  it possible  to  calculate  directly  from  푈 a  
(normalized)  logarithm for  푈 and  the  spectral  projections  for  the  logarithm.   

   Let 푌		be a closed subspace of 퐿 (휇), where 1	 < 푝 < 	∞. and 휇 is an arbitrary 
measure, and let 푉 be any operator on 푌 which is power-bounded (i.e., 푉 is 
invertible, and sup{	‖푉 ‖:	푛	 = 	0, ±1,±	2, . . . } 	< 	∞ ) .We show in Theorem 
(1.34)(푖푖) that 푉 can be written in the form 푒 , where 퐴 is a bounded operator on 
푌	having a spectral “diagonalization” analogous to, though weaker than, that 
occurring in the spectral theorem for self-adjoint operators. In the precise 
terminology described and adopted in this Section , 퐴 is a well-bounded operator of 
type (퐵), and the conclusion of Theorem (1.34)(푖푖) asserts that	푉 is 
trigonometrically well-bounded. Also we develop an abstract Fourier-series 
analysis  for Banach space operators which are simultaneously power-bounded and 
trigonometrically well-bounded. The abstract machinery of this Section  
automatically goes into effect for power-bounded operators on 푌	once Theorem 
(1.34)(푖푖) is established. To illustrate the combined effects of this Section, we state 
here the following partial summary of Theorem (1.34)(푖푖) in conjunction with 
Theorem (1.25)(푖푖), postponing a description of spectral families of projections 
and their integration theory until in this Section. 
Theorem(1.1) [178] : Let 푌 be a subspace of		퐿 (휇),  where ,	휇 is a measure and 
1	 < 푝 < 	∞. Suppose that 푉 is a power-bounded operator on 푌. Then: 

(푖)	푉 has a logarithm of the form 푖	 ∫ 휆푑퐸(휆)⨁
[ , ] ,	 where 퐸(. ) is a spectral 

family of projections in 푌; 
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(푖푖) for each complex-valued function 푓 of bounded variation on the unit 
circle	, ∑ 푓(푛)푉 	  converges in the strong operator topology as푁 → +∞ 
Conclusion (i) of this Theorem is used to show (in Theorem (1.40)) that every 
uniformly bounded one-parameter group on 푌 is the Fourier Stieltjes transform of a 
spectral family of projections. 
   Without need of this Section , Theorem (1.34)(ii) has the direct consequence that 
every hermitian-equivalent operator on the space 푌 described above is well 
bounded of type (퐵) (see Theorem (1.36)). 
    To make the paper more self-contained, this section  is denoted to a summary 
of the pertinent methodology from the theory of well-bounded operators. We 
conclude, in this Section, with some counterexamples which rule out various 
directions of generalization for Theorem (1.34)(ii). For instance, the space 푌 can 
not be replaced by an arbitrary reflexive Banach space (see Example (1.44)). 
Our considerations merge three main themes: the transference notion of Coifman 
and Weiss [215]; well-bounded operators; and Stečkin’s Theorem for the additive 
group ℤ of integers, which we take in the following form (see, e.g., [183, Theorem 
20.7]). 
Theorem(Stečkin)(1.2) [178]: Let 퐵푉(핋) denote the Banach algebra of all 
complex-valued functions of bounded variation on the unit circle 핋, with the norm 
‖	. ‖	핋	given by 
                            ‖	푓‖	핋	 	 = 	 |푓(1)| 	+ var(푓,핋)	,	
where var(푓, 핋)	 is the total variation of  푓	. if		1 < 푝 < ∞	, there is a constant C 		, 
such that for each 푓	 ∈ 퐵푉(핋) convolution by 푓	, the Fourier transform of 푓, is a 
bounded operator on 퐿 (ℤ	) whose norm does not exceed C ‖	푓‖	핋	. 
     Before describing the interplay of our main themes, it will be necessary to state 
in some detail the General Transference Theorem of  Coifman and Weiss because 
of its central role. Suppose 퐺 is a locally compact, amenable group, 퓂 is a 휎-finite 
measure space, 1	 < 푝	 < 	∞, and 푆	is a closed subspace of 퐿 (퓂	) Let 푢	 → 	푅 	, 
be a strongly continuous representation of 퐺	by bounded operators on 푆 such that 
for 퐹 ∈ 	푆, (푅 , 퐹)(푥) is jointly measurable in	(푢, 푥) ∈ 퐺 ×퓂	, and 푐 =
sup{‖푅 ‖ ∶ 	푢 ∈ 퐺} 	< ∞. Let 휓 ∈ 퐿 (퐺	) have compact support, and denote by Ψ 
the operator of convolution by 휓 on  퐿 (퐺	). 
Theorem (1.3) (general transference Theorem [215,Theorem 2.4]):[178] Put 
               퐻 , 퐹 (푥) = ∫ 휓(푢)(푅 퐹)(푥)푑푢				푓표푟		퐹 ∈ 푆, 푥 ∈ 퓂.	
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Then 퐻 	, is a bounded linear mapping of 푆	into 푆 such that 퐻 ≤ 푐 	‖Ψ‖. (In 
should be mentioned that the General Transference Theorem is stated in [215] only 
for the case 푆 =	 퐿 (퓂), but the proof therein covers the case 푆 ⊆ 퐿 (퓂), as 
asserted in Theorem (1.3) .When the group	퐺 in (1.3) is specialized to ℤ,	measure-
theoretic complications associated with Fubini’s Theorem are replaced by 
considerations with finite sums, and the proof of [215, Theorem 2.4] can be 
simplified so as to dispense with the 휎-finiteness requirement on the measure space 
퓂 (see Theorem (1.33)). The demonstration of  Theorem (1.34)(ii) proceeds by 
applying this specialized version of Theorem (1.3) and Stečkin’s Theorem to show 
that the power bounded operator 푉	in the hypotheses has an 퐴퐶(핋) −functional 
calculus, where 퐴퐶(핋) denotes the Banach subalgebra of 퐵푉(핋) consisting of the 
absolutely continuous functions of 핋. The proof is completed by invoking [213, 
Theorem (2.3)], which characterizes trigonometrically well-bounded operators on 
reflexive Banach spaces by the possession of an 퐴퐶(핋) functional calculus. Thus 
Theorem (1.34)(ii)  is a transference phenomenon. In contrast the abstract Fourier 
analysis in this Section is inspired by a purely formal simulation of the statement in 
the General Transference Theorem. Specifically, let 푈 be a power-bounded, 
trigonometrically well bounded operator on a Banach space 푋, and let  푓	 ∈
퐵푉(핋)	. Consider the bounded representation ℜ	표푓	ℤ			in 푋	defined by ℜ		 =
푈 	for 푛	 ∈ 	ℤ.	By Stečkin’s Theorem ( 1.2) 푓 determines a bounded convolution 
operator on	퐿 (퐸),  for 1	 < 푝	 < 	∞. However, the General Transference Theorem 
(1.3) cannot possibly apply to the representation ℜ and the convlution kernel 푓, 
since, in particular, 푓	 need not belong to  퐿 (ℤ),  and 	푋 need not even be 
reflexive.  
   Nevertheless, in the context at hand the conclusion of Theorem (1.3) states in a 
purely formal way that ∑ 	푓	(푛)푈  is a bounded operator on 푋. We show in 
Theorem (1.25)(ii) that this series does in fact converge in the strong operator 
topology, and thus an abstract transference of Stečkin’s Theorem is valid for 
푈.	This result is deduced from a blend of classical Fourier series methods and an 
abstract type of Riemann-Stieltjes integration (with respect to a spectral family of 
projections), and provides formulas for direct calculation from 푈 of its 
(normalized) logarithm and the corresponding spectral projections (Theorems 
(1.29) and (1.30)(ii)). 
    In this section we collect, in a convenient form, the known items we shall 
need from the theory of well-bounded operators. 
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     Let 퐽 = 	 [푎, 푏] be a compact interval of the real line ℝ	. We denote by 
퐵푉(퐽)	(resp. 퐴퐶(퐽)) the Banach algebra of complex-valued functions having 
bounded variation on 퐽 (resp. absolutely continuous on 퐽) with the norm 	‖푓‖ =
	|푓(푏)| 	+ 	var(푓, 퐽). Let	푋 be a Banach space, and ℬ(푋) the Banach algebra of 
bounded operators on 푋. 
Definition(1.4)[178]:  An 퐴퐶(퐽)-functional calculus (resp. 퐴	퐶(	핋)-functional 
calculus) for an operator 푇	 ∈ 	ℬ(푋) is a norm-continuous homomorphism 훾 of 
퐴퐶(퐽) (resp. 퐴	퐶(	핋))-into ℬ(푋) such that 훾	sends the identity map to 푇 and the 
function identically 1	푡표	퐼, the identity operator of 푋. In either case we say 훾 is 
weakly compact provided that for each .푥	 ∈ 	푋	, 훾(. )푥 is a weakly compact linear 
mapping of the domain of  훾 into 푋. 
Definition(1.5) [178]: An operator 푇	 ∈ 	ℬ(푋)	is called well bounded provided that 
for some compact interval 퐽, 푇 has an 퐴퐶(퐽)-functional calculus.(Note that in this 
event, 휎(푇), the spectrum of 푇, must be a subset of 퐽). Well bounded operators 
were introduced by Ringrose [ 225,226] and Smart [ 227]. Without further 
specialization Definition (1.5) is too weak for our purposes in this Section , since a 
well bounded operator on the arbitrary Banach space	푋	need not have a spectral 
decomposition in terms of projections acting in 푋	(see, e.g., [183, Example 16.5]). 
The relevant notion for our considerations is that of type (퐵)	well-bounded 
operator introduced in [212] (note especially [212, Theorem 4.2(ii] ). 
Definition(1.6) [178]: An operator 푇 ∈ ℬ(푋) is said to be well bounded of type 
(퐵) provided that for some compact interval 퐽, 푇 has a weakly compact 퐴퐶(퐽)-
functional calculus. (Note that every well-bounded operator on a reflexive space is 
automatically of type (퐵). ) 
   As will be seen presently (in Proposition (1.13)), well-bounded operators of type 
(퐵)	can be characterized by an appropriate spectral decomposition expressed in 
terms of a “spectral family” of projections acting in the underlying  Banach space. 
Definition(1.7) [178]: A spectral family of projections in 푋 is a uniformly 
bounded, projection-valued function 퐸(	. ):	ℝ → ℬ(푋) which is right continuous on 
ℝ	 in the strong operator topology, has a strong left-hand limit at each point of ℝ 
,and satisfies 
   (푖)		퐸(푠)퐸(푡) = 	퐸(푡)퐸(푠) = 	퐸(min{푠, 푡}), for	푠, 푡	 ∈ ℝ	
   (푖푖)	퐸(푠) → 0	(resp. 퐸(푠) → 퐼)	in	the	strong	operator	topology	as	
 푠 → −∞	(resp. 푠 → 	+푎).	
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If  there is a compact interval [푎, 푏] such that 퐸(푠) 	= 퐼 for 푠 ≥ 푏 and 퐸(푠) 	= 	0 
for 푠	 < 푎, then we say that 퐸(	. ) is concentrated on [푎, 푏]. 
     A theory of  Riemann-Stieltjes integration with respect to spectral families of 
projections is described in detail in [183, Chapt. 17]. We outline here, for 
subsequent use, its main features. Let 퐽 = 	 [푎, 푏] be a compact interval of ℝ , and 
let 퐸(	. ) be a spectral family of projections in 푋 concentrated on 퐽	. For g	 ∈ 퐵푉(퐽) 
and 푢	 = 	 (휆 , 휆 , . . . , 휆 ) a partition of 퐽,	put 

