Detection of CDX2 Tumor Marker and Human Papilloma Virus (HPV) in Esophageal Tumor among Sudanese patients using Immunohistochemistry and Polymerase Chain Reaction

A dissertation submitted for partial fulfillment for M.Sc degree in Medical Laboratory Science (Histopathology and cytology)

Submitted by:
Eiman Ahmed Mustafa Mohamed Khair
B.Sc (honors) in Histopathology (National Ribat University _2006)

Supervised by:
Dr: Mohammed Siddig Abdelaziz

2015
قال تعالى:
(وَقُلِ اعْمَلُوا قَسْرِى الله عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِنَوْنَ وَسَتُرِدُّونَ إِلَى عَالِمِ الْغَيْبِ وَالْشَّهَادَةِ فَيُنَبِّئُكُم بِمَا كُنتُمْ تَعْمَلُونَ)

صدق الله العظيم
سورة التوبة: الآية 105
Dedications

I dedicate this research to my parents

To my second mama Nadia
To my uncle

To my husband and son

To my brother and sisters
for their support and kindness

To my friends and colleagues
Acknowledgment

This research took me almost a seven month, by that time; I have met with great people whose contribute in many ways came out with this projects. It is a pleasure to convey my gratitude to them all in my humble acknowledgment.

Firstly I would like to note my gratitude to Dr. Mohammed Siddig for his supervision, advice, encouragement and guidance from the very early stage of this research as well as attending meetings and conferences. I am in debt to him more than his knows.

Individual acknowledgment to my uncle Essam Mustafa Mohmmed for his advice and support.

I gratefully and collective acknowledgment the role of my colleagues in the Sudan university of Science and Technology, for their encouragement and their bright thoughts which came during scientific discussion also for their willingness in answering a lot of my questions, advice and crucial contribution.

Thanks for the scientific discussions and exhilarating time we spent together as lab mates. I am grateful in every possible way.

My deep thanks are extended to madam Um salama for her advice and support me, also staff members of Ibn Seina hospitals for their help and support me in collection of specimen, my thanks go to them for working together in such environment.

Finally, I would like to thanks everybody that was important to the successful realization of this research, as well as expressing my apology to these who I could not mention personally one by one.

Eiman .A.M. Mohammed
Abstract

This is a descriptive retrospective study conducted at Ibn Siena hospital and Sudan University of Science and Technology during the period from April 2014 to October 2014. The study aimed to detect CDX2 tumor marker and human papilloma virus (HPV) in esophageal tumor among Sudanese patient using immunohistochemical method and Polymerase chain reaction. In this study 30 samples were collected from patients previously diagnosed with esophageal tumor (20 of them with esophageal cancer and 10 of them with benign tumor). The patient's age ranging between 8 to 82 years with mean age 37 years, with no association between age group and type of esophageal tumor.

From each block two sections were cut, one for CDX2 detection and other for HPV detection, also 20 micro liter was cut from each block in ependorff tube for detection of HPV type 31 gene using PCR. SPSS version 16 computer program was used to analyze the data, mean, frequency and chi square were calculated.

Out of thirty patients twenty (66.7%) were males and ten (33.3%) were females, with the ratio 2:1. CDX2 was positive in four samples (13.3%) all of them were malignant, and negative in 26 (86.7%).

Seven samples (23.3%) were positive for human papilloma virus and 23 (76.7) samples were negative by using immunochemistry. The detection of human papilloma virus type 31 was done for 30 samples by using PCR two samples (6.7%) were positive, and 28 (93.3%) were negatives. The study concluded that, there is no association between CDX2 expression and HPV infection with the type of esophageal tumor.
المستخلص

أجريت هذه الدراسة الوصفية الترجمية في مستشفى ابن سينا وجامعة السودان للعلوم والتكنولوجيا خلال الفترة من أبريل 2014 إلى أكتوبر 2014 هدفت هذه الدراسة الكشف عن الواسمة الورمية والفيروس الورم الحليمي البشري بأورام المريء لدى المرضى السودانيين باستخدام كيمياء الأنسجة المناعية وتفاعل البلمرة التسلسي. تم جمع العينات من 30 مريضاً مشخّصين سابقاً بأورام المريء (20 عينة مشخصة بسرطان المريء و10 عينات مشخصة بأورام حميدة) تراوحت أعمار المرضى بين 8 و82 سنة بمتوسط عمر 37 سنة مع عدم وجود ارتباط بين العمر ونوع الورم.

من كل قابل تم قطع مقطعين واحد لتحديد 2CDX والآخر للكشف عن فيروس الورم الحليمي البشري. كما تم قطع 20 ميكرون من كل قابل في نبيوب ابناودروف للكشف عن نوع فيروس الورم الحليمي البشري 31 الجيني باستخدام تفاعل البلمرة المتسلسل.

تم تحليل البيانات باستخدام برنامج الحزم الإحصائية للعلوم الاجتماعية وتم حساب المتوسط والتردد واختيار مربع كاي من الثلاثين مريض عشرون (66.7%) كانوا من الذكور وعشرة (33.3%) من الإناث بمعدل 2:1 أعظم الواسمة الورمية 2CDX نتيجة إيجابية في أربعة عينات (13.3%) وعشرة عينات عينة كانت سلبية (86.7%).

عند استخدام تقنية كيمياء مناعية الأنسجة أعطت سبع حالات (33.3%) نتيجة إيجابية لفيروس الورم الحليمي البشري و23 (76.7%) كانت سلبية. بينما أعطت حالتين نتيجة إيجابية (6.7%) لفيروس الورم الحليمي البشري من النوع 31 باستخدام تفاعل البلمرة المتسلسل و28 (93.3%) نتيجة سلبية.

