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Chapter (1) 

Controllability, bang-bang principle 

Section (1.1): Introduction to the basic problem 

To discuss the dynamics, we open our discussion by considering an ordinary differential 
equation (ODE) having the form 

																																																									ቊ ܠ̇
(ݐ) = ൯(ݐ)ݔ൫܎

(0)ܠ = 									.଴ݔ
ݐ)									 > 0)																																									(1.1) 

We are here given the initial point ݔ଴ 	 ∈ ℝ௡  and the function ܎ ∶ ℝ௡ → ℝ௡	. The unknown 
is the curve ܠ: [0,∞) → ℝ௡, which we interpret as the dynamical evolution of the state of 
some “system”. 

To discuss controlled dynamics, we generalize a bit and suppose now that ܎ depends also 
upon some  ”control” parameters belonging to a set ܣ ⊂ ℝ௠; so that ܎: ℝ௡ × ܣ → ℝ௡. 
Then if we select some value ܽ ∈  :and consider the corresponding dynamics ܣ

൜̇ܠ
(ݐ) = ,(ݐ)ݔ)܎ ݐ)									(ܽ > 0)
(0)ܠ =  																																															,଴ݔ

we obtain the evolution of our system when the parameter is constantly set to the value ܽ . 

The next possibility is that we change the value of the parameter as the system 
evolves. For instance, suppose we define the function ࢻ: [0,∞) →  :this way ܣ

(ݐ)ߙ = ൝
ܽଵ 0 ≤ ݐ ≤ 									ଵݐ
ܽଶ ଵݐ < ݐ ≤ 									ଶݐ
ܽଷ ଶݐ < ݐ ≤ .݁tc		ଷݐ

 

for times 0 < ଵݐ < ଶݐ < .ଷݐ .. and parameter values ܽଵ, ܽଶ, ܽଷ, … ∈  and we then solve ;ܣ
the dynamical equation 

ቊ̇ܠ
(ݐ) = ,(ݐ)ݔ൫܎ ݐ)					൯(ݐ)ߙ > 0)
(0)ܠ = 																																					,଴ݔ

												 

The picture illustrates the resulting evolution. The point is that the system may behave 
quite differently as we change the control parameters. 
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Figure (1.1) Controlled dynamics 

More generally, we call a function ߙ: [0,∞) →  a control. Corresponding to each ܣ
control, we consider the ODE 

(ODE)																				ቊ̇ܠ
(ݐ) = ,(ݐ)ݔ൫܎ ݐ)						൯(ܶ)ߙ > 0)
(0)ܠ = 																																							,଴ݔ

												 

and regard the trajectory ܠ(⋅) as the corresponding response of the system. 

Notation (1.1.1):  

(i) We will write 

,ݔ)܎ ܽ) = ൭
݂ଵ(ݔ, ܽ)

⋮
݂௡(ݔ, ܽ)

൱ 

to display the components of ܎ , and similarly put 

(ݐ)ܠ = ൭
(ݐ)ଵݔ
⋮

(ݐ)௡ݔ
൱. 

We will therefore write vectors as columns in these notes and use boldface for vector-
valued functions, the components of which have superscripts. 

(ii) We also introduce 
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ࣛ = :ߙ} [0,∞) →  {measureable	(⋅)ߙ|ܣ

to denote the collection of all admissible controls, where 

હ(ݐ) = ൭
(ݐ)ଵߙ
⋮

(ݐ)௠ߙ
൱. 

Note very carefully that our solution ܠ(⋅) of (ODE) depends upon ߙ(⋅) and the initial 
condition. Consequently our notation would be more precise, but more complicated, if we 
were to write 

(⋅)ܠ = ,⋅)ܠ ,(⋅)ࢻ  ,(଴ݔ

displaying the dependence of the response ܠ(⋅) upon the control and the initial value.  

Our overall task will be to determine what is the “best” control for our system. For this 
we need to specify a specific payoff (or reward) criterion. Let us define the payoff 
functional 

(P)																									ܲ[ࢻ(⋅)] ≔ න ݐ൯݀(ݐ)ࢻ,(ݐ)ܠ൫ݎ
்

଴
+  ,((ܶ)ܠ)݃

where ܠ(⋅) solves (ODE) for the control ࢻ(⋅). Here ݎ:ℝ௡ × ܣ → ℝ and ݃:ℝ௡ → ℝ are 
given, and we call ݎ the running payoff and g the terminal payoff. The terminal time ܶ >
0 is given as well. 

Our basic problem is to find a control ࢻ∗(⋅), which maximizes the payoff. In other words, 
we want 

[(⋅)∗ࢻ]ܲ ≥  [(⋅)ࢻ]ܲ

for all controls ࢻ(⋅) ∈ ࣛ. Such a control ࢻ∗(⋅) is called optimal. 

This task presents us with these mathematical issues: 

(i) Does an optimal control exist? 
(ii) How can we characterize an optimal control mathematically? 
(iii) How can we construct an optimal control? 

These turn out to be sometimes subtle problems, as the following collection of 
examples illustrates. 
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Example (1.1.2): (Control of Production and Consumption) 

Suppose we own, say, a factory whose output we can control. Let us begin to 
construct a mathematical model by setting 

ݐ amount of output produced at time = (ݐ)ݔ ≥ 0. 

We suppose that we consume some fraction of our output at each time, and likewise can 
reinvest the remaining fraction. Let us denote 

ݐ fraction of output reinvested at time = (ݐ)ߙ ≥ 0. 

This will be our control, and is subject to the obvious constraint that 

0 ≤ (ݐ)ߙ ≤ 1 for each time ݐ ≥ 0. 

Given such a control, the corresponding dynamics are provided by the ODE 

൜̇ݔ
(ݐ) = (ݐ)ݔ(ݐ)ߙߢ
(0)ݔ =  																							.଴ݔ

the constant ߢ > 0 modelling the growth rate of our reinvestment. Let us take as a payoff 
functional 

[(⋅)ࢻ]ܲ = න ൫1 − (ݐ)ݔ൯(ݐ)ߙ
்

଴
 .ݐ݀

The meaning is that we want to maximize our total consumption of the output, our 
consumption at a given time t being ൫1 −  This model fits into our general .(ݐ)ݔ൯(ݐ)ߙ
framework for ݊ = ݉ = 1, once we put 

ܣ = [0,1], ,ݔ)݂ ܽ) = ,ݔܽߢ ,ݔ)ݎ ܽ) = (1 − ,ݔ(ܽ ݃ ≡ 0.	

 

 

 

 

Figure (1.2) A bang-bang control 

As we will see later in section (2.2), an optimal control ߙ∗(⋅) is given by 
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(ݐ)∗ߙ = ቄ1 if			0 ≤ ݐ ≤ ∗ݐ
0 if			ݐ∗ < ݐ ≤ ܶ 

for an appropriate switching time 0 ≤ ݐ ≤ ܶ. In other words, we should reinvest all the 
output (and therefore consume nothing) up until time ݐ∗, and afterwards, we should 
consume everything (and therefore reinvest nothing). The switchover time ݐ∗ will have to 
be determined. We call ߙ∗(⋅) a bang.bang control.  

Example (1.1.3): (Reproductive Stategies in Social Insects) 

  We attempt to model how social insects, say a population of bees, determine the 
makeup of their society. [7] 

Let us write ܶ for the length of the season, and introduce the variables 

 ݐ number of workers at time = (ݐ)ݓ

 number of queens = (ݐ)ݍ

 fraction of colony effort devoted to increasing work force = (ݐ)ߙ

The control ߙ is constrained by our requiring that 

0 ≤ (ݐ)ߙ ≤ 1. 

We continue to model by introducing dynamics for the numbers of workers and the 
number of queens. The worker population evolves according to 

൜̇ݓ
(ݐ) = (ݐ)ݓߤ− + (ݐ)ݓ(ݐ)ߙ(ݐ)ݏܾ

(0)ݓ = 																																								.଴ݓ  

Here ߤ is a given constant (a death rate), ܾ is another constant, and (ݐ)ݏ is the known rate 
at which each worker contributes to the bee economy. 

We suppose also that the population of queens changes according to 

ቊ̇ݍ
(ݐ) = (ݐ)ݍߥ− + ܿ൫1 − (ݐ)ݓ(ݐ)ݏ൯(ݐ)ߙ
(0)ݍ = 																																																					,଴ݍ

 

for constants ߥ and ܿ. 

Our goal, or rather the bees’, is to maximize the number of queens at time ܶ: 

[(⋅)ߙ]ܲ =  .(ܶ)ݍ
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So in terms of our general notation, we have (ݐ)ܠ = ,(ݐ)ݓ) ଴ݔ and ்((ݐ)ݍ = ,଴ݓ)  . ்(଴ݍ
We are taking the running payoff to be ݎ ≡ 0, and the terminal payoff ݃(ݓ, (ݍ =  .ݍ

The answer will again turn out to be a bang-bang control, as we will explain later.  

Example (1.1.4): (A pendulum) 

We look next at a hanging pendulum, for which 

(ݐ)ߠ = angle	at	time	ݐ.	

If there is no external force, then we have the equation of motion 

ቊ̈ߠ
(ݐ) + (ݐ)ߠ̇ߣ + (ݐ)ߠଶݓ = 0
(0)ߠ = ,ଵߠ (0)ߠ̇ = 											;ଶߠ

 

the solution of which is a damped oscillation, provided ߣ > 0. 

Now let ߙ(⋅) denote an applied torque, subject to the physical constraint that 

|ߙ| ≤ 1. 

Our dynamics now become 

ቊ̈ߠ
(ݐ) + (ݐ)ߠ̇ߣ + (ݐ)ߠଶݓ = (ݐ)ߙ
(0)ߠ = ,ଵߠ (0)ߠ̇ = 																	;ଶߠ

 

Define ݔଵ(ݐ) = ,(ݐ)ߠ (ݐ)ଶݔ = (ݐ)ܠ and ,(ݐ)ߠ̇ = ,(ݐ)ଵݔ)  Then we can write the .((ݐ)ଶݔ
evolution as the system 

(ݐ)ݔ̇ = ൬̇ݔଵ̇ݔଶ
൰ = ൬̇ߠ

ߠ̈
൰ = ቀ

ଶݔ
ଶݔߣ− − ଵݔଶݓ + ቁ(ݐ)ߙ =  .(ߙ,ܠ)܎

We introduce as well 

[(⋅)ߙ]ܲ = −න ݐ݀	1
ఛ

଴
= −߬, 

for 

߬ = ߬൫ߙ(⋅)൯ = first	time	that	ܠ(߬) = 0			(that	is, (߬)ߠ = (߬)ߠ̇ = 0) 

We want to maximize ܲ[	⋅], meaning that we want to minimize the time it takes to bring 
the pendulum to rest. 
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Observe that this problem does not quite fall within a general framework, since the 
terminal time is not fixed, but rather depends upon the control. This is called a fixed 
endpoint, free time problem. 

Example (1.1.5): (A moon lander) 

This model asks us to bring a spacecraft to a soft landing on the lunar surface, using 
the least amount of fuel. 

We introduce the notation 

 ℎ(ݐ) = height at time ݐ 

(ݐ)߭  = velocity = ℎ̇(ݐ) 

(ݐ)݉  = mass of spacecraft (changing as fuel is burned) 

(ݐ)ߙ  = thrust at time ݐ 

We assume that 

0 ≤ (ݐ)ߙ ≤ 1, 

and Newton’s law tells us that 

݉ℎ̈ = −݃݉ +  ,ߙ

the right hand side being the difference of the gravitational force and the thrust of the 
rocket. This system is modeled by the ODE 

⎩
⎨

(ݐ)̇߭⎧ = −݃ +
(ݐ)ߙ
(ݐ)݉

ℎ̇(ݐ) = 													(ݐ)߭
(ݐ)̇݉ = 				.(ݐ)ߙߢ−

 

 

 

 

 

Figure (1.3) A spacecraft landing on the moon 
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We summarize these equations in the form 

(ݐ)ܠ̇ = ,(ݐ)ܠ൫܎  ൯(ݐ)ߙ

for (ݐ)ܠ = ,(ݐ)߭) ℎ(ݐ),  .((ݐ)݉

We want to minimize the amount of fuel used up, that is, to maximize the amount 
remaining once we have landed. Thus 

[(⋅)ߙ]ܲ = ݉(߬), 

where ߬ denotes the first time that ℎ(߬) = ߭(߬) = 0. 

This is a variable endpoint problem, since the final time is not given in advance. We have 
also the extra constraints 

ℎ(ݐ) ≥ (ݐ)݉				,0 ≥ 0. 

Example (1.1.6): (Rocket Railroad Car) 

Imagine a railroad car powered by rocket engines on each side. We introduce the 
variables 

(ݐ)ݍ  = position at time ݐ 

(ݐ)ݒ  = (ݐ)ݍ̇ = velocity at time ݐ 

(ݐ)ߙ  = thrust from rockets, 

where 

−1 ≤ (ݐ)ߙ ≤ 1, 

 

 

 

 

Figure (1.4) A rocket car on a train track 

the sign depending upon which engine is firing. 
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We want to figure out how to fire the rockets, so as to arrive at the origin 0 with zero 
velocity in a minimum amount of time. Assuming the car has mass ݉, the law of motion 
is 

(ݐ)ݍ̈݉ = 	.(ݐ)ߙ

We rewrite by setting (ݐ)ܠ = ,(ݐ)ݍ)  Then .்((ݐ)߭

൝ܠ
(ݐ) = ቀ0 1

0 0ቁ ܠ
(ݐ) + ቀ01ቁ ߙ

(ݐ)

(0)ܠ = ଴ݔ = ,଴ݍ) ߭଴)்.																
 

Since our goal is to steer to the origin (0,0) in minimum time, we take 

[(⋅)ߙ]ܲ = −න ݐ݀	1
ఛ

଴
= −߬, 

for 

߬ = first time that ݍ(߬	) = ߭(߬) = 0. 

Now we discuss the Geometric solution: 

To illustrate how actually to solve a control problem, in this last section we introduce 
some ad hoc calculus and geometry methods for the rocket car problem, Example (1.1.5) 
above. 

First of all, let us guess that to find an optimal solution we will need only to consider 
the cases ܽ = 1 or ܽ = −1. In other words, we will focus our attention only upon those 
controls for which at each moment of time either the left or the right rocket engine is 
fired at full power. (We will later see in Chapter 2 some theoretical justification for 
looking only at such controls.) 

Case 1:  

Suppose first that ߙ ≡ 1 for some time interval, during which 

ቄ̇ݍ 	= 	߭
߭̇ = 1 	

Then 

߭߭̇ = 	,ݍ̇
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and so 

1
2
(߭ଶ)	̇ = 	.ݍ̇

Let ݐ଴ belong to the time interval where ߙ ≡ 1 and integrate from ݐ଴ to ݐ: 

߭ଶ(ݐ)
2

−
߭ଶ(ݐ଴)
2

= (ݐ)ݍ − 	.(଴ݐ)ݍ

Consequently 

																																														߭ଶ(ݐ) = (ݐ)ݍ2 + ൫߭ଶ(ݐ଴) − ൯ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ(଴ݐ)ݍ2
௕

.																																							(1.3) 

In other words, so long as the control is set for ߙ ≡ 1, the trajectory stays on the curve 
߭ଶ = ݍ2 + ܾ for some constant ܾ. 

 

 

 

 

 

 

 

Figure (1.5) 

 

Case 2:  

Suppose now ߙ ≡ 1 on some time interval. Then as above 

൜ ݍ̇ = ߭
߭̇ = −1, 

and hence 
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1
2
(߭ଶ)	̇ =  .ݍ̇−

Let ݐଵ belong to an interval where ߙ ≡ 1 and integrate: 

																																												߭ଶ(ݐ) = (ݐ)ݍ2− + ൫2ݍ(ݐଵ) − ߭ଶ(ݐଵ)൯ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
௖

.																																						(1.4) 

Consequently, as long as the control is set for ߙ ≡ 1, the trajectory stays on the curve 
߭ଶ = ݍ2 + ܿ for some constant ܿ. 

 

 

 

 

 

 

 

Figure (1.6) 

Now to discuss the geometric interpretation, we have to know that formula (1.1) says if 
ߙ ≡ 1, then ((ݐ)ݍ,  lies on a parabola of the form ((ݐ)߭

߭ଶ = ݍ2 + ܾ. 

Similarly, (1.2) says if ߙ ≡ −1, then ((ݐ)ݍ,  lies on a parabola ((ݐ)߭

߭ଶ = ݍ2− + ܿ. 

Now we can design an optimal control ߙ∗(⋅), which causes the trajectory to jump 
between the families of right. and left-pointing parabolas, as drawn. Say we start at the 
black dot, and wish to steer to the origin. This we accomplish by first setting the control 
to the value ߙ = −1, causing us to move down along the second family of parabolas. We 
then switch to the control ߙ = 1, and thereupon move to a parabola from the first family, 
along which we move up and to the left, ending up at the origin. See the figure (1.5). 
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Section (1.2): Controllability, bang-bang  principle 

Definition (1.2.1): 

We firstly recall from Chapter 1 the basic form of our controlled ODE: 

(ODE)																				ቊ̇ܠ
(ݐ) = ,(ݐ)ݔ൫܎ ൯(ݐ)ࢻ
(0)ܠ = 																		,଴ݔ

 

Here ݔ଴ ∈ ℝ௡ , ℝ௡:܎ ܣ× → ℝ௡ , :ࢻ [0,∞) → :ݔ is the control, and ,ܣ [0,∞) → ℝ௡ 	is the 
response of the system. 

This section addresses the following basic	

(1.2.1): Controllability Question  

Given the initial point ݔ଴ and a “target” set ܵ ⊂ ℝ௡, does there exist a control steering 
the system to ܵ in finite time? 

For the time being we will therefore not introduce any payoff criterion that would 
characterize an “optimal” control, but instead will focus on the question as to whether or 
not there exist controls that steer the system to a given goal. In this chapter we will 
mostly consider the problem of driving the system to the origin ܵ = {0}. 

Definition (1.2.2): 

We define the reachable set for time t to be 

(ݐ)ܥ = set of initial points ݔ଴ for which there exists a control such that (ݐ)ݔ = 0, 

and the overall reachable set 

ܥ = set of initial points ݔ଴ for which there exists a control such that (ݐ)ܠ = 0 for some 
finite time ݐ. 

Note that 

ࣝ =ራࣝ(ݐ)
	

௧ஹ଴

. 

Hereafter, let ॸ௡×௠ denote the set of all ݊ × ݉ matrices. We assume for the rest of 
this and the next chapter that our ODE is linear in both the state ܠ(	⋅) and the control  
 and consequently has the form ,(⋅)ߙ
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(ODE)																				൜̇ܠ
(ݐ) = (ݐ)ܠܯ + ݐ)						(ݐ)ࢻܰ > 0)
(0)ܠ =  																																											,଴ݔ

where ܯ ∈ ॸ௡×௡ and ܰ ∈ ॸ௡×௠. We assume the set A of control parameters is a cube 
in ℝ௠: 

ܣ = [−1,1]௠ = {ܽ ∈ ℝ௠|	|ܽ௜| ≤ 1, ݅ = 1, … ,݉}. 

(1.2.2): Quick review of linear ODE 

This section records for later reference some basic facts about linear systems of 
ordinary differential equations. 

Definition (1.2.3): 

Let ܆(⋅) ∶ 	ℝ → ॸ௡×௡ be the unique solution of the matrix 

(ODE)																				൜ (ݐ)܆̇ = ݐ)						(ݐ)܆ܯ > 0)
(0)ܠ = 																															.ܫ

 

We call ܆(⋅) a fundamental solution, and sometimes write 

(ݐ)܆ = ݁௧ெ ≔෍
௞ܯ௞ݐ

݇!

ஶ

௞ୀ଴

, 

the last formula being the definition of the exponential ݁௧ெ. Observe that 

(ݐ)ଵି܆ =  .(ݐ−)܆

Theorem (1.2.4): (Solving linear systems of ODE) 

(i) The unique solution of the homogeneous system of ODE 

൜̇ܠ
(ݐ) = (ݐ)ܠܯ
(0)ܠ =  							଴ݔ

is 

(ݐ)܆ = ଴ݔ(ݐ)܆ = ݁௧ெݔ଴. 

(ii) The unique solution of the nonhomogeneous system 

൜̇ܠ
(ݐ) = (ݐ)܎(ݐ)ܠܯ
(0)ܠ =  													.଴ݔ
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is 

(ݐ)ܠ = ଴ݔ(ݐ)܆ + න(ݐ)܆ (ݏ)ଵି܆
௧

଴
 .ݏ݀(ݏ)܎

This expression is the variation of parameters formula. 

(1.2.3): Controllability of Linear Equations 

According to the variation of parameters formula, the solution of (ODE) for a given 
control  ࢻ(⋅) is 

⋅)ܠ (ݐ = ଴ݔ(ݐ)܆ + න(ݐ)܆ ݏ݀(ݏ)ࢻܰ(ݏ)ଵି܆
௧

଴
, 

where (ݐ)܆ = ݁௧ெ. Furthermore, observe that 

଴ݔ ∈  (ݐ)ࣝ

if and only if 

																																there	exists	a	control	ߙ(⋅) ∈ ࣛ	such	that	(ݐ)ܠ = 0																									(1.5) 

if and only if 

																					0 = ଴ݔ(ݐ)܆ + න(ݐ)܆ ݏ݀(⋅)ࢻܰ(ݏ)ଵି܆
௧

଴
	for	some	control	ࢻ(⋅) ∈ ࣛ								(1.6)	

if and only if 

଴ݔ																														 = −න ݏ݀(ݏ)ࢻܰ(ݏ)ଵି܆
୲

଴
	for	some	control	ࢻ(⋅) ∈ ࣛ.																				(1.7)	

We make use of these formulas to study the reachable set:	

Theorem (1.2.5): (Structure of reachable set) 

(i) The reachable set ࣝ is symmetric and convex.	
(ii) Also, if ݔ଴ ∈ ଴ݔ then ,(ݐ)ࣝ ∈ ݐ for all times (ݐ)ࣝ ≥ 	.̅ݐ

Definition (1.2.6): 

(i) We say a set ܵ is symmetric if ݔ ∈ ܵ implies −ݔ ∈ ܵ.	
(ii) The set ܵ  is convex if ݔ, ොݔ ∈ ܵ and 0	 ≤ ߣ ≤ 1 imply ݔߣ + (1 − ොݔ(ߣ ∈ ܵ.	
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Proof: 

1. (Symmetry) Let ݐ	 ≥ 0 and ݔ଴ ∈ ଴ݔ Then .(ݐ)ܥ = −∫ ௧ݏ݀(ݏ)ࢻܰ(ݏ)ଵି܆
଴ 	 for some 

admissible control ࢻ ∈ ࣛ.  Therefore −ݔ଴ = −∫ ௧ݏ൯݀(ݏ)ࢻ−൫ܰ(ݏ)ଵି܆
଴  and −ࢻ ∈ ࣛ 

since the set ܣ is symmetric. Therefore −ݔ଴ ∈  .symmetric (ݐ)ࣝ and so each set ,(ݐ)ࣝ
It follows that ࣝ  is symmetric.  

2. (Convexity) Take ݔ଴, ො଴ݔ ∈ ࣝ; so that ݔ଴ ∈ ,(ݐ)ࣝ ො଴ݔ ∈  for appropriate times (ݐ̂)ࣝ
,ݐ ݐ̂ ≥ 0. Assume ݐ ≤  Then .ݐ̂

଴ݔ = −∫ ௧ݏ݀(ݏ)ࢻܰ(ݏ)ଵି܆
଴  for some control ࢻ ∈ ࣛ, 

ො଴ݔ = −∫ ௧መݏ݀(ݏ)ෝࢻܰ(ݏ)ଵି܆
଴  for some control ࢻෝ ∈ ࣛ, 

Define a new control 

(ݏ)෥ࢻ ≔ ቄ(ݏ)ࢻ if	0 ≤ ݏ ≤ ݐ
0	 if	ݏ > 						.ݐ

 

Then 

଴ݔ = −න ݏ݀(ݏ)ෝࢻܰ(ݏ)ଵି܆
௧መ

଴
, 

and hence ݔ଴ ∈ Now let 0 .(ݐ)ࣝ ≤ ߣ ≤ 1, and observe 

଴ݔߣ + (1 − ො଴ݔ(ߣ = −න (ݏ)෥ࢻߣ൫ܰ(ݏ)ଵି܆ + (1 − ݏ൯݀(ݏ)ෝࢻ	(ߣ
௧መ

଴
. 

Therefore ݔߣ଴ + (1 − ො଴ݔ(ߣ ∈ (ݐ̂)ࣝ ⊆ ࣝ. 

3. Assertion (ii) follows from the foregoing if we take ̅ݐ =  .̂ݐ

Example (1.2.7): 

Let ݊ = 2 and ݉ = 1, ܣ = [−1,1], and write (ݐ)ܠ = ൫ݔଵ(ݐ),   ൯். Suppose(ݐ)ଶݔ

൜ ݔ̇
ଵ = 0						

ଶݔ̇ =  .(ݐ)ߙ

This is a system of the form ̇ܠ = ܠܯ  for ,ߙܰ+
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ܯ = ቀ0 0
0 0ቁ ,ܰ = ቀ01ቁ 

Clearly ࣝ = ,ଵݔ)} ଵݔ|(ଶݔ = 0}, the ݔଶ-axis. 

We next wish to establish some general algebraic conditions ensuring that ࣝ contains a 
neighborhood of the origin. 

Definition (1.2.8): 

The controllability matrix is 

ܩ = (ܰ,ܯ)ܩ ≔ …,ଶܰܯ,ܰܯ,ܰ] ௡ିଵܰ]ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥܯ,
௡×(௠௡)	matrix

. 

Theorem (1.2.9): (Controllability Matrix)  

We have 

rank	ܩ = ݊	

if and only if 

0 ∈ ࣝ଴. 

Notation (1.2.10):  

We write ࣝ଴ for the interior of the set ࣝ. Remember that 

rank	of	ܩ = number of linearly independent rows of ܩ 

                         = number of linearly independent columns of ܩ. 

Clearly rank	ܩ ≤ ݊. 

Proof: 

1. Suppose first that rank	ܩ < ݊. This means that the linear span of the columns of ܩ 
has dimension less than or equal to ݊ − 1. Thus there exists a vector ܾ ∈ ℝ௡, ܾ ≠ 0, 
orthogonal to each column of ܩ. This implies 

ܩ்ܾ = 0 

and so 

்ܾܰ = ܰܯ்ܾ = ⋯ = ௡ିଵܰܯ்ܾ = 0. 
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2. We claim next that in fact 

௞ܰܯ்ܾ																																												 = 0	for	all	positive	integers	݇.																																				(1.8)	

To confirm this, recall that 

(ߣ)݌ ≔ det(ܫߣ −  (ܯ

is the characteristic polynomial of ܯ. The Cayley-Hamilton Theorem states that 

(ܯ)݌ = 0.	

So if we write 

(ߣ)݌ = ௡ߣ + ௡ିଵߣ௡ିଵߚ +⋯+ ଵߣଵߚ +  ,଴ߚ

then 

(ܯ)݌ = ௡ܯ + ௡ିଵܯ௡ିଵߚ + ⋯+ +ܯଵߚ ܫ଴ߚ = 0. 

Therefore 

௡ܯ = ௡ିଵܯ௡ିଵߚ− − ௡ିଶܯ௡ିଶߚ −⋯− ܯଵߚ  ,ܫ଴ߚ−

and so 

௡ܰܯ்ܾ = ௡ିଵܯ௡ିଵߚ−)்ܾ −⋯)ܰ = 0. 

Similarly, ்ܾܯ௡ାଵܰ = ௡ܯ௡ିଵߚ−)்ܾ −⋯ )ܰ = 0, etc. The claim (1.8) is proved. 

Now notice that 

ܰ(ݏ)ଵି܆்ܾ = ்ܾ݁ି௦ெܰ = ்ܾ෍
௞ܰܯ௞(ݏ−)

݇!

ஶ

௞ୀ଴

=෍
௞(ݏ−)

݇!

ஶ

௞ୀ଴

௞ܰܯ்ܾ = 0, 

according to (1.8). 

3. Assume next that ݔ଴ ∈  This is equivalent to having .(ݐ)ࣝ

଴ݔ = −න ݏ݀(ݏ)ࢻܰ(ݏ)ଵି܆
௧

଴
	for	some	control	ࢻ(⋅) ∈ ࣛ. 

Then 
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ܾ ⋅ ଴ݔ = −න ݏ݀(ݏ)ࢻܰ(ݏ)ଵି܆்ܾ
௧

଴
= 0. 

This says that b is orthogonal ݔ଴. In other words, ࣝ must lie in the hyperplane orthogonal 
to ܾ ≠ 0. Consequently ࣝ଴ = ∅. 

4. Conversely, assume 0 ∉ ࣝ଴. Thus 0 ∉ ࣝ଴(ݐ) for all ݐ > 0. Since ࣝ(ݐ) is convex, 
there exists a supporting hyperplane to ࣝ(ݐ) through 0. This means that there 
exists ܾ ≠ 0 such that ܾ ⋅ ଴ݔ ≤ 0 for all ݔ଴ ∈  .(ݐ)ࣝ

Choose any ݔ଴ ∈  Then .(ݐ)ࣝ

଴ݔ = −න ݏ݀(ݏ)ࢻܰ(ݏ)ଵି܆
௧

଴
 

for some control ࢻ, and therefore 

0 ≥ ܾ ⋅ ଴ݔ = −න ݏ݀(ݏ)ࢻܰ(ݏ)ଵି܆்ܾ
௧

଴
. 

Thus  

න ݏ݀(ݏ)ࢻܰ(ݏ)ଵି܆்ܾ
௧

଴
≥ 0			for	all	control	ࢻ(⋅). 

We assert that therefore 

ܰ(ݏ)ଵି܆்ܾ																																																																				 ≡ 0,																																																						(1.9) 

a proof of which follows as a lemma below. We rewrite (1.9) as 

																																																																						்ܾ݁ି௦ெܰ ≡ 0.																																																						(1.10) 

Let ݏ = 0 to see that ்ܾܰ = 0. Next differentiate (1.10) with respect to ݏ, to find that 

௦ெܰି݁(ܯ−)்ܾ ≡ 0. 

For ݏ = 0 this says 

ܰܯ்ܾ = 0.	

We repeatedly differentiate, to deduce 

௞ܰܯ்ܾ = 0			for	all			݇ = 0,1, …, 
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and so ்ܾܩ = 0. This implies rank	ܩ < ݊, since ܾ ≠ 0. 

Lemma (1.2.11): (Integral Inequalities) 

Assume that 

																																																							න ݏ݀(ݏ)ࢻܰ(ݏ)ଵି܆்ܾ
௧

଴
≥ 0																																															(1.11) 

for all ࢻ(⋅) ∈ ࣛ. Then 

ܰ(ݏ)ଵି܆்ܾ ≡ 0. 

