
1

Sudan University of Science and Technology

College of Graduate Studies

Numerical Schemes for Hyperbolic Equation in

 One Space Dimension

 واحد ىالطرق العددیة للمعادلات الزائدیة في بعد مكان

A thesis Submitted in Partial Fulfillment for the

Degree of M. Sc in Mathematics

By: Rayan Adil Mohamed Ahmed

Supervised By: Dr. Mohamed Hassan Mohamed Khabir

2015

I

Dedication

This research is dedication:-

To my parents

To my sisters

To my aunt

To all my family member

To my friends

To someone who has a lot in my Deep down...

II

Acknowledgement

I would like to express my special thanks to:-

Dr: Mohamed Hassan Mohamed Khabir

My father: Adil Mohamed Ahmed

My mother : Hasnat seed

My special thanks extended to all member of faculty of sciences
,to my family , to my friend and to every body who help me .

III

Abstract

We find the approximate solution for hyperbolic equation in one space

dimension using two finite different schemes: Lax- Wendroff and upwind

schemes Then, we study Fourier analysis of these two schemes. we also

approximate the numerical solution of system of hyperbolic equations by

using finite volume scheme and leap-frog schemes. As well, we study the

Fourier analysis of these two schemes. Finally, we study the consistency,

convergence and stability for hyperbolic equation in one space dimension

and we state and prove the main part of the key lax Equivalence theorem.

.

IV

 الخلاصة

حد باستخدام البحث إيجاد الحلول التقريبية للمعادلة الزائدية في بعد مكاني وا ذاتناولنا في ه
من طرق طريقتين قمنا ثم طريقة لاكس وندروف وطريقة اب وند. المنتهية وهي: تقاالفرو

أيضا قربنا الحلول العددية لمجموعة معادلات زائدية يير لهاتين الطريقتين.ربدراسة تحليل فو
الطريقتين باستخدام طريقة الحجم المنتهي وطريقة قفزة الضفدعة وأوجدنا تحليل فورييرلهاتين

لمجموعة المعادلات الزائدية. قمنا بدراسة الموائمة والتقارب والاستقرار للمعادلة الزائدية في بعد
 مكاني واحد وقمنا بكتابة واثبات الجزء الأساسي من نظرية لاكس المكافئة.

V

Subject Page NO.

Dedication I

Acknowledgment II
Abstract V

Arabic Abstract IV

The contents
Chapter One

Hyperbolic Equations in One Space Dimension
1.1 Characteristics 1-8

1.2 The Upwind Scheme 8-16

1.3 The Lax−Wendroff scheme 16-22

Chapter Two
Finite Volume Schemes

2. 1 Introduction 23-25
2.2 Harten concept 25-28
2. 3 The box scheme 28-32
2. 4The leap-frog scheme 32-37
2. 5 Hamiltonian systems and symplectic integration
schemes

37-44

Chapter Three
Consistency, Convergence and Stability

3.1 Definition of the problems considered 45-46

3.2The finite difference mesh and norms 46-48
3.3Finite difference approximations 48-50
3.4 Stability and the Lax Equivalence Theorem 50-58
References 59

The Content

1

Chapter one

Hyperbolic Equations in One Space Dimension
1.1 Characteristics

The linear advection equation

휕푢
휕푡

+ 푎
휕푢
휕푥

 = 0, (1.1)

is an example of the simplest of partial differential equations. Yet to
approximate it well on a fixed (푥, 푡)-mesh is a far from trivial problem that
is still under active discussion in the numerical analysis literature. Of course,
the exact solution is obtained from observing that this is a hyperbolic
equation with a single set of characteristics and 푢 is constant along each
such characteristic: the characteristics are the solutions of the ordinary
differential equation

d푥
d푡

= 푎(푥, 푡), (1.2)

and along a characteristic curve the solution 푢(푥, 푡)satisfies

d푢
d푡

=
휕푢
휕푡

+
휕푢
휕푥

d푥
d푡

= 0. (1.3)

Thus from initial data

 푢(푥, 0) = 푢 (푥), (1.4)

where 푢 (푥) is a given function, we can construct an approximate solution
by choosing a suitable set of points 푥 , 푥 , …, as in Figure 1.1, and finding
the characteristic through 푥 , 0 by a numerical solution of (1.2) with the
initial condition 푥(0) = 푥 . At all points on this curve we then have
푢(푥, 푡) = 푢 푥 . This is called the method of characteristics.

2

Note that for this linear problem in which 푎(푥, 푡) is a given function, the
characteristics cannot cross so long as a is Lipschitz continuous in 푥 and
continuous in 푡.

Figure (1.1): Typical characteristics for 풖풕 + 풂(풙, 풕)풖풙 = ퟎ.

When a is a constant the process is trivial. The characteristics are the
parallel straight lines 푥 − 푎푡 = constant, and the solution is simply

 푢(푥, 푡) = 푢 (푥 − 푎푡). (1.5)

Moreover, in the nonlinear problem in which a is a function only of 푢,푎 =
푎(푢), the characteristics are also straight lines because 푢 is constant along
each, although they are not now parallel. Thus again we are able to write the
solution in the form

 푢(푥, 푡) = 푢 푥 − 푎 푢(푥, 푡) 푡 , (1.6)

until the time when this breaks down because the characteristics can now
envelope or cross each other in some other manner.

Consideration of the characteristics of the equation, or system of
equations, is essential in any development or study of numerical methods for
hyperbolic equations and we shall continually refer to them below. We shall
want to consider systems of conservation laws of the form

휕퐮
휕푡

+
휕퐟(퐮)
휕푥

= 0 (1.7)

where 푢 = 푢(푥, 푡) is a vector of unknown functions and 퐟(퐮) a vector of
flux functions. For example, if the vector 퐮 has two components 푢 and 푣,

3

and 퐟 has two components 푓(푢, 푣) and 푔(푢,푣), we can write out the
components of (1.7) as

휕푢
휕푡

+
휕
휕푥

푓(푢, 푣) = 0, (1.8)

휕푣
휕푡

+
휕
휕푥

푔(푢, 푣) = 0, (1.9)

or in matrix form

휕푢
휕푡
휕푣
휕푡

+

휕푓
휕푢

휕푓
휕푣

휕푔
휕푢

휕푔
휕푣

휕푢
휕푥
휕푣
휕푥

=
0

0

. (1.10)

If we define

 퐴(퐮) ∶=
휕퐟
휕퐮

, (1.11)

the Jacobian matrix formed from the partial derivatives of 퐟, we can write
the system as

 퐮 + 퐴(퐮)퐮 = 0, (1.12)

and the characteristic speeds are the eigenvalues of 퐴. The hyperbolicity of
the system is expressed by the fact that we assume 퐴 has real eigenvalues
and a full set of eigenvectors. Suppose we denote by 횲 the diagonal matrix
of eigenvalues and by 푆 = 푆(퐮) the matrix of left eigenvectors, so that

 푆퐴 = Λ푆. (1.13)

Then premultiplying (1.12) by S gives the characteristic normal form of the
equations

 푆퐮 + Λ푆퐮 = 0. (1.14)

If it is possible to define a vector of Riemann invariants 푟 = 푟(퐮) such that
퐫 = 푆퐮 and 퐫 = 푆퐮 , then we can write

 퐫 + Λ퐫 = 0 (1.15)

4

which is a direct generalisation of the scalar case whose solution we have
given in (1.6). However, now each component of 횲 will usually depend on
all the components of r so that the characteristics will be curved.

Moreover, although these Riemann invariants can always be defined for a
system of two equat 1ions, for a larger system this is not always
possible.

To apply the method of characteristics to problems like (1.7), where the
characteristic speeds depend on the solution, one has to integrate forward
simultaneously both the ordinary differential equations for the characteristic
paths and the characteristic normal form (1.14) of the differential equations.
This is clearly a fairly complicated undertaking, but it will give what is
probably the most precise method for approximating this system of
equations.

The 푪푭푳 condition

Courant, Friedrichs and Lewy, in their fundamental 1928 paper1 on
difference methods for partial differential equations, formulated a necessary
condition now known as the 퐶퐹퐿 condition for the convergence of a
difference approximation in terms of the concept of a domain of dependence.
Consider first the simplest model problem (1.1), where a is a positive
constant; as we have seen, the solution is 푢(푥, 푡) = 푢 (푥 − 푎푡), where the
function 푢 is determined by the initial conditions. The solution at the point
푥 , 푡 is obtained by drawing the characteristic through this point back to

where it meets the initial line at 푄 ≡ 푥 − 푎푡 , 0 − see Figure (1.2).

Now suppose that we compute a finite difference approximation by using
the explicit scheme

푈 − 푈

∆푡
+ 푎

푈 − 푈
∆푥

= 0. (1.16)

5

Figure (1.2): Typical domain of dependence.

Then the value on the new time level will be calculated from

푈 = 푈 −
푎∆푡
∆푥

푈 − 푈

 = (1 − 푣)푈 + 푣푈 , (1.17)

where

 푣 =
푎∆푡
∆푥

. (1.18)

The value of 푈 depends on the values of 푈 at two points on the previous
time level; each of these depends on two points on the time level 푡 , and
so on. As illustrated in Figure (1.2), the value of 푈 depends on data
given in a triangle with vertex 푥 , 푡 , and ultimately on data at the
points on the initial line

푥 , 푥 , … , 푥 , 푥 .

For an inhomogeneous equation in which a source term ℎ replaces the zero
on the right-hand side of (1.16), 푈 depends on data given at all points of
the triangle. This triangle is called the domain of dependence of 푈 , or of
the point 푥 , 푡 , for this particular numerical scheme.

6

The corresponding domain of dependence of the differential equation is
the characteristic path drawn back from 푥 , 푡 to the initial line, for in
the inhomogeneous case 푢 + 푎푢 = ℎ data values ℎ(푥, 푡) are picked up
along the whole path as well as the initial data at 푥 = 푥 − 푎푡 .

The 퐶퐹퐿 condition then states that for a convergent scheme the domain of
dependence of the partial differential equation must lie within the domain of
dependence of the numerical scheme.

Figure (1.3): Violation of the 푪푭푳 condition.

Figure (1.3) illustrates two situations in which this condition is violated.
Either of the characteristics 푃푄 or 푃푅 lies outside the triangle. Suppose that
we consider a refinement path on which the ratio ∆푡 ∆푥⁄ is constant; then
the triangular domain of dependence remains the same. But suppose we
alter the given initial conditions in a small region of the initial line 푡 = 0
around the point 푄. This will then alter the solution of the differential
equation at 푃, since the solution is constant along the characteristic 푄푃. The
numerical solution at 푃, however, remains unaltered, since the numerical
data used to construct the solution are unchanged. The numerical solution
therefore cannot converge to the required result at 푃. The same argument of
course applies in the same way to the characteristic 푅푃.

The 퐶퐹퐿 condition shows in this example that the scheme cannot
converge for a differential equation for which 푎 < 0, since this would give a
characteristic like 푅푃. And if 푎 > 0 it gives a restriction on the size of the

7

time step, for the condition that the characteristic must lie within the
triangle of dependence requires that 푎 ∆푡 ∆푥⁄ ≤ 1.

What we have thus obtained can also be regarded as a necessary
condition for the stability of this difference scheme, So far it is only a
necessary condition. In general the 퐶퐹퐿 condition is not sufficient for
stability, as we shall show in some examples. Its great merit lies in its
simplicity; it enables us to reject a number of difference schemes with a
trivial amount of investigation. Those schemes which satisfy the 퐶퐹퐿
condition may then be considered in more detail, using a test which is
sufficient for stability.