خلصت الدراسة إلى أنه لا يوجد ارتباط بين التعبير النسيجي 2CDX والإصابة بفيروس الورم الحليمي البشري مع نوع ورم المريء.
List of Content

<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>الآية</td>
<td>I</td>
</tr>
<tr>
<td>Dedication</td>
<td>II</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>III</td>
</tr>
<tr>
<td>Abstract in English</td>
<td>IV</td>
</tr>
<tr>
<td>Abstract in Arabic</td>
<td>V</td>
</tr>
<tr>
<td>List of contents</td>
<td>VI</td>
</tr>
<tr>
<td>List of Figures</td>
<td>VIII</td>
</tr>
<tr>
<td>List of Table</td>
<td>IX</td>
</tr>
<tr>
<td>List of Microphotography</td>
<td>X</td>
</tr>
</tbody>
</table>

CHAPTER ONE

INTRODUCTION

1.1. Introduction | 1 |
1.2. Rational | 3 |
1.3. Objectives | 3 |

CHAPTER TWO

LITERATURE REVIEW

2.1. Anatomy, physiology, and histology of the esophagus. | 5 |
2.2. Pathology of the esophagus. | 5 |
2.3. Signs and symptoms of esophagus cancer | 6 |
2.4. The risk factor of esophagus cancer. | 7 |
2.5. The epidemiology of esophagus cancer. | 8 |
2.6. Method of diagnosis of esophagus cancer. | 9 |
<table>
<thead>
<tr>
<th>CHAPTER THREE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIALS AND METHODS</td>
<td></td>
</tr>
<tr>
<td>3.1. Study design</td>
<td>14</td>
</tr>
<tr>
<td>3.2. Study area</td>
<td>14</td>
</tr>
<tr>
<td>3.3. Materials</td>
<td>14</td>
</tr>
<tr>
<td>.3.3. Study sample</td>
<td>14</td>
</tr>
<tr>
<td>3.4. Sample collection and preparation</td>
<td>14</td>
</tr>
<tr>
<td>3.5.1The immunohistochemical procedure</td>
<td>14</td>
</tr>
<tr>
<td>3.5.2.Polymerase Chain Reaction</td>
<td>16</td>
</tr>
<tr>
<td>3.6.Statistical analysis</td>
<td>16</td>
</tr>
<tr>
<td>3.7.Ethical consideration</td>
<td>16</td>
</tr>
<tr>
<td>CHAPTER FOUR</td>
<td></td>
</tr>
<tr>
<td>RESULTS</td>
<td></td>
</tr>
<tr>
<td>4. Results</td>
<td>17</td>
</tr>
<tr>
<td>CHAPTER FIVE</td>
<td></td>
</tr>
<tr>
<td>DISCUSSION</td>
<td></td>
</tr>
<tr>
<td>5. Discussion</td>
<td>33</td>
</tr>
<tr>
<td>CHAPTER SIX</td>
<td></td>
</tr>
<tr>
<td>CONCLUSION AND RECOMMENDATION</td>
<td></td>
</tr>
<tr>
<td>6.1.Conclusion</td>
<td>36</td>
</tr>
<tr>
<td>6.2. Recommendation</td>
<td>36</td>
</tr>
<tr>
<td>References</td>
<td>37</td>
</tr>
<tr>
<td>Appendix</td>
<td>47</td>
</tr>
</tbody>
</table>
LIST OF FIGURE

<table>
<thead>
<tr>
<th>NO. Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>frequency of sex among study population</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>frequency of age among study population</td>
<td>21</td>
</tr>
<tr>
<td>4.3</td>
<td>frequency of histopathology diagnosis</td>
<td>22</td>
</tr>
<tr>
<td>4.4</td>
<td>frequency of immunohistochemical results of CDX2</td>
<td>23</td>
</tr>
<tr>
<td>4.5</td>
<td>frequency of immunohistochemical results of HPV</td>
<td>24</td>
</tr>
<tr>
<td>4.6</td>
<td>frequency of PCR results of HPV</td>
<td>25</td>
</tr>
</tbody>
</table>
LIST OF TABLE

<table>
<thead>
<tr>
<th>No. table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Relation between type of tumor and CDX2 immunohistochemical results</td>
<td>26</td>
</tr>
<tr>
<td>4.2</td>
<td>Relation between type of tumor and HPV PCR Results</td>
<td>27</td>
</tr>
<tr>
<td>4.3</td>
<td>Relation between type of tumor and HPV immunohistochemical results</td>
<td>28</td>
</tr>
</tbody>
</table>
List of microphotographs

<table>
<thead>
<tr>
<th>No. Photomicrographs</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Show positive immunohistochemistry of CDX2</td>
<td>30</td>
</tr>
<tr>
<td>4.2</td>
<td>Show positive immunohistochemistry of HPV.</td>
<td>31</td>
</tr>
<tr>
<td>4.3</td>
<td>Show positive result of HPV PCR.</td>
<td>32</td>
</tr>
</tbody>
</table>
CHAPTER ONE
CHAPTER ONE
Introduction

Esophageal cancer (EC) is an important worldwide health problem because of its poor prognosis and a relatively high incidence in some parts of the world. Advances in surgical techniques, chemotherapy and radiotherapy have not substantially modified its prognosis over the last 25 years (Enzinger and Mayer 2003) Esophageal cancer is cancer of the esophagus(WHO.

2014) Symptoms often include trouble swallowing and weight loss other symptoms pain with swallowing, a hoarse voice, enlarged lymph nodes around the clavicle, a dry cough, and possibly coughing upblood or vomiting blood (Ferri and fred .2012).
The large majority of esophageal tumors are accounted for by squamous cell carcinomas (SCCs: 60–70%) or adenocarcinomas (ACs: 20–30%) (Enzinger, et al, 2003).
EC is more common in Belgium, China, Iran, Iceland, India, (Stewart, et al.

