
1

Chapter 1: Introduction

1.1 Introduction

Re-documentation is part of software engineering, it

recovers the understanding of the software and records it, thus

making future program understanding easier (E.Chikofsky and

J.Cross,1990).

A key goal of re-documentation is to provide easier ways to

visualize relationships among program components so that

recognize and follow paths clearly. One of the ways to implement

the re-documentation process is using the reverse engineering

approach .

Reverse Engineering (RE) captures the information from the

existing source code, it is the opposite of forward engineering.

Also it is the process of analyzing a subject system to identify the

system's components and their interrelationships.(Tung Doan ,

2008).

Generating quality documentation through re-documentation

process is important for program comprehension and software

evolutions (N.Sugumaran1, S.Ibrahim2 , 2011) .

This study proposes a framework for system re-documentation

based on reverse engineering approach. It also proposes a

model for evaluating the quality of the generated documentation.

2

1.2 Statement of the Problem

Documentation is a missing item in the maintenance legacy

software systems . As these old systems evolve, there is a need for

the corresponding documentation and an understanding of the

original design so that modifications to the software can be made

properly.

Due to this lack of up-to-date documentation, some times

maintainers must often work from the source code to the exclusion

of any other source of information. For example, a study reports

that from 40% to 60% of the maintenance activity is spent on

studying the software to understand it and how the planned

modification may be implemented .

The key point solution to the above problems is the software re-

documentation. Reverse engineering provides a better

understanding of an existing system , by focusing on the process of

reverse engineering to extract related information from source code

then generating new documents .

1.3 Motivation and Objectives

Legacy software systems are generally poorly documented.

This makes it difficult to understand and maintain such systems.

Re-documenting them could be a great help to keep them “alive”.

Poor and un-useful document is the main problem we search to

find solution for it . Are the Reverse Engineering is the good

approach to re-document a legacy software ? , are the document we

3

generated from RE tool was high quality , How could we measure

it ? .

Because high quality and useful documentation is one of the key

factors in producing quality and consistent software .

Based on the observations above, our research objectives are

summarized as follows:

 Define re-documentation process to explain the role of

reverse engineering in it .

 Built a Document Quality Model , to terminate the quality

document attributes then measure the quality of document

generated from the case study .

4

1.4 Research steps

Figure 1.1: Research steps

GOAL: To find the effective and practical re-

documentation approach and tool to produce a high

Quality document .

Evaluating previous

LITERATURE

Documentation & Re-

documentation literature

Doc Quality Measurement

literature

Review re-doc

approaches& select One

(Reverse Eng.)

Study Quality Attributes

Built a Doc Quality Model

Implementing the

Re-documentation of a real system

Validate

Generate a document

Measure the Quality of document

RESULT

Select an appropriate tool

5

1.5 Research Organization

The thesis is structured as follows :

Chapter 2 : Provide background and literature review of the thesis

Chapter 3 : Contains the research methodology .

Chapter 4 : Shows The Result and discussion.

Finally, Chapter 5 : Concludes the thesis .

6

Chapter2 :literature review

2.1 Overview

The purpose of this survey is to identify the historical

background and current understanding of the subject, and to

establish the state-of-the-art. The content of this chapter defines

the knowledge base upon which work presented in this thesis .

Various research related to software re-documentation, has been

carried out at universities and institutes around the world. As a

natural starting point in the development of this thesis, I started

looking for published academic and research papers with topics

and aims similar to this thesis.

The literature focuses on the following areas of study :

 Software Re-documentation: Literature the past research that

helps define the re-documentation in a software environment as

well as providing an analysis of re-documentation process ,

approaches of re-documentation.

 The Reverse engineering as one of the most common

approaches of re-documentation.

 Quality of Software documentation :to understand the

reasons behind re-documentation the aspects of quality

document should be define .

7

2.2 Software Re-documentation

Re-documentation is in general the process of analyzing a

software system to represent it with a meaningful alternate view

intended for a human audience. Usually, this task is supported by

tools that generate views and diagrams really helpful for software

engineers during maintenance and quality assurance(M. Torchiano

et al , 2009) .