Proof: 

Replacing ߙ by ߙ in (1.11), we see that 

଴ݔ = −න ݏ݀(ݏ)ࢻܰ(ݏ)ଵି܆்ܾ
௧

଴
= 0 

for all ࢻ(⋅) ∈ ࣛ . Define 

(ݏ)ܞ ≔  .ܰ(ݏ)ଵି܆்ܾ

If ܞ ≠ 0, then ܞ(ݏ଴) ≠ 0 for some ݏ଴. Then there exists an interval ܫ such that ݏ଴ ∈  and ܫ
ܞ ≠ 0 on ܫ. Now define ߙ(⋅) ∈ ࣛ this way: 

ቐ
(ݏ)ࢻ = 0															 ݏ) ∉ (ܫ

(ݏ)ࢻ =
(ݏ)ܞ
|(ݏ)ܞ|

1
√݊

ݏ) ∈  ,(ܫ

where |߭|: = (∑ |߭௜|ଶ௡
௜ୀଵ )

భ
మ. Then 

0 = න (ݏ)ܞ ⋅ ݏ݀(ݏ)ࢻ
௧

଴
= න

(ݏ)ܞ
√݊

	

ூ
⋅
(ݏ)ܞ
|(ݏ)ܞ|

ݏ݀ =
1
√݊

න|ݏ݀|(ݏ)ܞ
	

ூ
 

This implies the contradiction that ܞ ≡ 0 in ܫ. 

Definition (1.2.12):  

We say the linear system (ODE) is controllable if ࣝ = ℝ௡. 
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Theorem (1.2.13): (criterion for controllability) 

Let ܣ be the cube [−1,1]௡ in ℝ௡. Suppose as well that rank	ܩ = ݊, and Re	ߣ < 0 for 
each eigenvalue ߣ of the matrix ܯ. 

Then the system (ODE) is controllable. 

Proof: 

Since rank	ܩ = ݊, Theorem (1.2.9) tells us that ࣝ contains some ball ܤ centered at 0. 
Now take any ݔ଴ ∈ ℝ௡ and consider the evolution 

൜̇ܠ
(ݐ) = (ݐ)ܠܯ
(0)ܠ =  					;଴ݔ

in other words, take the control ࢻ(⋅) ≡ 0. Since Re	ߣ < 0 for each eigenvalue ߣ of ܯ, 
then the origin is asymptotically stable. So there exists a time ܶ such that (ݐ)ܠ ∈  Thus .ܤ
(ݐ)ܠ ∈ ܤ ⊂ ࣝ; and hence there exists a control ࢻ(⋅) ∈ ࣛ steering ܠ(ܶ) into 0 in finite 
time. 

Example (1.2.14): 

We once again consider the rocket railroad car, from section (1.2), for which          
݊ = 2,݉ = ܣ,1 = [−1, 1], and 

ܠ̇ = ቀ0 1
0 0ቁ ܠ + ቀ01ቁ  .ߙ

Then 

ܩ = [ܰܯ,ܰ] = ቀ0 1
1 0ቁ. 

Therefore 

rank	ܩ = 2 = ݊.	

Also, the characteristic polynomial of the matrix ܯ is 

(ߣ)݌ = det(ܫߣ (ܯ− = det ቀߣ −1
0 ߣ ቁ =  .ଶߣ

Since the eigenvalues are both 0, we fail to satisfy the hypotheses of Theorem (1.2.13). 

This example motivates the following extension of the previous theorem: 
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Theorem (1.2.15): (Improved Criterion for Controllability) 

Assume rank	ܩ = ݊ and Re	ߣ ≤ 	0 for each eigenvalue ߣ of ܯ. Then the system 
(ODE) is controllable. 

Proof:  

1. If ࣝ ≠ ℝ௡, then the convexity of ࣝ implies that there exist a vector ܾ ≠= 0 and a real 
number ߤ such that 

																																																																						ܾ ⋅ ଴ݔ ≤  (1.12)																																																														ߤ

for all ݔ଴ ∈ ܾ Indeed, in the picture we see that .ܥ ⋅ ଴ݔ) − (଴ݖ ≤ 0; and this implies 
(1.12) for ߤ ≔ ܾ ⋅  .଴ݖ

 

 

 

 

 

Figure (1.7) 

We will derive a contradiction. 

2. Given ܾ ≠ 0, our intention is to find ݔ଴ ∈ ࣝ so that (1.12) fails. Recall ݔ଴ ∈ ࣝ if and 
only if there exist a time ݐ > 0 and a control ࢻ(⋅) ∈ ࣛ  such that 

଴ݔ = −න ݏ݀(ݏ)ࢻܰ(ݏ)ଵି܆
௧

଴
. 

Then 

ܾ ⋅ ଴ݔ = −න ݏ݀(ݏ)ࢻܰ(ݏ)ଵି܆்ܾ
௧

଴
 

Define 

(ݏ)ܞ ≔  ܰ(ݏ)ଵି܆்ܾ

3. We assert that 
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ܞ																																																																														 ≠ 0.																																																													(1.13) 

To see this, suppose instead that ܞ ≡ 0. Then ݇ times differentiate the expression 
ݏ and set ݏ with respect to ܰ(ݏ)ଵି܆்ܾ = 0, to discover 

௞ܰܯ்ܾ = 0	

for = 0,1,2, . .. . This implies b is orthogonal to the columns of ܩ, and so rank	ܩ < ݊. 
This is a contradiction to our hypothesis, and therefore (1.13) holds. 

4. Next, define ࢻ(⋅) this way: 

(ݏ)ࢻ ≔ ቐ−
(ݏ)ܞ
|(ݏ)ܞ|

if	(ݏ)ܞ ≠ 0

0 if	(ݏ)ܞ = 0.
 

Then 

ܾ ⋅ ଴ݔ = −න ݏ݀(ݏ)ࢻ(ݏ)ܞ
௧

଴
= න ݏ݀|(ݏ)ܞ|

௧

଴
 

We want to find a time ݐ > 0 so that ∫ ௧ݏ݀|(ݏ)ܞ|
଴ >  In fact, we assert that .ߤ

																																																																	න ݏ݀|(ݏ)ܞ|
ஶ

଴
= +∞.																																																	(1.14) 

To begin the proof of (1.14), introduce the function 

(ݐ)߶ ≔ න ݏ݀(ݏ)ܞ
ஶ

௧
. 

We will find an ODE ߶ satisfies. Take ݌(⋅) to be the characteristic polynomial of ܯ. 
Then 

݌ ൬−
݀
ݐ݀
൰(ݐ)ܞ = ݌ ൬−

݀
ݐ݀
൰ [்ܾ݁ି௧ெܰ] = ்ܾ ൬݌ ൬−

݀
ݐ݀
൰ ݁ି௧ெ൰ܰ

= ܰ(௧ெି݁(ܯ)݌)்ܾ ≡ 0, 

since (ܯ)݌ = 0, according to the Cayley-Hamilton Theorem. But since ݌ ቀ− ௗ
ௗ௧
ቁ (ݐ)ܞ ≡ 0, 

it follows that 

−
݀
ݐ݀
݌ ൬−

݀
ݐ݀
൰߶(ݐ) = ݌ ൬−

݀
ݐ݀
൰ ൬−

݀
ݐ݀
߶൰ = ݌ ൬−

݀
ݐ݀
൰(ݐ)ܞ = 0. 
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Hence - solves the (݊ + 1)௧௛ order ODE 

݀
ݐ݀
݌ ൬−

݀
ݐ݀
൰߶(ݐ) = 0. 

We also know ߶(⋅) ≢ 0. Let ߤଵ, … , (ߤ−)݌ߤ ௡ାଵ be the solutions ofߤ = 0. According to 
ODE theory, we can write 

(ݐ)߶ = sum of terms of the form ݌௜(ݐ)݁ఓ೔௧ 

for appropriate polynomials ݌௜(⋅). 

Furthermore, we see that ߤ௡ାଵ = 0 and ߤ௞ = …,ଵߣ ௞, whereߣ− , ௡ߣ  are the 
eigenvalues of ܯ. By assumption Re	ߤ௞ ≥ 0, for ݇ = 1, . . . , ݊. If ∫ ஶݏ݀|(ݏ)ܞ|

଴ < ∞, then 

|(ݐ)߶| ≤ න ݏ݀|(ݏ)ܞ|
ஶ

଴
→ 0					as	ݐ → ∞; 

that is, ߶(ݐ) → 0 as ݐ → ∞. This is a contradiction to the representation formula of 
(ݐ)߶ = ∑ (ݐ)௜݌ ݁ఓ೔௧, with Re	ߤ௜ ≥ 0. Assertion (2.10) is proved. 

5. Consequently given any ߤ, there exists ݐ > 0 such that 

ܾ ⋅ ଴ݔ = න ݏ݀|(ݏ)ܞ|
ஶ

଴
>  ,ߤ

a contradiction to (1.12). Therefore ࣝ = ℝ௡ .  

(1.2.4): Observability: 

We again consider the linear system of ODE 

(ODE)																				൜̇ܠ
(ݐ) = ݐ)						(ݐ)ܠܯ > 0)
(0)ܠ =  																																							଴ݔ

where ܯ ∈ ॸ௡×௡. 

In this subsection we address the observability problem, modeled as follows: We 
suppose that we can observe 

(O)																																		(ݐ)ܡ:= ݐ)									(ݐ)ܠܰ ≥ 0),	
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for a given matrix ܰ ∈ ॸ௠×௡. Consequently, (ݐ)ܡ ∈ ℝ௡. The interesting situation is 
when ݉ << ݊ and we interpret ܡ(⋅) as low-dimensional “observations” or 
“measurements” of the high-dimensional dynamics ܠ(⋅). 

(1.2.5): OBSERVABILITY QUESTION:  

Given the observations ܡ(⋅), can we in principle reconstruct ܠ(⋅)? In particular, do 
observations of ܡ(⋅) provide enough information for us to deduce the initial value ݔ଴ for 
(ODE)? 

Definition (1.2.16):  

The pair (ODE), (O) is called observable if the knowledge of ܡ(⋅) on any time interval 
[0,  .଴ݔ allows us to compute [ݐ

More precisely, (ODE), (O) is observable if for all solutions        
,(⋅)ଵܠ ,(⋅)ଶܠ (⋅)ଵܠܰ ≡ ,ଶ(⋅) on a time interval [0ܠܰ ଵ(0)ܠ implies [ݐ =  .ଶ(0)ܠ

Example (1.2.17): 

(i) If ܰ ≡ 0, then clearly the system is not observable. 
(ii) On the other hand, if ݉ = ݊ and ܰ is invertible, then clearly (ݐ)ܠ = ܰିଵ(ݐ)ܡ is 

observable. 

The interesting cases lie between these extremes. 

Theorem (1.2.18): (Observability and Controllability) 

The system 

																																																																									൜̇ܠ
(ݐ) = (ݐ)ܠܯ
(ݐ)ܡ = (ݐ)ܠܰ 																																																		(1.15) 

is observable if and only if the system 

(ݐ)ܢ̇																																											 = (ݐ)ܢ்ܯ + ்ܰહ(ݐ),					ܣ = ℝ௠																																							(1.16) 

is controllable, meaning that ࣝ = ℝ௠. 

INTERPRETATION 

This theorem asserts that somehow “observability and controllability are dual 
concepts” for linear systems. 
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Proof: 

Suppose (1.15) is not observable. Then there exist points ݔଵ ≠ ଶݔ ∈ ℝ௡, such that  

൜̇ܠଵ
(ݐ) = ,(ݐ)ଵܠܯ ଵ(0)ܠ = ଵݔ

(ݐ)ଶܠ̇ = ,(ݐ)ଶܠܯ ଶ(0)ܠ = ଶݔ
	

 

but (ݐ)ܡ ≔ (ݐ)ଵܠܰ ≡ ݐ for all times (ݐ)ଶܠܰ ≥ 0. Let 

(ݐ)ܠ ≔ (ݐ)ଵܠ − ,(ݐ)ଶܠ ଴ݔ ≔ ଵݔ −  .ଶݔ

Then 

ݐܠ̇ = ,(ݐ)ܠܯ (0)ܠ = ଴ݔ ≠ 0, 

but 

(ݐ)ݔܰ = ݐ)										0 ≥ 0). 

Now 

(ݐ)ܠ 	 = ଴ݔ(ݐ)܆	 	 = 	݁௧ெݔ଴.	

Thus 

ܰ݁௧ெݔ଴ = ݐ)											0 ≥ 0).	

Let ݐ = 0, to find ܰݔ଴ = 0. Then differentiate this expression ݇ times in ݐ and let ݐ =
0, to discover as well that 

଴ݔ௞ܯܰ = 0	

for = 0,1,2, . .. . Hence (ݔ଴)்(ܯ௞)்்ܰ = 0, and hence (ݔ଴)்(்ܯ)௞்ܰ = 0. This implies 

,்ܰ]்(଴ݔ) ்்ܰܯ , . . . , [	௡ିଵ்ܰ(்ܯ) = 0. 

Since ݔ଴ ≠ 0, rank[்ܰ, . . . , [	௡ିଵ்ܰ(்ܯ) < ݊. Thus problem (1.16) is not controllable. 
Consequently, (1.16) controllable implies (1.15) is observable. 

2. Assume now (1.16) not controllable. Then rank[்ܰ , . . . , [	௡ିଵ்ܰ(்ܯ) < ݊, and 
consequently according to Theorem (1.2.9) there exists ݔ଴ ≠ 0 such that 

,்ܰ]	்(଴ݔ) . . . , [	௡ିଵ்ܰ(்ܯ) 	 = 	0. 
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That is, ܰܯ௞ݔ଴ = 0 for all ݇ = 0,1,2, . . . , ݊ − 1. 

We want to show that (ݐ)ܡ =  where ,0(ݐ)ܠܰ

൜̇ܠ
(ݐ) = (ݐ)ܠܯ
(0)ܠ =  						.଴ݔ

According to the Cayley-Hamilton Theorem, we can write 

௡ܯ = ௡ିଵܯ௡ିଵߚ− 	.ܫ଴ߚ−⋯−

for appropriate constants. Consequently ܰܯ௡ݔ଴ = 0. Likewise, 

௡ାଵܯ = ௡ିଵܯ௡ିଵߚ−)ܯ − ⋯− (ܫ଴ߚ = ௡ܯ௡ିଵߚ− − ⋯− 	;ܯ଴ߚ

and so ܰܯ௡ାଵݔ଴ = 0. Similarly, ܰܯ௞ݔ଴ = 0 for all ݇. 

Now 

(ݐ)ܠ = ଴ݔ(ݐ)܆ = ݁ெ௧ݔ଴ =෍
௞ܯ௞ݐ

݇!
଴ݔ

ஶ

௞ୀ଴

; 

and therefore ܰ(ݐ)ܠ = ܰ∑ ௧ೖெೖ

௞!
଴ஶݔ

௞ୀ଴ = 0. 

We have shown that if (1.16) is not controllable, then (1.15) is not observable. 

(1.2.6): Bang-Bang Principle 

For this section, we will again take ܣ to be the cube [−1,1]௠ in ℝ௠. 

Definition (1.2.19): 

A control હ(⋅) ∈ ࣛ is called bang-bang if for each time ݐ ≥ 0 and each index ݅ =
1, . . . , ݉, we have หߙ௜(ݐ)ห = 1, where 

હ(ݐ) = ൭
(ݐ)ଵߙ
⋮

(ݐ)௠ߙ
൱. 

Theorem (1.2.20): (Bang-Bang Principle) 

Let ݐ > 0 and suppose ݔ଴ ∈  for the system ,(ݐ)ࣝ

(ݐ)ܠ̇ = (ݐ)ܠܯ +  (ݐ)ࢻܰ
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Then there exists a bang-bang control હ(⋅) which steers ݔ଴ to 0 at time ݐ. 

To prove the theorem we need some tools from functional analysis, among them the 
Krein-Milman Theorem, expressing the geometric fact that every bounded convex set has 
an extreme point. 

(1.2.7): Some functional analysis 

We will study the “geometry” of certain infinite dimensional spaces of functions. 

To establish our discussing we have to know that: 

ஶܮ = ,ஶ(0ܮ (ℝ௠;ݐ = ൜હ(⋅): (0, (ݐ → ℝ௠| sup
଴ஸ௦ஸ௧

|હ(ݏ)| < ∞ൠ. 

௅ಮ‖ࢻ‖ = sup
଴ஸ௦ஸ௧

|હ(ݐ)|. 

Definition (1.2.21): 

Let ߙ௡ ∈ ݊ ஶ forܮ = 1,… and ߙ ∈  ,in the weak* sense ߙ ௡ converges toࢻ ஶ. We sayܮ
written 

௡ߙ
				∗			
ሱ⎯ሮ  ,ߙ

provided  

න (ݏ)௡ࢻ ⋅ ݏ݀(ݏ)ܞ
ஶ

଴
ݐ න (ݏ)ࢻ ⋅ ݏ݀(ݏ)ܞ

ஶ

଴
 

as ݊ → ∞, for all ܞ(⋅): [0, [ݐ → ℝ௠ satisfying ∫ ௧ݏ݀|(ݏ)ܞ|
଴ < ∞. 

We will need the following useful weak* compactness theorem for ܮஶ: 

Theorem (1.2.22): (Alaoglu’s Theorem) 

Let (ݏ)ࢻ ∈ ࣛ, ݊ = 1,…. Then there exists a subsequence ࢻ௡ೖ and ∈ ऋ , such that 

௡ೖߙ
				∗			
ሱ⎯ሮ  .ߙ

Definitions (1.2.23): 

(i) The set ॶ is convex if for all ݔ, ොݔ ∈ ॶ and all real numbers 0 ≤ ߣ ≤ 1, 

ݔߣ + (1 − ොݔ(ߣ ∈ ॶ. 
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(ii) A point ݖ ∈ ॶ is called extreme provided there do not exist points ݔ, ොݔ ∈ ॶ and 
0 < ߣ < 1 such that 

ݖ = ݔߣ + (1 −  .ොݔ(ߣ

Theorem (1.2.24): (Krein-Milman Theorem) 

Let ॶ be a convex, nonempty subset of ܮஶ, which is compact in the weak * topology. 

Then ॶ has at least one extreme point. 

(1.2.8): Application to Bang-Bang Controls: 

The foregoing abstract theory will be useful for us in the following setting. We will 
take ॶ to be the set of controls which steer ݔ଴ to 0 at time ݐ, prove it satisfies the 
hypotheses of Krein-Milman Theorem and finally show that an extreme point is a bang-
bang control. 

So consider again the linear dynamics 

(ODE)																				൜̇ܠ
(ݐ) = (ݐ)ܠܯ + (ݐ)ࢻܰ
(0)ܠ =  																							.଴ݔ

Take ݔ଴ ∈  and write (ݐ)ࣝ

ॶ = (⋅)ࢻ} ∈  .{ݐ	time	at	0	to	଴ݔ	steers	(⋅)ࢻ|ࣛ

Lemma (1.2.25): (Geometry of set of controls)  

The collection ॶ of admissible controls satisfies the hypotheses of the Krein-Milman 
Theorem. 

Proof: 

Since ݔ଴ ∈ we see that ॶ ,(ݐ)ࣝ ≠ ∅. 

Next we show that ॶ is convex. For this, recall that ࢻ(⋅) ∈ ॶif and only if 

଴ݔ = −න ݏ݀(ݏ)ࢻܰ(ݏ)ଵି܆
௧

଴
. 

Now take also ࢻෝ ∈ ॶ and 0 ≤ ߣ ≤ 1. Then 
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଴ݔ = −න ݏ݀(ݏ)ෝࢻܰ(ݏ)ଵି܆
௧

଴
; 

and so 

଴ݔ = −න (ݏ)ࢻߣ൫ܰ(ݏ)ଵି܆ + (1 − ݏ൯݀(ݏ)ෝࢻ(ߣ
௧

଴
 

Hence ࢻߣ + (1 − ෝࢻ(ߣ ∈ ॶ. 

Lastly, we confirm the compactness. Let ࢻ௡ ∈ ॶ for ݊ = 1, . ... According to 

Alaoglu fs Theorem there exist ݊௞ → ∞ and ࢻ ∈ ࣛ such that ߙ௡ೖ
				∗			
ሱ⎯ሮ  We need to .ߙ

show that ࢻ ∈ ॶ.  

Now ࢻ௡ೖ ∈ ॶ implies 

଴ݔ = −න ݏ݀(ݏ)௡ೖࢻܰ(ݏ)ଵି܆
௧

଴
→ −න ݏ݀(ݏ)ࢻܰ(ݏ)ଵି܆

௧

଴
 

by definition of weak-* convergence. Hence ࢻ ∈ ॶ.  

We can now apply the Krein-Milman Theorem to deduce that there exists an extreme 
point ࢻ∗ ∈ ॶ . What is interesting is that such an extreme point corresponds to a bang-
bang control. 

Theorem (1.2.26): (Extremality and Bang-Bang Principle) 

The control ࢻ∗(⋅) is bang-bang. 

Proof: 

1. We must show that for almost all times 0 ≤ ݏ ≤ ݅ and for each ݐ = 1, . . . ,݉, we have 

หࢻ௜∗(ݏ)ห = 1. 

Suppose not. Then there exists an index ݅ ∈ {1, . . . ,݉} and a subset ܧ ⊂ [0,  of [ݐ
positive measure such that หߙ௜∗(ݏ)ห < 1 for ݏ ∈ ߝ In fact, there exist a number .ܧ > 0 and 
a subset ܨ ⊆  such that ܧ

|ܨ| > 0			and			หࢻ௜∗(ݏ)ห ≤ 1 − ݏ			for			ߝ ∈  .ܨ

Define 
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൯(⋅)ߚி൫ܫ ≔ නି܆ଵ(ݏ)ܰݏ݀(ݏ)ࢼ
	

ி
, 

for 

(⋅)ࢼ ≔ (0,… , …,(⋅)ߚ ,0)் , 

the function ߚ in the ith slot. Choose any real-valued function ߚ(⋅) ≢ 0, such that 

൯(⋅)ߚி൫ܫ = 0 

and |ߚ(⋅)| ≤ 1. Define 

હଵ(⋅) ≔ (⋅)∗ࢻ + 	(⋅)ߚߝ
હଶ(⋅) ≔ (⋅)∗ࢻ +  ,(⋅)ߚߝ

where we redefine ߚ to be zero off the set ܨ 

2. We claim that 

હଵ(⋅),હଶ(⋅) ∈ ॶ. 

To see this, observe that 

−න ݏ݀(ݏ)ଵࢻܰ(ݏ)ଵି܆
௧

଴
= −න ݏ݀(ݏ)∗ࢻܰ(ݏ)ଵି܆

௧

଴
− නߝ ݏ݀(ݏ)ࢼܰ(ݏ)ଵି܆

௧

଴

= ଴ݔ − ݏ݀(ݏ)ࢼܰ(ݏ)ଵି܆නߝ
	

ிᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
ூಷ൫ఉ(⋅)൯ୀ଴

=  .଴ݔ

Note also હଵ(⋅) ≔ ∗ࢻ ∈ ࣛ. Indeed, 

൜
હଵ(ݏ) = 																(ݏ)∗ࢻ ݏ) ∉ (ܨ
હଵ(ݏ) = (ݏ)∗ࢻ + (ݏ)ߚߝ ݏ) ∈  .(ܨ

But on the set ܨ, we have |(ݏ)∗࢏ࢻ| ≤ 1 −  and therefore ,ߝ

|હଵ(ݏ)| ≤ |(ݏ)∗ࢻ| + |(ݏ)ߚ|ߝ ≤ 1 − ߝ + ߝ = 1. 

Similar considerations apply for ࢻଶ. Hence ࢻଵ, ଶࢻ ∈ ॶ, as claimed above. 

3. Finally, observe that 

൜ࢻଵ = ∗ࢻ + ,ߚߝ ଵࢻ ≠ 	∗ࢻ
ଶࢻ = ∗ࢻ − ,ߚߝ ଶࢻ ≠  .∗ࢻ
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But 

1
2
ଵࢻ +

૚
૛
ଶࢻ =  ;∗ࢻ

and this is a contradiction, since ࢻ∗ is an extreme point of ॶ.  
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Chapter (2) 

Optimal Control and Pontryagin Maximum 

Section (2.1): Linear time-optimal Control 

To discuss the existence of time-optimal controls, consider the linear system of ODE: 

(ODE)																																																		൜ ܠ̇
(ݐ) = (ݐ)ࢻܰ+(ݐ)ܠܯ
(0)ܠ =  																																																																		,0ݔ

for given matrices ܯ ∈ ॸ௡×௡ and ܰ ∈ ॸ௡×௡. We will again take ܣ to be the cube 
[−1,1]௠ ⊂ ℝ௠. 

Define next 

(P)																																																			[(⋅)ࢻ]ࡼ≔−න 1
߬

0
ݏ݀ = −߬,																																													 

where ߬ = ߬൫ࢻ(⋅)൯ denotes the first time the solution of our ODE (2.1) hits the origin 0. 
(If the trajectory never hits 0, we set ߬ = ∞). 

And to study the optimal time problem, we are given the starting point ݔ଴ ∈ ℝ௡, and 
want to find an optimal control ࢻ∗(⋅) such that  

[(⋅)ࢻ]ࡼ = max
ࣛ∋(⋅)ࢻ

 .[(⋅)ࢻ]ࡼ	

Then 

߬∗ =  .origin	the	to	steer	to	time	minimum	the	is			[(⋅)∗ࢻ]࣪−

Theorem (2.1.1): (Existence of time-optimal Control) 

Let ݔ଴ ∈ ℝ௡ . Then there exists an optimal bang-bang control ࢻ∗(⋅). 

Proof: 

Let ߬∗ ∶= inf{ݐ	ݔ|଴ ∈ ଴ݔ We want to show that .{(ݐ)ܥ ∈  that is, there exists an ;(∗߬)ܥ
optimal control ࢻ∗(⋅) steering ݔ଴ to 0 at time ߬∗.  

Choose ݐଵ ≥ ଶݐ ≥ ଷݐ ≥ ⋯ so that ݔ଴ ∈ ௡ݐ and (௡ݐ)ܥ → ߬∗. Since ݔ଴ ∈  there ,(௡ݐ)ܥ
exists a control ࢻ௡(⋅) ∈ ࣛ such that 
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଴ݔ = −න (ݏ)௡ࢻܰ(ݏ)ଵି܆
௧೙

଴
 .ݏ݀

If necessary, redefine  ࢻ௡(ݏ) to be 0 for ݐ௡ ≤  By Alaoglu's Theorem, there exists a .ݏ
subsequence ݊ ௞ → ∞ and a control  ࢻ∗(⋅) so that 

௡ࢻ
∗
 .∗ࢻ→

We assert that ࢻ∗(⋅) is an optimal control. It is easy to check that (ݏ)∗ࢻ = 0, ݏ ≥ ߬∗. 
Also 

଴ݔ = −න (ݏ)௡ೖࢻܰ(ݏ)ଵି܆
௧೙ೖ

଴
ݏ݀ = −න (ݏ)௡ೖࢻܰ(ݏ)ଵି܆

௧భ

଴
 ,ݏ݀

since ࢻ௡ೖ = 0 for ݏ ≥ ௡ೖ. Let ݊௞ݐ → ∞: 

଴ݔ = −න (ݏ)∗ࢻܰ(ݏ)ଵି܆
௧భ

଴
ݏ݀ = න (ݏ)∗ࢻܰ(ݏ)ଵି܆

ఛ∗

଴
 ݏ݀

because (ݏ)∗ࢻ = 0 for ݏ ≥ ߬∗. Hence ݔ଴ ∈  .is optimal (⋅)∗ࢻ and therefore ,(∗߬)ܥ

According to Theorem (1.2.26) there in fact exists an optimal bang-bang control. 

The really interesting practical issue now is understanding how to compute an optimal 
control ࢻ∗(⋅). 

Definition (2.1.2): 

We define ݐ)ܭ,  ,That is .ݐ ଴) to be the reachable set for timeݔ

,ݐ)ܭ (଴ݔ = (⋅)ࢻ	exists	|there	ଵݔ} ∈ ࣛ	which	steers	from	ݔ଴	to	ݔଵ	at	time	ݐ}. 

Since ܠ(⋅) solves (ODE), we have ݔଵ ∈ ,ݐ)ܭ  ଴) if and only ifݔ

ଵݔ = ଴ݔ(ݐ)܆ + න(ݐ)܆ (ݏ)ࢻܰ(ݏ)ଵି܆
௧

଴
ݏ݀ =  (ݐ)ܠ

for some control ࢻ(⋅) ∈ ࣛ.  

Theorem (2.1.3): (Geometry of the Set ࡷ) 

The set ݐ)ܭ,  .଴) is convex and closedݔ
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Proof: 

1. (Convexity) Let ݔଵ, ଶݔ ∈ ,ݐ)ܭ ,ଵࢻ ଴). Then there existsݔ ଶࢻ ∈ ࣛ such that 

ଵݔ = ଴ݔ(ݐ)܆ + න(ݐ)܆ (ݏ)ଵࢻܰ(ݏ)ଵି܆
௧

଴
 ݏ݀

ଶݔ = ଴ݔ(ݐ)܆ න(ݐ)܆+ (ݏ)ଶࢻܰ(ݏ)ଵି܆
௧

଴
 .ݏ݀

Let 0 ≤ ߣ ≤ 1. Then 

ଵݔߣ + (1 − ଶݔ(ߣ = ଴ݔ(ݐ)܆ + න(ݐ)܆ ܰ(ݏ)ଵି܆ ൫ࢻଵ(ݏ) + (1 − ൯ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ(ݏ)ଶࢻ(ߣ
∈ࣛ

௧

଴
 ,ݏ݀

and hence ݔߣଵ + (1 − ଶݔ(ߣ ∈ ,ݐ)ܭ  .(଴ݔ

2. (Closedness) Assume ݔ௞ ∈ ,ݐ)ܭ ݇) ଴) forݔ = 1,2, …) and ݔ௞ → ݕ We must show .ݕ ∈
,ݐ)ܭ ௞ݔ ଴). Asݔ ∈ ,ݐ)ܭ (⋅)௞ࢻ ଴), there existsݔ ∈ ࣛ  such that 

௞ݔ = ଴ݔ(ݐ)܆ න(ݐ)܆+ (ݏ)௞ࢻܰ(ݏ)ଵି܆
௧

଴
 .ݏ݀

According to Alaoglu's Theorem, there exist a subsequence ௝݇ → ∞ and  

ࢻ ∈ ࣛ such that ࢻ௞
∗
→ ݇ Let .ࢻ = ௝݇ → ∞ in the expression above, to find 

ݕ = ଴ݔ(ݐ)܆ + න(ݐ)܆ (ݏ)ࢻܰ(ݏ)ଵି܆
௧

଴
 .ݏ݀

Thus ݕ ∈ ,ݐ)ܭ ,ݐ)ܭ ଴), and henceݔ  .଴) is closedݔ

If ܵ is a set, we write ߲ܵ to denote the boundary of ܵ. 

