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Abstract 

We find the approximate solution for hyperbolic equation in one space 

dimension using two finite different schemes: Lax- Wendroff and upwind 

schemes Then, we study Fourier analysis of these two schemes. we also 

approximate the numerical solution of system of hyperbolic equations by 

using finite volume scheme and leap-frog schemes. As well, we study the 

Fourier analysis of these two schemes. Finally, we study the consistency, 

convergence and stability for hyperbolic equation in one space dimension 

and we state and prove the main part of the key lax Equivalence theorem. 
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 الخلاصة

حد باستخدام البحث إيجاد الحلول التقريبية للمعادلة الزائدية في بعد مكاني وا  ذاتناولنا في ه
من طرق طريقتين قمنا ثم  طريقة لاكس وندروف وطريقة اب وند. المنتهية وهي: تقاالفرو  

أيضا قربنا الحلول العددية لمجموعة معادلات زائدية  يير لهاتين الطريقتين.ربدراسة تحليل فو
الطريقتين باستخدام طريقة  الحجم المنتهي وطريقة قفزة الضفدعة وأوجدنا تحليل فورييرلهاتين 

لمجموعة المعادلات الزائدية. قمنا بدراسة الموائمة والتقارب والاستقرار للمعادلة الزائدية في بعد 
 مكاني واحد وقمنا بكتابة واثبات الجزء الأساسي من نظرية لاكس المكافئة.
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Chapter one  

Hyperbolic Equations in One Space Dimension 
1.1 Characteristics 

The linear advection equation  

                                                        
휕푢
휕푡

+ 푎
휕푢
휕푥

    = 0,                          (1.1) 

is an example of the simplest of  partial differential equations. Yet to 
approximate it well on a fixed (푥, 푡)-mesh is a far from trivial problem that 
is still under active discussion in the numerical analysis literature. Of course, 
the exact solution is obtained from observing that this is a hyperbolic 
equation with a single set of characteristics and 푢 is constant along each 
such characteristic: the characteristics are the solutions of the ordinary 
differential equation  

                                                        
d푥
d푡

= 푎(푥, 푡),                                   (1.2) 

and along a characteristic curve the solution 푢(푥, 푡)satisfies  

                                                   
d푢
d푡

=
휕푢
휕푡

+
휕푢
휕푥

d푥
d푡

= 0.                    (1.3) 

Thus from initial data  

                                                    푢(푥, 0) = 푢 (푥),                                   (1.4) 

where 푢 (푥) is a given function, we can construct an approximate solution 
by  choosing a suitable set of points 푥 , 푥 , …, as in Figure 1.1, and finding 
the  characteristic through 푥 , 0  by a numerical solution of (1.2) with the 
initial  condition 푥(0) = 푥 . At all points on this curve we then have 
푢(푥, 푡) = 푢 푥 .  This is called the method of characteristics. 
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Note that for this linear problem in which 푎(푥, 푡) is a given function, the 
characteristics cannot cross so long as a is Lipschitz continuous in 푥 and 
continuous in 푡.  

 

 

 

 

 

Figure (1.1): Typical characteristics for 풖풕 + 풂(풙, 풕)풖풙 = ퟎ. 

When a is a constant the process is trivial. The characteristics are the 
parallel straight lines 푥 − 푎푡 = constant, and the solution is simply  

                                               푢(푥, 푡) = 푢 (푥 − 푎푡).                  (1.5) 

Moreover, in the nonlinear problem in which a is a function only of 푢,푎 =
푎(푢),  the characteristics are also straight lines because 푢 is constant along 
each, although  they are not now parallel. Thus again we are able to write the 
solution in the form  

                                       푢(푥, 푡) = 푢 푥 − 푎 푢(푥, 푡) 푡 ,               (1.6) 

until the time when this breaks down because the characteristics can now 
envelope  or cross each other in some other manner.   

Consideration of the characteristics of the equation, or system of 
equations, is essential in any development or study of numerical methods for 
hyperbolic equations and we shall continually refer to them below. We shall 
want to consider systems of conservation laws of the form  

                                                        
휕퐮
휕푡

+
휕퐟(퐮)
휕푥

= 0                            (1.7) 

where 푢 = 푢(푥, 푡) is a vector of unknown functions and 퐟(퐮) a vector of 
flux  functions. For example, if the vector 퐮 has two components 푢 and 푣, 
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and 퐟 has two  components 푓(푢, 푣) and 푔(푢,푣), we can write out the 
components of (1.7) as  

                                                    
휕푢
휕푡

+
휕
휕푥

푓(푢, 푣) = 0,                        (1.8) 

                                                    
휕푣
휕푡

+
휕
휕푥

푔(푢, 푣) = 0,                        (1.9) 

or in matrix form  

      

휕푢
휕푡
휕푣
휕푡

+

휕푓
휕푢

휕푓
휕푣

휕푔
휕푢

휕푔
휕푣

휕푢
휕푥
휕푣
휕푥

=
0 
 
0

.                                        (1.10)  

If we define  

                                                  퐴(퐮) ∶=
휕퐟
휕퐮

,                                    (1.11) 

the Jacobian matrix formed from the partial derivatives of 퐟, we can write 
the  system as  

                                                  퐮 + 퐴(퐮)퐮 = 0,                          (1.12) 

and the characteristic speeds are the eigenvalues of 퐴. The hyperbolicity of 
the system is expressed by the fact that we assume 퐴 has real eigenvalues 
and a full set of eigenvectors. Suppose we denote by 횲 the diagonal matrix 
of eigenvalues and by 푆 = 푆(퐮) the matrix of left eigenvectors, so that  

                                                               푆퐴 = Λ푆.                                   (1.13) 

Then premultiplying (1.12) by S gives the characteristic normal form of the 
equations  

                                                     푆퐮 + Λ푆퐮 = 0.                              (1.14) 

If it is possible to define a vector of Riemann invariants 푟 = 푟(퐮) such that  
퐫 = 푆퐮  and 퐫 = 푆퐮 , then we can write  

                                                           퐫 + Λ퐫 = 0                                 (1.15) 
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which is a direct generalisation of the scalar case whose solution we have 
given in (1.6). However, now each component of 횲 will usually depend on 
all the components of r so that the characteristics will be curved.  

Moreover, although these Riemann invariants can always be defined for a 
system of two equat 1ions, for a larger system this is not always 
possible.  

To apply the method of characteristics to problems like (1.7), where the 
characteristic speeds depend on the solution, one has to integrate forward 
simultaneously both the ordinary differential equations for the characteristic 
paths and the characteristic normal form (1.14) of the differential equations. 
This is clearly a fairly complicated undertaking, but it will give what is 
probably the most precise method for approximating this system of 
equations.  

The 푪푭푳 condition 

Courant, Friedrichs and Lewy, in their fundamental 1928 paper1 on 
difference methods for partial differential equations, formulated a necessary 
condition now known as the 퐶퐹퐿 condition for the convergence of a 
difference approximation in terms of the concept of a domain of dependence. 
Consider first the simplest model problem (1.1), where a is a positive 
constant; as we have seen, the solution is 푢(푥, 푡) = 푢 (푥 − 푎푡), where the 
function 푢  is determined by the initial  conditions. The solution at the point 
푥 , 푡  is obtained by drawing the characteristic through this point back to 

where it meets the initial line at 푄 ≡ 푥 − 푎푡 , 0 − see Figure (1.2).  

Now suppose that we compute a finite difference approximation by using 
the explicit scheme  

 

                                       
푈 − 푈

∆푡
+ 푎

푈 − 푈
∆푥

= 0.                 (1.16) 
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Figure (1.2): Typical domain of dependence. 

