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(1.1) History of superconductors :
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Superconductors (SCS) are materials that have zero resistance 
and infinite conductivity below a certain critical temperature .
Superconductivity (SC)  was discovered in 1911 in the Leiden 
laboratory at  Holland ,  where the resistivity  of  Hg vanished 
about 4K and well below it . Bardeen and Cooper proposed a 
theoretical  model  describing   a  conduction  mechanism  for 
super conductors in 1957. [1,2,3]
Till 1986 , critical temperatures at which resistance disappears 
were  always  less  than  23K.  In  1986,  Bednarz   and  Mueller 
published   a  paper  ,  showing  new  materials  ,  having 
conductivity  of  about  135K.They  a  warded  Nobel   prize  at 
1987.  These  new  class  of  materials  are  known  as  high 
temperature superconductors (HTSCS). [4,5,6,7]
Superconductors  are  widely  used  in  many  applications.  In 
medicine ,power ful superconducting magnets (SCM) are used 
in magnetic resonance imaging (MRI) devices for diagnosis . 
superconductors are also used to generate powerful  electric 
energy from powerful magnetic field . high speed trains also 
utilizes SCS to generate powerful magnetic field . [8,9,10]

(1.2) Research problem :
The  theoretical  frame  wave  of  SCS  are  not  yet  well 
established.[11].  There  is  no  single  simple  model  that 
describes SC . [12,13]

(1.3) Literature review :
Different attempts were made to describe SC  using simple 
models [14]. In  some of them plasma equation  is used to find 
temperature dependent Schrödinger equation .
This equation is used to find critical temperature of HTSC [15]. 
Some models  are based on Maxwell’s  equation for  resistive 
medium [16]. This model can describe SCS .

(1.4) Aim of the work : 
The aim of this work is to develop simple quantum model to 
describe Josephson effect .
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(1.5) Presentation of the thesis :
The  thesis  consists  of  three  chapters  .  chapter  one  is  the 
introduction , chapter two  is concerned with SCS phenomenon 
, while chapter three is devoted  for the contribution which is 
concerned  with  derivation  of  new  Josephson   conductivity 
equation .  

Chapter two 

Superconductivity
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Chapter 2
Superconductivity

2-1 Introduction :

Superconductors  have  been  studied  intensively  for  their 
fundamental  interest  and  for  their  useful   technological 
applications.
 Until  1986,  critical  temperatures  (Tc’s)  at  which  resistance 
disappears were always less than about 23K. In 1986, Bednorz 
and Mueller discover a new class of materials which currently 
include members with Tc’s of about 135K.
This chapter is concerned with superconductors properties as 
well as electrical and magnetic properties .  
2-2 Properties of superconductors:

Superconducting materials exhibit unusual behaviors like 
zero resistance below a material critical temperature Tc  , the 
DC electrical resistance is really zero, not just very small. 
 If a current is set up in a superconductor with a torus, it 
will  flow  forever  without  any  driving  voltage.  (In  practice, 
experiments have been performed in which persistent currents 
flow  for  several  years  without  signs  of  degrading).  A 
superconductor  also  expels  a  weak  magnetic  field  nearly 
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completely  from  its  interior  (screening  currents  flow  to 
compensate the field within a surface layer of a few 100 or 
1000 A, and the field at the sample surface drops to zero over 
this  layer).  Thermodynamic  properties  of  superconductors 
Indicate the existence of an energy gap. When there is a gap, 
only small number of particles have enough thermal energy to 
be  promoted  to  the  available  unoccupied  states  above  the 
gap.
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2-3  Electron-phonon  interaction  as 
superconducting mechanism:
Charge  transport  in  SCS  is  due  to  an  effective  attraction 
between conduction electrons. Since two electrons experience 
a  repulsive  Coulomb  force,  there  must  be  an  additional 
attractive  force  between  two  electrons  .  In  classic 
superconductors,  this  force  is  known  to  arise  from  the 
interaction with the ionic system.
For a normal metal, the ions were replaced by a homogeneous 
positive background which enforces charge neutrality in the 
system. In reality, this medium is polarizable , the number of 
ions per unit volume can fluctuate in time. In particular, if we 
imagine a snapshot of a single electron entering a region of 
the metal,  it  will  create a net  positive charge density  near 
itself by attracting the oppositely charged ions. is important to 
note that a typical electron close to the Fermi surface moves 
with velocity vF ,which is much larger than the velocity of the 
ions,  vI.  So  by  the  time  ( τ  ≈ 10-13sec)  the  ions  have 
polarized  themselves,  the  first   electron  is  long  gone  (it’s 
moved a  distance vF   τ  ≈ 108cm/s  ≈  1000 A),  and  the 
second electron can lower its energy within the concentration 
of positive charge before the ionic fluctuation relaxes away. 
This  gives  rise  to  an  effective  attraction  between  the  two 
electrons,  which  may  be  large  enough  to  overcome  the 
repulsive  Coulomb  interaction.  Historically,  this 
electron-phonon  “pairing”  mechanism  was  suggested  by 
Fr¨olich  in  1950,  and  confirmed  by  the  discovery  of  the 
“isotope effect”, where the critical temperature Tc was found 
to vary as vI