Figure (1.4): General three-point scheme; the points marked × are
used for the two-step Lax−Wendroff method.

Now suppose that we approximate the advection equation (1.1) by a more
general explicit scheme using just the three symmetrically placed points at
the old time level. The CFL condition becomes

 |푎|∆푡 ≤ ∆푥, (1.19)

as we see from Figure (1.4); 푣 ∶= |푎| ∆푡 ∆푥⁄ is often called the 퐶퐹퐿 number.

If 푎 > 0, the difference scheme must use both 푈 and 푈 to obtain
푈 : and if 푎 < 0 it must use 푈 and 푈 . To cover both cases we might
be tempted to use a central difference in space together with a forward
difference in time to obtain

푈 푈
∆푡

+ 푎
푈 − 푈

2∆푥
= 0. (1.20)

8

If we satisfy (1.19) the 퐶퐹퐿 condition holds for either sign of 푎.

But now in the case where 푎 is constant, and ignoring the effect of the
boundary conditions, we can investigate the stability of the scheme by
Fourier analysis, The Fourier mode

 푈 = (휆) e (∆) (1.21)

satisfies the difference scheme (1.20) provided that the amplification factor
휆 satisfies

 휆 ≡ 휆(푘) = 1 − (푎 ∆푡 ∆푥⁄)푖 sin 푘∆푥 . (1.22)

Thus |휆| > 1 for all mesh ratios (and almost all modes) and the scheme is
unstable for any refinement path along which 푎 ∆푡 ∆푥⁄ is fixed. Note that
this is a case when the highest frequency mode, 푘∆푥 = 휋 or 푈 ∝ (−ퟏ) ,

does not grow: but the mode with 푘∆푥 = 휋, or where 푈 takes successive

values . . . ,−1,0,1,0,−1, . .., grows in magnitude by [1 + (푎 ∆푡 ∆푥⁄)] ⁄ at
each step while shifting to the right. This central difference scheme thus
satisfies the 퐶퐹퐿 condition but is nevertheless always unstable, illustrating
the earlier comment that the 퐶퐹퐿 condition is necessary, but not sufficient,
for stability.

1.2 The Upwind Scheme

We define finite differences in the same way in the two variables 푡 and 푥;
there are three kinds of finite differences:

Forward differences

 ∆ 푣(푥, 푡) ∶= 푣(푥, 푡 + ∆푡) − 푣(푥, 푡),

 ∆ 푣(푥, 푡) ∶= 푣(푥 + ∆푥, 푡) − 푣(푥, 푡);

Backward differences

 ∆ 푣(푥, 푡) ∶= 푣(푥, 푡) − 푣(푥, 푡 − ∆푡),

9

 ∆ 푣(푥, 푡) ∶= 푣(푥, 푡) − 푣(푥 − ∆푥, 푡);

Central differences

 훿 푣(푥, 푡) ∶= 푣 푥, 푡 +
1
2
∆푡 − 푣 푥, 푡 −

1
2
∆푡 ,

 훿 푣(푥, 푡) ∶= 푣 푥 +
1
2
∆푥, 푡 − 푣 푥 −

1
2
∆푥, 푡 .

When the central difference operator is applied twice we obtain the very
useful second order central difference

 훿 푣(푥, 푡) ∶= 푣(푥 + ∆푥, 푡) − 2푣(푥, 푡) + 푣(푥 − ∆푥, 푡).

For first differences it is often convenient to use the double interval central
difference

∆ 푣(푥, 푡) ∶=
1
2

(∆ + ∆)푣(푥, 푡)

 =
1
2

[푣(푥 + ∆푥, 푡) − 푣(푥 − ∆푥, 푡)].

The simplest and most compact stable scheme involving these three
points is called an upwind scheme because it uses a backward difference in
space if a is positive and a forward difference if 푎 is negative:

 푈 =
푈 − 푎

∆푡
∆푥

∆ 푈 if 푎 < 0,

푈 − 푎
∆푡
∆푥

∆ 푈 if 푎 > 0.
 (1.23)

If a is not a constant, but a function of 푥 and 푡, we must specify which value
is used in (1.23). We shall for the moment assume that we use 푎 푥 , 푡 , but
still write a without superscript or subscript and 푣 = 푎 ∆푡 ∆푥⁄ as in (1.18)
when this is unambiguous.

10

This scheme satisfies the 퐶퐹퐿 condition when (1.19) is satisfied, and a
Fourier analysis gives for the constant 푎 > 0 case the amplification factor

 휆 ≡ 휆(푘) = 1 − (푎 ∆푡 ∆푥⁄) 1 − e ∆ ≡ 1 − 푣 1 − e ∆ . (1.24)

This leads to

|휆| = [(1 − 푣) + 푣 cos푘∆푥] + [푣 sin 푘∆푥]

 = (1 − 푣) + 푣 + 2푣(1 − 푣) cos푘∆푥

= 1 − 2푣(1 − 푣)(1 − cos 푘∆푥)

which gives

 |휆| = 1 − 4푣(1 − 푣) sin
1
2
푘∆푥. (1.25)

It follows that |휆(푘)| ≤ 1 for all 푘 provided that 0 ≤ 푣 ≤ 1. The same
analysis for the case where 푎 < 0 shows that the amplification factor λ(푘)
is the same, but with a replaced by |푎|. Thus in this case the 퐶퐹퐿 condition
gives the correct stability limits.

Error analysis of the upwind scheme

We notice that the scheme (1.23) can be written

 푈 =
(1 + 푣)푈 − 푣푈 if 푎 < 0,
(1 − 푣)푈 + 푣푈 if 푎 > 0. (1.26)

This can be interpreted as follows. In Figure (1.5) for the case 푎 > 0, the
characteristic through the point 푃 = 푥 , 푡 meets the previous line
푡 = 푡 at the point 푄, which by the 퐶퐹퐿 condition must lie between the
points 퐴 = 푥 , 푡 and 퐵 = 푥 , 푡 . Moreover the exact solution 푢(푥, 푡)
is constant along the characteristic, so that 푢(푃) = 푢(푄). Knowing an
approximate numerical solution at all the points on the line 푡 , we can
therefore interpolate the value of 푈(푄) and use this to give the required
value 푈 . If we use linear interpolation, approximating 푢(푥, 푡) by a
linear function of 푥 determined by the approximations at the two points 퐴

11

and 퐵, we obtain (1.26) exactly when a is constant because 퐴푄 = 푣∆푥 and
푄퐵 = (1 − 푣)∆푥; when a varies smoothly this still gives a good
approximation.

Notice also that all the coefficients in (1.26) are nonnegative so that a
maximum principle applies, provided that |푣| ≤ 1 at all mesh points. We can
therefore obtain an error bound for the linear, variable coefficient problem
just as we have done for parabolic equations. We must first consider more
carefully what domain is given, and what conditions should be specified at
the boundaries of the domain: although the physical problem may be given
on the whole line, for all values of 푥, a numerical solution must be confined
to a finite region. Suppose, for example, that the region of interest is
0 ≤ 푥 ≤ 푋, so that we have boundaries at 푥 = 0 and 푥 = 푋. Since the
differential equation is hyperbolic and first order, we will usually have only
one boundary conditionwhere we were always given a boundary condition
at each end of the domain. The direction of the characteristics shows that we
need a boundary condition at 푥 = 0 if 푎 > 0 there, and at 푥 = 푋 if 푎 < 0
there; in the straightforward situation where a has the same sign
everywhere, we therefore have just the one boundary condition. The exact
solution of the differential equation would then be determined by drawing
the characteristic backwards from the point 푃, until it reaches either the
initial line 푡 = 0, or a boundary on which a boundary condition is given.

For simplicity we shall first suppose that 푎 > 0 on [0,푋] × [0, 푡]; we
consider the general case later. The truncation error of the scheme is

Figure (1.5): Construction of a scheme by linear or quadratic interpolation.

12

defined as usual and expansion about 푥 , 푡 gives, if 푢 is sufficiently
smooth,

푇 ∶=
푢 − 푢

∆푡
+ 푎

푢 − 푢
∆푥

 ~ 푢 +
1
2
∆푡푢 + ⋯ + 푎 푢 −

1
2
∆푥푢 + ⋯

 =
1
2

(∆푡푢 − 푎∆푢) + ⋯ . (1.27)

Even if a is constant so that we have 푢 = 푎 푢 , we still find

푇 = −
1
2

(1 − 푣)푎∆푥푢 + ⋯ ;

hence generally the method is first order accurate. Suppose the difference
scheme is applied for 푗 = 1,2, . . . , 퐽, at the points 푥 = 푗∆푥 with 퐽∆푥 = 푋,
and the boundary value 푈 = 푢(0, 푡) is given. Then for the error 푒 =
푈 − 푢 we have as usual

 푒 = (1 − 푣)푒 + 푣푒 − ∆푡푒 − ∆푡푇 (1.28)

and 푒 = 0, from which we deduce that if 0 ≤ 푣 ≤ 1 at all points

퐸 ∶= max 푒 ≤ 퐸 + ∆푡max 푇 .

If we suppose that the truncation error is bounded, so that

 푇 ≤ 푇 (1.29)

for all 푗 and 푛 in the domain, the usual induction argument shows that

 퐸 ≤ 푛∆푡 푇 ≤ 푡 푇 (1.30)

if 푈 = 푢 푥 . This result is sufficient to prove first order convergence of
the upwind scheme along a refinement path which satisfies the 퐶퐹퐿

13

condition everywhere, provided that the solution has bounded second
derivatives.

Now let us consider a completely general set of values

푎 ∶= 푎 푥 , 푡 ; 푗 = 0,1, … , 퐽 .

It is clear that an equation similar to (1.28) holds at each point: if 푎 ≥ 0
and 푗 > 0, then (1.28) holds; if 푎 ≤ 0 and 푗 < 퐽 then a corresponding
upwind equation with 푒 replacing 푒 holds; and the remaining cases,
푎 > 0 or 푎 < 0, correspond to the inflow boundary data being given so
that either 푒 = 0 or 푒 = 0. The rest of the argument then follows as
above.

Fourier analysis of the upwind scheme

Because hyperbolic equations often describe the motion and development
of waves, Fourier analysis is of great value in studying the accuracy of
methods as well as their stability. The modulus of 휆(푘) describes the
damping and the argument describes the dispersion in the scheme, i.e., the
extent to which the wave speed varies with the frequency. We must, for the
present and for a strict analysis, assume that a is a (positive) constant. The
Fourier mode

/ 푢(푥, 푡) = e () (1.31)

is then an exact solution of the differential equation (1.1) provided that 휔
and 푘 satisfy the dispersion relation

 휔 = −푎푘. (1.32)

The mode is completely undamped, as its amplitude is constant; in one
time step its phase is changed by −푎푘∆푡. By contrast, the Fourier mode
(1.21) satisfies the upwind scheme provided that (1.24) holds. This leads to
(1.25), showing that except in the special case 푣 = 1 the mode is damped.
The phase of the numerical mode is given by

14

 arg 휆 = − tan
푣 sin 푘∆푥

(1 − 푣) + 푣 cos 푘∆푥
 (1.33)

and we particularly need to evaluate this when 푘∆푥 is small, as it is such
modes that can be well approximated on the mesh. For this, and subsequent
schemes, it is useful to have a simple lemma:

Lemma (1.1):

If 푞 has an expansion in powers of 푝 of the form

푞 ~ 푐 푝 + 푐 푝 + 푐 푝 + 푐 푝 + ⋯

as 푝 → 0, then

tan 푞~ 푐 푝 + 푐 푝 + 푐 −
1
3
푐 푝 + 푐 −

1
4
푐 푝 + ⋯

.