Then the value on the new time level will be calculated from  

푈 = 푈 −
푎∆푡
∆푥

푈 − 푈  

                                      = (1 − 푣)푈 + 푣푈 ,    (1.17) 

where  

                                                                푣 =
푎∆푡
∆푥

.                       (1.18) 

The value of 푈  depends on the values of 푈 at two points on the previous  
time level; each of these depends on two points on the time level 푡 , and 
so on.  As illustrated in Figure (1.2), the value of 푈  depends on data 
given in a triangle  with vertex 푥 , 푡 , and ultimately on data at the 
points on the initial line  

푥 , 푥 , … , 푥 , 푥 . 

For an inhomogeneous equation in which a source term ℎ  replaces the zero 
on the  right-hand side of (1.16), 푈  depends on data given at all points of 
the triangle.  This triangle is called the domain of dependence of 푈 , or of 
the point  푥 , 푡 , for this particular numerical scheme. 
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The corresponding domain of dependence of the differential equation is 
the  characteristic path drawn back from 푥 , 푡  to the initial line, for in 
the  inhomogeneous case 푢 + 푎푢 = ℎ data values ℎ(푥, 푡) are picked up 
along the  whole path as well as the initial data at 푥 = 푥 − 푎푡 .  

The 퐶퐹퐿 condition then states that for a convergent scheme the domain of 
dependence of the partial differential equation must lie within the domain of 
dependence of the numerical scheme.  

 

 

 

 

 

 

Figure (1.3): Violation of the 푪푭푳 condition. 

Figure (1.3) illustrates two situations in which this condition is violated. 
Either of  the characteristics 푃푄 or 푃푅 lies outside the triangle. Suppose that 
we consider  a refinement path on which the ratio ∆푡 ∆푥⁄  is constant; then 
the triangular domain  of dependence remains the same. But suppose we 
alter the given initial conditions  in a small region of the initial line 푡 = 0 
around the point 푄. This will then alter the  solution of the differential 
equation at 푃, since the solution is constant along the  characteristic 푄푃. The 
numerical solution at 푃, however, remains unaltered, since  the numerical 
data used to construct the solution are unchanged. The numerical  solution 
therefore cannot converge to the required result at 푃. The same argument  of 
course applies in the same way to the characteristic 푅푃.  

The 퐶퐹퐿 condition shows in this example that the scheme cannot 
converge for a  differential equation for which 푎 < 0, since this would give a 
characteristic like  푅푃. And if 푎 > 0 it gives a restriction on the size of the 

 



7 
 

time step, for the condition  that the characteristic must lie within the 
triangle of dependence requires that  푎 ∆푡 ∆푥⁄ ≤ 1.  

What we have thus obtained can also be regarded as a necessary 
condition for  the  stability of this difference scheme, So far it is only a 
necessary condition. In general the 퐶퐹퐿 condition is  not sufficient for 
stability, as we shall show in some examples. Its great merit lies  in its 
simplicity; it enables us to reject a number of difference schemes with a  
trivial amount of investigation. Those schemes which satisfy the 퐶퐹퐿 
condition  may then be considered in more detail, using a test which is 
sufficient for stability.  

 

 

 

 

 

Figure (1.4): General three-point scheme; the points marked × are 
used for the two-step Lax−Wendroff method. 

Now suppose that we approximate the advection equation (1.1) by a more 
general  explicit scheme using just the three symmetrically placed points at 
the old time  level. The CFL condition becomes  

                                                           |푎|∆푡 ≤ ∆푥,                                   (1.19) 

as we see from Figure (1.4); 푣 ∶= |푎| ∆푡 ∆푥⁄  is often called the 퐶퐹퐿 number.  

If 푎 > 0, the difference scheme must use both 푈  and 푈  to obtain 
푈 : and if  푎 < 0 it must use 푈  and 푈 . To cover both cases we might 
be tempted to use a  central difference in space together with a forward 
difference in time to obtain  

                                          
푈    푈
∆푡

+ 푎
푈 − 푈

2∆푥
= 0.                        (1.20) 
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If we satisfy (1.19) the 퐶퐹퐿 condition holds for either sign of 푎.  

But now in the case where 푎 is constant, and ignoring the effect of the 
boundary  conditions, we can investigate the stability of the scheme by 
Fourier analysis, The Fourier mode  

                                                   푈 = (휆) e ( ∆ )                                     (1.21) 

satisfies the difference scheme (1.20) provided that the amplification factor 
휆  satisfies  

                                      휆 ≡ 휆(푘) = 1 − (푎 ∆푡 ∆푥⁄ )푖 sin 푘∆푥 .             (1.22) 

Thus |휆| > 1 for all mesh ratios (and almost all modes) and the scheme is 
unstable  for any refinement path along which 푎 ∆푡 ∆푥⁄  is fixed. Note that 
this is a case when  the highest frequency mode, 푘∆푥 = 휋 or 푈  ∝ (−ퟏ) , 

does not grow: but the mode with 푘∆푥 = 휋, or where 푈  takes successive 

values . . . ,−1,0,1,0,−1, . ..,  grows in magnitude by [1 + (푎 ∆푡 ∆푥⁄ ) ] ⁄  at 
each step while shifting to the  right. This central difference scheme thus 
satisfies the 퐶퐹퐿 condition but is nevertheless always unstable, illustrating 
the earlier comment that the 퐶퐹퐿  condition is necessary, but not sufficient, 
for stability.  

1.2 The Upwind Scheme  

We define finite differences in the same way in the two variables 푡 and 푥; 
there are three kinds of finite differences:  

 

Forward differences 

                         ∆ 푣(푥, 푡) ∶= 푣(푥, 푡 + ∆푡) − 푣(푥, 푡),                           

                        ∆ 푣(푥, 푡) ∶= 푣(푥 + ∆푥, 푡) − 푣(푥, 푡);                          

Backward differences  

                         ∆ 푣(푥, 푡) ∶= 푣(푥, 푡) − 푣(푥, 푡 − ∆푡),                           
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                        ∆ 푣(푥, 푡) ∶= 푣(푥, 푡) − 푣(푥 − ∆푥, 푡);                          

Central differences  

                훿 푣(푥, 푡) ∶= 푣 푥, 푡 +
1
2
∆푡 − 푣 푥, 푡 −

1
2
∆푡 ,                   

               훿 푣(푥, 푡) ∶= 푣 푥 +
1
2
∆푥, 푡 − 푣 푥 −

1
2
∆푥, 푡 .                  

When the central difference operator is applied twice we obtain the very 
useful second order central difference  

         훿 푣(푥, 푡) ∶= 푣(푥 + ∆푥, 푡) − 2푣(푥, 푡) + 푣(푥 − ∆푥, 푡).            

For first differences it is often convenient to use the double interval central 
difference  

∆ 푣(푥, 푡) ∶=
1
2

(∆ + ∆ )푣(푥, 푡) 

                                           =
1
2

[푣(푥 + ∆푥, 푡) − 푣(푥 − ∆푥, 푡)]. 

