Chapter 3

Powers and Spectrum of Class $w F(p, r, q)$ Operators with an Operators Equation

In this chapter we discuss powers of class $w F(p, r, q)$ operators for $1 \geq p>$ $0,1 \geq r>0$ and $q \geq 1$; and an example is given on powers of class $w F(p, r, q)$ operators. We show that every class $w F(p, r, q)$ operator has SVEP and property (β), and Weyl's theorem holds for $f(T)$ when $f \in H(\sigma(T))$. As a continuation, we consider the equation $K^{p}=$ $H^{\frac{\delta}{2}} T^{\frac{1}{2}}\left(T^{\frac{1}{2}} H^{\delta+r} T^{\frac{1}{2}}\right)^{\frac{p-\delta}{\delta+r}} T^{\frac{1}{2}} H^{\frac{\delta}{2}}$, where $\quad p>0, r>0 \quad$ and $\quad p \geq \delta>-r$. As applications, we show that the inclusion relations among class $w A(p, r)$ operators are strict and show a generalization of Aluthge's result.

Sec (3.1): Powers of Class wF $(\boldsymbol{p}, \boldsymbol{r}, \boldsymbol{q})$ Operators

Let H be a complex Hilbert space and $B(H)$ be the algebra of all bounded linear operators in H, and a capital letter (such as T) denote an element of $B(H)$. An operator T is said to be k-hyponormal for $k>0$ if $\left(T^{*} T\right)^{k} \geq\left(T T^{*}\right) k$, where T^{*} is the adjoint operator of T. A k-hyponormal operator T is called hyponormal if $k=1$; semi-hyponormal if $k=1 / 2$. Hyponormal and semi-hyponormal operators have been studied by many authors, such as [119,171,159,174,135]. It is clear that every k-hyponormal operator is q-hyponormal for $0<q \leq k$ by the Löwner-Heinz theorem ($A \geq B \geq 0$ ensures $A^{\alpha} \geq B^{\alpha}$ for any $1 \geq \alpha \geq 0$). An invertible operator T is said to be \log-hyponormal if $\log T^{*} T \geq \log T T^{*}$, see [142,158]. Every invertible k-hyponormal operator for $k>0$ is log-hyponormal since $\log t$ is an operator monotone function. log-hyponormality is sometimes regarded as 0-hyponormal since $\left(\mathrm{X}^{\mathrm{k}}-1\right) / \mathrm{k} \rightarrow \log \mathrm{X}$ as $k \rightarrow 0$ for $X>0$.

As generalizations of k-hyponormal and log-hyponormal operators, many authors introduced many classes of operators, see the following.
Definition (3.1.1)[141,146,148]:
(1) For $p>0$ and $r>0$, an operator T belongs to class $A(p, r)$ if

$$
\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{r}{p+r}} \geq\left|T^{*}\right|^{2 r}
$$

(2) For $p>0, r \geq 0$ and $q \geq 1$, an operator T belongs to class $F(p, r, q)$ if

$$
\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{1}{q}} \geq\left|T^{*}\right|^{\frac{2(p+r)}{q}} .
$$

For each $p>0$ and $r>0$, class $A(p, r)$ contains all p-hyponormal and loghyponormal operators. An operator T is a class $A(k)$ operator ([147]) if and only if T is a class $A(k, 1)$ operator, T is a class $A(1)$ operator if and only if T is a class A
operator ([147]), and T is a class $A(p, r)$ operator if and only if T is a class $F\left(p, r, \frac{p+r}{r}\right)$ operator.

Aluthge-Wang [143] introduced w-hyponormal operators defined by $|\tilde{T}| \geq|T| \geq$ $\left|\widetilde{T}^{*}\right|$ where the polar decomposition of T is $T=U|T|$ and $\widetilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$ is called the Aluthge transformation of T. As a generalization of w-hyponormality, Ito [128] and Yang-Yuan [139,138] introduced the classes $w A(p, r)$ and $w F(p, r, q)$ respectively.
Definition (3.1.2)[141]:
(1) For $p>0, r>0$, an operator T belongs to class $w A(p, r)$ if

$$
\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{r}{p+r}} \geq\left|T^{*}\right|^{2 r} \text { and }|T|^{2 p} \geq\left(|T|^{p}\left|T^{*}\right|^{2 r}|T|^{p}\right)^{\frac{p}{p+r}}
$$

(2) For $p>0, r \geq 0$, and $q \geq 1$, an operator T belongs to class $w F(p, r, q)$ if

$$
\begin{aligned}
\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{1}{q}} & \geq\left|T^{*}\right|^{\frac{2(p+r)}{q}} \text { and }|T|^{2(p+r)\left(1-\frac{1}{q}\right)} \\
& \geq\left(|T|^{p}\left|T^{*}\right|^{2 r}|T|^{p}\right)^{\left(1-\frac{1}{q}\right)}
\end{aligned}
$$

denoting $\left(1-q^{-1}\right)^{-1}$ by $q^{*}($ when $q>1)$ because q and $\left(1-q^{-1}\right)^{-1}$ are a couple of conjugate exponents.

An operator T is a w-hyponormal operator if and only if T is a class $w A\left(\frac{1}{2}, \frac{1}{2}\right)$ operator, T is a class $w A(p, r)$ operator if and only if T is a class $w F\left(p, r, \frac{p+r}{r}\right)$ operator.

Ito [129] showed that the class $A(p, r)$ coincides with the class $w A(p, r)$ for each $p>0$ and $r>0$, class A coincides with class $w A(1,1)$. For each $p>0, r \geq 0$ and $q \geq 1$ such that $r q \leq p+r$, [139] showed that class $w F(p, r, q)$ coincides with class $F(p, r, q)$.

Halmos ([171, Problem 209]) gave an example of a hyponormal operator T whose square T^{2} is not hyponormal. This problem has been studied by many authors, see $[169,170,173,175,176]$. Aluthge-Wang [169] showed that the operator T^{n} is (k / n)-hyponormal for any positive integer n if T is k-hyponormal. In this section, we firstly discuss powers of class $w F(p, r, q)$ operators for $1 \geq p>$ $0,1 \geq r>0$ and $q \geq 1$. Secondly, we shall give an example on powers of class $w F(p, r, q)$ operators.
Theorem (3.1.3)[129,141]: Let $1 \geq p>0,1 \geq r>0$. Then T^{n} is a class $w A\left(\frac{p}{n}, \frac{r}{n}\right)$ operator.
Theorem(3.1.4)[172,141]: Let $1 \geq p>0,1 \geq r \geq 0, q \geq 1$ and $r q \leq p+$ r. If T is an invertible class $F(p, r, q)$ operator, then T^{n} is a $F\left(\frac{p}{n}, \frac{r}{n}, q\right)$ operator.

Theorem (3.1.5)[139,141]: Let $1 \geq p>0,1 \geq r \geq 0 ; q \geq 1$ when $r=0$ and $\frac{p+r}{r} \geq q \geq 1$ when $r>0$. If T is a class $w F(p, r, q)$ operator, then T^{n} is a class $w F\left(\frac{p}{n}, \frac{r}{n}, q\right)$ operator.

Here we generalize them in theorem (3.1.6).
Lemma (3.1.6)[127,141]: Let $\alpha \in \mathbb{R}$ and X be invertible. Then $\left(X^{*} X\right)^{\alpha}=$ $X^{*}\left(X X^{*}\right)^{\alpha-1} X$ holds, especially in the case $\alpha \geq 1$, Lemma (3.1.6)holds without invertibility of X .
Theorem (3.1.7)[129,141]: Let $A, B \geq 0$. Then for each $p, r \geq 0$, the following assertions hold:
(1) $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq B^{r} \Rightarrow\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{p}{p+r}} \leq A^{P}$.
(2) $\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{p}{p+r}} \leq A^{P} \quad$ and $N(A) \subset N(B) \Rightarrow\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq B^{r}$.

Theorem (3.1.8)[137,141]: Let T be a class wA operator. Then $\left|T^{n}\right|^{\frac{2}{n}} \geq \cdots \geq$ $\left|T^{2}\right| \geq|T|^{2}$ and $\left|T^{*}\right|^{2} \geq\left|\left(T^{2}\right)^{*}\right| \geq \cdots \geq\left|\left(T^{n}\right)^{*}\right|^{\frac{2}{n}}$ hold.
Theorem (3.1.9)[139,141]: Let T be a class $w F\left(p_{0}, r_{0}, q_{0}\right)$ operator for $p_{0}>$ $0, r_{0} \geq 0$ and $q_{0} \geq 1$. Then the following assertions hold.
(1) If $q \geq q_{0}$ and $r_{0} q \leq p_{0}+r_{0}$, then T is a class $w F\left(p_{0}, r_{0}, q\right)$ operator.
(2) If $q^{*} \geq q_{0}{ }^{*}, p_{0} q^{*} \leq p_{0}+r_{0}$ and $N(T) \subset N\left(T^{*}\right)$, then T is a class $w F\left(p_{0}, r_{0}, q\right)$ operator.
(3) If $r q \leq p+r$, then class $w F(p, r, q)$ coincides with class $F(p, r, q)$.

Theorem (3.1.10)[139,141]: Let T be a class $w F\left(p_{0}, r_{0}, \frac{p_{0}+r_{0}}{\delta_{0}+r_{0}}\right)$ operator for $p_{0}>0, r_{0} \geq 0$ and $-r_{0}<\delta_{0} \leq p_{0}$. Then T is a class $w F\left(p, r, \frac{p+r}{\delta_{0}+r}\right)$ operator for $p \geq p_{0}$ and $r \geq r_{0}$.
Proposition(3.1.11)[139,141]:Let $A, B \geq 0 ; 1 \geq p>0,1 \geq r 0 ; \frac{p+r}{r} \geq$ $q \geq 1$. Then the following assertions hold.
(1) If $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq B^{\frac{p+r}{q}} \quad$ and $B \geq C$, then $\left(C^{\frac{r}{2}} A^{p} C^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq C^{\frac{p+r}{q}}$
(2) If $B^{\frac{p+r}{q}} \geq\left(B^{\frac{r}{2}} C^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}}, A \geq B$ and the condition
$(*)$ If $\lim _{n \rightarrow \infty} B^{\frac{1}{2}} x_{n}=0$ and $\lim _{n \rightarrow \infty} A^{\frac{1}{2}} x_{n}$ exists, then $\lim _{n \rightarrow \infty} A^{\frac{1}{2}} x_{n}=0$ holds for any sequence of vectors $\left\{x_{n}\right\}$, then $A^{\frac{p+r}{q}} \geq\left(A^{\frac{r}{2}} C^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}}$.
Theorem (3.1.12)[141]: Let $1 \geq p>0,1 \geq r>0 ; q>\frac{p+r}{r}$. If T is a class $w F(p, r, q)$ operator such that $N(T) \subset N\left(T^{*}\right)$, then $T^{n} \quad$ is a class $w F\left(\frac{p}{n}, \frac{r}{n}, q\right)$ operator.

In order to prove the theorem, we require the following assertions.