We can now expand (1.33) and apply the lemma, giving

arg 휆~ tan 푣 휉 −
1
6
휉 + ⋯ 1 −

1
2
푣휉 + ⋯

= − tan 푣휉 −
1
6
푣(1 − 3푣)휉 + ⋯

= −푣휉 1 −
1
6

(1 − 푣)(1 − 2푣)휉 + ⋯ , (1.34)

where we have written

 휉 = 푘∆푥. (1.35)

The case 푣 = 1 is obviously very special, as the scheme then gives the exact
result. Apart from this, we have found that the upwind scheme always has
an amplitude error which, from (1.25), is of order 휉 in one time step,
corresponding to a global error of order 휉; and from (1.34) it has a relative

15

phase error of order 휉 , with the sign depending on the value of 푣, and
vanishing when 푣 = .

Some results obtained with the upwind scheme are displayed in Figure
(1.6). The problem consists of solving the equation

 푢 + 푎(푥, 푡)푢 = 0, 푥 ≥ 0, 푡 ≥ 0, (1.36푎)

where

 푎(푥, 푡) =
1 + 푥

1 + 2푥푡 + 2푥 + 푥
, (1.36푏)

with the initial condition

 푢(푥, 0) = 1 if 0.2 ≤ 푥 ≤ 0.4,
0 otherwise, (1.37푎)

and the boundary condition

 푢(0, 푡) = 0. (1.37푏)

The exact solution of the problem is

 푢(푥, 푡) = 푢(푥∗, 0). (1.38푎)

where

 푥∗ = 푥 −
푡

1 + 푥
. (1.38푏)

Since 푎(푥, 푡) ≤ 1 the calculations use ∆푡 = ∆푥, and the 퐶퐹퐿 stability
condition is satisfied. The solution represents a square pulse moving to the
right. It is clear from the figures how the damping of the high frequency
modes has resulted in a substantial smoothing of the edges of the pulse, and
a slight reduction of its height. However, the rather small phase error means
that the pulse moves with nearly the right speed. The second set of results,
with a halving of the mesh size in both co-ordinate directions, shows the
expected improvement in accuracy, though the results are still not very
satisfactory.

16

Figure (1.6): Linear advection by the upwind method: problem
(1.36), (1.37).

1.3 The Lax−Wendroff scheme

The phase error of the upwind scheme is actually smaller than that of
many higher order schemes: but the damping is very severe and quite
unacceptable in most problems. One can generate more accurate explicit
schemes by interpolating to higher order. We have seen how the upwind
scheme can be derived by using linear interpolation to calculate an
approximation to 푢(푄) in Figure (1.5). A more accurate value may be found
by quadratic interpolation, using the values at the three points 퐴,퐵 and 퐶
and assuming a straight characteristic with slope 푣. This gives the
Lax−Wendroff scheme, which has turned out to be of central importance in
the subject and was first used and studied by those authors in 1960 in their
study of hyperbolic conservation laws; it takes the form

 푈 =
1
2
푣(1 + 푣)푈 + (1 − 푣)푈 −

1
2
푣(1 − 푣)푈 (1.39)

which may be written

17

 푈 = 푈 − 푣∆ 푈 +
1
2
푣 훿 푈 . (1.40)

The usual Fourier analysis gives the amplification factor

 휆(푘) = 1 − 푖푣 sin 푘∆푥 − 2푣 sin
1
2
푘∆푥. (1.41)

Separating the real and imaginary parts we obtain, after a little manipulation,

 |휆| = 1 − 4푣 (1 − 푣) sin
1
2
푘∆푥. (1.42)

Thus we see that the scheme is stable for |푣| ≤ 1, the whole range allowed
by the 퐶퐹퐿 condition. We also find

arg 휆 = − tan
푣 sin 푘∆푥

1 − 2푣 sin 1
2∆푥

 ~− 푣휉 1 −
1
6

(1 − 푣)휉 + ⋯ . (1.43)

Compared with the upwind scheme we see that there is still some
damping, as in general |휆| < 1, but the amplitude error in one time step is
now of order 휉 when 휉 is small, compared with order 휉 for the upwind
scheme; this is a substantial improvement. Both the schemes have a relative
phase error of order 휉 , which are equal when 푣 ~ 0; but the error is always
of one sign (corresponding to a phase lag) for Lax −Wendroff while it goes
through a zero at 푣 = for the upwind scheme. However, the much smaller
damping of the Lax−Wendroff scheme often outweighs the disadvantage of
the larger phase error.

In deriving the Lax−Wendroff scheme above we assumed a was
constant. To deal with variable a in the linear equation (1.1) we derive it in
a different way, following the original derivation. We first expand in a
Taylor series in the variable 푡, giving

18

 푢(푥, 푡 + ∆푡) = 푢(푥, 푡) + ∆푡푢 (푥, 푡) +
1
2

(∆푡) 푢 (푥, 푡) + 푂((∆푡)). (1.44)

Then we convert the 푡-derivatives into 푥-derivatives by using the differential
equation, so that

 푢 = −푎푢 , (1.45)

 푢 = −푎 푢 − 푎푢 , (1.46)

 푢 = 푢 = −(푎푢) , (1.47)

which give

 푢 = −푎 푢 + 푎(푎푢) . (1.48)

Approximating each of these 푥-derivatives by central differences gives
the scheme

푈 = 푈 − 푎 ∆푡
∆ 푈
∆푥

+
1
2

(∆푡) −(푎)
∆ 푈
∆푥

+ 푎
훿 푎 훿 푈

(∆푥) . (1.49)

This scheme involves evaluating the function 푎(푥, 푡) at the points
푥 = 푥 ± ∆푥 as well as a and at 푎 푎푡 푥 . Note, however, that the scheme

can be simplified by replacing an 푎 + ∆푡(푎) by 푎 ⁄ in the
coefficient of ∆ 푈 ; see also the next section for conservation laws with
푎푢 ≡ 푓 , and also the following section on finite volume schemes.

The results in Figure (1.7) are obtained by applying this scheme to the
same problem (1.36), (1.37) used to test the upwind scheme, with the same
mesh sizes[6].Comparing the results of Figure (1.6) and Figure (1.7) we see
that the Lax−Wendroff scheme maintains the height and width of the pulse
rather better than the upwind scheme, which spreads it out much more. On
the other hand, the Lax−Wendroff scheme produces oscillations which
follow behind the two discontinuities as the pulse moves to the right. Notice
also that the reduction in the mesh size ∆푥 does

19

Figure (1.7): Linear advection by the Lax−Wendroff method:
problem (1.36), (1.37).

improve the accuracy of the result, but not by anything like the factor of 4
which would be expected of a scheme for which the error is 푂((∆푥)). The
analysis of truncation error is only valid for solutions which are sufficiently
smooth, while this problem has a discontinuous solution. In fact the
maximum error in this problem is 푂 (∆푥) ⁄ for the upwind scheme and
푂 (∆푥) ⁄ for the Lax−Wendroff scheme. The error therefore tends to
zero rather slowly as the mesh size is reduced.

The oscillations in Figure (1.7) arise because the Lax−Wendroff scheme
does not satisfy a maximum principle. We see from (1.39) that with 푣 > 0
the coefficient of 푈 is negative, since we require that 푣 ≤ 1 for stability.
Hence 푈 is given as a weighted mean of three values on the previous

20

time level, but two of the weights are positive and one is negative. It is
therefore possible for the numerical solution to have oscillations with
internal maxima and minima.

As an example of a problem with a smooth solution, we consider the
same equation as before, (1.36a,b), but replace the initial condition (1.37)
by

 푢(푥, 0) = exp[−10(4푥 − 1)]. (1.50)

The results are illustrated in Figure (1.8). As before, the solution consists of
a pulse moving to the right, but now the pulse has a smooth Gaussian
shape, instead of a discontinuous square wave. Using the same mesh sizes
as before, the results are considerably more accurate. There is still some
sign of an oscillation to the left of the pulse by the time that 푡 = 1, but it is
a good deal smaller than in the discontinuous case. Moreover, the use of the
smaller mesh size has reduced the size of the errors and this oscillation
becomes nearly invisible.

The Lax−Wendroff method for conservation laws

In practical situations a hyperbolic equation often appears in the form

휕푢
휕푡

+
휕푓(푢)
휕푥

= 0 (1.51)

which may be written in the form we have considered above,

 푢 + 푎푢 = 0, (1.52)

where 푎 = 푎(푢) = 휕푓 휕푢⁄ . It is then convenient to derive the
Lax−Wendroff scheme directly for the conservation form (1.51). The
function 푓 does not involve 푥 or 푡 explicitly but is a function of 푢 only. The
푡-derivatives required in the Taylor series expansion (1.44) can now be
written

21

 푢 = − 푓(푢) (1.53)

and

 푢 = −푓 = −푓 = −(푎푢) = (푎푓) . (1.54)

Figure (1.8): Linear advection by the Lax−Wendroff method: (1.36)
with the data (1.50).

Replacing the 푥-derivatives by central differences as before we now
obtain

 푈 = 푈 −
∆푡
∆푥

∆ 푓 푈 +
1
2

∆푡
∆푥

훿 푎 푈 훿 푓 푈 . (1.55)

It is clear that this reduces to (1.40) when 푓(푢) = 푎푢 where a is constant. If
we expand the last term in (1.55) we see that it involves the values of

22

푎 푈 ⁄ and 푎 푈 ⁄ ; in evaluating these we could set 푈 ± ⁄ ∶=

푈 + 푈 ± , but a commonly used alternative is to replace them by

∆± 푓 푈 ∆± 푈 . Then writing 퐹 for 푓 푈 and 퐴 ± ⁄ for either
choice of the characteristic speeds, the scheme becomes

푈 = 푈 −
1
2
∆푡
∆푥 1− 퐴 ⁄

∆푡
∆푥 ∆ 퐹 + 1 + 퐴 ⁄

∆푡
∆푥 ∆ 퐹 . (1.56)

As an example of the use of this scheme we consider the limiting case of
Burgers' equation, for inviscid flow,

 푢 + 푢푢 = 0, (1.57)

or in conservation form

 푢 +
1
2
푢 = 0. (1.58)

The general solution when it is smooth is easily obtained by the method
of characteristics, or it is sufficient to verify that the solution is given
implicitly by

 푢 ≡ 푢(푥, 푡) = 푢 푥 − 푡푢(푥, 푡) . (1.59)

The characteristics are straight lines, and the solution 푢(푥, 푡) is constant
along each of them. Given the initial condition 푢(푥, 0) = 푢 (푥), they
are obtained by drawing the straight line with slope d푡 d푥⁄ =
1 푢⁄ (푥) through the point (푥 , 0), for each value of 푥 . The
approximation obtained with the upwind scheme, which we write in
the form

푈 = 푈 −
1
2
∆푡
∆푥

1 − sgn 퐴 ∆ 퐹 + 1 + sgn 퐴 ∆ 퐹 (1.60)

where the preferred choice is 퐴 ± ∶= ∆± 퐹 ∆± 푈 , reducing to 푎 푈

when 푈 = 푈 ± ; this form clearly generalises (1.23) and is directly
comparable with (1.56).