Recall that ߬∗. denotes the minimum time it takes to steer to 0, using the optimal  
control ࢻ∗. Note that then 0 ∈ ,∗߬)ܭ߲  .(଴ݔ

Theorem (2.1.4): (Pontryagin Maximum Principle for Linear time-optimal Control) 

There exists a nonzero vector ℎ such that  

(M)																																							ℎ்ି܆ଵ(ݐ)ܰ(ݐ)∗ࢻ = max
௔∈஺

{ℎ்ି܆ଵ(ݐ)ܰܽ}																																						 
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for each time 0 ≤ ݐ ≤ ߬∗. 

The significance of this assertion is that if we know ℎ then the maximization principle 
(M) provides us with a formula for computing ࢻ∗(⋅), or at least extracting useful 
information. 

We will see in the next section that assertion (M) is a special case of the general 
Pontryagin Maximum Principle. 

Proof: 

1. We know 0 ∈ ,∗߬)ܭ߲ ,∗߬)ܭ ଴). Sinceݔ  ଴) is convex, there exists a supporting planeݔ
to ܭ(߬∗, ݃ ଴) at 0; this means that for someݔ ≠ 0, we have 

݃ ⋅ ଵݔ ≤ 0					for	all					ݔଵ ∈ ,∗߬)ܭ  .(଴ݔ

2. Now ݔଵ ∈ ,∗߬)ܭ (⋅)ࢻ ଴) if and only if there existsݔ ∈ ࣛ such that 

ଵݔ = ଴ݔ(∗߬)܆ + න(∗߬)܆ (ݏ)ࢻܰ(ݏ)ଵି܆
ఛ∗

଴
 .ݏ݀

Also 

0 = ଴ݔ(∗߬)܆ + න(∗߬)܆ (ݏ)∗ࢻܰ(ݏ)ଵି܆
ఛ∗

଴
 .ݏ݀

Since ݃ ⋅ ଵݔ ≤ 0, we deduce that 

்݃ ቆݔ(∗߬)܆଴ + න(∗߬)܆ (ݏ)ࢻܰ(ݏ)ଵି܆
ఛ∗

଴
ቇݏ݀ ≤ 0 

= ்݃ ቆݔ(∗߬)܆଴ + න(∗߬)܆ (ݏ)∗ࢻܰ(ݏ)ଵି܆
ఛ∗

଴
 									.ቇݏ݀

Define ℎ் ∶=  Then .(∗߬)܆்݃

න ℎ்ି܆ଵ(ݏ)ܰ(ݏ)ࢻ
ఛ∗

଴
ݏ݀ ≤ න ℎ்ି܆ଵ(ݏ)ܰ(ݏ)∗ࢻ

ఛ∗

଴
 ;ݏ݀

and therefore 
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න ℎ்ି܆ଵ(ݏ)ܰ൫(ݏ)∗ࢻ − ൯(ݏ)ࢻ
ఛ∗

଴
ݏ݀ ≥ 0 

for all controls ࢻ(⋅) ∈ ࣛ. 

3. We claim now that the foregoing implies 

ℎ்ି܆ଵ(ݏ)ܰ(ݏ)∗ࢻ = max
௔∈஺

{ℎ்ି܆ଵ(ݏ)ܰܽ} 

for almost every time ݏ. 

For suppose not; then there would exist a subset ܧ ⊂ [0, ߬∗] of positive measure, such 
that 

ℎ்ି܆ଵ(ݏ)ܰ(ݏ)∗ࢻ < max
௔∈஺

{ℎ்ି܆ଵ(ݏ)ܰܽ} 

for ݏ ∈  :ෝ(⋅) as followsࢻ Design a new control .ܧ

(ݏ)∗ࢻ = ൜ࢻ
(ݏ)∗ ݏ) ∉ (ܧ
(ݏ)ࢻ ݏ) ∈ (ܧ  

where (ݏ)ࢻ is selected so that 

max
௔∈஺

{ℎ்ି܆ଵ(ݏ)ܰܽ} = ℎ்ି܆ଵ(ݏ)ܰ(ݏ)ࢻ. 

Then 

න ℎ்ି܆ଵ(ݏ)ܰ൫(ݏ)∗ࢻ − ൯ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ(ݏ)ෝࢻ
ழ଴

	

ா
ݏ݀ ≥ 0. 

This contradicts Step 2 above. 

For later reference, we pause here to rewrite the foregoing into different notation; this 
will turn out to be a special case of the general theory developed later in section (2.2). 
First of all, define the Hamiltonian 

,ݔ)ܪ ,݌ ܽ) ∶= ݔܯ) +ܰܽ) ⋅ ݌ ,ݔ) ݌ ∈ ℝ௡, ܽ ∈  .(ܣ

Theorem (2.1.5): (Another way to write Pontryagin Maximum Principle for time-
optimal  Control) 

Let ܠ∗(⋅) be a time optimal control and ܠ∗(⋅) the corresponding response. 
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Then there exists a function ܘ∗(⋅) ∶ [0, ߬∗] → ℝ௡, such that 

(ODE)																																							̇(ݐ)∗ܠ = ∇௣ܪ൫(ݐ)∗ܠ, ,(ݐ)∗ܘ  																																										,൯(ݐ)∗ࢻ

(ADJ)																																						̇(ݐ)∗ܘ = −∇௫ܪ൫(ݐ)∗ࢻ,(ݐ)∗ܘ,(ݐ)∗ܠ൯,																																								 

and 

(M)																												ܪ൫(ݐ)∗ܠ, ,(ݐ)∗ܘ ൯(ݐ)∗ࢻ = max
௔∈஺

,(ݐ)∗ܠ൫ܪ  																																				.൯(ݐ)∗ܘ

We call (ADJ) the adjoint equations and (M) the maximization principle. The function 	
 .is the costate (⋅)∗ܘ

Proof: 

1. Select the vector ℎ as in Theorem (2.1.4), and consider the system 

൜ܘ
(ݐ)∗ = (ݐ)∗ܘ்ܯ−

(0)∗ܘ = ℎ.																 

The solution is (ݐ)∗ܘ = ݁ି௧ெ೅ℎ; and hence 

்(ݐ)∗ܘ = ℎ்ି܆ଵ(ݐ), 

since ൫݁ି௧ெ೅൯
்
= ݁ି௧ெ =  .(ݐ)ଵି܆

2. We know from condition (M) in Theorem (2.1.4) that 

ℎ்ି܆ଵ(ݐ)ܰ(ݐ)∗ࢻ = max
௔∈஺

{ℎ்ି܆ଵ(ݐ)ܰܽ} 

Since (ݐ)∗ܘ் = ℎ்ି܆ଵ(ݐ), this means that 

(ݐ)∗ܠܯ൫்(ݐ)∗ܘ + ൯(ݐ)∗ࢻܰ = max
௔∈஺

(ݐ)∗ܠܯ)்(ݐ)∗ܘ} + ܰܽ)}. 

3. Finally, we observe that according to the definition of the Hamiltonian ܪ, the 
dynamical equations for ܠ∗(⋅),  take the form (ODE) and (ADJ), as stated in the (⋅)∗ܘ
Theorem. 

Example (2.1.6): (Rocket Railroad Car) 

We recall this example, introduced in section (1.1). We have 



38 
 

(ODE)																																												̇(ݐ)ܠ = ቀ0 1
0 0ቁᇣᇧᇤᇧᇥ
ܯ

+(ݐ)ܠ ቀ01ቁต
ܰ

 																																								(ݐ)ߙ

for 

(ݐ)ܠ = ൬ݔ
ଵ(ݐ)
(ݐ)ଶݔ

൰ , A = [−1,1]. 

According to the Pontryagin Maximum Principle, there exists ℎ ≠ 0 such that 

(M)																																												ℎܶି܆ଵ(ݐ)ܰ(ݐ)∗ߙ = max
|௔|ஸଵ

{ℎ்ି܆ଵ(ݐ)ܰܽ}.																																 

We will extract the interesting fact that an optimal control ߙ∗. switches at most one time. 

We must compute ݁௧ெ. To do so, we observe 

଴ܯ = ,ܫ ܯ = ቀ0 1
0 0ቁ , ଶܯ = ቀ0 1

0 0ቁ ቀ
0 1
0 0ቁ = 0; 

and therefore ܯ௞ = 0 for all ݇ ≥ 2. Consequently, 

݁௧ெ = ܫ + ܯݐ = ቀ0 ݐ
0 1ቁ. 

Then 

(ݐ)ଵି܆ = ቀ0 ݐ−
0 1 ቁ 

ܰ(ݐ)ଵି܆																					 = ቀ0 ݐ−
0 1 ቁ ቀ

0
1ቁ = ቀ−1ݐ ቁ 

																																	ℎ்ି܆ଵ(ݐ)ܰ = (ℎ1 ℎ2) ቀ
ݐ−
1 ቁ = ℎ1ݐ− + ℎଶ. 

The Maximum Principle asserts 

ℎ1ݐ−) + ℎଶ)(ݐ)∗ߙ = max
|௔|ஸଵ

ℎ1ݐ−)} + ℎଶ)ܽ} ; 

and this implies that 

(ݐ)∗ߙ = sgn(−ݐℎ1 + ℎଶ) 

for the sign function 
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sgn	ݔ = ൝
1 ݔ > 0
0 ݔ = 0
−1 ݔ < 0.

 

Therefore the optimal control ߙ∗ switches at most once; and if ℎଵ = 0, then ߙ∗ is 
constant. 

Since the optimal control switches at most once, then the control we constructed by a 
geometric method in section (1.1) must have been optimal.  

Example (2.1.7): (Control of A vibrating Spring) 

Consider next the simple dynamics 

ݔ̈ + ݔ =  ,ߙ

 

 

 

Figure (2.1) 

where we interpret the control as an exterior force acting on an oscillating weight (of unit 
mass) hanging from a spring. Our goal is to design an optimal exterior forcing ߙ∗(⋅) that 
brings the motion to a stop in minimum time. 

We have ݊ = 2,݉ = 1. The individual dynamical equations read: 

൜̇ݔ
ଵ(ݐ) = 																		(ݐ)ଶݔ

(ݐ)ଶݔ̇ = (ݐ)ଵݔ− + ;(ݐ)ߙ
 

which in vector notation become 

(ODE)																																															̇(ݐ)ܠ = ቀ 0 1
−1 0ቁᇣᇧᇧᇤᇧᇧᇥ

ܯ

+(ݐ)ܠ ቀ01ቁต
ܰ

 																																		(ݐ)ߙ

for |(ݐ)ߙ| ≤ 1. That is, ܣ = [−1,1]. 

We employ the Pontryagin Maximum Principle, which asserts that there exists ℎ ≠ 0 
such that 

(M)																																					ℎ்(ݐ)∗ߙܰ(ݐ)∗܆ = max
௔∈஺

{ℎ்ି܆ଵ(ݐ)ܰܽ}.																																									 
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To extract useful information from (M) we must compute ܆(⋅). To do so, we observe 
that the matrix ܯ is skew symmetric, and thus 

଴ܯ = ,ܫ ܯ = ቀ 0 1
−1 0ቁ , ଶܯ = ቀ−1 0

0 −1ቁ =  ܫ−

Therefore 

௞ܯ = ܫ if	݇ = 0,4,8, … 

௞ܯ = ܯ if	݇ = 1,5,9, … 

௞ܯ = ܫ− if	݇ = 2,6, … 

௞ܯ = 	ܯ− if	݇ = 3,7, …; 

and consequently 

݁௧ெ = ܫ + ܯݐ +
ଶݐ

2!
ଶܯ +⋯																										 

= ܫ + ܯݐ −
ଶݐ

2!
ܫ −

ଷݐ

3!
ܯ +

ସݐ

4!
ܫ + ⋯ 

																						= ቆ1 −
ଶݐ

2!
+
ସݐ

4!
− ⋯ቇ ܫ + ቆݐ −

ଷݐ

3!
+
ହݐ

5!
− ⋯ቇܯ 

				= cos ݐ ܫ + sin ݐ ܯ = ቀ cos ݐ sin ݐ
− sin ݐ cos  .ቁݐ

So we have 

(ݐ)ଵି܆ = ቀcos ݐ − sin ݐ
sin ݐ cos ݐ ቁ 

and 

ܰ(ݐ)ଵି܆ = ቀcos ݐ − sin ݐ
sin ݐ cos ݐ ቁ ቀ

0
1ቁ = ቀ− sin cosݐ ݐ ቁ ; 

whence 

ℎ்ି܆ଵ(ݐ)ܰ = (ℎ1 , ℎଶ) ቀ
− sin ݐ
cos ݐ ቁ = −ℎଵ sin ݐ + ℎଶ cos  .ݐ

According to condition (M), for each time ݐ we have 
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(−ℎ1 sin ݐ + ℎଶ cos (ݐ)∗ߙ(ݐ = max
|௔|ஸଵ

{(−ℎ1 sin ݐ + ℎଶ cos  .{ܽ(ݐ

Therefore 

(ݐ)∗ߙ = sgn(−ℎ1 sin ݐ + ℎଶ cos  .(ݐ

To simplify further, we may assume ℎଵଶ + ℎଶଶ = 1. Recall the trig identity         
sin(ݔ + (ݕ = sin ݔ cos ݕ + cos ݔ sinݕ, and choose ߜ such that −ℎଵ = cos ߜ , ℎଶ = sin  .ߜ
Then 

(ݐ)∗ߙ = sgn(cos ߜ sin ݐ + sinߜ cos (ݐ = sgn(sin(ݐ +  .((ߜ

We deduce therefore that ߙ∗ switches from +1 to −1, and vice versa, every ߨ units of 
time. 

Next, we figure out the geometric consequences. When ߙ ≡ 1, our (ODE) becomes 

൜̇ݔ
ଵ = 															ଶݔ
ଶݔ̇ = ଵିݔ− + 1.

 

In this case, we can calculate that 

݀
ݐ݀
൫(ݔଵ(ݐ) − 1)ଶ + ൯(ݐ)ଶ(ଶݔ) = (ݐ)ଵݔ)2 − (ݐ)ଵݔ̇(1 +  									(ݐ)ଶݔ̇(ݐ)ଶݔ2

																																																																							= (ݐ)ଵݔ)2 − (ݐ)ଶݔ(1 + (ݐ)ଵݔ−)(ݐ)ଶݔ2 + 1) = 0. 

Consequently, the motion satisfies (ݔଵ(ݐ) − 1)ଶ + (ݐ)ଶ(ଶݔ) ≡  ,ଵݎ ଵଶ, for some radiusݎ
and therefore the trajectory lies on a circle with center (0,1), as illustrated. 

If ߙ ≡ 1, then (ODE) instead becomes 

൜̇ݔ
ଵ = 															ଶݔ
ଶݔ̇ = ଵିݔ− − 1; 

in which case 

݀
ݐ݀
൫(ݔଵ(ݐ) + 1)ଶ + ൯(ݐ)ଶ(ଶݔ) = 0. 
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Figure (2.2) 

Thus (ݔଵ(ݐ) + 1)ଶ + (ݐ)ଶ(ଶݔ) =  ଶ, and the motion lies on a circleݎ ଶଶ for some radiusݎ
with center (−1,0). 

In summary, to get to the origin we must switch our control ߙ(⋅) back and forth 
between the values ±1, causing the trajectory to switch between lying on circles centered 
at (±1,0). The switches occur each ߨ units of time. 
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Section (2.2): The Pontryagin Maximum Principle 

This important chapter moves us beyond the linear dynamics assumed in Chapter (1), 
to consider much wider classes of optimal control problems, to introduce the fundamental 
Pontryagin Maximum Principle, and to illustrate its uses in a variety of examples. 

We begin in this section with a quick introduction to some variational methods. These 
ideas will later serve as motivation for the Pontryagin Maximum Principle. 

Assume we are given a smooth function ܮ ∶ 	ℝ௡		× ℝ௡ → ℝ = ,ݔ)ܮ  is called the ܮ ;(ݒ
Lagrangian. Let ܶ > 0, ,଴ݔ ∋	ଵݔ ℝ௡ be given. 

We have to note that the basic problem of the calculus of variations is to find a curve 
x∗(⋅) ∶ 	 [0, ܶ] → ℝ௡  that minimizes the functional 

[(⋅)ܠ]ܫ																																														 	≔ න ,(ݐ)ܠ൫ܮ ൯(ݐ)ܠ̇
ܶ

0
 (2.1)																																											ݐ݀

among all functions ܠ(⋅) satisfying (0)ܠ = (ܶ)ܠ ଴ andݔ =  .ଵݔ

Now assume ܠ∗(⋅) solves our variational problem. The fundamental question is this: 
how can we characterize ܠ∗(⋅)? 

 Now to the discuss derivation of Euler-Lagrange equations, we have to note that we 
write ܮ = ,ݔ)ܮ  as ݒ as denoting position, the variable ݔ and regard the variable ,(ݒ
denoting velocity. The partial derivatives of ܮ are  

ܮ߲
௜ݔ߲

= ௫೔ܮ ,							
ܮ߲
௜ݒ߲

= ௩೔ܮ 								(1 ≤ ݅ ≤ ݊), 

and we write 

∇௫ܮ ∶= ൫ܮ௫భ, … , ,௫೙൯ܮ ∇௩ܮ ∶= ൫ܮ௩భ, … ,  .௩೙൯ܮ

Theorem (2.2.1): (Euler-Lagrange Equations) 

Let ܠ∗(⋅) solve the calculus of variations problem. Then ܠ∗(⋅) solves the 
Euler.Lagrange differential equations: 

(E − L) 																															
݀
ݐ݀
ൣ∇௩ܮ൫(ݐ)∗ܠ, ൯൧(ݐ)∗ܠ̇ = ∇௫ܮ൫(ݐ)∗ܠ,  																														.൯(ݐ)∗ܠ̇
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The significance of preceding theorem is that if we can solve the Euler-Lagrange 
equations (E-L), then the solution of our original calculus of variations problem 
(assuming it exists) will be among the solutions. 

Note that (E-L) is a quasilinear system of ݊ second-order ODE. The ݅th component of 
the system reads 

݀
ݐ݀
ܠ௩೔൫ܮൣ

,(ݐ)∗ ൯൧(ݐ)∗ܠ̇ = ܠ௫೔൫ܮ
,(ݐ)∗  .൯(ݐ)∗ܠ̇

Proof: 

(i)  Select any smooth curve [ܶ,0]ܡ → ℝ௡, satisfying (0)ܡ = (ܶ)ܡ = 0. Define 

݅(߬) ∶= (⋅)ܠ]ܫ +  [(⋅)ܡ࣮

for ࣮ ∈ ℝ and ܠ(⋅) =       Notice that .(∗ To simplify we omit the superscript) .(⋅)∗ܠ
(⋅)ܠ +  ,is minimizer (⋅)ܠ takes on the proper values at the endpoints. Hence, since (⋅)ܡ࣮
we have 

݅(࣮) ≥ ൯(⋅)ܠ൫ܫ = ݅(0). 

Consequently ݅(⋅) has a minimum at ࣮ = 0, and so 

݅ᇱ(0) = 0. 

(ii) We must compute ݅ᇱ(࣮). Note first that 

݅(࣮) = න (ݐ)ܠ൫ܮ + ,(ݐ)ܡ࣮ (ݐ)ܠ̇ + ൯(ݐ)ܡ࣮
்

଴
 ;ݐ݀

and hence 

݅ᇱ(࣮) = න ൭෍ܮ௫೔൫(ݐ)ܠ + (ݐ)ܡ࣮ + (ݐ)ܠ̇ + ൯(ݐ)ܡ࣮̇
௡

௜ୀଵ

(ݐ)௜ܡ +෍ܮ௩೔(⋯)̇ܡ௜(ݐ)
௡

௜ୀଵ

൱
்

଴
 .ݐ݀

Let ࣮ = 0. Then 

0 = ݅ᇱ(0) = ෍න ,(ݐ)ܠ௫೔൫ܮ ൯(ݐ)௜ݕ(ݐ)ܠ̇ + ,(ݐ)ܠ௫೔൫ܮ (ݐ)ݕ൯̇(ݐ)ܠ̇
்

଴

௡

௜ୀଵ

 .ݐ݀

This equality holds for all choices of ܡ ∶ 	 [0,ܶ] → ℝ௡, with	(0)ܡ = (ܶ)ܡ = 0. 
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(iii) Fix any 1 ≤ ݆ ≤ ݊. Choose ܡ(⋅) so that 

(ݐ)௜ݕ ≡ 0				݅ ≠ (ݐ)௝ݕ			,݆ =  ,(ݐ)߰

where ߰ is an arbitary function. Use this choice of ܡ(⋅) above: 

0 = න ,(ݐ)ܠ௫ೕ൫ܮ (ݐ)൯߰(ݐ)ܠ̇ + ,(ݐ)ܠ௩ೕ൫ܮ (ݐ)൯߰(ݐ)ܠ̇
்

଴
 .ݐ݀

Integrate by parts, recalling that ߰(0) = ߰(ܶ) = 0: 

0 = න ൤ܮ௫ೕ൫(ݐ)ܠ, (ݐ)൯߰(ݐ)ܠ̇ −
݀
ݐ݀
൬ܮ௩ೕ൫(ݐ)ܠ, ൯൰൨(ݐ)ܠ̇ (ݐ)߰

்

଴
 .ݐ݀

This holds for all ߰ ∶ 	 [0,ܶ] → ℝ		߰(0) = ߰(ܶ) = 0 and therefore 

,(ݐ)ܠ௫ೕ൫ܮ ൯(ݐ)ܠ̇ −
݀
ݐ݀
൬ܮ௩ೕ൫(ݐ)ܠ, ൯൰(ݐ)ܠ̇ = 0 

for all times 0 ≤ ݐ ≤ ܶ. To see this, observe that otherwise ܮ௫ೕ −
ௗ
ௗ௧
ቀܮ௩ೕቁ would be, say, 

positive on some subinterval on ܫ ⊆ [0, ܶ]. Choose ߰ ≡ 0	 off ܫ, ߰ > 0 on ܫ. Then  

න ൭ܮ௫ೕ −
݀
ݐ݀
ቀܮ௩ೕቁ൱߰

்

଴
ݐ݀ > 0, 

a contradiction. 

Definition (2.2.2): 

For the given curve ܠ(⋅), define 

(ݐ)ܘ ∶= ∇௩ܮ൫(ݐ)ܠ, ൯(ݐ)ܠ̇ (0 ≤ ݐ ≤ ܶ). 

We call ܘ(⋅) the generalized momentum. 

Our intention now is to rewrite the Euler-Lagrange equations as a system of first-
order ODE for ܠ(⋅),  .(⋅)ܘ

Assume that for all ݔ, ݌ ∈ ℝ௡, we can solve the equation 

݌																																																																	 = ,ݔ)ܮݒ∇  (2.2)																																																					(ݒ
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for ݒ in terms of ݔ and ݌. That is, we suppose we can solve the identity (2.2) for          
ݒ = ,ݔ)ݒ  .(݌

Definition (2.2.3): 

Define the dynamical systems Hamiltonian ܪ ∶ 	ℝ௡ × ℝ௡ → ℝ by the formula 

,ݔ)ܪ (݌ = ݌ ⋅ ,ݔ)࢜ (݌ − ,ݔ൫ܮ ,ݔ)࢜  ,൯(݌

where ࢜ is defined above. 

Remember that, the partial derivatives of ܪ are 

ܪ߲
௜ݔ߲

= ௫೔ܪ ,
ܪ߲
௜݌߲

= ௣೔ܪ (1 ≤ ݅ ≤ ݊), 

and we write 

∇௫ܪ ∶= ൫ܪ௫భ, … ,௫೙൯ܪ, ∇௣ܪ ∶= ൫ܪ௣భ , …  .௣೙൯ܪ,

Theorem (2.2.4): (Hamiltonian Dynamics) 

Let ܠ(⋅) solve the Euler-Lagrange equations (E-L) and define ܘ(⋅) as above. Then the 
pair ൫ܠ(⋅),  :൯ solves Hamilton's equations(⋅)ܘ

(H) 																																													ቊ
(ݐ)ܠ̇ = ∇௣ܪ൫(ݐ)ܠ, 			൯(ݐ)ܘ
(ݐ)ܘ̇ = −∇௫ܪ൫(ݐ)ܠ, ൯(ݐ)ܘ

																																																			 

Furthermore, the mapping ݐ ↦ ,(ݐ)ܠ൫ܪ  .൯ is constant(ݐ)ܘ

Proof: 

Recall that ݔ)ܪ, (݌ = ݌ ⋅ ,ݔ)ܞ (݌ − ,ݔ൫ܮ ,ݔ)ܞ ݒ ൯, where(݌ = ,ݔ)ܞ  ,or, equivalently (݌
݌ = ∇௩ݔ)ܮ,  Then .(ݒ

∇௫ݔ)ܪ, (݌ = ݌ ⋅ ∇௫ܞ − ∇௫ܮ൫ݔ, ,ݔ)ܞ ൯(݌ − ∇௩ܮ൫ݔ, ,ݔ)ܞ ൯(݌ ⋅ ∇௫ܞ 

= −∇௫ܮ൫ݔ, ,ݔ)ܞ  																																										൯(݌

because ݌ = ∇௩ܮ. Now (ݐ)ܘ = ∇௩ܮ൫(ݐ)ܠ, (ݐ)ܠ̇ ൯ if and only if(ݐ)ܠ̇ = ,(ݐ)ܠ൫ܞ  .൯(ݐ)ܘ
Therefore (E-L) implies 

(ݐ)ܘ̇ = ∇௫ܮ൫(ݐ)ܠ,  																																																																				൯(ݐ)ܠ̇
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= ∇௫ܮ ቀ(ݐ)ܠ, ൯ቁ(ݐ)ܘ,(ݐ)ܠ൫ܞ = −∇௫ܪ൫(ݐ)ܠ,  .൯(ݐ)ܘ

Also 

∇௣ݔ)ܪ, (݌ = ,ݔ)ܞ (݌ + ݌ ⋅ ∇௣ − ܮ௩∇ܞ ⋅ ∇௣ܞ = ,ݔ)ܞ  (݌

since ݌ = ∇௩ܮ൫ݔ, ,ݔ)ܞ  ൯. This implies(݌

∇௣ܪ൫(ݐ)ܘ,(ݐ)ܠ൯ = ,(ݐ)ܠ൫ܞ  .൯(ݐ)ܘ

But 

(ݐ)ܘ = ∇௩ܮ൫(ݐ)ܠ,  ൯(ݐ)ܠ̇

and so ̇(ݐ)ܠ = ,(ݐ)ܠ൫ܞ  ൯. Therefore(ݐ)ܘ

(ݐ)ܠ̇ = ∇௣ܪ൫(ݐ)ܘ,(ݐ)ܠ൯. 

Finally note that 

݀
ݐ݀
,(ݐ)ܠ൫ܪ ൯(ݐ)ܘ = ∇௫ܪ ⋅ (ݐ)ܠ̇ + ∇௣ܪ ⋅ (ݐ)ܘ̇ = ∇௫ܪ ⋅ ∇௣ܪ + ∇௣ܪ ⋅ (−∇௫ܪ) = 0. 

Now let us discuss a physical example: 

We define the Lagrangian 

,ݔ)ܮ (ݒ =
ଶ|ݒ|݉

2
−  ,(ݔ)ܸ

which we interpret as the kinetic energy minus the potential energy ܸ. Then 

∇௫ܮ = ,(ݔ)ܸߘ− ∇௩ܮ =  .ݒ݉

Therefore the Euler-Lagrange equation is 

(ݐ)ܠ̈݉ = −∇ܸ൫(ݐ)ܠ൯, 

which is Newton's law. Furthermore 

݌ = ∇௩ݔ)ܮ, (ݒ =  ݒ݉

is the momentum, and the Hamiltonian is 
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,ݔ)ܪ (݌ = ݌ ⋅
݌
݉
− ܮ ቀݔ,

݌
݉
ቁ =

ଶ|݌|

݉
−
݉
2
ቚ
݌
݉
ቚ
ଶ
+ (ݔ)ܸ =

ଶ|݌|

2݉
+  ,(ݔ)ܸ

the sum of the kinetic and potential energies. For this example, Hamilton's equations read 

ቐ̇ܠ
(ݐ) =

(ݐ)ܘ
݉

														

(ݐ)ܘ̇ = −∇ܸ൫(ݐ)ܠ൯.
 

What first strikes us about general optimal control problems is the occurence of many 
constraints, most notably that the dynamics be governed by the differential equation 

(ODE) 																																						ቊ̇(ݐ)ܠ = ݂൫(ݐ)ܠ, ൯(ݐ)ࢻ ݐ) > 0)
(0)ܠ = 																																						.଴ݔ

																																											 

This is in contrast to standard calculus of variations problems, as discussed in  section 
(2.1), where we could take any curve ܠ(⋅) as a candidate for a minimizer. 

Now it is a general principle of variational and optimization theory that ''constraints 
create Lagrange multipliers'' and furthermore that these Lagrange multipliers often 
''contain valuable information''. This section provides a quick review of the standard 
method of Lagrange multipliers in solving multivariable constrained optimization 
problems. 

Suppose first that we wish to find a maximum point for a given smooth function ݂ ∶
ℝ௡ → ℝ. In this case there is no constraint, and therefore if ݂(ݔ∗) = max

௫∈ℝ೙
 is ∗ݔ then ,(ݔ)݂

a critical point of ݂: 

(∗ݔ)݂∇ = 0. 

Hence to discuss the constrained optimization, we modify the problem above by 
introducing the region 

ܴ ∶= ݔ} ∈ ℝ௡|	݃(ݔ) ≤ 0}, 

determined by some given function ݃ ∶ ℝ௡ → ℝ. Suppose ݔ∗ ∈ ܴ and                   
(∗ݔ)݂ = max

௫∈ோ
 ݂ in terms of the gradients of ∗ݔ We would like a characterization of .(ݔ)݂

and ݃. 

Case (1):࢞∗ lies in the interior of ࡾ 

Then the constraint is inactive, and so 
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(∗ݔ)݂∇																																																														 = 0.																																																											(2.3) 

 

 

 

 

 

 

Figure (2.3) 

Case (2): ࢞∗ lies on ࣔࡾ 

We look at the direction of the vector (∗ݔ)݂ߘ. A geometric picture like Figure (2.3) is 
impossible; for if it were so, then ݂(ݕ∗) would be greater that ݂(ݔ∗) for some other point 
∗ݕ ∈ ߲ܴ. So it must be (∗ݔ)݂ߘ is perpendicular to ߲ܴ at ݔ∗, as shown in Figure (2.4). 

 

 

 

 

 

 

Figure (2.4) 

Since ∇݃ is perpendicular to ߲ܴ = {݃ = 0}, it follows that (∗ݔ)݂ߘ is parallel to 
 Therefore .(∗ݔ)݃ߘ

(∗ݔ)݂∇																																																											 =  (2.4)																																																		(∗ݔ)݃∇ߣ

for some real number ߣ, called a Lagrange multiplier. 
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The foregoing argument is in fact incomplete, since we implicitly assumed that 
(∗ݔ)݃ߘ ≠ 0, in which case the Implicit Function Theorem implies that the set {݃ = 0} is 
an (݊ − 1)-dimensional surface near ݔ∗ (as illustrated). 