Proof. Put $\delta=\frac{p+r}{q}-r$, then $-r<\delta<0$ by the hypothesis. Moreover, if $\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{r+\delta}{p+r}} \geq\left|T^{*}\right|^{2(r+\delta)}$ and $|T|^{2(p-\delta)} \geq\left(|T|^{p}\left|T^{*}\right|^{2 r}|T|^{p}\right)^{\frac{p-\delta}{p+r}}$,
then T is a class $w A$ operator by Theorem (3.1.10) and Theorem (3.1.7), so that the following hold by taking $A_{n}=\left|T^{n}\right|^{\frac{2}{n}}$ and $B_{n}=\left|\left(T^{n}\right)^{*}\right|^{\frac{2}{n}}$ in Theorem (3.1.8)

$$
\begin{equation*}
A_{n} \geq \cdots \geq A_{2} \geq A_{1} \text { and } B_{1} \geq B_{2} \geq \cdots \geq B_{n} . \tag{1}
\end{equation*}
$$

Meanwhile, A_{n} and A_{1} satisfy the following for any sequence of vectors $\left\{x_{m}\right\}$, (see [137])
if $\lim _{m \rightarrow \infty} A_{1}^{\frac{1}{2}} x_{m}=0$ and $\lim _{m \rightarrow \infty} A_{n}^{\frac{1}{2}} x_{m}$ exists, then $\lim _{m \rightarrow \infty} A_{n}^{\frac{1}{2}} x_{m}=0$.
Then the following holds by Proposition (3.1.11)

$$
\left(A_{n}\right)^{\frac{p+r}{q^{*}}} \geq\left(\left(A_{n}\right)^{\frac{p}{2}}\left(B_{1}\right)^{r}\left(A_{n}\right)^{\frac{p}{2}}\right)^{\frac{1}{q^{*}}} \geq\left(\left(A_{n}\right)^{\frac{p}{2}}\left(B_{n}\right)^{r}\left(A_{n}\right)^{\frac{p}{2}}\right)^{\frac{1}{q^{*}}},
$$

and it follows that

$$
\left|T^{n}\right|^{\frac{2(p-r)}{n q^{*}}} \geq\left(\left.\left|T^{n}\right|^{\frac{p}{n}}\left|\left(T^{n}\right)^{*}\right|^{\frac{2 r}{n}} T^{n}\right|^{\frac{p}{n}}\right)^{\frac{1}{q^{*}}} .
$$

We assert that $N(T) \subset N\left(T^{*}\right)$, implies $N\left(T^{n}\right) \subset N\left(\left(T^{n}\right)^{*}\right)$.
In fact,

$$
\begin{aligned}
x \in N\left(T^{n}\right) & \Rightarrow T^{n-1} \quad x \in N(T) \subseteq N\left(T^{*}\right) \\
& \Rightarrow T^{n-2} \quad x \in N\left(T^{*} T\right)=N(T) \subseteq N\left(T^{*}\right) \\
& \cdots \\
& \Rightarrow x \in N(T) \subseteq N\left(T^{*}\right) \\
& \Rightarrow x \in N\left(T^{*}\right) \subseteq N\left(\left(T^{n}\right)^{*}\right),
\end{aligned}
$$

thus

$$
\left(\left.\left|\left(T^{n}\right)^{*}\right|^{\frac{r}{n}} T^{n}\right|^{\frac{2 p}{n}}\left|\left(T^{n}\right)^{*}\right|^{\frac{r}{n}}\right)^{\frac{1}{q}} \geq\left|\left(T^{n}\right)^{*}\right|^{\frac{2(p+r)}{n q}}
$$

holds by Theorem (3.1.7) and the Löwner-Heinz theorem, so that T^{n} is a class $w F\left(\frac{p}{n}, \frac{r}{n}, q\right)$ operator.
Theorem (3.1.13)[141]: (Furuta inequality [124], in brief FI). If $A \geq B \geq 0$, then for each $r \geq 0$,

$$
\begin{equation*}
\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(B^{\frac{r}{2}} B^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \tag{ii}
\end{equation*}
$$

hold for $p \geq 0$ and $q \geq 1$ with $(1+r) q \geq p+r$.

Theorem(3.1.13)yields the Löwner-Heinz inequality by putting $r=0$ in (i) or (ii), of FI. It was shown by Tanahashi [134] that the domain drawn for p, q and r in the Figure is the best possible for Theorem (3.1.13).

Theorem (3.1.14)[141]: Let A and B be positive operators on H, U and D be operators On $\bigoplus_{k=-\infty}^{\infty} H_{k}$, where $H_{k} \cong H$, as follows

$$
U=\left(\begin{array}{lllllll}
\ddots & & & & & & \\
\ddots & 0 & & & & & \\
& 1 & 0 & & & & \\
& & 1 & (0) & & & \\
& & & 1 & 0 & & \\
& & & & 1 & 0 & \\
& & & & & & \ddots
\end{array}\right),
$$

$$
D=\left(\begin{array}{lllllll}
\ddots & & & & & & \\
& B^{\frac{1}{2}} & & & & & \\
& & B^{\frac{1}{2}} & & & & \\
& & & \left(A^{\frac{1}{2}}\right) & & & \\
& & & & A^{\frac{1}{2}} & & \\
& & & & & A^{\frac{1}{2}} & \\
& & & & & & \ddots
\end{array}\right),
$$

where (\cdot) shows the place of the $(0,0)$ matrix element, and $T=U D$. Then the following assertions hold.
(1)If T is a class $w F(p, r, q)$ operator for $1 \geq p>0,1 \geq r \geq 0, q \geq 1$ and $r q \leq p+r$, then T^{n} is $a w F\left(\frac{p}{n}, \frac{r}{n}, q\right)$ operator.
(2) If T is a class $w F(p, r, q)$ operator such that $N(T) \subset N\left(T^{*}\right), 1 \geq p>0$, $1 \geq r \geq 0, q \geq 1$ and $r q>p+r$, then T^{n} is $a w F\left(\frac{p}{n}, \frac{r}{n}, q\right)$ operator.
Proof.By simple calculations, we have

$$
|T|^{2}=\left(\begin{array}{lllllll}
\ddots & & & & & & \\
& B & & & & & \\
& & B & & & & \\
& & & (A) & & & \\
& & & & A & & \\
& & & & & A & \\
& & & & & & \ddots
\end{array}\right)
$$

$$
\left|T^{*}\right|^{2}=\left(\begin{array}{ccccccc}
\ddots & & & & & & \\
& B & & & & & \\
& & B & & & & \\
& & & (B) & & & \\
& & & & A & & \\
& & & & & A & \\
& & & & & \ddots
\end{array}\right)
$$

Therefore

And

Thus the following hold for $n \geq 2$
$T^{n^{*}} T^{n}$

Proof of (1). T is a class $w F(p, r, q)$ operator is equivalent to the following

$$
\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq B^{\frac{p+r}{q}} \quad \text { and } A^{\frac{p+r}{q^{*}}} \geq\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{1}{q^{*}}}
$$

T^{n} belongs to class $w F\left(\frac{p}{n}, \frac{r}{n}, q\right)$ is equivalent to the following (2) and (3).

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(B^{\frac{r}{2}}\left(B^{\frac{j}{2}} A^{n-j} B^{\frac{j}{2}}\right)^{\frac{n}{n}} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq B^{\frac{p+r}{q}} \\
\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq B^{\frac{p+r}{q}} \\
\left(\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{r}{2 n}} A^{p}\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right) \frac{r}{\frac{r}{2 n}}\right)^{\frac{1}{q}} \geq\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{p+r}{n q}} \\
\text { where } j=1,2, \ldots, n-1 .
\end{array}\right. \tag{2}\\
& \left\{\begin{array}{r}
\left(\left(B^{\frac{j}{2}} A^{n-j} B^{\frac{j}{2}}\right)^{\frac{p}{2 n}} B^{r}\left(B^{\frac{j}{2}} A^{n-j} B^{\frac{j}{2}}\right)\right)^{\frac{1}{q^{*}}} \geq\left(B^{\frac{j}{2}} A^{n-j} B^{\frac{j}{2}}\right)^{\frac{p+r}{n q^{*}}} \\
A^{\frac{p+r}{q^{*}}} \geq\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\frac{1}{q^{*}}} \\
A^{\frac{p+r}{q^{*}}} \geq\left(A^{\frac{p}{2}}\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{r}{n}} A^{\frac{p}{2}}\right)^{\frac{1}{q^{*}}} \\
\text { where } j=1,2, \ldots, n-1
\end{array}\right.
\end{align*}
$$

We only prove (2) because of Theorem (3.1.7).
Step 1. To show

$$
\left(B^{\frac{r}{2}}\left(B^{\frac{j}{2}} A^{n-j} B^{\frac{j}{2}}\right)^{\frac{p}{n}} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq B^{\frac{p+r}{q}}
$$

for $j=1,2, \ldots, n-1$.
In fact, T is a class $w F(p, r, q)$ operator for $1 \geq p>0,1 \geq r \geq 0, q \geq 1$ and $r q \leq p+r$ implies T belongs to class $w F\left(j, n-j, \frac{n}{\delta+j}\right)$, where $\delta=\frac{p+r}{q}-r$ by Theorem (3.1.10) and Theorem (3.1.7), thus

$$
\left(B^{\frac{j}{2}} A^{n-j} B^{\frac{j}{2}}\right)^{\frac{\delta+j}{n}} \geq B^{\delta-j} \text { and } A^{n-j-\delta} \geq\left(A^{\frac{n-j}{2}} B^{j} A^{\frac{n-j}{2}}\right)^{\frac{n-j-\delta}{n}}
$$

Therefore the assertion holds by applying (i) of Theorem (3.1.13) to $\left(B^{\frac{j}{2}} A^{n-j} B^{\frac{j}{2}}\right)^{\frac{\delta+j}{n}} \quad$ and $B^{\delta+j} \quad$ for $\left(1+\frac{r}{\delta+j}\right) q \geq \frac{p}{\delta+j}+\frac{r}{\delta+j}$.
Step 2. To show

$$
\left(\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{r}{2 n}} A^{p}\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{r}{2 n}}\right)^{\frac{1}{q}} \geq\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{p+r}{n q}}
$$

for $j=1,2, \ldots, n-1$.
In fact, similar to Step 1, the following hold

$$
\left(B^{\frac{n-j}{2}} A^{j} B^{\frac{n-j}{2}}\right)^{\frac{\delta+n-j}{n}} \geq B^{\delta+n-j} \text { and } A^{j-\delta} \geq\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{j-\delta}{n}}
$$

this implies that $A^{j} \geq\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{j}{n}} \quad$ by Theorem (3.1.7). Therefore the assertion holds by applying (i) of Theorem (3.1.13) to A^{j} and $\left(A^{\frac{j}{2}} B^{n-j} A^{\frac{j}{2}}\right)^{\frac{j}{n}}$ for $\left(1+\frac{r}{j}\right) q \geq \frac{p}{j}+\frac{r}{j}$.
Proof of (2). This part is similar to Proof of (1), so we omit it here.
We are indebted to Professor K. Tanahashi for a fruitful correspondence and the referee for his valuable advice and suggestions, especially for the improvement of Theorem (3.1.12).
Corollary(3.2.15)[232]: Let $p=(1-\epsilon), r=(1-\epsilon)$ and $q=(2+\epsilon)$. If T is a class $w F((1-\epsilon),(1-\epsilon),(2+\epsilon))$ operator such that $N(T) \subset N\left(T^{*}\right)$, then T^{n} is a class $w F\left(\frac{(1-\epsilon)}{n}, \frac{(1-\epsilon)}{n},(2+\epsilon)\right)$ operator.
In order to prove the theorem, we require the following assertions.
Proof. Put $\delta=\frac{-\epsilon(1-\epsilon)}{(2+\epsilon)}$, then $(\epsilon+1)<\delta<0$ by the hypothesis .Moreover, if

$$
\begin{aligned}
\left(\left|T^{*}\right|^{(1-\epsilon)}|T|^{2(1-\epsilon)}\left|T^{*}\right|^{(1-\epsilon)}\right) & \geq\left|T^{*}\right|^{2 \frac{(1-\epsilon)^{2}}{(2+\epsilon)}} \text { and }|T|^{\frac{2\left(1-\epsilon^{2}\right)}{(2+\epsilon)}} \\
& \geq\left(|T|^{(1-\epsilon)}\left|T^{*}\right|^{2(1-\epsilon)}|T|^{(1-\epsilon)}\right)^{(1+\epsilon)}
\end{aligned}
$$

then T is a class $w A$ operator by Theorem (3.1.10) and Theorem (3.1.7), so that the following hold by taking $A_{n}=\left|T^{n}\right|^{\frac{2}{n}}$ and $B_{n}=\left|\left(T^{n}\right)^{*}\right|^{\frac{2}{n}}$ in Theorem (3.1.8)

$$
A_{n} \geq \cdots \geq A_{2} \geq A_{1} \text { and } B_{1} \geq B_{2} \geq \cdots \geq B_{n}
$$