23

Chapter Two

Finite Volume Schemes
2.ퟏ Introduction

Many of the methods that are used for practical computation with
conservation laws are classed as finite volume method . Suppose we take
the system of equations 퐮 + 퐟 = 0 in conservation law form and integrate
over a region Ω in (푥, 푡)-space; using the Gauss divergence theorem this
becomes a line integral,

(풖 + 퐟)

Ω
d푥 d푡 ≡ div(퐟,퐮)

Ω
d푥 d푡

 = [퐟 d푡 − 퐮 d푥]

Ω
. (2.1)

In particular, if we take the region to be a rectangle of width ∆푥 and height
∆푡 and introduce averages along the sides, such as 퐮 etc., we obtain

 퐮 − 퐮 ∆푥 + 퐟 − 퐟 ∆푡 = 0. (2.2)

Figure (2.1): Two finite volume schemes: (a) with mid-point
quadrature; (b) with trapezoidal quadrature.

Then to obtain a specific numerical scheme these averages need to be
approximated by some form of quadrature. For instance, we can use mid-
point quadrature on all four sides − see Figure (2.1) (a): if we denote by 푈
the approximate solution at time level 푛 at the centre of cell 푗 of width ∆푥 ,

and by 퐅 ⁄
⁄ the flux value halfway up a cell side, we obtain the scheme

24

 퐔 = 푈 − (∆푡 ∆푥⁄) 퐅 ⁄
⁄ − 퐅 ⁄

⁄ . (2.3)

It remains to calculate the fluxes from the set of 푈 values.

Note, however, that in (2.3) we have allowed for the cell widths to be
quite arbitrary. This is a great advantage of this formulation, and is very
useful in practical calculations − even more so in more space dimensions.
Thus, for instance, we can sum the integrals over a set of contiguous cells to
obtain from (2.3)

 ∆푥 퐔 − 푈 + ∆푡 퐅 ⁄
⁄ − 퐅 ⁄

⁄ = 0, (2.4)

which exactly mirrors the conservation property of the differential equation.
In the case of the Lax−Wendroff scheme, though, if 푈 is taken to
represent the solution at the cell centre then we need to use a Taylor
expansion at a cell edge 푥 ⁄ to give, to the required first order accuracy,

퐮 푥 ⁄ , 푡 + ∆푡 2⁄ = 퐮 푥 ⁄ , 푡 −
1
2
∆푡퐟 푥 ⁄ , 푡 + 푂((∆푡));

this can be combined with expansions for the cell centre values on either
side to give the formula

 퐔 ⁄
⁄ =

∆푥 푈 + ∆푥 퐔 − ∆푡 퐟 퐔 − 퐟 퐔
∆푥 + ∆푥

 . (2.5)

As we have already noted and demonstrated, a major disadvantage of the
Lax−Wendroff method is its proneness to produce oscillatory solutions. The
problem has prompted much of the development of finite volume methods,
and can be fully analysed for scalar conservation laws. The guiding
principle is provided by controlling the total variation of the solution: on a
finite domain [0,푋] divided into 퐽 cells, with 푈 taking the value 푈 in cell
푗 at time level 푛, we can define the total variation as

25

 TV(푈) ∶= 푈 − 푈 ≡ ∆ 푈 . (2.6)

More generally, for the exact solution 푢(푥, 푡), TV 푢(⋅, 푡) can be defined by
taking the supremum, over all subdivisions of the [0,푋] interval such as
0 = 휉 < 휉 < ⋯ < 휉 = 푋, of the sum of the corresponding differences
푢 휉 , 푡 − 푢 휉 , 푡 . Clearly, these are consistent definitions when 푈 is

regarded as a piecewise constant approximation to 푢(⋅, 푡). To simplify the
subsequent discussion, however, by leaving side the specification of
boundary conditions, we will assume that both 푢(⋅, 푡) and 푈 are extended
by constant values to the left and right so that the range of the summation
over 푗 will not be specified.

2.2 Harten concept:

A key property of the solution of a conservation law such as (1.51) is that
TV 푢(⋅, 푡) is a nonincreasing function of 푡 − which can be deduced
informally from the constancy of the solution along the characteristics
described by (1.6). Thus we define 푇푉퐷 (total variation diminishing)
schemes as those for which we have TV(푈) ≤ TV(푈). This concept is
due to Harten who established the following useful result:

Theorem (1.1): (Harten)

A scheme is TVD if it can be written in the form

 푈 = 푈 − 퐶 ∆ 푈 + 퐷 ∆ 푈 , (2.7)

where the coefficients 퐶 and 퐷 , which may be any functions of the solution
variables 푈 , satisfy the conditions

 퐶 ≥ 0, 퐷 ≥ 0 and 퐶 + 퐷 ≤ 1 ∀푗. (2.8)

26

Proof:

Taking the forward difference of (2.7), and freely using the identity
∆ 푈 ≡ ∆ 푈 , we get

푈 − 푈 = ∆ 푈 − 퐶 ∆ 푈 + 퐶 ∆ 푈 + 퐷 ∆ 푈 − 퐷 ∆ 푈

 = 1 − 퐶 − 퐷 ∆ 푈 + 퐶 ∆ 푈 + 퐷 ∆ 푈 .

By the hypotheses of (2.8), all the coefficients on the right of this last
expression are nonnegative. So we can take absolute values to obtain

∆ 푈 ≤ 1 − 퐶 − 퐷 ∆ 푈 + 퐶 ∆ 푈 + 퐷 ∆ 푈 ,

then summing over 푗 leads to cancellation and hence the result TV(푈) ≤
TV(푈).

Suppose we attempt to apply this theorem to both the Lax−Wendroff
method and the upwind method. We consider the latter first, in the form
given in (1.60) with An 퐴 ± ⁄ ∶= ∆± 퐹 ∆± 푈 . This corresponds to the
scalar case of the scheme is best considered as a finite volume scheme in
which the fluxes of (2.3) are given by

 퐹 ⁄
⁄ =

푓 푈 when 퐴 ⁄ ≥ 0,
푓 푈 when 퐴 ⁄ < 0;

 (2.9)

or, equivalently,

 퐹 ⁄
⁄ =

1
2

1 + sgn 퐴 ⁄ 퐹 + 1 − sgn 퐴 ⁄ 퐹 . (2.10)

Then, comparing (1.60) with (2.7) after replacing the flux difference ∆ 퐹
by 퐴 ⁄ ∆ 푈 , we are led to setting

퐶 =
1
2
∆푡
∆푥

1 + sgn 퐴 ⁄ 퐴 ⁄ .

This is clearly always nonnegative, thus satisfying the first condition of
(2.8). Similarly, we set

27

퐷 =
1
2
∆푡
∆푥

1 − sgn 퐴 ⁄ 퐴 ⁄ ,

which is also nonnegative. Moreover, adding the two together and
remembering the shift of subscript in the former, we get

퐶 + 퐷 =
1
2
∆푡
∆푥

1 + sgn 퐴 ⁄ 퐴 ⁄ +
∆푡
∆푥

1 − sgn 퐴 ⁄ 퐴 ⁄

 ≡ 퐴 ⁄
∆푡
∆푥

,

which is just the CFL number. Hence the last condition of (2.8) corresponds
to the CFL stability condition; the Roe first order upwind scheme is TVD
when ∆푡 is chosen so that it is stable[7].

On the other hand, if we attempt to follow similar arguments with the
Lax−Wendroff scheme in the corresponding form of (1.56) and write 푈 ± ⁄
for 퐴 ± ⁄ ∆푡 ∆푥⁄ , we are led to setting

 퐶 =
1
2
푣 ⁄ 1 + 푣 ⁄ , and 퐷 = −

1
2
푣 ⁄ 1 − 푣 ⁄ , (2.11)

both of which have to be nonnegative. Then the third condition of (1.8)

requires that the CFL condition 푣 ⁄ ≤ 1 be satisfied, and the only
values that 푣 ⁄ can take to satisfy all three conditions are −1,0 and +1;
this is clearly impractical for anything other than very special cases.

The TVD property of the Roe upwind scheme has made it a very
important building block in the development of more sophisticated finite
volume methods.

However, these two schemes are only first order accurate and it is no
easy matter to devise TVD schemes that are second order accurate. To
consider why this is so let us consider an explicit TVD three-point scheme in
the form (2.7) and satisfying the conditions (2.8). For the linear advection
equation 푢 + 푎푢 = 0 we suppose that 퐶 and 퐷 are constants. Then it is
easy to see, following the argument that led to the Lax−Wendroff method

28

in (1.39), that second order accuracy leads directly to these coefficients, as
in (2.11), and hence the violation of the TVD conditions except in very
special cases. From another viewpoint, in the two successful TVD schemes
we have constructed the fluxes from just the cell average values 푈 in each
cell, and we cannot expect to approximate the solution to second order
accuracy with a piecewise constant approximation.

This observation points the way to resolving the situation: an
intermediate stage, variously called recovery or reconstruction, is
introduced to generate a higher order approximation. 푈 (⋅) to 푢(⋅, 푡) from
the cell averages 푈 . Probably the best known approach is that used by
van Leer[4]to produce his MUSCL schemes (Monotone Upstream-centred
Schemes for Conservation Laws). This uses discontinuous piecewise linear
approximations to generate second order approximations. Another well-
established procedure leads to the Piecewise Parabolic Method (PPM)
scheme of Colella and Woodward, [2]which can be third order accurate. In
all cases the recovery is designed to preserve the cell averages. So for the
recovery procedure used in the MUSCL schemes, for each cell we need only
calculate a slope to give a straight line through the cell average value at the
centre of the cell, and this is done from the averages in neighbouring cells.
The PPM, however, uses a continuous approximation based on cell-
interface values derived from neighbouring cell averages: so a parabola is
generated in each cell from two interface values and the cell average.

2.ퟑ The box scheme

To give some indication of the range of schemes that are used in practice
we will describe two other very important schemes. The box scheme is a
very compact implicit scheme often associated with the names of

29

Figure (2.2): The box scheme.

Thomee and, in a different context, Keller: for the simplest model problem
푢 + 푎푢 = 0 with constant a it takes the form

훿 푈 ⁄ + 푈 ⁄

2∆푡
+
푎훿 푈 ⁄ + 푈 ⁄

2∆푥
= 0. (2.12)

By introducing the averaging operator

 휇 푈 ⁄ ∶=
1
2
푈 + 푈 , (2.13)

and similarly 휇 we can write the scheme in the very compact form

 (휇 훿 + 푣휇 훿)푈 ⁄
⁄ = 0, (2.14)

where 푣 = 푎 ∆푡 ∆푥⁄ is the CFL number.

If we expand all the terms in Taylor series about the central point
푥 ⁄ , 푡 ⁄ as origin, it is easy to see that the symmetry of the averaged

differences will give an expansion in even powers of ∆푥 or ∆푡, so that the
scheme is second order accurate. When the coefficient a is a function of 푥
and 푡, it is sensible to replace it by 푎 ⁄

⁄ ∶= 푎 푥 ⁄ , 푡 ⁄ in (2.12);
this will leave the Taylor series unaltered, so that the truncation error
remains second order.

30

When applied to the nonlinear problem in conservation form (1.51), it is
written

훿 푈 ⁄ + 푈 ⁄

2∆푡
+
훿 퐹 ⁄ + 퐹 ⁄

2∆푥
= 0 (2.15)

where 퐹 ∶= 푓 푈 . In this form it is clear that it corresponds to a finite
volume scheme, using a box formed from four neighbouring mesh nodes in a
square, and applying the trapezoidal rule to evaluate the integral along each
edge − see Figures (2.2) and (2.1) (b); and in common with other finite
volume schemes it can be readily applied on a nonuniform mesh.

The scheme is implicit as it involves two points on the new time level,
but for the simplest model problem this requires no extra computation; and
when used properly it is unconditionally stable. We can write (2.12) in the
form

 푈 = 푈 + 1 + 푣 ⁄
⁄ 1 − 푣 ⁄

⁄ 푈 − 푈 (2.16)

where

푣 ⁄
⁄ = 푎 ⁄

⁄ ∆푡
∆푥

.