If instead (∗ݔ)݃ߘ = 0, the set {݃ = 0} need not have this simple form near ݔ∗; and 
the reasoning discussed as Case (2) above is not complete. 

The correct statement is this:  

												൜
There	exist	real	numbers	ߣ	and	ߤ, not	both	equal	to	0, such	that

(∗ݔ)݂∇ߤ = .(∗ݔ)݃∇ߣ 															(2.5) 

If ߤ ≠ 0, we can divide by ߤ and convert to the formulation (2.4). And if      
(∗ݔ)݃ߘ = 0,we can take ߣ = 1, ߤ = 0, making assertion (2.5) correct (if not particularly 
useful). 

We come now to the key assertion of this section, the theoretically interesting and 
practically useful theorem that if  ࢻ∗(⋅) is an optimal control, then there exists a function 
 called the costate, that satisfies a certain maximization principle. We should think ,(⋅)∗ܘ
of the function ܘ∗(⋅) as a sort of Lagrange multiplier, which appears owing to the 
constraint that the optimal curve ܠ∗(⋅) must satisfy (ODE). And just as conventional 
Lagrange multipliers are useful for actual calculations, so also will be the costate. 

We quote Francis Clarke [5]: ''The maximum principle was, in fact, the culmination of 
a long search in the calculus of variations for a comprehensive multiplier rule, which is 
the correct way to view it: (ݐ)݌ is a '' Lagrange multiplier '' ... It makes optimal control a 
design tool, whereas the calculus of variations was a way to study nature ''. 

Now Let us review the basic set-up for our control problem. 

We are given ܣ ⊆ ℝ௠ and also ܎ ∶ ℝ௡ × ܣ → ℝ௡, ଴ݔ ∈ ℝ௡. We as before denote the 
set of admissible controls by 

ࣛ = (⋅)ࢻ} ∶ [0,∞) →  .{measurable	is	(⋅)ࢻ	|	ܣ

Then given ࢻ(⋅) ∈ ࣛ, we solve for the corresponding evolution of our system: 

(ODE) 																																									ቊ̇(ݐ)ܠ = ,(ݐ)ܠ൫܎ ൯(ݐ)ࢻ ݐ) ≥ 0)
(ݐ)ܠ = 																																		.଴ݔ

																																									 

We also introduce the payoff functional 
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(P)																																															[ࢻ(⋅)] = න ൯(ݐ)ࢻ,(ݐ)ܠ൫ݎ
ܶ

0
ݐ݀ + ݃൫ܠ(ܶ)൯,																								 

where the terminal time ܶ > 0, running payoff ݎ ∶ ℝ௡ ܣ× → ℝ and terminal payoff ݃ ∶
	ℝ௡ → ℝ are given. 

Our basic problem, is to find a control ߙ∗(⋅) such that 

[(⋅)ࢻ] = max
ࣛ∋(⋅)ࢻ

 .[(⋅)ࢻ]ܲ

The Pontryagin Maximum Principle, stated below, asserts the existence of a function 
 satisfies an analog of Hamilton's (⋅)∗ܠ which together with the optimal trajectory ,(⋅)∗ࡼ
ODE from section (2.1). For this, we will need an appropriate Hamiltonian: 

Definition (2.2.5): 

The control theory Hamiltonian is the function 

,ݔ)ܪ ,݌ ܽ) ∶= ,ݔ)܎ ܽ) ⋅ ݌ + ,ݔ)ݎ ܽ) ,ݔ) ݌ ∈ ℝ௡ , ܽ ∈  .(ܣ

Theorem (2.2.6): (Pontryagin Maximum Principle) 

Assume ࢻ∗(⋅) is optimal for (ODE), (P) and ܠ∗(⋅) is the corresponding trajectory. 
Then there exists a function ܘ∗ ∶ 	 [0, ܶ] → ℝ௡  such that 

(ODE)																																							̇(ݐ)∗ܠ = ∇௣ܪ൫(ݐ)∗ܠ, ,(ݐ)∗ܘ  																																										,൯(ݐ)∗ࢻ

(ADJ)																																							(ݐ)∗ܘ = −∇௫ܪ൫(ݐ)∗ܠ,  																																								,൯(ݐ)∗ࢻ,(ݐ)∗ܘ

and 

(M)																					ܪ൫(ݐ)∗ܠ, ൯(ݐ)∗ࢻ,(ݐ)∗ܘ = max
௔∈஺

,(ݐ)∗ܠ)ܪ ,(ݐ)∗ܘ ܽ) (0 ≤ ݐ ≤ ܶ)													 

In addition, 

the	mapping					ݐ ↦ ,(ݐ)∗ܘ,(ݐ)∗ܠ൫ܪ  .constant	is					൯(ݐ)∗ࢻ

Finally, we have the terminal condition 

(T)																																																									ܘ∗(ܶ) = ∇݃൫ܠ∗(ܶ)൯																																																						 
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Remarks and Interpretations (2.2.7):  

(i) The identities (ADJ) are the adjoint equations and (M) the maximization principle. 
Notice that (ODE) and (ADJ) resemble the structure of Hamilton's equations, 
discussed in section (2.1). 

We also call (T) the transversality condition and will discuss its significance later. 

(ii) More precisely, formula (ODE) says that for 1 ≤ ݅ ≤ ݊, we have 

(ݐ)∗௜ݔ̇ = ܠ௣೔൫ܪ
,(ݐ)∗ ൯(ݐ)∗ࢻ,(ݐ)∗ܘ = ݂ ௜൫(ݐ)∗ܠ,  ,൯(ݐ)∗ࢻ

which is just the original equation of motion. Likewise, (ADJ) says 

(ݐ)∗௜̇݌ = ܠ௫೔൫ܪ−
,(ݐ)∗ ,(ݐ)∗ܘ  ൯(ݐ)∗ࢻ

																																																						= −෍݌௝∗(ݐ) ௫݂೔
௝൫(ݐ)∗ࢻ,(ݐ)∗ܠ൯

௡

௝ୀଵ

− ܠ௫೔൫ݎ
,(ݐ)∗  .൯(ݐ)∗ࢻ

Let us next record the appropriate form of the Maximum Principle for a fixed 
endpoint problem. 

As before, given a control ࢻ(⋅) ∈ ࣛ, we solve for the corresponding evolution of our 
system: 

(ODE) 																																					ቊ̇(ݐ)ܠ = ൯(ݐ)ࢻ,(ݐ)ܠ൫܎ ݐ) ≥ 0)
(0)ܠ = 																																				.଴ݔ

																																														 

Assume now that a target point ݔଵ ∈ ℝ௡  is given. We introduce then the payoff 
functional 

(P)																																																	ܲ[ࢻ(⋅)] = න ൯(ݐ)ࢻ,(ݐ)ܠ൫ݎ
்

଴
 																																												ݐ݀

Here ݎ ∶ 	ℝ௡ × ܣ → ℝ is the given running payoff, and ࣮ = [(⋅)ࢻ]࣮ ≤ ∞ denotes the 
first time the solution of (ODE) hits the target point ݔଵ. 

As before, the basic problem is to find an optimal control ࢻ∗(⋅) such that 

[(⋅)∗ࢻ]ܲ = max
ࣛ∋(⋅)ࢻ

 .[(⋅)ࢻ]ܲ

Define the Hamiltonian ܪ as in section (2.2). 
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Theorem (2.2.8): (Pontryagin Maximum Principle) 

Assume ࢻ∗(⋅) is optimal for (ODE), (P) and ܠ∗(⋅) is the corresponding trajectory. 
Then there exists a function ܘ∗ ∶ [0,࣮∗] → ℝ such that 

(ODE)																																									̇(ݐ)∗ܠ = ∇௣ܪ൫(ݐ)∗ܠ,  																																								,൯(ݐ)∗ࢻ,(ݐ)∗ܘ

(ADJ)																																										̇(ݐ)∗ܘ = −∇௫ܪ൫(ݐ)∗ܠ,  																																					,൯(ݐ)∗ࢻ,(ݐ)∗ܘ

and 

(M)																			ܪ൫(ݐ)∗ܠ, ,(ݐ)∗ܘ ൯(ݐ)∗ࢻ = max
௔∈஺

,(ݐ)∗ܠ)ܪ ,(ݐ)∗ܘ ܽ) (0 ≤ ݐ ≤ ࣮∗).															 

Also, 

,(ݐ)∗ܘ,(ݐ)∗ܠ൫ܪ ൯(ݐ)∗ࢻ ≡ 0 (0 ≤ ݐ ≤ ࣮∗). 

Here ࣮∗ denotes the first time the trajectory ݔ∗(⋅) hits the target point ݔଵ. We call 
 .the costate (⋅)∗ܘ the state of the optimally controlled system and (⋅)∗ܠ

More precisely, we should define 

,ݔ)ܪ ,݌ ,ݍ ܽ) = ,ݔ)܎ ܽ) ⋅ ݌ + ,ݔ)ݎ ݍ(ܽ ݍ) ∈ ℝ). 

A more careful statement of the Maximum Principle says ''there exists a constant ݍ ≥ 0 
and a function ܘ∗ ∶ [0, [∗ݐ → ℝ௡ such that (ODE), (ADJ), and (M) hold ''. 

If ݍ > 0, we can renormalize to get ݍ = 1, as we have done above. If ݍ = 0, then H 
does not depend on running payoff ݎ and in this case the Pontryagin Maximum Principle 
is not useful. This is a so-called '' abnormal problem ''. 

Recall our discussion in section (2.2) about finding a point ݔ∗ that maximizes a 
function ݂, subject to the requirement that ݃ ≤ 0. Now ݔ∗ = ,∗ଵݔ) … ,  ௡∗)் has ݊ unknownݔ
components we must find. Somewhat unexpectedly, it turns out in practice to be easier to 
solve (2.2) for the ݊ + 1 unknowns ݔଵ∗, … , ∗௡ݔ  and ߣ. We repeat this key insight: it is 
actually easier to solve the problem if we add a new unknown, namely the Lagrange 
multiplier. 

This same principle is valid for our much more complicated control theory problems: 
it is usually best not just to look for an optimal control ࢻ∗(⋅) and an optimal trajectory 
 In practice, we add the .(⋅)∗ܘ alone, but also to look as well for the costate (⋅)∗ܠ
equations (ADJ) and (M) to (ODE) and then try to solve for ܠ(⋅)∗ࢻ∗(⋅) and for ܘ∗(⋅). 
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The following examples show how this works in practice, in certain cases for which 
we can actually solve everything explicitly or, failing that, at least deduce some useful 
information. 

Example (2.2.9): (Linear Time-optimal Control) 

For this example, let ܣ denote the cube [−1,1]௡ in ℝ௡ . We consider again the linear 
dynamics: 

(ODE)																																													൜̇(ݐ)ܠ = (ݐ)ࢻܰ+(ݐ)ܠܯ
(0)ܠ =  																																																																											.଴ݔ

for the payoff functional 

(P)																																																	[(⋅)ࢻ]ࡼ = −න 1
࣮

଴
ݐ݀ = −࣮,																																																	 

where ࣮ denotes the first time the trajectory hits the target point ݔଵ = 0. We have ࣮ ≡
−1, and so 

,ݔ)ܪ ,݌ ܽ) = ܎ ⋅ ݌ + ݎ = ݔܯ) +ܰܽ) ⋅ ݌ − 1. 

In section (2.1) we introduced the Hamiltonian ܪ = ݔܯ) + ܰܽ) ⋅  which differs by ,݌
a constant from the present ܪ. We can redefine ܪ in section(2.1) to match the present 
theory: compare then Theorems (2.1.5) and (2.2.8). 

Example (2.2.10): (Control of Production and Consumption) 

We return to Example (1.1.2) in Chapter (1), a model for optimal consumption in a 
simple economy. Recall that 

(ݐ)ݔ = output	of	economy	at	time	ݐ, 

(ݐ)ߙ																 = fraction	of	output	reinvested	at	time	ݐ 

We have the constraint 0 ≤ (ݐ)ߙ ≤ 1; that is, ܣ = [0,1] ⊂ ℝ. The economy evolves 
according to the dynamics 

(ODE)																																					൜̇(ݐ)ݔ = (ݐ)ݔ(ݐ)ߙ (0 ≤ ݐ ≤ ܶ)
(0)ݔ =  																																																																																				.଴ݔ

where ݔ଴ > 0 and we have set the growth factor ݇ = 1. We want to maximize the total 
consumption 
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(P)																																																	ܲ[ߙ(⋅)] ∶= න ൫1 − (ݐ)ݔ൯(ݐ)ߙ
்

଴
 																																								ݐ݀

How can we characterize an optimal control ݔ∗(⋅)? 

We apply Pontryagin Maximum Principle, and to simplify notation we will not write 
the superscripts ∗ for the optimal control, trajectory, etc. We have ݊ = ݉ = 1, 

,ݔ)݂ ܽ) = ݃					,ܽݔ ≡ ,ݔ)ݎ					,0 ܽ) = (1 −  ;ݔ(ܽ

and therefore 

,ݔ)ܪ ,݌ ܽ) = ,ݔ)݂ ݌(ܽ + ,ݔ)ݎ ܽ) = ܽݔ݌ + (1 − ݔ(ܽ = ݔ + ݌)ݔܽ − 1). 

The dynamical equation is 

(ODE)																																											̇(ݐ)ݔ = ௣ܪ =  																																																					,(ݐ)ݔ(ݐ)ߙ

and the adjoint equation is 

(ADJ)																																												(ݐ)̇݌ = ௫ܪ− = −1 − (ݐ)݌)(ݐ)ߙ − 1).																																	 

The terminal condition reads 

(T)																																																								݌(ܶ) = ݃௫ = 0.																																																												 

Lastly, the maximality principle asserts 

(M)																									ܪ൫(ݐ)ݔ, ,(ݐ)݌ ൯(ݐ)ߙ = max
଴ஸ௔ஸଵ

(ݐ)ݔ} + (ݐ)݌)(ݐ)ݔܽ − 1)}.																									 

We now deduce useful information from (ODE), (ADJ), (M) and (T). 

According to (M), at each time t the control value (ݐ)ߙ must be selected to maximize 
(ݐ)݌)ܽ − 1) for 0 ≤ ܽ ≤ 1. This is so, since (ݐ)ݔ > 0. Thus 

α(ݐ) = ൜1 if	(ݐ)݌ > 1
0 if	(ݐ)݌ ≤ 1. 

Hence if we know ݌(⋅), we can design the optimal control ߙ(⋅). 

So next we must solve for the costate ݌(⋅). We know from (ADJ) and (T) that 

൜̇݌
(ݐ) = −1 − −(ݐ)݌](ݐ)ߙ 1] (0 ≤ ݐ ≤ ܶ)
(ܶ)݌ = 0.																																																																 
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Since ݌(ܶ) = 0, we deduce by continuity that (ݐ)݌ ≤ 1 for ݐ close to ܶ, ݐ < ܶ. Thus 
(ݐ)ߙ = 0 for such values of ݐ. Therefore (ݐ)̇݌ = −1, and consequently (ݐ)݌ = ܶ −  for ݐ
times ݐ in this interval. So we have that (ݐ)݌ = ܶ − (ݐ)݌ so long as ݐ ≤ 1. And this holds 
for ܶ − 1 ≤ ݐ ≤ ܶ. 

But for times ݐ ≤ ܶ − 1, with t near ܶ − 1, we have (ݐ)ߙ = 1; and so (ADJ) becomes 

(ݐ)̇݌ = −1− (ݐ)݌) − 1) =  .(ݐ)݌−

Since ݌(ܶ − 1) = 1, we see that (ݐ)݌ = ்݁ିଵି௧ > 1 for all times 0 ≤ ݐ ≤ ܶ − 1. In 
particular there are no switches in the control over this time interval. 

Restoring the superscript ∗ to our notation, we consequently deduce that an optimal 
control is 

α∗(ݐ) = ൜1 if	0 ≤ ݐ ≤ ∗ݐ
0 if	ݐ∗ ≤ ݐ ≤ ܶ 

for the optimal switching time ݐ∗ = ܶ − 1. 

Example (2.2.11): (A Simple linear-Quadratic Regulator) 

We take ݊ = ݉ = 1 for this example, and consider the simple linear dynamics 

(ODE) 																																													൜̇(ݐ)ݔ = (ݐ)ݔ + (ݐ)ߙ
(0)ݔ =  																																																																									,଴ݔ

with the quadratic cost functional 

න ଶ(ݐ)ݔ + ଶ(ݐ)ߙ
்

଴
 ,ݐ݀

which we want to minimize. So we want to maximize the payoff functional 

(P)																																															ܲ[ߙ(⋅)] = −න ଶ(ݐ)ݔ + ଶ(ݐ)ߙ
்

଴
 																																									.ݐ݀

For this problem, the values of the controls are not constrained; that is, ܣ = ℝ. 

To simplify notation further we again drop the superscripts ∗. We have ݊ = ݉ = 1, 

,ݔ)݂ ܽ) = ݔ + ܽ,					݃ ≡ ,ݔ)ݎ					,0 ܽ) = ଶݔ− − ܽଶ; 

and hence 
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,ݔ)ܪ ,݌ ܽ) = ݌݂ + ݎ = ݔ) + ݌(ܽ − ଶݔ) + ܽଶ) 

The maximality condition becomes 

(M)																							ܪ൫(ݐ)ݔ, ,(ݐ)݌ ൯(ݐ)ߙ = max
௔∈ℝ

+ଶ(ݐ)ݔ)−} ܽଶ) + (ݐ)ݔ)(ݐ)݌ + ܽ)}															 

We calculate the maximum on the right hand side by setting ܪ௔ = −2ܽ + ݌ = 0. Thus 
ܽ = ௣

ଶ
, and so 

(ݐ)ߙ =
(ݐ)݌
2
. 

The dynamical equations are therefore 

(ODE)																																																̇(ݐ)ݔ = +(ݐ)ݔ
(ݐ)݌
2
																																																										 

and 

(ADJ)																																													(ݐ)̇݌ = ௫ܪ− = (ݐ)ݔ2 −  																																														.(ݐ)݌

Moreover (0)ݔ =  ଴, and the terminal condition isݔ

(T)																																																															݌(ܶ) = 0.																																																															 

So we must look at the system of equations 

൬̇̇݌ݔ൰ = ቀ1 1 2⁄
2 −1 ቁᇣᇧᇧᇤᇧᇧᇥ

ெ

ቀ
ݔ
 ,ቁ݌

the general solution of which is 

൬ݔ
(ݐ)
൰(ݐ)݌ = ݁௧ெ ൬ݔ

଴

 .଴൰݌

Since we know ݔ଴, the task is to choose ݌଴ so that ݌(ܶ) = 0. 

An elegant way to do so is to try to find optimal control in linear feedback form; that 
is, to look for a function ܿ(⋅) ∶ 	 [0, ܶ] → ℝ for which  

(ݐ)ߙ =  .(ݐ)ݔ	(ݐ)ܿ

We henceforth suppose that an optimal feedback control of this form exists, and 
attempt to calculate ܿ(⋅). Now 
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(ݐ)݌
2

= (ݐ)ߙ =  ;(ݐ)ݔ(ݐ)ܿ

whence ܿ(ݐ) = ௣(௧)
ଶ௫(௧)

. Define now 

(ݐ)݀ ∶=
(ݐ)݌
(ݐ)ݔ

; 

so that ܿ(ݐ) = ௗ(௧)
ଶ

. 

We will next discover a differential equation that ݀(⋅) satisfies. Compute 

݀̇ =
̇݌
ݔ
−
ݔ̇݌
ଶݔ
, 

and recall that 

൝̇ݔ = ݔ +
݌
2
			

̇݌ = ݔ2 − .݌
 

Therefore 

݀̇ =
ݔ2 − ݌
ݔ

−
݌
ଶݔ
ቀݔ +

݌
2
ቁ = 2 − ݀ − ݀ ൬1 +

݀
2
൰ = 2 − 2݀ −

݀ଶ

2
. 

Since ݌(ܶ) = 0, the terminal condition is ݀(ܶ) = 0. 

So we have obtained a nonlinear first-order ODE for ݀(⋅) with a terminal boundary 
condition: 

(R) 																																																	൝݀̇ = 2 − 2݀ −
1
2
݀ଶ (0 ≤ ݐ ≤ ܶ)

݀(ܶ) = 0.																																												
																																												 

This is called the Riccati equation. 

In summary so far, to solve our linear-quadratic regulator problem, we need to first 
solve the Riccati equation (R) and then set 

(ݐ)ߙ =
1
2
 .(ݐ)ݔ(ݐ)݀
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How to solve the Riccati equation. It turns out that we can convert (R) it into a 
second-order, linear ODE. To accomplish this, write 

(ݐ)݀ =
(ݐ)2ܾ̇
(ݐ)ܾ

 

for a function ܾ(⋅) to be found. What equation does ܾ(⋅) solve? We compute 

݀̇ =
2ܾ̈
ܾ
−
2൫ܾ̇൯ଶ

ܾଶ
=
2ܾ̈
ܾ
−
݀ଶ

2
. 

Hence (R) gives 

2ܾ̈
ܾ
= ݀̇ +

݀ଶ

2
= 2 − 2݀ = 2 − 2

2ܾ̈
ܾ
; 

and consequently 

൜ܾ̈ = ܾ − 2ܾ̇ (0 ≤ ݐ < ܶ)
ܾ̇(ܶ) = ܾ	, ܾ(ܶ) = 1.											

 

This is a terminal-value problem for second-order linear ODE, which we can solve by 

standard techniques. We then set ݀ = ଶ௕̇
௕

, to derive the solution of the Riccati equation 
(R). 

Example (2.2.12): (Moon Lander) 

This is a much more elaborate and interesting example, already introduced in Chapter 
(1). We follow the discussion of [17]. 

Introduce the notation 

ℎ(ݐ) = height	at	time	ݐ																																																													 

(ݐ)ݒ = velocity = ℎ̇(ݐ)																																																														 

(ݐ)݉ = mass	of	spacecraft	(changing	as	fuel	is	used	up) 

(ݐ)ߙ = thrust	at	time	ݐ.																																																														 

The thrust is constrained so that 0 ≤ (ݐ)ߙ ≤ 1; that is, ܣ = [0,1]. There are also the 
constraints that the height and mass be nonnegative: ℎ(ݐ) ≥ (ݐ)݉,0 ≥ 0. 
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The dynamics are 

(ODE) 																																												

⎩
⎨

⎧ℎ̇(ݐ) = 														(ݐ)ݒ

(ݐ)ݒ̇ = −݃ +
(ݐ)ߙ
(ݐ)݉

		

(ݐ)̇݉ = 					,(ݐ)ߙ݇−

																																																						 

with initial conditions  

ቐ
ℎ(0) = ℎ଴ > 0			
(0)ݒ = 												଴ݒ
݉(0) = ݉଴ > 0.

 

The goal is to land on the moon safely, maximizing the remaining fuel ݉(࣮), where 
࣮ = (࣮)is the first time ℎ [(⋅)ߙ]࣮ = (࣮)ݒ = 0. Since ߙ = − ௠̇

௞
, our intention is 

equivalently to minimize the total applied thrust before landing; so that 

(P)																																																			ܲ[ߙ(⋅)] = −න (ݐ)ߙ
࣮

଴
 																																																						.ݐ݀

This is so since 

න (ݐ)ߙ
࣮

଴
ݐ݀ =

݉0 −݉(࣮)
݇ . 

In terms of the general notation, we have 

(ݐ)ܠ = ቌ
ℎ(ݐ)
(ݐ)ݒ
(ݐ)݉

ቍ ܎					, = ቆ
ݒ

−݃ + ܽ ݉⁄
−݇ܽ

ቇ. 

Hence the Hamiltonian is 

,ݔ)ܪ ,݌ ܽ) = ܎ ⋅ ݌ +  																																																																													ݎ

= ,ݒ) −݃ + ܽ ݉⁄ ,−݇ܽ) ⋅ ,ଵ݌) ,ଶ݌ (ଷ݌ − ܽ 

= −ܽ + ݒଵ݌ + ଶ݌ ቀ−݃ +
ܽ
݉
ቁ +  .(ܽ݇−)ଷ݌

We next have to figure out the adjoint dynamics (ADJ). For our particular 
Hamiltonian, 
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௫భܪ = ௛ܪ = ௫మܪ			,0 = ௩ܪ = ௫యܪ			,ଵ݌ = ௠ܪ = −
ଶܽ݌
݉ଶ . 

Therefore 

(ADJ)																																																	

⎩
⎪
⎨

⎪
̇݌⎧

ଵ(ݐ) = 0																		
(ݐ)ଶ̇݌ = 							(ݐ)ଵ݌−

(ݐ)ଷ̇݌ =
(ݐ)ߙ(ݐ)ଶ݌
ଶ(ݐ)݉

.
																																																					 

The maximization condition (M) reads 

(M)			ܪ൫(ݐ)ܠ, ,(ݐ)ܘ ൯(ݐ)ߙ = max
଴ஸ௔ஸଵ

,(ݐ)ܘ,(ݐ)ܠ)ܪ ܽ)																																																													 

																											= max
0≤ܽ≤1

൜−ܽ + +(ݐ)ݒ(ݐ)1݌ (ݐ)2݌ ൤−݃ +
ܽ

(ݐ)݉
൨ +  ൠ(ܽ݇−)(ݐ)3݌

																												= (ݐ)ݒ(ݐ)ଵ݌ − (ݐ)ଶ݌ + max
଴ஸ௔ஸଵ

൝ܽ ൭−1 +
(ݐ)ଶ݌
(ݐ)݉

−  .൱ൡ(ݐ)ଷ݌݇

Thus the optimal control law is given by the rule: 

(ݐ)ߙ =

⎩
⎪
⎨

⎪
⎧1 if	1 −

(ݐ)ଶ݌
(ݐ)݉

+ (ݐ)ଷ݌݇ < 0

0 if	1 −
(ݐ)ଶ݌
(ݐ)݉

+ (ݐ)ଷ݌݇ > 0.
 

Now we will attempt to figure out the form of the solution, and check it accords with 
the Maximum Principle. 

Let us start by guessing that we first leave rocket engine of (i.e., set ߙ ≡ 0) and turn 
the engine on only at the end. Denote by ࣮ the first time that ℎ(࣮) = (࣮)ݒ = 0, meaning 
that we have landed. We guess that there exists a switching time ݐ∗ 	< ܶ when we turned 
engines on at full power (i.e., set ߙ ≡ 1).Consequently, 

(ݐ)ߙ = ቄ0 for 0 ≤ ݐ ≤ ∗ݐ
1 for ∗ݐ ≤ ݐ ≤ ࣮. 

Therefore, for times ݐ∗ ≤ ݐ ≤ ࣮ our ODE becomes 
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⎩
⎨

⎧ℎ̇(ݐ) = 																																										(ݐ)ݒ

(ݐ)ݒ̇ = −݃ +
1

(ݐ)݉
∗ݐ) ≤ ݐ ≤ ࣮)

(ݐ)̇݉ = −݇																																											

 

with ℎ(࣮) = 0, (࣮)ݒ = (∗ݐ)݉,0 = ݉଴. We solve these dynamics: 

⎩
⎪
⎨

⎪
(ݐ)݉⎧ = ݉଴ + ∗ݐ)݇ − 																																				(ݐ

(ݐ)ݒ = ݃(࣮ − (ݐ +
1
݇
log ቈ

݉଴ + ∗ݐ)݇ − ࣮)
݉଴ + ∗ݐ)݇ − (ݐ

቉

ℎ(ݐ) = complicated	formua.																										

 

Now put ݐ =  :∗ݐ

⎩
⎪
⎨

⎪
⎧
(∗ݐ)݉ = ݉଴																																																																																									

(∗ݐ)ݒ = ݃(࣮ − (∗ݐ +
1
݇
log ቈ

݉଴ + ∗ݐ)݇ − ࣮)
݉଴

቉																													

ℎ(ݐ∗) = −
∗ݐ)݃ − ࣮)ଶ

2
−
݉଴

݇ଶ
log ቈ

݉଴ + ∗ݐ)݇ − ࣮)
݉଴

቉ +
∗ݐ − ࣮
݇

.

 

Suppose the total amount of fuel to start with was ݉ଵ; so that ݉଴ −݉ଵ is the weight 
of the empty spacecraft. When ߙ ≡ 1, the fuel is used up at rate ݇. Hence 

݇(࣮ − (∗ݐ ≤ ݉ଵ, 

and so 0 ≤ ࣮ − ∗ݐ ≤ ௠భ

௞
. 

Before time ݐ∗, we set ߙ ≡ 0. Then (ODE) reads 

ቐ
ℎ̇ = ݒ
ݒ̇ = −݃
݉̇ = 0;
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Figure (2.5) 

and thus 

൞

(ݐ)݉ = ݉଴																														
(ݐ)ݒ = ݐ݃− + 																			଴ݒ

ℎ(ݐ) = −
1
2
ଶݐ݃ + ଴ݒݐ + ℎ଴.

 

We combine the formulas for (ݐ)ݒ and ℎ(ݐ), to discover 

ℎ(ݐ) = ℎ଴ −
1
2݃

(ݐ)ଶݒ) − (଴ଶݒ (0 ≤ ݐ ≤  .(∗ݐ

We deduce that the freefall trajectory ൫(ݐ)ݒ, ℎ(ݐ)൯ therefore lies on a parabola 

ℎ = ℎ଴ −
1
2݃

ଶݒ) −  .(଴ଶݒ
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Figure (2.6) 

If we then move along this parabola until we hit the soft-landing curve from the 
previous picture, we can then turn on the rocket engine and land safely. 

In the second case illustrated, we miss switching curve, and hence cannot land safely 
on the moon switching once. 

 

 

 

 

 

 

 

 

Figure (2.7) 

To justify our guess about the structure of the optimal control, let us now find the 
costate ܘ(⋅) so that ߙ(⋅) and ܠ(⋅) described above satisfy (ODE), (ADJ), (M).To do this, 
we will have to figure out appropriate initial conditions 
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ଵ(0)݌ = ଶ(0)݌					,ଵߣ = ଷ(0)݌					,ଶߣ =  .ଷߣ

We solve (ADJ) for ߙ(⋅) as above, and find 

⎩
⎪
⎨

⎪
⎧ (ݐ)ଵ݌ ≡ 																																																					ଵߣ (0 ≤ ݐ ≤ ࣮)
(ݐ)ଶ݌ = ଶߣ − 																																										ݐଵߣ (0 ≤ ݐ ≤ ࣮)

(ݐ)ଷ݌ = ൞
																																																					ଷߣ (0 ≤ ݐ ≤ (∗ݐ

ଷߣ +න
ଶߣ − ݏଵߣ

൫݉଴ + ∗ݐ)݇ − ൯ଶ(ݏ
௧

௧∗
ݏ݀ ∗ݐ) ≤ ݐ ≤ ࣮).

 

Define 

(ݐ)ݎ ∶= 1 −
(ݐ)ଶ݌
(ݐ)݉

+  ;݇(ݐ)ଷ݌

then 

ݎ̇ = −
ଶ̇݌

݉
+
ଶ݉̇݌
݉ଶ + ଷ݇̇݌ =

ଵߣ
݉
+
ଶ݌

݉ଶ (ߙ݇−) + ቆ
ߙଶ݌
݉ଶ ቇ݇ =

ଵߣ
(ݐ)݉

. 