Meanwhile, A_{n} and A_{1} satisfy the following for any sequence of vectors $\left\{x_{m}\right\}$, (see [137])
if $\lim _{m \rightarrow \infty} A_{1}^{\frac{1}{2}} x_{m}=0$ and $\lim _{m \rightarrow \infty} A_{n}^{\frac{1}{2}} x_{m}$ exists, then $\lim _{m \rightarrow \infty} A_{n}^{\frac{1}{2}} x_{m}=0$.
Then the following holds by Proposition (3.1.11)

$$
\begin{aligned}
\left(A_{n}\right)^{\frac{2(1-\epsilon)}{(2+\epsilon)^{*}}} & \geq\left(\left(A_{n}\right)^{\frac{(1-\epsilon)}{2}}\left(B_{1}\right)^{(1-\epsilon)}\left(A_{n}\right)^{\frac{(1-\epsilon)}{2}}\right) \frac{1}{(2+\epsilon)^{*}} \\
& \geq\left(\left(A_{n}\right)^{\frac{(1-\epsilon)}{2}}\left(B_{n}\right)^{(1-\epsilon)}\left(A_{n}\right)^{\frac{(1-\epsilon)}{2}}\right) \frac{1}{(2+\epsilon)^{*}}
\end{aligned}
$$

and it follows that

$$
\left|T^{n}\right|^{\frac{4(1-\epsilon)}{n(2+\epsilon)^{*}}} \geq\left(\left|T^{n}\right|^{\frac{(1-\epsilon)}{n}}\left|\left(T^{n}\right)^{*}\right|^{\frac{4(1-\epsilon)}{n}}\left|T^{n}\right|^{\frac{(1-\epsilon)}{n}}\right)^{\frac{1}{(2+\epsilon)^{*}}} .
$$

We assert that $N(T) \subset N\left(T^{*}\right)$, implies $N\left(T^{n}\right) \subset N\left(\left(T^{n}\right)^{*}\right)$.
In fact,

$$
\begin{aligned}
x \in N\left(T^{n}\right) & \Rightarrow T^{n-1} x \in N(T) \subseteq N\left(T^{*}\right), \\
& \Rightarrow T^{n-2} x \in N\left(T^{*} T\right)=N(T) \subseteq N\left(T^{*}\right)
\end{aligned}
$$

$$
\Rightarrow x \in N(T) \subseteq N\left(T^{*}\right)
$$

thus

$$
\Rightarrow x \in N\left(T^{*}\right) \subseteq N\left(\left(T^{n}\right)^{*}\right)
$$

$$
\left(\left|\left(T^{n}\right)^{*}\right|^{\frac{(1-\epsilon)}{n}}\left|T^{n}\right|^{\frac{4(1-\epsilon)}{n}}\left|\left(T^{n}\right)^{*}\right|^{\frac{(1-\epsilon)}{n}}\right) \frac{1}{(2+\epsilon)} \geq\left|\left(T^{n}\right)^{*}\right|^{\frac{4(1-\epsilon)}{n(2+\epsilon)}}
$$

holds by Theorem (3.1.7) and the Löwner-Heinz theorem, so that T^{n} is a class $w F\left(\frac{(1-\epsilon)}{n}, \frac{(1-\epsilon)}{n},(2+\epsilon)\right)$ operator.

$\operatorname{Sec}(3.2) \quad$ Spectrum of Class $w F(p, r, q)$ Operators

A capital letter (such as T) means a bounded linear operator on a complex Hilbert space \mathcal{H}. For $p>0$, an operator T is said to be p-hyponormal if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$, where T^{*} is the adjoint operator of T. An invertible operator T is said to be log-hyponormal if $\log \left(T^{*} T\right) \geq \log \left(T T^{*}\right)$. If $p=1, T$ is called hyponormal, and if $p=1 / 2, \quad T$ is called semi-hyponormal. Log-hyponormality is sometimes regarded as 0-hyponormal since $\left(X^{p}-1\right) / p \rightarrow \log X$ as $p \rightarrow$

0 for $X>0$. See Martin and Putinar [131] and Xia [135] for basic properties of hyponormal and semi-hyponormal operators. Log-hyponormal operators were introduced by Tanahashi [142], Aluthge and Wang [143], and Fujii et al. [144] independently. Aluthge [145] introduced p-hyponormal operators.

As generalizations of p-hyponormal and log-hyponormal operators, many authors introduced many classes of operators. Aluthge and Wang [143] introduced w hyponormal operators defined by $|\tilde{T}| \geq|T| \geq\left|(\tilde{T})^{*}\right|$, where the polar decomposition of T is $\mathrm{T}=\mathrm{U}|\mathrm{T}|$ and $\tilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$ is called Aluthge transformation of T. For $p>0$ and $r>0$, Ito [128] introduced class $w A(p, r)$ defined by

$$
\begin{equation*}
\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{r}{p+r}} \geq\left(\left|T^{*}\right|^{2 r}, \quad|T|^{p}\left|T^{*}\right|^{2 r}|T|^{p}\right)^{\frac{s}{p+r}} \leq|T|^{2 p} \tag{4}
\end{equation*}
$$

Note that the two exponents $r /(p+r)$ and $p /(p+r)$ in the formula above satisfy $r /(p+r)+p /(p+r)=1$, Yang and Yuan [138] introduced class $w F(p, r, q)$.
Definition (3.2.1) [138,139]: For $p>0, r>0$, and $q \geq 1$, an operator T belongs to class $w F(p, r, q)$ if

$$
\begin{equation*}
\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{1}{q}} \geq\left|T^{*}\right|^{2(p+r) / q},|T|^{2(p+r)\left(1-\frac{1}{q}\right)} \geq\left(|T|^{p}\left|T^{*}\right|^{2 r}|T|^{p}\right)^{(1-1 / q)} \tag{5}
\end{equation*}
$$

Denote $\left(1-q^{-1}\right)^{-1}$ by q^{*} when $q>1$ because q and $\left(1-q^{-1}\right)^{-1}$ are a couple of conjugate exponents. It is clear that class $w A(p, r)$ equals class $w F(p, r,(p+$ $r) / r)$. w-hyponormality equals $w A(1 / 2,1 / 2)$ [128]. Ito and Yamazaki [129] showed that class $w A(p, r)$ coincides with class $A(p, r)$ (introduced by Fujii et al. [146]) for each $p>0$ and $r>0$. Consequently, class $w A(1,1)$ equals class A (i.e., $\left|T^{2}\right| \geq|T|^{2}$, introduced by Furuta et al. [147]). Reference [139] showed that class $w F(p, r, q)$ coincides with class $F(p, r, q)$ (introduced by Fujii and Nakamoto [148]) when $r q \leq p+r$.

Recently, there are great developments in the spectral theory of the classes of operators above.We cite [138, 149-157]. In this section, we will discuss several spectral properties of class

$$
w F(p, r, q) \text { for } p>0, r>0, p+r \leq 1, \text { and } q \geq 1
$$

In this Section, we prove that Riesz idempotent E_{λ} of T with respect to each nonzero isolated point spectrum λ is selfadjoint and $E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)=$ $\operatorname{ker}(T-\lambda)^{*}$. also we will show that each class $w F(p, r, q)$ operator has SVEP (single-valued extension property) and Bishop's property (β). and we show that Weyl's theorem holds for class $w F(p, r, q)$. Now we show that Riesz idempotent. Let $\sigma(T), \sigma_{p}(T), \sigma_{j p}(T), \sigma_{a}(T), \sigma_{j a}(T)$, and $\sigma_{r}(T)$ mean the spectrum, point spectrum, joint point spectrum, approximate point spectrum, joint approximate point spectrum, and residual spectrum of an operator T, respectively (cf. [138, 158]). $\sigma_{r}^{\text {Xia }}(T)$ and $\sigma_{i s o}(T)$ mean the set $\sigma(T)-\sigma_{a}(T)$ and the set of isolated
points of $\sigma(T)$, see $[158,135]$. If $\lambda \in \sigma_{i s o}(T)$, the Riesz idempotent E_{λ} of T with respect λ is defined by

$$
\begin{equation*}
E_{\lambda}=\int_{\partial \mathfrak{D}}(z-T)^{-1} d z, \tag{6}
\end{equation*}
$$

where $\mathfrak{D i s}$ an open disk which is far from the rest of $\sigma(T)$ and $\partial \mathfrak{D}$ means its boundary. Stampfli [159] showed that if T is hyponormal, then E_{λ} is selfadjoint and $E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$. The recent developments of this result are shown in [151,152,155,157], and so on.

In this section, it is shown that when $\lambda \neq 0$, this result holds for class $w F(p, r, q)$ with $p+r \leq 1$ and $q \geq 1$. It is always assumed that $\lambda \in \sigma_{i s o}(T)$ when the idempotent E_{λ} is considered.
Theorem (3.2.2)[138,149]: Let $\lambda \neq 0$, and let $\left\{x_{n}\right\}$ be a sequence of vectors. Then the following assertions are equivalent.
(1) $(T-\lambda) x_{n} \rightarrow 0$ and $\left(T^{*}-\bar{\lambda}\right) x_{n} \rightarrow 0$.
(2) $(|T|-|\lambda|) x_{n} \rightarrow 0$ and $\left(U-e^{i \theta}\right) x_{n} \rightarrow 0$.
(3) $\left(|T|^{*}-|\lambda|\right) x_{n} \rightarrow 0$ and $\left(U^{*}-e^{-i \theta}\right) x_{n} \rightarrow 0$.

Theorem (3.2.3)[138]: If T is a class $w F(p, r, q)$ operator for $p+r \leq 1$ and $q \geq 1$, then them following assertions hold.
(1) If $T x=\lambda x, \lambda \neq 0$, then $T^{*} x=\bar{\lambda} x$.
(2) $\sigma_{a}(T)-\{0\}=\sigma_{j a}(T)-\{0\}$.
(3) If $T x=\lambda x, T y=\mu y$ and $\lambda \neq \mu$, then $(x, y)=0$.