When 푎(푥, 푡) is positive, so that the characteristic speed is positive, we must
be given a boundary condition on the left of the region. This will define
푈 , the first value of 푈 on the new time level, and (2.16) will give
directly the values of 푈 in succession from left to right. If the speed is
negative, and we are given a boundary condition on the right, a similar
formula is used in the direction from right to left. When the equation is
nonlinear and in conservation form the scheme is not quite so easy to use, as
(2.15) now represents a nonlinear equation which must be solved for 푈 .

One of the serious difficulties in using the scheme is the possibility of a
chequerboard mode of the form (−1) contaminating the solution.
Because of the averaging in both space and time in equation (2.12) this is a
spurious solution mode of this equation. It is only the boundary condition

31

and the initial condition that control its presence; as we see in Figure (2.3),
it is much more evident with square pulse data than with smooth data.

For a system of equations, such as (1.5), the calculation becomes more
elaborate, as the scheme is now truly implicit. We will have a set of
simultaneous equations to solve on the new time level, and in general it will
not be possible to solve them by a simple sweep in one direction, as it was
for a single equation, since there will normally be some boundary
conditions given at each end of the range of 푥. The matrix of the system
will be typically block tridiagonal, with the block dimension equal to the
order of

Figure (2.3): Linear advection by the box scheme with ∆풕 = ∆풙 = ퟎ.ퟎퟐ
for (a) a square pulse and (b) Gaussian initial data.

32

the system, but the detailed structure will depend on the number of boundary
conditions imposed at each end.

For the scalar problem the CFL condition is satisfied for any value of the
ratio ∆푡 ∆푥⁄ if we use the scheme in the correct direction, that is, in the form
(2.16) when a is positive; as we see from Figure (2.2), the characteristic
always passes among the three points used in the construction of 푈 .
However, the three coefficients are not all positive, so there is no maximum
principle; nor does the scheme have any natural TVD properties, being
prone as we have seen to oscillatory solutions. Because we have neither the
whole real line as our domain nor periodic boundary conditions, a rigorous
Fourier analysis is not straightforward even for constant a. However, we can
substitute a Fourier mode to consider its possible damping and its phase
accuracy. We easily find

 휆(푘) =
cos 1

2 푘∆푥 − 푖푣 sin 1
2 푘∆푥

cos 1
2 푘∆푥 + 푖푣 sin 1

2 푘∆푥
, (2.17)

from which we deduce

 |휆(푘)| = 1 (2.18)

for any value of 푣, and

arg 휆 = −2 tan 푣 tan
1
2
푘∆푥

 ~ − 푣휉 1 +
1

12
(1 − 푣)휉 + ⋯ . (2.19)

Thus the scheme has no damping of modes and, comparing (2.19) with
(1.43), we see that it has the same second order accuracy and that its phase
error is asymptotically half that of the Lax−Wendroff scheme .

2.ퟒThe leap-frog scheme

The second important scheme is called the leap-frog scheme because it
uses two time intervals to get a central time difference and spreads its ' legs '

33

to pick up the space difference at the intermediate time level; the values
used are shown in Figure (2.4). For (1.51) or (1.52) it has the form

푈 − 푈

2∆푡
+
푓 푈 − 푓 푈

2∆푥
= 0, (2.20)

or

 푈 = 푈 − (푎 ∆푡 ∆푥⁄) 푈 − 푈 . (2.21)

Thus it is an explicit scheme that needs a special technique to get it
started. The initial condition will usually determine the values of 푈 , but a
special procedure is needed to give 푈 . Then the leap-frog scheme can be
used to give 푈 ,푈 , . .. in succession. The additional starting values 푈 can
be obtained by any convenient one-step scheme, such as Lax−Wendroff.

Figure (2.4): The leap-frog scheme: (a) unstaggered; (b) staggered,
×= 푽 and 퐨 = 푾.

It is clear from Figure (2.4) (a) that the CFL condition requires that
|푣| ≤ 1, as for the Lax−Wendroff scheme. When 푓 = 푎푢 with constant a
the usual Fourier analysis leads to a quadratic for 휆(푘):

 휆 − ퟏ + 2푖푣휆 sin 푘 ∆푥 = 0 (2.22)

with solutions

 휆(푘) = −푖푣 sin 푘∆푥 ± [ퟏ − 푣 sin 푘∆푥] ⁄ . (2.23)

34

Since the product of these roots is −ퟏ, we must require both roots to have
modulus 1 for the scheme to be stable. It is easy to verify that the roots are
complex and equal in modulus for all 푘 if and only if |푣| ≤ 1: so for this
scheme the Fourier analysis gives the same result as the CFL condition; and
when the stability condition is satisfied there is no damping.

The result of the Fourier analysis leading to two values of 휆(푘) is a
serious problem for this scheme, as it means that it has a spurious solution
mode. It arises from the fact that the scheme involves three time levels and
so needs extra initial data, and it is this that determines the strength of this
mode. Taking the positive root in (2.23) we obtain a mode that provides a
good approximation to the differential equation, namely the ' true ' mode λ
given by

arg 휆 = − sin (푣 sin 푘 ∆푥)

 ~ − 푣휉 ퟏ −
1
6

(ퟏ − 푣)휉 + ⋯ . (2.24)

Note that the phase error here has the same leading term as the
Lax−Wendroff scheme − see (1.43). On the other hand, taking the negative
root gives the spurious mode

 휆 ~(−ퟏ) 1 + 푖푣휉 −
1
2
푣 휉 + ⋯ , (2.25)

which gives a mode oscillating from time step to time step and travelling in
the wrong direction. In practical applications, then, great care has to be
taken not to stimulate this mode, or in some circumstances it may have to be
filtered out.

The results displayed in Figure (2.5) illustrate the application of the
leapfrog method for a square pulse and for Gaussian initial data; the first
time step used the Lax−Wendroff scheme. The results clearly show the
oscillating wave moving to the left. In some respects the results are similar
to those for the box scheme; but the oscillations move at a speed
independent of the mesh and cannot be damped, so in this case they have to
be countered by some form of filtering.

35

The real advantage of the leap-frog method occurs when it is applied to a
pair of first order equations such as those derived from the familiar second
order wave equation

 푢 = 푎 푢 , (2.26)

where a is a constant: if we introduce variables 푣 = 푢 and 푤 = −푎푢 , it is
clear that they satisfy the system

 푣 + 푎푤 = 0,
푤 + 푎푣 = 0. (2.27)

Figure (2.5): Linear advection by the leap-frog scheme with ∆풕 = ∆풙 = ퟎ.ퟎퟐ
for (a) a square pulse and (b) Gaussian initial data.

36

Because of the pattern of differentials here, a staggered form of the leapfrog
method can be used that is much more compact than (2.21): as indicated in
Figure (2.4) (b) we have 푉 and 푊 at different points and a staggered
scheme can be written

푉 ⁄ − 푉 ⁄

∆푡
+ 푎

푊 ⁄ −푊 ⁄

∆푥
= 0, (2.28)

푊 ⁄ −푊 ⁄

∆푡
+ 푎

푉 ⁄ − 푉 ⁄

∆푥
= 0, (2.29)

or

 훿 푉 + 푣훿 푊 = 0, 훿 푊 + 푣훿 푉 = 0, (2.30)

where we have taken advantage of the notation to omit the common
superscripts and subscripts. With constant a, we can construct a Fourier
mode by writing

 푉 ⁄ ,푊 = 휆 e 푉,푊 (2.31)

where 푉 and 푊are constants. These will satisfy the equations (2.28) , (2.29)
if

휆 − 1 2푖푣 sin

1
2
푘∆푥

2푖휆푣 sin
1
2
푘 ∆푥 휆 − 1

푉

푊

=
0

0

. (2.32)

This requires the matrix in (2.32) to be singular, so that

 휆 − 2 ퟏ − 2푣 sin
1
2
푘 ∆푥 휆 + ퟏ = 0 (2.33)

with solutions given by

 휆±(푘) = 1 − 2푣 푠 ± 2푖푣푠[ퟏ − 푣 푠] ⁄ , (2.34)

37

where 푠 = sin 푘 ∆푥. Again, for the scheme to be stable we need 휆 , 휆 to
be a complex conjugate pair so that stability requires |푣| ≤ 1, in which case
휆± = 1. The phases are given by

arg 휆± = ± sin 2푣푠[ퟏ − 푣 푠] ⁄

 ~ ± 푣휉 1 −
1

24
(1 − 푣)휉 + ⋯ . (2.35)

Note that the two roots of (2.33) are just the squares of the roots of (2.22)
with ∆푥 replaced by ∆푥; hence the expansion in (2.35) corresponds to that

in (2.24) with 휉 replaced by 휉. Both modes are now true modes which
move to left and right at equal speeds, correctly approximating the
behaviour of solutions to the wave equation. Note too that the accuracy is
now better than that of the box scheme.

Substituting

푉 ⁄ = 푈 − 푈 ∆푡⁄ , 푊 ⁄ = −푎 푈 − 푈 ∆푥⁄

into the equations (2.28), (2.29) (2.30) gives

 (훿 − 푣 훿)푈 = 0, (2.36)

the simplest central difference representation of the second order wave
equation (2.26) for 푈, together with a consistency relation. Note, too, that if
we eliminate either 푉 or 푊 from the equations we find that both satisfy this
second order equation. Some of the very attractive properties of this scheme
will be derived, and put in a wider context, in the next section.

2.ퟓ Hamiltonian systems and symplectic integration schemes

There are two important structural properties that lie behind the attractive
features of the staggered leap-frog scheme applied to the wave equation:
first, the wave equation (2.26) is the simplest example of a Hamiltonian
PDE; and secondly, the staggered leap-frog scheme is one of the most
common examples of a symplectic integration scheme. The importance of

38

combining these two ideas has been most fully worked out over the last
several years in the approximation of ordinary differential equation systems;
but as they have recently been introduced into the area of PDEs we shall
here outline what is involved, by means of the staggered leap-frog example.
We will also show that the box scheme can share some of these properties.
In doing so we shall mainly use the terminology and notation of Leimkuhler
and Reich (2004)[5].

Hamiltonian systems of ODEs have their origins in Hamilton's 1834
formulation of the equations of motion for a dynamical system, but have
since been much generalised and their key properties widely studied. Let
풒 ∈ ℝ and 풑 ∈ ℝ be ' position' and ' momentum ' variables, which
together we will denote by 풛, and ℋ(풑,풒) ≡ ℋ(풛) ∶ ℝ × ℝ → ℝ, a
smooth Hamiltonian function that defines the ODE system

 퐳̇ ≡ 퐪̇
퐩̇ = 푱

ℋ
ℋ ≡ 푱∇퐳ℋ, (2.37)

where the canonical structure matrix 퐉 has the form

푱 = 0 퐼
−퐼 0 with 푱 = 0 −퐼

퐼 0 ,

in which 퐼 is the 푑-dimensional identity matrix. It is clear that ℋ is
constant along any trajectory; its value represents the energy of the system,
which we shall sometimes denote by 퐸(퐳). Indeed, consider an arbitrary
function 풢 ∶ ℝ → ℝ, for which we will have, along any trajectory

d풢(퐳)

d푡
= (∇퐳풢) 퐳̇ = (∇퐳풢) 푱∇퐳ℋ =: {풢,ℋ}. (2.38)

The expression {풢,ℋ} is called the Poisson bracket of 풢 and ℋ. It is clearly
antisymmetric, and hence zero when 풢 = ℋ: and whenever it is identically
zero the quantity 풢(풒,풑) is constant along the trajectory.