-1/2 for materials which were identical chemically 
but which were made with different isotopes.

2-4 Superconductors Types :
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there are two types of superconductors:
a. Type- I superconductors:

The  Type-  I category  of 
superconductors  is  mainly  comprised  of  pure  metals  that 
normally show some conductivity at room temperature. They 
require  incredible  cold  to  slow  down  molecular  vibrations 
sufficiently  to  facilitate  unimpeded  electron  flow  in 
accordance with what is known as bardeen cheever SC theory 
(BCS). 
 "Cooper  pairs"  in  order  to  help  each  other  overcome 
molecular obstacles -much like race cars on a track drafting 
each other in order to go faster. Type- I superconductors , also 
known as the "soft" superconductors , were discovered first 
and  require  the  coldest  temperatures  to  become 
superconductive.  They  are  characterized  by  a  very  sharp 
transition  to  a  superconducting  state   and  by  "perfect" 
diamagnetism , the ability to repel a magnetic field.

b. Type-II superconductor:
 Except for the elements vanadium, technetium and niobium, 
the  Type  II  superconductor  category  of  superconductors  is 
comprised  of  metallic  compounds  and  alloys.  The  recently 
discovered  superconducting  "perovskites"  (metal-oxide 
ceramics that normally have a ratio of 2 metal atoms to every 
3 oxygen atoms) belong to this Type II superconductor  group. 
They  achieve  higher  Tc's than  Type  I  superconductors  by  a 
mechanism  that  is  still  not  completely  understood. 
Conventional  wisdom  holds  that  it  relates  to  the  planar 

7



 

layering  within  the  crystalline  structure.  Although,  other 
recent research suggests the holes of hypocharged oxygen in 
the  charge  reservoirs  are  responsible.  The superconducting 
cuprates  (copper-oxides)  have  achieved  astonishingly  high 
Tc's, on theory  predicts an upper limit of about 200K for the 
layered cuprates. Others assert there is no limit. Either way, it 
is almost certain that other, more-synergistic compounds still 
await  discovery  among  the  high-temperature 
superconductors.[ 1,2,3  ]
 W. De Haas and J. Voogd fabricated The first superconducting 
Type  II  compound,  an  alloy  of  lead  and  bismuth,  in  1930, 
however, was not recognized as such until much later, after 
the Meissner effect had been discovered  The first of the oxide 
superconductors was created  in 1973 by dupont researcher 
art sleight when Ba (pb , Bi ) o3  was found to have a Tc of 13 
k .
 Type-II   superconductor  -  also  known  as  the  "hard" 
superconductors ,  differ from Type- I  in that their  transition 
from a normal to a superconducting state is gradual across a 
region of  "mixed state" behavior.  A Type-  II  superconductor 
will also allow some penetration by an external magnetic field 
into its surface. A Type I will not.[  4,5,6 ]

2-5 Derivation of first London equation:
      A potential  difference applied along a conducing wire 
produces an electric field E ,  and hence the force F on any 
electron is given by:

                          F=−eE=m
dv
dt
,

      Where e is the electron charge , m represents its mass, 
while v stands for its  velocity.  Electrons undergo successive 
periods of acceleration interrupted by collision, and during the 
average  time  [relaxation  time  (scattering  on  defects)]  τ  
between collision. The velocity is given by:
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                          v=
−eE
m

τ  

(2-1)
Which called the drift velocity, the negative sign means that 
the  electrons  move  in  a  direction  opposite  to  that  of  the 
electric field.
When the electron is assumed to move in a resistive medium- 
which  have  frictional  force  proportional  to  the  velocity-  the 
electron equation of motion is given by:

                            m
dv
dt

=eE−m
v
τ  

(2-2)
Where the frictional force is given by:

                             F=
mv
τ

For steady state in normal metal, no acceleration exists. i.e.