휑(g, 푢) = g(푎)퐸(푎) +	 g 휆 퐸 휆 − 퐸 휆 																																																	(1)	

Rearrangement of the terms on the right in the style of integration by parts gives 

휑(g, 푢) = g(푏)퐸(푏) −	 g 휆 − g 휆 	퐸 휆 .																																													 (2)	

In particular, ‖φ(g, u)‖ 		≤ ‖g‖ 		sup	{	‖퐸(휆)‖: 휆 ∈ ℝ	}	  . Let 픅	 be the set of all 
partitions of 퐽	 partially ordered and directed by refinement. For 푥	 ∈ 	푋 and 
푢	 ∈ 	픅		with 푢	 = 	 (휆 , 휆 , . . . , 휆 ) put 
 

휔(푢, 푥) = max 푠푢푝 	 퐸(휆)푥 − 퐸 휆 푥	 ∶ 휆	 ∈ 	휆 	, 휆 	

Lemma (1.8) [178]: Given 푥	 ∈ 	푋, lim ∈픅	휔(푢, 푥) 	= 	0. 
Proof  . See [183, Lemma 17.2]. 
Lemma (1.9) [178]: Let 푢, 푣 ∈ 	픅		with 푣	 ≥ 	푢, and let g	 ∈ 	퐵푉(퐽). Then for 
푥	 ∈ 	푋 

‖휑(g, 푢)푥 − 휑(g, 푣)푥‖ ≤ var(g, 퐽)휔(푢, 푥).	
Proof . Standard  and  elementary from (2). 
It is evident from Lemmas (1.8) and (1.9) that for g	 ∈ 	퐵푉(퐽) 

g푑퐸 = lim
∈픅	

휑(g, 푢)
⊕

 

exists in the strong operator topology. 

Proposition (1.10) [178]: The mapping g	 ↦ ∫ g푑퐸⊕   is an identity-preserving 

algebra homomorphism of 퐵푉(퐽) into ℬ(푋) satisfying 

g푑퐸
⊕

	 ≤ ‖g‖ sup{	‖퐸(휆)‖: 휆 ∈ ℝ	} 푓표푟	g ∈ 퐵푉(퐽).																																							(3)	

Furthermore, 
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g푑퐸
⊕

푥 − 휑(g, 푢) ≤ var(g, 퐽)휔(푢, 푥)		, 푓표푟	g ∈ 	퐵푉(퐽), 푢 ∈ 픅, 푥 ∈ 푋.			(4) 

Proof.  The conclusion (4) is an immediate consequence of  Lemma (1.9). The 
remaining assertions are obvious consequences of (1) and the defining properties of 
a spectral family of projections. 
Remark (1.11) [178]:  It is shown in [183, Theorem 17.4 and Theorem 17.8] that if 

g ∈ 	BV(J) and g is continuous on 퐽, then ∫ g푑퐸⊕  is the strong limit of Riemann-

Stieltjes sums obtained by using arbitrary intermediate points to evaluate g in (1), 
that is, sums of the form 

g(푎)퐸(푎) +	 g 휂 퐸 휆 − 퐸 휆 	, 

where  휂 ∈ [휆 , 휆 	] for	푗 = 	1, 2	, . . . , 푛. However, we shall not need this fact. 
    One further inequality will be useful. Given 푓	 ∈ 퐵푉(	퐽), g	 ∈ 퐵푉(	퐽), 푥	 ∈ 푋, 
푢 ∈ 픅, we have 

    ∫ 푓푑퐸⊕ − ∫ g푑퐸⊕ 푥 	≤ {var(푓, 퐽) + var(g, 퐽)}휔(푢, 푥) 

                                                +‖휑(푓, 푢)푥 − 휑(g, 푢)푥‖				.																																								(5) 
This comes from writing 
 

            ∫ 푓푑퐸⊕ − ∫ g푑퐸⊕ = ∫ 푓푑퐸⊕ −휑(푓, 푢) − ∫ g푑퐸⊕ − 휑(g, 푢)  

                                           +{휑(푓, 푢) − 휑(g, 푢)}  , 
and utilizing (4). As an immediate consequence of (5) and Lemma (1.8) we obtain 
the following proposition [183, Theorem 17.5], which will be of critical importance 
in this Section. 
Proposition (1.12) [178]: Let {g 	} be a net in 퐵푉(퐽), and let g be a cornplex-
valued function on 퐽 such that 
     (푖) 		sup var(g , 퐽) < ∞,	
     (푖푖)		g → g			pointwise	on	퐽.	
Then g	 ∈ 	퐵푉(퐽)	and ∫ g 푑퐸⊕  converges to ∫ g푑퐸⊕ 		in the strong operator 
topology. 
    We can now formulate the spectral decomposition characterization of type (퐵) 
well bounded operators alluded to earlier. 
Proposition (1.13) [178]: Let 푋	be a Banach space, and let 푇 ∈ ℬ(푋)	. In order that 
푇 be well bounded of type (퐵)	it is necessary and sufficient that there be a spectral 
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family 퐸(. ) of projections in 푋	such that for some compact interval 퐽, 퐸(	. ) is 

concentrated on 퐽, and 푇 = 	∫ λ푑퐸(휆)⊕ . If this is the case, the spectral family 퐸(. ) 
is uniquely determined (and called the spectral family of 	푇). 
    Proof: Necessity and sufficiency are shown in [183, Theorem 17.14], while the 
uniqueness assertion follows from [183, Theorem 16.3(i)]. More direct methods of 
proof are available from the approach we have been following, and we shall 
indicate them briefly. An alternate necessity proof is described in the last paragraph 

in this Section  of [213]. For sufficiency, let 훾(푓) 	= 	∫ 푓푑퐸⊕ 	for	푓	 ∈ 	퐴C(퐽). By 

Proposition (1.10) above 훾 is an 퐴퐶(퐽) −functional calculus for 푇. The argument 
with absolutely convex hulls in[183, p. 347] shows that 	훾	 is indeed weakly 
compact. To verify the uniqueness assertion, suppose that 

푇 = 	 λ푑퐸 (휆)
⊕

= 		 λ푑퐸 (휆)
⊕

	.	 

Let 휆	 ∈ ℝ, and choose 푀 > 	0 so that 퐽 ∪ 	 퐽 ∪ {	휆	 	} ⊆ (−푀	,푀). Then, in 

particular, 푇	 = 	∫ λ푑퐸 (휆)⊕
[ 	, ] 	 for 푘 = 	1,2. We can choose a sequence {푓 } of 

polynomials uniformly bounded in 퐴C(	[	−푀,푀]) such that {푓 } tends pointwise 
on [	−푀,푀] to the characteristic function of [	−	푀	, 휆	 ]. It follows from 
Proposition (1.10) and Proposition (1.12) that {푓 (푇)} converges in the strong 
operator topology to 퐸 (휆	 ) for 푘	 = 	1, 2 (here 푓 (푇)has its elementary meaning). 
     An obvious corollary of the method in the uniqueness proof just concluded 
is stated in the next proposition (which is shown by a different method in [183, 
Theorem 16.3(ii)]). 
Proposition (1.14) [178]: Let 	푇 ∈ ℬ(푋)		be well bounded of type (퐵), and let 퐸(. ) 
be its spectral family. Then an operator 푆 ∈ 	ℬ(푋) commutes with 푇 if and only if  
푆 commutes with 퐸(휆) for all 휆	 ∈ 	ℝ	. 
  The relationship between 퐸(	. ) and the resolvent set of 푇, 휌(푇), is spelled out in 
Proposition (1.15)(i). 
Proposition (1.15) [178]: Under the hypotheses of  Proposition (1.14) we have. 
   (i)  an open interval 휑 is contained in 휌(푇),  if and on1y if 퐸(. ) is constant on 휑	. 
  (ii) for each ,	휆	 ∈ 	ℝ	, {퐸(휆	) 	− 	퐸(휆		 )} is a projection operator and 
               {퐸(휆	) − 퐸(휆		 )}푋 = (푥 ∈ 푋:	푇푥 = 휆	푥},	
where 퐸(휆		 )denotes the strong limit as 푠	 → 휆		  of  퐸(푠). 
Proof. The assertion in (i) is a special case of a more general fact about well-
bounded operators [ 211, Proposition (2.l)(iii)]. We sketch a more direct proof of 



8 
 

(1.15)(i) designed for type (퐵) operators. Suppose 훼	, 훽 are real numbers with 
훼	 < 	훽. We can choose a compact interval 퐽	on which 퐸(. ) is concentrated such 
that	퐽 contains [훼, 훽] in its interior and satisfies 

푇 = 	∫ λ푑퐸(휆)⊕ . For 푧 ∈ ℂ\[훼, 훽] let	푓 : 퐽 → ℂ			푏푒	given by	푓 (휆) = (푧 − 휆)   

for 휆 ∈ 	 (훼, 훽], 	푓 (휆) 	= 	0 otherwise. Then 

	(푧 − 푇) 	푓 푑퐸
⊕

= 퐸(훽) − 퐸(훼). 