Then 풢 is called a constant of the motion, with the energy being such a
constant for any Hamiltonian system. The best-known example of a
Hamiltonian system is the simple plane pendulum, in which 푑 = 1 and

39

ℋ = 푝 − (푔 퐿⁄) cos푞. The trajectories are given by 푞̇ = 푝, 푝̇ =
−(푔 퐿⁄) sin 푞, and from ℋ(푞,푝) = const. along each, it is easy to deduce
that in the (푞, 푝) −phase plane they form the familiar closed curves around
centres at 푝 = 0, 푞 = 2푚휋 separated by saddle points at 푝 = 0, 푞 =
(2푚 + 1)휋.

Of even greater significance than the existence of constants of the motion
are the structural properties of the flow map formed from a set of
trajectories of a Hamiltonian system: for example, in the scalar 푑 = 1 case
it is area-preserving; more generally it is said to be symplectic. To see what
is involved in these ideas we need a few more definitions. A general
mapping Ψ ∶ ℝ → ℝ is said to be symplectic, with respect to the
canonical structure matrix 푱, if its Jacobian Ψ퐳 is such that

 Ψ퐳 푱 Ψ = 푱 (2.39)

In the scalar case it is then easy to calculate that

if Ψ퐳 = 푎 푏
푐 푑 then Ψ퐳 푱 Ψ퐳 = 0 −푎푑 + 푏푐

푎푑 − 푏푐 0 ,

so that Ψ is simplectic iff detΨ퐳 ≡ 푎푑 − 푏푐 = 1. Hence if this holds, and if
퐳 ∈ Ω ⊂ ℝ is mapped into 퐳 = Ψ(퐳) ∈ Ω ⊂ ℝ , we have

d퐳

Ω
= detΨ퐳

Ω
d퐳 = d퐳

Ω
,

i.e., the mapping is area-preserving. So the symplectic property generalizes
the area preserving property to 푑 > 1.

To apply this concept to the mapping produced by integrating a
differential equation we define, in the language of differential geometry, the
differential one-form of a function 푓 ∶ ℝ → ℝ, in the direction 휉 ∈ ℝ ,

 d푓(흃) ∶= ∇퐳푓 ⋅ 흃 ≡
휕푓
휕푧

휉 . (2.40)

40

Then for two such functions, 푓 and 푔, we can define a differential two form,
called the wedge product, as

 (d푓 ⋀ d푔)(흃,휼) ∶= d푔(흃) d푓(휼) − d푓(흃) d푔(휼). (2.41)

In particular, we can apply (2.40) to the components 푧 of 퐳 ≡ (퐪,퐩) to
obtain d푧 (흃) = 휉 and write these as a vector d퐳 ≡ (d퐪, d퐩) =
(d푧 , d푧 , … , d푧) . It is also easy to see that if we apply (2.40) to the
components of the transformed variable 퐳 = Ψ(퐳) we obtain

 d퐳(훏) = Ψ퐳d퐳(훏) ≡ Ψ풛훏. (2.42)

Furthermore, we can apply (2.41) to these components and then define the
wedge product

 d퐪 ⋀d퐩 ∶= d푞 ⋀d푝 . (2.43)

It is the conservation of this quantity that turns out to be the key
characterization of Hamiltonian systems.

First of all, with a calculation as in the scalar case, we see that

흃 퐽 휼 = d퐪 (흃), d퐩 (흃) 퐽 d퐪(휼), d퐩(흃)

 = [d푝 (흃)d푞 (휼) − d푞 (흃)d푝 (휼)]

 = d푞 ⋀d푝 ≡ d퐪 ⋀d퐩. (2.44)

Then if we premultiply (2.39) by 흃 and postmultiply by િ, and compare the
result with the combination of (2.44) with (2.42), we deduce immediately
that a mapping from (풒,풑) to (풒,풑) is symplectic iff

 d퐪 ⋀d퐩 = d퐪 ⋀d퐩. (2.45)

41

The fundamental result that the flow map of a Hamiltonian system is
symplectic can be derived directly from (2.39), but (2.45) is crucially
important in characterising the behaviour of the flow.

Numerical methods for approximating ODE systems that retain these
properties are called symplectic integration schemes or, more generally,
geometric integrators − see Hairer, Lubich and Wanner (2002)[3]. The
simplest of these share the staggered structure of the leap-frog scheme. For
simplicity we start with the scalar 푑 = 1 case, where we alternate between
the pair of equations

 푞 = 푞 + ∆푡ℋ 푞 ,푝 ⁄

 푝 ⁄ = 푝 ⁄ − ∆푡ℋ 푞 ,푝 ⁄ . (2.46)

If, as in the pendulum case, ℋ depends only on 푝 and ℋ only on 푞 this is
an explicit method; more generally, it is implicit. In either case, if we take
the differentials of these equations we obtain

d푞 = d푞 + ∆푡 ℋ d푞 + ℋ d푝 ⁄

 d푝 ⁄ = d푝 ⁄ − ∆푡 ℋ d푞 + ℋ d푝 ⁄ , (2.47)

where we have omitted the arguments from the common Hamiltonian in
(2.46). Now when we take the wedge product of these two equations, its
antisymmetry implies that terms d푞풏 ⋀ℋ d푞풏 and ℋ d푝 ⁄ ⋀ d푝 ⁄
are zero. So we take the wedge product of the first equation with d푝 ⁄
and substitute from the second equation in the d푞 term to get, after
omitting these null terms,

d푞 ⋀d푝 ⁄ = d푞 ⋀ d푝 ⁄ − ∆푡ℋ d푝 ⁄ + ∆푡ℋ d푞 ⋀d푝 ⁄ . (2.48)

The two terms in ∆푡 cancel and we have the discrete symplectic property

 d푞 ⋀d푝 ⁄ = d푞 ⋀d푝 ⁄ . (2.49)

42

If the whole procedure is repeated for a system with 푑 > 1 the same result is
obtained: this is because, from the definitions of (2.41) and (2.43), it is easy
to see that for any matrix 퐴 we have

d퐚 ⋀(퐴d퐛) = (퐴 d퐚) ⋀d퐛,

so that if 퐴 is symmetric and 풂 = 풃 the antisymmetry of the wedge product
again implies that the result is zero.

In the ODE literature this staggered leap-frog method is usually referred
to as the Störmer-Verlet method; and the commonly used Asymmetrical
Euler methods differ from it only in their superscript labelling. Their
effectiveness in the long time integration of Hamiltonian ODE systems is
amply demonstrated in the references already cited.

The transfer of these ideas to PDEs is relatively recent; and there are
several alternative approaches. One is to discretise in space so as to obtain a
Hamiltonian system of ODEs to which the above ideas can be applied
directly: there is increasing interest in mesh-free or particle methods to
achieve this step, but as we have hitherto excluded particle methods we
shall continue to do so here; alternatively, one may first make a
discretisation in space and then apply the 'method of lines ' to integrate in
time, but we will not consider this here either. A more fundamental
formulation is due to Bridges[1].This leads to a multi-symplectic PDE
which generalises the form of (2.37) to

 퐊퐳 + 퐋퐳 = ∇퐳푆(퐳), (2.50)

where 퐊 and 퐋 are constant skew-symmetric matrices. Unfortunately, these
matrices and linear combinations of them are often singular, and the
formulation of a given system in this way not very obvious. We will
therefore apply a more straightforward approach to a wave equation
problem that generalises (2.26) and (2.27).

Suppose we have a Hamiltonian ℋ(푢, 푣) which is now an integral over
the space variable (푠) of a function of 푢, 푣 and their spatial derivatives.
Then to derive a Hamiltonian PDE we define a variational derivative of ℋ.
For example, consider

43

 ℋ(푢,푣) = 퐸(푥, 푡) d푥 ≡ 푓(푢) + 푔(푢) +
1
2
푣 d푥, (2.51)

where we have not specified the interval on which 푢 and 푣 are defined and
the equations are to hold; the integrand 퐸(푥, 푡) is called the energy density.
The variational derivative of a functional 풢(푢) is defined by the relation

훿 풢(푢)(훿푢) d푥 = lim
→

풢(푢 + 휖훿푢) − 풢(푢)
휖

;

and applying this to (2.51), with boundary conditions that ensure any
boundary terms are zero, gives

훿 ℋ(푢, 푣)(훿푢)d푥 = lim
→
휀 [푓(푢 + 휖훿푢) − 푓(푢) + 푔((푢 + 휖훿푢)) − 푔(푢)] d푥

= [푓 (푢)훿푢 + 푔 (푢)(훿푢)] d푥

 = [푓 (푢) − 휕 푔 (푢)] 훿푢 d푥. (2.52)

Comparing the two sides we deduce that

 훿 ℋ(푢, 푣) = 푓 (푢) − 휕 푔 (푢). (2.53)

The resulting Hamiltonian PDE is given as

푢
푣 = 0 +1

−1 0
훿 ℋ
훿 ℋ . (2.54)

That is,

 푢 = 푣, 푣 = 휕 푔 (푢) − 푓 (푢). (2.55)

Moreover, from these equations we can deduce a local energy conservation
law of the form 퐸 + 퐹 = 0: from differentiation of the terms in the energy
density of (2.51) and substitution from (2.55) we get, after cancellation and
collection of terms,

 퐸 = 푓 (푢)푣 + 푔 (푢)푣 + 푣[휕 푔 (푢) − 푓 (푢)]

 = [푣푔 (푢)] =:−퐹 . (2.56)

44

The quantity 퐹(푥, 푡) = −푣푔 (푢) is called the energy flux.

For example, let 푓 = 0 and 푔(푢) = (푎푢) with constant 푎. Then
(2.55) becomes

 푢 = 푣, 푣 − 푎 푢 , (2.57)

which is equivalent to the second order wave equation (2.26). If we set
푤 = −푎푢 we get the first order pair of equations (2.27) to which we
applied the staggered leap-frog method in Section 2.4. Furthermore, since
푣푔 (푢) = 푣푎 푢 = −푎푣푤 the local energy conservation law becomes

1
2
푣 +

1
2
푤 + [푎푣푤] = 0, (2.58)

which we could deduce directly from (2.27). It is this local property that we
shall now show is preserved in a discrete form by the staggered leap-frog
scheme. It can be regarded as the simplest consequence of the symplectic
character of the method, and corresponds to the energy being a constant of
the motion in the ODE case. Consideration of wedge product relations of the
form (2.49), which now have to be integrated or summed over the space
variables, is beyond the scope of thisthesis.

45

Chapter Three
Consistency, Convergence and Stability

3.1 Definition of the problems considered
In this chapter we shall gather together and formalise definitions that we

have introduced in earlier chapters. This will enable us to state and prove the
main part of the key Lax Equivalence Theorem. For simplicity we will not
aim at full generality but our definitions and arguments will be consistent
with those used in a more general treatment. In the problems which we shall
consider, we make the following assumptions:

 The region Ω is a fixed bounded open region in a space which may
have one, two, three or more dimensions, with co-ordinates which
may be Cartesian (푥,푦, …), cylindrical polar, spherical polar, etc.;

 The region Ω has boundary ∂Ω;
 The required solution is a function 푢 of the space variables, and of 푡,

defined on Ω × [0, 푡]; this function may be vector-valued, so that our
discussion can be applied to systems of differential equations, as well
as to single equations;

 The operator 퐿(⋅) involves the partial derivatives of 푢 in the space
variables; 퐿 does not involve 푡 explicitly; for the most part we shall
assume that 퐿 is a linear operator.

 The boundary conditions will prescribe the values of 푔(푢) on some or
all of the boundary Ω, where 푔(⋅) is an operator which may involve
spatial partial derivatives;

 The initial condition prescribes the value of 푢 for 푡 = 0 over the
region Ω.