 

The simplest and most compact stable scheme involving these three 
points is called  an upwind scheme because it uses a backward difference in 
space if a is positive  and a forward difference if 푎 is negative:  

                              푈 =
푈 − 푎

∆푡
∆푥

∆ 푈 if 푎 < 0,

푈 − 푎
∆푡
∆푥

∆ 푈 if 푎 > 0.
                   (1.23) 

If a is not a constant, but a function of 푥 and 푡, we must specify which value 
is  used in (1.23). We shall for the moment assume that we use 푎 푥 , 푡 , but 
still  write a without superscript or subscript and 푣 = 푎 ∆푡 ∆푥⁄  as in (1.18) 
when this is  unambiguous.  
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This scheme satisfies the 퐶퐹퐿 condition when (1.19) is satisfied, and a  
Fourier analysis gives for the constant 푎 > 0 case the amplification factor  

  휆 ≡ 휆(푘) = 1 − (푎 ∆푡 ∆푥⁄ ) 1 − e ∆ ≡ 1 − 푣 1 − e ∆ .          (1.24) 

This leads to  

|휆| = [(1 − 푣) + 푣 cos푘∆푥] + [푣 sin 푘∆푥]  

  = (1 − 푣) + 푣 + 2푣(1 − 푣) cos푘∆푥 

= 1 − 2푣(1 − 푣)(1 − cos 푘∆푥)             

which gives  

                                           |휆| = 1 − 4푣(1 − 푣) sin
1
2
푘∆푥.       (1.25) 

It follows that |휆(푘)| ≤ 1 for all 푘 provided that 0 ≤ 푣 ≤ 1. The same 
analysis for  the case where 푎 < 0 shows that the amplification factor λ(푘) 
is the same, but with a replaced by |푎|. Thus in this case the 퐶퐹퐿 condition 
gives the correct stability limits.  

Error analysis of the upwind scheme 

We notice that the scheme (1.23) can be written  

                            푈 =
(1 + 푣)푈 − 푣푈 if 푎 < 0,
(1 − 푣)푈 + 푣푈 if 푎 > 0.             (1.26) 

This can be interpreted as follows. In Figure (1.5) for the case 푎 > 0, the  
characteristic through the point 푃 = 푥 , 푡  meets the previous line 
푡 = 푡  at the  point 푄, which by the 퐶퐹퐿 condition must lie between the 
points 퐴 = 푥 , 푡  and  퐵 = 푥 , 푡 . Moreover the exact solution 푢(푥, 푡) 
is constant along the  characteristic, so that 푢(푃) = 푢(푄). Knowing an 
approximate numerical solution  at all the points on the line 푡 , we can 
therefore interpolate the value of 푈(푄) and  use this to give the required 
value 푈 . If we use linear interpolation,  approximating 푢(푥, 푡 ) by a 
linear function of 푥 determined by the approximations  at the two points 퐴 
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and 퐵, we obtain (1.26) exactly when a is constant because  퐴푄 = 푣∆푥 and 
푄퐵 = (1 − 푣)∆푥; when a varies smoothly this still gives a good  
approximation.  

Notice also that all the coefficients in (1.26) are nonnegative so that a  
maximum principle applies, provided that |푣| ≤ 1 at all mesh points. We can  
therefore obtain an error bound for the linear, variable coefficient problem 
just as  we have done for parabolic equations. We must first consider more 
carefully what  domain is given, and what conditions should be specified at 
the boundaries of the  domain: although the physical problem may be given 
on the whole line, for all  values of 푥, a numerical solution must be confined 
to a finite region. Suppose, for  example, that the region of interest is 
0 ≤ 푥 ≤ 푋, so that we have boundaries at  푥 = 0 and 푥 = 푋. Since the 
differential equation is hyperbolic and first order, we  will usually have only 
one boundary conditionwhere we were always given a boundary  condition 
at each end of the domain. The direction of the characteristics shows that  we 
need a boundary condition at 푥 = 0 if 푎 > 0 there, and at 푥 = 푋 if 푎 < 0 
there;  in the straightforward situation where a has the same sign 
everywhere, we  therefore have just the one boundary condition. The exact 
solution of the  differential equation would then be determined by drawing 
the characteristic  backwards from the point 푃, until it reaches either the 
initial line 푡 = 0, or a  boundary on which a boundary condition is given.  

For simplicity we shall first suppose that 푎 > 0 on [0,푋] × [0, 푡 ]; we 
consider the  general case later. The truncation error of the scheme is  

 

 

 

 

 

Figure (1.5): Construction of a scheme by linear or quadratic interpolation. 
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defined as usual and expansion about 푥 , 푡  gives, if 푢 is sufficiently 
smooth,  

푇 ∶=
푢 − 푢

∆푡
+ 푎

푢 − 푢
∆푥

                    

                                    ~ 푢 +
1
2
∆푡푢 + ⋯ + 푎 푢 −

1
2
∆푥푢 + ⋯  

                                             =
1
2

(∆푡푢 − 푎∆푢 ) + ⋯ .                         (1.27) 

Even if a is constant so that we have 푢 = 푎 푢 , we still find  

푇 = −
1
2

(1 − 푣)푎∆푥푢 + ⋯ ; 

hence generally the method is first order accurate. Suppose the difference 
scheme  is applied for 푗 = 1,2, . . . , 퐽, at the points 푥 = 푗∆푥 with 퐽∆푥 = 푋, 
and the boundary  value 푈 = 푢(0, 푡 ) is given. Then for the error 푒 =
푈 − 푢  we have as usual  

                           푒 = (1 − 푣)푒 + 푣푒 − ∆푡푒 − ∆푡푇            (1.28) 

and 푒 = 0, from which we deduce that if 0 ≤ 푣 ≤ 1 at all points  

퐸 ∶= max 푒 ≤ 퐸 + ∆푡max 푇 . 

If we suppose that the truncation error is bounded, so that  

                                                                푇 ≤ 푇                                      (1.29) 

for all 푗 and 푛 in the domain, the usual induction argument shows that  

                                                  퐸 ≤ 푛∆푡 푇 ≤ 푡 푇                                  (1.30) 

if 푈 = 푢 푥 . This result is sufficient to prove first order convergence of 
the  upwind scheme along a refinement path which satisfies the 퐶퐹퐿 
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condition  everywhere, provided that the solution has bounded second 
derivatives.  

Now let us consider a completely general set of values  

푎 ∶= 푎 푥 , 푡 ;    푗 = 0,1, … , 퐽 . 

It is clear that an equation similar to (1.28) holds at each point: if 푎 ≥ 0 
and 푗 > 0, then (1.28) holds; if 푎 ≤ 0 and 푗 < 퐽 then a corresponding 
upwind equation  with 푒  replacing 푒  holds; and the remaining cases, 
푎 > 0 or 푎 < 0,  correspond to the inflow boundary data being given so 
that either 푒 = 0 or 푒 = 0. The rest of the argument then follows as 
above.  

Fourier analysis of the upwind scheme 

Because hyperbolic equations often describe the motion and development 
of  waves, Fourier analysis is of great value in studying the accuracy of 
methods as  well as their stability. The modulus of 휆(푘) describes the 
damping and the  argument describes the dispersion in the scheme, i.e., the 
extent to which the wave  speed varies with the frequency. We must, for the 
present and for a strict analysis,  assume that a is a (positive) constant. The 
Fourier mode  

/                                                           푢(푥, 푡) = e ( )                         (1.31) 

is then an exact solution of the differential equation (1.1) provided that 휔 
and 푘  satisfy the dispersion relation  

                                                             휔 = −푎푘.                                      (1.32) 

The mode is completely undamped, as its amplitude is constant; in one 
time step its  phase is changed by −푎푘∆푡. By contrast, the Fourier mode 
(1.21) satisfies the  upwind scheme provided that (1.24) holds. This leads to 
(1.25), showing that  except in the special case 푣 = 1 the mode is damped. 
The phase of the numerical  mode is given by  
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                                  arg 휆 = − tan
푣 sin 푘∆푥

(1 − 푣) + 푣 cos 푘∆푥
           (1.33) 

and we particularly need to evaluate this when 푘∆푥 is small, as it is such 
modes  that can be well approximated on the mesh. For this, and subsequent 
schemes, it is  useful to have a simple lemma:  

Lemma (1.1):  

If 푞 has an expansion in powers of 푝 of the form  

푞 ~ 푐 푝 + 푐 푝 + 푐 푝 + 푐 푝 + ⋯ 

as 푝 → 0, then  

tan 푞~ 푐 푝 + 푐 푝 + 푐 −
1
3
푐 푝 + 푐 −

1
4
푐 푝 + ⋯ 

.  