Researchers and practitioners also have looked at the uses of

software documentation as just to compile a few notes , but

documentation can also be used for learning , testing and working

with software system, also solving problems and keeps software-

quality at high levels.

Re-documentation addresses that problem by recovering

knowledge about the system and making it explicit in

documentation .

2.2.1 Re-documentation definition

The intent of re-documentation is to recover documentation

about the subject system .Software re-documentation is part

of software engineering. It only recovers the understanding

of the software and records it, thus making future program

understanding easier . (N.Sugumaranet al , 2009) .

" Software re-documentation is one of the approaches used

as an aid for program understanding , to support the

maintenance and evolution ".(SugumaranNallusamy , Suhaimi

Ibrahim, 2011). Another definition explained by Tilley as

follows. “Program redocumentation is one approach to

aiding system understanding in order to support

8

maintenance and evolution. It is the process of retroactively

creating program documentation for existing software

systems. It relies on technologies such as reverse

engineering to create additional information about the

subject system. The new information is used by the engineers

to help make informed decisions regarding potential changes

to the application”.(Tilley, S. 2008) .

From these definitions it is clearly stated that re-

documentation is to recreate a documentation of existing

system from the available resource. However, Software

improvement by updating documentation it is a (re-

documentation).

2.2.2 Goals of the software Re-documentation

The purpose of re-documentation to make sure the software

teams understand the legacy system (Sugumaranet al , 2009).

The main goals of the software re-documentation process are

: It is firstly used to create alternative views of the system so

as to enhance the understanding .Secondly, it is also used to

improve the current documentation. Ideally, such

documentation should have been produced during the

development of the system and updated as the system

changes. This, unfortunately, is not usually the case.

Thirdly, it also generates documentation for a newly

modified program (Sugumaran Nallusamy , Suhaimi

Ibrahim, 2011).

9

2.2.3 Re-documentation Categorization

Software re-documentation can be categorized into Textual

and Graphics.

Textual documents include textual information and

description about the software system that could be in

different formats such as Word, PDF, HTML and XML files

.Graphical documentation includes charts and graphs that

rely on a variety of software visualization techniques to

make complicated information easier for the designers,

developers and testers to understand (e.g., MS Visio, UML

diagrams).(Joris Van et al, 2010) .

Each of this can be classified in many ways. On of the way is

to classify by their presenting mode , as shown in Figure

2.1.

Figure 2.1: A Classification of software re-documentation

Both textual and graphics become more reliable and make

complicated information easier for the developer to

understand by representing into diagram .

10

2.2.4 Re-documentation Process

From a high-level perspective, two steps are necessary to re-

document a system.

Firstly, one needs to extract facts about the system. That

can be done starting from a static representation of the

system (e.g., the source code), from already available

documentation (text documents, spreadsheets, . . .etc,) or

from the people working with the system.

Secondly, these facts need to be combined and

transformed into the correct documentation format (e.g.,

UML diagrams or hyper documents) .(Joris Van et al, 2010)

.

Figure 2.2: Overview of the re-documentation process

Fact

Extraction

Fact

Representati

on

Documents

Generation

11

2.2.5 Re-documentation Approaches

There are many re-documentation solutions in industry and

research. Most of the solutions can be categorized into few

approaches.

We have identified some significant approaches and tools

which can contribute to further development of the quality

documentation from the re-documentation process :

1. XML Based Approach: XML based approach is one of

the common re-documentation approaches . It contains

structured information that extracts the content and the

meaning of the documentation .

By using XML the technical writer or software engineer

can create their own format such as <CONSTRANT>,

<TASK>,>FILE>, <VARIABLE> and<FUNCTION> .

The nature of XML shows that the information in

hierarchical help to understand the program more easily.

It also validates the data captured from the program

(Jochen et al. 2001)

2. Model Oriented Re-documentation (MOR): The first

step in Model Oriented Re-documentation approach is to

transform the legacy system into formal models. These

formal models are written using a formal language and

transform into TSs(Technological Spaces). Are

Generated TSs are stored in repository and produced

documentation in a uniform way.

12

3. Incremental Re-documentation: One of the common

issues in maintaining the system is to record the changes

requested by customer or user to occur in the source code.

the Incremental Re-documentation approach to rebuild

the documentation incrementally after the changes are

done by the programmer .