Theorem (3.2.4)[138,139]: If T is a class $w F(p, r, q)$ operator, then there exists $\alpha_{0}>0$, which satisfies

$$
\begin{equation*}
|T(p, r)|^{2 \alpha_{0}} \geq|T|^{2 \alpha_{0}(p+r)} \geq\left|T(p, r)^{*}\right|^{2 \alpha_{0}} . \tag{7}
\end{equation*}
$$

Lemma (3.2.5)[138]: If T belongs to class $w F(p, r, q)$ for $p+r \leq 1, \lambda=|\lambda| e^{i \theta} \in$ \mathfrak{G}, and $\lambda_{p+r}=|\lambda|^{p+r} e^{i \theta}$, then $\operatorname{ker}(T-\lambda)=\operatorname{ker}\left(T(p, r)-\lambda_{p+r}\right)$.
Proof. We only prove $\operatorname{ker}(T-\lambda) \supseteq \operatorname{ker}\left(T(p, r)-\lambda_{p+r}\right)$ because $\operatorname{ker}(T-$ $\lambda) \subseteq \operatorname{ker}\left(T(p, r)-\lambda_{p+r}\right)$ is obvious by Theorems (3.2.2)-(3.2.3)

If $\lambda \neq 0$, let $0 \neq x \in \operatorname{ker}\left(T(p, r)-\lambda_{p+r}\right)$. By Theorem (3.2.4), $T(p, r)$ is α_{0}-hyponormal and we have

$$
\begin{gather*}
|T(p, r)| x=|\lambda|^{p+r} x=\left|(T(p, r))^{*}\right| x, \\
|T(p, r)|^{2 \alpha_{0}}-\left|(T(p, r))^{*}\right|^{2 \alpha_{0}} \geq|T(p, r)|^{2 \alpha_{0}}-|T|^{2 \alpha_{0}(p+r)} \geq 0 . \tag{8}
\end{gather*}
$$

Hence $\left(|T(p, r)|^{2 \alpha_{0}}-|T|^{2 \alpha_{0}(p+r)}\right) x=0$,

$$
\begin{align*}
& \left\||T|^{2 \alpha_{0}(p+r)} x-|\lambda|^{2 \alpha_{0}(p+r)} x\right\| \\
& \quad \leq\left\||T|^{2 \alpha_{0}(p+r)} x-|T(p, r)|^{2 \alpha_{0}} x\right\|+\left\||T(p, r)|^{2 \alpha_{0}} x-|\lambda|^{2 \alpha_{0}(p+r)} x\right\|=0 . \tag{9}
\end{align*}
$$

On the other hand, $(T(p, r))^{*} x=|\lambda|^{p+r} e^{-i \theta} x$ implies that $|T|^{r} U^{*} x=$ $|\lambda|^{r} e^{-i \theta} x, T^{*}=|\lambda| e^{-i \theta} x$. Therefore,

$$
\begin{align*}
\|(T-\lambda) x\|^{2} & =\|T x\|^{2}-\lambda(x, T x)-\bar{\lambda}(T x, x)+|\lambda|^{2}\|x\|^{2} \\
& =\||T| x\|^{2}-\lambda\left(T^{*} x, x\right)-\bar{\lambda}\left(x, T^{*} x\right)+|\lambda|^{2}\|x\|^{2}=0 . \tag{10}
\end{align*}
$$

If $\lambda=0$, let $0 \neq x \in \operatorname{ker} T(p, r)$, then $x \in \operatorname{ker}|T|=\operatorname{ker} T$ by Theorem (3.2.4) so that $\operatorname{ker}(T-\lambda) \supseteq \operatorname{ker}\left(T(p, r)-\lambda_{p+r}\right)$.

Lemma (3.2.6)[138,153,160]: If A is normal, then for every operator $B, \sigma(A B)=\sigma(B A)$.
Let \mathfrak{F} be the set of all strictly monotone increasing continuous nonnegative functions on $\mathfrak{R}^{+}=[0, \infty)$. Let $\mathfrak{F}_{0}=\{\Psi \in \mathfrak{F}: \Psi(0)=0\}$. For $\Psi \in \mathfrak{F}_{0}$, the mapping $\widetilde{\Psi}$ is defined by $\widetilde{\Psi}\left(\rho e^{i \theta}\right)=e^{i \theta} \Psi(\rho)$ and $\widetilde{\Psi}(T)=U \Psi(|T|)$.
Theorem (3.2.7)[138,161]: If $\Psi \in \mathfrak{F}_{0}$, then for every operator $T, \sigma_{j a}(\widetilde{\Psi}(T))=$ $\widetilde{\Psi}\left(\sigma_{j a}(T)\right)$.
Lemma (3.2.8)[138]: Let T belong to class $w F(p, r, q)$ with $p+r \leq 1, \lambda=$ $|\lambda| e^{i \theta} \in\left(\mathfrak{F}, T(t)=U|T|^{1-t+t(p+r)}\right.$, and $\tau_{t}\left(\rho e^{i \theta}\right)=e^{i \theta} \rho^{1+t(p+r-1)}$, where $t \in[0,1]$. Then

$$
\begin{align*}
\sigma_{a}(T(t))=\tau_{t}\left(\sigma_{a}(T)\right), \sigma_{r}^{\text {Xia }}(T(t)) & =\tau_{t}\left(\sigma_{r}^{\text {Xia }}(T)\right), \\
\sigma(T(t)) & =\tau_{t}(\sigma(T)) . \tag{11}
\end{align*}
$$

Proof. We only need to show that $\sigma_{a}(T(t))=\tau_{t}\left(\sigma_{a}(T)\right)$ by homotopy property of the spectrum [135, page 19].

Since T belongs to class $w F(p, r, q)$ with $p+r \leq 1, T(t)$ belongs to class $w F(p /(1+t(p+r-1)), r /(1+t(p+r-1), q))$ with $p /(1+t(p+r-$ 1) $)+r /(1+t(p+r-1)) \leq 1$. By Theorems (3.2.3)(2) and (3.2.7),

$$
\begin{align*}
\sigma_{a}(T(t))-\{0\} & =\sigma_{j a}(T(t))-\{0\} \\
& =\tau_{t}\left(\sigma_{j a}(T)-\{0\}\right)=\tau_{t}\left(\sigma_{a}(T)\right)-\{0\} . \tag{12}
\end{align*}
$$

On the other hand, if $0 \in \sigma_{a}(T)$, then there exists a sequence $\left\{x_{n}\right\}$ of unit vectors such that $U|T| x_{n} \rightarrow 0$. Hence $|T| x_{n}=U^{*} U|T| x_{n} \rightarrow 0$, so that $|T|^{1 /\left(2^{m}\right)} x_{n} \rightarrow 0$ for each positive integer m by induction. Take a positive integer $m(t)$ such that $1 /\left(2^{m(t)}\right) \leq 1+t(p+r-1)$, then

$$
\begin{equation*}
|T|^{1+t(p+r-1)} x_{n}=|T|^{1+t(p+r-1)-1 /\left(2^{m(t)}\right)}|T|^{1 /\left(2^{m(t)}\right)} x_{n} \rightarrow 0 \tag{13}
\end{equation*}
$$

and $0 \in \sigma_{a}(T(t))$. It is obvious that if $0 \in \sigma_{a}(T(t))$, then $0 \in \sigma_{a}(T)$ because of $p+r \leq 1$. Therefore $\sigma_{a}(T(t))=\tau_{t}\left(\sigma_{a}(T)\right)$.
Theorem (3.2.9)[138,150]: If T is p-hyponormal or log-hyponormal, then E_{λ} is selfadjoint and $E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$.
Riesz and Sz.-Nagy [162] gave the the formula $E_{\lambda} \mathcal{H}=\{x \in \mathcal{H}: \|(T-$ $\left.\lambda)^{n} x \|^{1 / n} \rightarrow 0\right\}$.
$\operatorname{Lemma(3.2.10)}[138]: \quad$ For any operator $T,|T|^{p} \operatorname{ker}(T-\lambda) \subseteq|T|^{p} E_{\lambda} \mathcal{H} \subseteq$ $E_{\lambda}(p, r) \mathcal{H}$ for $p+r=1$.
Proof. Let $x \in E_{\lambda}$, by the formula above we have

$$
\begin{equation*}
\left\|(T(p, r)-\lambda)^{n}|T|^{p} x\right\|^{1 / n}=\left\||T|^{p}(T-\lambda)^{n} x\right\|^{1 / n} \rightarrow 0 \tag{14}
\end{equation*}
$$

Hence $|T|^{p} x \in E_{\lambda}(p, r) \mathcal{H}$.
Lemma(3.2.11)[138]: If T belongs to class $w F(p, r, q)$ with $p+r \leq 1$, then

$$
\begin{equation*}
\operatorname{ker} T=E_{0} \mathcal{H}=E_{0}(p, r) \mathcal{H}=\operatorname{ker}(T(p, r)) \tag{15}
\end{equation*}
$$

Note that $\lambda_{p+r} \in \sigma_{\text {iso }}(T(t))$ if $\lambda \in \sigma_{i s o}(T)$ by Lemma (3.2.8), so the notion $E_{0}(p, r)$ in Lemma (3.2.10) is reasonable.
Proof. Since $T(p, r)$ is α_{0}-hyponormal by Theorem(3.2.4), we only need to prove that $E_{0} \mathcal{H} \subseteq E_{0}(p, r) \mathcal{H}$ for $E_{0} \mathcal{H} \supseteq E_{0}(p, r) \mathcal{H}$ holds by Lemma (3.2.5) and Theorem (3.2.9). We may also assume that $p+r=1$ by Lemma (3.2.5)
It follows from Lemma (3.2.10) that

$$
\begin{equation*}
|T|^{p} E_{0}(p, r) \mathcal{H} \subseteq|T|^{p} E_{0} \subseteq E_{0}(p, r) \mathcal{H} \tag{16}
\end{equation*}
$$

thus $E_{0}(p, r) \mathcal{H}$ is reduced by $|T|^{p}$.
Let $\quad x \in E_{0} \mathcal{H}$ and $x=x_{1}+x_{2} \in E_{0}(p, r) \mathcal{H} \oplus\left(E_{0}(p, r) \mathcal{H}\right)^{\perp}$. Then $|T|^{p} x \in|T|^{p} E_{0} \mathcal{H} \subseteq E_{0}(p, r) \mathcal{H},|T|^{p} x_{1} \in E_{0}(p, r) \mathcal{H},|T|^{p} x_{2} \in$ $\left(E_{0}(p, r) \mathcal{H}\right)^{\perp}$ by (16), and $E_{0}(p, r) \mathcal{H}$ is reduced by $|T|^{p}$.

Thus $|T|^{p} x_{2}=|T|^{p} x-|T|^{p} x_{1} \in E_{0}(p, r) \mathcal{H},|T|^{p} x_{2} \in E_{0}(p, r) \mathcal{H} \cap$ $\left(E_{0}(p, r) \mathcal{H}\right)^{\perp}$ so that
$x_{2} \in \operatorname{ker}|T|^{p} \subseteq \operatorname{ker}(T(p, r))=E_{0}(p, r) \mathcal{H}, x \in E_{0}(p, r) \mathcal{H}$.
Theorem (3.2.12)[138]: Let T belong to class $w F(p, r, q)$ with $p+r \leq 1, \lambda=$ $|\lambda| e^{i \theta} \in \mathfrak{G}$, and $\lambda_{p+r}=|\lambda|^{p+r} e^{i \theta}$, then the following assertions hold.
(1)If $\lambda \neq 0$,then $E_{\lambda}=E_{\lambda}(p, r)$ and $E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$, where $E_{\lambda}(p, r)$ is the Riesz idempotent of $T(p, r)=|T|^{p} U|T|^{r}$ (the generalized Aluthge transformation of T) with respect to λ_{p+r}.
(2) If $\lambda=0$, then $\operatorname{ker} T=E_{0} \mathcal{H}=E_{0}(p, r) \mathcal{H}=\operatorname{ker}(T(p, r))$.