We can now expand (1.33) and apply the lemma, giving  

arg 휆~ tan 푣 휉 −
1
6
휉 + ⋯ 1 −

1
2
푣휉 + ⋯  

= − tan 푣휉 −
1
6
푣(1 − 3푣)휉 + ⋯  

                                      

= −푣휉 1 −
1
6

(1 − 푣)(1 − 2푣)휉 + ⋯ ,                          (1.34) 

where we have written  

                                                             휉 = 푘∆푥.                                                 (1.35) 

The case 푣 = 1 is obviously very special, as the scheme then gives the exact  
result.  Apart from this, we have found that the upwind scheme always has 
an amplitude  error which, from (1.25), is of order 휉  in one time step, 
corresponding to a global  error of order 휉; and from (1.34) it has a relative 
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phase error of order 휉 , with the  sign depending on the value of 푣, and 
vanishing when 푣 = .  

Some results obtained with the upwind scheme are displayed in Figure 
(1.6). The  problem consists of solving the equation  

                                푢 + 푎(푥, 푡)푢 = 0,    푥 ≥ 0, 푡 ≥ 0,                    (1.36푎) 

where  

                                      푎(푥, 푡) =
1 + 푥

1 + 2푥푡 + 2푥 + 푥
,                             (1.36푏) 

with the initial condition  

                                  푢(푥, 0) = 1            if 0.2 ≤ 푥 ≤ 0.4,
0 otherwise,                     (1.37푎) 

and the boundary condition  

                                                      푢(0, 푡) = 0.                                                (1.37푏) 

The exact solution of the problem is  

                                                    푢(푥, 푡) = 푢(푥∗, 0).                                    (1.38푎) 

where  

                                                       푥∗ = 푥 −
푡

1 + 푥
.                                   (1.38푏) 

Since 푎(푥, 푡) ≤ 1 the calculations use ∆푡 = ∆푥, and the 퐶퐹퐿 stability 
condition  is  satisfied. The solution represents a square pulse moving to the 
right. It is clear  from the figures how the damping of the high frequency 
modes has resulted in a  substantial smoothing of the edges of the pulse, and 
a slight reduction of its height.  However, the rather small phase error means 
that the pulse moves with nearly the  right speed. The second set of results, 
with a halving of the mesh size in both co-ordinate directions, shows the 
expected improvement in accuracy, though the results are still not very 
satisfactory. 
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Figure (1.6): Linear advection by the upwind method: problem 
(1.36), (1.37). 

1.3 The Lax−Wendroff scheme 

The phase error of the upwind scheme is actually smaller than that of 
many  higher order schemes: but the damping is very severe and quite 
unacceptable in  most problems. One can generate more accurate explicit 
schemes by interpolating  to higher order. We have seen how the upwind 
scheme can be derived by using  linear interpolation to calculate an 
approximation to 푢(푄) in Figure (1.5). A more  accurate value may be found 
by quadratic interpolation, using the values at the  three points 퐴,퐵 and 퐶 
and assuming a straight characteristic with slope 푣. This  gives the 
Lax−Wendroff scheme, which has turned out to be of central importance  in 
the subject and was first used and studied by those authors in 1960 in their  
study of hyperbolic conservation laws; it takes the form  

              푈 =
1
2
푣(1 + 푣)푈 + (1 − 푣 )푈 −

1
2
푣(1 − 푣)푈        (1.39) 

which may be written  
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                                     푈 = 푈 − 푣∆ 푈 +
1
2
푣 훿 푈 .                      (1.40) 

The usual Fourier analysis gives the amplification factor  

                                 휆(푘) = 1 − 푖푣 sin 푘∆푥 − 2푣 sin
1
2
푘∆푥.                 (1.41) 

Separating the real and imaginary parts we obtain, after a little manipulation,  

                                       |휆| = 1 − 4푣 (1 − 푣 ) sin
1
2
푘∆푥.                 (1.42) 

Thus we see that the scheme is stable for |푣| ≤ 1, the whole range allowed 
by the  퐶퐹퐿 condition. We also find  

arg 휆 = − tan
푣 sin 푘∆푥

1 − 2푣 sin 1
2∆푥

 

                                              ~− 푣휉 1 −
1
6

(1 − 푣 )휉 + ⋯ .                  (1.43) 

Compared with the upwind scheme we see that there is still some 
damping, as  in general |휆| < 1, but the amplitude error in one time step is 
now of order 휉   when 휉 is small, compared with order 휉  for the upwind 
scheme; this is a  substantial improvement. Both the schemes have a relative 
phase error of order  휉 ,  which are equal when 푣 ~ 0; but the error is always 
of one sign (corresponding to a  phase lag) for Lax −Wendroff while it goes 
through a zero at 푣 =  for the upwind  scheme. However, the much smaller 
damping of the Lax−Wendroff scheme often  outweighs the disadvantage of 
the larger phase error. 

In deriving the Lax−Wendroff scheme above we assumed a was 
constant. To  deal  with variable a in the linear equation (1.1) we derive it in 
a different way,  following the original derivation. We first expand in a 
Taylor series in the variable  푡, giving  
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     푢(푥, 푡 + ∆푡) = 푢(푥, 푡) + ∆푡푢 (푥, 푡) +
1
2

(∆푡) 푢 (푥, 푡) + 푂((∆푡) ).       (1.44) 

Then we convert the 푡-derivatives into 푥-derivatives by using the differential  
equation, so that  

                                                           푢 = −푎푢 ,                                            (1.45) 

                                                          푢 = −푎 푢 − 푎푢 ,                            (1.46) 

                                                        푢 = 푢 = −(푎푢 ) ,                        (1.47) 

which give  

                                                 푢 = −푎 푢 + 푎(푎푢 ) .                             (1.48) 

Approximating each of these 푥-derivatives by central differences gives 
the  scheme  

푈 = 푈 − 푎 ∆푡
∆ 푈
∆푥

+
1
2

(∆푡) −(푎 )
∆ 푈
∆푥

+ 푎
훿 푎 훿 푈

(∆푥) . (1.49) 

This scheme involves evaluating the function 푎(푥, 푡) at the points 
푥 = 푥 ± ∆푥 as well as a and at 푎 푎푡 푥 . Note, however, that the scheme 

can be simplified by  replacing an 푎 + ∆푡(푎 )  by 푎 ⁄  in the 
coefficient of ∆ 푈 ; see also the  next section for conservation laws with 
푎푢 ≡ 푓 , and also the following section  on finite volume schemes.  

The results in Figure (1.7) are obtained by applying this scheme to the 
same  problem (1.36), (1.37) used to test the upwind scheme, with the same 
mesh sizes[6].Comparing the results of Figure (1.6) and Figure (1.7) we see 
that the  Lax−Wendroff scheme maintains the height and width of the pulse 
rather better  than the upwind scheme, which spreads it out much more. On 
the other hand, the Lax−Wendroff scheme produces oscillations which 
follow behind the two  discontinuities as the pulse moves to the right. Notice 
also that the reduction in the  mesh size ∆푥 does  
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Figure (1.7): Linear advection by the Lax−Wendroff method: 
problem (1.36),  (1.37). 

improve the accuracy of the result, but not by anything like the factor of 4 
which  would be expected of a scheme for which the error is 푂((∆푥) ). The 
analysis of  truncation error is only valid for solutions which are sufficiently 
smooth, while this  problem has a discontinuous solution. In fact the 
maximum error in this problem is 푂 (∆푥) ⁄  for the upwind scheme and 
푂 (∆푥) ⁄  for the Lax−Wendroff  scheme. The error therefore tends to 
zero rather slowly as the mesh size is reduced.  