Hence we write the general form of the problems considered as

휕푢
휕푡

= 퐿(푢) in Ω × (0, 푡], (3.1푎)

 푔(푢) = 푔 on 휕Ω ⊂ 휕Ω, (3.1푏)

 푢 = 푢 on Ω when 푡 = 0. (3.1푐)

46

We shall always assume that (3.1) defines a well-posed problem, in a sense
which we shall define later; broadly speaking, it means that a solution
always exists and depends continuously on the data.

3.2The finite difference mesh and norms

Our finite difference approximation will be defined on a fixed mesh, with
the time interval Δ푡 constant both over the mesh and at successive time
steps. The region Ω is covered by a mesh which for simplicity we shall
normally assume has uniform spacing Δ푥,Δ푦, … in Cartesian co-ordinates, or
Δr,Δθ, . .. in polar co-ordinates. Individual values at mesh points will be
denoted by 푈 ; in two or more space dimensions the subscript 푗 will be used
to indicate a multi-index, as a condensed notation for 푈 , ,푈 , , , etc. We
shall assume that a fixed, regular finite difference scheme is applied to a set
of points where 푈 is to be solved for and whose subscripts 푗 lie in a set 퐽Ω,
and it is only these points which will be incorporated in the norms. Usually
this will be just the interior points of the mesh; and this means that where
made necessary by curved boundaries, derivative boundary conditions etc.
The values of 푈 at all such points on time level 푛 will be denoted by 푈 :

 푈 ∶= 푈 , 푗 ∈ 퐽Ω . (3.2)

To simplify the notation we will consider schemes which involve only
two time levels: for one-step methods this means that each 푈 , if a vector,
has the same dimension as 푢. However, as we have seen with the leap-frog
method in Section 2.4, we can include multi-step methods by extending the
dimension of 푈 compared with u. For example, if a scheme involves three
time levels, so that 푈 is given in terms of 푈 and 푈 , we can define a
new vector 푈 with twice the dimension, whose elements are those of 푈
and 푈 .

To compare 푈 with 푢 we need to introduce norms which can be used on
either, and in particular on their difference. Thus we first denote by 푢 mesh
values of the function 푢(푥, 푡) which will usually be the point values

47

푢 푥 , 푡 . We hope to show that the mesh values of 푈 converge to these
values of 푢. Then as for the mesh point values 푈 above we define

 푢 ∶= 푢 , 푗 ∈ 퐽Ω . (3.3)

We shall consider just two norms. Firstly, the maximum norm is given by

 ‖푈 ‖ ∶= max 푢 , 푗 ∈ 퐽Ω . (3.4)

If we evaluate the maximum norm of 푢 the result will approximate the
usual supremum norm ‖푢‖ with 푢 considered as a function of 푥 at fixed
time 푡 , but will not in general be equal to it. The norms will only be equal if
the maximum value of the function |푢(푥, 푡)| is attained at one of the mesh
points.

Figure (3.1): Definition of control volume.

Secondly, we shall use a discrete 푙 norm which will approximate the
integral 퐿 norm. To do so, we introduce a ‘control volume’ with measure 푉
associated with each interior mesh point: these will be non-overlapping
elements whose union approximates Ω. Usually, as shown in Figure (3.1), a
mesh point 푥 will lie at the centre of the control volume – see also Section
2.1 on finite volume methods; but this need not be the case so long as there
is a one-to-one correspondence between mesh points and control volumes. In
three-dimensional Cartesian geometry, 푉 = Δ푥Δ푦Δ푧; in three-dimensional
cylindrical

48

geometry, 푉 = 푟 Δ휃Δ푟Δ푧, and so on. Then, we define

 ‖푢 ‖ ≔ 푉
∈ Ω

푈

⁄

. (3.5)

For mesh points near the boundary the control volume may or may not be
modified to lie wholly in Ω. In either case, the sum in (3.5) clearly
approximates an integral so that ‖푢 ‖ approximates but does not in general
equal the integral 퐿 norm

 ‖푢(⋅, 푡)‖ ∶= |푢(푥, 푡)|

Ω
푑푉

⁄

 (3.6)

at time 푡 . However, if we define 푢 as the root mean square value of
푢(푥, 푡) averaged over the 푗th control volume we clearly do have an exact
match. For a single differential equation the notation 푈 is clear; if we are
dealing with a system of differential equations, 푈 is a vector and 푈
denotes a norm of this vector. The choice of which vector norm to use is
immaterial to the subsequent analysis, but of course it must be used
consistently throughout.

3.3Finite difference approximations

The general form of difference scheme we shall consider will be written

 퐵 푈 = 퐵 푈 + 퐹 . (3.7)

As the notation implies, the difference operators 퐵 ,퐵 are independent
of 푛, corresponding to the assumption that 퐿(⋅) does not depend explicitly
on 푡; but, although based on fixed difference operators, they may depend on
the point where they are applied. Thus at each point 푗 ∈ 퐽Ω, a linear
difference operator 퐵 will be written in the form of a sum over near
neighbours also in 퐽Ω:

 (퐵푈) = 푏 , 푈
∈ Ω

 ∀푗 ∈ 퐽Ω; (3.8)

49

We shall always assume that 퐵 is linear, of the form (3.8), so that it can
be represented by a square matrix. To extend the theory to nonlinear
problems it would be necessary for 퐵 to be nonlinear but not necessarily
퐵 ; but to cover schemes like the box scheme by such an extension would
require 퐵 to be nonlinear too.

We shall furthermore assume that 퐵 is invertible, i.e. its representing
matrix is non-singular. Hence we can write (3.7) as

 푈 = 퐵 [퐵 푢 + 퐹] (3.9)

We shall also assume that (3.7) is so scaled that formally it represents the
differential equation in the limit and hence 퐵 = 푂(1 ∆푡⁄). Thus

 퐵 푢 − [퐵 푢 + 퐹] →
휕푢
휕푡

− 퐿(푢) (3.10)

as the mesh intervals Δ푡,Δ푥, . .. are refined in some manner which may
depend on consistency conditions being satisfied.

Moreover, we assume that the matrix 퐵 is uniformly well-conditioned in the
sense that there is a constant 퐾 such that, in whichever norm is being used to
carry out the analysis,

 ‖퐵 ‖ ≤ 퐾 ∆푡, (3.11)

even though 퐵 is represented by a matrix of ever-increasing dimension as
the limit Δ푡 → 0 is approached.

Consistency, order of accuracy and convergence

For brevity we shall characterise the whole of the spatial discretisation by
a single parameter ℎ: this may be just the largest of the mesh intervals
∆푥,∆푦, . .., though this may need to be scaled by characteristic speeds in each
of the co-ordinate directions; or ℎ may be the diameter of the largest control
volume around the mesh points. Then taking the limit along some designated
refinement path we shall denote by ‘∆푡(ℎ) → 0’, or sometimes just Δ푡 → 0
or ℎ → 0: we shall always need Δ푡 to tend to zero but stability or consistency
may require that it does so at a rate determined by ℎ, for example Δ푡 =

50

푂(ℎ) being typical in parabolic problems and Δ푡 = 푂(ℎ) in hyperbolic
problems.

The truncation error is defined in terms of the exact solution 푢 as

 푇 ∶= 퐵 푢 − [퐵 푢 + 퐹], (3.12)

and consistency of the difference scheme (3.7) with the problem (3.1a)–
(3.1c) as

 푇 → 0 as ∆푡(ℎ) → 0 ∀푗 ∈ 퐽Ω (3.13)

for all sufficiently smooth solutions u of (3.1a)–(3.1c). Note that this
includes consistency of the boundary conditions through the elimination of
the boundary values of 푈 in the definition of 퐵 and 퐵 . If 푝 and 푞 are the
largest integers for which

 푇 ≤ 퐶[(∆푡) + ℎ] as ∆푡(ℎ) → 0 ∀푗 ∈ 퐽Ω (3.14)

for sufficiently smooth u, the scheme is said to have order of accuracy 푝 in
Δ푡 and 푞 in ℎ: or 푝th order of accuracy in Δ푡, and 푞th order of accuracy in ℎ.

Convergence on the other hand is defined in terms of all initial and other
data for which (3.1a)–(3.1c) is well-posed, in a sense to be defined in the
next section. Thus (3.7) is said to provide a convergent approximation to
(3.1a)–(3.1c) in a norm ‖ ⋅ ‖ if

 ‖푈 − 푢 ‖ → 0 as ∆푡(ℎ) → 0,푛∆푡 → 푡 ∈ (0, 푡] (3.15)

for every 푢 for which (3.1a)–(3.1c) is well-posed in the norm: here we
mean either of the norms (3.4) or (3.5).

3.4 Stability and the Lax Equivalence Theorem

None of the definitions (3.12)–(3.15) in the last section was limited to
linear problems: they are quite general. In this section however we are able
to consider only linear problems. Suppose two solutions 푉 and 푊 of (3.7)
or (3.9) have the same inhomogeneous terms 퐹 but start from different

q

51

initial data 푉 and 푊 : we say the scheme is stable in the norm ‖ ⋅ ‖ and for
a given refinement path if there exists a constant 퐾 such that

 ‖푉 −푊 ‖ ≤ 퐾‖푉 −푊 ‖, 푛∆푡 ≤ 푡 ; (3.16)

the constant 퐾 has to be independent of 푉 ,푊 and of Δ푡(ℎ) on the
refinement path, so giving a uniform bound.

Since we are dealing with the linear case (3.16) can be written

 ‖(퐵 퐵) ‖ ≤ 퐾, 푛∆푡 ≤ 푡 . (3.17)

Notice that for implicit schemes the establishment of (3.11) is an important
part of establishing (3.17); consider, for example, the box scheme for linear
advection, and the effect of having boundary conditions on one side or the
other.

It is now appropriate to formalise our definition of well-posedness. We
shall say that the problem (3.1) is well-posed in a given norm ‖ ⋅ ‖ if, for all
sufficiently small ℎ, we can show that (i) a solution exists for all data 푢 for
which ‖푢 ‖ is bounded independently of ℎ, and (ii) there exists a constant
퐾 such that for any pair of solutions 푣 and 푤,

 ‖푣 − 푤 ‖ ≤ 퐾 ‖푣 − 푤 ‖, 푡 ≤ 푡 . (3.18)

This differs from the usual definition in that we are using discrete norms; but
we have chosen each of these so that it is equivalent to the corresponding
function norm as ℎ → 0, if this exists for 푢, and we define 푢 appropriately.
An important feature of either definition is the following: for 푢 to be a
classical solution of (3.1a) it must be sufficiently smooth for the derivatives
to exist; but suppose we have a sequence of data sets for which smooth
solutions exist and these data sets converge to arbitrary initial data 푢 in the
‖ ⋅ ‖ norm, uniformly in ℎ; then we can define a generalised solution with
this data as the limit at any time 푡 of the solutions with the smooth data,
because of (3.18). Thus the existence of solutions in establishing well-
posedness has only to be proved for a dense set of smooth data (with the
definition of denseness again being uniform in ℎ).

52

There is clearly a very close relationship between the definition of well-
posedness for the differential problem and that of stability given by (3.16)
for the discrete problem. This definition of stability, first formulated by Lax
in 1953, enabled him to deduce the following key theorem:

Theorem (3.1): (Lax Equivalence Theorem)

For a consistent difference approximation to a well-posed linear
evolutionary problem, which is uniformly solvable in the sense of (3.11), the
stability of the scheme is necessary and sufficient for convergence.