Choose ߣଵ < 0, so that ݎ is decreasing. We calculate 

(∗ݐ)ݎ = 1 −
ଶߣ) − (∗ݐଵߣ

݉଴
+  ଷ݇ߣ

and then adjust ߣଶ, (∗ݐ)ݎ ଷ so thatߣ = 0. 

Then ݎ is nonincreasing, (∗ݐ)ݎ = 0, and consequently ݎ > 0 on [0, ,(∗ݐ ݎ < 0 on 
,∗ݐ) ࣮]. But (M) says 

(ݐ)ߙ = ൜1 if	(ݐ)ݎ < 0
0 if	(ݐ)ݎ > 0. 

Thus an optimal control changes just once from 0 to 1; and so our earlier guess of ߙ(⋅) 
does indeed satisfy the Pontryagin Maximum Principle. 

Now to discuss the Maximum Principle with transversality conditions, consider again 
the dynamics 

(ODE)																																						̇(ݐ)ܠ = ൯(ݐ)ࢻ,(ݐ)ܠ൫܎ ݐ) ≥ 0)																																														 
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In this section we discuss another variant problem, one for which the initial position is 
constrained to lie in a given set ܺ଴ ⊂ ℝ௡ and the final position is also constrained to lie 
within a given set ܺ ଵ ⊂ ℝ௡. 

 

 

 

 

 

 

 

 

 

Figure (2.8) 

So in this model we get to choose the starting point ݔ଴ ∈ ܺ଴ in order to maximize 

(P)																																																ܲ[ࢻ(⋅)] = න ,(ݐ)ܠ൫ݎ ൯(ݐ)ࢻ
࣮

଴
 																																												,ݐ݀

where ࣮ =  .is the first time we hit ܺଵ [(⋅)ࢻ]࣮

In the following we will assume that ܺ଴, ܺଵ are in fact smooth surfaces in ℝ௡.We let 
଴ܶ denote the tangent plane to ܺ଴ at ݔ଴, and ଵܶ the tangent plane to ܺଵ at ݔଵ. 

Theorem (2.2.13): (More Transversality Conditions) 

Let ࢻ∗(⋅) and ܠ∗(⋅) solve the problem above, with 

଴ݔ = ଵݔ					,(0)∗ܠ =  .(∗࣮)∗ܠ

Then there exists a function ܘ∗(⋅) ∶ [0, ࣮∗] → ℝ௡ , such that (ODE), (ADJ) and (M) 
hold for 0 ≤ ݐ ≤ ࣮∗. In addition, 

(T) 																																					൜ܘ
∗(࣮∗)	is	perpendicular	to	 ଵܶ,
	to	perpendicular	is			(0)∗ܘ ଴ܶ.
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We call (T) the transversality conditions. 

Remarks and Interpretations (2.2.14): 

(i) If we have ܶ > 0 fixed and 

[(⋅)ࢻ]ܲ = න ,(ݐ)ܠ൫ݎ ൯(ݐ)ࢻ
்

଴
+ݐ݀ ݃൫ݔ(ܶ)൯, 

then (T) says 

(ݐ)∗ܘ = ∇݃൫ܠ∗(ܶ)൯, 

in agreement with our earlier form of the terminal / transversality condition. 

(ii) Suppose that the surface ܺଵ is the graph ܺଵ = (ݔ)௞݃	|	ݔ} = 0, ݇ = 1, … , ݈}.Then (T) 
says that ܘ∗(࣮∗) belongs to the '' orthogonal complement '' of the subspace ଵܶ. But 
orthogonal complement of ଵܶ is the span of ݃௞(ݔଵ) (݇ = 1, … , ݈). Thus 

(∗࣮)∗ܘ =෍ߣ௞∇݃௞(ݔଵ)
௟

௞ୀଵ

 

for some unknown constants ߣଵ, … ,  .௟ߣ

Example (2.2.15): (Distance between two Sets) 

As a first and simple example, let 

(ODE)																																																									̇(ݐ)ܠ =  																																																														(ݐ)ࢻ

for ܣ = ܵଵ, the unit sphere in ℝଶ:	ܽ ∈ ܵଵ if and only if |ܽ|ଶ = ܽଵଶ + ܽଶଶ = 1. In other 
words, we are considering only curves that move with unit speed. 

We take 

(P)																																									
[(⋅)ࢻ]ܲ = −න |(ݐ)ܠ̇|

࣮

଴
ݐ݀ = −the	length	of	the	curve

				= −න ݐ݀
࣮

଴
= −time	it	takes	to	reach	 ଵܺ.

 

We want to minimize the length of the curve and, as a check on our general theory, 
will prove that the minimum is of course a straight line. 
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Now we study how can using the maximum principle: 

We have 

,ݔ)ܪ ,݌ ܽ) = ,ݔ)܎ ܽ) ⋅ ݌ + ,ݔ)ݎ ܽ) 

																																				= ܽ ⋅ ݌ − 1 = ଵܽଵ݌ + ଶܽଶ݌ − 1. 

The adjoint dynamics equation (ADJ) says 

(ݐ)ܘ̇ = −∇௫ܪ൫(ݐ)ܠ, ,(ݐ)ܘ ൯(ݐ)ࢻ = 0, 

and therefore 

(ݐ)ܘ ≡ constant = ଴݌ ≠ 0. 

The maximization principle (M) tells us that 

൯(ݐ)ࢻ,(ݐ)ܘ,(ݐ)ܠ൫ܪ = max
௔∈ௌభ

[−1 + ଵ଴ܽଵ݌ +  .[ଶ଴ܽଶ݌

The right hand side is maximized by ܽ଴ = ௣బ

|௣బ|
, a unit vector that points in the same 

direction of ݌଴. Thus ࢻ(⋅) ≡ ܽ଴ is constant in time. According then to (ODE) we have 
ܠ̇ = ܽ଴, and consequently ܠ(⋅) is a straight line. 

Finally, the transversality conditions say that 

(T)																																																					(0)ܘ ⊥ ଴ܶ, (ଵݐ)ܘ ⊥ ଵܶ.																																																						 

In other words, ݌଴ ⊥ ଴ܶ and ݌଴ ⊥ ଵܶ; and this means that the tangent planes ଴ܶ and ଵܶ are 
parallel. 

 
 

 

 

 

 

Figure (2.9) 
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Now all of this is pretty obvious from the picture, but it is reassuring that the general 
theory predicts the proper answer.  

Example (2.2.16): (Commodity Trading) 

Next is a simple model for the trading of a commodity, say wheat. We let ܶ be the 
fixed length of trading period, and introduce the variables 

(ݐ)ଵݔ = money	on	hand	at	time	ݐ												 

(ݐ)ଶݔ				 = 	amount	of	wheat	owned	at	time	ݐ 

(ݐ)ߙ = rate	of	buying	or	selling	of	wheat 

(ݐ)ݍ = price	of	wheat	at	time	ݐ	(known) 

ߣ																																															 = cost	of	storing	a	unit	amount	of	wheat	for	a	unit	of	time. 

We suppose that the price of wheat (ݐ)ݍ is known for the entire trading period 0 ≤ ݐ ≤ ܶ 
(although this is probably unrealistic in practice). We assume also that the rate of selling 
and buying is constrained: 

|(ݐ)ߙ| ≤  ,ܯ

where (ݐ)ߙ > 0 means buying wheat, and (ݐ)ߙ < 0 means selling. 

Our intention is to maximize our holdings at the end time ܶ, namely the sum of the 
cash on hand and the value of the wheat we then own: 

(P)																																																	ܲ[ࢻ(⋅)] = +(ܶ)ଵݔ  																																										.(ܶ)ଶݔ(ܶ)ݍ

The evolution is 

(ODE) 																																						൜̇ݔ
ଵ(ݐ) = (ݐ)ଶݔߣ− − (ݐ)ߙ(ݐ)ݍ
(ݐ)ଶݔ̇ = 																												,(ݐ)ߙ

																																																 

This is a nonautonomous (= time dependent) case, but it turns out that the Pontryagin 
Maximum Principle still applies. 

Now we discuss how can using the maximum principle, or what is our optimal buying 
and selling strategy? First, we compute the Hamiltonian 

,ݔ)ܪ ,݌ ,ݐ ܽ) = ܎ ⋅ ݌ + ݎ = ଶݔߣ−)ଵ݌ − (ܽ(ݐ)ݍ +  ,ଶܽ݌
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since ݎ ≡ 0. The adjoint dynamics read 

(ADJ) 																																																				൜̇݌
ଵ = 0					

ଶ̇݌ = ,ଵ݌ߣ
																																																																					 

with the terminal condition 

(T)																																																						ܘ(ܶ) = ∇݃൫ݔ(ܶ)൯.																																																							 

In our case ݃(ݔଵ, (ଶݔ = ଵݔ +  ଶ, and henceݔ(ܶ)ݍ

(T) 																																															൜݌
ଵ(ݐ) ≡ 1																													

(ݐ)ଶ݌ = ݐ)ߣ − ܶ) + .(ܶ)ݍ
																																															 

We then can solve for the costate: 

൜݌
1 ≡ 1																														
2݌ = ݐ)ߣ − ܶ)+ .(ܶ)ݍ

 

The maximization principle (M) tells us that 

(M)															
,(ݐ)ܠ൫ܪ ,(ݐ)ܘ ൯(ݐ)ࢻ = max

|௔|ஸெ
(ݐ)ଶݔߣ−)(ݐ)ଵ݌} − (ܽ(ݐ)ݍ + {ܽ(ݐ)ଶ݌

																																							= (ݐ)ଶݔ(ݐ)ଵ݌ߣ− + max
|௔|ஸெ

൛ܽ൫−(ݐ)ݍ + ൯ൟ(ݐ)ଶ݌ .
 

So 

(ݐ)ߙ = ൜ ܯ if	(ݐ)ݍ < (ݐ)ଶ݌
ܯ− if	(ݐ)ݍ > (ݐ)ଶ݌

 

for ݌ଶ(ݐ) ∶= ݐ)ߣ − ܶ) +  .(ܶ)ݍ

In some situations the amount of money on hand ݔଵ(⋅) becomes negative for part of 
the time. The economic problem has a natural constraint ݔଶ ≥ 0 (unless we can borrow 
with no interest charges) which we did not take into account in the mathematical model. 

Now we return once again to our usual setting: 

(ODE) 																																								ቊ̇(ݐ)ܠ = ൯(ݐ)ࢻ,(ݐ)ܠ൫܎
(0)ܠ = 																		,଴ݔ

																																																											 

(P)																																																	ܲ[ࢻ(⋅)] = න ൯(ݐ)ࢻ,(ݐ)ܠ൫ݎ
࣮

଴
 																																												ݐ݀
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for ࣮ = (࣮)ݔ the first time that ,[(⋅)ࢻ]࣮ =  .ଵ. This is the fixed endpoint problemݔ

We introduce a new complication by asking that our dynamics ݔ(⋅) must always 
remain within a given region ܴ ⊂ ℝ௡. We will as above suppose that ܴ has the explicit 
representation 

ܴ = ݔ} ∈ ℝ௡	|	݃(ݔ) ≤ 0} 

for a given function ݃ (⋅) ∶ 	ℝ௡ → ℝ. 

Definition (2.2.17): 

It will be convenient to introduce the quantity 

,ݔ)ܿ ܽ) ∶= (ݔ)݃∇ ⋅ ,ݔ)܎ ܽ). 

Notice that 

if	(ݐ)ݔ ∈ ߲ܴ	for	times	ݏ଴ ≤ ݐ ≤ ,ଵݏ then	ܿ൫(ݐ)ܠ, ൯(ݐ)ࢻ ≡ 0 ଴ݏ) ≤ ݐ ≤  .(ଵݏ

This is so since ݂ is then tangent to ߲ܴ, whereas ∇݃ is perpendicular. 

Theorem (2.2.18): (Maximum Principle for State Constraints) 

Let ࢻ∗(⋅), (ݐ)∗ܠ solve the control theory problem above. Suppose also that (⋅)∗ܠ ∈ ߲ܴ 
for ݏ଴ ≤ ݐ ≤  .ଵݏ

Then there exists a costate function ܘ∗(⋅) ∶ ,଴ݏ] [ଵݏ → ℝ௡ such that (ODE) holds. 
There also exists ߣ∗(⋅) ∶ ,଴ݏ] [ଵݏ → ℝ such that for times ݏ଴ ≤ ݐ ≤  ଵ we haveݏ

(ADJᇱ)																			̇(ݐ)∗ܘ = −∇௫ܪ൫(ݐ)∗ܘ,(ݐ)∗ܠ, +൯(ݐ)∗ࢻ ,(ݐ)∗ܠ௫ܿ൫∇(ݐ)∗ߣ  													;൯(ݐ)∗ࢻ

and 

(M′)																	ܪ൫(ݐ)∗ܠ, ൯(ݐ)∗ࢻ,(ݐ)∗ܘ = max
௔∈஺

,(ݐ)∗ܠ)ܪ} ,(ݐ)∗ܘ ,(ݐ)∗ܠ)ܿ	|	(ܽ ܽ) = 0}.										 

To keep things simple, we have omitted some technical assumptions really needed for 
the Theorem to be valid. 

Remarks and Interpretations (2.2.19): 

(i) Let ܣ ⊂ ℝ௠ be of this form: 

ܣ = {ܽ ∈ ℝ௠	|	݃ଵ(ܽ) ≤ 0,… , ݃௦(ܽ) ≤ 0} 
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for given functions ݃ଵ, … , ݃௦ ∶ 	 ℝ௠ → ℝ. In this case we can use Lagrange multipliers to 
deduce from (M') that 

(M′′)							∇௔ܪ൫(ݐ)∗ܘ,(ݐ)∗ܠ, ൯(ݐ)∗ࢻ = ൯+෍(ݐ)∗ࢻ,(ݐ)∗ܠ௔ܿ൫∇(ݐ)∗ߣ ݅ߤ
௔∇(ݐ)∗ ௜݃൫(ݐ)∗ܠ൯

ݏ

݅=1
.			 

The function ߣ∗(⋅) here is that appearing in (ADJ '). 

If (ݐ)∗ܠ lies in the interior of ܴ for say the time 0 ≤ ݐ ≤  ଴, then the ordinaryݏ
Maximum Principle holds. 

(ii) Jump conditions 

In the situation above, we always have 

0ݏ)∗ܘ − 0) = 0ݏ)∗ܘ + 0), 

where ݏ଴ is a time that ܠ∗ hits ߲ܴ. In other words, there is no jump in ܘ∗ when we hit the 
boundary of the constraint ߲ܴ. 

However, 

ଵݏ)∗ܘ + 0) = ଵݏ)∗ܘ − 0) −  ;൯(ଵݏ)∗ܠ൫݃∇(ଵݏ)∗ߣ

this says there is (possibly) a jump in ܘ∗(⋅) when we leave ߲ܴ. 

Example (2.2.20): Shortest Distance between two Points, Avoiding an Obstacle 

 

 

 

 

 

Figure (2.10) 

What is the shortest path between two points that avoids the disk ܤ = ,0)ܤ  as ,(ݎ
drawn? 

Let us take 
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(ODE)																																																								൜̇(ݐ)ܠ = (ݐ)ࢻ
(0)ܠ = 		଴ݔ 																																																																	 

for ܣ = ܵଵ, with the payoff 

(P)																												ܲ[ࢻ(⋅)] = −න |ܠ̇|
࣮

଴
ݐ݀ = −	length	of	the	curve	ܠ(⋅).																												 

We have 

,ݔ)ܪ ,݌ ܽ) = ܎ ⋅ ݌ + ݎ = ଵܽଵ݌ + ଶܽଶ݌ − 1. 

Case (1): avoiding the obstacle 

Assume (ݐ)ܠ ∉  on some time interval. In this case, the usual Pontryagin ܤ߲
Maximum Principle applies, and we deduce as before that 

ܘ̇ = −∇௫ܪ = 0. 

Hence 

(ADJ)																																														(ݐ)ܘ ≡ constant =  																																																								.଴݌

Condition (M) says 

,(ݐ)ܘ,(ݐ)ݔ൫ܪ ൯(ݐ)ߙ = max
௔∈ௌభ

(−1 + ଵ଴ܽଵ݌ +  .(ଶ଴ܽଶ݌

The maximum occurs for ߙ = ௣బ

|௣బ|
. Furthermore, 

−1+ ଵߙଵ଴݌ + ଶߙଶ଴݌ ≡ 0; 

and therefore ߙ ⋅ ଴݌ = 1. This means that |݌଴| = 1, and hence in fact ߙ =  ଴. We have݌
proved that the trajectory ܠ(⋅) is a straight line away from the obstacle. 

Case (2): touching the obstacle 

Suppose now (ݐ)ܠ ∈ ଴ݏ for some time interval ܤ߲ ≤ ݐ ≤  ଵ. Now we use theݏ
modified version of Maximum Principle, provided by Theorem (2.2.18). 

First we must calculate ܿ ,ݔ) ܽ) = (ݔ)݃∇ ⋅ ,ݔ)܎ ܽ). In our case, 

ܴ = ℝ௡ − ܤ = ଵଶݔ	|	ݔ} + ଶଶݔ ≥ {ଶݎ = ݃	|	ݔ} ≔ ଶݎ − ଵଶݔ − ଶଶݔ ≤ 0}. 
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Then ݃ߘ = ൬−2ݔଵ−2ݔଶ
൰. Since ܎ = ቀ

ܽଵ
ܽଶቁ, we have 

,ݔ)ܿ ܽ) = −2ܽଵݔଵ − 2ܽଶݔଶ. 

Now condition (ADJ ') implies 

(ݐ)ܘ̇ = −∇௫ܪ +  ;௫ܿ∇(ݐ)ߣ

which is to say, 

																																																								ቊ̇݌
1 = 				1ߙߣ2
2̇݌ = .2ߙߣ2−

																																																													(2.6) 

Next, we employ the maximization principle (M'). We need to maximize 

,(ݐ)ܠ)ܪ ,(ݐ)ܘ ܽ) 

subject to the requirements that ܿ((ݐ)ܠ, ܽ) = 0 and ݃ଵ(ܽ) = ܽଵଶ + ܽଶଶ − 1 = 0, since ܣ =
{ܽ ∈ ℝଶ	|	ܽଵଶ + ܽଶଶ = 1}. According to (M'') we must solve 

∇௔ܪ = ௔ܿ∇(ݐ)ߣ +  ;௔݃ଵ∇(ݐ)ߤ

that is, 

൜ ݌
ଵ = (ଵݔ2−)ߣ + ଵߙ2ߤ

ଶ݌ = (ଶݔ2−)ߣ + .ଶߙ2ߤ
 

We can combine these identities to eliminate ߤ. Since we also know that (ݐ)ܠ ∈  we ,ܤ߲
have (ݔଵ)ଶ + ଶ(ଶݔ) = ࢻ ଶ; and alsoݎ = ,ଵߙ)  Using these facts, we .ܤ߲ ଶ)் is tangent toߙ
find after some calculations that 

ߣ																																																								 =
1ߙ2݌ − 2ߙ1݌

ݎ2
.																																																	(2.7) 

But we also know 

2(1ߙ)2݌																																																										 + 2(2ߙ) = 1																																															(2.8) 

and 

ܪ ≡ 0 = −1+ ଵߙଵ݌ +  ;ଶߙଶ݌

hence 
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1ߙ1݌																																																													 + 2ߙ2݌ ≡ 1.																																																		(2.9) 

We now have the five equations (2.6)-(2.9) for the five unknown functions 
,ଵ݌ ,ଶ݌ ,ଵߙ ,ଶߙ  as illustrated, and note that ,ߠ We introduce the angle .ݐ that depend on ߣ
ௗ
ௗఏ
= ݎ ௗ

ௗ௧
. A calculation then confirms that the solutions are 

൜ߙ
ଵ(ߠ) = − sin ߠ
(ߠ)ଶߙ = cos ߠ ,

 

ߣ = −
݇ + ߠ
ݎ2

, 

and 

൜݌
ଵ(ߠ) = ݇ cos ߠ − sin ߠ + ߠ cos ߠ
(ߠ)ଶ݌ = ݇ sin ߠ + cos ߠ + ߠ sinߠ

 

for some constant ݇. 

 

 

 

 

 

 

             Figure (2.11) 

Case (3): approaching and leaving the obstacle 

In general, we must piece together the results from Case (1) and Case (2). So suppose 
now (ݐ)ܠ ∈ ܴ = ℝଶ − for 0 ܤ ≤ ݐ < (ݐ)ܠ ଴ andݏ ∈ ଴ݏ for ܤ߲ ≤ ݐ ≤  .ଵݏ

We have shown that for times 0 ≤ ݐ <  is a straight line. For this (⋅)ܠ ଴, the trajectoryݏ
case we have shown already that ݌ =  and therefore ߙ

൜݌
ଵ ≡ −cos߶଴
ଶ݌ ≡ sin߶଴,			
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for the angle ߶଴ as shown in the picture. 

By the jump conditions, ܘ(⋅) is continuous when ܠ(⋅) hits ߲ܤ at the time ݏ଴, meaning 
in this case that 

൜݇ cos ଴ߠ − sin ଴ߠ + ଴ߠ cos ଴ߠ = − cos߶଴
݇ sinߠ଴ + cos ଴ߠ + ଴ߠ sinߠ଴ = sin߶଴.					

 

These identities hold if and only if 

൝
݇ = 									଴ߠ−

଴ߠ + ߶଴ =
ߨ
2
. 

The second equality says that the optimal trajectory is tangent to the disk ܤ when it hits 
 .ܤ߲

 

 

 

 

 

         Figure (2.12) 

We turn next to the trajectory as it leaves ߲ܤ: see the next picture. We then have 

൜݌
ଵ(ߠଵି) = ଴ߠ− cos ଵߠ − sin ଵߠ + ଵߠ cos ଵߠ

(ଵିߠ)ଶ݌ = ଴ߠ− sin ଵߠ + cos ଵߠ + ଵߠ sin ଵߠ .
 

Now our formulas above for ߣ and ݇ imply ߣ(ߠଵ) =
ఏబషఏభ
ଶ௥

. The jump conditions give 

(ଵାߠ)݌ = (ଵିߠ)݌ −  ൯(ଵߠ)ܠ൫݃∇(ଵߠ)ߣ

for ݃(ݔ) = ଶݎ − ଵଶݔ −  ଶଶ. Thenݔ

൯(ଵߠ)ܠ൫݃∇(ଵߠ)ߣ = ଵߠ) − (଴ߠ ൬
cos ଵߠ
sin ଵߠ

൰. 
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Figure (2.13) 

Therefore 

൜
(ଵାߠ)ଵ݌ = − sin ଵߠ
(ଵାߠ)ଶ݌ = cos 			,ଵߠ

 

and so the trajectory is tangent to ߲ܤ. If we apply usual Maximum Principle after ݔ(⋅) 
leaves ܤ, we find 

൜ ݌
ଵ ≡ constant = − cos߶ଵ

ଶ݌ ≡ constant = − sin߶ଵ .
 

Thus 

൜−cos߶ଵ = −sin ଵߠ
−sin߶ଵ = cos 			,ଵߠ

 

and so ߶ଵ + ଵߠ =  .ߨ

We have carried out elaborate calculations to derive some pretty obvious conclusions 
in this example. It is best to think of this as a confirmation in a simple case of Theorem 
(2.2.18), which applies in far more complicated situations. 

Now we turn to a simple model for ordering and storing items in a warehouse. Let the 
time period ܶ > 0 be given, and introduce the variables 

(ݐ)ݔ = amount	of	inventory	at	time	ݐ																											 

(ݐ)ߙ = rate	of	ordering	from	manufacturers,ߙ ≥ 0, 
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(ݐ)݀ = customer	demand	(known)																																 

ߛ = cost	of	ordering	1	unit																																									 

ߚ = cost	of	storing	1	unit.																																												 

Our goal is to fill all customer orders shipped from our warehouse, while keeping our 
storage and ordering costs at a minimum. Hence the payoff to be maximized is 

(P)																																										ܲ[ߙ(⋅)] = −න (ݐ)ߙߛ + (ݐ)ݔߚ
்

଴
 																																														.ݐ݀

We have ܣ = [0,∞) and the constraint that (ݐ)ݔ ≥ 0. The dynamics are 

(ODE)																																													൜̇(ݐ)ݔ = (ݐ)ߙ − (ݐ)݀
(0)ݔ = ଴ݔ > 0.																																																														 

Let us just guess the optimal control strategy: we should at first not order anything 
ߙ) = 0) and let the inventory in our warehouse fall off to zero as we fill demands; 
thereafter we should order just enough to meet our demands (ߙ = ݀). 

 

 

 

 

 

 

 

 

Figure (2.14) 

We will prove this guess is right, using the Maximum Principle. Assume first that 
(ݐ)ݔ > 0 on some interval [0,  ଴]. We then haveݏ

,ݔ)ܪ ,݌ ܽ, (ݐ = ൫ܽ − ݌൯(ݐ)݀ − ܽߛ −  ;ݔߚ

and (ADJ) says ̇݌ = ∇௫ܪ =  Condition (M) implies .ߚ
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,(ݐ)ݔ)ܪ ,(ݐ)݌ (ݐ = max
௔ஹ଴

൛−ܽߛ − (ݐ)ݔߚ + ൫ܽ(ݐ)݌ −  ൯ൟ(ݐ)݀

																																					= (ݐ)ݔߚ− − (ݐ)݀(ݐ)݌ +max
௔ஹ଴

(ݐ)݌)ܽ} −  .{(ߛ

Thus 

(ݐ)ߙ = ൜ 0				 if	(ݐ)݌ ≤ ߛ
+∞ if	(ݐ)݌ >  .ߛ

If (ݐ)ߙ ≡ +∞ on some interval, then ܲ[ߙ(⋅)] = −∞, which is impossible, because there 
exists a control with finite payoff. So it follows that ߙ(⋅) ≡ 0 on [0,  ଴]: we place noݏ
orders. 

According to (ODE), we have 

൜̇ݔ
(ݐ) = (ݐ)݀− (0 ≤ ݐ ≤ (଴ݏ
(0)ݔ =  																																			଴ݔ

Thus ݏ଴ is first time the inventory hits 0. Now since (ݐ)ݔ = ଴ݔ − ∫ ௧(ݏ)݀
଴  we have ,ݏ݀

(଴ݏ)ݔ = 0. That is, ∫ ௦బ(ݏ)݀
଴ ݏ݀ =  ଴ and we have hit the constraint. Now use Pontryaginݔ

Maximum Principle with state constraint for times ݐ ≥  ଴ݏ

ܴ = ݔ} ≥ 0} = (ݔ)݃} ∶= ݔ− ≤ 0} 

and 

,ݔ)ܿ ܽ, (ݐ = (ݔ)݃∇ ⋅ ,ݔ)݂ ܽ, (ݐ = (−1)൫ܽ − ൯(ݐ)݀ = (ݐ)݀ − ܽ. 

We have 

(M)														(ݐ)ݔ)ܪ, ,(ݐ)݌ ,(ݐ)ߙ (ݐ = max
௔ஹ଴

,(ݐ)ݔ)ܪ} ,(ݐ)݌ ܽ, ,(ݐ)ݔ)ܿ	|	(ݐ ܽ, (ݐ = 0}.														 

But ܿ((ݐ)ݔ, ,(ݐ)ߙ (ݐ = 0 if and only if (ݐ)ߙ =  Then (ODE) reads .(ݐ)݀

(ݐ)ݔ̇ = (ݐ)ߙ − (ݐ)݀ = 0 

and so (ݐ)ݔ = 0 for all times ݐ ≥  .଴ݏ

We have confirmed that our guess for the optimal strategy was right. 
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Chapter (3) 

Dynamic Programming and Game Theorem 

Section (3.1): Derivation of Bellman's PDE and Dynamic Programming 

We begin with some mathematical wisdom: '' It is sometimes easier to solve a 
problem by embedding it within a larger class of problems and then solving the larger 
class all at once ''. 

Example (3.1.1): (A Calculus Example) 

Suppose we wish to calculate the value of the integral  

න
sinݔ
ݔ

ஶ

଴
 .ݔ݀

This is pretty hard to do directly, so let us as follows add a parameter ߙ into the integral:  

(ߙ)ܫ ∶= න ݁ିఈ௫
sin ݔ
ݔ

ஶ

଴
 .ݔ݀

We compute 

(ߙ)ᇱܫ = න ఈ௫ି݁(ݔ−)
sinݔ
ݔ

ஶ

଴
ݔ݀ = −න sinି݁ݔఈ௫

ஶ

଴
ݔ݀ =

1
ଶߙ + 1

, 

where we integrated by parts twice to find the last equality. Consequently  

(ߙ)ܫ = −arctanߙ +  ,ܥ

and we must compute the constant ܥ. To do so, observe that 

0 = (∞)ܫ = −arctan(∞) + ܥ = −
ߨ
2
+  ,ܥ

and so ܥ = గ
ଶ
. Hence (ߙ)ܫ = − arctanߙ + గ

ଶ
, and consequently  

න ݁ିఈ௫
sin ݔ
ݔ

ஶ

଴
ݔ݀ = (0)ܫ +

ߨ
2
. 

We want to adapt some version of this idea to the vastly more complicated setting of 
control theory. For this, fix a terminal time ܶ > 0 and then look at the controlled 
dynamics 
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(ODE)																																ቊ̇ܠ
(ݏ) = ,(ݏ)ܠ൫܎ હ(ݏ)൯ (0 < ݏ < ܶ)
(0)ܠ = 																																														,0ݔ

																																 

with the associated payoff functional 

(P)																																		ܲ[ࢻ(⋅)] = න ,(ݏ)ܠ൫ݎ ൯(ݏ)ࢻ
ܶ

0
ݏ݀ + ݃൫ܠ(ܶ)൯.																																		 

We embed this into a larger family of similar problems, by varying the starting times 
and starting points:  

																																										ቊ̇(ݏ)ܠ = ,(ݏ)ܠ൫܎ હ(ݏ)൯ ݐ) < ݏ < ܶ)
(ݐ)ܠ = 																																														,ݔ

																																	 (3.1) 

with 

[(⋅)ࢻ]ݐ,ݔܲ																																		 = න ,(ݏ)ܠ൫ݎ ൯(ݏ)ࢻ
ܶ

ݐ
ݏ݀ + ݃൫ܠ(ܶ)൯.																													(3.2) 

Consider the above problems for all choices of starting times 0 ≤ ݐ ≤ ܶ and all initial 
points ݔ ∈ ℝ௡. 

