<u>اللي جنسا</u>

فَفَقَهَّمَنْهَا سُلْيمِنَ ⁵ وَكُلًّا ءاتَينا حُكمًا وَعِلمًا ⁵ وَسَخَرَنا مَعَ داو دَ الجِبالَ يُسَبِّحنَ وَالطَّيرَ ⁶ وَكُنّا فعلِينَ **٩٧** وَعَلَّمَنْهُ صَنعَة لَبوس لَكُم لِثُحصنِكُم مِن بَأسِكُم ⁶ فَهَل أَنتُم شَكرونَ **٩٠** لِتُحصنِكُم مِن بَأسِكُم ⁶ فَهَل أَنتُم شَكرونَ **٩٠** لِأَحصنِنَكُم مِن بَأسِكُم ⁶ فَهَل أَنتُم شَكرونَ **٩** لِأَرض التي عاصنِةَة تَجرى بِأمرِهِ إلى الأرض التي بركنا فيها ⁵ وَكُنّا بِكُلِّ شَيءٍ علِمينَ **٩**٨ من ... ﴾

صدق الله العظيم

سورة الانبياء الايات (79-81)

Dedication

То

My father, mother, sisters, brothers, My family, My teachers, My colleagues, My students and Everybody who contributed to this research directly or indirectly I dedicate this humble effort

Acknowledgement

Thanks and gratefulness for Allah the most gracious, the most merciful.

I would like to thank the Sudan University of science and Technology, graduated college, engineering collage, engineering& industries technology, textile engineerig department and express my sincere gratitude to my supervisors **Prof. Salah Eldein Abdullateef Mohammed.** I would like to acknowledge their unlimited efforts in guiding and following up the research progress, and specially their spirit – raising encouragement.

Many people have contributed constructively to this work. I would like to thank them all. I owe special thanks to Samitext factory staff, Eng.Esmat, Adel.ibrahim, Adel.saty, Dr.ashraf, Dr.khalid, Dr.arman, Dr.ramadan and everybody who contributed to this research directly or indirectly.

ABSTRACT

This study was carried out in order to predict the knitted fabrics irregularity based on yarn irregularity. Seven types of yarns were used. Using the Uster statistics of yarn mass irregularity, the knitted fabric specifications were determined. In order to build up a theoretical model, the sine function of the Non-linear regression function was applied for the different types of yarn used using the Origin program 8.5. The sine function was chosen because it shows the best fitting results compared with the different functions. The results obtained from the proposed model showed a high correlation and good significance. Furthermore, the results obtained using the Non-linear regression equations show optimal correlation with experimental results for the different types of yarns used in this study. The knitted fabric specifications were proposed for all yarn used in study.

المستخلص

اجريت هذه الدراسة بغرض التوصل الي نموذج للتنبؤ بانتظامية اقمشة التريكو اعتمادا على انتظامية الخيط المستعمل ومن ثم التبؤ بمواصفات القماش حسب المواصفات المعطاة بواسطة احصاء اليوستر (Uster statistics) .تم استخدام سبعة انواع مختلفة من الخيوط المستخدمة لانتاج اقمشة التريكو. لبناء النموذج تم استخدام دالة الجيب (Sine function) من النماذج غير الخطية (Non-linear regression) باستخدام برنامج (Origin 8.5) حیث انها اظهرت افضل النتائج اظهرت النتائج المتحصلة باستخدام النموذج المقترح ارتباط عالى واستمرارية افضل وتطابق جيد مقارنة بالنتائج المعملية التى تم الحصول عليها من انواع الخيوط المختلفة التي تم استعمالها في هذا البحث. تم الحصول على المواصفات المقترحة لاقمشة التريكو التمي يمتم انتاجها باستخدام الخيوط التمي اجريت عليها الدراسة.

Table of contents

Subject	page
الاية	Ι
Dedication	II
Acknowledgement	III
Abstract in English	IV
Abstract in Arabic	V VI
List of tables	X
List of figures	XI
List of abbreviation	XIII
Preface	XIV
CHAPTER ONE	1
Introduction	1
1.1 Background	1
1.2. Yarn irregularity	3
1.2.1 Yarn Irregularity Sources	5
1.2.2 Yarn irregularity measurement	6
1.2.2.1 Visual examination	6
1.2.2.2 Cut and weigh methods	7
1.2.2.3 Uster evenness tester	8
1.2.2.4 Zweigle G580	9
1.2.2.5 Lawson-Hemphill EIB	11
1.2.2.6 Keisokki KET-80 and Laserspot	11
1.2.2.7 Flying Laser Spot Scanning System	12
1.2.2.8 Time-series modeling and spectral analysis	13
1.2.2.9 Linear time series models	13
1.2.2.10 Spectrogram	14
1.2.2.11 Correlogram	16
1.2.2.12 Variance-length curves	17
1.3. Fabric irregularity	19
1.3.1 Fabric irregularity causes	19
1.3.1.1 Random irregularities	19