2003). The American Cancer Society estimated that during 2014, approximately 18,170 new esophageal cancer cases diagnosed in the United States and will result in 15,450 deaths (American Cancer Society.2014) In Sudan, According to radiation and iso tope center of Khartoum(RICK)record ,the esophageal cancer is the fourth most common cancer among Sudanese's males, and fifth most common among females (Hamad.2011) .
Barrett's esophagus is considered to be a risk factor for esophageal adenocarcinoma, tobacco50% and alcohol 32% are main risk factors. For squamous cell carcinoma (WHO.2014).

Esophageal cancer classified in to two main subtypes, squamos cell cancer more common in the developing world and adeno carcinoma more common in the developed world (WHO. 2014).
The disease is diagnosed by biopsy done via an endoscope (a fiberoptic camera) (Stahl, et al. 2013).Prevention includes stopping smoking and a healthy diet (Ferri, Fred 2012 ,WHO. 2014). Treatment is based on the cancer's stage, its location. Small localized squamous cancers treated with surgery mainly chemotherapy with or without radiation

Caudal-related homeobox 2 is a protein that in humans is encoded by the CDX2 gene (German, et al. 1995). This protein is a homeobox transcription factor. It is directs early embryogenesis in mice. It is required to form the placenta (Chawengsaksophak, et al. 2004). CDX2 is implicated in the pathogenesis of Barrett's esophagus, the components from gastro esophageal reflux as bile acids induce the expression of an intestinal differentiation program through up-regulation of CDX2 (Debruyne, et al. 2006).

Human papillomavirus (HPV) is a DNA virus from the papillomavirus family that is capable of infecting humans. Like all papillomaviruses, HPVs establish productive infections only in keratinocytes of the skin or mucous membranes. Most HPV infections are subclinical and will cause no physical symptoms (CDC.2008). There are multiple types of HPV, sometimes called "low risk" and "high risk" types. Low risk types cause warts and high risk types can cause lesions or cancer (Schiffman and Castle . 2003).
1.2. Rationale

Esophageal cancers represent the eighth cancers worldwide (Ajani, et al. 2011). Tobacco smoking and alcohol consumption was considered causal for esophageal squamous cell carcinoma one possible risk factor for esophageal squamous cell carcinoma is infection with oncogenic human papillomavirus (HPV) types (Freddy Sitas, et al. 2012), also the main precursor lesion for the development of esophageal adenocarcinoma is Barrett’s metaplasia arises indirectly as a consequence of mutational or environmental modifications in the stromal cells well directly driving trans-differentiation which involve important transcriptional regulators such as CDX2 (Kazumori, et al. 2009). In Sudan the main causes of EC is unclear so the diagnosis result is poor, in this study we highlights to one of the risk factor of EC which is HPV31 and the expression of CDX2 in esophageal cancer among Sudanese patient.
1.3. Objectives:

1.3.1. General objective:

To detect CDX2 and HPV31 in esophageal tumors among Sudanese patients.

1.3.2. Specific objectives:

- To detect CDX2 tumor marker and HPV using immunohistochemistry.
- To detect HPV type 31 using PCR.
- To correlate between HPV and CDX2 with types of esophageal tumor.
- To correlate between esophageal tumors and patients ag...
CHAPTER TWO
Chapter two
Literature Review

2.1. Anatomy, physiology, and histology, of the esophageous:

The esophagus is first components of the human digestive system and human gastrointestinal tract. It is a fibro muscular tube through which food passes, aided by peristaltic contractions, from the pharynx to the stomach. It is usually 18–25 (cm) long (Edinburgh . 2010). Behind the trachea and heart, passes through the diaphragm to cardia of the stomach. The wall of the esophagus from the lumen outwards consists of mucosa (a stratified squamous epithelium), sub-mucosa (connective tissue), layers of muscle fibers between layers of fibrous tissue, and an outer layer of connective tissue. The esophagus has a mucosa consisting of a tough stratified squamous epithelium without keratin, a smooth lamina propria, and a muscularis mucosa (Kuo,2006). There are two types of glands, with mucous-secreting esophageal glands being found in the submucosa, and cardiac glands located in the lamina propria (Takubo,2007).

2.2. Pathology of the esophagus:
2.2.1. Inflammation of the esophagus:

It is known as esophagitis. Reflux of gastric acids from the stomach, infection, substances ingested for example corrosives, some medications such as bisphosphonates, food allergies, and all lead to esophagitis. Esophagitis cause painful swallowing and is treated by managing the cause of the esophagitis. Esophageal varices engorged blood vessels present within the esophageal walls, lead to partially obstruct the esophagus, as a result of liver diseases such as cirrhosis. Several disorders affect the motility of food as it travels down the esophagus. This can cause difficult swallowing, called dysphagia. Achalasia, a failure of the lower esophageal sphincter to relax properly, lead to megaesophagus, and diffuse esophageal spasm. Sclerosis of the esophagus may cause hardening of the walls of the esophagus (Edinburgh. 2010). Congenital malformation is the esophagus fails to develop or there is an abnormal connection between the trachea and esophagus (Shaw-Smith, et al 2005).
2.2. 3. Tumors of the esophagus:

During various benign esophageal lesions are encountered in the esophagus most are asymptomatic and have no malignant potential, these various benign lesions can originates from different walls layers in the esophagus. According to its origin, esophageal tumors can be classified as epithelial tumors as squamous papilloma, non epithelial tumors as leiomyoma, and cystic tumors as bronchogenic cyst, duplication cyst, lymphangioma, fibroid polyp, lipoma and hemangioma (Hoon, et al. 2014).