Reference [156] gave an example that the operator T is w-hyponormal, E_{0} is not selfadjoint, and kerT $\neq k e r T^{*}$.
An operator T is said to be isoloid if $\sigma_{i s o}(T) \subseteq \sigma_{p}(T)$, is said to be reguloid if $(T-\lambda) \mathcal{H}$, is closed for each $\lambda \in \sigma_{\text {iso }}(T)$.
Proof. We only need to prove (1) for (2) holds by Lemma (3.2.11). Since $\sigma(T(p, r))=\sigma\left(U|T|^{p+r}\right)=\left\{e^{i \theta} \rho^{p+r}: e^{i \theta} \rho \in \sigma(T)\right\}$ by Lemmas (3.2.6) and (3.2.8), $\lambda_{p+r} \in \sigma_{i s o}(T(p, r))$. Hence

$$
\begin{equation*}
\left(E_{\lambda}(p, r) \mathcal{H}\right)^{\perp}=\operatorname{ker}\left(E_{\lambda}(p, r)\right)=\left(I-E_{\lambda}(p, r)\right) \mathcal{H} \tag{17}
\end{equation*}
$$

by Theorem (3.2.9), so $\lambda_{p+r} \notin \sigma\left(\left.T(p, r)\right|_{\left.\left(E_{\lambda}(p, r) \mathcal{H}\right)^{\perp}\right) \text {. By Theorem (3.2.3)(1) and }}\right.$ Lemma (3.2.5), we have $T=\lambda \oplus T_{22}$ on $\mathcal{H}=E_{\lambda}(p, r) \mathcal{H} \oplus\left(E_{\lambda}(p, r) \mathcal{H}\right)^{\perp}$, where $T_{22}=\left.T\right|_{(\operatorname{ker}(T-\lambda))^{\perp}}$.

Since $\operatorname{ker}(T-\lambda)$ is reduced by T, T_{22} also belongs to class $w F(p, r, q)$ and $T_{22}(p, r)=\left.T(p, r)\right|_{\left(E_{\lambda}(p, r) \mathcal{H}\right)^{\perp}}$ so that $\lambda \notin \sigma\left(T_{22}\right)$ because $\lambda_{p+r} \notin$ $\sigma\left(T_{22}(p, r)\right)$. Hence $T-\lambda=0 \oplus\left(T_{22}-\lambda\right)$ and $\operatorname{ker}(T-\lambda)^{*}=\operatorname{ker}(T-\lambda) \oplus \operatorname{ker}\left(T_{22}-\lambda\right)^{*}=\operatorname{ker}(T-\lambda)$.
Meanwhile, $E_{\lambda}=\int_{\partial \mathfrak{D}}(z-\lambda)^{-1} \oplus\left(z-T_{22}\right)^{-1} d z=1 \oplus 0=E_{\lambda}(p, r)$.
Theorem (3.2.13)[138]: If T belongs to class $w F(p, r, q)$ with $p+r \leq 1$, then T is isoloid and reguloid.
Proof. We only need to prove that T is reguloid for T being isoloid follows by Theorem (3.2.12) easily.
If $\lambda \in \sigma_{i s o}(T)$, then $\mathcal{H}=E_{\lambda} \mathcal{H}+\left(I-E_{\lambda}\right) \mathcal{H}$, where $E_{\lambda} \mathcal{H}$, and $\left(I-E_{\lambda}\right) \mathcal{H}$ are topologically complemented [163, page 94]. By $T=\left.T\right|_{E_{\lambda} \mathcal{H}}+\left.T\right|_{\left(I-E_{\lambda}\right) \mathcal{H}}$ on $\mathcal{H}=E_{\lambda} \mathcal{H}+\left(I-E_{\lambda}\right) \mathcal{H}$ and Theorem (3.2.12), we have

$$
\begin{equation*}
(T-\lambda) \mathcal{H}=\left(\left.T\right|_{\left(I-E_{\lambda}\right) \mathcal{H}}-\lambda\right)\left(I-E_{\lambda}\right) \mathcal{H} . \tag{18}
\end{equation*}
$$

Therefore $(T-\lambda) \mathcal{H}$ is closed because $\sigma\left(\left.T\right|_{\left(I-E_{\lambda}\right) \mathcal{H}}\right)=\sigma(T)-\{\lambda\}$.
Definition (3.2.14)[138]: An operator T is said to have SVEP at $\lambda \in \mathfrak{F}$ if for every open neighborhood G of λ, the only function $f \in H(G)$ such that (T д) $f(\mu)=0$ on G is $0 \in H(G)$, where $H(G)$ means the space of all analytic functions on G.
When T have SVEP at each $\lambda \in \mathfrak{G}$, say that T has SVEP.
This is a good property for operators. If T has SVEP, then for each $\lambda \in(\mathfrak{G}, \lambda-T$ is invertible if and only if it is surjective (cf. [164, 153]).
Definition (3.2.15)[138]: An operator T is said to have Bishop's property (β) at $\lambda \in \mathfrak{G}$ if for every open neighborhood G of λ, the function $f_{n} \in H(G)$ with $(T-\lambda) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G implies that $f_{n}(\mu) \rightarrow$ 0 uniformly on every compact subset of G.
When T has Bishop's property (β) at each $\lambda \in(\mathfrak{G}$, simply say that T has property (β). This is a generalization of SVEP and it is introduced by Bishop [165] in order to develop a general spectral theory for operators on Banach space.
Lemma (3. 2.16)[138,153]: Let G be open subset of complex plane \mathfrak{G} and let $f_{n} \in H(G)$ be functions such that $\mu f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G, then $f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G.
Theorem (3.2.17)[138]: Let p and r be positive numbers. If $p+r=1$, then T has SVEP if and only If $T(p, r)$ has SVEP, T has property (β) if and only if $T(p, r)$ has property (β). In particular, every class $w F(p, r, q)$ operator T with $p+r \leq 1$ has SVEP and property (β).
This result is a generalization of [153]. Lemma (3.2.16) and the relations between T and its transformation $T(p, r)$ are important:

$$
\begin{align*}
& T(p, r)|T|^{p}=|T|^{p} U|T|^{r}|T|^{p}=|T|^{p} T, \\
& U|T|^{r} T(p, r)=U|T|^{r}|T|^{p} U|T|^{r}=T U|T|^{r} . \tag{19}
\end{align*}
$$

Proof. We only prove that T has property (β) if and only if $T(p, r)$ has property (β) because the assertion that T has SVEP if and only if $T(p, r)$ has SVEP can be proved similarly.

Suppose that $T(p, r)$ has property (β). Let G be an open neighborhood of λ and let $f_{n} \in H(G)$ be functions such that $(\mu-T) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G. By (19), $(T(p, r)-\mu)|T|^{p} f_{n}(\mu)=|T|^{p}(T-\mu) f_{n}(\mu) \rightarrow$ 0 uniformly on every compact subset of G. Hence $T f_{n}(\mu)=U|T|^{r}|T|^{p} f_{n}(\mu) \rightarrow$ 0 uniformly on every compact subset of G for $T(p, r)$ has property (β), so that $\mu f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G, and T having property (β) follows by Lemma (3. 2.16).
Suppose that T has property (β). Let G be an open neighborhood of λ and let $f_{n} \in H(G)$ be functions such that $(\mu-T(p, r)) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of \quad. By \quad (19), $(\mu-T)\left(U|T|^{r} f_{n}(\mu)\right)=U|T|^{r}(\mu-T(p, r)) f_{n}(\mu) \rightarrow 0 \quad$ uniformly on every compact subset of G. Hence $T(p, r) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G for T has property (β) so that $\mu f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G, and $T(p, r)$ having property (β) follows by Lemma (3. 2.16).

For a Fredholm operator T, ind T means its (Fredholm) index. A Fredholm operator T is said to be Weyl if ind $T=0$.
Let $\sigma_{e}(T), \sigma_{w}(T)$, and $\pi_{00}(T)$ mean the essential spectrum, Weyl spectrum, and the set of all isolated eigenvalues of finite multiplicity of an operator T, respectively (cf. [163, 152]).

According to Coburn [166], we say that Weyl's theorem holds for an operator T if $\sigma(T)-\sigma_{w}(T)=\pi_{00}(T)$. Very recently, the theorem was shown to hold for several classes of operators including w-hyponormal operators and paranormal operators (cf. [152, 167, 155]).

In this section, we will prove that Weyl's theorem and Weyl spectrum mapping theorem hold for class $w F(p, r, q)$ operator T with $p+r \leq 1$. We also assume that $p+r=1$ because of the inclusion relations among class $w F(p, r, q)$ [139]. Theorem (3.2.18)[138]: Let $p>0, r>0$, and $q \geq 1, s \geq p, t \geq r$. If T is a class $w F(p, r, q)$ operator and $T(s, t)$ is normal, then T is normal.
Lemma (3.2.19)[138]: If T belongs to class $w F(p, r, q)$ with $p+r=1$ and is Fredholm, then indT ≤ 0.
This result can be regarded as a good complement of Theorem (3.2.12).
Proof. Since T is Fredholm, $|T|^{p}$ is also Fredholm and ind $\left(|T|^{p}\right)=0$. By (19),

$$
\begin{equation*}
\operatorname{ind} T=\operatorname{ind}\left(|T|^{p} \mathrm{~T}\right)=\operatorname{ind}\left(\mathrm{T}(\mathrm{p}, \mathrm{r})|T|^{p}\right)=\operatorname{ind}(\mathrm{T}(\mathrm{p}, \mathrm{r})) \tag{20}
\end{equation*}
$$

Hence, ind $T \leq 0$ for $\operatorname{ind}(T(p, r)) \leq 0$ by Theorem (3.20).

Theorem (3.2.20)[138]: Let T belong to class $w F(p, r, q)$ with $p+r=1$ and let $H(\sigma(T))$ be the space of all functions f analytic on some open set G containing $\sigma(\mathrm{T})$, then the following assertions hold.
(1) Weyl's theorem holds for T.
(2) $\sigma_{w}(f(T))=f\left(\sigma_{w}(T)\right)$ when $f \in H(\sigma(T))$.
(3) Weyl's theorem holds for $f(T)$ when $f \in H(\sigma(T))$.

This is a generalization of the related assertions of [152].
Proof . (1) Let $\lambda \in \sigma(T)-\sigma_{w}(T)$, then $T-\lambda$ is Fredholm, $\operatorname{ind}(T-\lambda)=$ 0 , and dimker $(T-\lambda)>0$.
If λ is an interior point of $\sigma(T)$, there would be an open subset $G \subseteq \sigma(T)$ including λ such that ind $(T-\mu)=\operatorname{ind}(T-\lambda)=0$ for all $\mu \in G$ [163, page 357]. So dimker $(T-\mu)>0$ for all $\mu \in G$, this is impossible for T has SVEP by Theorem (3.2.17) [164, Theorem 10]. Thus $\lambda \in \partial \sigma(T)-\sigma_{w}(T), \lambda \in \sigma_{i s o}(T)$ by [163, Theorem 6.8, page 366], and $\lambda \in \pi_{00}(T)$ follows.

Let $\lambda \in \pi_{00}(T)$ then the Riesz idempotent E_{λ} has finite rank by Theorem (3.2.12), and $\lambda \in \sigma(T)-\sigma_{w}(T)$ follows.
(2) We only need to prove that $\sigma_{w}(f(T)) \supseteq f\left(\sigma_{w}(T)\right)$ since $\sigma_{w}(f(T)) \subseteq$ $f\left(\sigma_{w}(T)\right)$ is always true for any operators.