4. The Ontology Based Approach :It produce a schema

from the legacy system to describe the context of the

software system . The schema should able to capture the

artifacts from the latest version of the software system by

establishing a reverse engineering environment.

5. Reverse Engineering : Reverse engineering captures the

design information from the existing source code .The

purpose of re-documentation to make sure the software

teams understand the legacy system. Sometimes, the

output of reverse engineering is thought to be the same as

re-documentation.

13

2.3 Reverse Engineering (RE)

The most common approaches of re-documentation is software

reverse engineering , it is the concerned with the analysis .

Reverse engineering as the inverse procedure of forward

engineering , a forward software engineering process goes from

certain specification or target architecture toward building the

system .

Therefore , the main difference between reverse and forward

engineering is that the reversing process goes from low abstract

level to higher , figure 2.3

Figure 2.3: Difference between Forward and Reverse engineering

R
e

q
u

ir
em

e
n

ts

D
e

si
gn

Im
p

le
m

en
ta

ti
o

n

Forward Eng.

Re-documentation

Reveres Eng. Reveres Eng.

Forward Eng.

14

2.3.1 RE Definition: The IEEE Standard for Software

Maintenance defines reverse engineering as :“the process of

extracting software system information (including

documentation) from source code. ”(IEEE Std 1219-1993 ,

(1998)

In the context of software engineering, as defined by

Chikofsky and Cross , reverse engineering is : “ the process

of analyzing a subject system to identify the system’s

components and their interrelationships and create

representations of the system in another form or at a higher

level of abstraction .”(E. Chikofsky and J. Cross,1990)

2.3.2 RE Tasks :A past investigation detected five major tasks

that an RE tool should support . These tasks are, in

increasing abstraction level order: program analysis, plan

recognition, concept assignment, re-documentation, and

architecture recovery (see also Figure .2.4) . Program

analysis is the basic task that any RE .

 Figure 2.4 : Reverse engineering Tasks

15

Software systems that are targets for reverse engineering, such as

legacy applications, are often large, with hundreds of thousands or

even millions of lines of code . As a result, it is highly desirable to

automate reverse engineering activities.

The Rigi environment provides such tool support , the reverse

engineering of (industrial) systems with Rigi has generated

valuable experiences. These experiences have also shaped Rigi's

methodology of how to reverse engineer or re-document (legacy)

systems.(IzzulHidayatNaisan and Suhaimi Ibrahim .2010) .

16

2.4 Quality of Documentation

 The quality of a software product is a significant driver for

its success. However, the majority of the applied quality assurance

methods mainly focus on the executable source code. Quality reviews

of the software documentation are often omitted.

Software documents such as requirements specifications, design

documents, or test plans represent essential parts of a software

product. Therefore, the quality of such documents influences the

overall quality of a software product considerably.

That means , Documentation is a key component in software quality

and improving the documentation process will have considerable

impact on improving the quality of software.

Documents describe the product at all levels of development including

the finished product. therefore, documents need to be up-to date,

complete, consistent and usable.(Kipyegen, William P. K.2013) .

Capri defines a successful documentation as one that makes

information easily accessible, provides a limited number of user entry

points, helps new users learn quickly, simplifies the product and helps

cut support costs.

Poor documentation is the cause of many errors and reduces

efficiency in every phase of a software product‟s development and use

.

Quality of software is not „just an IT problem‟; it is a business

problem if the software affects the business. The goals for all Software

Engineering research are improvements in productivity and quality.

17

2.4.1 Quality definition

A number of non-equivalent definitions of „quality‟ exist,

indicating that different understandings of the concept of

„quality‟ exist ; therefore numerous approaches to quality

management have been proposed which aim to consider

quality in a generic context.

According to Kitchenham [KIT96] „Quality‟ means different

things to different people; it is highly context dependent.

As there is no universally accepted definition of quality there

can be no single, simple measure of software quality that is

acceptable to everyone.

However, defining quality in a measurable way makes it

easier for others to understand a given viewpoint .

2.4.2 Measuring the Quality

To understand and measure quality, researchers have built

models of how quality characteristics relate to one another .