Cancer of the esophagus is two forms: cancer occurs in the squamous cells lining the esophagus it is a carcinoma or occurs in the glands or columnar tissue of the esophagus is an adenocarcinoma for example in Barrett's esophagus, and occurs in the cuboidal cells. Prolonged esophagitis from gastric reflux is one factor in the development of Barrett's esophagus. In this condition, there is metaplasia of the lining of the lower esophagus, which changes from stratified squamous epithelia to simple columnar epithelia. It is one of the main factor of esophageal cancer (Edinburgh. 2010). EC develops in a defined sequence of changes from benign metaplasia (BM), to low-grade dysplasia (LGD), to high-grade dysplasia (HGD), to adenocarcinoma (EC) (Spechler, et al. 2011).

The common causes of the SCC is smoking tobacco, drinking alcohol, drinking hot drinks, and a poor diet, the common cause of the ACs is smoking tobacco, obesity and gastro esophageal reflux disease (Zhang, et al. 2012). ACs is present in the lower third of the esophagus (David Schottenfeld, et al. 2006, WHO. 2014). The large majority of esophageal tumors are SCCs or AC, whereas melanomas, leiomyosarcomas, carcinoids and lymphomas are rarely diagnosed (Enzinger and Mayer 2003).

3. Signs and symptoms of EC:

Difficulty swallowing most common other symptoms painful swallowing (Ferri, 2012). Weight loss, pain behind the sternum or in the epigastrium, husky, raspy, or hoarse-sounding cough, nausea and
vomiting, regurgitation of food, hematemesis, aspiration pneumonia (Enzinger, et al. 2003).

2.4. The Risk factor:

2.5. The epidemiology of EC:

EC is the eighth most common malignant tumor worldwide. In 2010 an estimated 16,640 new cases and 14,500 deaths due to EC occurred in the United States (Ajani, et al .2011). It is associated with a 5-year survival rate of 15 to 20%. The lifetime risk of developing this cancer is 0.8% for men and 0.3% for women. The risk increases with age and the mean age at diagnosis is 67 years. Although its incidence is largely variable among different geographical areas, it is endemic in many parts of the world, particularly in Asia, Southern and Eastern Africa (Jemal, et al .2011). The area with the highest reported incidence of EC is the so-called Asian esophageal cancer belt, which stretches from eastern Turkey through north- eastern Iran, northern Afghanistan and southern Russia to northern China (Parkin. 2004). Approximately 75% of all ACs are localized in the distal tract of esophagus, whereas SCCs are usually distributed between the middle and lower third (Parkin, 2004. Pohl and Welch. 2005).

2.6. Method of diagnosis of EC:
EC develops in a defined sequence of changes from benign metaplasia (BM), to low-grade dysplasia (LGD), to high-grade dysplasia (HGD), to adenocarcinoma (EC) (Spechler, et al. 2011).
2.6.1. Medical history and physical exam:

When symptoms that might be caused by esophageal cancer appear the medical history check for possible risk factors and for abnormal results, to referred to a gastroenterologist for further tests and treatment one of this test is imaging tests (American cancer society .2014).

2.6.2. Imaging tests:

Use x-rays in this test, thick, chalky liquid called barium is swallowed to coat the walls of the esophagus. X-rays of the esophagus are then taken, magnetic fields, sound waves, or radioactive substances to create pictures of the inside body. Imaging tests might be done for a number of reasons both before and after a diagnosis of esophageal cancer; a barium swallow only shows the shape of the inner lining of the esophagus. Computed tomography scan. (CT or CAT) but not usually used to diagnose esophageal cancer, CT used when cancer spread to nearby organs and lymph nodes. also CT-guided needle biopsy, Magnetic resonance imaging (MRI) scan could be done but take a time, another test Positron emission tomography (PET) scan it is a form of radioactive sugar (known as fluorodeoxyglucose or FDG) is injected into the blood. Other imaging test is endoscopy either upper endoscopy this is an important test for diagnosing esophageal cancer, or endoscopic ultrasound as the sometime with upper endoscope. Also bronchoscopy can be used for cancer in the upper part of the esophagus to see if it has spread to the windpipe (trachea) or (bronchi). Thoracoscopy and laparoscopy used to see the lymph nodes and other organs near the esophagus inside the chest (by thoracoscopy) or the abdomen (by laparoscopy) through a hollow lighted tube (American cancer society .2014).

2.6.3. Laboratory testing of biopsy samples:

2.6.3.1. Histopathology examination:

The 4 µm thick paraffin sections cut from each specimen placed on aminopropyltriethoxy-silane-treated slides and routinely stained with hematoxylin and eosin. Specimens examined under light microscopy to confirm the histopathological diagnosis of carcinoma and the tumors graded according to the WHO histological classification criteria.

2.6.3.2. Immunohistochemistry:

By this process an unlabeled primary antibody binds to the target antigen in the tissue and a labeled secondary antibody that reacts with the primary
antibody is binding to conjugated fluorescent or enzyme reporter (RamosVara and Miller. 2014).

2.6.3.3. PCR technique:
The method relies on thermal cycling to amplify a specific region of a DNA strand (the DNA target) after DNA extracted from tumor tissue biopsy or resection specimens (Cheng, et al.1994).

2.6.3.5. Insitu hyperdization (ISH):
It's a type of hybridization that uses a labeled complementary DNA or RNA strand (probe) to localize a specific DNA or RNA sequence in a portion or section of tissue (in situ) at elevated temperature, the probe labeled with radioactivity or the other non-radioactive labels that visualized using a fluorescence or brightfield microscope (Gall and Pardue .1969).

2.7. Tumor marker:
Is a biomarker found in the blood, urine, or body tissues that can be elevated in cancer among other tissue types can be produced directly by the tumor or by non-tumor cells a response to the presence of a tumor. Most tumor markers are tumor antigens. (Tumor markers Cancer screening. 2013). Example of esophageal cancer marker Tumor M2-Pyruvate Kinase (Tumor M2-PK)(Kumar, et al.2007). Carcinoembryonic Antigen (CEA). Cyfra 21-1 (Tumor markers Cancer screening.2013).