Definition (3.1.2): 

For ݔ ∈ ℝ௡, 0 ≤ ݐ ≤ ܶ, define the value function ݔ)ݒ,   to be the greatest payoff (ݐ
possible if we start at ݔ ∈ ℝ௡ at time ݐ. In other words,  

,ݔ)ݒ																												 (ݐ ∶= sup
ࣛ∋(⋅)ࢻ

[(⋅)ࢻ]ݐ,ݔܲ ݔ) ∈ ℝ݊, 0 ≤ ݐ ≤ ܶ).																											(3.3) 

Notice then that 

,ݔ)ݒ																																																	 ܶ) = (ݔ)݃ ݔ) ∈ ℝ݊).																																													(3.4) 

Now we discuss the derivation of Hamilton-Jacobi-Bellman equation: 

Our first task is to show that the value function ݒ satisfies a certain nonlinear partial 
differential equation.  

Our derivation will be based upon the reasonable principle that " it's better to be smart 
from the beginning, than to be stupid for a time and then become smart ''. We want to 
convert this philosophy of life into mathematics.  
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To simplify, we hereafter suppose that the set ܣ of control parameter values is 
compact. 

Theorem (3.1.3): (Hamilton-Jacobi-Bellman Equation) 

Assume that the value function ݒ is a ܥଵ function of the variables (ݔ,  ݒ Then .(ݐ
solves the nonlinear partial differential equation  

(HJB)																	ݒ௧(ݔ, (ݐ + max
௔∈஺

,ݔ)܎} ܽ) ⋅ ∇௫ݔ)ݒ, (ݐ + ,ݔ)ݎ ܽ)} = 0 ݔ) ∈ ℝ௡ , 0 ≤ ݐ ≤ ܶ). 

with the terminal condition  

,ݔ)ݒ ܶ) = (ݔ)݃ ݔ) ∈ ℝ௡). 

Remark (3.1.4): 

We call (HJB) the Hamilton-Jacobi-Bellman equation, and can rewrite it as  

(HJB)																																	ݔ)ݐݒ, +(ݐ ,ݔ)ܪ (ݒݔ∇ = 0 ݔ) ∈ ℝ݊, 0 ≤ ݐ ≤ ܶ),																									 

for the partial differential equations Hamiltonian  

,ݔ)ܪ (݌ = max
௔∈஺

,ݔ)ܪ ,݌ ܽ) = max
௔∈஺

,ݔ)܎} ܽ) ⋅ ݌ + ,ݔ)ݎ ܽ)} 

where ݔ, ݌ ∈ ℝ௡. 

Proof: 

1. Let ݔ ∈ ℝ௡, 0 ≤ ݐ < ܶ and let ℎ > 0 be given. As always  

ࣛ = (⋅)ࢻ} ∶ [0,∞) →  .{measurable	ܣ

Pick any parameter ܽ ∈   and use the constant control ܣ

(⋅)ࢻ ≡ ܽ 

for times ݐ ≤ ݏ ≤ ݐ + ℎ. The dynamics then arrive at the point ݐ)ܠ + ℎ), where             
ݐ + ℎ < ܶ. Suppose now a time ݐ + ℎ, we switch to an optimal control and use it for the 
remaining times ݐ + ℎ ≤ ݏ ≤ ܶ.  

What is the payoff of this procedure? Now for times ݐ ≤ ݏ ≤ ݐ + ℎ, we have 

൜̇ܠ
(ݏ) = ,(ݏ)ܠ)܎ ܽ)
(ݐ)ܠ =  															.ݔ
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The payoff for this time period is ∫ ,(ݏ)ܠ)ݎ ܽ)௧ା௛
௧  Furthermore, the payoff incurred .ݏ݀

from time ݐ + ℎ to ܶ is ݐ)ܠ)ݒ + ℎ), ݐ + ℎ), according to the definition of the payoff 
function ݒ. Hence the total payoff is  

න ,(ݏ)ܠ)ݎ ܽ)
௧ା௛

௧
ݏ݀ + ݔ)ܠ)ݒ + ℎ), ݐ + ℎ). 

But the greatest possible payoff if we start from (ݔ, ,ݔ)ݒ is (ݐ  Therefore .(ݐ

,ݔ)ݒ																					 (ݐ ≥ න ,(ݏ)ܠ)ݎ ܽ)
ℎ+ݐ

ݐ
ݏ݀ + ݔ)ܠ)ݒ + ℎ), ݐ + ℎ).																																	(3.5) 

2. We now want to convert this inequality into a differential form. So we rearrange 
(3.5) and divide by ℎ > 0: 

ݔ)ܠ)ݒ + ℎ), ݐ + ℎ) − ,ݔ)ݒ (ݐ
ℎ

+
1
ℎ
න ,(ݏ)ܠ)ݎ ܽ)
௧ା௛

௧
ݏ݀ ≤ 0. 

Let ℎ → 0: 

,ݔ)௧ݒ (ݐ + ∇௫(ݐ)ܠ)ݒ, (ݐ ⋅ (ݐ)ܠ̇ + ,(ݐ)ܠ)ݎ ܽ) ≤ 0. 

But ܠ(⋅) solves the ODE 

൜̇ܠ
(ݏ) = ,(ݏ)ܠ)܎ ܽ) ݐ) ≤ ݏ ≤ ݐ + ℎ)
(ݐ)ܠ =  																																																	,ݔ

Employ this above, to discover: 

,ݔ)௧ݒ (ݐ + ,ݔ)܎ ܽ) ⋅ ∇௫ݔ)ݒ, (ݐ + ,ݔ)ݎ (ݐ ≤ 0. 

This inequality holds for all control parameters ܽ ∈  and consequently ,ܣ

																																max
ܣ∋ܽ

,ݔ)ݐݒ} (ݐ + ,ݔ)܎ ܽ) ⋅ ,ݔ)ݒݔ∇ (ݐ + ,ݔ)ݎ ܽ)} ≤ 0.																								(3.6) 

3. We next demonstrate that in fact the maximum above equals zero. To see this, 
suppose ࢻ∗(⋅),  were optimal for the problem above. Let us utilize the optimal (⋅)∗ܠ
control ࢻ∗(⋅) for ݐ ≤ ݏ ≤ ݐ + ℎ. The payoff is 

න ,(ݏ)∗ܠ൫ݎ ൯(ݏ)∗ࢻ
௧ା௛

௧
 ݏ݀
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and the remaining payoff is ݐ)∗ܠ)ݒ + ℎ), ݐ + ℎ). Consequently, the total payoff is 

න ൯(ݏ)∗ࢻ,(ݏ)∗ܠ൫ݎ
௧ା௛

௧
ݏ݀ + ݐ)∗ܠ)ݒ + ℎ), ݐ + ℎ) = ,ݔ)ݒ  .(ݐ

Rearrange and divide by ℎ: 

ݐ)∗ܠ)ݒ + ℎ), ݐ + ℎ) − ,ݔ)ݒ (ݐ
ℎ

+
1
ℎ
න ൯(ݏ)∗ࢻ,(ݏ)∗ܠ൫ݎ
௧ା௛

௧
ݏ݀ = 0. 

Let ℎ → 0 and suppose (ݐ)∗ࢻ = ܽ∗ ∈  Then .ܣ

,ݔ)௧ݒ (ݐ + ∇௫ݔ)ݒ, (ݐ ⋅ ᇣᇤᇥ(ݐ)∗ܠ̇
(∗௫,௔)܎

+ ,ݔ)ݎ ܽ∗) = 0; 

and therefore 

,ݔ)௧ݒ (ݐ + ,ݔ)܎ ܽ∗) ⋅ ∇௫ݔ)ݒ, (ݐ + ,ݔ)ݎ ܽ∗) = 0 

for some parameter value ܽ∗ ∈  .This proves (HJB) .ܣ

Now we study the Dynamic Programming Method: 

Here is how to use the dynamic programming method to design optimal controls: 

Step 1: 

Solve the Hamilton-Jacobi-Bellman equation, and thereby compute the value function 
 .ݒ

Step 2: 

Use the value function ݒ and the Hamilton-Jacobi-Bellman PDE to design an optimal 
feedback control ࢻ∗(⋅), as follows. Define for each point ݔ ∈ ℝ௡ and each time           
0 ≤ ݐ ≤ ܶ, 

,ݔ)ࢻ (ݐ = ܽ ∈  ܣ

to be a parameter value where the maximum in (HJB) is attained. In other words, we 
select ݔ)ࢻ,  so that (ݐ

,ݔ)௧ݒ (ݐ + ,ݔ)܎ ,ݔ)(ࢻ (ݐ ⋅ ∇௫ݔ)ݒ, (ݐ + ,ݔ൫ݎ ,ݔ)ࢻ ൯(ݐ = 0. 

Next we solve the following ODE, assuming ࢻ(⋅,  :is sufficiently regular to let us do so (ݐ
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(ODE) 																													ቊ̇(ݏ)ܠ = ,(ݏ)∗ܠ൫܎ હ(ܠ∗(s), s)൯ ݐ) ≤ ݏ ≤ ܶ)
(ݐ)ܠ = 																																																														.ݔ

																															 

Finally, define the feedback control 

(ݏ)∗ࢻ																																																					 ∶= ,(ݏ)∗ܠ)ࢻ  (3.7)																																																				.(ݏ

In summary, we design the optimal control this way: If the state of system is ݔ at time 
ܽ takes on the parameter value ݐ use the control which at time ,ݐ ∈  such that the ܣ
minimum in (HJB) is obtained. 

We demonstrate next that this construction does indeed provide us with an optimal 
control. 

Theorem (3.1.5): (Verification of Optimality) 

The control ࢻ∗(⋅) defined by the construction (3.7) is optimal. 

Proof: 

We have 

௫ܲ,௧[ࢻ∗(⋅)] = න ൯(ݏ)∗ࢻ,(ݏ)∗ܠ൫ݎ
்

௧
ݏ݀ + ݃൫ܠ∗(ܶ)൯. 

Furthermore according to the definition (3.7) of ߙ(⋅): 

௫ܲ,௧[ࢻ∗(⋅)] = න ቀ−ݒ௧((ݏ)∗ܠ, (ݏ − ,(ݏ)∗ܠ൫܎ હ∗(ݏ)൯ ⋅ ∇௫(ݏ)∗ܠ)ݒ, ቁ(ݏ
்

௧
ݏ݀ + ݃൫ܠ∗(ܶ)൯ 

= −න ,(ݏ)∗ܠ)௧ݒ (ݏ + ∇௫(ݏ)∗ܠ)ݒ, (ݏ ⋅ (ݏ)∗ܠ̇
்

௧
ݏ݀ + ݃൫ܠ∗(ܶ)൯			 

= −න
݀
ݏ݀
,(ݏ)∗ܠ)ݒ (ݏ

்

௧
ݏ݀ + ݃൫ܠ∗(ܶ)൯																																								 

= ,(ܶ)∗ܠ)ݒ− ܶ) + ,(ݐ)∗ܠ)ݒ (ݐ + ݃൫ܠ∗(ܶ)൯																																 

= −݃൫ܠ∗(ܶ)൯ + ,(ݐ)∗ܠ)ݒ (ݐ + ݃൫ܠ∗(ܶ)൯																																		 

= ,ݔ)ݒ (ݐ = sup
ࣛ∋(⋅)ࢻ

௫ܲ,௧  																																																									.[(⋅)ࢻ]

That is, 
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௫ܲ,௧[ࢻ∗(⋅)] = sup
ࣛ∋(⋅)ࢻ

௫ܲ,௧  ;[(⋅)ࢻ]

and so ࢻ∗(⋅) is optimal, as asserted.  

Example (3.1.6): (Dynamics with Three Velocities) 

Let us begin with a fairly easy problem: 

(ODE)																																							൜̇(ݏ)ݔ = 							(ݏ)ߙ (0 ≤ ݐ ≤ ݏ ≤ 1)
(ݐ)ݔ =  																																																																																			ݔ

where our set of control parameters is 

ܣ = {−1,0,1}. 

We want to minimize  

න |(ݏ)ݔ|
ଵ

௧
 ,ݏ݀

and so take for our payoff functional 

(P)																																												 ௫ܲ,௧[ߙ(⋅)] = න |(ݏ)ݔ|
ଵ

௧
 																																																										.ݏ݀

As our first illustration of dynamic programming, we will compute the value function 
,ݔ)ݒ  and confirm that it does indeed solve the appropriate Hamilton-Jacobi-Bellman (ݐ
equation. To do this, we first introduce the three regions: 

 

 

 

 

 

 

Figure (3.1) 

 Region ܫ = ,ݔ)} ݔ	|	(ݐ < ݐ − 1, 0 ≤ ݐ ≤ 1}. 
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 Region ܫܫ = ,ݔ)} ݐ	|	(ݐ − 1 < ݔ < 1 − ,ݐ 0 ≤ ݐ ≤ 1}. 
 Region ܫܫܫ = ,ݔ)} ݔ	|	(ݐ > 1 − ,ݐ 0 ≤ ݐ ≤ 1}. 

We will consider the three cases as to which region the initial data (ݔ,  .lie within (ݐ

Region I: 

In this region, we should take ߙ ≡ 1, in which case we can similarly compute 

,ݔ)ݒ (ݐ = −ቀଵି௧
ଶ
ቁ ݔ2−) + ݐ + 1). 

 

 

 

 

 

 

 

Figure (3.2) Optimal path in Region II 

Region II: 

In this region we take ߙ ≡ ±1, until we hit the origin, after which we take ߙ ≡ 0. We 

therefore calculate that ݔ)ݒ, (ݐ = − ௫మ

ଶ
 in this region. 

 

 

 

 

 

 

Figure (3.3) Optimal path in Region III 
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Region III: 

In this case we should take ߙ ≡ −1, to steer as close to the origin 0 as quickly as 
possible. (See the next picture). Then 

,ݔ)ݒ (ݐ = −	area	under	path	taken = (1 − (ݐ
1
2
ݔ) + ݔ + ݐ + 1)

= −
(1 − (ݐ
2

ݔ2) + ݐ + 1). 

Now the Hamilton-Jacobi-Bellman equation for our problem reads 

ݐݒ																																																		 + max
ܣ∋ܽ

{݂ ⋅ ݒݔ∇ + {ݎ = 0																																													(3.8) 

for ݂ = ܽ, ݎ =  We rewrite this as .|ݔ|−

௧ݒ + max
௔ୀ±ଵ,଴

{௫ݒܽ} = |ݔ|− = 0; 

and so 

(HJB)																																																ݐݒ + −|ݔݒ| |ݔ| = 0.																																																									 

We must check that the value function v, defined explicitly above in Regions I-III, does 
in fact solve this PDE, with the terminal condition that ݔ)ݒ, 1) = (ݔ)݃ = 0. 

Now in Region II ݒ = − ௫మ

ଶ
, ௧ݒ = 0, ௫ݒ =  Hence .ݔ−

௧ݒ + |௫ݒ| + |ݔ| = 0 + |ݔ−| − |ݔ| = 0	in	Region	II, 

in accordance with (HJB). 

In Region III we have 

,ݔ)ݒ (ݐ = −
(1 − (ݐ
2

ݔ2) + ݐ − 1); 

and therefore 

௧ݒ =
1
2
ݔ2) + ݐ − 1) −

(1 − (ݐ
2

= ݔ − 1 + ௫ݒ					,ݐ = ݐ − ݐ|					,1 − 1| = 1 − ݐ ≥ 0. 

Hence 

௧ݒ + |௫ݒ| − |ݔ| = ݔ − 1 + ݐ + ݐ| − 1| − |ݔ| = 0	in	Region	III, 
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because ݔ > 0 there.  

Likewise the Hamilton-Jacobi-Bellman PDE holds in Region I. 

Remarks (3.1.7): 

(i) In the example, ݒ is not continuously differentiable on the borderline between 
Regions II and I or III. 

(ii) In general, it may not be possible actually to find the optimal feedback control. 
For example, reconsider the above problem, but now with ܣ = {−1,1}.We still 
have ߙ = sgn(ݒ௫), but there is no optimal control in Region II.  

Example (3.1.8): (Rocket Railroad Car) 

Recall that the equations of motion in this model are 

൬ݔଵ̇̇ݔଶ
൰ = ቀ0 1

0 0ቁ ቀ
ଵݔ
ଶቁݔ + ቀ01ቁߙ,			

|ߙ| ≤ 1 

and 

[(⋅)ߙ]ܲ = −time	to	reach(0,0) = −න 1
ఛ

଴
ݐ݀ = −߬. 

To use the method of dynamic programming, we define ݔ)ݒଵ,  ଶ) to be minus theݔ
least time it takes to get to the origin (0,0), given we start at the point (ݔଵ,  .(ଶݔ

What is the Hamilton-Jacobi-Bellman equation? Note ݒ does not depend on ݐ, and so 
we have 

sup
௔∈஺

܎} ⋅ ∇௫ݒ + {ݎ = 0 

for 

ܣ = ܎					,[1,1−] = ቀݔଶܽ ቁ ݎ					, = −1 

Hence our PDE reads 

max
|௔|ஸଵ

൛ݔଶݒ௫భ + ௫మݒܽ − 1ൟ = 0; 

and consequently  
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(HJB) 																																									ቊݔଶݒ௫భ + หݒ௫మห − 1 = 0
(0,0)ݒ = 0.

in	ℝ௡

	 																																													 

We now confirm that ݒ really satisfies (HJB). For this, define the regions 

ܫ ∶= ൜(ݔଵ, ଵݔ	|	(ଶݔ ≥ −
1
2
ଶ|ൠݔ|ଶݔ and ܫܫ ∶= ൜(ݔଵ, ଵݔ	|	(ଶݔ ≤ −

1
2
 .ଶ|ൠݔ|ଶݔ

A direct computation, the details of which we omit, reveals that 

(ݔ)ݒ =

⎩
⎪
⎨

⎪
ଶݔ−⎧ − 2൬ݔଵ +

1
2
ଶଶ൰ݔ

ଵ
ଶ

in	Region	I

ଶݔ − 2൬−ݔଵ +
1
2
ଶଶ൰ݔ

ଵ
ଶ

in	Region	II.

 

In Region I we compute 

௫మݒ = −1− ቆݔଵ +
ଶଶݔ

2
ቇ
ିଵଶ
 ,ଶݔ

௫భݒ = −ቆݔଵ +
ଶଶݔ

2
ቇ
ିଵଶ
 ;ଶݔ

and therefore 

௫భݒଶݔ + หݒ௫మห − 1 = ଶݔ− ቆݔଵ +
ଶଶݔ

2
ቇ
ିଵଶ
+ ቎1 + ଶݔ ቆݔଵ +

ଶଶݔ

2
ቇ
ିଵଶ
቏ − 1 = 0. 

This confirms that our (HJB) equation holds in Region I, and a similar calculation holds 
in Region II. 

 Now to calculate the Optimal control, since 

max
|ఈ|ஸଵ

൛ݔଶݒ௫భ + ௫మݒܽ + 1ൟ = 0, 

the optimal control is 

ߙ = sgn	ݒ௫మ . 
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Example (3.1.9): (General Linear-Quadratic Regulator) 

For this important problem, we are given matrices ܤ,ܯ, ܦ ∈ ॸ௡×௡,                       
ܰ ∈ ॸ௡×௠, ܥ ∈ ॸ௠×௠; and assume  ܤ, ,ܥ  ,definite	nonnegative	and	symmetric	are	ܦ

and ܥ is invertible. 

We take the linear dynamics 

(ODE)																																					൜̇(ݏ)ܠ = (ݏ)ܠܯ + ܰહ(ݏ) ݐ) ≤ ݏ ≤ ܶ)
(ݐ)ܠ =  																																																																																											,ݔ

for which we want to minimize the quadratic cost functional 

න (ݏ)ܠܤ்(ݏ)ݔ + (ݏ)ࢻܥ்(ݏ)ࢻ
்

௧
ݏ݀ +  .(ܶ)ܠܦ்(ܶ)ܠ

So we must maximize the payoff 

(P)																									ܲ[(⋅)ࢻ]ݐ,ݔ = −න (ݏ)ࢻܥܶ(ݏ)ࢻ+(ݏ)ܠܤܶ(ݏ)ݔ
ܶ

ݐ
ݏ݀ −  					.(ܶ)ܠܦܶ(ܶ)ܠ

The control values are unconstrained, meaning that the control parameter values can 
range over all of ܣ = ℝ௠.  

We will solve by dynamic programming the problem of designing an optimal control. 
To carry out this plan, we first compute the Hamilton-Jacobi-Bellman equation 

௧ݒ + max
௔∈ℝ೘

܎} ⋅ ∇௫ݒ + {ݎ = 0, 

where  

൝
܎ = ݔܯ + ܰܽ																						
ݎ = ݔܤ்ݔ− − ்ܽ − ܽܥ்ܽ
݃ = 																								.ݔܦ்ݔ−

 

Rewrite: 

(HJB)																																	ݐݒ +max
ܽ∈ℝ೘

൛(∇ݒ)ܶܰܽ − ൟܽܥܶܽ + ݔܯܶ(ݒ∇) − ݔܤܶݔ = 0.									 

We also have the terminal condition 

,ݔ)ݒ ܶ) =  ݔܦ்ݔ−
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Now for what value of the control parameter ܽ is the minimum attained? To 
understand this, we define ܳ(ܽ) ∶= ்ܽܰ(ݒ∇) −  and determine where ܳ has a ,ܽܥ்ܽ
minimum by computing the partial derivatives ܳ௔ೕ for ݆ = 1, . . . ,݉ and setting them 
equal to 0. This gives the identitites 

ܳ௔ೕ =෍ݒ௫೔݊௜௝ − 2ܽ௜ܿ௜௝

௡

௜ୀଵ

= 0. 

Therefore (∇ݒ)்ܰ = ்ܽܥand then 2 ,ܥ2்ܽ = ்ܥ But .ݒ்ܰ =  Therefore .ܥ

ܽ =
1
2
 .ݒଵ்ܰ∇௫ିܥ

This is the formula for the optimal feedback control: It will be very useful once we 
compute the value function ݒ. 

Now to find the value function, we insert our formula ܽ = ଵ
ଶ
 ,into (HJB) ݒ∇ଵ்ܰିܥ

and this PDE then reads  

(HJB) 																																		ቐݐݒ +
1
4
ݒ∇1ܰܶ−ܥܰܶ(ݒ∇) + ݔܯܶ(ݒ∇) − ݔܤܶݔ = 0

,ݔ)ݒ ܶ) = 																																																									.ݔܦܶݔ−
 

Our next move is to guess the form of the solution, namely 

,ݔ)ݒ (ݐ =  ,ݔ(ݐ)ܭ்ݔ

provided the symmetric ݊ × ݊-matrix valued function ܭ(⋅) is properly selected. Will this 
guess work? 

Now, since −ݔ(ܶ)ܭ்ݔ = ,ݔ)ݒ− ܶ) =  we must have the terminal condition ,ݔܦ்ݔ
that 

(ܶ)ܭ =  .ܦ−

Next, compute that 

௧ݒ = ݒ௫∇										,ݔ(ݐ)ܭ்̇ݔ =  .ݔ(ݐ)ܭ2

We insert our guess ݒ =  into (HJB), and discover that ݔ(ݐ)ܭ்ݔ

(ݐ)ܭ൛்̇ݔ + (ݐ)ܭଵ்ܰିܥܰ(ݐ)ܭ + ܯ(ݐ)ܭ2 − ݔൟܤ = 0. 
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Look at the expression 

ݔܯܭ்ݔ2 = ݔܯܭ்ݔ +  ்[ݔܯܭ்ݔ]

																= ݔܯܭ்ݔ +  .ݔܭ்ܯ்ݔ

Then 

ܭ൛்̇ݔ + ܭଵ்ܰିܥܰܭ + ܯܭ ܭ்ܯ+ − ݔൟܤ = 0. 

This identity will hold if ܭ(⋅) satisfies the matrix Riccati equation 

(R) 																			൜̇(ݐ)ܭ + (ݐ)ܭଵ்ܰିܥܰ(ݐ)ܭ + ܯ(ݐ)ܭ (ݐ)ܭ்ܯ+ − ܤ = 0 (0 ≤ ݐ < ܶ)
(ܶ)ܭ = 																																																																																																													ܦ−

 

In summary, if we can solve the Riccati equation (R), we can construct an optimal 
feedback control 

(ݐ)∗ࢻ =  (ݐ)ܠ(ݐ)ܭଵ்ܰିܥ

Furthermore, (R) in fact does have a solution, as explained for instance in the book of 
Fleming-Rishel [4]. 

Now we discuss Dynamic Programming and the Pontryagin Maximum Principle: 

To illustrate the Method of Characteristics, assume ܪ ∶ ℝ௡ ×ℝ௡ → ℝ and consider this 
initial-value problem for the Hamilton-Jacobi equation: 

(HJ) 																																	ቊݑ௧(ݔ, (ݐ + ,ݔ൫ܪ ∇௫ݔ)ݑ, ൯(ݐ = 0 ݔ) ∈ ℝ௡, 0 < ݐ < ܶ)
,ݔ)ݑ 0) = 																																																																							.(ݔ)݃

													 

A basic idea in PDE theory is to introduce some ordinary differential equations, the 
solution of which lets us compute the solution ݑ. In particular, we want to find a curve 
,ݔ)ݑ along which we can, in principle at least, compute (⋅)ݔ   .(ݐ

This section discusses this method of characteristics, to make clearer the connections 
between PDE theory and the Pontryagin Maximum Principle.  

We have to note that: 

(ݐ)ܠ = ൭
(ݐ)ଵݔ
⋮

(ݐ)௡ݔ
൱ (ݐ)ܘ					, = ∇௫(ݐ)ܠ)ݑ, (ݐ = ൭

(ݐ)ଵ݌
⋮

(ݐ)௡݌
൱. 
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Hence, to discuss the derivation of characteristic equations, we have 

(ݐ)௞݌ = ,(ݐ)ܠ)௫ೖݑ  ,(ݐ

and therefore 

(ݐ)௞̇݌ = ,(ݐ)ܠ)௫ೖݑ (ݐ +෍ݑ௫ೖ௫ೖ

௡

௜ୀଵ

,(ݐ)ܠ) (ݐ ⋅  .௜ݔ̇

Now suppose ݑ solves (HJ). We differentiate this PDE with respect to the variable ݔ௞: 

,ݔ)௧௫ೖݑ (ݐ = ,ݔ௫ೖ൫ܪ− ,ݔ)ݑ∇ ൯(ݐ −෍ܪ௣೔൫ݔ, ,ݔ)ݑ∇ ൯(ݐ
௡

௜ୀଵ

⋅ ,ݔ)௫ೖ௫೔ݑ  .(ݐ

Let ݔ =  :and substitute above (ݐ)ܠ

(ݐ)௞̇݌ = ,(ݐ)ܠ)௫ೖܪ− ∇௫(ݐ)ܠ)ݑ, ᇣᇧᇧᇧᇤᇧᇧᇧᇥ((ݐ
(௧)ܘ

+෍(̇ݔ௜(ݐ) − ,௣௜ܪ ,(ݐ)ܠ ∇௫ݔ)ݑ, ᇣᇧᇧᇤᇧᇧᇥ(ݐ
(௧)ܘ

,(ݐ)ܠ)௫ೖ௫೔ݑ( (ݐ
௡

௜ୀଵ

. 

We can simplify this expression if we select ܠ(⋅) so that 

(ݐ)௜ݔ̇ = ,(ݐ)ܠ௣೔൫ܪ ,൯(ݐ)ܘ (1 ≤ ݅ ≤ ݊); 

then 

(ݐ)௜̇݌ = ,(ݐ)ܠ௫ೖ൫ܪ ,൯(ݐ)ܘ (1 ≤ ݇ ≤ ݊). 

These are Hamilton's equations, already discussed in a different context in section (2.2): 

(H) 																																															ቊ
(ݐ)ܠ̇ = ∇௣ܪ൫(ݐ)ܘ,(ݐ)ܠ൯
(ݐ)ܘ̇ = −∇௫ܪ൫(ݐ)ܠ, .൯(ݐ)ܘ

																																																									 

We next demonstrate that if we can solve (H), then this gives a solution to PDE (HJ), 
satisfying the initial conditions ݑ = ݃ on ݐ = 0. Set ݌଴ =  We solve (H), with .(଴ݔ)݃∇
(0)ݔ = (0)ܘ ଴ andݔ =   ଴. Next, let us calculate݌

݀
ݐ݀
,(ݐ)ܠ)ݑ (ݐ = ,(ݐ)ܠ)௧ݑ (ݐ + ∇௫(ݐ)ܠ)ݑ, (ݐ ⋅  																																(ݐ)ܠ̇

																																								= ܪ− (∇௫(ݐ)ܠ)ݑ, ᇣᇧᇧᇧᇤᇧᇧᇧᇥ(ݐ
(௧)ܘ

, ((ݐ)ܠ + ∇௫(ݐ)ܠ)ݑ, ᇣᇧᇧᇧᇤᇧᇧᇧᇥ(ݐ
(௧)ܘ

⋅ ∇௣ܪ൫(ݐ)ܘ,(ݐ)ܠ൯ 
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							= ൯(ݐ)ܘ,(ݐ)ܠ൫ܪ− + (ݐ)ܘ ⋅ ∇௣ܪ൫(ݐ)ܘ,(ݐ)ܠ൯ 

Note also (0)ܠ)ݑ, 0) = ,଴ݔ)ݑ 0) =  (⋅)ܠ along the curve ݑ Integrate, to compute .(଴ݔ)݃

,(ݐ)ܠ)ݑ (ݐ = න ܪ− + ∇௣ܪ ⋅ ܘ
௧

଴
ݏ݀ +  .(଴ݔ)݃

This gives us the solution, once we have calculated ܠ(⋅) and ܘ(⋅). 

To study the connections between Dynamic Programming and the Pontryagin 
Maximum Principle, let us return now to our usual control theory problem, with 
dynamics 

(ODE)																																							ቊ̇(ݏ)ܠ = ,(ݏ)ܠ൫܎ હ(ݏ)൯ ݐ) ≤ ݏ ≤ ܶ)
(ݐ)ܠ = 																																														,ݔ

																																					 

and payoff 

(P)																															 ௫ܲ,௧[ࢻ(⋅)] = න ൯(ݏ)ࢻ,(ݏ)ܠ൫ݎ
்

௧
ݏ݀ + ݃൫ܠ(ܶ)൯.																																						 

As above, the value function is 

,ݔ)ݒ (ݐ = sup
(⋅)ࢻ

௫ܲ,௧[ࢻ(⋅)]. 

The next theorem demonstrates that the costate in the Pontryagin Maximum Principle 
is in fact the gradient in ݔ of the value function ݒ, taken along an optimal trajectory: 

Theorem (3.1.10): (Costates and Gradients) 

Assume ࢻ∗(⋅),   .solve the control problem (ODE), (P) (⋅)∗ܠ

If the value function ݒ is ܥଶ, then the costate ̇ܘ∗(⋅) occuring in the Maximum 
Principle is given by 

(ݏ)∗ܘ = ∇௫(ݏ)∗ܠ)ݒ, (ݏ ݐ) ≤ ݏ ≤ ܶ). 

Proof: 

1. As usual, suppress the superscript *. Define (ݐ)ܘ ∶= ∇௫(ݐ)ܠ)ݒ,  .(ݐ

We claim that ݌(⋅) satisfies conditions (ADJ) and (M) of the Pontryagin Maximum 
Principle. To confirm this assertion, look at 
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(ݐ)௜̇݌ =
݀
ݐ݀
,(ݐ)ܠ)௫೔ݒ (ݐ = ,(ݐ)ܠ)௫೔௧ݒ (ݐ +෍ݒ௫೔௫ೕ((ݐ)ܠ, ݔ̇(ݐ

௝(ݐ)
௡

௝ୀଵ

. 