The oscillations in Figure (1.7) arise because the Lax−Wendroff scheme 
does not  satisfy a maximum principle. We see from (1.39) that with 푣 > 0 
the coefficient of  푈  is negative, since we require that 푣 ≤ 1 for stability. 
Hence 푈  is given as a weighted mean of three values on the previous 
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time level, but two of the weights  are positive and one is negative. It is 
therefore possible for the numerical solution  to have oscillations with 
internal maxima and minima.  

As an example of a problem with a smooth solution, we consider the 
same  equation as before, (1.36a,b), but replace the initial condition (1.37) 
by  

                                        푢(푥, 0) = exp[−10(4푥 − 1) ].                            (1.50) 

The results are illustrated in Figure (1.8). As before, the solution consists of 
a  pulse  moving to the right, but now the pulse has a smooth Gaussian 
shape, instead  of a  discontinuous square wave. Using the same mesh sizes 
as before, the results  are  considerably more accurate. There is still some 
sign of an oscillation to the left  of  the pulse by the time that 푡 = 1, but it is 
a good deal smaller than in the  discontinuous case. Moreover, the use of the 
smaller mesh size has reduced the  size of the errors and this oscillation 
becomes nearly invisible.  

The Lax−Wendroff method for conservation laws 

In practical situations a hyperbolic equation often appears in the form  

                                                     
휕푢
휕푡

+
휕푓(푢)
휕푥

= 0                                          (1.51) 

which may be written in the form we have considered above,  

                                                          푢 + 푎푢 = 0,                                         (1.52) 

where 푎 = 푎(푢) = 휕푓 휕푢⁄ . It is then convenient to derive the 
Lax−Wendroff   scheme directly for the conservation form (1.51). The 
function 푓 does not involve  푥 or 푡 explicitly but is a function of 푢 only. The 
푡-derivatives required in the  Taylor series expansion (1.44) can now be 
written  
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                                                    푢 = − 푓(푢)                                           (1.53) 

and  

                         푢 = −푓 = −푓 = −(푎푢 ) = (푎푓 ) .                     (1.54) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1.8): Linear advection by the Lax−Wendroff method: (1.36) 
with the data (1.50). 

Replacing the 푥-derivatives by central differences as before we now 
obtain  

               푈 = 푈 −
∆푡
∆푥

∆ 푓 푈 +
1
2

∆푡
∆푥

훿 푎 푈 훿 푓 푈 .     (1.55) 

It is clear that this reduces to (1.40) when 푓(푢) = 푎푢 where a is constant. If 
we  expand the last term in (1.55) we see that it involves the values of 
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푎 푈 ⁄  and  푎 푈 ⁄ ; in evaluating these we could set 푈 ± ⁄ ∶=

푈 + 푈 ± , but a  commonly used alternative is to replace them by 

∆± 푓 푈 ∆± 푈 . Then writing  퐹  for 푓 푈  and 퐴 ± ⁄  for either 
choice of the characteristic speeds, the scheme  becomes  

푈 = 푈 −
1
2
∆푡
∆푥 1− 퐴 ⁄

∆푡
∆푥 ∆ 퐹 + 1 + 퐴 ⁄

∆푡
∆푥 ∆ 퐹 .            (1.56) 

As an example of the use of this scheme we consider the limiting case of  
Burgers' equation, for inviscid flow,  

                                                             푢 + 푢푢 = 0,                                    (1.57) 

or in conservation form  

                                                     푢 +
1
2
푢 = 0.                                      (1.58) 

The general solution when it is smooth is easily obtained by the method 
of  characteristics, or it is sufficient to verify that the solution is given 
implicitly by  

                                       푢 ≡ 푢(푥, 푡) = 푢 푥 − 푡푢(푥, 푡) .                           (1.59) 

The characteristics are straight lines, and the solution 푢(푥, 푡) is constant 
along  each of them. Given the initial condition 푢(푥, 0) = 푢 (푥), they 
are obtained by  drawing the straight line with slope d푡 d푥⁄ =
1 푢⁄ (푥 ) through the point (푥 , 0),  for each value of 푥 . The 
approximation obtained with  the upwind scheme, which we write in 
the form  

푈 = 푈 −
1
2
∆푡
∆푥

1 − sgn 퐴 ∆ 퐹 + 1 + sgn 퐴 ∆ 퐹         (1.60) 

where the preferred choice is 퐴 ± ∶= ∆± 퐹 ∆± 푈 , reducing to 푎 푈  

when 푈 = 푈 ± ; this form clearly generalises (1.23) and is directly 
comparable with  (1.56).  



23 
 

Chapter Two 

Finite Volume Schemes 
2.ퟏ Introduction 

Many of the methods that are used for practical computation with 
conservation  laws are classed as finite volume method .  Suppose we take 
the system of equations 퐮 + 퐟 = 0 in conservation law form  and integrate 
over a region Ω in (푥, 푡)-space; using the Gauss divergence theorem  this 
becomes a line integral,  

(풖 + 퐟 )
 

Ω
d푥 d푡 ≡ div(퐟,퐮)

 

Ω
d푥 d푡 

                                                                        =  [퐟 d푡 − 퐮 d푥]
 

Ω
.                (2.1) 

In particular, if we take the region to be a rectangle of width ∆푥 and height 
∆푡  and introduce averages along the sides, such as 퐮  etc., we obtain  

         퐮 − 퐮 ∆푥 + 퐟 − 퐟 ∆푡 = 0.                             (2.2) 

 

 

 

 

Figure (2.1): Two finite volume schemes: (a) with mid-point 
quadrature; (b) with trapezoidal quadrature. 

Then to obtain a specific numerical scheme these averages need to be 
approximated by some form of quadrature. For instance, we can use mid-
point quadrature on all four sides − see Figure (2.1) (a): if we denote by 푈  
the approximate solution at time level 푛 at the centre of cell 푗 of width ∆푥 , 

and by 퐅 ⁄
⁄  the flux value halfway up a cell side, we obtain the scheme  
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                          퐔 = 푈 − (∆푡 ∆푥⁄ ) 퐅 ⁄
⁄ − 퐅 ⁄

⁄ .                       (2.3) 

It remains to calculate the fluxes from the set of 푈  values.  

Note, however, that in (2.3) we have allowed for the cell widths to be 
quite  arbitrary. This is a great advantage of this formulation, and is very 
useful in  practical calculations − even more so in more space dimensions. 
Thus, for  instance, we can sum the integrals over a set of contiguous cells to 
obtain from  (2.3)  

                          ∆푥 퐔 − 푈 + ∆푡 퐅 ⁄
⁄ − 퐅 ⁄

⁄ = 0,       (2.4) 

which exactly mirrors the conservation property of the differential equation. 
In the  case of the Lax−Wendroff scheme, though, if 푈  is taken to 
represent  the solution at the cell centre then we need to use a Taylor 
expansion at a cell edge  푥 ⁄  to give, to the required first order accuracy,  

퐮 푥 ⁄ , 푡 + ∆푡 2⁄ = 퐮 푥 ⁄ , 푡 −
1
2
∆푡퐟 푥 ⁄ , 푡 + 푂((∆푡) ); 

this can be combined with expansions for the cell centre values on either 
side to  give the formula  

                   퐔 ⁄
⁄ =

∆푥 푈 + ∆푥 퐔 − ∆푡 퐟 퐔 − 퐟 퐔
∆푥 + ∆푥

 .    (2.5) 

As we have already noted and demonstrated, a major disadvantage of the  
Lax−Wendroff method is its proneness to produce oscillatory solutions. The  
problem has prompted much of the development of finite volume methods, 
and can  be fully analysed for scalar conservation laws. The guiding 
principle is provided by  controlling the total variation of the solution: on a 
finite domain [0,푋] divided into  퐽 cells, with 푈  taking the value 푈  in cell 
푗 at time level 푛, we can define the total  variation as  
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                         TV(푈 ) ∶= 푈 − 푈 ≡ ∆ 푈 .                     (2.6) 

More generally, for the exact solution 푢(푥, 푡), TV 푢(⋅, 푡)  can be defined by  
taking the supremum, over all subdivisions of the [0,푋] interval such as  
0 = 휉 < 휉 < ⋯ < 휉 = 푋, of the sum of the corresponding differences 
푢 휉 , 푡 − 푢 휉 , 푡 . Clearly, these are consistent definitions when 푈  is 

regarded as a  piecewise constant approximation to 푢(⋅, 푡 ). To simplify the 
subsequent  discussion, however, by leaving side the specification of 
boundary conditions, we  will assume that both 푢(⋅, 푡) and 푈  are extended 
by constant values to the left and  right so that the range of the summation 
over 푗 will not be specified.  