2.7.1. CDX2:
In 2013 Makita, et al was found most of the non-neoplastic Barrett's esophageal mucosa showing intestinal-type metaplasia with or without low grade dysplasia was positive for CDX2, but negative for p53. CDX2 expression is restored irrespective of the methylation status of its promoter. In 2003 Phillips et al was found that CDX2 protein is a sensitive marker of intestinal metaplasia in the upper gastrointestinal tract and useful in detecting histologically equivocal cases of Barrett's esophagus. CDX2 is present in dysplasia and adenocarcinoma, with some loss of protein primarily in high-grade dysplasia and adenocarcinoma.

In 2006 Tong Liu et al was found CDX2 was expressed in most human EAC cell lines, but not in squamous epithelial cell lines. Exposure to acid and/or bile acids may activate CDX2 expression in human esophageal epithelial cells through promoter demethylation, and ectopic CDX2 expression in esophageal squamous epithelial cells contribute to intestinal metaplasia of the esophagus.

2.7.2. HPV:

The role of human papillomavirus (HPV) in the causation of esophageal squamous cell carcinoma is unclear (Freddy Sitas . 2012). The possibility that HPV might play an etiologic role in the development of esophageal squamous cell carcinoma was first proposed in 1982 by Syrjänen et al. based on histological findings that suggested possible associations between HPV and both malignant and benign squamous cell lesions of the esophagus (Freddy, et al .2012).

In 2007 Ali Eslami Far, et al was found there is no correlation between presence and types of HPV with patients’ gender and age. The results are consistent with HPV studies conducted in other high-risk areas for ESCC and provided further evidence to support a causal association of HPV infection with ESCC.

In 2012 Freddy Sitas, was found limited serological evidence of an association between esophageal squamous cell carcinoma and HPV in the populations studied. HPV does not appear to be an important risk factor for esophageal squamous cell carcinoma.

In 2012 Löfdahl, et al was found the prevalence of human papillomavirus (HPV) in esophageal squamous cell carcinoma in relation to anatomical site of the tumor, the tumors containing HPV were not overrepresented in the upper compared to the middle or lower third of the esophagus.
In 2014 Haeri et al was found the Human Papilloma Virus and esophageal squamous cell carcinoma was positive for HPV L1 gene.

In 2014 Petrick, et al was found the highest HPV prevalence was found in Africa and Asia, notably among Chinese studies from provinces with high OSCC incidence rates.

In 2012 Yahyapour, et al was found 28.3% of upper, 29% of middle and 25.8% of lower third of ESCC samples were positive for HPV DNA.

In 2006 Gao, et al was found the high-risk types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68, HPV positivity was identified in 13% of subjects without squamous dysplasia, 8% with mild dysplasia, 7% with moderate dysplasia, 16% with severe dysplasia and negative with invasive ESCC.

In 2007 Far et al was found there is no correlation between presence and types of HPV with patients' gender and age.
CHAPTER THREE
Chapter three

Materials and Methods

3.1 Study design:
This is retrospective descriptive study aimed to detect CDx2 and HPV by using immunohistochemistry techniques and PCR.

3.2 Study area:
This study was conducted at Ib Sina hospital and Sudan University of Science and Technology, Collage of Medical Laboratory Science.

3.3 Materials:
Formalin fixed paraffin embedded tissue blocks, were obtained from patients previously diagnosed with esophageal tumor were used in this study.

3.4 Study sample:
Thirty paraffin blocks previously diagnosed as esophageal tumor were selected randomly from Ib Sina Hospital, patient, identification data were collected from records include age and sex.

3.5 Sample collection and preparation:
From each paraffin blocks two sections (4μm) were cut, sections were floated into preheated in water bath 40°C, and placed in coated slides for immunohistochemistry, one section (20 μm) was cut and placed in Ependorff tube for molecular detection of HPV31.

3.5.1 Immunohistochemical staining procedure:

Rehydration: following deparaffinization in xylene, slides were rehydrated through agraded series of alcohol and placed in DW.
Antigen retrieval: antigen retrieval for CDX2 and HPV was performed target retrieval solution in 95°C for 30 minutes slide was heated in citrate buffer (PH 9.9).

Blocking endogenous peroxidase activity: section were blocked with 3% hydrogen peroxidase for 10 minutes, and then washed in phosphate buffer (PBS) for 2 minutes.
Primary antibody: sections were incubated with 100-200 ML of primary antibodies (CDX2 and HPV) for 30 minutes at room temperature in a moisture chamber, and then rinsed in phosphate buffer saline for 2 minutes. Primary antibody enhancer: sections were
incubated with 100-200 Ml of primary antibody enhancer for 15 minutes, and then washed in phosphate buffer for 2 minutes. Secondary antibody: sections were treated with secondary antibody labeled with horse reddish peroxidase for 15 minutes,

DAB chromogen: sections were incubated in diaminobenzidintetrahydrochloride for 3 minutes, and then washed in phosphate buffer for 2 minutes. Counter stain: sections were counter stained with m a y e r haematoxylin for one minutes, blued in running tap water for 5 minutes and dehydrated in50%,70%,90%,100% ethyl alcohol for each change, then cleared in xylene for 2 minutes for each, finally mounted in DPX mounting media.

For each run of staining, positive and negative control slides were prepared. The negative control section prepared from the same tissue block, but incubated with PBS instead of primary antibody. While positive control prepared from known positive block and treated with all above steps. Each slide was evaluated with the researcher then the results were confirmed by supervisor.

3.5.2 Polymerase Chain Reaction:
3.5.2.1 DNA extraction:

DNA was extracted from sections according to commercial kits (Sacace Biotechnologies, Italy) according to manufactures instruction.