Assume that $f \in H(\sigma(T))$ is not constant. Let $\lambda \notin \sigma_{w}(f(T))$ and $f(z)-$ $\lambda=\left(z-\lambda_{1}\right) \cdots\left(z-\lambda_{k}\right) g(z)$, where $\left\{\lambda_{i}\right\}_{1}^{k}$ are the zeros of $f(z)-\lambda$ in G (listed according to multiplicity) and $\mathrm{g}(\mathrm{z}) \neq 0$ for each $z \in G$. Thus

$$
\begin{equation*}
f(T)-\lambda=\left(T-\lambda_{1}\right) \ldots \ldots\left(T-\lambda_{k}\right) g(T) \tag{21}
\end{equation*}
$$

Obviously, $\lambda \in f\left(\sigma_{w}(T)\right)$ if and only if $\lambda_{i} \in \sigma_{w}(T)$ for some i. Next we prove that $\lambda_{i} \notin \sigma_{w}(T)$ for every $i \in\{1, \ldots, k\}$, thus $\lambda \notin f\left(\sigma_{w}(T)\right)$ and $\sigma_{w}(f(T)) \supseteq$ $f\left(\sigma_{w}(T)\right)$.

In fact, for each $i, T-\lambda_{i}$ is also Fredholm because $f(T)-\lambda$ is Fredholm. By Theorem (3.2.12) and Lemma (3.2.19), ind $\left(T-\lambda_{i}\right) \leq 0$ for each i. Since $0=\operatorname{ind}(f(T)-\lambda)=\operatorname{ind}\left(T-\lambda_{1}\right)+\cdots+\operatorname{ind}\left(T-\lambda_{k}\right), \operatorname{ind}\left(T-\lambda_{i}\right)=$ 0 and $\lambda_{i} \notin \sigma_{w}(T)$ for each i.
(3) By Theorem (3.2.13), T is isoloid and it follows from [168] that

$$
\begin{equation*}
\sigma(f(T))-\pi_{00}(f(T))=f\left(\sigma(T)-\pi_{00}(T)\right) \tag{22}
\end{equation*}
$$

On the other hand, $f\left(\sigma(T)-\pi_{00}(T)\right)=f\left(\sigma_{w}(T)\right)=\sigma_{w}(f(T))$ by (1)-(2). The proof is complete.
Theorem (3.2.21)[138]: Let T belong to class $w F(p, r, q)$ with $p+r=1$, then the following assertions hold.
(i) If $m_{2}(\sigma(T))=0$ where m_{2} means the planar Lebesgue measure, then T is normal.
(ii) If $\sigma_{w}(T)=0$, then T is compact and normal.

Theorem (3.2.21)(i) is a generalization of [161] and (ii) is a generalization of [159].

Proof . (i) By α_{0}-hyponormality of $T(p, r)$ and Putnam's inequality for $\alpha_{0^{-}}$ hyponormal operators [161], $T(p, r)$ is normal. Hence, (i) follows by Theorem (3.2.18).
(ii) Since $\sigma_{w}(T)=0, \sigma(T)-\{0\}=\pi_{00}(T) \subseteq \sigma_{i s o}(T) \quad$ by \quad Theorem (3.2.20)(i). Hence $m_{2}(\sigma(T))=0$ and T is normal by (i).

Next to prove that T is compact, we may assume that $\sigma(T)-\{0\}$ is a countable infinite set for $\sigma(T)-\{0\} \subseteq \sigma_{\text {iso }}(T)$. Let $\sigma(T)-\{0\}=\left\{\lambda_{n}\right\}_{1}^{\infty}$ with $\left|\lambda_{1}\right| \geq$ $\left|\lambda_{2}\right| \geq \cdots \geq 0$ and $\lambda_{0}=\lim _{n \rightarrow \infty}\left|\lambda_{n}\right|$, then $\lambda_{0}=0$. Since every $E_{\lambda_{n}}$ has finite rank by Theorems (3.2.12) and (3.2.20), for every $\varepsilon>0, \bigoplus_{\left|\lambda_{n}\right|>\varepsilon} E_{\lambda_{n}}$ also has finite rank. Therefore T is compact [163, page 271].
Corollary(3.2.22)[232]: For any operator
$T,|T|{ }^{(1-r)} \operatorname{ker}(T-\lambda) \subseteq|T|^{(1-r)} E_{\lambda} \mathcal{H} \subseteq E_{\lambda}((1-r), r) \mathcal{H}$ for $p=1-r$.
Proof. Let $x \in E_{\lambda}$, by the formula above we have

$$
\left\|(T((1-r), r)-\lambda)^{n}|T|^{(1-r)} x\right\|^{1 / n}=\left\||T|^{(1-r)}(T-\lambda)^{n} x\right\|^{1 / n} \rightarrow 0 .
$$

Hence $|T|^{(1-r)} x \in E_{\lambda}((1-r), r) \mathcal{H}$.

Sec (3.3): The Operator Equation

$\boldsymbol{K}^{p}=H^{\frac{\delta}{2}} \boldsymbol{T}^{\frac{1}{2}}\left(\boldsymbol{T}^{\frac{1}{2}} \boldsymbol{H}^{\delta+r} \boldsymbol{T}^{\frac{1}{2}}\right)^{\frac{p-\delta}{\delta+r}} \boldsymbol{T}^{\frac{1}{2}} \boldsymbol{H}^{\frac{\delta}{2}}$ and its Applications

A capital letter (such as T) means a bounded linear operator on a Hilbert space. $T \geq 0$ and $T>0$ mean a positive operator and an invertible positive operator, respectively.

In [133], Pedersen and Takesaki developed the operator equation $K=T H T$ as a useful tool for the noncommutative Radon-Nikodym theorem. By using Douglas's majorization theorem [123], Nakamoto [132] provided a simple proof.
As generalizations, Bach and Furuta [121,125] gave deep discussion on the equation $K=T\left(H^{\frac{1}{n}} T\right)^{n}$.
Theorem (3.3.1)[118,125]: Let H and K be bounded positive operators on a Hilbert space, and assume that H is nonsingular.
(1) The following statements are equivalent for any natural number n :
(a) $a H^{\frac{1}{n}} \geq\left(H^{\frac{1}{2 n}} K H^{\frac{1}{2 n}}\right)^{\frac{1}{n+1}}$ for some $a \geq 0$;
(b) there exists a unique positive operator T such that $\|T\| \leq a$, and

$$
\begin{equation*}
K=T^{\frac{1}{2}}\left(T^{\frac{1}{2}} T^{\frac{1}{n}} T^{\frac{1}{2}}\right)^{n} T^{\frac{1}{2}} \tag{23}
\end{equation*}
$$

(2) If there exists a positive operator T satisfying (23) for some natural number n, then, for each natural number $m \leq n$, there exists a positive operator T_{1} satisfying

$$
\begin{equation*}
K=T_{1}^{\frac{1}{2}}\left(T_{1}^{\frac{1}{2}} H^{\frac{1}{m}} T_{1}^{\frac{1}{2}}\right)^{m} T_{1}^{\frac{1}{2}} \tag{24}
\end{equation*}
$$

Lin [130] showed a generalization of Theorem (3.3.1)(1) via Furuta inequality [124] under the restriction $a=1$.
Theorem (3.3.2)[118,121]: Given any natural number n and m with $m<n$, there exist a nonsingular positive operator H and a positive operator K such that Eq. (24) is solvable and (23) is unsolvable.
In this section, as a continuation, we consider the following equation for $p>0, r>0$ and $p \geq \delta>-r$

$$
\begin{equation*}
K^{p}=H^{\frac{\delta}{2}} T^{\frac{1}{2}}\left(T^{\frac{1}{2}} H^{\delta+r} T^{\frac{1}{2}}\right)^{\frac{p-\delta}{\delta+r}} T^{\frac{1}{2}} H^{\frac{\delta}{2}} \tag{25}
\end{equation*}
$$

Obviously, the special case $p=1, r=\frac{1}{n}$ and $\delta=0$ of (25) becomes (23). Theorems (3.3.1)-(3.3.2) are extended to Theorems (3.3.4)-(3.3.5), respectively.

Some applications are obtained. We show that the inclusion relations in the following result are strict. See Theorem (3.3.3) below.
Theorem (3.3.3)[118,128,129]: Let T be a class $w A(p, r)$ operator, then T is a class $w A\left(p_{1}, r_{1}\right)$ operator for $p_{1} \geq p>0$ and $r_{1} \geq r>0$.
A kind of polar decomposition of Aluthge transformation [119] is given. See Theorems (3.3.14)-(3.3.15) below.
Theorem (3.3.4)[118,123]: The following assertions are equivalent for any operators A and B.
(1) $A A^{*} \leq \lambda B B^{*}$ for some $\lambda \geq 0$.
(2) There exists a C with $A=B C$ and $\|C\| \leq \lambda$.

Lemma (3.3.5) $[118,126,127]$: Let $\alpha \in R$ and X be invertible. Then $\left(X^{*} X\right)^{\alpha}=X^{*}\left(X X^{*}\right)^{\alpha-1} X$,
especially in case $\alpha \geq 1$ the equality holds without invertibility of X.
Theorem (3.3.6)[118,137,139]: (Furuta type inequality). Let $A, B \geq 0, \alpha_{0}, \beta_{0}>$ $0,-\beta_{0}<\delta_{0} \leq \alpha_{0},-\beta_{0} \leq \bar{\delta}_{0}<\alpha_{0}$.
(1) If $0 \leq \delta_{0} \leq \alpha_{0}$, then

$$
\left(B^{\frac{\beta_{0}}{2}} A^{\alpha_{0}} B^{\frac{\beta_{0}}{2}}\right)^{\frac{\beta \beta_{0}+\delta_{0}}{\beta_{0}+\alpha_{0}}} \geq B^{\beta_{0}+\delta_{0}} \Rightarrow\left(B^{\frac{\beta}{2}} A^{\alpha} B^{\frac{\beta}{2}}\right)^{\frac{\beta+\delta_{0}}{\beta+\alpha}} \geq B^{\beta+\delta_{0}}
$$

for any $\alpha \geq \alpha_{0}$ and $\beta \geq \beta_{0}$.
(2) If $-\beta_{0} \leq \bar{\delta}_{0} \leq 0$ and $N(A) \subset N(B)$, then

$$
A^{\alpha_{0}+\bar{\delta}_{0}} \geq\left(A^{\frac{\alpha_{0}}{2}} B^{\beta_{0}} A^{\frac{\alpha_{0}}{2}}\right)^{\frac{\alpha_{0}+\bar{\delta}_{0}}{\alpha_{0}+\beta_{0}}} \Rightarrow A^{\alpha+\bar{\delta}_{0}} \geq\left(A^{\frac{\alpha}{2}} B^{\beta} A^{\frac{\alpha}{2}}\right)^{\frac{\alpha+\bar{\delta}_{0}}{\alpha+\beta_{0}}}
$$

for any $\alpha \geq \alpha_{0}$ and $\beta \geq \beta_{0}$.
Theorem (3.3.6) is important to the proof of (2) of Theorem (3.3.8).
Lemma (3.3,7)[118,134]: Let a, b, d and θ be real numbers and satisfy $a+b>$ $0, a b=d^{2}$, and $S=\left(\begin{array}{cc}a & d e^{-i \theta} \\ d e^{i \theta} & b\end{array}\right)$. Then

$$
S^{p}=(a+b)^{p-1} S \text { for } p>0
$$

Theorem (3.3.8)[118]: Let H and K be bounded positive operators on a Hilbert space, and assume that H is nonsingular.
(1) The following statements are equivalent for any $p>0, r>0$ and $p \geq \delta \geq 0$:
(a) $a H^{\delta+r} \geq\left(H^{\frac{r}{2}} K^{p} H^{\frac{r}{2}}\right)^{\frac{\delta+r}{p+r}}$ for some $a \geq 0$;
(b) there exists a unique positive operator T satisfies $\|T\| \leq a$ and (25).