2.2 Harten concept: 

A key property of the solution of a conservation law such as (1.51) is that  
TV 푢(⋅, 푡)  is a nonincreasing function of 푡 − which can be deduced 
informally  from the constancy of the solution along the characteristics 
described by (1.6).  Thus we define 푇푉퐷 (total variation diminishing) 
schemes as those for which we  have TV(푈 ) ≤ TV(푈 ). This concept is 
due to Harten who established the  following useful result:  

Theorem (1.1): (Harten) 

A scheme is TVD if it can be written in the form  

                                      푈 = 푈 − 퐶 ∆ 푈 + 퐷 ∆ 푈 ,           (2.7) 

where the coefficients 퐶  and 퐷 , which may be any functions of the solution  
variables 푈 , satisfy the conditions  

                                    퐶 ≥ 0,   퐷 ≥ 0   and   퐶 + 퐷 ≤ 1  ∀푗.                 (2.8) 
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Proof:   

Taking the forward difference of (2.7), and freely using the identity 
∆ 푈 ≡ ∆ 푈 , we get  

푈 − 푈 = ∆ 푈 − 퐶 ∆ 푈 + 퐶 ∆ 푈 + 퐷 ∆ 푈 − 퐷 ∆ 푈  

       = 1 − 퐶 − 퐷 ∆ 푈 + 퐶 ∆ 푈 + 퐷 ∆ 푈 . 

By the hypotheses of (2.8), all the coefficients on the right of this last  
expression are nonnegative. So we can take absolute values to obtain  

∆ 푈 ≤ 1 − 퐶 − 퐷 ∆ 푈 + 퐶 ∆ 푈 + 퐷 ∆ 푈 , 

then summing over 푗 leads to cancellation and hence the result TV(푈 ) ≤
TV(푈 ).  

Suppose we attempt to apply this theorem to both the Lax−Wendroff 
method  and the upwind method. We consider the latter first, in the form 
given in (1.60)  with An 퐴 ± ⁄ ∶= ∆± 퐹 ∆± 푈 . This corresponds to the 
scalar case of the  scheme is best  considered as a finite volume scheme in 
which the fluxes of (2.3) are given by  

                               퐹 ⁄
⁄ =

푓 푈 when 퐴 ⁄ ≥ 0,
푓 푈 when 퐴 ⁄ < 0;

                  (2.9) 

or, equivalently,  

         퐹 ⁄
⁄ =

1
2

1 + sgn 퐴 ⁄ 퐹 + 1 − sgn 퐴 ⁄ 퐹 .        (2.10) 

Then, comparing (1.60) with (2.7) after replacing the flux difference ∆ 퐹   
by 퐴 ⁄ ∆ 푈 , we are led to setting  

퐶 =
1
2
∆푡
∆푥

1 + sgn 퐴 ⁄  퐴 ⁄ . 

This is clearly always nonnegative, thus satisfying the first condition of 
(2.8).  Similarly, we set  



27 
 

퐷 =
1
2
∆푡
∆푥

1 − sgn 퐴 ⁄  퐴 ⁄ , 

which is also nonnegative. Moreover, adding the two together and 
remembering  the shift of subscript in the former, we get  

퐶 + 퐷 =
1
2
∆푡
∆푥

1 + sgn 퐴 ⁄  퐴 ⁄ +
∆푡
∆푥

1 − sgn 퐴 ⁄  퐴 ⁄  

                        ≡ 퐴 ⁄
∆푡
∆푥

, 

which is just the CFL number. Hence the last condition of (2.8) corresponds 
to  the CFL stability condition; the Roe first order upwind scheme  is TVD 
when ∆푡 is chosen so that it is stable[7].  

On the other hand, if we attempt to follow similar arguments with the  
Lax−Wendroff scheme in the corresponding form of (1.56) and write 푈 ± ⁄  
for 퐴 ± ⁄ ∆푡 ∆푥⁄ , we are led to setting  

  퐶 =
1
2
푣 ⁄ 1 + 푣 ⁄ ,   and   퐷 = −

1
2
푣 ⁄ 1 − 푣 ⁄ ,       (2.11) 

both of which have to be nonnegative. Then the third condition of (1.8)  

requires that the CFL condition 푣 ⁄ ≤ 1 be satisfied, and the only 
values that  푣 ⁄  can take to satisfy all three conditions are −1,0 and +1; 
this is clearly  impractical for anything other than very special cases.  

The TVD property of the Roe upwind scheme has made it a very 
important  building block in the development of more sophisticated finite 
volume methods.   

However, these two schemes are only first order accurate and it is no 
easy  matter to devise TVD schemes that are second order accurate. To 
consider why this  is so let us consider an explicit TVD three-point scheme in 
the form (2.7) and  satisfying the conditions (2.8). For the linear advection 
equation 푢 + 푎푢 = 0  we suppose that 퐶 and 퐷 are constants. Then it is 
easy to see, following the  argument that led to the Lax−Wendroff method 
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in (1.39), that second order  accuracy leads directly to these coefficients, as 
in (2.11), and hence the violation of  the TVD conditions except in very 
special cases. From another viewpoint, in the  two successful TVD schemes 
we have constructed the fluxes from just the cell  average values 푈  in each 
cell, and we cannot expect to approximate the solution  to second order 
accuracy with a piecewise constant approximation.  

This observation points the way to resolving the situation: an 
intermediate  stage, variously called recovery or reconstruction, is 
introduced to generate a  higher order approximation. 푈 (⋅) to 푢(⋅, 푡 ) from 
the cell averages 푈 .  Probably the best known approach is that used by 
van Leer[4]to produce his MUSCL  schemes (Monotone Upstream-centred 
Schemes for Conservation Laws). This uses  discontinuous piecewise linear 
approximations to generate second order  approximations. Another well-
established procedure leads to the Piecewise  Parabolic Method (PPM) 
scheme of Colella and Woodward, [2]which can be third  order accurate. In 
all cases the recovery is designed to preserve the cell averages.  So for the 
recovery procedure used in the MUSCL schemes, for each cell we need  only 
calculate a slope to give a straight line through the cell average value at the  
centre of the cell, and this is done from the averages in neighbouring cells. 
The  PPM, however, uses a continuous approximation based on cell-
interface values  derived from neighbouring cell averages: so a parabola is 
generated in each cell  from two interface values and the cell average.  

2.ퟑ The box scheme  

To give some indication of the range of schemes that are used in practice 
we will describe two other very important schemes. The box scheme is a 
very compact implicit scheme often associated with the names of  
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Figure (2.2): The box scheme. 