3.5.2.2 PCR amplification:

DNA was amplified according to commercial kits primer (Sacace Biotechnologies, Italy) then the tube was closed and transferred to the thermalcycler when the temperature was reached 95C, then the program was started. . PCR consist of cycles with each cycle commonly consisting of 2-3 discrete temperature steps, the Denaturation step: This step is the first regular cycling event and consists of heating the reaction to 94–98 °C for 20–30 seconds, then the Annealing step: The reaction temperature is lowered to 50–65 °C for 20–40 seconds allowing annealing of the primers to the single-stranded DNA template. Extension/elongation step: The temperature at this step depends on the DNA polymerase used; Taq polymerase has its optimum activity temperature at 75–80 °C.
3.5.2.3 Analysis of PCR:

The DNA amplified by PCR was separated electrophoretically in 3% agarose gel in tris borate EDTA running buffer agarose gel was separated by dissolving 3 gm of agarose in 75ml of TBE buffer, ethyldened bromide was added, 4 microliters of the PCR product were loaded into the wells 4 microliters a100bpDNA ladder, was loaded into the first well of the gel. Positive control and samples were loaded with serial number.

3.6 Statistical analysis:

The obtained results and variables arranged in standard master sheet, then analyzed using statistical package for social science (SPSS) program, frequency, mean and Chi square tests were calculated.

3.7 Ethical consideration:

Specimens were taken from Ibn Sena Hospital ethically after ethical clearance. (Appendix’s).
CHAPTER FOUR
Chapter Four

Results

In this study 30 paraffin blocks were collected from specimen previously diagnosed as esophageal tumor. 20 (66.7%) of them were males and 10 (33.3%) were females as showed in figure No 4.1.
The patients age ranged between ≥ 60 year were 14 (46.7%) patients and over 60 year were 16 (53.3%) as showed in figure No 4.2.
Twenty (66.7%) samples was diagnosed as malignant and ten (33.3%) as benign as showed in figure No 4.3.

When CDX2 was detected immunohistochemically in 30 samples, 4 (13.3%) Samples were positive and negative in 26 (86.7%) as showed in figure No 4.4.

Human papilloma virus was tested immunohistochemically in 30 samples, 7 (23.3%) were positive and negative in 23 (76.7%) as showed in figure No 4.5.

Also human papilloma virus was tested by PCR, in 30 samples, 2 (6.7%) were positive and negative in 28 (93.3%) as showed in figure No 4.6.

The comparison between CDX2 expression and type of tumor the study revealed that: the positive expression of CDX2 in the malignant tumor samples were (4), and no positive result detected in benign tumor .while negative result of CDX2 expression were detect in 16 of malignant samples, and 10 in benign samples as showed in table 4.2. With no significant relation between CDX2 expression and type of tumor (P.value 0.129).

The result of HPV PCR and type of tumor the study revealed that: the positive HPV PCR in malignant tumor were (1), and (1) positive result detected in benign tumor. While negative result of HPV were detect in 19 of malignant samples, and 9 in benign samples as showed in table 4.3. With no significant relation between HPV infection and type of tumor (P.value 0.65).

The comparison between the type of tumor and HPV immunohistochemical results the study revealed that: the positive expression of HPV in the malignant tumor samples were (6), and (1)
positive result detected in benign tumor. While negative result of HPV expression were detected in (14) of malignant samples, and (9) in benign samples as showed in table 4.4. With no significant relation between CDX2 expression and type of tumor (P.value 0.222). Relation between the patients age group and type of tumor the study revealed that: the patients age less than or equal 60 year in malignant tumor were 8 and 6 in benign tumor. While the patients age over 60 year in malignant tumor were 12 and 4 in benign tumor as showed in table 4.5, with no significant relation between the patients age group and type of tumor (P.value 0.301).
Fig: 4.1. Frequency of sex among study population
Fig: 4.2. Frequency of age among study population
Fig: 4.3. Frequency of histopathology diagnosis.
Fig: 4.4. Immunohistochemical result of CDX2
Figure: 4.5. Frequency of immunohistochemical results of HPV.
Fig: 4.6 Frequency of PCR results of HPV
Table: 4.1 Relation between type of tumor and CDX2 immunohistochemical results

<table>
<thead>
<tr>
<th>Type of tumor</th>
<th>Immunohistochemical results of CDX2</th>
<th>Total</th>
<th>P.value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POSITIVE</td>
<td>NEGATIVE</td>
<td></td>
</tr>
<tr>
<td>Malignant</td>
<td>4</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Benign</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>26</td>
<td>30</td>
</tr>
</tbody>
</table>
Table: 4.2. Relation between type of tumor and HPV PCR results

<table>
<thead>
<tr>
<th>Type of tumor</th>
<th>HPV PCR</th>
<th></th>
<th>Total</th>
<th>P.value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>POSITIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malignant</td>
<td>1</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Benign</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>0.605</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>28</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Table: 4.3: Relation between type of tumor and immunohistochemical results of HPV

<table>
<thead>
<tr>
<th>Type of tumor</th>
<th>Immumohistochemical results of HPV</th>
<th>Total</th>
<th>P.value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POSITIVE</td>
<td>NEGATIVE</td>
<td></td>
</tr>
<tr>
<td>Malignant</td>
<td>6</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Benign</td>
<td>1</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>23</td>
<td>30</td>
</tr>
</tbody>
</table>
Microphotographic 4.1: Esophageal adenocarcinoma show positive immunohistochemistry of CDX2(40x)
Microphotograph 4.2: Esophageal squamous cell carcinoma show positive immunohistochemistry of HPV (40x)
Microphotograph 4.3: Show positive HPV 31 PCR

(1): no evidence of malignancy. (2): moderately differentiated adenocarcinoma
CHAPTER FIVE
Chapter Five

Discussion

Esophageal cancer risk is strongly related to age and sex (Parkin 2011).