                            
dv
dt

=0,

Therefore

                          v=
eE
m
τ  

(2-3)
Hence the current density given by:

                         J=nev=
ne2 τ
m

E=σE  

(2-4)
Where  n  is  the  density  of  electrons  σ  is  electrical 
conductivity.
          In  the  two-fluid  model  we  have  the 
temperature-dependents  expression  for  the  super  ns  and 
normal nn electrons densities respectively.
                         ns (T )+nn (T )=n  
(2-5)
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Where  the  total  electron  density  n  is  independent  of 
temperature and at T=0 we have nn  (0)=0 and ns  (0)=n, and 
the  simple  theory  predict  the  following  temperature 
dependence:

                          

T
T c

¿
4

ns (T )=nn¿
 

(2-6)
Where T c  is the critical temperature.
Electron density

n

ns

TC

0 temperature (K)

Figer  (2-3):  temperature  dependence  of  density  of 
superconducting electron ns .
For superconductor below. Tc  the resistivity is zero , we obtain 
equation (2-2) become:

                            
dv
dt

=
eE
m  

(2-7)
Taking the derivative of  J   in equation (2-4) with respect to 
time:

                          
dJ
dt

=ns e
dv
dt

=
ns e

2

m
E  

(2-8)

The term 
m

ns e
2
=Λ  is a phenomenological parameter.

Equation (2-8) can be rewrite as:
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                        Ε=
d
dt  ( ΛJ ¿=Λ

dJ
dt  

(2-9)
This equation is known as the first London equation.

2-6 Second London equation:
The equation relates to time-dependent fields, and important 
for Meissner effect. The electric current density is given quite 
generally by:
                           J=nqv  
(2-10)
Where  n  is  concentration  of  carriers  of  charge  q.  in  the 
presence of a magnetic field described by the vector potential 
A, the velocity v is related to the total momentum p by:

                          p=mv+
q
c
A ; v=

1
m

( p−
q
c
A)                     (2-11)

Where m is the mass, c the speed of light in vacuum .
Thus equation (2-10) can written as:

                        J=
nq
m
p−

nq2

mc
A  

(2-12)
In the superconducting state, the total momentum p is zero, 
although it not equal to zero in normal state. i.e. 
                      P=0,  And equation (2-12) reduces to:

                      J=
−nq2

mc
A  

(2-13)
For electrons, q=e, n=ns

Then:

                     J=
−ns e

2

mc
A  

(2-14)
The vector potential is related to the magnetic field by:
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                     B=∇× A.  
(2-15)
Equation (2-14) can be rewritten as:

                    J=
−c

4π λL
2
A  

(2-16)
The equation is known as the second London equation. 

Where  λ2
2
=

mc2

4πnse
2  (where  λL  is known as London penetration 

depth) .[2]

2-7 Josephson superconductor tunneling effects:
Consider  two metals separated by an insulator,as in the figer 
below :

                       A                              C                                B
Figer (2-4): tow metals A and B separated by a thin layer of 
insulator  C .

 the  insulator  normally  acts  as  a  barrier  to  the  flow  of 
conduction electrons from one metal to the other. If the barrier 
is sufficiently thin( less than 10 or 20 Å), there is a significant 
probability that an electron , which impinges on the barrier,will 
pass from one metal  to the other :this is called tunneling. The 
concept that particles can tunnel through potential barriers is 
as old as quantum mechanics .
When  both  metals  are  normal  conductors,  the  current  – 
voltage relation of sandwich or tunneling junction is ohmic at 
low  voltage  ,  with  the  current  directly  proportional  to  the 
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applied voltage . Giaever discovered that if one of the metals 
becomes superconducting the current – voltage characteristic 
changes from the straight line to curve .