Proof (of sufficiency):

Subtracting (3.12) from (3.7) we have

퐵 (푈 − 푢) = 퐵 (푈 − 푢) − 푇 ,

i.e.,

 푈 − 푢 = (퐵 퐵)(푈 − 푢) − 퐵 푇 . (3.19)

Assuming that we set 푈 = 푢 , it follows that

 푈 − 푢 = −[퐵 푇 + (퐵 퐵)퐵 푇 + ⋯+ (퐵 퐵) 퐵 푇]. (3.20)

Now in applying the theorem, (3.11) and (3.16) are to hold in the same
norm, for which we shall also deduce (3.15); we can combine these two to
obtain

 ‖(퐵 퐵) 퐵 ‖ ≤ 퐾퐾 ∆푡 (3.21)

from which (3.19) gives

‖푈 − 푢 ‖ ≤ 퐾퐾 ∆푡 ‖푇 ‖.

Thus convergence in the sense of (3.15) follows from the consistency of
(3.13), if 푢 is sufficiently smooth for the latter to hold. For less smooth
solutions, convergence follows from the hypotheses of well-posedness and
stability: general initial data can be approximated arbitrarily closely by data

53

for smooth solutions and the growth of the discrepancy is bounded by the
well-posedness of the differential problem and the stability (3.15) of the
discrete problem.

Calculating stability conditions

As we are dealing with linear problems, if in (3.16) 푉 and 푊 are
solutions of the difference equations (3.7), then the difference 푉 −푊 is a
solution of the homogeneous difference equations with homogeneous
boundary data. That is, establishing stability is equivalent to establishing the
following:

 퐵 푈 = 퐵 푈 and 푛∆푡 ≤ 푡 ⇒ ‖푈 ‖ ≤ 퐾‖푈 ‖, (3.22)

which is what is meant by (3.17). The constant 퐾 will generally depend on
the time interval 푡 and allows for the sort of exponential growth that might
occur with 푢 = 푢 + 푢, for example. For simple problems one will often
find: either 퐾 = 1, there is no growth and the scheme is stable; or 푈 ∼
 휆 푈 , with |휆| > 1 even as Δ푡 → 0 for some mode, so the scheme is
unstable.

Thus when establishing a maximum principle we have to establish
stability in the maximum norm: strictly speaking, we have also to establish a
minimum principle so as to be able to say not only

 푈 ≤ max푈 ≤ ‖푈 ‖ (3.23)

but also

 푈 ≥ min푈 ≥ −‖푈 ‖ (3.24)

and can then deduce

 ‖푈 ‖ ≤ ‖푈 ‖ . (3.25)

Amaximum principle is seldom available or even appropriate for
hyperbolic problems. As we have noted, the first order scheme (1.23)
satisfies a maximum principle whenever 0 ≤ 휈 ≤ 1 so that it is then stable in
the maximum norm: but we can show that this can never be true of a second

54

order scheme. For example, consider the Lax–Wendroff method written in
the form (1.39). If it were to satisfy a maximum principle, then for any set of
non-positive values for 푈 one should never have 푈 > 0: yet if 0 < 휈 <
1, setting 푈 = 푈 = 0 and 푈 = −1 gives a positive value for 푈 .
This does not of course demonstrate that the scheme is actually unstable in
the maximum norm, merely that we cannot prove such stability by this
means.

For this reason, and also because hyperbolic differential equations are
much more commonly well-posed in the 퐿 norm than in the supremum
norm, for hyperbolic problems we have to adopt the more modest target of
proving stability in the 푙 norm (3.5). This gives weaker results because we
have, recalling that 푉 is the measure of the 푗th control volume,

 min
∈ Ω

푉
⁄
‖푈‖ ≤ ‖푈‖ ≤ 푉

∈ Ω

⁄

‖푈‖ ; (3.26)

in the bounded region we are working with, the coefficient on the right is a
finite constant while that on the left tends to zero as the mesh is refined. It is
clear that we would prefer to derive a maximum norm error bound from a
stability analysis but, if we have only 푙 stability and so obtain a bound for
the 푙 norm of the error ‖퐸 ‖ , then (3.26) gives a poor result for ‖퐸 ‖ .

However, it is the 푙 norm which is appropriate for Fourier analysis
because of Parseval’s relation. Suppose we can assume periodicity on a

normalized region –휋,휋 which is covered by a uniform (Cartesian) mesh
of size Δ푥 = Δ푥 =. . . = Δ푥 = 휋 퐽⁄ . Then the Fourier modes that can be
distinguished on the mesh correspond to wave numbers, which we denote by
the vector 풌, having components given by

 푘 = 0, ±1, ±2, … , ±퐽, (3.27)

where the last two with 푘Δ푥 = ±휋 are actually indistinguishable. Hence we
can expand any periodic function on the mesh as

55

 푈 퐱 =
1

(2휋) ⁄ 푈(퐤)e 퐤⋅
(풌)

 (3.28)

where the prime on the summation sign means that any term with 푘 = ±퐽
has its weight halved, and we have also used a vector notation 퐱 for mesh
points. This discrete Fourier expansion has an inverse which is the discrete
Fourier transform

 푈(퐤) =
1

(2휋) ⁄ (∆푥) 푈 퐱 e 퐤⋅
()

 (3.29)

where each component of 푗 runs from −퐽 to 퐽 with the mesh points on the
periodic boundaries again having their weights halved so that all the weights
are equal to the 푉 introduced in (3.5).

Lemma (3.1):

The Fourier modes (2휋) ⁄ e 퐤⋅풙 with components given by (3.27) are
orthonormal with respect to the 푙 inner product used in (3.29), namely

 〈푈,푊〉 ∶= (∆푥) 푈 푊
()

. (3.30)

Proof:

It is sufficient to consider 푑 = 1. We first establish the fundamental
trigonometric identity

1
2

e + e () + ⋯+ e () +
1
2

e = sin 퐽휃 cos
1
2
휃 . (3.31)

From the summation

1 + e + e + ⋯+ e () = e − 1 e − 1

we obtain by adding e − 1

1
2

+ e + e + ⋯+ e () +
1
2

e =
1
2

e − 1
e + 1

(e − 1) (3.32)

56

 =
1
2i

e − 1 cos
1
2
휃 . (3.33)

Combining this with a similar sum for −휃 gives (3.31). Now apply this with
휃 = (푘 − 푘)Δ푥, so that 퐽휃 = (푘 − 푘)휋. We obtain

e e
()

= sin(푘 − 푘)휋 cot
1
2

(푘 − 푘)∆푥 , 푘 ≠ 푘 ,

so that

e e
()

= (2휋 ∆푥⁄)훿 , .

Hence we have, with 푉 the control volume measure,

‖푈‖ = 푉 푈
∈ Ω

≡ (∆푥) 푈 x
()

 =
2휋
∆푥

푈(퐤)
(풌)

2휋
∆푥

, (3.34)

i.e.,

 푈 = 푈(퐤)
(퐤)

= ‖푈‖ , (3.35)

which is the appropriate form of Parseval’s relation.

For a rectangular region of general dimensions a simple scaling will
reduce the situation to the above case. However, note that not only is Δ푥
then changed but we will also generally have Δ푘 ≠ 1 and that such a
coefficient will be needed in the definition of 푈 for (3.35) to hold. It is
also worth noting that when for example we have a problem on [0,1] with
푢(0) = 푢(1) = 0 we extend this to a periodic problem on [−1,1] by
imposing antisymmetry at 푥 = 0 and using a sine series. This is why we
have taken –휋,휋 as our standard case above.

57

To establish (3.22) then, for a constant coefficient problem with periodic
boundary conditions, we expand arbitrary initial data in the form (3.28) and,
from the discrete Fourier transform of (3.22), obtain the same form at
successive time levels with the coefficients given by

 퐵 (퐤)푈 (퐤) = 퐵 (퐤)푈 (퐤), (3.36)

where, if the 푈 are 푝-dimensional vectors, 퐵 and 퐵 are 푝 × 푝 matrices.
The matrix

 퐺(퐤) = 퐵 (퐤)퐵 (퐤) (3.37)

is called the amplification matrix as it describes the amplification of each
mode by the difference scheme. Because we have assumed that 퐵 and 퐵
are independent of t we can write

 푈 = [퐺(퐤)] 푈 (3.38)

and using (3.35) have

sup
‖푈 ‖
‖푈 ‖ = sup

∑ 푈 (퐤)(퐤)
⁄

∑ 푈 (퐤)(퐤)

⁄

 = sup
퐤

sup
(퐤)

푈 (퐤)
푈 (퐤)

= sup
퐤

|[퐺(퐤)] |. (3.39)

Thus stability in the 푙 norm is equivalent to showing that

 |[퐺(퐤)] | ≤ K ∀퐤, 푛Δ푡 ≤ 푡 . (3.40)

Here |퐺 | means the 푝 × 푝 matrix norm subordinate to the vector norm used
for 푈 and. 푈(퐤).

Then clearly we have the following result.

Theorem (3.2): (von Neumann Condition)

A necessary condition for stability is that there exist a constant 퐾 such
that

58

 |λ(풌)| ≤ 1 + 퐾 Δ푡 ∀퐤, 푛Δ푡 ≤ 푡 , (3.41)

for every eigenvalue 휆(퐤) of the amplification matrix 퐺(퐤).

Proof:

By taking any eigenvector of 퐺(퐤) as 푈(퐤) it is obviously necessary that
there be a constant 퐾 such that |휆 | ≤ 퐾: then by taking 푛Δ푡 = 푡 we have

|λ| ≤ 퐾 ⁄ ≤ 1 + (퐾 − 1)Δ푡 푡⁄ for Δ푡 ≤ 푡 ,

the last inequality following from the fact that 퐾 is a convex function of 푠.

59

References:

[1]T.J. Bridges, Multi-symplectic structure and wave propagation, Math.
Proc. Comb.Philos. Soc. 121(1997), 147-190.

[2]푃.퐶표푙푒푙푙푎 푎푛푑 푃.푅.푊표표푑푤푎푟푑,푇ℎ푒 푃푖푒푐푒푤푖푠푒 푃푎푟푎푏표푙푖푐 푚푒푡ℎ표푑(푃푃푚)

 푓표푟 푔푎푠 − 푑푦푛푎푚푖푐푎푙 푠푖푚푢푙푎푡푖표푛, 퐽. 표푓 퐶표푚푝푢푡.푃ℎ푦푠. 54(1984), 174− 201.

[3]E.Hairer, C.Lubich, and G. Wanner, Geometric Numerical Integration,
Berlin, Springer- Verlag, 2002.

[4]B.van leer, Towards the ultimate conservation difference scheme.
monotonicity and conservation combined in a second order scheme, J. of
Comput. Phys. 14(1974), 361-370.

[5]퐵. 퐿푒푖푚푘푢ℎ푙푒푟 푎푛푑 푆.푅푒푖푐ℎ, 푆푖푚푢푙푎푡푖푛푔 퐻푎푚푖푙푡표푛푖푎푛 퐷푦푛푎푚푖푐푠,퐶푎푚푏푟푖푑푔푒,
 ambridge University Press, 2004.

[6]퐾.푊.푀표푟푡표푛 푎푛푑 퐷.퐹.푀푎푦푒푟,푁푢푚푒푟푖푐푎푙 푠표푙푢푎푡푖표푛

 표푓 푝푎푟푡푖푎푙 퐷푖푓푓푒푟푒푛푡푖푎푙 Equation, An Introduction, Cambridge
University Press, 2005.

[7]P.L. ROe, Appoximate Riemann solver, parameter vector, and
difference scheme, J. of Comput. Phys. 43(1981), 357-372.

.