1.3.1.2 Periodic fabric irregularities	20
1.3.2. Fabric irregularity measurement	21
1.3.2.1 Kawabata system and FAST	
1.3.2.2 Fabric visualization commercial systems	
1.4. Objectives	24
CHAPTER TWO	25
Literature Review	25
2.1 Introduction	25
2.2 Yarn irregularity	25
2.2.1 Fiber arrangement	25
2.2.2 Effect of drafting waves	27
2.2.3 Effect of twist variation	29
2.3 Measurement of yarn irregularity	
2.3.1 Coefficient of Variation	
2.3.2 Time-series modeling and spectral analysis	
2.3.3 Variance-length curves	
2.4. Mass, diameter and twist relationships of yarns	
2.4.1 Geometrical descriptors of yarn and coordinate system	
2.4.2 Twist and fiber strand interactions	
2.5 Instruments for yarn irregularity measurement	
2.6. Wavelet-stochastic hybrid model for yarn diameter simulation 4	
2.7 Fabric appearance and irregularity	
2.7.1 The analysis of fabric appearance and uniformity	
2.8. Variance-area curves	53
2.9. Anisotropy of 2-D texture images	54
2.10 Summary	54
CHAPTER THREE	59
Material and Method	59
3.1 Design of experiments for determination of yarn evenness	59
3.1.1 Equipment	59
3.1.2 Yarn conditioning	63

3.1.3 Yarn properties	64
3.1.4 Technique used to determine yarn appearance	65
3.2. Design of experiments for the production of fabric samples	65
3.2.1. Equipment	65
3.2.2. Experimental conditions and procedure	67
3.2.3. Fabric samples properties and specifications3.2.4. Technique used to determine the fabric CV3.2.5. Technique used to determine the fabric appearance	67 68 68
CHAPTER FOUR	69
4. Results and Discussion	69
4.1. The yarn	69
4.1.1. Yarn irregularities	69
4.1.2. Yarn diameter	74
4.1.3 Yarn diameter spectrograms	75
4.2. Knitted fabric	79
4.2.1Fabric analysis	79
4.2.2 Fabric weight	83
4.2.2 Fabric weight spectrograms	83
4.3 Models	87
4.3.1 Origin program	87
4.3.2 Sine function	87
4.3.3 Establishment the proposed model.	90
4.3.3.1 Establishing the proposed model for sample1 (Ne 14 polyester/	91
viscose 65/35 yarn)	
4.3.3.2 Establishing the proposed model for sample 2 (Ne 24 cotton	94
yarn)	
4.3.3.3 Establishing the proposed model for sample 3 (Ne 15 polyester/	97
cotton (50/50) yarn)	
4.3.3.4 Establishing the proposed model for sample4 (Ne 15 polyester/	100
viscose (65/35) bended yarn)	
4.3.3.5 Establishing the proposed model for sample5 (Ne 30 polyester	103

yarn)

4.3.3.6 Establishing the proposed model for sample 6 (Ne 16 cotton	
yarn)	
4.3.3.7 Establishing the proposed model for sample 7 (Ne cotton yarn)	109
4.4 Proposed specifications for knitted fabrics	
CHAPTER FIVE	114
Conclusion and Recommendations	114
5.1 Conclusion	114
5.2 Future Work	116
References	117
Appendixes	121

ſ

No	Title	Page
2.1	Comparison of yarn irregularity measurement systems	47
3.1	Uster 3 adjustments	63
3.2	Measured yarns properties	64
3.3	The knitted Fabric Specifications	67
4.1	Total result for Ne 14 polyester/viscose (65/35) yarn	69
4.2	Total result for Ne 24 cotton yarn	70
4.3	Total result for Ne 15 polyester/cotton(50/50) yarn	71
4.4	Total result for Ne 15 polyester/viscose (65/35) yarn	71
4.5	Total result for Ne 30 polyester yarn	72
4.6	Total result for Ne 16 cotton yarn	73
4.7	Total result for Ne 20 cotton yarn	74
4.10	Yarn and fabric CV's for sample 1	91
4.11	The result obtained for sample1	91
4.12	CV fabric, CV predicted for sample 1	93
4.13	Yarn and fabric CV's for sample 2	94
4.14	The result obtained for sample 2	95
4.15	CV fabric, CV predicted for sample 2	96
4.16	Yarn and fabric CV's for sample 3	97
4.17 The result obtained for sample 3		98
4.18 CV fabric, CV predicted for sample 3		99
4.19 Yarn and fabric CV's for sample 4		100
4.20	The result obtained for sample 4	101
4.21	CV fabric, CV predicted for sample 4	102
4.22	Yarn and fabric CV's for sample 5	103
4.23	The result obtained for sample 5	104
4.24	CV fabric, CV predicted for sample 5	105
4.25	Yarn and fabric CV's for sample 6	106
4.26	The result obtained for sample 6	107
4.27	CV fabric, CV predicted for sample 6	108
4.28	Yarn and fabric CV's for sample 7	109
4.29	The result obtained for sample 7	110
4.30	CV fabric, CV predicted for sample 7	111
4.31	Proposed specifications for knitted fabric	112