Thomee and, in a different context, Keller: for the simplest model problem  
푢 + 푎푢 = 0 with constant a it takes the form  

   
훿 푈 ⁄ + 푈 ⁄

2∆푡
+
푎훿 푈 ⁄ + 푈 ⁄

2∆푥
= 0.                       (2.12) 

By introducing the averaging operator  

                                               휇 푈 ⁄ ∶=
1
2
푈 + 푈 ,                        (2.13) 

and similarly 휇  we can write the scheme in the very compact form  

                       (휇 훿 + 푣휇 훿 )푈 ⁄
⁄ = 0,                                         (2.14) 

where 푣 = 푎 ∆푡 ∆푥⁄  is the CFL number.  

If we expand all the terms in Taylor series about the central point 
푥 ⁄ , 푡 ⁄  as origin, it is easy to see that the symmetry of the averaged  

differences will give an expansion in even powers of ∆푥 or ∆푡, so that the 
scheme  is second order accurate. When the coefficient a is a function of 푥 
and 푡, it is  sensible to replace it by 푎 ⁄

⁄ ∶= 푎 푥 ⁄ , 푡 ⁄  in (2.12); 
this will leave the  Taylor series unaltered, so that the truncation error 
remains second order.  
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When applied to the nonlinear problem in conservation form (1.51), it is 
written  

   
훿 푈 ⁄ + 푈 ⁄

2∆푡
+
훿 퐹 ⁄ + 퐹 ⁄

2∆푥
= 0                           (2.15) 

where 퐹 ∶= 푓 푈 . In this form it is clear that it corresponds to a finite  
volume scheme, using a box formed from four neighbouring mesh nodes in a  
square, and applying the trapezoidal rule to evaluate the integral along each 
edge −  see Figures (2.2) and (2.1) (b); and in common with other finite 
volume schemes  it can be readily applied on a nonuniform mesh.  

The scheme is implicit as it involves two points on the new time level, 
but for  the simplest model problem this requires no extra computation; and 
when used  properly it is unconditionally stable. We can write (2.12) in the 
form  

  푈 = 푈 + 1 + 푣 ⁄
⁄ 1 − 푣 ⁄

⁄ 푈 − 푈          (2.16) 

where  

푣 ⁄
⁄ = 푎 ⁄

⁄ ∆푡
∆푥

. 

When 푎(푥, 푡) is positive, so that the characteristic speed is positive, we must 
be  given a boundary condition on the left of the region. This will define 
푈 , the  first value of 푈 on the new time level, and (2.16) will give 
directly the values of 푈  in succession from left to right. If the speed is 
negative, and we are given a  boundary condition on the right, a similar 
formula is used in the direction from  right to left. When the equation is 
nonlinear and in conservation form the scheme is  not quite so easy to use, as 
(2.15) now represents a nonlinear equation which must  be solved for 푈 .  

One of the serious difficulties in using the scheme is the possibility of a  
chequerboard mode of the form (−1)  contaminating the solution. 
Because of  the averaging in both space and time in equation (2.12) this is a 
spurious solution  mode of this equation. It is only the boundary condition 



31 
 

and the initial condition  that control its presence; as we see in Figure (2.3), 
it is much more evident with  square pulse data than with smooth data.  

For a system of equations, such as (1.5), the calculation becomes more  
elaborate, as the scheme is now truly implicit. We will have a set of 
simultaneous  equations to solve on the new time level, and in general it will 
not be possible to  solve them by a simple sweep in one direction, as it was 
for a single equation,  since there will normally be some boundary 
conditions given at each end of the  range of 푥. The matrix of the system  
will be typically block tridiagonal, with the block dimension equal to the 
order of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.3): Linear advection by the box scheme with ∆풕 = ∆풙 = ퟎ.ퟎퟐ 
for (a)  a square pulse and (b) Gaussian initial data. 
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the system, but the detailed structure will depend on the number of boundary  
conditions imposed at each end.  

For the scalar problem the CFL condition is satisfied for any value of the 
ratio  ∆푡 ∆푥⁄  if we use the scheme in the correct direction, that is, in the form 
(2.16)  when a is positive; as we see from Figure (2.2), the characteristic 
always passes  among the three points used in the construction of 푈 . 
However, the three  coefficients are not all positive, so there is no maximum 
principle; nor does the  scheme have any natural TVD properties, being 
prone as we have seen to  oscillatory solutions. Because we have neither the 
whole real line as our domain  nor periodic boundary conditions, a rigorous 
Fourier analysis is not straightforward  even for constant a. However, we can 
substitute a Fourier mode to consider its  possible damping and its phase 
accuracy. We easily find  

                                         휆(푘) =
cos 1

2 푘∆푥 − 푖푣 sin 1
2 푘∆푥

cos 1
2 푘∆푥 + 푖푣 sin 1

2 푘∆푥
,                (2.17) 

from which we deduce  

                                                              |휆(푘)| = 1                                      (2.18) 

for any value of 푣, and  

arg 휆 = −2 tan 푣 tan
1
2
푘∆푥  

                 ~ − 푣휉 1 +
1

12
(1 − 푣 )휉 + ⋯ .                                        (2.19) 

Thus the scheme has no damping of modes and, comparing (2.19) with 
(1.43),  we see that it has the same second order accuracy and that its phase 
error is  asymptotically half that of the Lax−Wendroff scheme . 

2.ퟒThe leap-frog scheme  

The second important scheme is called the leap-frog scheme because it 
uses two  time intervals to get a central time difference and spreads its ' legs ' 
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to pick up the  space difference at the intermediate time level; the values 
used are shown in Figure  (2.4). For (1.51) or (1.52) it has the form  

          
푈 − 푈

2∆푡
+
푓 푈 − 푓 푈

2∆푥
= 0,                              (2.20) 

or  

   푈 = 푈 − (푎 ∆푡 ∆푥⁄ ) 푈 − 푈 .                                          (2.21) 

Thus it is an explicit scheme that needs a special technique to get it 
started. The  initial condition will usually determine the values of 푈 , but a 
special procedure is  needed to give 푈 . Then the leap-frog scheme can be 
used to give 푈 ,푈 , . .. in  succession. The additional starting values 푈  can 
be obtained by any convenient  one-step scheme, such as Lax−Wendroff.  

 

 

 

 

 

 

Figure (2.4): The leap-frog scheme: (a) unstaggered; (b) staggered, 
×= 푽 and  퐨 = 푾.  

It is clear from Figure (2.4) (a) that the CFL condition requires that 
|푣| ≤ 1, as  for the Lax−Wendroff scheme. When 푓 = 푎푢 with constant a 
the usual Fourier  analysis leads to a quadratic for 휆(푘):  

       휆 − ퟏ + 2푖푣휆 sin 푘 ∆푥 = 0                                                                  (2.22) 

with solutions  

   휆(푘) = −푖푣 sin 푘∆푥 ± [ퟏ − 푣 sin 푘∆푥] ⁄ .                                    (2.23) 
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Since the product of these roots is −ퟏ, we must require both roots to have  
modulus 1 for the scheme to be stable. It is easy to verify that the roots are  
complex and equal in modulus for all 푘 if and only if |푣| ≤ 1: so for this 
scheme  the Fourier analysis gives the same result as the CFL condition; and 
when the  stability condition is satisfied there is no damping.  

The result of the Fourier analysis leading to two values of 휆(푘) is a 
serious  problem for this scheme, as it means that it has a spurious solution 
mode. It arises  from the fact that the scheme involves three time levels and 
so needs extra initial  data, and it is this that determines the strength of this 
mode. Taking the positive  root in (2.23) we obtain a mode that provides a 
good approximation to the  differential equation, namely the ' true ' mode λ  
given by  

arg 휆 = − sin (푣 sin 푘 ∆푥) 

                               ~ − 푣휉 ퟏ −
1
6

(ퟏ − 푣 )휉 + ⋯ .                          (2.24) 

Note that the phase error here has the same leading term as the 
Lax−Wendroff  scheme − see (1.43). On the other hand, taking the negative 
root gives the spurious  mode  

                                 휆 ~(−ퟏ) 1 + 푖푣휉 −
1
2
푣 휉 + ⋯ ,             (2.25) 

which gives a mode oscillating from time step to time step and travelling in 
the  wrong direction. In practical applications, then, great care has to be 
taken not to  stimulate this mode, or in some circumstances it may have to be 
filtered out.  