Thus the spectrum of the restriction 푇|	{퐸(훽)	− 	퐸(훼)}	푋 satisfies 
                 휎(푇|{퐸(훽) − 	퐸(훼)}푋) ⊆ [훼	, 훽].																																																																	(6)	
Suppose now that 휑	 is an open interval contained in 휌(푇). Without loss of 
generality we can assume 휑 is a bounded interval (푟, 푠).	Suppose 훼 and 훽 belong to 
(푟, 푠) with 훼 < 	훽	. Since 휎(푇) ⊆ ℝ	, 
                              휎(푇|{퐸(훽) − 	퐸(훼)}푋) ⊆ 휎(푇)		.																																																		(7)	
In view of (6) and (7) 푇|	{퐸(훽) 	− 	퐸(훼)}	푋 has void spectrum. Hence 퐸(훼) 	=
	퐸(훽). Conversely, suppose 휑		 is an open interval, and 퐸(	. ) is constant on 휑 Once 
again we can assume that 휑 is a bounded open interval. 
Let 휑 =	 (훼, 훽	) and pick 퐽	as in the discussion leading to (6). For 휆	 ∈ 휑	. define 
g:	퐽	 → ℂ	 by setting g(휆	) 	= 	 (휆 	, −	휆	)	  for 휆	 ∉ 휑	, g(휆	) 	= 	0 for  휆 ∈ 휑.   
Then 

                       (휆	 − 푇) ∫ g푑퐸⊕ = 퐼 + 퐸(훼) − 퐸(훽 )	
Since 퐸(	. ) is constant on 휑	 and 퐸(	. ) is strongly right continuous, it follows that 
퐸(훼) = 퐸(훽 ). Hence 휆	 ∈ 휌(푇). Assertion (1.15)(ii) is the statement of [183, 
Theorem 17.15(iii)], and can be seen with the aid of Proposition (1.12) in 
conjunction with a sequence of polynomials pointwise convergent on an 
appropriate interval to the characteristic function of {	휆}. 
Corollary (1.16) [178]: Under the hypotheses of  Proposition (1.14), if 퐽 	=

	[푎 , 푏 ] contains 휎(푇), then 퐸(	. ) is concentrated on 퐽  and  푇 = 	∫ λ푑퐸(휆)⊕
	 . 

Proof . Obvious from Proposition (1.15)(i). 
Definition  (1.17) [178]: Let 푋	be a Banach space. An operator 푈 ∈ 	ℬ(푋) is called 
trigonometrically well  bounded provided there is a well bounded operator 푇 of 
type (퐵) on 푋 such that 푈	 = 	 푒 	. 
Proposition (1.18) [178]:  If  푈	is a trigonometrically well bounded operator on the 
Banach space 푋, then there is a unique well bounded operator 퐴 of type (퐵) on 
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푋	such that: 푈	 = 	푒 	; 휎(퐴) 	⊆ [0,2휋]; and the point spectrum of 퐴 does not 
contain 2휋	. 
Proof   : By [211, Proposition (3.15) and proof of Proposition (3.1l)]. 
Definition (1.19) [178]: The unique operator 퐴 in Proposition (1.18) will be 
denoted by	arg	푈. 
Proposition (1.20) [178]: Let 푈 be a trigonometrically well bounded operator on 
the Banach space 푋. Then an operator 푆 ∈ 	ℬ(푋) commutes with 푈 if and only if 
푆	commutes with		푎푟g	푈. 
Proof: The assertion here is [211, Proposition (3.14)(ii)]. 
We conclude this section with the following recent result from [213], which plays a 
crucial role in it. 
Theorem (1.21) [178]:  Let 푋 be a Banach space, and let 푈 ∈ 	ℬ(푋) .In order that 
푈 be trigonometrically well bounded it is necessary and sufficient that 푈 have a 
weakly compact 퐴퐶(핋)-functional calculus. If this is the case, then 
                           sup{‖퐸 (휆)‖ ∶ 휆 ∈ ℝ		} 	≤ 3‖훾‖	,																																																					(8)	
where 훾 is the unique 퐴퐶(핋)-functional calculus for 푈, and 퐸 (	. ) is the spectral 
family of arg	푈. 
Proof. The necessity and sufficiency assertion is the statement of [213, Theorem 
(2.3)]. Before taking up the proof of (8) we first observe that an operator can have 
at most one 퐴퐶(핋)-functional calculus because of the density in 퐴퐶(핋) of the 
trigonometric polynomials. To demonstrate (8) we make use of the sufficiency 
proof in [213, Theorem (2.3)], where in a particular spectral family 퐸(. ) is obtained 

so that 퐸(. ) is concentrated on [0,2휋], and  푈	 = 	푒 , where 퐴 = 	∫ λ푑퐸(휆)⊕
[ , ]	 . 

Obviously 퐴 is a well bounded operator of type (퐵), 퐸(. ) is its spectral family, and 
휎(퐴) 	 ∈ 	 [0,2휋]. If 푥 ∈ 푋, and 퐴푥	 = 	2휋푥, then 푈푥 = 푥. Hence for every 푓 ∈
	퐴퐶(핋), 훾(푓)	푥	 = 	푓	(1)	푥. The specific construction of 퐸(. )	in [213] now shows 
that 퐸(휆)	푥	 = 푥 for 휆	 ∈ 	 [0,2휋]. Thus 

                            2휋푥 = 퐴푥 = 	∫ λ푑퐸(휆)⊕
[ , ]	 푥 = 0. 

Hence 퐴	 = 	arg	푈. The construction of 퐸(	. )	further shows that   ‖퐸(휆)‖ ≤
3‖훾‖		for	all		휆	 ∈ 	ℝ.Let 푓	 ∈ 	퐵푉(핋), and put 
 
퐹 (푡) =	 lim

→
푓 푒 , 퐹 (푡) = 	 lim

→
푓 푒 							푓표푟	푡 ∈ ℝ		.																													(9)	

Obviously 퐹 	, 퐹 	 have period 2휋	. Moreover, 
          var(퐹 	, [0,2휋]) 	≤ 	var(푓, 핋)										푓표푟	푗 = 	1,2.																																													(10)	
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To see (10), put 퐹(푡) 	= 	푓	(푒 )  ,for		푡 ∈ ℝ		, and note that for 휀	 > 	0 and 
(푡 , 푡 ,…	, 푡 )	a partition of [0,2휋], 
                          ∑ |퐹(푡 + 휀) − 퐹(푡 + 휀)| ≤ var(푓,핋). 
 
Let 휀 → 0  to get (10) for	푗	 = 	1.	The case 푗	 = 	2 is similar. Thus for 푗	 = 	퐼, 2 
퐹 	 [ , ]

 does not exceed [sup{		|푓(푧)| ∶ 	푧	 ∈ 	핋} 	+ 	var(푓, 핋)], and so 

																											 퐹 	 [ , ]
≤ 2‖푓‖핋														for	푗 = 	1,2.																																										(11)	

 
For each 푡 ∈ ℝ		, define 푓 ∶ 	ℝ	 → ℂ by 
                       
                  푓 (휆) 	= 푓(푒 		푒 )									for	휆 ∈ ℝ.																																																											(12)	
 
Obviously 푓 (휆 + 2휋) 		= 푓 (휆)	 for 휆 ∈ ℝ	, and var(푓 , [0,2휋]) 	= 	var(푓, 핋). 
Hence 
                   ‖퐹 	‖[ , ] ≤ 2‖푓‖핋														for		푡 ∈ ℝ.																																																				(13)	
The next theorem provides the technical underpinnings for the subsequent 
results of  this section. 
Theorem(1.22) [178]: Suppose 푋	is a Banach space, and 푈 ∈ ℬ(푋)is a 
trigonometrically well bounded operator. Let 퐸(	. ) denote the spectral family of  
arg	푈, and let 푓	 ∈ 	퐵푉(핋). For each		푡 ∈ ℝ put 
 

																			Φ(푡) = 	 푓 (휆)푑퐸(휆),
⊕

[ , ]
																																																																									(14)	 

Where  푓  is given by (12). Then 
   (푖)		Φ(푡 + 2휋) = 	Φ(푡)for		푡 ∈ ℝ;	
   (푖푖)	Φ(푡) → 	∫ 퐹 (푡 + 휆)푑퐸(휆)		⊕

[ , ] in  the strong operator topology as 푡	 → 	 푡  

and Φ(푡) → 	∫ 퐹 (푡 + 휆)푑퐸(휆)		⊕
[ , ]  in the strong operator topology as 

푡	 → 	 푡 , where	퐹 	, 퐹  are given by (9); (푖푖푖)	‖Φ(푡)‖ 	≤ 2‖푓‖핋	sup	{	‖퐸(휆)‖:	휆 ∈
	ℝ > for	푡 ∈ ℝ. 
(iv) for each 푥	 ∈ 푋	Φ(. )	푥	is an 푋-valued Lebesgue measurable function on ℝ. 
(v) If  for each 푛	 ∈ 	ℤ, we define Φ(푛) 	∈ 	ℬ(푋)by setting 
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									Φ(푛)푥 = (2휋) 푒 Φ(푡)푥푑푡				for	푥 ∈ 푋,																																															(15)	

then Φ(푛) 	= 푓(푛)푈	 	푓표푟		푛	 ∈ 	ℤ. 
Proof: Conclusion (i) is obvious since 푓 	= 푓 	. Conclusion (ii) is immediate 
from (13) and Proposition (1.12). Conclusion (iii) follows at once from (13) and 
(14). To verify conclusion (iv), we first observe that by virtue of (4) we have for 
every partition 푢 of [0,2휋] and every 푡 ∈ ℝ, 
 
                      ‖Φ(푡)푥 − 휑(푓 , 푢)푥‖ ≤ 	var(푓, 핋)휔(푢, 푥)																																								(16)	
Since for given 푢, 휑(푓 , 푢)	푥 is a measurable function of  푡, conclusion (iv) now 
follows from Lemma (1.8). Note that if we replace Φ(푡) in (15) by the right-hand 
side of (14) and formally interchange the order of   integration, then the desired 
conclusion in (v) results. However, since 퐸(	. ) need not stem from a spectral 
measure, this procedure is purely heuristic, and we shall employ a technical 
alternative. Let 푛	 ∈ 	ℤ.and fix a vector 푥	 ∈ 	푋. For 푡 ∈ ℝ		and 
푢	 = 	 (휆 , 휆 , . . . , 휆 ) a partition of [0,2휋]	it follows from (16) that 
 

푒 Φ(푡)푥 − 푒 푓 푒 퐸(0)푥 − 푒 푓 푒 푒 {퐸(휆 ) − 퐸(휆 )}푥  

           ≤ 	var(푓, 핋)휔(푢, 푥). 
 
Hence from Lemma (1.8) 

Φ(푛)푥 = lim 푓(푛)퐸(0)푥 + 푓(푛)푒 {퐸(휆 ) − 퐸(휆 )}푥  

 
Thus for 푛	 ∈ 	ℤ and 푥	 ∈ 	푋	, 

Φ(푛)푥 = 푓(푛)	 푒 푑퐸(휆)푥
⊕

[ , ]
	= 푓(푛)푈 푥.	