Software product quality model is to make clear and direct

links between high-level quality attributes and explicit

product characteristics at all levels.

To understand and measure quality, many models of quality

and quality characteristics have been introduced.

 Jim McCall et al. (1977) introduced the model with the

following attributes Correctness, Reliability, Efficiency,

Integrity and Usability.

18

Barry W. Boehm used As-is Utility (Reliability, Efficiency

,Portability, Human Engineering) Maintainability

(Testability, Understandability , Modifiability) and

Portability to determine the quality.

The ISO 9001 and The IEEE Std 1061-1998 used sets of

factors such as Functionality ,Reliability, Efficiency,

Maintainability, Portability and Usability to distinctively

assess the quality.

The Hybrid Methodology for Software Documentation

Quality provide a documentation quality meta-model

presented by (GolaraGarousi, 2012), that modeled the

quality of content using Content Quality, which has several

attributes as its subclass: Accessibility, Accuracy, Author-

related, Completeness, Consistency, Correctness,

Information organization, Format, Readability, Similarity,

Spelling and grammar, Traceability, Trustworthiness, Up-to-

dateness as shown in figure 2.5 :

19

Figure 2.5 : Documentation quality meta-model overview ,

(GolaraGarousi, 2012)

Software Engineer

Documentation
Management

System

(Infrastructure)

20

The key performance indicators (KPIs) framework , it was also

created by focusing on quality attributes of the of the document .

(BISHARE S.A , et al., 2013). Shown in Table 2.1 below .

Table 2.1 : KPIs Framework

KPI Quality Attributes

Structure Understandable , well-presented, well-documented

,concise representation , consistency ,

interpretability .

Contextual Value –added, appropriate amount of data ,

completeness .

Accuracy Accuracy, believability , objectivity .

Accessibility Accessibility ,easily traced, user friendly,

ease to retrieval .

The models presented herein are focused around a set of

attributed/metrics used to distinctively assess quality by making

quality a quantifiable concept.

A common approach to formulating a software product quality

model is to first identify a small set of high-level quality attributes

and then, in a top-down fashion, decompose these attributes into

sets of subordinate attributes.

21

Chapter 3 : Research Methodology

3.1 Introduction

A case study : Re-documented SQL/DB System : ShM using

Rigi Reverse Engineering tool .

To validate the usefulness of the reverse engineering approach in

re-document , a target ShM software system was examined . Using

Rigi tool to understand the real-word system to re-documented

it . In this chapter we present the result which was carried out by

implementing the following steps .

Figure 3.1 : Research Methodology steps.

Result

Selecting the

Target

system

Re-documentation using Rigi Tool

Measure Quality

Generating document s

Extract the knowledge

Represent information

Propose a Quality Document

Model

Evaluating by measure

quality

22

The first step in research was select the target system

(undocumented or poor documented system(. Then using Rigi tool

to implement the reverse engineering process, the extracted

information from this step is visualized as a directed graph or as

text information for the selected subsystem in report.

Then we proposed or built a Document Quality Model– DQM by

selected aspects and attributes to evaluate and measure the quality

of the document generated from the previous step.

We summarized the two practical steps as follows:

Step 1 : Re-documented the selected system , using Rigi tool ,

Step 2 :Measure Quality of the document generated .

3.2 The Target SQL/DB system : ShM

The selected target system ShM (Shopping Management

System) is Service-Oriented system , that provides services for

purchasing items such as books or clothes , based on large data

base . Details shown in appendix B .

3.3 Overview to Rigi Reverse Engineering Tool

Rigi allows the visualization of software in the form of

graphs and supports a reverse engineering methodology called

structural re-documentation .

Rigi is used for program understanding , it is an interactive, visual

tool designed to help developers better understand and re-

document their software . The describe of Rigi's main components

and functionalities look at appendix A .

23

3.4 Re-documentation using Rigi tool

 Graph editor rigiedit whose user interface is based on windows ,

when you run it , you initially see the Rigi Workbench window and

a root window shown in figure 3.3

Figure 3.2: The main windows of Rigiedit .

3.4.1 Read the source code

The source code represented in the input file ,Rigi includes parsers

to read the source code of the subject system , then it is able to

view information stored in RSF files .