In this study when we compared the type of tumor with age we found the most patients samples are over 60 years has malignant tumor (esophageal cancer) this has been supported by the american cancer society estimated that during 2014 esophageal adenocarcinoma is more common in caucasian men over the age of 60 than it is in African Americans (Kenneth J. Vega et al.2000, American Cancer Society. 2014). In 2012 Vincenza Conteduca, et al, was found the risk increases with age and the mean age at diagnosis is 67 years. Its incidence is variable among different geographical areas. The present study found the disease is more common in men this has been supported by report that in 2012, esophageal cancer is around three times more common in men than women (World Cancer Report 2014).

The American Cancer Society in 2014 estimated that in esophageal cancer approximately the 7th leading cause of cancer death among males. In the United States, SCCs of the esophagus is more common among African American males with a history of heavy smoking or alcohol use (Kenneth J. Vega, et al.2000).

This study support our study which the most of the patients is male’s patients and diagnosed as SSC. Other study in 2012 by Vincenza Conteduca, et al was found the lifetime risk of developing this cancer is 0.8% for men and 0.3% for women.

In this study CDX2 showed there is no significant association between esophageal tumor and it expression. By immunohistochemistry nuclear-localized Cdx2 protein is observed in columnar epithelium of Barrett's esophagus, also low-level of Cdx2 protein localized in the cytoplasm of squamous epithelial cells from Gastroesophageal reflux disease (GERD) patients (Eda, et al 2003). Small portions of gastric and esophageal adenocarcinoma heterogeneously express CDX2 (Werling, et al.2003).

In contrast to our study in 2003 Phillips, et al was found that CDX2 protein is useful in detecting histological equivocal cases of Barrett's
esophagus. It is present in dysplasia and adenocarcinoma, with some loss of protein primarily in high-grade dysplasia and adenocarcinoma.

In 2006 Tong Liu, *et al.* was found CDX2 was expressed in most human esophageal adenocarcinoma cell lines, CDX2 expression in esophageal squamous epithelial cells may contribute to intestinal metaplasia of the esophagus.

In 2013 Makita, *et al.* was found most of the non-neoplastic Barrett's esophageal mucosa showing intestinal-type metaplasia with or without low-grade dysplasia was positive for Cdx2.

Our study agree with study in 2004 by Moons, *et al.* and Lord, *et al.* in 2005 CDX2 expression was detected in normal esophagus where there was no methylation, but was more highly expressed in the adenocarcinomas of the esophagus which also lack methylation of the promoter region. Given that many esophageal adenocarcinomas arise from dysplastic lesions in the background of intestinal metaplasia, CDX2 expression might be a significant contributor to the metaplastic and later neoplastic transformation of the human esophagus to adenocarcinoma.

In this study the immunohistochemical and PCR detections of HPV was show there is no association between HPV infection and esophageal tumor. The present study found that the positive results of HPV31 using PCR were 2 (6.7%).

The first reports suggesting an involvement of (HPV) in the development of both benign and malignant squamous cell tumors of the esophagus date back to 1982 (Syrjänen, 2002).

Our study agree with study in 2008 Koh, *et al.* examined HPV types 16, 18, 31, 33, 35, 52b and 58 and type 16-specific primers consensus failed to detect HPV DNA sequences in any of the esophageal samples. In 1998, Poljak, *et al.* They did not found HPV in 121 ESCCs. (34%) of patients with ESCC from Kochi were positive for HPV DNA type-16 and HPV type-18; in contrast, none were positive for HPV-31 or -33 (Furihata, 1993).

Feng, *et al.* in 2013 was found Human papillomavirus was not detected by PCR using multiple consensus primer sets in esophageal adenocarcinomas. Our study results are disagree with HPV studies conducted in other high-risk areas for example this study result disagree with study in 2005 by Bahnassy, *et al.* were found HPV was detected in patients with esophageal adenocarcinoma all specimens were positive for HPV.
In 2006 Gao, et al. found that the frequency of HPV subtype in tumoural regions as follows: HPV-31, 3%. In 2007 Far, et al, found only HPV-16 in tumor margins also in 2014 Zhang, et al was found the distribution of HPV genotypes in esophageal cancer patients from high to low proportion was HPV-16, -58, -18, -33, -31 and -11.
CHAPTER SIX
Chapter Six

Conclusion and Recommendation

6.1. Conclusion:

On the basis of this study we conclude that:

There is no association between HPV infection, CDX2 expression age group and esophageal tumor.

6.2. Recommendation:

On the basis of this study we recommend that:

Further studies with large sample size should be done to detect the CDX2 and HPV in esophageal tumor.
References
References

• Cheng, S.; Fockler, C.; Barnes, W. M.; Higuchi, R. (1994). Effective Amplification of Long Targets from Cloned Inserts and Human
Genomic DNA". *Proceedings of the National Academy of Sciences* 91 (12): 5695–5699.

carcinomas among Koreans, as determined by polymerase chain reaction. Esophagus;21(2):114-117

- Kuo, Daniela; Urma (2006). "Esophagus - anatomy and development". *GI Motility online*.

• Schiffman M, Castle PE (2003). "Human papillomavirus: epidemiology and public health". *Arch Pathol Lab Med* 127 (8): 930-

• Shaw-Smith, C (18 November 2005). "esophageal atresia, tracheo- esophageal fistula, and the vaterl association: review of genetics and epidemiology". Journal of Medical Genetics 43 (7)

• Tong Liu, Xinyan Zhang, Chi-Kwong So, et al. 2006 .Regulation of Cdx2 expression by promoter methylation, and effects of Cdx2
transfection on morphology and gene expression of human esophageal epithelial cells by Oxford University Press.

Appendices'
Appendix

1. Measurement and material:

1.1 Instrument:
- Rotary microtome.
- Oven.
- Coplin jars.
- Staining racks.
- Stainless microtome blade.
- Coated slide.
- Cover glass.
- Water path.
- Dako pen.
- Thermal cycler.
- Workstation.
- Pipettorstube rack.