The stage is now set for our abstract  transference  theorem. Here and throughout, 
the  relevant partial sums for a bilateral series ∑ 푎  will be the “balanced” 
푠푢푚푠	 ∑ 푎 	, for 푁 ≥ 0. 
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Theorem (1.23) [178]:  Let 푈	 be a trigonometrically well-bounded operator on a 
Banach space 푋, and let 푓	 ∈ 	퐵푉(핋). Let 퐸(. ) denote the spectral family of arg	U. 
Then 
     (푖) 		∑ 푓(푛)푈 	푖푠	(퐶, 1	)-summable in the strong operator Topology   to 

∫ 2 {퐹 (휆) + 퐹 (휆)}푑퐸(휆)	,⊕
[ , ]  where 퐹 	, 퐹 	 are  defined  in (9); 

 
    (ii)  if in addition to the above  hypotheses, sup{‖	푈 ‖:	푛	 ∈ 	ℤ} 	< 	∞, Then 
∑ 푓(푛)푈 	 converges in the strong operator topology to 
 

2 {퐹 (휆) + 퐹 (휆)}푑퐸(휆)	.
⊕

[ , ]
 

Proof.  We employ the notation of Theorem (1.22). For 푥	 ∈ 	푋. it follows from 
Theorem (1.22)-(v) that the	푋-valued function Φ(푡)푥 has Fourier 
series	∑ 푒 	푓(푛)푈 푥. Moreover, Φ(푡)푥 has a right-hand limit and a left-
hand limit at 푡 = 	0, as described in Theorem (1.22)(ii). Applying the analogue  
for vector-valued functions of  Fejér’s Theorem [ 222, Theorem 1.3.1] to Φ(푡)푥 at 
푡 = 	0, we obtain conclusion (1.23)(i). Under the power boundedness hypothesis 
of (1.23)(ii), we see from (1.22)-(v) that Φ(푛)푥, the nth Fourier coefficient of  
Φ(푡)푥, has norm O(	|푛| ), since 푓	 ∈ 퐵푉(핋). The vector-valued version of a 
simple Tauberian theorem of  Hardy [222,Theorem II.2.2]  now enables us to infer 
the convergence of the Fourier Series  of  Φ(푡)푥 whenever the series is (C, 1	)-
summable. Application of (1.23)(i) completes the proof  of  (1.23)(ii). 
    Next, we consider the use of  Theorem (1.23)(ii) for the direct calculation 
(from 푈) of arg	U and its spectral family of projections. 
Theorem(1.24) [178]: Suppose 푋 is a Banach space, and let 푈 ∈ ℬ(푋)	be a 
trigonometrically well-bounded operator such that sup{	‖푈 ‖ ∶ 	푛	 ∈ 	ℤ	} 	< 	∞. 
Let 퐸(. ) be the spectral family of  arg	U. Then 

													arg	U = 	π{I − 	E(0)} + 	푖 푛 	푈 			,																																																			(17)	

where  the  prime superscript in the series on the right indicates omission of 푛	 = 	0 
as  a summation index, and the series converges in the strong operator topology. 
   Proof.  Let  g ∶ 	핋 → 	ℂ	be defined by g (푒 ) 	= 	푖 휋	– 	푡 	for	0	 < 	푡	 < 	2휋, 
g (1) = 0. It is elementary that g (1) = 0	and g (n) = 푛 	for 푛	 ≠ 	0. Applying 
Theorem (1.23)(ii) to 푈 and g ∈ 	퐵푉(핋), we find that 
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																 푛 	푈 = g 푒 푑퐸(휆).
⊕

[ , ]
																																																									 (18) 

 
With the aid of Remark (2.18)[178], the right-hand side of (18) is easily calculated 
to get 

푛 	푈 		= 푖π	{I − 	E(0)} − 푖(arg U)	.							 

The desired conclusion is now evident. 
   Next we proceed to consider a method for calculating 퐸(	. ) from 푈 under the 
hypotheses of  Theorem (1.24). In particular, we shall obtain a concrete formula for 
퐸(0) in (17). We begin with a companion theorem to Proposition (1.18)(ii). 
Theorem (1.25) [178]:  Let 푈 	 be a trigonometrically well-bounded operator on a 
Banach space 푋, and let 퐸(. ) be the spectral family of arg	U 	. Then for 
  0 ≤ 휆 < 2휋:	
     (푖)	{퐸(휆) − 퐸(휆 )}	푋 = 	 {푥 ∈ 푋:	푈 푥 = 푒 푥};	
     (푖푖)	[퐼 − {퐸(휆) − 퐸(휆 )}]	푋 = 	 (푒 − 	U 	)푋, where the bar superscript denotes 
closure 
   Proof.  If   푥 ∈ 	 {퐸(휆) − 퐸(휆 )}푋	, then (arg	U 	)푥 = 휆푥,  and  so  U 	푥	 =
	푒 푥. Conversely, if U 	푥	 = 	 푒 푥, then we choose a sequence {Q 	} of 
trigonometric polynomials (i.e., linear combinations, with complex coefficients, of 
continuous characters of 	핋) such that {Q 	}is bounded in 퐴퐶(핋) and {Q 	}tends 
pointwise on 핋 to   풳 , the characteristic function, relative to 핋, of  the singleton 

set 푒  Thus Q 	(U )푥 = ∫ Q 	 푒 푑퐸(푡)푥.⊕
[ , ]  Approaches  

∫ 풳 	 푒 푑퐸(푡)푥.⊕
[ , ] 								as		푛 → +∞. However, Q 	(U )푥 = Q 	 푒 푥  for 

all 푛, and so 

푥 = 풳 	 푒 푑퐸(푡)푥 =
⊕

[ , ]
{퐸(휆) − 퐸(휆 )}푥, 

where in the second equality the cases 0	 < 	휆 < 	2휋 and 휆 = 	0 are considered 
separately, and the equalities 퐸((2휋) ) = 	퐼, 퐸(0 ) 	= 	0  are taken into account 
in the latter case. Thus (1.25)(i) is established, and we proceed to (1.25)(ii), taking 
up the case 0	 < 	휆 < 	2휋 first. Suppose that  {퐸(휆) − 퐸(휆 )}푥 = 0. Let  
휑⊿		denote the characteristic function, relative to [0,2휋]	, of the arbitrary subset ⊿ 
of		[0,2휋]		. Obviously we have been given that 
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																																		 휑{ }	(푡)푑퐸(푡)푥 =
⊕

[ , ]
0	.																																																												(19) 

 
For small positive 훿, let  Γ	 = [0	, λ − δ] ∪ [λ + δ	,2π] .Clearly  휑 	 [ , ]

= 3	 

and  휑 	 → 1 − 휑{ }	  pointwise on [0,2휋]	 as 훿 → 0 . Making use of Proposition 
(1.12) and taking account of  (19) we see that 

																											 휑 	 	(푡)푑퐸(푡)푥 → 푥					as				훿
⊕

[ , ]
→ 0 	.																																							(20) 

 
For each  훿, let 	ℎ 	 ∶ [0,2휋] → ℂ be defined by putting ℎ (푡) = (푒 − 푒 )  
For  푡 ∈ 	 Γ	   , ℎ (푡) = 0	for 	푡 ∈ 	 [0,2휋]	\	Γ	 	. It is evident that 
 

	 푒 	− U ℎ 	(푡)푑퐸(푡)푥
⊕

[ , ]
=	 휑 	 	(푡)푑퐸(푡)푥

⊕

[ , ]
		. 

In particular  ∫ 휑 	 	(푡)푑퐸(푡)푥
⊕
[ , ] 		 ∈ 푒 	− U 푋. Hence from (20) , 

푥 ∈ (푒 	− U )푋 .To prove the converse suppose first that 푦	 ∈ 푋, 푧	 ∈ 	푋 with 
 푦	 = 	 푒 	– U 푧.		Put		푧 	= 	 {퐸(휆) − 퐸(휆 )}	푧.		퐵푦	(1.25)(푖),		  
 U 푧 			 = 	 푒 	푧 .	    Hence 

{퐸(휆) − 퐸(휆 )}푦 = 푒 	− U 푧 = 0			.	
Thus 푒 	− U 푋 is contained in the kernel of {퐸(휆) − 퐸(휆 )}		,	and we have 
established (1.25)(ii) for the case 0	 ≤ 	휆 < 	2휋	. The proof of (1.25)(ii) when 
휆 = 	0 is entirely analogous. One uses the intervals (훿, 2휋	 − 	훿] in place 
of the sets  Γ	 . The proof of Theorem (1.25) is complete. 
    Although Theorem (1.25)  lies outside of ergodic theory, it allows us to deduce  
directly, in the following corollary, a result of the discrete-averages variety (cf. 
[216, Corollary VIII.53 and Corollary VIII.5.2]). 
Corollary (1.26) [178]: Suppose that, in addition to the hypotheses of Theorem 
(1.25), sup{	(	‖푈 ‖:	푛 ∈ ℤ, 푛 ≥ 1} < ∞. Then for  0	 ≤ 	휆 < 	2휋, 
 

	푛 푒 푈 	→ 퐸(휆) − 퐸(휆 )										푎푠	푛	 → +∞, 

in the strong  operator  topology, 
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  Proof:  Put  풜(푛) = 푛	 ∑ 푒 푈 	 for each positive integer 푛	(휆 will be 
fixed in the range 0	 ≤ 	휆 < 	2휋). If 푥 ∈ {퐸(휆) − 퐸(휆 )}	푋, then, by Theorem 
(1.25) - (i), 풜(푛)푥 = 푥	for all 푛	 ≥ 	1. If  푦 ∈ 푒 	− U 푋, put 
푦 = 퐼 − 푒 	U 	푧	, and observe that 

풜(푛)푦 = 푛	 퐼 − 푒 	푈 	푧	 → 0						푎푠				푛 → +∞	, 
 
since sup{	(	‖푈 ‖:		푛 ≥ 1} < ∞. However, sup{		‖풜(푛)‖:		푛 ≥ 1} is also finite. 
Hence we see with the aid of Theorem (1.25)(ii) that {풜(푛)} tends to zero 
pointwise on the kernel of {퐸(휆) − 퐸(휆 )}and the proof of the corollary is 
complete. 
  Using Corollary (1.26) for the case  휆 = 	0, we obtain the following restatement of 
Theorem (1.24). 
Theorem (1.27) [178]: Let 푈 be a trigonometrically well-bounded operator on a 
Banach space	푋 such that 푠푢푝{	(	‖푈 ‖:	푛 ∈ ℤ	} < ∞. Then 
 

arg푈 =휋퐼 − 휋	 st.		lim
→		

푛	 푈 	+ 푖st.		lim
→		

	 푘	 	푈 		,																							 (21) 

 
where st. lim denotes “limit in the strong operator topology” .We now turn to the 
explicit calculation of the spectral family 퐸(. ) occurring in Theorem (1.24). Since 
퐸(. ) is concentrated on [0,2휋], we need only consider	퐸(휆) for 0	 ≤ 	휆 < 	2휋. 
Theorem (1.28) [178]: Under the hypotheses  of  Theorem (1.24), we have for 
0	 ≤ 	휆 < 	2휋 : 
  (푖) With series convergence in the strong operator topology, 