If in additional H is invertible, (1) holds for $p \geq \delta>-r$.
(2) If there exists a positive operator T satisfying (25) for fixed $p>0, r>0$ and $p \geq \delta \geq 0$, then, for $p_{1} \geq p$ and $r_{1} \geq r$, there exists a positive operator T_{1} satisfying

$$
\begin{equation*}
K^{p_{1}}=H_{1}^{\frac{\delta}{2}} T_{1}^{\frac{1}{2}}\left(T_{1}^{\frac{1}{2}} H^{\delta+r_{1}} T_{1}^{\frac{1}{2}}\right)^{\frac{p_{1}-\delta}{\delta+r_{1}}} T_{1}^{\frac{1}{2}} H_{1}^{\frac{\delta}{2}} \tag{26}
\end{equation*}
$$

Lin [130] showed case $\delta=\frac{p-n r}{n+1}$ of Theorem(3.3.8)(1) under some restrictions.
Proof .The proof is similar to [125].
(a) $\Rightarrow(b)$. By Theorem (3.3.4), there exists a S such that

$$
\left(H^{\frac{r}{2}} K^{p} H^{\frac{r}{2}}\right)^{\frac{\delta+r}{2(p+r)}}=H^{\frac{\delta+r}{2}} S=S^{*} H^{\frac{\delta+r}{2}}
$$

Put $T=S S^{*}$, then $\|T\| \leq a$ and by Lemma (3.3.7),

$$
H^{\frac{r}{2}} K^{p} H^{\frac{r}{2}}=H^{\frac{\delta+r}{2}} T^{\frac{1}{2}}\left(T^{\frac{1}{2}} H^{\delta+r} T^{\frac{1}{2}}\right)^{\frac{p-\delta}{\delta+r}} T^{\frac{1}{2}} H^{\frac{\delta+r}{2}}
$$

So (25) holds for H is singular.
(b) $\Rightarrow(a)$. For a with $\|T\| \leq a$, by Lemma (3.3.7), (25) implies

$$
\begin{align*}
\left(H^{\frac{r}{2}} K^{p} H^{\frac{r}{2}}\right)^{\frac{\delta+r}{(p+r)}} & =\left(H^{\frac{\delta+r}{2}} T^{\frac{1}{2}}\left(T^{\frac{1}{2}} H^{\delta+r} T^{\frac{1}{2}}\right)^{\frac{p-\delta}{\delta+r}} T^{\frac{1}{2}} H^{\frac{\delta+r}{2}}\right)^{\frac{\delta+r}{(p+r)}} \\
& =H^{\frac{\delta+r}{2}} T H^{\frac{\delta+r}{2}} \leq a H^{\delta+r} \tag{27}
\end{align*}
$$

To show the uniqueness of T. Assume that Z also satisfies (25), by (27) we have

$$
H^{\frac{\delta+r}{2}} Z H^{\frac{\delta+r}{2}}=\left(H^{\frac{r}{2}} K^{p} H^{\frac{r}{2}}\right)^{\frac{\delta+r}{(p+r)}}=H^{\frac{\delta+r}{2}} T H^{\frac{\delta+r}{2}},
$$

therefore $Z=T$.
Next to prove (2). By the assumption and (1), (a) holds for some $a>0$, that is

$$
\begin{equation*}
\left(a^{\frac{p+r}{p(\delta+r)}} H\right)^{\delta+r} \geq\left(\left(a^{\frac{p+r}{p(\delta+r)}} H\right)^{\frac{r}{2}} K^{p}\left(a^{\frac{p+r}{p(\delta+r)}} H\right)^{\frac{r}{2}}\right)^{\frac{\delta+r}{(p+r)}} \tag{28}
\end{equation*}
$$

So that the following follows from (2) of Theorem (3.3.8):

$$
\left(a^{\frac{p+r}{p(\delta+r)}} H\right)^{\delta+r_{1}} \geq\left(\left(a^{\frac{p+r}{p(\delta+r)}} H\right)^{\frac{r_{1}}{2}} K^{p_{1}}\left(a^{\frac{p+r}{p^{p}(\delta+r)}} H\right)^{\frac{r_{1}}{2}}\right)^{\frac{\delta+r_{1}}{\left(p_{1}+r_{1}\right)}},
$$

that is

$$
a^{\frac{p+r}{p(\delta+r)} \cdot \frac{p_{1}\left(\delta+r_{1}\right)}{\left(p_{1}+r_{1}\right)}} H^{\delta+r_{1}} \geq\left(H^{\frac{r_{1}}{2}} K^{p_{1}} H^{\frac{r_{1}}{2}}\right)^{\frac{\delta+r_{1}}{\left(p_{1}+r_{1}\right)}}
$$

Therefore (26) is solvable.
Remark (3.3.9)[118]: For each $p>0, r>0$ and $\min \{p, 1\} \geq \delta>-r$, it is clear that the condition (a) is satisfied if H is invertible or, more generally $a^{\frac{p+r}{p(\delta+r)}} H \geq K$ for some $a \geq 0$ by (28) and Furuta inequality [124]. In the first case, the solution T to (25) is given by $T=H^{\frac{-(\delta+r)}{2}}\left(H^{\frac{r}{2}} K^{p} H^{\frac{r}{2}}\right)^{\frac{\delta+r}{(p+r)}} H^{\frac{-(\delta+r)}{2}}$ by (27).

Theorem (3.3.10)[118]: Given any positive numbers p, r, p_{1} and r_{1} with $r_{1}>r$, there exist a nonsingular positive operator H and a positive operator K such that case $\delta=0$ of Eq. (26) is solvable and case $\delta=0$ of (25) is unsolvable. To give proofs, the following results are needful.
Proof. The proof is inspired by [121].
For a natural number k, let $A_{k}=\left(\begin{array}{cc}1 & 0 \\ 0 & k^{-4}\end{array}\right)$ and $B_{k}=\frac{1}{1+k^{2}}\left(\begin{array}{cc}1 & k^{-1} \\ k^{-1} & k^{-2}\end{array}\right)$. Take $H=\bigoplus_{k=1}^{\infty} A_{k}^{\frac{1}{r_{1}}} \quad$ and $K=\bigoplus_{k=1}^{\infty} K_{k}^{\frac{1}{p_{1}}}$ where $K_{k}=A_{k}^{\frac{-1}{2}} B_{k}^{\frac{p_{1}+r_{1}}{r_{1}}} A_{k}^{\frac{-1}{2}}$. By Lemma (3.3.9), $\quad K_{k}=\frac{1}{\left(1+k^{2}\right) k^{2 p_{1 / r_{1}}}}\left(\begin{array}{cc}1 & k \\ k & k^{2}\end{array}\right)$, hence $\left\|K_{k}^{\frac{1}{p_{1}}}\right\|=K^{-2 / r_{1}} \leq 1$ and K is meaningful.

Next to show that the operators H and K satisfy the conditions.
In fact, $H^{r_{1}}-\left(H^{\frac{r_{1}}{2}} K^{p_{1}} H^{\frac{r_{1}}{2}}\right)^{\frac{r_{1}}{\left(p_{1}+r_{1}\right)}}=\bigoplus_{k=1}^{\infty}\left(A_{k}-B_{k}\right) \geq 0$ and this implies case $\delta=0$ of (26) is solvable by (1) of Theorem (3.3.8). Meanwhile, case $\delta=0$ of (25) is unsolvable for H and K here. Otherwise, also by (1) of Theorem (3.3.8), H and K satisfy (a) for some $a>0$. This implies that

$$
a A_{k}^{r / r_{1}} \geq\left(A_{k}^{\frac{r}{2 r_{1}}} K_{k}^{\frac{p}{p_{1}}} A_{k}^{\frac{r}{2 r_{1}}}\right)^{\frac{r}{p+r}}
$$

By Lemma (3.3.7),

$$
\begin{align*}
& a \geq A_{k}^{\frac{-r}{2 r_{1}}}\left\{A_{k}^{\frac{r}{2 r_{1}}} \frac{1}{\left(1+k^{2}\right) k^{2 p / r_{1}}}\left(\begin{array}{cc}
1 & k \\
k & k^{2}
\end{array}\right) A_{k}^{\frac{r}{2 r_{1}}}\right\}^{\frac{r}{p+r}} A_{k}^{\frac{-r}{2 r_{1}}} \\
& =A_{k}^{\frac{-r}{2 r_{1}}}\left(\frac{1}{\left(1+k^{2}\right) k^{2 p / r_{1}}}\right)^{\frac{r}{p+r}}\left(\frac{1}{\left.1+k^{2(1-2 r} / r_{1}\right)}\right)^{\frac{p}{p+r}}\left(\begin{array}{cc}
1 & k^{1-2 r / r_{1}} \\
k^{1-2 r / r_{1}} & k^{2\left(1-2 r_{/ 1}\right)}
\end{array}\right) A_{k}^{\frac{-r}{2 r_{1}}} \\
& =\left(\frac{1}{\left(1+k^{2}\right) k^{2 p / r_{1}}}\right)^{\frac{r}{p+r}}\left(\frac{1}{1+k^{2\left(1-2 r / r_{1}\right)}}\right)^{\frac{p}{p+r}}\left(\begin{array}{cc}
1 & k \\
k & k^{2}
\end{array}\right) . \tag{29}
\end{align*}
$$

Therefore,
$a \geq\left(\frac{1+k^{2}}{k^{2 r / r_{1}}\left(1+k^{2\left(1-2 r / r_{1}\right)}\right)}\right)^{\frac{p}{p+r}}=\left(\frac{1+k^{2}}{\left(\left(k^{2 r} / r_{1}+k^{2\left(1-r / r_{1}\right)}\right)\right.}\right)^{\frac{p}{p+r}}$.
So that $a \geq \infty$ by letting $k \rightarrow \infty$ for $\max \left\{2 r / r_{1}, 2\left(1-r / r_{1}\right)\right\}<2$. This is a contradiction.
A fact in the proof of Theorem (3.3.10) is useful.
Theorem (3.3.11)[118]: Given any positive numbers p, r, p_{1} and r_{1} with $r_{1}>r$, there exist invertible positive operators H and K such that

$$
H^{r_{1}} \geq\left(H^{\frac{r_{1}}{2}} K^{p_{1}} H^{\frac{r_{1}}{2}}\right)^{\frac{r_{1}}{\left(p_{1}+r_{1}\right)}}, a H^{r} \nsupseteq\left(H^{\frac{r}{2}} K^{p} H^{\frac{r}{2}}\right)^{\frac{r}{p+r}}
$$

where a is an arbitrary positive number.
Proof. The operators H and K in the proof of Theorem (3.3.10) are suitable.
We Show Some Applications. For $q>0, T$ is called $a q$-hyponormal operator if $\left(T^{*} T\right)^{q} \geq\left(T T^{*}\right)^{q}$, where T^{*} is the adjoint operator of T. If $q=1, T$ is called a hyponormal operator and if $q=1 / 2, T$ is called a semi-hyponormal operator. See Martin and Putinar [131] and Xia [135] for related topics and basic properties of hyponormal operators.