1.2 Materials:
- Xylene.
- Ethyle alcohol.
- Mayers haematoxylene.
- Distilled water.
- Citrate buffer.
- Peroxidase blocker.
- Anti CDX2 antibodies (primary antibodies).
- Anti human papilloma visus antibody (primary antibodies).
- Dextran polymer conjugated secondary antibodies and HRP.

-3.3 Diaminobenzidinetetrahydrochloridin substrate buffer.
- DPX mounting media.
- PCR mix 18-59.
- Buffer.
- Taq polymerase.
- Mineral oil.
- DNA buffer.
- HPV genotype control type 31.
- DNA extraction kite.
- Detection agarose kite.
- 2-Reagents sheet.

1.3. Master sheet
<table>
<thead>
<tr>
<th>Number of sample</th>
<th>Age</th>
<th>Sex</th>
<th>Diagnosis</th>
<th>Stage</th>
<th>CDX2</th>
<th>HPV</th>
<th>HPV 31 by PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1725/13</td>
<td>60yrs</td>
<td>F</td>
<td>Squamous cell carcinoma, large keratinizing cell type Scc</td>
<td>M</td>
<td>-ve</td>
<td>+ve</td>
<td>-ve</td>
</tr>
<tr>
<td>1295/13</td>
<td>50yrs</td>
<td>M</td>
<td>Esophageal endoscopy biopsy (Kaposi sarcoma)</td>
<td>M</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>1343/13</td>
<td>23yrs</td>
<td>M</td>
<td>Scc</td>
<td>M</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>1049/12</td>
<td>60yrs</td>
<td>M</td>
<td>Scc</td>
<td>M</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>422/14</td>
<td>40yrs</td>
<td>M</td>
<td>Scc</td>
<td>M</td>
<td>+ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>1095/13</td>
<td>70yrs</td>
<td>F</td>
<td>Scc</td>
<td>M</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>7/14</td>
<td>70yrs</td>
<td>F</td>
<td>Scc</td>
<td>M</td>
<td>-ve</td>
<td>+ve</td>
<td>-ve</td>
</tr>
<tr>
<td>451/14</td>
<td>52yrs</td>
<td>M</td>
<td>Scc</td>
<td>M</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>378/14</td>
<td>72yrs</td>
<td>M</td>
<td>Gastroesophageal junction poorly differentiated adenocarcinoma</td>
<td>M</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>17/14</td>
<td>61yrs</td>
<td>M</td>
<td>Scc</td>
<td>M</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1679/13</td>
<td>82yrs</td>
<td>M</td>
<td>Moderately differentiated adenocarcinoma</td>
<td>M</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>151/11</td>
<td>77yrs</td>
<td>M</td>
<td>Scc large cell keratinizing type</td>
<td>M</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>417/14</td>
<td>64yrs</td>
<td>F</td>
<td>Scc</td>
<td>M</td>
<td>-ve</td>
<td>+ve</td>
<td>-ve</td>
</tr>
<tr>
<td>1684/13</td>
<td>75yrs</td>
<td>M</td>
<td>Poorly differentiated adenocarcinoma</td>
<td>M</td>
<td>+ve</td>
<td>+ve</td>
<td>-ve</td>
</tr>
<tr>
<td>183/12</td>
<td>21yrs</td>
<td>M</td>
<td>Scc large cell keratinizing type</td>
<td>M</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>183/11</td>
<td>75yrs</td>
<td>F</td>
<td>Well differentiated invasive (keratinizing)scc</td>
<td>M</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>1303/14</td>
<td>98yrs</td>
<td>M</td>
<td>Moderate differentiated invasive scc</td>
<td>M</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>1264/14</td>
<td>60yrs</td>
<td>F</td>
<td>Moderate differentiated invasive (keratinizing)scc</td>
<td>M</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>1100/12</td>
<td>70yrs</td>
<td>M</td>
<td>Scc large cell non keratinizing type</td>
<td>M</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>1202/13</td>
<td>75yrs</td>
<td>F</td>
<td>Moderately differentiated adenocarcinoma</td>
<td>M</td>
<td>+ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>216/14</td>
<td>8yrs</td>
<td>M</td>
<td>Esophagitis</td>
<td>B</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>2128/13</td>
<td>30yrs</td>
<td>M</td>
<td>No evidence of malignancy</td>
<td>B</td>
<td>-ve</td>
<td>-ve</td>
<td>+ve</td>
</tr>
<tr>
<td>251/14</td>
<td>80yrs</td>
<td>M</td>
<td>Gastroesophageal junction chronic inflammation</td>
<td>B</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>1110/13</td>
<td>75yrs</td>
<td>M</td>
<td>Gastroesophageal junction(inflamatous)gastri c polyp</td>
<td>B</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>112/14</td>
<td>43yrs</td>
<td>F</td>
<td>Mild chronic inflammation</td>
<td>B</td>
<td>-ve</td>
<td>+ve</td>
<td>-ve</td>
</tr>
<tr>
<td>1307/14</td>
<td>50yrs</td>
<td>F</td>
<td>Esophagitis</td>
<td>B</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>Patient ID</td>
<td>Age</td>
<td>Gender</td>
<td>Diagnosis</td>
<td>Test Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1819/13</td>
<td>63yrs</td>
<td>M</td>
<td>No significant pathogenic, no atypia</td>
<td>B -ve -ve -ve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300/14</td>
<td>68yrs</td>
<td>M</td>
<td>Esophagitis gastroesophageal junction</td>
<td>B -ve -ve -ve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>423/14</td>
<td>60yrs</td>
<td>M</td>
<td>Gastroesophageal junction</td>
<td>B -ve -ve -ve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1592/12</td>
<td>39yrs</td>
<td>F</td>
<td>No evidence of malignancy</td>
<td>B -ve -ve -ve</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>