			퐺 (푘)	푈 = 2 	{퐸(휆 ) + 퐸(휆) − 퐸(0)}	, 

 
Where  퐺	 ∈ 	퐵푉(핋) is the characteristic function relative to 핋 of   {푒 :	0 ≤ 푡 ≤
휆}. 
  	(푖푖)   퐸(휆) = st.		lim

→		
	∑ 퐺 (푘)	푈 	+ st.		lim

→		
	(2푛) 	∑ 	푒 	푈 		

                      
                   +st.		lim

→		
	(2푛) 	∑ 		푈 	. 
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Proof .  Conclusion (1.28)(i) is an immediate consequence of  Theorem (1.23)(ii) 
for 0 < 	휆 < 	2휋, and is trivial for 휆 = 	0. Conclusion (1.28)(ii) is easily obtained 
by combining (1.28)(i) with Corollary (1.26). 
   We conclude this section with consideration of a norm estimate. 
 Theorem (1.29) [178]: Let 푈 he a trigonometrically well-bounded operator on a 
Banach space 푋	such that sup{	‖푈 ‖:	푛 ∈ ℤ	} < ∞, and let 퐸(	. ) be the spectral 
family of arg	U. Suppose that 푓	 ∈ 퐵푉(핋). Then for each nonnegative integer 푛 we 
have 

														 푓(푘)	푈 	≤ 휋 	퐾 var(푓	, 핋) + 2퐾 ‖푓‖핋						,																															(22)	

 
where 퐾 = sup{	‖푈 ‖:	푚 ∈ ℤ	} and 퐾 = sup	{‖퐸(휆)‖: 휆 ∈ ℝ}. 
Proof. We employ the notation of Theorem (1.22). Let	푥	 ∈ 	푋. Standard 
considerations with the Cesáro means for the Fourier series of Φ(푡)푥 (in 
conjunction with Theorem (1.22)(v)) show that 

											 1 −
|퐾|
푛 + 1

				푓(푘)	푈 푥 = (2휋) 푘 (푡) Φ(푡)푥푑푡	,																				(23) 

where 푘  is the nth term of the Fejér kernel. Applying Theorem (1.22) (iii) to (23) 
we see that 

											 1 −
|퐾|
푛 + 1

				푓(푘)	푈 	≤ 2퐾 ‖푓‖핋		.																																														(24) 

Moreover, 

푓(푘)	푈 − 1 −
|퐾|
푛 + 1

				푓(푘)	푈 = 		
|퐾|
푛 + 1

	푓(푘)	푈 		 	.									(25) 

 
Since	푓	 ∈ 퐵푉(핋),	it is elementary that		 푓(푘) 	≤ (2휋|푘|) 	var	(푓, 핋)		for 푘 ∈ ℤ, 
푘	 ≠ 	0. Using this fact with (25), we get easily 
 

푓(푘)	푈 − 1 −
|퐾|
푛 + 1

				푓(푘)	푈 ≤ 휋 퐾 var	(푓, 핋)																	(26) 

 
The desired conclusion now follows at once from (24) and (26). 
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Remarks (1.30) [178]: We make two observations under the hypotheses of 
Theorem (1.29). 
   (a) The purpose of the estimate in (22) is to provide an explicit bound, intrinsic to 
푓	and 푈, for the sequence { ∑ 푓(푘)	푈 } .It is already clear, without 
calculations, from Theorem (1.23)(ii) and the Banach-Steinhaus Theorem that this 
sequence is bounded. 
(b) It is obvious from Proposition (1.10) that 

푓(푘)	푈 = 푓(푘) 푒 푑퐸(푡)
⊕

[ , ]
		. 

 
Thus, from (3) we get 
 

															 푓(푘)	푈 ≤ ‖푆 (푓, . )‖핋 sup{‖퐸(휆)‖: 휆 ∈ ℝ},																														(27) 

 
where 푆 (푓, 푧) = ∑ 푓(푘)	푧 	for all 푧	 ∈ 	핋	. Hence, if the sequence of partial 
sums for the Fourier series of  푓	 is bounded in 퐵푉(핋), then (27) can be utilized to 
get a bound for the sequence {	 ∑ 푓(푘)	푈 		}. However, not every function in 
퐵푉(핋)has a Fourier series with this property. For example, it is easy to see for the 
function  g  in the proof of Theorem (1.24) that 

var(푆 	(g , . ), 핋) ≥ 2휋(퐿 − 1),	
where 퐿  is the nth Lebesgue constant [231, p. 67]. Since 퐿 → ∞  as  
 푛 → +∞,‖푆 (g , . )‖핋 → +∞	. 
  We begin this section with an adaptation to the special case 퐺	 = 	ℤ of the 
Coifman-Weiss  technique  for proving their General Transference Theorem. As 
mentioned in it, the simplifications available for this special case allow us to 
eliminate measure-theoretic technicalities from the hypotheses and the proof. For 
휉 = 	 {휉 } 	 ∈ 퐿 (ℤ	),	we denote by  퐾 , 	the operator of convolution by 	휉	 on 
퐿 (ℤ	),	 for 1	 < 푝	 < 	∞. Notice that 
 
																								 퐾 , = 퐾 , 	 									,																																																																													(28) 
 
where		휁 = {휉 }. 
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Theorem (1.31) [178]: Suppose (ℳ, 휇) is an arbitrary measure space, and 
1	 < 푝	 < 	∞. Let 푌	be a closed subspace of  퐿 (휇	),	 , and let 푉:	푌	 → 푌 be an 
invertible bounded linear operator such that sup{‖푉 ‖:푛 ∈ ℤ} < ∞. Then for 
every trigonometric polynomial Q 
									‖푄	(푉)‖ 	≤ 푐 	 퐾 , 	 	,																																																																																										(29) 
where 푐	 = 	 sup{‖푉 ‖: 푛 ∈ ℤ}. 
Proof. In view of (28) the desired conclusion is clearly equivalent to the assertion 
that for every trigonometric polynomial Q 
											‖푄	(푉 )‖ 	≤ 푐 	 퐾 , 	 	,																																																																																			(30) 
   We show (30) for an arbitrary trigonometric polynomial  Q . For notational 
convenience, put 푄 =	 {푎	 }, and choose 푁 sothat 푎	 	= 	0	for |푛| 	> 	푁. Fix an 
element 푓	 ∈ 	푌, and for each 푛 ∈ ℤ, treat 푉 푓	as a function on ℳ, rather than as 
an equivalence class of functions. Let 	푀	 be an arbitrary positive integer. 
Obviously 

‖g‖ 	≤ 푐	‖푉 g‖ 														for			푚 ∈ ℤ, g ∈ 푌,	
Where we denote the norm  of 	퐿 (휇	),	 by  ‖	. ‖  . It follows that 

																‖g‖ 	≤ 푐 (2푀 + 1) 	 ‖푉 g‖ 	, 			for	g ∈ 푌	.																																(31) 

 
Taking g in (31) to be	푄	(푉 )푓 we easily obtain 
 

‖푄	(푉 )푓‖ 	≤ 푐 (2푀 + 1) 푎	 (푉 푓)(푥)
.

ℳ

푑휇(푥)				(32) 

 
Fix 푥 ∈ ℳ temporarily. Let 푘		be the characteristic function relative to ℤ of 
{푛	 ∈ ℤ: |푛| 	≤ 푀	 + 	푁}. We have 

푎	 (푉 푓)(푥) = 푎	 퐾 (푉 푓)(푥)  

≤ 퐾 , 	 |(푉 푓)(푥)| . 

Using this inequality in (32) . 
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 We see that 

‖푄	(푉 )푓‖ 	≤ 푐 (2푀 + 1) 퐾 , 	 ‖푉 푓‖ 		.										 

Hence  
‖푄	(푉 )푓‖ 	≤ 푐 (2푀 + 1) 퐾 , 	 	(2푀 + 2푁 + 1)‖푓‖ 																									(33) 
Letting 푀 → +∞ in (33) we obtain 

‖푄	(푉 )푓‖ 	≤ 푐 퐾 , 	 ‖푓‖ 				, 
for  푓	 ∈ 	푌. This shows (30), which completes the proof of the theorem. 
Theorem (1.32) [178]: Under the hypotheses of Theorem (1.31), we have, 
    (i) for every trigonometric polynomial 푄, 