3.4.2 Load initial Graph , the Root window

From the File menu Choose Load Graph that presenting a view of

the current directory contents , select the file called rsf, and click

OK. The initial window titled Root is used to display the parent(s)

of the subsystem hierarchy (SQL/DS node).

24

3.4.3 Visualization , The Graphical Representation

To represent and visualize extracted information as directed graph

should implement the four step below , as shown in figure 3.3 in

(A , B , C , D) .

Figure 3.3 : The Graphical Representation

B) The Tree-like structure A) Rigi initial graph for whole system

D) Nodes in Object level C) Identify a subsystem

25

A) To load an initial graph into Rigi from a file generated by the

source code . Choose Projection from the Navigate menu .

The reverse engineering is often presented, a complex software

systems, with many more nodes and arcs, the resulting visual

clutter can be confusing.

We see a graph that contains all the artifacts in the system. The

arcs in the graph describe dependences among the artifacts .

B) To Manage the complexity of the graph for large information

spaces, we use presenting the tree-like structure .

 A new Overview window appears, to perform an overview of the

subsystem hierarchy descending from the SQL/DA node : Choose

Overview from the Navigate menu .

That presents a vertical “slice” of the hierarchy.

C) Identify clusters of related nodes and collapse them into nodes that

represent subsystems . By visually inspecting the subsystem

graph, you get a high-level summary of the major components of

the program.

 The simplest traversal technique is to open a node and traverse

down in the hierarchy. Double-left-click on the selected subsystem

node .

D) A Child window typically presents the structure of a single node,

by choose Children from the Navigate menu .

At the object level the name of the node appears .This portrays

part of a level in the hierarchy, in a kind of horizontal “slice”.

26

3.4.4 The Textual Representation

To view information on the immediate subsystem node Choose

View Information from the node menu right-click on the node as it

is presented within a window , in figure 3.4 :

 Figure 3.4 : view information from selected node .

A textual Information window appears . This information includes

the node‟s:

 internal node ID ,

 node type,

 incoming and outgoing arcs by arc type,

 and neighboring nodes along these arcs .

Produce an Exact Interface Report for the whole system , Choose

Exact Interface from the Report menu .

27

3.5 Generating Documents :

To generate documentation, it is not possible to do everything

automatically. Some parts still require human interpretation to

complete the work .We chose a UML notation to generate a

standard graphical documentation .

UML class diagrams are widely used for modeling the static

structure of software system in both forward and reverse

engineering .

In this research ,Rigi has been used for static reverse engineering

.the extract static information is viewed as a directed graphs. The

static dependency graph contains approximately the same

information as a class diagram .

 In Rigi, classes and interfaces have their own node types , methods

,constructors and variables given inside a class in UML class

diagram .

The Table 3.1 enumerates the main UML class diagram constructs

and the constructs that can be used in Rigi for expressing the

meaning of the UML class diagram .The correspondence is

characterized as replacing if such a Rigi construct exists .

Table 3.1 : Class diagram construct VsRigi graph construct

A UML class

diagram construct

A Rigi static dependency

graph construct
Correspondence

Class Class (node type) Replacing

Interface Interface (node type) Replacing

Method Method (node type) Replacing

Variable Variable (node type) Replacing

Generalization Inherit (arc type) Replacing

Association (arc type) Replacing

28

For capturing high-level information about the model-view , we

made a static abstraction a ShM class diagrams shown in figure

3.5 (a-b) below :

Figure 3.5-a :ShM class diagram

29

Figure 3.5-b :ShM class diagram with details

The static entity class model shows the entity classes and the

relationships among these classes.

30

And the Component ports and interfaces for services in figure 3.6 .

Figure 3.6 :Component ports and interfaces for services .

31

3.6 Proposed Document Quality Model

A number of quality models for software processes havebeen

introduced, each of which is intended to encompass the totality of

quality factors and issues. These models may be used to develop ,

measure or guide improvement of quality .