               current

voltage
Figure(2-5): linear current – voltage relation for junction of 

normal metals 

        Current 

                                                                VC                        

voltage
Figure(2-6):current – voltage relation with one metal  normal 

and the other metal superconducting 
In the superconductors there is an energy gap centered at the 
Fermi  level  at  absolute  zero  no  current  can  flow  until  the 
voltage is V=Eg/2e= Δ/e, where Δ=Eg/2 .
The energy gap Eg corresponds to the break-up of a pair of 
electrons in the superconducting state , with the formation of 
two electrons, or an electron and a hole, in the normal state .
The  current  starts  when  eV= Δ.  At  temperatures  different 
from zero there is a small current flow even at low voltage , 
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because of electrons in the superconductor that are thermally 
excited across the energy gap.
Under suitable conditions, remarkable effect can be observed 
associated  with  the  tunneling  of  superconducting  electron 
pairs from a superconductor through a layer of an insulator in 
to another superconductor.  The effects of pair tunneling are 
quite unlike single particle tunneling and include:

I. DC Josephson effect :
In  this  effect   A dc current flows across the junction in the 
absence of any electric or magnetic field.

II. AC Josephson effect  :
In this effect  A dc voltage applied across the junction causes 
radio frequency (RF) current oscillations across the junction. 
This effect has been utilized in a precision determination of the 
value of         Further, an ( RF) voltage applied with the dc 
voltage can then cause a dc current across the junction.
e/

III. Macroscopic long-range quantum interference:
    A  dc  magnetic  field  applied  through a  superconducting 
circuit  containing  two junctions  causes  the  maximum super 
current to show interference effect as a function of magnetic 
field  intensity.  This  effect  can  be  utilized   in  sensitive 
Magnetometers. 

I. DC Josephson Effect:
Let ψ1 be the probability amplitude of electron pairs on one 
side of a junction and ψ2  be the amplitude  on the other side. 
For the simplicity , let both superconductors be identical .  for 
the present , we suppose that they are both  at zero  potential 
.
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The  time-  dependent  Schrödinger  equation  iℏ ∂Ψ
∂t

=HΨ  

applied to the two amplitudes gives: 

                      iℏ ∂Ψı
∂ t

=ℏΤ Ψ
2          ,        iℏ

∂Ψ 2

∂ t
=ℏΤ Ψ ı   (2-17)

Here ℏΤ  represents the effect of the electron- pair coupling 

or  transfer  interaction  across  the  insulator;  Thus  the 
dimensions  of  a  rate  or  frequency.  It  is  a  measure  of  the 

leakage of  
Ψ

1  into the region 2 , and 
Ψ

2  into the region 1. If 

the insulator is very thick ,T is zero and there is no pair tunneling .

                      Let
Ψ

1 = n
1
2 ei θ1

 , 
Ψ 2=¿

 n
1
2 ei θ2

   (2-18)

Where n1 is the electron density in the region 1 ,  θ
1  is the 

phase angle , n2 is the electron density in the region 2 , θ
2 is 

the phase angle .

Then:

             
∂Ψ 1

∂1

=
1
2
n1

−1
2 e iθ1

∂n1

∂ t
+iΨ 1

∂θ1

∂t
=iT Ψ 2               (2-19)

With the use of equation (2-17) in the form 
∂Ψ 1

∂ t
=iT Ψ 2

similary, 

                  
∂Ψ 2

∂ t
=

1
2
n2

−1
2 e iθ2

∂n2

∂ t
+iΨ 2

∂θ2

∂t
=−iT Ψ 1               (2-20)
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Multiplying equation (2-19) by n1

1
2 e−i θ1  with δ≡θ2−θ1  one 

obtains:

                 
n1n2¿

1
2 e iδ

∂n1

2∂ t
+i n1

∂θ1

∂ t
=iT ¿

                                  (2-21)

Multiplying equation (2-20) by n2

1
2 e−i θ2   with δ≡θ2−θ1  one 

obtains:

                         
n1n2 ¿

1
2 eiδ

∂n2

2∂ t
+i n2

∂θ2

∂ t
=−iT ¿

                                               (2-22)

Now equating the real and the imaginary parts of 
equation (2-21) and equation (2-22) , similarly one gets:

                
n1n2¿

1
2 sin δ

∂n1

∂ t
=2T ¿

                                           (2-23)

                

n2

n1

¿
1
2 cos δ

∂θ1

∂ t
=−T ¿

                                               (2-24)

If n1≈n2  as for identical superconductors 1 and 2 , it 

follows from equation (2-24) that:

                
∂θ1

∂ t
=
∂θ2

∂ t
,
∂
∂ t

(θ2−θ1 )=0                                       (2-25)

From equation (2-23) it is clear that:
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∂n2

∂ t
=

−∂n1

∂ t                                                                

(2-26)

The current flow from 1 to 2 is proportional to 
∂n2

∂ t  , the 

same  thing  from  2  to  1  is  proportional  to  
−∂n1

∂ t  . 