‖푄	(푉)‖ ≤ 푐 퐶 	‖푄‖핋	, 
where   퐶 	,	is the constant occurring in Stečkin’s Theorem (Theorem (1.2 ), and 
푐	 = 	 sup{‖푉 ‖:푛 ∈ ℤ};  
   (ii)  푉 is trigonometrically well-bounded; 
   (푖푖푖)	sup{‖퐸(휆)‖: 휆 ∈ ℝ} ≤ 3	푐 퐶 	, where 퐸(. ) is the spectral family of  arg	푉 . 
 Proof.  Conclusion (1.32)(i) is an immediate consequence of Theorem (1.31) and 
Stečkin’s Theorem for ℤ	. Since the trigonometric polynomials are dense in 퐴퐶(핋), 
it follows from conclusion (1.32)(i), by continuous extension, that 푉 has an 퐴퐶(핋)-
functional calculus whose norm does not exceed 푐 퐶 	. Conclusions (1.32)(ii) and 
(1.32)(iii) are now apparent by virtue of Theorem (1.21) in conjunction with 
Remark (2.22)[178]. This completes the demonstration of the theorem. 
 Remarks (1.33) [178]: It is well known (and easy to see from Theorem (1.2)) that 
if   1	 < 푝 < 	∞	and 푓 ∈ 	퐵푉(핋), then 푓 ∈ 	푀 (핋), the space of  푝-multipliers for 
퐿 (ℤ), and convolution by 푓	on 퐿 (ℤ)has norm equal to ‖푓‖ (핋), the 푝-multiplier 
norm of 	푓	. Hence in the special case of 	푝	 = 	2 and 푉 unitary, Theorem (1.31) 
becomes a form of the spectral theorem for unitary operators. Specifically, in this 
context, Theorem (1.31) asserts that 푉	has a norm-decreasing 퐶(	핋)-functional 
calculus, where 퐶(	핋) is the Banach algebra of complex-valued continuous 
functions on 핋 with the usual “sup” norm. (Apart from the 휎-finiteness restriction 
on ℳ for Theorem (1.3) the General Transference Theorem likewise contains the 
spectral theorem for unitary operators [215]. Thus our results stemming from 
Theorems (1.31) and (1.21) (specifically, Theorems (1.32), (1.35), (1.36), and 
(1.39)) can be viewed as generalizing the spectral theorem from Hilbert space to 
arbitrary reflexive 퐿 -spaces. In the special case		푝	 = 	2, these results are 
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immediate consequences of 퐵. Sz.-Nagy’s similarity theorems [228, Theorems I 
and II], which they also generalize to reflexive		퐿 -spaces. Theorem (1.32)(ii) has a 
surprising consequence for hermitian-equivalent operators (Theorem (1.35)). First, 
let us recall some basic facts about hermiticity. A bounded operator 푇 on a Banach 
space 푋	is said to be hermitian (in the sense of Lumer and Vidav [223.229]) 
provided 푒	 = 	1 ,for all 푡 ∈ 	ℝ. The operator 푇	is said to be hermitian-
equivalent provided 푇 can be made hermitian by equivalent renorming of 푋. It is 
shown in [ 185, Theorem 6] that 푇 is hermitian-equivalent if and only if 
sup 	 푒	 ∶ 	푡 ∈ 	ℝ < ∞	. We shall also require a lemma of independent 
interest. 
Lemma (1.34) [178]: Suppose 푋 is a Banach space, 퐴	 ∈ 	ℬ(푋) and 푒 	 is 
trigonometrically well-bounded. Then 	퐴  is well-bounded of type (B). 
Proof .  We adapt the demonstration of [183, Theorem 20.28] to the general 
Banach space setting. Let 퐴	 = 	arg(푒 ). By Proposition (1.20), 퐴 and 퐴	  
commute. Thus  	푒 ( 	 ) 		= 	퐼. By [183, Proposition 10.6] 퐴 − 퐴	  has the form 
 

															퐴 − 퐴	 = 휆 퐹 		,																																																																																								(34) 

where 휎(퐴	 − 퐴	 ) 	= 	 {휆 , 휆 , . . . , 휆 }; the operators 퐹 ,퐹 , . . . , 퐹 	are projections 
satisfying ∑ 퐹 	= 	퐼,	and 퐹 퐹 	= 	0	for 푗	 ≠ 푘; {퐴, 퐴	 , 퐹 , 퐹 , . . . , 퐹 } is a 
commutative set of operators. Clearly {휆 , 휆 , . . . , 휆 } = 휎(퐴	 − 퐴	 )	is a subset of  
ℝ. For 푘	 = 	1, 2	, . . . , 푛, 푋	 = 퐹 푋 is invariant under 퐴	 , and hence from (34) we 
see that 퐴	has the direct sum representation 
																					퐴 = 	⨁ [(퐴	 + 휆 )|푋	 ].																																																																					(35	)	
The proof of the lemma is easily completed by applying to (35) the following facts, 
readily deducible from the definition of type (퐵) well-bounded operator in this  
Section .  if 푇 is a type (B) well-bounded operator, then the restriction of		푇 to an 
invariant subspace and any sum of the form 푇	 + 	휆 with 휆 real are type (B) well-
bounded operators; a finite direct sum of type (B) well-bounded operators is a type 
(B) well-bounded operator. 
Theorem (1.35) [178]: Let 푌 be a closed subspace of 퐿 (휇), where ,	휇 is an 
arbitrary measure and 1	 < 푝	 < 	∞. If 퐴	 ∈ ℬ(푌	) is hermitian-equivalent, then 퐴 is 
well bounded of type (B). 



21 
 

  Proof. Since  sup 	 푒	 ∶ 	푡 ∈ 	ℝ < ∞ , 푒	 		is power bounded. The desired 
conclusion follows at once from Theorem (1.32)(ii) and Lemma (1.34).  
  It follows from Theorem (1.32)(ii) that if 	푉	is a power-bounded operator on a 
closed subspace 푌	of an 퐿 -space, where 1	 < 푝	 < 	∞, then the machinery of this 
Section  applies to 푉 (notably Theorems (1.23)(ii), (1.24), (1.27), (1.28), (1.29)). In 
particular, by Theorem (1.29) (alternatively by Theorem (1.23)(ii), (3), and (11)) 
there is a constant 풦 (depending on 푉) such that 

											 푓(푛)	푉 ≤ 풦‖푓‖핋				푓표푟	푓 ∈ 퐵푉(핋).																																															(36) 

    However, by using the actual transference result (29) rather than the purely 
abstract operator-theoretic methods of  this Section , we can improve on the 
estimate in (36) and generalize (29) from trigonometric polynomials to all of 
퐵푉(핋)	. Specifically, the following inequality can be obtained for the 푝-multiplier 
norm. 
Theorem (1.36) [178]: Under the hypotheses of  Theorem (1.31) we have 

푓(푛)	푉 ≤ 푐 ‖푓‖ (핋)				for									푓 ∈ 퐵푉(핋).											 

where  푐	 = 	 sup{‖푉 ‖:푛 ∈ ℤ}	. 
   Proof.   Let  푓 ∈ 퐵푉(핋)	, and for 푁	a nonnegative integer let 휎 (푓, 푉) be the	푁th 
Cesáro mean for the series ∑ 푓(푘)	푉 . Thus, if {풦 }  denotes the Fejér 
kernel, then 휎 (푓, 푉) 	= 	푄 (	푉), where 푄  is the trigonometric polynomial 
풦 ∗ 푓	. By Theorem (1.31), 
 
                                  ‖휎 (푓, 푉)	‖ ≤ 푐 ‖풦 ∗ 푓‖ (핋) . 
It is a well-known and easy consequence of  Parseval’s formula and Hölder’s 
inequality that if 퐺 is a locally compact abelian group with dual group  
 Γ	, 1	 < 푝	 < 	∞		, 휙 ∈ 퐿 (Γ) , and 휓 ∈ 	푀 (Γ), then 
 

‖휙 ∗ 휓‖ ( ) 	 ≤ ‖휙‖ ( )‖휓‖ ( )	. 
Thus, 
																																								‖풦 ∗ 푓‖ (핋) ≤ ‖푓‖ (핋)	,																																																			(37) 
and  so 

‖휎 (푓, 푉)	‖ ≤ 푐 ‖푓‖ (핋)		. 
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The proof is now complete, since 	휎 (푓, 푉) → ∑ 푓(푛)	푉 			푎푠			푁 → +∞, 
in the strong operator topology. 
Remarks (1.37) [178]: We shall make some observations which show that the 
estimate in Theorem (1.36) improves (36). The argument in [231,Theorem III. 
(3.7)] demonstrates that if		푓 ∈ 퐵푉(핋), then 
 
‖푆 (푓, . )	‖ ≤ 휋 	var(푓, 핋) + ‖푓‖   for each nonnegative integer 푛,             (38) 
 
where 푆 (푓, . ) is as in (27) and, for each g ∶ 	핋	 → 	ℂ , 
‖g	‖ = 	sup{	|g(z)| ∶ 	푧 ∈ 	핋	}. The argument used to establish (38) can easily be 
modified to give, for 푓 ∈ 퐵푉(핋)	and 1	 < 	푝	 < 	∞, 
												‖푆 (푓, . )	‖ (핋) ≤ 휋 	var(푓, 핋) + ‖푓‖ (핋)		for	푛 ≥ 0.																										(39)	
To obtain (39) one need only begin with (37) and then replace ‖	. ‖  by ‖	. ‖ (핋) 
throughout the demonstration of (38). Next, note that, by Stečkin’s Theorem, for  
1	 < 푝	 < 	∞, 

‖푓‖ (핋) ≤ 퐶 ‖푓‖핋						for	,							푓 ∈ 퐵푉(핋)	.	
And hence Theorem (1.36) implies (36). However, there does not exist a constant 
퐵 , such that 

‖푓‖핋 ≤ 퐵 ‖푓‖ (핋)						for								푓 ∈ 퐵푉(핋)	.	
In fact, the function g ∈ 퐵푉(핋) discussed in (1.30)(b) satisfies  
‖푆 (g , . )	‖핋 	→ +∞	푎푠	푛 → +∞, where as from (39), ‖푆 (g , . )	‖ (핋)   is a 
bounded sequence. Thus the inequality (36) has a larger order of magnitude 
occurring in its majorant than does Theorem (1.36) and consequently (36) provides 
a weaker estimate than Theorem (1.36). 
    We next take up an application of Theorem (1.32) to one-parameter groups. We 
shall require the following theorem from [ 211]. 
Theorem (1.38) [178]: (Generalized Stone's Theorem). Let {푊 }	, 푡 ∈ ℝ, be a 
strongly continuous one-parameter group of trigonometrically well-bounded 
operators acting on a Banach space 푋. For each 푡 ∈ ℝ	, let 퐸 (	. ) hethe spectral 
family of  arg	푊 , and suppose that 
												퐾 ≡ sup{		‖퐸 (	휆)‖:	푡 ∈ ℝ, 휆 ∈ ℝ} 	< 	∞.																																																						(40)	
Then: 
 (푖) there is a unique spectral family 픉(	. ) in 푋	(called the Stone-type spectral 
family of {푊 }) such that 
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																	푊 	푥 = lim
→

푒 푑픉(휆)푥							for		푡 ∈ ℝ, 푥 ∈ 푋,																																		(41)	

where the integral on the right in (41) exists as a strong limit of  Riemann- Stieltjes  
sums; 
  (푖푖)	{	푊 :	푡 ∈ ℝ	}	and	{픉(휆):	휆 ∈ 	ℝ	}  have the same commutants; 
  (푖푖푖)	sup{	‖픉(휆)‖:	휆 ∈ 	ℝ} 	≤ 	24퐾 .	
Conclusions (1.38) (i), (ii) are contained in the statement of [ 211, Theorem (4.20)], 
while conclusion (1.40) (iii) can be seen from an examination of the proof for [ 
211, Theorem (4.20)]. 
Theorem (1.39) [178]: Let 푌 be a closed subspace of 퐿 (휇) where 휇 is a measure 
and 1	 < 푝	 < 	∞, and let {풲 } be a strongly continuous one-parameter group of 
continuous linear operators on 푌 such that 