We applied an iterative process to derive quality attributes of the

documentation as well , we ensured not to introduce any self-

invented attributes other than those proposed by the authors of the

primary studies. To classify quality-related attributes we

constructed a unified model , as shown in Figure 3.7 :

Figure 3.7 :Document Quality Model

Doc Quality

Useability

Structure

Understandability

Consistency

Accuracy

Format

Accessibility

Simplicity

Readability

Benefit Content

Up-to-dateness

Completeness

32

The Document Quality Models DQM contain two main criteria

Usability and Benefit . The quality criterions are depend on one or

more aspects described by set of quality attributes.

The benefit of quality models is that they are simpler to use in

proving the quality of document we have in re-documented process

by Rigi tool.

33

Chapter 4 :Results And Discussion

4.1 Results

This research focuses on reverse engineering process to

generate documentation from source code . The graphical tool

(Rigi) we used allow manipulations of view , and give support for

building high level model of target software to facilitate program

comprehension . We chose UML notation to generate documents .

To Prove the Re-documentation through reverse engineering is

very important and effective, empirical evaluation procedures are

developed to measure quality of document was generated in the

case study .

Using Document Quality Models DQM shown in previous

chapter measuring main criteria Usability and Benefit.

Table 4.1 : Documents Evolution Result

Quality Attributes Documents Evaluate

Usability

Understandability √

Consistency √

Accuracy √

Accessibility √

Simplicity √

Readability √

Benefit
Up-to-dateness √

Completeness √

34

4.2 Discussion

Several tasks were set for the case study. In what follows we

discuss how well these tasks were achieved .

As we see in Table 4.1 ,Usability criteria measure by set of

attributes : understandability ,consistency , accessibility … etc .

All that depend on documents format choosing . The UML notation

we choose it has accepted as standard for visualizing ,

understanding and documenting software systems ,it provides

several diagram types support all lifecycle stage of forward

engineering process . The same diagram types used for reverse

engineering purposes as well.

UML brought forth a unified standard modeling notation that IT

professionals had been wanting for years . So UML document

format have all usability aspect we need .

The DQM measured Benefit criteria by content of documents, it

should be up-to-date and complete . As shown in result Table 4.1 ,

the documents we generated in the case study is up-to-date it

depend on the latest version of the software system , also it

complete and accurate because it is derived from the actual source

cod .That explain effective of the reverse engineering technique in

software re-documentation . This is the aim we wont to achieve it .

Most of the researches published in this field , they used others re-

document approaches with in different tools and achieved a several

results shown different quality measurement of document .

However , as we seen in literature review most of the approaches

and tools are developed for reverse engineering which are

generally compared to the re-documentation process .

35

Chapter 5: Conclusion and Recommendations

5.1 Conclusion

Legacy software systems have a different approach to software

re-documentation than has traditionally been used , one of them is

reverse engineering .

Documentations made manually by developers in some cases are

inconsistent. Some change requests, updates, or bugs fixing

somehow are not included in the documentation as the software

evolves. Developers tend to be focusing on source code rather than

the documentation. Consequently, code is the most reliable source

to be referred as the system representation .

Generating the documentation directly from the source code makes

the result consistent with the code at all times. Therefore, reverse

engineering is very important and very effectively to understand

large software systems then re-documented .

This research discusses a reverse engineering process

implemented by Rigi tool to generate a standard software

documentation.

36

5.2 Recommendations and Future work

Recognizing abstractions in real-world systems is as crucial

as designing adequate abstractions from scratch, especially for

obsolete system which was written 10 to 25 years ago . Reverse

engineering is very significant to support software maintenance in

order to maintain existing system .

However, Some parts still require human interaction to complete

all information in the generated documentation. To do everything

automatically will be part of the future work .

37

Appendix A

Overview to Rigi Reverse Engineering Tool

Rigi allows the visualization of software in the form of graphs and

supports a reverse engineering methodology called structural re-

documentation .

Rigi is used for program understanding , it is an interactive, visual tool

designed to help developers better understand and re-document their

software. It includes parsers to read the source code of the subject

software and produce a graph .It helps to understand legacy software

systems where the existing documentation may be missing or lacking.

In this section we describe Rigi's main components and functionalities,

and assess its impact on re-documentation using reverse engineering in

research and practice .

1. The Rigi. Environment

Rigi environment provides tool support automate reverse engineering

activities. It is composed into three main entities that provide

functionalities for :

 fact extraction,

 information representation, storage, (repository),

 and interactive graphical manipulation (editor) .