List of tables

List of figures

No	Title	Page
1.1	The variation of weight of consecutive 1 cm lengths of yarn.	7
1.2	Zweigle G-580 yarn evenness tester	11
1.3	Yarn evenness testing with Fresnel Principle	12
1.4	Spectrogram of a yarn	15
1.5	Damped correlogram	17
1.6	Undamped correlogram	17
1.7	Variance length curves for cotton and ideal yarns	18
1.8	Variance length curves for poor and good yarns	19
1.9	Appearance of some fabric defects	20
1.10	Influence of wavelength on visibility	21
2.1	General shapes of V (L) and B (L)	34
2.2	Twist triangle	36
2.3	Yarn fiber in cylindrical coordinates	37
2.4	Shape Error Factor (SEF)	39
2.5	Emitted light for a yarn with irregular cross-section	44
2.6	Projected yarn diameter using single camera	45
2.7	Projected yarn diameter using two cameras	46
2.8	CB (L) and CB (A) of a fabric	52
2.9	Mapping of yarn signal into a woven fabric	56
2.10	Mapping of yarn signal for another woven fabric	56
3.1	Aphoto of Uster evenness tester3(Zellweger)	59
3.2	Principle of Uster evenness tester	60
3.3	Manually constructed diagram of mass variation	62
3.4	Uster tester diagram of mass variation	63
3.5	Passap duomatic 80 machine parts.	66
4.1	The variations in the yarn diameter for Ne 14, polyester/viscose (65/35) blended yarn	75
4.2	The variations in the varn diameter for Ne 24, cotton varn.	76
4.3	The variations in the yarn diameter for Ne 15 polyester/cotton	76
	(50/50) blended yarn.	70
4.4	The variations in the yarn diameter for Ne 15 polyester/viscose	
	(65/35) % blended yarn.	77
4.5	The variations in the yarn diameter for Ne 30 polyester yarn.	78
4.6	The variations in the yarn diameter for Ne 16 cotton yarn.	78
4.7	The variations in the yarn diameter for Ne 20 cotton yarn.	79
4.8	Image of fabric1, knitted from yarn sample1 (fabric1)	79
4.9	Image of fabric 2 knitted from yarn sample 2 (fabric 2)	80

4.10	Image of fabric 3 knitted from yarn sample 3 (fabric 3)	81
4.11	Image of fabric 4 knitted from yarn sample 4(fabric 4)	81
4.12	Image for fabric5 knitted from yarn sample 5 (fabric 5)	82
4.13	Image for fabric 6 knitted from yarn sample 6(fabric6)	82
4.14	Image for fabric 7 knitted from yarn sample 7(fabric 7)	83
4.15	The variations in the fabric weight for fabric sample 1.	84
4.16	The variations in the fabric weight for fabric sample 2.	84
4.17	The variations in the fabric weight for fabric sample 3.	85
4.18	The variations in the fabric weight for fabric sample 4.	85
4.19	The variations in the fabric weight for fabric sample 5.	86
4.20	The variations in the fabric weight for fabric sample 6.	86
4.21	The variations in the fabric weight for fabric sample 7.	87
4.22	The sine function curve	89
4.23	Best curve fit for sample 1	110
4.24	CV curve for the actual and predicted values for fabric 1	95
4.25	Best curve fit for sample 2	96
4.26	CV curve for the actual and predicted values for fabric 2	98
4.27	Best curve fit for sample 3	99
4.28	CV curve for the actual and predicted values for fabric 3	101
4.29	Best curve fit for sample 4	102
4.30	CV curve for the actual and predicted values for fabric 4	104
4.31	Best curve fit for sample 5	105
4.32	CV Curve for the actual and predicted values for fabric 5	107
4.33	Best curve fit for sample 6	108
4.34	CV curve for the actual and predicted values for fabric 6	110
4.35	Best curve fit for sample 7	111
4.36	CV curve for the actual and predicted values for fabric 7	113

List of abbreviation

Symbol	Description
KES	Kawabata Evaluation System
FAST	Fabric Assurance Simple Testing
ASTM	American Society for Testing and Materials
PMD	Percentage Mean Deviation
CTT	Constant Tension Transport
AR	Autoregressive
MA	Moving Average
ARMA	Autoregressive Moving Average model
CV _{eff}	Measure yarn irregularity
CV _{lim}	limit irregularity
Ι	Index of irregularity
CVm	Coefficient of variation of yarn mass
S	Standard deviation of results
D	Yarn diameter
R	Correlation coefficient
sig	Significant
MSE	Mean square error
CV fm	Coefficient of variation of knitted fabric mass

1.5. Preface:

This thesis contains five chapter .Chapter One give an introduction and a brief background on yarn and fabric irregularities and the measuring techniques used. Critical review of the literature related to this research work is given in Chapter Two. Chapter Three described the material used and the methods. The experimental work, the results obtained, the proposed models and the discussion are reported in Chapter Four. Recommendations and suggestions to future work are given in chapter Five.