푠 = sup{	‖풲 ‖: 푡 ∈ 	ℝ} < ∞.	 
Then the group {풲 }	, 푡 ∈ 	ℝ	, satisfies the hypotheses of the Generalized Stone’s 
Theorem (1.38) on 푌, and its Stone-type spectral family 픉(. ) satisfies 
                        sup{	‖픉(휆)‖:	휆 ∈ 	ℝ} ≤ (648)푠 퐶 	, 
where	퐶  is the constant in Stečkin’s Theorem (1.2). 
Proof. For each 푡 ∈ 	ℝ	, sup{	‖풲 ‖: 푛 ∈ 	ℤ} ≤ 푠.	 By Theorem (1.32)(ii), 
(1.32)(iii) 풲  is trigonometrically well-bounded, and 
 

sup{	‖퐸 (휆)‖:	휆 ∈ 	ℝ} ≤ 3푠 퐶 	, 
 
where  퐸 (	. )is the spectral family of arg 풲 . It is clear that the group {풲 }	, 푡 ∈
	ℝ, satisfies the hypotheses of Theorem (1.38) on 푌, with 퐾 in (40) satisfying 
	퐾 ≤ 3푠 퐶 . Application of (1.38)(iii) completes the proof. 
      The spectral decomposition, afforded by its Stone-type spectral family, for the 
one-parameter group {풲 }	 in Theorem (1.39) was obtained by D. Fife in the 
special case where 푌	 = 	퐿 (휇), 휇 is 휎-finite, and the operators 	풲 	, 푡 ∈ 	ℝ, are 
induced by a one-parameter group of measure-preserving  transformations (of the 
underlying measure space) satisfying appropriate measurability and continuity 
conditions (see [218, Theorem 1 and p. 139], or, for more details, [217, especially 
Theorem 12]). Thus Theorem (1.39) extends in various ways Fife’s spectral 
decomposition for ergodic flows. 
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Proposition (1.40) [219]: Let 퐺 be a locally compact abelian group with dual 
group Γ, let 푥	 ∈ 	퐺, and suppose that 1	 < 푝	 < 	∞. Let 푅  be the translation 
operator on 퐿 (퐺) corresponding to 푥. Then 푅  is trigonometrically well-bounded, 
and the spectral family 퐸 (. ) of arg 푅 	satisfies sup{	‖퐸 (휆)‖:	휆 ∈ 	ℝ} ≤ Ω  
,where Ω  is a constant depending only on 푝 and not on 푥	or 퐺. Furthermore, 
  (푖) the function 휙 :	Γ	 → [0, 2휋) defined by 

휙 (훼) = 	Arg 훼(푥) 								for	훼 ∈ Γ.	
Is an 퐿 (퐺)-multiplier whose corresponding multiplier transform is 	arg	푅 ; 
  (푖푖) for each 휆 ∈ [0, 2휋) the function 휓 , ∶ 	Γ	 → {0,1}	defined by 

휓 , (훼) = 퐾 훼(푥) 								for	훼 ∈ Γ 
is an 퐿 (퐺)	-multiplier whose corresponding multiplier transform is 퐸 (휆). 
      First, we observe that by virtue of Theorem (1.32)(iii) Ω  can be taken to be 
3퐶  Next, consider conclusion (1.40)(i). For 푓 in  퐿 (퐺) ∩ 퐿 (퐺), let  
 푓 = 푛 	∑ 푅 푓			for	푛	 ≥ 	1. Thus 푓 ∈ 퐿 (퐺) ∩ 퐿 (퐺)	 and 
푓 = 푛 	∑ 푥 푓	, where 푥: Γ → 핋	 is given by 푥(훼) = 훼(푥) for 훼 ∈ Γ. By 
Theorem (1.27) 

																						(arg 푅 )푓 = 휋푓 − 휋 lim 푓 + 푖 lim 퐾 푅 푓	,																													(42) 

the limits being taken in 퐿 (퐺). Let ℎ	be the characteristic function relative to Γ of 
{훼 ∈ Γ:	푥(훼) = 	1}. It is elementary that the sequence {푛 	∑ 푥 } is uniformly 
bounded on	Γ and tends pointwise to ℎ. Thus		푓 → ℎ푓	, in 	퐿 (Γ). Taking inverse 
Fourier transforms, we see that {푓 	} converges in 퐿 (퐺) to(ℎ푓	) . Since 
{푓 	}	converges [mean	 ], we infer that 
																					 ℎ푓	 ∈ 퐿 (퐺)			and				푓 	→ 	 ℎ푓	 			in		퐿 (퐺).																																					(43) 
 
Let 퐹 = 	∑ 퐾 	푅 푓			for			푛	 ≥ 	1. Clearly 퐹 ∈ 퐿 (퐺) ∩ 퐿 (퐺)	and 퐹 =
	∑ 퐾 	푥 푓	 . Let g	  be the function employed in the proof of Theorem 
(1.21). Since g	 ∈ BV(핋), the sequence {	푆 (g	 , . )} is uniformly bounded (due to 
(38)) and pointwise convergent on 핋	 to g	  (by [ 222,Corollary II.2.2]). It now 
follows that {∑ 퐾 	푥 } is uniformly bounded on Γ and pointwise convergent 
to g	 (푥(. )). Hence  퐹 → 	g	 푥(. ) 푓			, in 퐿 (Γ) Similar reasoning to that just 
used to establish (43) now gives 

	g	 푥(. ) 푓			 ∈ 퐿 (퐺)						푎푛푑				퐹 → 	g	 푥(. ) 푓			 						in	퐿 (퐺).	 
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Using this and (43) in (42) we find that (arg	푅 )푓 belongs to 퐿 (퐺) ∩ 퐿 (퐺)	, and 
has Fourier transform given by 

휋(1 − ℎ)푓 + 푖	g	 푥(. ) 푓		. 
Since it is easy to see that 

	g	 푥(. ) = 푖(1 − ℎ) 휋 − Arg 푥(. ) 	, 
the conclusion (1.40)(i) follows at once. Similar reasoning based on Theorem 
(1.28)(ii) readily demonstrates conclusion (1.40) (ii). Alternatively, (1.40)(ii) can 
be deduced from (1.40)(i) and the following result of  Ralph [ 224, Theorem 3.2.4]. 
Proposition (1.41) [178]:  Let 퐺 be a locally compact abelian group with dual 
group Γ		Suppose that 1	 < 	푝	 < ∞, and 휙	is a real-valued function belonging to 
푀 (Γ). Then the multiplier transform 푇  corresponding to 휙	 is well bounded of 
type	(퐵) if and only if for all 휆 ∈ ℝ	the characteristic function of 
휙 ((−∞, 휆])	belongs to 푀 (Γ),	and, for the corresponding multiplier transforms 
퐸(휆), 휆	 ∈ ℝ	, we have sup{	‖퐸(휆)‖ ∶ 휆	 ∈ ℝ} 	< 	∞. If this is the case, then 퐸(	. ) 
is the spectral family of 	푇 		. 
    This section exhibits a few counterexamples which preclude various potential 
extensions of Theorems (1.32) and (1.35). 
Example (1.42) [178]: There exist a reflexive Banach space 푋 and a power-
bounded Operator  푈 ∈ 	ℬ(푋) such that 푈 has no logarithm in  ℬ(푋) , in 
particular Theorem (1.32)(ii) fails if we replace 푌 by an arbitrary reflexive Banach  
space . In fact, let {	푃 } , be a sequence in the interval (1, +	∞) such that 푃 →
1, and take 

푋 = 푙 −	⊕ 	푋 	, 
where 푋 = 	 {푓 ∈ 퐿 (핋): 푓(0) 	= 	0}		for		푘 ≥ 	1. Thus 푋 is a reflexive space. 
Denote by ℕ	the set of positive integers. Let {훼 } , be a sequence of distinct 
irrational numbers in (0, 1) such that: (푖) for 푗, 푘	 ∈ ℕ with 푗	 ≠ 	푘, the set 
{훼 	, 훼 	,1} is linearly independent over the rational field, and (ii) {훼 } converges to 
an irrational number 훼	. (An easy way to construct such a sequence is to take 

훼 ∈ 	 (0, 1) transcendental and 훼 = 훼 + 푠	  for 푘	 ∈ ℕ, where {푠 } , is a 

strictly increasing sequence of positive primes such that 훼 + 푠	 < 1 for 푘	 ∈ ℕ ). 
Let 푇  be the translation operator on	푋 , corresponding to 푒	  for 푘	 ∈ ℕ	. 
Regarding each 푋 , as a subspace of 푋, put 푈 =⊕ 	푇 . Thus 푈  is a surjective 
isometry of 푋. We show that there does not exist 퐴	 ∈ ℬ(푋) such that 푈 = 푒 . 
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Suppose, to the contrary, that 푈 = 푒 . For 푛 ∈ ℤ\{0} and 푘	 ∈ ℕ , let 휙( ) ∈ 푋 	, 
be defined by 휙( )(푧) = 푧  for all 푧	 ∈ 핋. Thus the linear span of 	휙( ):	푛	 ∈

ℤ\	{	0}, 푘	 ∈ ℕ  is dense in 푋,	and 푈 휙( ) = 푒	 휙( )						for 	푛	 ∈ ℤ\	{	0},	  and 
푘	 ∈ ℕ. We claim that for 푛	 ∈ ℤ\	{	0},	   and 푘	 ∈ ℕ, 휙( ) spans the kernel of 
(푒	 퐼 − 	푈 ). For 푓 ∈ ker 푒	 퐼 −	푈 	,	let 푓 = ∑ 	 푓 	 with 푓 	 ∈ 	 푋  
for all 푗 ∈ ℕ. Thus, for each  푗 ∈ ℕ , we have 푇 		푓 	= 푒	 	푓 		Equating the 
Fourier coefficients from both sides of this equation, we see that 
                 
           푒	 	푓 	(푚) = 푒	 	푓 	(푚)			푓표푟		푚 ∈ ℤ	, 푗 ∈ ℕ. 
From property (i) of the sequence of  훼	 푆	,we have that 푒	 = 푒	  

implies 푗 = 	푘 and 푚	 = 	푛. Thus 푓 = 푓 (푛)휙( ) and the claim is established. Since 
퐴 commutes with 푈  it follows from the claim that for 푛	 ∈ ℤ\	{	0},	  and 푘	 ∈ ℕ	, 

퐴휙( ) = 	휆( )휙( ) for some 휆( ) ∈ ℂ   .Hence 푈 휙( ) = exp	(푖휆( )) 휙( )   , and 

so 

													exp(2휋푖푛훼 ) = 	exp 푖휆( ) 						for	푛	 ∈ ℤ\	{	0}	, 푘	 ∈ ℕ.																										(44)	
Applying Tychonoff’s Theorem to the sequence {퐴 }	 	in the compact metric 
space ∏ 퐷	∈ℤ\	{	 } ,  where 퐷 = {푧 ∈ ℂ ∶ |z| ≤ ‖퐴‖} for all 푛	 ∈ ℤ\	{	0}, 

and 퐴 = 	 휆( )

	∈ℤ\	{	 }
for all 푘	 ∈ ℕ, we obtain a strictly increasing sequence 

퐾 	 	of positive integers, and an element 퐴 = {휆 } of ∏ 퐷	∈ℤ\	{	 }  such that for 

each no 푛	 ∈ ℤ\	{	0}	, 휆( ) → 휆  Define 휆 = 0	.Now fix a trigonometric 
polynomial Q		and let Q	 = 	Q	 − 	Q(0). Fix 푀 ∈ ℕ so that [	−푀,푀]	contains the 
support of Q	. For 푗	 ∈ ℕ regard Q	  as an element of 푋 	 and, denoting the norm of 
퐿 	(핋) by |	. |  observe that 

|	퐴(Q	 )| 	≤ ‖A‖|	(Q	 )| 		. 
In other words, 

																			 휆( )		푄(푛)	푧 		 ≤ ‖A‖|	(Q	 )| 						for		j ∈ ℕ	.																										(45) 

Letting j → ∞ in (45) we obtain 
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휆 		푄(푛)	푧 		
(핋)

≤ ‖A‖	‖	Q	 ‖ (핋)				.		 