Aluthge [119] introduced Aluthge transformation $\tilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$ where the polar decomposition of T is $T=U|T|$. For each $p>0$ and $r>0, \widetilde{T}_{p, r}=$ $|T|^{p} U|T|^{r}$ is called generalized Aluthge transformation.
As a generalization of q-hyponormal operators, Ito [128] introduced class $w A(p, r)$ defined by
$\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\frac{r}{p+r}} \geq\left|T^{*}\right|^{2 r}$ and $\left(|T|^{p}\left|T^{*}\right|^{2 r}|T|^{p}\right)^{\frac{p}{p+r}} \leq|T|^{2 p}$.
See[120,129,137,138] for related topics.
Lemma (3.3.12)[118]: For positive operators A and B on a Hilbert space \mathcal{H} define operators U and D on $\bigoplus_{k=-\infty}^{\infty}=\mathcal{H}_{k}$ where $\mathcal{H}_{k} \cong \mathcal{H}$ Has follows:
where (\cdot) shows the place of the $(0,0)$ matrix element, and $T=U D$. Then the following assertions hold for each $p>0, r>0$ and $\beta>0$:
(1) $\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{\beta} \geq\left|T^{*}\right|^{2(p+r) \beta}$ if and only if $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\beta} \geq B^{(p+r) \beta}$.
(2) $|T|^{2(p+r) \beta} \geq\left(|T|^{p}\left|T^{*}\right|^{2 r}|T|^{p}\right)^{\beta}$ if and only if $A^{(p+r) \beta} \geq\left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right)^{\beta}$.

This example appears in [140,141] and is a modification of [122, Theorem 2] and [136, Lemma 1].
Proof. By easy calculation,

Therefore

$$
\left.\left|T^{* *^{r}}\right| T\right|^{p p} \left\lvert\, T^{\left.*\right|^{r}}=\left(\begin{array}{lllll}
\ddots & & & & \\
& B^{p+r} & & & \\
& & \left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right) & & \\
& & & A^{p+r} & \\
& & & & \ddots
\end{array}\right)\right.
$$

and

$$
|T|^{p}\left|T^{*}\right|^{2 r}|T|^{p}=\left(\begin{array}{lllll}
\ddots & & & & \\
& B^{p+r} & & & \\
& & \left(A^{\frac{p}{2}} B^{r} A^{\frac{p}{2}}\right. & & \\
& & & A^{p+r} & \\
& & & & \ddots
\end{array}\right),
$$

By comparing the $(0,0)$ elements of the operator matrices above, the assertions hold.
Theorem (3.3.13)[118]: Given any positive numbers p, r, p_{1} and r_{1} with $r_{1}>r$, there exists an operator T such that T is a class $w A\left(p_{1}, r_{1}\right)$ operator but not a class $w A(p, r)$ operator. Theorem (3.3.13) implies that the inclusion relations in Theorem (3.3.3) are strict.

Proof . By Theorem (3.3.11), there exist invertible positive operators H and K on a Hilbert space \mathcal{H} such that

$$
H^{r_{1}} \geq\left(H^{\frac{r_{1}}{2}} K^{p_{1}} H^{\frac{r_{1}}{2}}\right)^{\frac{r_{1}}{\left(p_{1}+r_{1}\right)}} \quad, \quad H^{r} \nexists\left(H^{\frac{r}{2}} K^{p} H^{\frac{r}{2}}\right)^{\frac{r}{p+r}}
$$

Let $A=H$ and $B=K$, define an operator T on $\bigoplus_{k=-\infty}^{\infty}=\mathcal{H}_{k}$ where $\mathcal{H}_{k}=\mathcal{H}$ as Lemma (3.3.12). Then T a class $w A\left(p_{1}, r_{1}\right)$ operator but not a class $w A(p, r)$ operator by Lemma (3.3.12).
Aluthge [119] showed a kind of polar decomposition of Aluthge transformation on invertible q-hyponormal operators via the equation
$K=T H T$.
Theorem (3.3.14)[118,119]: Let T be a invertible q-hyponormal operator and the polar decomposition of \widetilde{T} be $\widetilde{T}=\widetilde{U}|\widetilde{T}|$. Then $|\widetilde{T}|=|T|^{1 / 2} S^{-1}|T|^{1 / 2}$ and $\widetilde{U}=|T|^{1 / 2} U S|T|^{-1 / 2}$ where S is the solution to the equation $|T|=S U^{*}|T| U S$.
The following assertion say that this result holds for any invertible operator T.
Theorem (3.3.15)[118]:Let T be an invertible operator and the polar decomposition of $\quad \widetilde{T}_{p, r}$ be $\tilde{T}_{p, r}=\widetilde{U}_{p, r}\left|\widetilde{T}_{p, r}\right|$. Then $\left|\widetilde{T}_{p, r}\right|=|T|^{r} S^{-1}|T|^{r}$ and $\widetilde{U}_{p, r}=|T|^{p} U S|T|^{-r}$ where S is the solution to the equation $|T|^{2 r}=$ $S U^{*}|T|^{2 p} U S$.
Proof. By Remark (3.3.9), the solution S to $|T|^{2 r}=S U^{*}|T|^{2 p} U S$. exists and $S=H^{\frac{-1}{2}}\left(H^{\frac{1}{2}} K H^{\frac{1}{2}}\right)^{\frac{1}{2}} H^{\frac{-1}{2}}$ where $H=U^{*}|T|^{2 p} U$ and $=|T|^{2 r}$. Hence S is invertible for T is invertible and

$$
\left|\tilde{T}_{p, r}\right|=\left(\left.\left|T{\underset{\sim}{\mid}}^{r} S^{-1}\right| T\right|^{2 r} S^{-1}|T|^{r}\right)^{1 / 2}=|T|^{r} S^{-1}|T|^{r}
$$

Moreover, $\quad \widetilde{U}_{p, r}=\widetilde{T}_{p, r}\left|\widetilde{T}_{p, r}\right|^{-1}=|T|^{p} U S|T|^{-r}$.
Corollary(3.3.16)[232]: Given any positive numbers $p, r_{1}-\epsilon, p_{1}$, there exist a nonsingular positive operator H and a positive operator K such that case $\delta=0$ of Eq. (26) is solvable and case $\delta=0$ of (25) is unsolvable. To give proofs, the following results are needful.
Proof. The proof is inspired by [121].
For a natural number k, let $A_{k}=\left(\begin{array}{cc}1 & 0 \\ 0 & k^{-4}\end{array}\right)$ and $B_{k}=\frac{1}{1+k^{2}}\left(\begin{array}{cc}1 & k^{-1} \\ k^{-1} & k^{-2}\end{array}\right)$. Take $H=\bigoplus_{k=1}^{\infty} A_{k}^{\frac{1}{r_{1}}} \quad$ and $K=\bigoplus_{k=1}^{\infty} K_{k}^{\frac{1}{p_{1}}}$ where $K_{k}=A_{k}^{\frac{-1}{2}} B_{k}^{\frac{p_{1}+r_{1}}{r_{1}}} A_{k}^{\frac{-1}{2}}$. By Lemma (3.3.9), $\quad K_{k}=\frac{1}{\left(1+k^{2}\right) k^{2 p_{1 / r_{1}}}}\left(\begin{array}{cc}1 & k \\ k & k^{2}\end{array}\right)$, hence $\left\|K_{k}^{\frac{1}{p_{1}}}\right\|=K^{-2 / r_{1}} \leq 1$ and K is meaningful.

Next to show that the operators H and K satisfy the conditions.
In fact, $H^{r_{1}}-\left(H^{\frac{r_{1}}{2}} K^{p_{1}} H^{\frac{r_{1}}{2}}\right)^{\frac{r_{1}}{\left(p_{1}+r_{1}\right)}}=\bigoplus_{k=1}^{\infty}\left(A_{k}-B_{k}\right) \geq 0$ and this implies case $\delta=0$ of (26) is solvable by (1) of Theorem (3.3.8). Meanwhile, case $\delta=0$ of (25) is unsolvable for H and K here. Otherwise, also by (1) of Theorem (3.3.8), H and K satisfy (a) for some $a>0$. This implies that

$$
a A_{k}^{\left(r_{1}-\epsilon\right) / r_{1}} \geq\left(A_{k}^{\frac{\left(r_{1}-\epsilon\right)}{2 r_{1}}} K_{k}^{\frac{p}{p_{1}}} A_{k}^{\frac{\left(r_{1}-\epsilon\right)}{2 r_{1}}}\right) \frac{\left(r_{1}-\epsilon\right)}{p+\left(r_{1}-\epsilon\right)}
$$

By Lemma (3.3.7),

$$
\begin{aligned}
& a \geq A_{k}^{\frac{-\left(r_{1}-\epsilon\right)}{2 r_{1}}}\left\{A_{k}^{\frac{\left(r_{1}-\epsilon\right)}{2 r_{1}}} \frac{1}{\left(1+k^{2}\right) k^{2 p / r_{1}}}\left(\begin{array}{cc}
1 & k \\
k & k^{2}
\end{array}\right) A_{k}^{\frac{\left(r_{1}-\epsilon\right)}{2 r_{1}}}\right\}^{\frac{\left(r_{1}-\epsilon\right)}{p+r}} A_{k}^{\frac{-\left(r_{1}-\epsilon\right)}{2 r_{1}}} \\
& =A_{k}^{\frac{-\left(r_{1}-\epsilon\right)}{2 r_{1}}}\left(\frac{1}{\left(1+k^{2}\right) k^{2 p / r_{1}}}\right)^{\frac{\left(r_{1}-\epsilon\right)}{p+r}}\left(\frac{1}{1+k^{2\left(1-2\left(r_{1}-\epsilon\right) / r_{1}\right)}}\right)^{\frac{p}{p+\left(r_{1}-\epsilon\right)}}\left(\begin{array}{cc}
1 & k^{1-2\left(r_{1}-\epsilon\right) / r_{1}} \\
k^{1-2\left(r_{1}-\epsilon\right) / r_{1}} & k^{2\left(1-2\left(r_{1}-\epsilon\right) / r_{1}\right)}
\end{array}\right) A_{k}^{\frac{-\left(r_{1}-\epsilon\right)}{2 r_{1}}} \\
& =\left(\frac{1}{\left(1+k^{2}\right) k^{2 p / r_{1}}}\right)^{\frac{\left(r_{1}-\epsilon\right)}{p+\left(r_{1}-\epsilon\right)}}\left(\frac{1}{1+k^{2\left(1-2\left(r_{1}-\epsilon\right) / r_{1}\right)}}\right)^{\frac{p}{p+\left(r_{1}-\epsilon\right)}}\left(\begin{array}{cc}
1 & k \\
k & k^{2}
\end{array}\right) .
\end{aligned}
$$

Therefore,
$a \geq\left(\frac{1+k^{2}}{k^{2\left(r_{1}-\epsilon\right) / r_{1}}\left(1+k^{2\left(1-2\left(r_{1}-\epsilon\right) / r_{1}\right)}\right)}\right)^{\frac{p}{p+\left(r_{1}-\epsilon\right)}}=\left(\frac{1+k^{2}}{\left(\left(k^{\left.2\left(r_{1}-\epsilon\right) / r_{1}+k^{2\left(1-\left(r_{1}-\epsilon\right) / r_{1}\right)}\right)}\right)^{\frac{p}{p+\left(r_{1}-\epsilon\right)}} ~\right.}\right.$
So that $a \geq \infty$ by letting $k \rightarrow \infty$ for $\max \left\{2\left(r_{1}-\epsilon\right) / r_{1}, 2\left(1-\left(r_{1}-\epsilon\right) / r_{1}\right)\right\}<2$. This is a contradiction.