38

Rigi architecture shown in figure 1A exposes the main

functionalities: Extraction of facts from software systems, a Repository

to represent and store facts , and Analyses and Visualization of facts .

The facts that are stored in RSF Rigi Standard Format adhere to a certain

data model (or schema). A RSF data model is explicitly defined with a

simple specification language .

Figure 1A: Rigi's conceptual architecture

2. Reasons for choosing Rigitool

In this research , we had several reasons for choosing Rigi : First ,

Rigi scales up. Second ,Rigi support building high-level views of

software by constructing hierarchical structures .

Third ,Rigi provides a large and extensible set of slicing mechanisms .

they help the user to focus on a desired aspect of the software. Fourth,

rigi is easy to customize and extend ,hence providing a good environment

for the experiment by making the system end-user programmable RCL-

Rigi Scripting language . Finally ,Rigi was flexibility and scalability .

39

Appendix B

The Target SQL/DB system : ShM

The selected target system ShM (Shopping Management System)is

Service-Oriented system , that provides services for purchasing items

such as books or clothes , based on large data base .

In the Shopping System, customers can request to purchase one or more

items from the supplier.

The customer provides personal details, such as address and credit card

information. This information is stored in a customer account. If the

credit card is valid, then a delivery order is created and sent to the

supplier. The supplier checks it, confirms the order.

In the following the main screens of system :

Figure 1B: Add New Client

40

Figure 2B: Items Registry

Figure 3B: Make Invoice

41

The system contains large number of modules , variables and structures

and also a large number dependencies . To understand and analyzed the

overall structure of system .

Static information is generated for whole software and visualized using

Rigi. Tool . The visualized graph shows the structure of ShM system,

which is over one million lines of code .

42

References

BISHARE SUFI ABDI , "Framework for Measuring Perceived

Quality in Technical Documentation " , University of Gothenburg Chalmers

University of Technology ,

 February 2013.

E. Chikofsky and J. Cross, "Reverse Engineering and Jan. Design

 Recovery a Taxonomy", IEEE Software, vol.7(1),1990, pp. 13-17

GolaraGarousi , " A Hybrid Methodology for Analyzing Software

 Documentation Quality and Usage " ,

 UNIVERSITY OF CALGARY , September 2012

Institute of Electrical and Electronics Engineers.Standard for Software

 Maintenance. New York, IEEE Std. 1219-1998.

IzzulHidayatNaisan and SuhaimiIbrahim , "Reverse Engineering

 Process to Support Software Design Document Generator " , 2010

Joris Van Geet , Peter Ebraert , Serge Demeyer , "Redocumentation of

 a Legacy Banking System" , 2010

M. Torchiano1 F. Ricca2 P. Tonella3 " Empirical comparison of

 graphical and annotation-based re-documentation approaches" , 2009

N. Sugumaran1 and S. Ibrahim2 ,"An Evaluation on Software

 Redocumentation Approaches and Tools in Software Maintenance"

 http://www.ibimapublishing.com/journals/CIBIMA/cibima.html

 Vol. 2011 (2011), Article ID 875759

NoelaJemutai Kipyegen1 and William P. K. Korir2 ," Importance of

 Software Documentation " ,IJCSI International Journal of Computer

 Science Issues,Vol. 10, Issue 5, No 1, September 2013 ,

 ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 www.IJCSI.org

SugumaranNallusamy and SuhaimiIbrahim ," A Review of

 Redocumentation Approaches " ,UniversitiTeknologi Malaysia ,2009

SugumaranNallusamy ,Suhaimi Ibrahim , "A Software Redocumentation Process

 Using Ontology Based Approach in Software Maintenance " ,

 International Journal of Information and Electronics Engineering, 2011

Tung Doan :" An evaluation of four reverse engineering tools for c++

 applications ". University of TamperM.Sc . thisis, 75 page +1appendix , 2008

Tilley, S. 2008. Three Challenges in Program "Redocumentation for

 Distributed Systems." In Proceedings of IEEE Conference 2008 .

http://www.ibimapublishing.com/journals/CIBIMA/cibima.html
http://www.ijcsi.org/