Therefore one can concludes from equation (2-23)  that 
the  current  J  of  the  superconductor  pairs  across  the 

junction depends on the phase difference δ  as 

             
n1n2 ¿

1
2 sin δ

J=
∂n1

∂ t
−
∂n2

∂t
=T ¿

            J=J0 sin δ=J0 sin(θ2−θ1)                                       (2-27)

Where  J0  is proportional to the transfer interaction T. the 
current  J0  is the maximum zero- voltage current that can 
be passed though the junction .

         With no applied voltage a dc current will flow across 
the junction , [figure (2-7)] with a value between  J0 and 
−¿ J0   according  to  the  value  of  the  phase  difference 
θ2−θ1 . This is the dc Josephson effect .

Current 

J0

17



 

                                                                                             
voltage

VC

- J0

  Figure (2-7): current- voltage characteristic of a 
Josephson junction.

Dc currents flow under zero applied voltage up to a critical 
current ic ; this is the dc Josephson effect. At voltage above vc 

the junction has a finite resistance , but the current has an 

oscillatory  component  of  frequency  ω=2eVℏ  ,  this  ac 

Josephson effect.

II. AC Josephson effect:

       Let a voltage V be applied across the junction. This can 
be done because the junction is an insulator. An electron pair 
experience a potential energy difference qV on passing across 
the junction, where q=-2e. one can say that a pair on one side 
is at potential energy –eV and a pair on the other side at eV. 

The equations of motion that replaces (2-17) are:

            iℏ
∂Ψ 1

∂ t
= Tℏ Ψ 2−eV Ψ 1 , iℏ

∂Ψ 2

∂ t
= Tℏ Ψ 1−eV Ψ 2              (2-28)
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Proceeding as above to find in place of (2-21) the 
equation:

            
n1n2 ¿

1
2 eiδ

1
2

∂n1

∂ t
+in1

∂θ1

∂t
=
ie n1V

ℏ
−iT ¿

                         (2-29)

Taking the real parts on both sides one gets:

            
n1n2¿

1
2 sin δ

∂n1

∂ t
=2T ¿

                                                    (2-30)    

The imaginary   contribution also gives:

          

n2

n1

¿
1
2 cos δ

∂θ1

∂ t
=
eV
ℏ

−¿
                                                      (2-31)

Which differs from equation (2-24) by the term 
eV
ℏ  .

Similarly, as equation (2-29) the equation (2-22) for n2  

takes the form:

          
n1n2¿

1
2 e−iδ

1
2

∂n2

∂ t
+in2

∂θ2

∂t
=−i

eV n2

ℏ
−iT ¿

                  (2-32)

Hence, equating real and imaginary parts one gets:

          
n1n2¿

1
2 sin δ

∂n2

∂ t
=−2T ¿

                                                (2-33)
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n1

n2

¿
1
2 cos δ

∂θ2

∂ t
=

−eV
ℏ

−T ¿
                                              (2-34)

From (2-31) and (2-34) with  n1≈n2  one have:

          
∂(θ2−θ1)

∂ t
=
∂δ
∂ t

=
−2eV
ℏ                                                         

(2-35)

By integration of (2-35) that with a dc voltage across the 
junction the relative phase of the probility amplitudes vary as:

             δ (t )=δ (0 )−
2eV
ℏ
t                                                       

(2-36)

The current is now given by (2-27) and (2-36) to be:

             J=J0 sin [δ (0 )−
2eV
ℏ
t ]                                                 

(2-37)

The current oscillates with frequency:

            ω=
2eV
ℏ                                                                      

(2-38)

Which says that a photon of energy  ωℏ =2eV   is emitted 

or absorbed when an electron pair crosses the barrier . By 
measuring the voltage and the frequency, it is possible to 

obtain a very precise value of  
e
ℏ  .[8,9,13]
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Chapter three

New Derivation of Simple 
Josephson Effect Relation 
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Using New Quantum 
Mechanical Equation 

Chapter 3

New Derivation of Simple Josephson Effect 
Relation Using New Quantum Mechanical 

Equation 

(3.1) Introduction:

        The Josephson effect relation derivation in standard 
texts  is  complex.  Thus  one  needs  a  simple  derivation. 
This is done by deriving first a new quantum equation. 
Then solving this equation to get Josephson relation.