We know ݒ solves 

,ݔ)௧ݒ (ݐ + max
௔∈஺

,ݔ)܎} ܽ) 	 ⋅ ∇௫ݔ)ݒ, (ݐ + ,ݔ)ݎ ܽ)} = 0; 

and, applying the optimal control ࢻ(⋅), we find: 

,(ݐ)ܠ)௧ݑ (ݐ + ൯(ݐ)ࢻ,(ݐ)ܠ൫܎ ⋅ ∇௫(ݐ)ܠ)ݒ, (ݐ + ൯(ݐ)ࢻ,(ݐ)ܠ൫ݎ = 0. 

2. Now freeze the time ݐ and define the function 

ℎ(ݔ) ∶= ,ݔ)௧ݒ (ݐ + ,ݔ൫܎ ൯(ݐ)ࢻ ⋅ ∇௫ݔ)ݒ, (ݐ + ,ݔ൫ݎ ൯(ݐ)ࢻ ≤ 0. 

Observe that ℎ൫(ݐ)ܠ൯ = 0. Consequently ℎ(⋅) has a maximum at the point ݔ =  and ;(ݐ)ܠ
therefore for ݅ = 1, . . . , ݊, 

0 = ℎ௫೔൫(ݐ)ܠ൯
= ,(ݐ)ܠ)௧௫೔ݒ (ݐ + ,(ݐ)ܠ௫೔൫܎ ൯(ݐ)ࢻ ⋅ ∇௫(ݐ)ܠ)ݒ, (ݐ + ൯(ݐ)ࢻ,(ݐ)ܠ൫܎
⋅ ∇௫ݒ௫೔((ݐ)ܠ, (ݐ + ,(ݐ)ܠ௫೔൫ݎ  .൯(ݐ)ࢻ

Substitute above: 

(ݐ)௜̇݌ = ௫೔௧ݒ +෍ݒ௫೔௫ೕ ௝݂

௡

௜ୀଵ

= ௫೔௧ݒ + ܎ ⋅ ∇௫ݒ௫೔ = ௫೔܎− ⋅ ∇௫ݒ − ௫೔ݎ . 

Recalling that (ݐ)ܘ = ∇௫(ݐ)ܠ)ݒ,  we deduce that ,(ݐ

(ݐ)ܘ̇ = −(∇௫܎)ܘ − ∇௫ݎ. 

Recall also 

ܪ = ܎ ⋅ ݌ + ,ݎ ∇௫ܪ = (∇௫܎)݌ + ∇௫ݎ. 

Hence 

(ݐ)ܘ̇ = −∇௫ܪ൫(ݐ)ܘ, ,൯(ݐ)ܠ  ,(ݐ)ܠ

which is (ADJ). 

3. Now we must check condition (M). According to (HJB), 
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,(ݐ)ܠ)௧ݒ (ݐ + max
௔∈஺

൝(ݐ)ܠ)܎, ܽ) ⋅ ,(ݐ)ܠ)ݒ∇ ᇣᇧᇧᇤᇧᇧᇥ(ݐ
(௧)ܘ

+ ,(ݐ)ܠ)ݎ ൡ(ݐ = 0, 

and maximum occurs for ܽ =  Hence .(ݐ)ࢻ

max
௔∈஺

,(ݐ)ܠ)ܪ} ,(ݐ)ܘ ܽ)} = ,(ݐ)ܠ൫ܪ  ;൯(ݐ)ࢻ,(ݐ)ܘ

and this is assertion (M) of the Maximum Principle. 

The foregoing provides us with another way to look at transversality conditions: 

(i) Free endpoint problem:  

Recall that we stated earlier in Theorem (2.2.8) that for the free endpoint problem we 
have the condition 

(T)																																																					ܘ∗(ܶ) = ∇݃൫ܠ∗(ܶ)൯																																																								 

for the payoff functional 

න ,(ݏ)ܠ൫ݎ ൯(ݏ)ࢻ
்

௧
ݏ݀ + ݃൫ܠ(ܶ)൯. 

To understand this better, note (ݏ)∗ܘ = ,(ݏ)∗࢞)ݒ∇− ,ݔ)ݒ But .(ݏ (ݐ =  and hence ,(ݔ)݃
the foregoing implies 

(ܶ)∗ܘ = ∇௫ܠ)ݒ∗(ܶ), ܶ) = ∇݃൫ܠ∗(ܶ)൯. 

(ii) Constrained initial and target sets: 

Recall that for this problem we stated in Theorem (2.2.9) the transversality conditions 
that 

(T)																																																	൜ ܘ
∗(0)is	perpendicular	to	 ଴ܶ

	to	perpendicular	is(∗߬)∗ܘ ଵܶ
																																												 

when ߬∗. denotes the first time the optimal trajectory hits the target set ܺଵ.  

Now let ݒ be the value function for this problem: 

(ݔ)ݒ = sup
(⋅)ࢻ

௫ܲ[ࢻ(⋅)], 
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with the constraint that we start at ݔ଴ ∈ ܺ଴ and end at ݔଵ ∈ ܺଵ But then ݒ will be constant 
on the set ܺ଴ and also constant on ܺଵ. Since ∇ݒ is perpendicular to any level surface, ∇ݒ 
is therefore perpendicular to both ߲ ܺ଴ and ߲ܺଵ. And since 

(ݐ)∗ܘ =  ,൯(ݐ)∗ܠ൫ݒ∇

this means that 

൜ ܘ
∗	is	perpendicular	to		߲ܺ଴		at		ݐ = 0,

		to	perpendicular	is	∗ܘ ∂Xଵ		at		ݐ = ߬∗. 

 

Section (3.2): Differential Games 

Definitions (3.2.1): 

We introduce in this section a model for a two-person, zero-sum differential game. 
The basic idea is that two players control the dynamics of some evolving system, and one 
tries to maximize, the other to minimize, a payoff functional that depends upon the 
trajectory. 

What are optimal strategies for each player? This is a very tricky question, primarily 
since at each moment of time, each player's control decisions will depend upon what the 
other has done previously. 

We begin with a Model Problem: 

Let a time 0 ≤ ݐ < ܶ be given, along with sets ܣ ⊆ ℝ௠ , ܤ ⊆ ℝ௟ and a function ܎ ∶
ℝ௡ × ܣ × ܤ → ℝ௡. 

Definition (3.2.2):  

A measurable mapping ࢻ(⋅): ,ݐ] ܶ] →  A .(ݐ starting at time) ܫ is a control for player ܣ
measurable mapping ࢼ(⋅): ,ݐ] ܶ] →  .ܫܫ is a control for player ܤ

Corresponding to each pair of controls, we have corresponding dynamics: 

(ODE)																																							ቊ̇(ݏ)ܠ = ,(ݏ)ܠ൫܎ હ(ݏ),(ݏ)ࢼ൯ ݐ) ≤ ݏ ≤ ܶ)
(ݐ)ܠ = 																																																												,ݔ

																																					 

the initial point ݔ ∈ ℝ௡ being given. 



99 
 

Definition (3.2.3): 

The payoff of the game is 

(P)																				 ௫ܲ,௧[ࢼ,(⋅)ࢻ(⋅)] = න ,(ݏ)ܠ൫ݎ ,(ݏ)ࢻ ൯(ݏ)ࢼ
்

௧
ݏ݀ + ݃൫ܠ(ܶ)൯.																														 

Player ܫ, whose control is ࢻ(⋅), wants to maximize the payoff functional ࡼ[⋅]. Player 
 This is a two-person, zero-sum .[⋅]ࡼ and wants to minimize (⋅)ࢼ has the control ܫܫ
differential game. 

We intend now to define value functions and to study the game using dynamic 
programming. 

Definition (3.2.4): 

The sets of controls for the game of the game are 

(ݐ)ܣ ∶= (⋅)ࢻ} ∶ ,ݐ] ܶ] →  {measurable	(⋅)ࢻ,ܣ

(ݐ)ܤ ∶= (⋅)ࢼ} ∶ ,ݐ] ܶ] →  .{measurable	(⋅)ࢼ,ܤ

We need to model the fact that at each time instant, neither player knows the other's  
future moves. We will use concept of strategies, as employed by Varaiya and Elliott-
Kalton. The idea is that one player will select in advance, not his control, but rather his 
responses to all possible controls that could be selected by his opponent. 

Definitions (3.2.5): 

(i) A mapping  ߔ ∶ (ݐ)ܤ → ݐ if for all times ܫ is called a strategy for player (ݐ)ܣ ≤ ݏ ≤
ܶ, 

(߬)ࢼ ≡ (߬)෡ࢼ for	ݐ ≤ ߬ ≤  ݏ

implies 

																																					Φ[ࢼ](߬) ≡ Φ[ࢼ෡](߬) for	ݐ ≤ ߬ ≤  (3.9)																																								ݏ

We can think of [ࢼ]ߔ as the response of player I to player ܫܫ's selection of control 
 .cannot foresee the future ܫ Condition (3.9) expresses that player .(⋅)ࢼ

(ii) A strategy for player ܫܫ is a mapping   ߖ ∶ (ݐ)ܣ →  such that for all times (ݐ)ܤ
ݐ ≤ ݏ ≤ ܶ, 



100 
 

(߬)ࢻ ≡ (߬)ෝࢻ for	ݐ ≤ ߬ ≤  ݏ

implies 

શ[ࢻ](߬) ≡ Ψ[ࢻෝ](߬) for	ݐ ≤ ߬ ≤  .ݏ

Definition (3.2.6): 

The sets of strategies are 

(ݐ)ࣛ ∶= 	strategies	for	player	ܫ	(starting	at	ݐ) 

ℬ(ݐ) ∶= 	strategies	for	player	ܫܫ	(starting	at	ݐ).	

Finally, we introduce value functions: 

Definition (3.2.7): 

The lower value function is 

,ݔ)ݒ																																		 (ݐ ∶= inf
Ψ∈ℬ(ݐ)

sup
(ݐ)ܣ∋(⋅)ࢻ

[(⋅)[ࢻ]શ,(⋅)ࢻ]ݔܲ ,																													(3.10) 

and the upper value function is 

,ݔ)ݑ																																		 (ݐ ∶= sup
Φ∈ࣛ(ݐ)

inf
(ݐ)ܤ∋(⋅)ࢼ

,(⋅)[ࢼ]Φ]ݔܲ [(⋅)ࢼ ,																												(3.11) 

One of the two players announces his strategy in response to the other's choice of 
control, the other player chooses the control. The player who " plays second ", i.e., who 
chooses the strategy, has an advantage. In fact, it turns out that always  

,ݔ)ݒ (ݐ ≤ ,ݔ)ݑ  .(ݐ

Now we discuss Dynamic Programming, Isaacs' equations: 

Theorem (3.2.8): (PDE for the Upper and Lower Value Functions) 

Assume ݑ,  are continuously differentiable. Then u solves the upper Isaacs' equation ݒ

																		൜ݑ௧ + min௕∈஻max௔∈஺{ݔ)܎, ܽ, ܾ) ⋅ ∇௫ݔ)ݑ, (ݐ + ,ݔ)ݎ ܽ, ܾ)} = 0
,ݔ)ݑ ܶ) = 																																																																																	,(ݔ)݃ 																			(3.12) 

and ݒ solves the lower Isaacs' equation 
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																		൜ݒ௧ + mac௔∈஺min௕∈஻{ݔ)܎, ܽ, ܾ) ⋅ ∇௫ݔ)ݒ, (ݐ + ,ݔ)ݎ ܽ, ܾ)} = 0
,ݔ)ݒ ܶ) =  (3.13)																																																																																																				.(ݔ)݃

Isaacs' equations are analogs of Hamilton-Jacobi-Bellman equation in two. person, zero-
sum control theory. We can rewrite these in the forms 

௧ݑ ,ݔ)ାܪ+ ∇௫ݑ) = 0 

for the upper PDE Hamiltonian 

,ݔ)ାܪ (݌ ∶= min
௕∈஻

max
௔∈஺

,ݔ)܎} ܽ, ܾ) ⋅ ݌ + ,ݔ)ݎ ܽ, ܾ)} ; 

and 

௧ݒ + ,ݔ)ିܪ ∇௫ݒ) = 0 

for the lower PDE Hamiltonian 

,ݔ)ିܪ (݌ ∶= max
௔∈஺

min
௕∈஻

,ݔ)܎} ܽ, ܾ) ⋅ ݌ + ,ݔ)ݎ ܽ, ܾ)}. 

Interpretations and Remarks (3.2.9): 

(i) In general, we have 

max
௔∈஺

min
௕∈஻

,ݔ)܎} ܽ, ܾ) ⋅ ݌ + ,ݔ)ݎ ܽ, ܾ)} < min
௕∈஻

max
௔∈஺

,ݔ)܎} ܽ, ܾ) ⋅ ݌ + ,ݔ)ݎ ܽ, ܾ)}, 

and consequently ݔ)ିܪ, (݌ < ,ݔ)ାܪ  The upper and lower Isaacs' equations are then .(݌
different PDE and so in general the upper and lower value functions are not the same: 
ݑ ≠   .ݒ

The precise interpretation of this is tricky, but the idea is to think of a slightly 
different situation in which the two players take turns exerting their controls over short 
time intervals. In this situation, it is a disadvantage to go first, since the other player then 
knows what control is selected. The value function ݑ represents a sort of " infinitesimal" 
version of this situation, for which player I has the advantage. The value function ݒ 
represents the reverse situation, for which player II has the advantage. 

If however 

																	max
௔∈஺

min
௕∈஻

⋯)܎} ) ⋅ ݌ + ⋯)ݎ )} = min
௕∈஻

max
௔∈஺

(⋯)܎} ⋅ ݌ +  (3.14)																					,{(⋯)ݎ
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for all ݌,  .we say the game satisfies the minimax condition, also called Isaacs' condition ,ݔ
In this case it turns out that ݑ ≡  .and we say the game has value ݒ

(ii)  As in dynamic programming from control theory, if (3.14) holds, we can solve 
Isaacs' equation for ݑ ≡  and then, at least in principle, design optimal controls for ݒ
players ܫ and ܫܫ. 

(iii) To say that ࢻ∗(⋅), ,(⋅)∗ࢻare optimal means that the pair ൫ (⋅)∗ࢼ  ൯ is a saddle(⋅)∗ࢼ
point for ௫ܲ,௧. This means 

																										 ௫ܲ,௧[ࢻ(⋅), [(⋅)∗ࢼ ≤ ௫ܲ,௧[ࢼ,(⋅)∗ࢻ∗(⋅)] ≤ ௫ܲ,௧[ࢼ,(⋅)∗ࢻ(⋅)]																						(3.15) 

for all controls ࢻ∗(⋅),  because he is afraid II will play (⋅)∗ࢻ  Player I will select.(⋅)∗ࢼ
 .(⋅)∗ࢻ  because she is afraid I will play (⋅)∗ࢼ Player II will play.(⋅)∗ࢼ

 

 

To study the Games and the Pontryagin Maximum Principle, assume the minimax 
condition (3.14) holds and we design optimal ߙ∗(⋅),  as  above. Let x∗(⋅) denote the (⋅)∗ߚ
solution of the ODE (3.9), corresponding to our controls ߙ∗(⋅),  Then define .(⋅)∗ߚ

(ݐ)∗ܘ ∶= ∇௫(ݐ)∗ܠ)ݒ, (ݐ = ∇௫(ݐ)∗ܠ)ݑ,  .(ݐ

It turns out that 

(ADJ)																																	̇(ݐ)∗ܘ = ,(ݐ)∗ܠ൫ܪݔ∇−  																																				൯(⋅)∗ࢼ,(⋅)∗ࢻ,(ݐ)∗ܘ

for the game-theory Hamiltonian 

,ݔ)ܪ ,݌ ܽ, ܾ) ∶= ,ݔ)܎ ܽ, ܾ) ⋅ ݌ + ,ݔ)ݎ ܽ, ܾ). 

Now to discuss Statement of Problem, we assume that two opponents I and II are at 
war with each other. Let us define 

(ݐ)ଵݔ = supply	of	resources	for	ܫ 

(ݐ)ଶݔ = supply	of	resources	for	ܫܫ. 

Each player at each time can devote some fraction of his/her efforts to direct attack, and 
the remaining fraction to attrition (= guerrilla warfare). Set ܣ = ܤ = [0,1], and define 

(ݐ)ߙ = 	fraction	of	ܫ′s	effort	devoted	to	attrition 
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1 − (ݐ)ߙ = fraction	of	ܫ	ᇱs	effort	devoted	to	attack												 

(ݐ)ߚ = fraction	of	ܫܫ	′s	effort	devoted	to	attrition 

1 − (ݐ)ߚ = fraction	of	ܫܫᇱݏ	effort	devoted	to	attack.												 

We introduce as well the parameters 

݉ଵ = 	rate	of	production	of	war	material	for	ܫ 

݉ଶ = rate	of	production	of	war	material	for	ܫܫ 

																					ܿଵ = effectiveness	of	ܫܫ	′s	weapons	against	ܫ′s	production 

																					ܿଶ = effectiveness	of	ܫ′s	weapons	against	ܫܫ′s	production	

We will assume 

ܿଶ > ܿଵ, 

a hypothesis that introduces an asymmetry into the problem. 

The dynamics are governed by the system of ODE 

																																																	ቊ̇ݔ
(ݐ)1 = ݉1 − (ݐ)2ݔ(ݐ)ߚ1ܿ

(ݐ)2ݔ̇ = ݉2 − .(ݐ)1ݔ(ݐ)ߙ2ܿ
																																										(3.16) 

Let us finally introduce the payoff functional 

,(⋅)ߙ]ܲ [(⋅)ߚ = න ൫1 − (ݐ)ଵݔ൯(ݐ)ߙ − ൫1 − (ݐ)ଶݔ൯(ݐ)ߚ
்

଴
 ݐ݀

the integrand recording the advantage of I over II from direct attacks at time ݐ.Player I 
wants to maximize ܲ, and player II wants to minimize ܲ. 

Now to applying Dynamic Programming, first, we check the minimax condition, for 
݊ = 2, ݌ = ,ଵ݌)  :(ଶ݌

,ݔ)܎ ܽ, ܾ) ⋅ ݌ + ,ݔ)ݎ ܽ, ܾ)
= (݉ଵ − ܿଵܾݔଶ)݌ଵ + (݉ଶ − ܿଶܽݔଶ)݌ଶ + (1 − ଵݔ(ܽ − (1 −  ଶݔ(ܾ

																										= ݉ଵ݌ଵ + ݉ଶ݌ଶ + ଵݔ − ଶݔ + ଵݔ−)ܽ − ܿଶݔଵ݌ଶ) + ଶݔ)ܾ − ܿଵݔଶ݌ଵ). 
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Since ܽ and ܾ occur in separate terms, the minimax condition holds. Therefore ݒ ≡  and ݑ
the two forms of the Isaacs' equations agree: 

௧ݒ + ,ݔ)ܪ ∇௫ݒ) = 0, 

for 

,ݔ)ܪ (݌ ∶= ,ݔ)ାܪ (݌ = ,ݔ)ିܪ  .(݌

We recall ܣ = ܤ = [0,1] and ݌ = ∇௫ݒ, and then choose ܽ ∈ [0,1] to maximize  

ଵ൫−1ݔܽ − ܿଶݒ௫భ൯. 

Likewise, we select ܾ ∈ [0,1] to minimize 

ଶ൫1ݔܾ − ܿଵݒ௫భ൯. 

Thus 

ߙ																																										 = ൜
1 if −1 − 2ݔݒ2ܿ ≥ 0
0 if −1 − 2ݔݒ2ܿ < 0, 																																										 (3.17) 

and 

ߚ																																										 = ൜
1 if −1 − 1ݔݒ1ܿ ≥ 0
0 if −1 − 1ݔݒ1ܿ < 0. 																																										 (3.18) 

So if we knew the value function v, we could then design optimal feedback controls for I, 
II. 

It is however hard to solve Isaacs’ equation for ݒ, and so we switch approaches. 

Now to applying the Maximum Principle, assume ߙ(⋅),  ,are selected as above (⋅)ߚ
and ܠ(⋅) corresponding solution of the ODE (3.16). Define 

(ݐ)ܘ ∶= ∇௫(ݐ)ܠ)ݒ,  .(ݐ

By results stated above, ܘ(⋅) solves the adjoint equation 

(ݐ)ܘ̇																																						 = −∇௫ܪ൫(ݐ)ܠ, ,(⋅)ߙ,(ݐ)ܘ  (3.19)																																		൯(⋅)ߚ

for 

,ݔ)ܪ ,݌ ܽ, ܾ) = ݌ ⋅ ,ݔ)܎ ܽ, ܾ) + ,ݔ)ݎ ܽ, ܾ)																																																	 
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																																						= 1݉)1݌ − (2ݔ1ܾܿ + 2݉)2݌ − +(1ݔ2ܽܿ (1 − 1ݔ(ܽ − (1 −  .2ݔ(ܾ

Therefore (3.19) reads 

																																																				ቊ ̇݌
1 = ߙ − 1 + ߙ2ܿ2݌

2̇݌ = 1 − ߚ + ,ߚ1ܿ1݌
																																										(3.20)  

with the terminal conditions ݌ଵ(ܶ) = (ܶ)ଶ݌ = 0. 

We introduce the further notation 

ଵݏ ∶= −1 − ܿଶݒ௫మ = −1− ܿଶ݌ଶ, ଶݏ ∶= 1 − ܿଵݒ௫భ = 1 − ܿଵ݌ଵ; 

so that, according to (3.17) and (3.18), the functions ݏଵ and ݏଶ control when player I and 
player II switch their controls. In the following we will study ݏଵ and ݏଶ 

(1)  Dynamics for ࢙ ૚ and ࢙૛ 

Our goal now is to find ODE for ݏଵ,  ଶ. We computeݏ

ଵݏ̇ = −ܿଶ̇݌ଶ = ܿଶ(ߚ − 1 − (ߚଵܿଵ݌ = ܿଶ൫−1 + 1)ߚ − ଵܿଵ)൯݌ = ܿଶ(−1+  (ଶݏߚ

and 

ଶݏ̇ = −ܿଵ̇݌ଵ = ܿଵ(1 − ߙ − (ߙଶܿଶ݌ = ܿଵ൫1 + 1−)ߙ − ଶܿଶ)൯݌ = ܿଵ(1 +  .(ଵݏߙ

Therefore 

																																									ቊ̇ݏ
1 = ܿ2(−1 + ,(2ݏߚ (ܶ)1ݏ = −1
2ݏ̇ = ܿ1(1 + ,(1ݏߙ (ܶ)2ݏ = 1.						

																																		(3.21) 

Recall from (3.17) and (3.18) that 

ߙ = ൜1 if ଵݏ ≥ 0
0 if ଵݏ < 0, 

ߚ = ൜1 if ଶݏ ≥ 0
0 if ଶݏ < 0. 

Consequently, if we can find ݏଵ,  and ߙ ଶ, then we can construct the optimal controlsݏ
 .ߚ

(2) Calculating ࢙૚ and ࢙૛ 
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We work backwards from the terminal time ܶ. Since at time ܶ, we have 	
ଵݏ < 0 and ݏଶ > 0, the same inequalities hold near ܶ. Hence we have ߙ = ߚ ≡ 0 near ܶ, 
meaning a full attack from both sides. 

Next, let ݐ∗ < ܶ be the first time going backward from ܶ at which either I or II 
switches stategy. Our intention is to compute ݐ∗. On the time interval [ݐ∗, ܶ], we have 
(⋅)ߙ ≡ (⋅)ߚ ≡ 0. Thus (6.21) gives 

1ݏ̇ = (ܶ)1ݏ			,2ܿ− = −1, 2ݏ̇ = (ܶ)2ݏ			,1ܿ = 1; 

and therefore 

(ݐ)1ݏ = −1 + ܿ2(ܶ − ,(ݐ (ݐ)2ݏ = 1 + ݐ)1ܿ − ܶ) 

for times ݐ∗ ≤ ݐ ≤ ܶ. Hence ݏଵ hits 0 at time ܶ − ଵ
௖మ
; ܶ ଶ hits 0 at timeݏ	 − ଵ

௖భ
. Remember 

that we are assuming ܿଶ > ܿଵ. Then ܶ − ଵ
௖భ
< ܶ − ଵ

௖మ
, and hence 

∗ݐ = ܶ −
1
ܿଶ
. 

Now defineݐ∗ <  to be the next time going backward when player I or player II .∗ݐ
switches. On the time interval [ݐ∗, ߙ we have ,[∗ݐ ≡ 1, ߚ ≡ 0. Therefore the dynamics 
read: 

ቐ
ଵݏ̇ = −ܿଶ, (∗ݐ)ଵݏ = 0																														

ଶݏ̇ = ܿଵ(1 + ,(ଵݏ (∗ݐ)ଶݏ = 1 −
ܿଵ
ܿଶ
.						 

We solve these equations and discover that 

ቐ
(ݐ)ଵݏ = −1 + ܿଶ(ܶ − 																	(ݐ 																															

(ݐ)ଶݏ = 1 −
ܿଵ
2ܿଶ

−
ܿଵܿଶ
2

ݐ) − ܶ)ଶ. ∗ݐ) ≤ ݐ ≤ 						.(∗ݐ
 

Now ݏଵ > 0 on [ݐ∗, ଶݏ But .∗ݐ for all choices of [∗ݐ = 0 at 

∗ݐ ∶= ܶ −
1
ܿଶ
൬
2ܿଶ
ܿଵ

− 1൰
ଵ ଶ⁄

. 

If we now solve (3.21) on [0, ߙ with [∗ݐ = ߚ ≡ 1, we learn that ݏଵ,  ଶ do not changeݏ
sign. 
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We have assumed that ݔଵ > 0 and ݔଶ > 0 for all times ݐ. If either 	
 ଶ hits the constraint, then there will be a corresponding Lagrange multiplier andݔ ଵ orݔ
everything becomes much more complicated. 
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Chapter (4) 

Stochastic Control Theory  

Section (4.1): Stochastic probability theory, Brownian motion 

Stochastic Differential Equations. We begin with a brief overview of random 
differential equations. Consider a vector field ܎:ℝ௡ → ℝ௡  and the associated ODE 

																																																	ቊ̇ܠ
(ݐ) = 	ݐ)							൯(ݐ)൫x܎ > 	0)
(0)ܠ = 																															.଴ݔ

																																																	(4.1)	

In many cases a better model for some physical phenomenon we want to study is the 
stochastic differential equation 

																																														ቊ̇܆
(ݐ) = ൯(ݐ)܆൫܎ + 	ݐ)					(ݐ)కߪ > 	0)
(0)܆ = 																																											,଴ݔ

																																						(4.2)	

where ߦ(⋅) denotes a “white noise” term causing random fluctuations. We have switched 
notation to a capital letter ࢄ(⋅) to indicate that the solution is random. A solution of (4.2) 
is a collection of sample paths of a stochastic process, plus probabilistic information as to 
the likelihoods of the various paths. 

Now assume ܎: ℝ௡ × ܣ → ℝ௡ and turn attention to the controlled stochastic differential 
equation: 

											(SDE)																		ቊ̇܆
(ݏ) = ,(ݏ)܆൫܎ ൯(ݏ)ۯ + (ݏ)ߦ
(ݐ)܆ = 																																,଴ݔ

	ݐ)															 ≤ ݏ ≤ ܶ) 

Definition (4.1.1): 

(i) A control ۯ(⋅) is a mapping of [ݐ, ܶ] into ܣ, such that for each time ݐ ≤ ݏ ≤
ܶ, ݐ for (߬)܆ depends only on s and observations of (ݏ)ۯ ≤ ߬ ≤  .ݏ

(ii) The corresponding payoff functional is 

(ܲ)									 ௫ܲ,௧[ۯ(⋅)] = ܧ ቊන ݏ൯݀(ݏ)ۯ,(ݏ)܆൫ݎ
்

௧
+ ݃൫܆(ܶ)൯ቋ, 

the expected value over all sample paths for the solution of (SDE). As usual, we are given 
the running payoff ݎ and terminal payoff ݃. 

Our goal is to find an optimal control ۯ∗(⋅), such that 
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௫ܲ,௧[ۯ∗(⋅)] = max
(⋅)ۯ ௫ܲ,௧[ۯ(⋅)]. 

To discuss the dynamic programming, we will adapt a dynamic programming methods, 
so, we firstly define the value function 

,ݔ)߭ (ݐ ≔ sup
(⋅)ۯ

௫ܲ,௧[ۯ(⋅)]. 

The overall plan to find an optimal control ۯ∗(⋅) will be (i) to find a Hamilton-Jacobi-
Bellman type of PDE that ߭ satisfies, and then (ii) to utilize a solution of this PDE in 
designing ۯ∗. 

It will be particularly interesting to see [2] how the stochastic effects modify the 
structure of the Hamilton-Jacobi-Bellman (HJB) equation, as compared with the 
deterministic case [4]. 

Definition (4.1.2): 

A probability space is a triple (Ω,ℱ, ܲ), where 

(i) Ω is a set, 
(ii) ℱ is a σ-algebra of subsets of Ω, 
(iii) ܲ is a mapping from ℱ into [0,1] such that ܲ(∅) = 0, ܲ(Ω) = 1, and 

ܲ(⋃ ௜ஶܣ
௜ୀଵ ) = ∑ ஶ(௜ܣ)ܲ

௜ୀଵ , provided ܣ௜ ∩ ௝ܣ = ∅ for all ݅ ≠ ݆.	

A typical point in Ω is denoted  "߱" and is called a sample point. A set ܣ ∈ ℱ is 
called an event. We call P a probability measure on Ω, and ܲ(ܣ) ∈ [0, 1] is probability of 
the event ܣ. 

Definition (4.1.3): 

A random variable ܆ is a mapping ܺ: Ω → ℝ  such that for all ݐ ∈ ℝ 

{߱|ܺ(߱) ≤ {ݐ ∈ ℱ. 

We mostly employ capital letters to denote random variables. Often the dependence 
of ܺ on ߱ is not explicitly displayed in the notation. 

Definition (4.1.4):	

Let ܺ be a random variable, defined on some probability space (Ω,ℱ, ܲ). The 
expected value of ܺ is 
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[ܺ]ܧ ≔ නܺ	݀ܲ
	

ஐ
. 

Example (4.1.5): 

Assume Ω ⊂ ℝ௠, and ܲ(ܣ) = ∫ ݂	݀߱	
஺  for some function ݂: ℝ௠ → [0,∞), with 

∫ ݂	݀߱	
Ω = 1. We then call ݂ the density of the probability ܲ, and write “݀ܲ = ݂	݀߱”. In 

this case, 

[ܺ]ܧ = නܺ	݂	݀߱
	

ஐ
. 