Recalling that 휆 = 0 ,we see that 

휆 		푄(푛)	푧 		
(핋)

≤ 2‖A‖	‖	푄‖ (핋)		. 

This shows that the sequence {휆 }	  is a multiplier sequence for 퐿 (핋). Let 퐵 
denote the corresponding bounded operator on 퐿 (핋). Replacing k by 푘 	 in (44) 
and letting 푗	 → ∞, we infer that 푒	 = 푒  for all 푛	 ∈ ℤ (the case 푛	 = 	0 
being trivial). It follows that 푒 	is the translation operator on 퐿 (핋)		corresponding 
to 푒	   . However, this translation operator on 퐿 (핋) has no logarithm [ 221], 
and we have reached a contradiction (cf. Example(1.45)). 
Example (1.43) [178]: There are a reflexive Banach space	푋, and a hermitian 
operator 퐴	on 푋	such that 퐴 is not a well-bounded operator of type (퐵). In 
particular, Theorem (1.35) fails if 푌	is replaced by an arbitrary reflexive Banach 
space. For 푛	 ∈ ℤ	 let 퐸 ∶ 	핋 → 핋 be defined by 퐸 (푧) 	= 	 푧 	for all 푧	 ∈ 핋	. Let 
퐶(핋) be the Banach space of all complex-valued continuous functions on 핋 with 
the norm ‖	. ‖ , where ‖	푓‖ = sup{	|푓(푧)|: 푧 ∈ 핋} for 푓 ∈ 퐶(핋) For each k ∈ ℕ, 
let 푋 	 be the linear span in 퐶(핋)	of  {퐸 :	− 푘 ≤ 푚 ≤ 푘}, 푋 	  being equipped with 
‖	. ‖ 	. Define 퐴 		 ∶ 	푋 		→ 푋 	  as the linear operator such that 퐴 (퐸 ) =
푚푘 	퐸 	 for −푘 ≤ 푚 ≤ 푘. Thus for each  푓 ∈ 푋 	, and all 푠 ∈ ℝ, 
(푖푘) (푑푓(푒 )/푑푡) 	= 	 (퐴 	푓)(푒 ). Using Bernstein’s Inequality [231 	, 푝. 11], 
we see that ‖퐴 ‖ = 	1. Note that for all 푠 ∈ ℝ and all	푓 ∈ 푋 	, 
 

	(푒 푓)(푧) 	= 푓(푒 / 푧)		for	all			푧	 ∈ 핋	.	
Thus 퐴 		 is a hermitian operator on 푋 	 for all 푘	 ∈ ℕ. Now let 

푋 = 푙 −	⊕ 	푋 								푎푛푑				퐴 =⊕ 	퐴 						.		 
Then 푋 is reflexive, and 퐴	is hermitian. (The construction of 푋 and 퐴	for this 
example was inspired by [214, Example 1, p. 69],   which deals with the 
differentiation operator on a space of almost periodic functions). For each Positive  
integer 푁 we have 

	푛 푒 =⊕ 	 	푛 푒 	. 
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Suppose that 푘	 ∈ ℕ and 푓 ∈ 푋 . For all 	푗 ∈ ℤ	 , 	푁 ∈ ℕ, 
 

														 	푛 푒 푓 	(푗) = 	푛 푒 / 푓(푗).																																													(46) 

 
Suppose that the sequence {∑ 	푛 푒 } 	

	 , converges in the strong operator 
topology to 퐵 ∈ ℬ(푋). For 푘	 ∈ ℕ, 푓 ∈ 푋 , it follows by letting 푁	 → ∞	in (46) that 

									 퐵푓 (푗) = 	푛 푒 / 푓(푗)					for			all		푗	 ∈ ℤ	.																																									(47) 

Let g ∈ 	퐵푉(핋) be the function employed in the proof of Theorem (1.24). As 
noted in the discussion immediately following (43),  g (z) = ∑ 	푛 푧  for all 
푧	 ∈ 핋. Using this in (47), we get 
												 퐵푓 (푗) = g 푒 / 푓(푗)										for	푘	 ∈ ℕ		, 푓 ∈ 푋 	, 푗	 ∈ ℤ	.																							(48)  
Fix a trigonometric polynomial Q, and let Q	have degree 푘 	. By considering 
푄	as an element of 푋  for 푘	 ≥ 	 푘 , we see from (48) that 

		 ∑ g 푒 / 푄(푗)퐸	 				 ≤ ‖퐵‖	‖푄‖ 		for	푘	 ≥ 	푘 .		                           (49) 

Letting 푘 → +∞ in (49), while taking into account the definition of g  we obtain 
 

									 휋 [푄(푗)퐸	 − 푄(−푗)퐸	 ]				 ≤ ‖퐵‖	‖푄‖ 		.																																			(50) 

 
Since Q	is an arbitrary trigonometric polynomial, (50) implies that for every 
푓 ∈ 	C(핋) the conjugate Fourier series for 	푓, ∑ (−푖) (sgn	푗)푓(푗)퐸	 	, is the 
Fourier series of a function 푓 ∈ 	C(핋).This conclusion is well known to be false 
(see, e.g., [231,, VI1.(2.3)]). Hence ∑ 	푛 푒  does not converge in the 
strong operator topology. Put 푈 = 푒 . Since 퐴 is hermitian, 푈	is power bounded. 
If 푈 were trigonometrically well-bounded, then (17) would produce a contradiction. 
So 푒  is not trigonometrically well-bounded, and hence 퐴	cannot be a well-
bounded operator of type (퐵). We observe that the present operator 푒 , like the 
operator 푈  of Example (1.42) is power bounded on a reflexive Banach space, but 
not trigonometrically well-bounded. However,	푒 does have a logarithm in contrast 
to 푈 . 
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Example (1.44) [178]: There is a well-bounded operator 푇	of type (퐵) on 퐿 (	ℕ	) 
which is not hermitian-equivalent. Hence already in the Hilbert space case (푝 = 2) 
the converses of Theorems (1.32)(ii) and (1.35) fail. By the construction of a 
suitable conditional basis for 퐿 (	ℕ	) it is shown in [ 220] (see [183, Chap. 18] for a 
discussion) that there is a sequence {푃 } 	 of projection operators defined on 
퐿 (	ℕ	)	such that: 
 (i)		푃 푃 = 0	for	푛 ≠ 푚;	
 (ii)	∑ 푃  converges to 퐼 in the strong operator topology; 
 (iii)	 ∑ 푃 	 → ∞		푎푠		푛 → ∞		;  and 
 (iv) for every bounded, strictly decreasing sequence {휆 } 	 in ℝ	, ∑ 휆 	푃  
converges to a well-bounded operator of  type (B) in the strong operator topology. 
Choose a sequence {휆 } as in (iv), and let 푇 be the well-bounded operator of type 
(퐵) given by the series in (iv). If 	푇 were hermitian-equivalent, then it follows from 
[ 185, Theorem 6] that 푇 can be made self-adjoint after an appropriate equivalent 
Hilbert space renorming of 퐿 (	ℕ	) .Let 푇 then have spectral measure 픉	. Thus, for 
each 푘	 ∈ ℕ	, 픉(	{	휆 	}	) has range equal to the kernel of (푇	 − 	휆 	). By properties 
(i) and (ii) for the sequence {푃 }   , 푃  likewise has range equal to the kernel of 
(푇	 − 	휆 	). Since 푃  commutes with 푇, it commutes with 픉(	{	휆 	}	) .Thus 
푃 = 픉(	{	휆 	}	)  for 푘	 ∈ ℕ	. But this implies that ∑ 	푃 	  is strongly 
convergent, hence uniformly bounded. We have reached a contradiction to (iii), 
and so 푇	is not hermitian-equivalent. It follows from this that    sup 	 푒 :	푛 ∈
ℤ = 	+∞. 
 
Example (1.45) [178]: For the index 푝	 = 	1, Theorem (1.32)(ii) fails. Let 푅  , 
denote the translation operator on 퐿 (	ℤ	) corresponding to (−	1). Thus 푅  is a 
surjective isometry. However, 푅 	is not trigonometrically well bounded for each 
of the following reasons: 
 (푖)		푅 	does not have a logarithm in ℬ(퐿 (	ℤ	)) 
 (푖푖)	∑ 푛 푅  does not converge in the strong operator topology; 
 (iii)  푅 	 does not have an 퐴퐶(핋)-functional calculus. The assertion (i) is shown 
in [183, Example 20.1]. Let 훿 	be the characteristic function relative to ℤ	of {0}	For 
each 푁	 ∈ ℕ it is straight forward that 
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푛 푅 	훿 	 = 2 푛 		. 

 
This shows (ii). If 푅 	had an 퐴퐶(핋)-functional calculus, then there would be a 
constant 푀 such that for every trigonometric polynomial Q	, 
 
                                  ‖푄(푅 )훿 	‖ ≤ 푀‖푄‖핋		.																																																									(51)	
But ‖푄(푅 )훿 	‖ = ∑ 푄(푛) 	. Hence by (51), every function in 
퐴퐶(핋)		would have an absolutely convergent Fourier series. This conclusion is well 
known to be false [231, VI.(3.7)], and so assertion (iii) is established. 
 
 