 (3.2) New Quantum Equation:

22



 

         The Newtonian energy E is a sum of kinetic and 
potential energy v, i.e:

                           E=
1
2
mv2

+V=
P2

2m
+V  (3-1)

Where m, v, p are the mass velocity and momentum 
respectively. For very small momentum and very large 
potential one can neglect the first term to get:

                          E=V                                                      

(3-2)

Squaring both sides yields:

                         E2
=V 2

                                                         

(3-3)

Multiplying both sides by Ψ , one gets:

                         E2Ψ=V 2Ψ         (3-4)

The wave function of a free particle is given by:

                     Ψ=A e
i
ℏ

(Pχ−Et )

                                                      

(3-5)

Differentiating both sides with respect ϰ  and t  twice

∂Ψ
∂ t

=
−i
ℏ
EΨ

∂2Ψ
∂ t2

=
−i
ℏ
Ε
∂Ψ
∂ t

=
i2

ℏ 2 E
2Ψ=

−E2

ℏ2 Ψ
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                     −ℏ2 ∂
2Ψ
∂t 2

=E2Ψ                                                      

(3-6)

Similarly:

∂Ψ
∂x

=
i
ℏ
PΨ

∇2Ψ=
∂2Ψ
∂x2 =

iP
ℏ
∂Ψ
∂x

=
iP
ℏ ( iPℏ )Ψ=

i2 p2

ℏ2

                          −ℏ2∇2Ψ=P2Ψ  

(3-7) 

Substitute (3-6) in (3-4):

                           −ℏ2 ∂
2Ψ
∂ t 2

=V 2Ψ  

(3-8)

(3-3) Josephson Effect equation:

       To derive Josephson effect equation consider the 
solution 

                      Ψ=D sin(αt+ϕ)          (3-9)

 The potential is constant inside superconductor, thus 

              V=V 0  (3-10)

From (3-9) 

∂Ψ
∂ t

=α D cos(αt+ϕ )
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∂2Ψ
∂t2

=−α 2D sin (αt+ϕ )

= −α2Ψ (3-11)

Substitute (3-10) and (3-11) in (3-8) one gets:

+ℏ2α 2Ψ=V 0
2Ψ

α 2
=
V 0

2

ℏ 2

α=±
V 0

ℏ

  
(3-12)

Substitute (3-12) in (3-9) and choosing minas sign, one 
get

                Ψ=D sin(
−eV 0

ℏ
t+ϕ)               (3-13)

But the energy density J is given by:

J=e
∂n
∂ t

=e
∂∣Ψ∣

2

∂ t
=2e∣Ψ∣

d∣Ψ∣
dt

= 2e D sin (αt+ϕ )(−eℏ V 0)cos (αt+ϕ)

¿−2
e2DV 0

ℏ
sin θ cosθ   (3-14)
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  θ=ϕ−
eV 0t

ℏ

But sin 2 θ = 2sin θ cosθ

2ϕ−
2 eV 0 t

ℏ
(¿)

J=
−e2DV 0

ℏ
sin ¿

                           = A sin(2ϕ−
2eV 0 t

ℏ
)   

(3-15)

Setting:

                    2ϕ=δ (0)

The current density is given by:

                     J=J0 sin(δ (0 )−
2eV
ℏ
t)                   (3-16)

Which is  J S  effect equation.

(3-4)  Discussion :

Equation  (3-2)  shows  new  energy  equation  based  on 
Newtonian  mechanics  ,  with  neglected  kinetic  term  .  this 
equation is used to derive a new quantum equation (3-8) . this 
new equation is based on Newtonian energy with no kinetic 
term beside the wave equation of a free particle .
This  equation  is  used  to  derive  simple  Josephson  current 
density equation . this equation (3-16) is the same as the old 
one ,but derived using simple arguments .
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(3-5)  conclusion :

Neglecting kinetic Newtonian term in the energy expression , 
one can easily derive new quantum equation . this equations 
,is  shown,  to  be  successful  ,in  deriving  simple  Josephson 
current density equation .  
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