Definition (4.1.6): 

We define also the variance 

Var(ܺ) = ܺ)]ܧ − [ଶ((ܺ)ܧ = [ଶܺ]ܧ − 	.ଶ([ܺ]ܧ)

Example (4.1.7): 

A random variable ܺ is called normal (or Gaussian) with mean ߤ, variance ߪଶ if for 
all −∞ ≤ ܽ < ܾ ≤ ∞ 

ܲ(ܽ ≤ ܺ ≤ ܾ) =
1

ଶߪߨ2√
න ݁ି

(௫ିఓ)మ
ଶఙమ

௕

௔
 ,ݔ݀

We write  ”ܺ is ܰ(ߤ,  .”(ଶߪ

Definitions (4.1.8): 

(i) Two events ܣ, ܤ ∈ ℱܨ are called independent if 

ܣ)ܲ ∩ (ܤ =  .(ܤ)ܲ(ܣ)ܲ

(ii) Two random variables ܺ and ܻ are independent if 

ܲ(ܺ ≤ ܻ			and			ݐ ≤ (ݏ = ܲ(ܺ ≤ ܻ)ܲ(ݐ ≤  (ݏ

for all ݐ, ݏ ∈ ℝ. In other words, ܺ and ܻ are independent if for all ݐ, ܣ the events ݏ =
{ܺ ≤ ܤ and {ݐ = {ܻ ≤  .are independent {ݏ
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Definition (4.1.9): 

A stochastic process is a collection of random variables ܺ(ݐ)(0 ≤ ݐ < ∞), each 
defined on the same probability space (Ω, ℱ, ܲ). 

The mapping ݐ ↦ ,ݐ)ܺ ߱) is the ߱-th sample path of the process. 

Definition (4.1.10): 

A real-valued stochastic process ܹ(ݐ) is called a Wiener process or Brownian motion 
if: 

(i)      ܹ(0) = 0, 
(ii)      each sample path is continuous, 
(iii)      ܹ(ݐ) is Gaussian with ߤ = 0, ଶߪ = ,is ܰ(0 (ݐ)ܹ ,that is) ݐ  ,((ݐ
(iv) for all choices of times 0 < ଵݐ < ଶݐ < ⋯ <  ௠ the random variablesݐ

(ଶݐ)ܹ,(ଵݐ)ܹ 	− ,(ଵݐ)ܹ . . . (௠ݐ)ܹ, 	(௠ିଵݐ)ܹ−

are independent random variables. 

Assertion (iv) says that ܹ  has ”independent increments”. 

Interpretation (4.1.11):  

We heuristically interpret the one-dimensional “white noise” ߦ(⋅) as equalling 
ௗௐ(௧)
ௗ௧

. However, this is only formal, since for almost all ߱, the sample path ݐ ↦ ܹ is in 
fact nowhere differentiable.  

Definition (4.1.12): 

An ݊-dimensional Brownian motion is 

(ݐ)܅ = (ܹଵ(ݐ),ܹଶ(ݐ), . . . ,ܹ௡(ݐ))்	

when the ܹ௜(ݐ) are independent one-dimensional Brownian motions. 

We use boldface below to denote vector-valued functions and stochastic processes. 
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Section (4.2): Stochastic calculus, Itô chain rule 

We discuss next how to understand stochastic differential equations, driven by ”white 
noise”. Consider first of all 

																																																	ቊ
(ݐ)܆̇ = ൯(ݐ)܆൫܎ + 	ݐ)				(ݐ)కߪ > 	0)
(0)܆ = 																																										,଴ݔ

																																					(4.3)	

where we informally think of ࣈ =  .ࢃ̇

Definition (4.2.1): 

A stochastic process ܆(⋅) solves (4.3) if for all times ݐ ≥ 0, we have 

(ݐ)܆																																									 = ଴ݔ +න ݂൫(ݏ)܆൯݀ݏ
௧

଴
+  (4.4)																																											.(ݐ)܅ߪ

Remarks (4.2.2):  

(i) It is possible to solve (4.4) by the method of successive approximation. For this, 
we set ܆଴(⋅) ≡  and inductively define ,ݔ

(ݐ)௞ାଵ܆ ≔ ଴ݔ +න ݂൫܆௞(ݏ)൯݀ݏ
௧

଴
+  .(ݐ)܅ߪ

It turns out that ܆௞(ݏ) converges to a limit (ݏ)܆ for all ݐ ≥ 0 and ܆(⋅) solves the integral 
identity (4.4). 

(ii)  Consider a more general SDE 

(ݐ)܆̇																																								 = ൯(ݐ)܆൫܎ + ۶൫(ݐ)܆൯(ݐ)ߦ									ݐ) > 0),																															(4.5)	

which we formally rewrite to read: 

(ݐ)܆݀
ݐ݀

= ൯(ݐ)܆൫܎ + ۶൫(ݐ)܆൯
(ݐ)܅݀
ݐ݀

 

and then 

(ݐ)܆݀ = ݐ൯݀(ݐ)܆൫܎ + ۶൫(ݐ)܆൯݀(ݐ)܅. 

This is an Itô stochastic differential equation. By analogy with the foregoing, we say ܆(⋅) 
is a solution, with the initial condition (0)܆ =  ଴, ifݔ
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(ݐ)܆ = ଴ݔ + න ݏ൯݀(ݏ)܆൫܎
௧

଴
+න ۶൫(ݏ)܆൯ ⋅ (ݏ)܅݀

௧

଴
 

for all times ݐ ≥ 0. In this expression ∫ (܆)۶ ⋅ ௧܅݀
଴  is called an Itô stochastic integral.  

Remark (4.2.3): 

Given a Brownian motion ܅(⋅) it is possible to define the Itô stochastic integral  

න 	܇ ⋅ ܅݀
௧

଴
 

for processes ܇(⋅) having the property that for each time 0 ≤ ݏ ≤  depends on (ݏ)܇" ݐ
ܹ(߬) for times 0 ≤ ߬ ≤ ݏ ) for times	but not on ܹ(߬ ,ݏ ≤ ߬ Such processes are called 
 "nonanticipating". 

We will not here explain the construction of the Itô integral, but will just record one 
of its useful properties: 

ܧ																																																																					 ቈන 	܇ ⋅ ܅݀
௧

଴
቉ = 0.																																																(4.6) 

Once the Itô stochastic integral is defined, we have in effect constructed a new 
calculus, the properties of which we should investigate. This section explains that the 
chain rule in the Itô calculus contains additional terms as compared with the usual chain 
rule in one and higher dimensions.  

(1) One Dimension: We suppose that ݊ = 1 and 

																																							൜݀܆
(ݐ) = ݐ݀(ݐ)ܣ + ݐ)								(ݐ)ࢃ݀(ݐ)ܤ ≥ 0)

ܺ(0) = 																																																								.଴ݔ 																																(4.7) 

The expression (4.7) means that 

(ݐ)ܺ = ଴ݔ +න ݏ݀(ݏ)ܣ
௧

଴
+න (ݏ)ܹ݀	(ݏ)ܤ

௧

଴
 

for all times ݐ ≥ 0. 

Let ݑ:ℝ → ℝ and define 

(ݐ)ܻ ≔  .൯(ݐ)൫ܺݑ
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We ask: what is the law of motion governing the evolution of ܻ in time? Or, in other 
words, what is ܻ݀(ݐ)? 

It turns out, quite surprisingly, that it is incorrect to calculate 

(ݐ)ܻ݀ = ݀ ቀݑ൫ܺ(ݐ)൯ቁ = (ݐ)൯݀ܺ(ݐ)ᇱ൫ܺݑ = ݐ݀(ݐ)ܣ൯൫(ݐ)ᇱ൫ܺݑ +  .൯(ݐ)ܹ݀(ݐ)ܤ

We try again and make use of the heuristic principle that "ܹ݀ =  ଵ/ଶ". So let us(ݐ݀)
expand u into a Taylor's series, keeping only terms of order ݀  or larger. Then ݐ

(ݐ)ܻ݀ = ݀ ቀݑ൫ܺ(ݐ)൯ቁ 

				= (ݐ)ܺ݀	൯(ݐ)ᇱ൫ܺݑ +
1
2
ଶ(ݐ)൯݀ܺ(ݐ)ᇱᇱ൫ܺݑ +

1
6
ଷ(ݐ)൯݀ܺ(ݐ)ᇱᇱᇱ൫ܺݑ + ⋯																							 

				= ݐ݀(ݐ)ܣ]൯(ݐ)ᇱ൫ܺݑ + [(ݐ)ܹ݀(ݐ)ܤ +
1
2
ݐ݀(ݐ)ܣ]൯(ݐ)ᇱᇱ൫ܺݑ + ଶ[(ݐ)ܹ݀(ݐ)ܤ + ⋯, 

the last line following from (4.7). Now, formally at least, the heuristic that ܹ݀ =   ଵ/ଶ(ݐ݀)
implies 

ݐ݀(ݐ)ܣ] + ଶ[(ݐ)ܹ݀(ݐ)ܤ = ଶݐଶ݀(ݐ)ܣ + (ݐ)ܹ݀ݐ݀(ݐ)ܤ(ݐ)ܣ2 +  		ଶ(ݐ)ܹ݀(ݐ)ଶܤ

= ݐ݀(ݐ)ଶܤ +  														.(ݐ݀)݋

Thus, ignoring the (ݐ݀)݋ term, we derive the one-dimensional Itô chain rule 

(ݐ)ܻ݀ = ݀ ቀݑ൫ܺ(ݐ)൯ቁ

= ൤ݑᇱ൫ܺ(ݐ)൯(ݐ)ܣ +
1
2
൯൨(ݐ)ᇱᇱ൫ܺݑ(ݐ)ଶܤ ݐ݀ +  (4.8)							.(ݐ)ܹ݀(ݐ)ܤ൯(ݐ)ᇱ൫ܺݑ

This means that for each time ݐ > 0 

൯(ݐ)൫ܺݑ = (ݐ)ܻ

= ܻ(0) +න ൤ݑᇱ൫ܺ(ݏ)൯(ݏ)ܣ +
1
2
ݏ൯൨݀(ݏ)ᇱᇱ൫ܺݑ(ݏ)ଶܤ

௧

଴

+න (ݏ)ܹ݀(ݏ)ܤ൯(ݏ)ᇱ൫ܺݑ
௧

଴
. 

(2) Higher Dimensions: We turn now to stochastic differential equations in higher 
dimensions. For simplicity, we consider only the special form 
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																																																	൜ ܆݀
(ݐ) = ݐ݀(ݐ)ۯ + ݐ)								(ݐ)ࢃ݀ߪ ≥ 0)

(0)܆ =  (4.9)																																																																																	଴.ݔ

We write 

(ݐ)ܺ = ൫ܺଵ(ݐ), ܺଶ(ݐ),… , ܺ௡(ݐ)൯். 

The stochastic differential equation means that for each index ݅, we have              
݀ܺ௜(ݐ) = ݐ݀(ݐ)௜ܣ +   .(ݐ)௜ܹ݀ߪ

Hence to explain the ITô Chain Rule again, let ݑ:ℝ௡ × [0,∞) → ℝ and put 

(ݐ)ܻ ≔ ,(ݐ)܆)ݑ  .(ݐ

What is ݀ ܻ? Similarly to the computation above, we calculate 

(ݐ)ܻ݀ = ,(ݐ)ܺ)ݑ]݀ [(ݐ

= ,(ݐ)ܺ)௧ݑ ݐ݀(ݐ +෍ݑ௫೔(ܺ(ݐ), ܺ݀(ݐ
௜(ݐ)

௡

௜ୀଵ

+
1
2
෍ ,(ݐ)ܺ)௫೔௫ೕݑ ܺ݀(ݐ

௜(ݐ)݀ܺ௝(ݐ)
௡

௜,௝ୀଵ

. 

Now use (4.9) and the heuristic rules that 

ܹ݀௜ = ܹ݀௜					and					ଵ/ଶ(ݐ݀) 	ܹ݀௝ = ൜݀ݐ			if			i=j		0			if			i≠j.  

The second rule holds since the components of ݀܅ are independent. Plug these identities 
into the calculation above and keep only terms of order ݀ݐ or larger: 

(ݐ)܇݀ = ,(ݐ)ܺ)௧ݑ ݐ݀(ݐ +෍ݑ௫೔((ݐ)܆, ܣ](ݐ
௜(ݐ)݀ݐ + [(ݐ)௜ܹ݀ߪ

௡

௜ୀଵ

+
ଶߪ

2
෍ݑ௫೔௫ೕ

௡

௜ୀଵ

,(ݐ)܆)  (4.10)																																																																													ݐ݀(ݐ

= ,(ݐ)܆)௧ݑ (ݐ + ∇௫(ݐ)ܺ)ݑ, (ݐ ⋅ ݐ݀(ݐ)ۯ] + [(ݐ)܅݀ߪ +
ଶߪ

2
,(ݐ)܆)ݑ∆  .ݐ݀(ݐ

This is Itô's chain rule in ݊-dimensions. Here 
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∆=෍
߲ଶ

௜ଶݔ߲

௡

௜ୀଵ

 

denotes the Laplacian. 

Now we discuss two applications to PDE; 

(1) A stochastic representation formula for harmonic functions: Consider a region 
ܷ ⊆ ℝ௡ and the boundary-value problem 

																																																									൜∆ݑ = 0 ݔ) ∈ ܷ)		
ݑ = ݃ ݔ) ∈ ߲ܷ)																																																								(4.11) 

where, as above, ∆= ∑ డమ

డ௫೔
మ

௡
௜ୀଵ  is the Laplacian. We call u a harmonic function. 

We develop a stochastic representation formula for the solution of (4.11). Consider 
the random process (ݐ)܆ = (ݐ)܅ +  ,that is ;ݔ

൜݀܆
(ݐ) = ݐ)					(ݐ)܅݀ > 0)

(0)܆ = 0																													  

and ܹ(⋅) denotes an ݊-dimensional Brownian motion. To find the link with the PDE 
(4.11), we define ܻ(ݐ):=  Then Itô’s rule (4.10) gives .((ݐ)܆)ݑ

(ݐ)ܻ݀ = ൯(ݐ)܆൫ݑ∇ ⋅ (ݐ)܅݀ +
1
2
 ݐ൯݀(ݐ)܆൫ݑ∆

Since ∆ݑ ≡ 0, we have 

(ݐ)ܻ݀ = ((ݐ)܆)ݑ∇ ⋅ 	;(ݐ)܅݀

which means 

൯(ݐ)܆൫ݑ = (ݐ)ܻ = ܻ(0) + න ൯(ݏ)܆൫ݑ∇ ⋅ (ݏ)܅݀
௧

଴
. 

Let ߬ denote the (random) first time the sample path hits ߲ܷ. Then, putting ݐ = ߬ 
above, we have 

(ݔ)ݑ = ൯(߬)܆൫ݑ − න ݑ∇ ⋅ (ݏ)܅݀
ఛ

଴
. 

But ݑ൫܆(߬)൯ = ݃൫܆(߬)൯, by definition of ߬ . Next, average over all sample paths: 
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(ݔ)ݑ = ൯൧(߬)܆൫݃ൣܧ − ܧ ቈන ݑ∇ ⋅ ܅݀
ఛ

଴
቉. 

The last term equals zero, according to (4.6). Consequently, 

(ݔ)ݑ =  .൯൧(߬)܆൫݃ൣܧ

Interpretation (4.2.4): 

Consider all the sample paths of the Brownian motion starting at x and take the 
average of ݃൫܆(߬)൯. This gives the value of ݑ at ݔ.  

(2) A time-dependent problem: We next modify the previous calculation to cover the 
terminal-value problem for the inhomogeneous backwards heat equation: 

																								ቐݑ௧(ݔ, (ݐ +
ଶߪ

2
,ݔ)ݑ∆ (ݐ = ,ݔ)݂ ݔ)							(ݐ ∈ ℝ௡ , 0 ≤ ݐ < ܶ)

,ݔ)ݑ ܶ) = 																																																																										.(ݔ)݃
																				(4.12) 

Fix 0 ≤ ݐ < ܶ. We introduce the stochastic process 

൜݀܆
(ݏ) = ݐݏ)					(ݏ)܅݀ߪ ≥)

(ݐ)܆ = 																															.ݔ  

Use Itô’s chain rule (4.10) to compute ݀(ݏ)܆)ݑ,  :(ݏ

,(ݏ)܆)ݑ݀ (ݏ = ,(ݏ)܆)௦ݑ ݏ݀(ݏ + ∇௫(ݏ)܆)ݑ, (ݏ ⋅ (ݏ)܆݀ +
ଶߪ

2
,(ݏ)܆)ݑ∆  .(ݏ

Now integrate for times ݐ ≤ ݏ ≤ ܶ, to discover 

,(ܶ)܆)ݑ ܶ) = ,(ݐ)܆)ݑ (ݐ + න
ଶߪ

2
,(ݏ)܆)ݑ∆ (ݏ + ,(ݏ)܆)௦ݑ ݏ݀(ݏ

்

௧

+න ,(ݏ)܆)ݑ௫∇ߪ (ݏ ⋅ .(ݏ)܅݀
்

௧
 

Then, since ݑ solves (4.12): 

,ݔ)ݑ (ݐ = ܧ ቆ݃൫܆(ܶ)൯ − න ,(ݏ)܆)݂ ݏ݀(ݏ
்

௧
ቇ. 
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Section (4.3): Dynamic Programming and Application 

We now turn our attention to controlled stochastic differential equations, of the form 

(SDE)				ቊ݀܆
(ݏ) = ݏ൯݀(ݏ)ۯ,(ݏ)܆൫܎ + ݐ)					(ݏ)܅݀ߪ ≤ ݏ ≤ ܶ)

(ݐ)܆ = 																																																																											.ݔ
	

Therefore 

(߬)܆ = ݔ + න ,(ݏ)܆൫܎ ݏ൯݀(ݏ)ۯ
ఛ

௧
+ (߬)܅]ߪ  [(ݐ)܅−

for all ݐ ≤ ߬ ≤ ܶ. We introduce as well the expected payoff functional 

(ܲ)								 ௫ܲ,௧[ۯ(⋅)] ≔ ܧ ቊන ,(߬)܆൫ݎ ݏ൯݀(ݏ)ۯ + ݃൫܆(ܶ)൯
்

௧
ቋ .	

The value function is 

,ݔ)߭ (ݐ ≔ sup
(⋅)ۯ

௫ܲ,௧[ۯ(⋅)]. 

We will employ the method of dynamic programming. To do so, we must:  

(i) Find a PDE satisfied by ݒ, and then  
(ii) (ii) Use this PDE to design an optimal control ۯ∗(⋅). 

Now to find a PDE for the value function, let ۯ(⋅) be any control, and suppose we use it 
for times ݐ ≤ ݏ ≤ ݐ + ℎ, ℎ > 0, and thereafter employ an optimal control. Then 

,ݔ)߭																											 (ݐ ≥ ܧ ቊන ,(ݏ)܆൫ݎ ൯(ݏ)ۯ
௧ା௛

௧
ݏ݀ + ݐ)܆)߭ + ℎ), ݐ + ℎ)ቋ,															(4.13) 

and the inequality in (4.13) becomes an equality if we take ۯ(⋅) =  an optimal ,(⋅)∗ۯ
control. 

Now from (4.13) we see for an arbitrary control that 

0 ≥ ܧ ቊන ,(ݏ)܆൫ݎ ൯(ݏ)ۯ
௧ା௛

௧
ݏ݀ + ݐ)܆)߭ + ℎ), ݐ + ℎ) − ,ݔ)߭ ቋ(ݐ

= ܧ ቊන ݏ݀	ݎ
௧ା௛

௧
ቋ + ݐ)܆)߭}ܧ + ℎ), ݐ + ℎ) − ,ݔ)߭  {(ݐ
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Recall next Itô’s formula: 

,(ݏ)܆)߭݀ (ݏ = ߭௧((ݏ)܆, ݏ݀(ݏ +෍߭௫೔((ݏ)܆, (ݏ
௡

௜ୀଵ

݀ܺ௜(ݏ)

+
1
2
෍ ߭௫೔௫ೕ((ݏ)܆, (ݏ
௡

௜,௝ୀଵ

݀ܺ௜(ݏ)݀ܺ௝(ݏ)

= ߭௧݀ݏ + ∇௫߭ ⋅ ൫ݏ݀܎ + ൯(ݏ)܅݀ߪ +
ଶߪ

2
 (4.14)																																											.ݏ݀߭∆

This means that 

ݐ)܆)߭ + ℎ), ݐ + ℎ) − ,(ݐ)܆)߭ (ݐ

= න ቆ߭௧ + ∇௫߭ ⋅ ܎ +
ଶߪ

2
∆߭ቇ݀ݏ

௧ା௛

௧
+න ௫߭∇ߪ ⋅ (ݏ)܅݀

௧ା௛

௧
; 

and so we can take expected values, to deduce 

ݐ)܆)߭]ܧ						 + ℎ), ݐ + ℎ) − ,ݔ)߭ [(ݐ = ܧ ቈන ቆ߭௧ + ∇௫߭ ⋅ ܎ +
ଶߪ

2
∆߭ቇ݀ݏ

௧ା௛

௧
቉ .													(4.15) 

We derive therefore the formula 

0 ≥ ܧ ቈන ቆݎ + ߭௧ + ∇௫߭ ⋅ ܎ +
ଶߪ

2
∆߭ቇ݀ݏ

௧ା௛

௧
቉. 

Divide by ℎ: 

0 ≥ ܧ ቈ
1
ℎ
න ,(ݏ)܆൫ݎ ൯(ݏ)ۯ
௧ା௛

௧
+ ߭௧((ݏ)܆, (ݏ + ݂൫(ݏ)ۯ,(ݏ)܆൯ ⋅ ∇௫߭((ݏ)܆, (ݏ

+
ଶߪ

2
,(ݏ)܆)߭∆  .቉ݏ݀(ݏ

If we send ℎ → 0, recall that (ݐ)܆ = :(ݐ)ۯ and set ݔ = ܽ ∈  we see that ,ܣ

0 ≥ ,ݔ)ݎ ܽ) + ߭௧(ݔ, (ݐ + ,ݔ)܎ ܽ) ⋅ ∇௫߭(ݔ, (ݐ +
ଶߪ

2
,ݔ)߭∆  .(ݐ

The above identity holds for all ݔ, ,ݐ ܽ and is actually an equality for the optimal 
control. Hence 
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max
௔∈஺

ቊ߭௧ + ܎ ⋅ ∇௫߭ +
ଶߪ

2
∆߭ + ቋݎ = 0. 

In summary, we have shown that the value function v for our stochastic control problem 
solves this PDE: 

(HJB)				ቐ߭௧(ݔ, (ݐ +
ଶߪ

2
,ݔ)߭∆ (ݐ +max௔∈஺{ݔ)܎, ܽ) ⋅ ∇௫߭(ݔ, (ݐ + ,ݔ)ݎ ܽ)} = 0

,ݔ)߭ ܶ) = 																																																																																													.(ݔ)݃
	

This semilinear parabolic PDE is the stochastic Hamilton-Jacobi-Bellman equation. 

Assume now that we can somehow solve the (HJB) equation, and therefore know the 
function v. We can then compute for each point (ݔ, ܽ a value (ݐ ∈ ,ݔ)for which ∇௫߭ ܣ (ݐ ⋅
,ݔ)܎ ܽ) + ,ݔ)ݎ ܽ) attains its maximum. In other words, for each (ݔ,           we choose (ݐ
ܽ = ,ݔ)ߙ  such that (ݐ

max
௔∈஺

,ݔ)܎] ܽ) ⋅ ∇௫߭(ݔ, (ݐ + ,ݔ)ݎ ܽ)] 

occurs for ܽ = ,ݔ)ߙ  Next solve .(ݐ

ቊ݀܆
(ݏ)∗ = ,(ݏ)∗܆൫܎ ,(ݏ)∗܆)ߙ ݏ൯݀(ݏ + (ݏ)܅݀ߪ
(ݐ)∗܆ = 																																																											.ݔ

 

assuming this is possible. Then (ݏ)∗ۯ = ,(ݏ)∗܆)ߙ  .is an optimal feedback control (ݏ

Following is an interesting example worked out by Merton. In this model we have the 
option of investing some of our wealth in either a risk-free bond (growing at a fixed rate) 
or a risky stock (changing according to a random differential equation). We also intend to 
consume some of our wealth as time evolves. As time goes on, how can we best (i) allot 
our money among the investment opportunities and (ii) select how much to consume? 

We assume time runs from 0 to a terminal time ܶ. Introduce the variables 

(ݐ)ܺ = wealth at time ݐ (random) 

(ݐ)ܾ = price of a risk-free investment, say a bond 

(ݐ)ܵ = price of a risky investment, say a stock (random) 

(ݐ)ଵߙ = fraction of wealth invested in the stock 

(ݐ)ଶߙ = rate at which wealth is consumed. 
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Then 

																																							0 ≤ (ݐ)ଵߙ ≤ 1,				0 ≤ 0)				(ݐ)ଶߙ ≤ ݐ ≤ ܶ)																																	(4.16) 

We assume that the value of the bond grows at the known rate ݎ > 0: 

																																																																										ܾ݀ = ;ݐܾ݀ݎ 																																																							(4.17)	

whereas the price of the risky stock changes according to 

																																																																			݀ܵ = ݐܴ݀ܵ + 	(4.18)																																												.ܹ݀ܵߪ

Here ݎ, ܴ,  are constants, with ߪ

ܴ > ݎ > 0, ߪ ≠ 0.	

This means that the average return on the stock is greater than that for the risk-free bond. 

According to (4.17) and (4.18), the total wealth evolves as 

																							݀ܺ = (1 − ݐ݀	ݎܺ((ݐ)ଵߙ + ݐܴ݀)ܺ(ݐ)ଵߙ + (ܹ݀ߪ −  (4.19)																.ݐ݀(ݐ)ଶߙ

Let 

ܳ:= ,ݔ)} 0|(ݐ ≤ ݐ ≤ ܶ, ݔ ≥ 0}	

and denote by ߬ the (random) first time ܆(⋅) leaves ܳ. Write (ݐ)ۯ = ,(ݐ)ଵߙ)  for ்((ݐ)ଶߙ
the control. 

The payoff functional to be maximized is 

௫ܲ,௧[ۯ(⋅)] = ܧ ቆන ݁ିఘ௦ܨ(ߙଶ(ݏ))
ఛ

௧
 ,ቇݏ݀

where ܨ is a given utility function and ߩ > 0 is the discount rate. 

Guided by theory similar to that developed [2], we discover that the corresponding 
(HJB) equation is 

௧ݑ max
଴ஸ௔భஸଵ,௔మஹ଴

ቊ
(ܽଵߪݔ)ଶ

2
௫௫ݑ + ൫(1 − ܽଵ)ݎݔ + ܽଵܴݔ − ܽଶ൯ݑ௫ + ݁ିఘ௧ܨ(ܽଶ)ቋ = 0					(4.20) 

with the boundary conditions that 

,0)ݑ																																																																			 (ݐ = 0, ,ݔ)ݑ ܶ) = 0.																																						(4.21)	
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We compute the maxima to find 

∗ଵߙ																																																		 =
−(ܴ − ௫ݑ(ݎ
௫௫ݑݔଶߪ

(∗ଶߙ)ᇱܨ				, = ݁ఘ௧ݑ௫,																												(4.22) 

provided that the constraints 0 ≤ ∗ଵߙ ≤ 1 and 0 ≤  ଶ∗ are valid: we will need to worryߙ
about this later. If we can find a formula for the value function ݑ, we will then be able to 
use (4.22) to compute optimal controls. 

To go further (finding an explicit solution), we assume the utility function ܨ has the 
explicit form 

(ܽ)ܨ = ܽఊ					(0 < ߛ < 1) 

Next we guess that our value function has the form 

,ݔ)ݑ (ݐ =  ,ఊݔ(ݐ)݃

for some function ݃ to be determined. Then (4.22) implies that 

∗ଵߙ =
−(ܴ − ௫ݑ(ݎ
ଶ(1ߪ − (ߛ

∗ଶߙ					, = [݁ఘ௧݃(ݐ)]
ଵ

ఊିଵݔ. 

Plugging our guess for the form of u into (4.20) and setting ܽଵ = ,∗ଵߙ ܽଶ =   ଶ∗, we findߙ

ቆ݃ᇱ(ݐ) + (ݐ)݃ߛߥ + (1 − ൯(ݐ)൫݁ఘ௧݃(ݐ)݃(ߛ
ଵ

ఊିଵቇ ఊݔ = 0 

for the constant 

ߥ ≔
(ܴ − ଶ(ݎ

ଶ(1ߪ2 − (ߛ
+  .ݎ

Now put 

ℎ(ݐ) ≔ ൫݁ఘ௧݃(ݐ)൯
ଵ

ఊିଵ 

to obtain a linear ODE for ℎ. Then we find 

(ݐ)݃ = ݁ିఘ௧ ቈ
1 − ߛ
ߩ − ߛߥ

ቆ1 − ݁
ି(ఘିఔఊ)(்ି௧)

ଵିఊ ቇ቉
ଵିఊ

. 

If ܴ − ݎ ≤ ଶ(1ߪ − then 0 ,(ߛ ≤ ∗ଵߙ ≤ 1 and ߙଶ∗ ≥ 0 as required.  



123 
 

References 

[1] B. D. Craven, Control and Optimization, Chapman & Hall, 1995. 

[2]  B. K. Oksendal, Stochastic Differential Equations: An Introduction with 

Applications, 4th ed., Springer, 1995. 

[3]  E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, 

1967. 

[4]  F. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983. 

[5]  F. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF 

Regional Conference Series in Applied Mathematics, SIAM, 1989. 

[6]  G. Knowles, An Introduction to Applied Optimal Control, Academic Press, 

1981. 

[7]  G. Oster and E. O. Wilson, Caste and Ecology in Social Insects, Princeton 

University Press. 

[8]  J. Lewin, Differential Games: Theory and methods for solving game problems 

with singular surfaces, Springer, 1994. 

[9]  J. Macki and A. Strauss, Introduction to Optimal Control Theory, Springer, 

1982. 

[10] L. C. Evans, An Introduction to Stochastic Differential Equations, lecture 

notes available at http://math.berkeley.edu/˜ evans/SDE.course.pdf. 

[11] L. Hocking, Optimal Control: An Introduction to the Theory with 

Applications, Oxford University Press, 1991. 

[12] L. S. Pontryagin, V. G. Boltyanski, R. S. Gamkrelidze and E. F. 

Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, 

1962. 

[13] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions 

of Hamilton- Jacobi-Bellman Equations, Birkhauser, 1997. 



124 
 

[14] N. Barron and R. Jensen, The Pontryagin maximum principle from dynamic 

programming and viscosity solutions to first-order partial differential 

equations, 

[15] N. V. Krylov, Controlled Diffusion Processes, Springer, 1980. 

[16] R. Isaacs, Differential Games: A mathematical theory with applications to 

warfare and pursuit, control and optimization, Wiley, 1965 (reprinted by Dover 

in 1999). 

[17] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, 

Springer, 1975. 

[18] W. Fleming and M. Soner, Controlled Markov Processes and Viscosity 

Solutions, Springer, 1993. 

 
 

 