The results displayed in Figure (2.5) illustrate the application of the 
leapfrog  method for a square pulse and for Gaussian initial data; the first 
time step used the  Lax−Wendroff scheme. The results clearly show the 
oscillating wave moving to  the left. In some respects the results are similar 
to those for the box scheme; but the  oscillations move at a speed 
independent of the mesh and cannot be damped, so in  this case they have to 
be countered by some form of filtering.  
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The real advantage of the leap-frog method occurs when it is applied to a 
pair of  first order equations such as those derived from the familiar second 
order wave  equation  

                                                              푢 = 푎 푢 ,                                  (2.26) 

where a is a constant: if we introduce variables 푣 = 푢  and 푤 = −푎푢 , it is  
clear that they satisfy the system  

                                                                   푣 + 푎푤 = 0,
푤 + 푎푣 = 0.                       (2.27) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.5): Linear advection by the leap-frog scheme with ∆풕 = ∆풙 = ퟎ.ퟎퟐ  
for (a) a square pulse and (b) Gaussian initial data. 
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Because of the pattern of differentials here, a staggered form of the leapfrog  
method can be used that is much more compact than (2.21): as indicated in 
Figure  (2.4) (b) we have 푉 and 푊 at different points and a staggered 
scheme can be  written  

                        
푉 ⁄ − 푉 ⁄

∆푡
+ 푎

푊 ⁄ −푊 ⁄

∆푥
= 0,         (2.28) 

                        
푊 ⁄ −푊 ⁄

∆푡
+ 푎

푉 ⁄ − 푉 ⁄

∆푥
= 0,        (2.29) 

or  

                                  

        훿 푉 + 푣훿 푊 = 0,   훿 푊 + 푣훿 푉 = 0,                                           (2.30) 

where we have taken advantage of the notation to omit the common  
superscripts and subscripts. With constant a, we can construct a Fourier 
mode by  writing  

                                     푉 ⁄ ,푊 = 휆 e 푉,푊                 (2.31) 

where 푉 and 푊are constants. These will satisfy the equations (2.28) , (2.29)  
if  

   
휆 − 1 2푖푣 sin

1
2
푘∆푥

2푖휆푣 sin
1
2
푘 ∆푥 휆 − 1

푉
 
푊 

=
0
 
0 

.                        (2.32) 

This requires the matrix in (2.32) to be singular, so that  

                       휆 − 2 ퟏ − 2푣 sin
1
2
푘 ∆푥 휆 + ퟏ = 0            (2.33) 

with solutions given by  

          휆±(푘) = 1 − 2푣 푠 ± 2푖푣푠[ퟏ − 푣 푠 ] ⁄ ,                    (2.34) 
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where 푠 = sin 푘 ∆푥. Again, for the scheme to be stable we need 휆 , 휆  to 
be a  complex conjugate pair so that stability requires |푣| ≤ 1, in which case 
휆± = 1.  The phases are given by  

arg 휆± = ± sin 2푣푠[ퟏ − 푣 푠 ] ⁄           

                  ~ ± 푣휉 1 −
1

24
(1 − 푣 )휉 + ⋯ .                         (2.35) 

Note that the two roots of (2.33) are just the squares of the roots of (2.22) 
with  ∆푥 replaced by ∆푥; hence the expansion in (2.35) corresponds to that 

in (2.24)  with 휉 replaced by 휉. Both modes are now true modes which 
move to left and  right at equal speeds, correctly approximating the 
behaviour of solutions to the  wave equation. Note too that the accuracy is 
now better than that of the box  scheme.  

Substituting  

푉 ⁄ = 푈 − 푈 ∆푡⁄ ,   푊 ⁄ = −푎 푈 − 푈 ∆푥⁄  

into the equations (2.28), (2.29)  (2.30) gives  

                    (훿 − 푣 훿 )푈 = 0,                                               (2.36) 

the simplest central difference representation of the second order wave 
equation  (2.26) for 푈, together with a consistency relation. Note, too, that if 
we eliminate  either 푉 or 푊 from the equations we find that both satisfy this 
second order  equation. Some of the very attractive properties of this scheme 
will be derived, and  put in a wider context, in the next section.  

2.ퟓ Hamiltonian systems and symplectic integration schemes  

There are two important structural properties that lie behind the attractive  
features of the staggered leap-frog scheme applied to the wave equation: 
first, the  wave equation (2.26) is the simplest example of a Hamiltonian 
PDE; and secondly,  the staggered leap-frog scheme is one of the most 
common examples of a  symplectic integration scheme. The importance of 
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combining these two ideas has  been most fully worked out over the last 
several years in the approximation of  ordinary differential equation systems; 
but as they have recently been introduced  into the area of PDEs we shall 
here outline what is involved, by means of the  staggered leap-frog example. 
We will also show that the box scheme can share  some of these properties. 
In doing so we shall mainly use the terminology and  notation of Leimkuhler 
and Reich (2004)[5]. 

Hamiltonian systems of ODEs have their origins in Hamilton's 1834  
formulation of the equations of motion for a dynamical system, but have 
since  been much generalised and their key properties widely studied. Let 
풒 ∈ ℝ  and 풑 ∈ ℝ  be ' position' and ' momentum ' variables, which 
together we will denote  by 풛, and ℋ(풑,풒) ≡ ℋ(풛) ∶ ℝ × ℝ → ℝ, a 
smooth Hamiltonian function that  defines the ODE system  

                             퐳̇ ≡ 퐪̇
퐩̇ = 푱

ℋ
ℋ ≡ 푱∇퐳ℋ,                            (2.37) 

where the canonical structure matrix 퐉 has the form  

푱 = 0 퐼
−퐼 0    with   푱 = 0 −퐼

퐼 0 , 

in which 퐼  is the 푑-dimensional identity matrix. It is clear that ℋ is 
constant  along any trajectory; its value represents the energy of the system, 
which we shall  sometimes denote by 퐸(퐳). Indeed, consider an arbitrary 
function 풢 ∶  ℝ → ℝ,  for which we will have, along any trajectory  

          
d풢(퐳)

d푡
= (∇퐳풢) 퐳̇ = (∇퐳풢) 푱∇퐳ℋ =: {풢,ℋ}.             (2.38) 

The expression {풢,ℋ} is called the Poisson bracket of 풢 and ℋ. It is clearly  
antisymmetric, and hence zero when 풢 = ℋ: and whenever it is identically 
zero  the quantity 풢(풒,풑) is constant along the trajectory.  

Then 풢 is called a constant of the motion, with the energy being such a 
constant  for any Hamiltonian system. The best-known example of a 
Hamiltonian system is  the simple plane pendulum, in which 푑 = 1 and 
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ℋ = 푝 − (푔 퐿⁄ ) cos푞. The trajectories are given by 푞̇ = 푝, 푝̇ =
−(푔 퐿⁄ ) sin 푞, and from ℋ(푞,푝) = const.  along each, it is easy to deduce 
that in the (푞, 푝) −phase plane they form the  familiar closed curves around 
centres at 푝 = 0, 푞 = 2푚휋 separated by saddle  points at 푝 = 0, 푞 =
(2푚 + 1)휋.  

Of even greater significance than the existence of constants of the motion 
are  the structural properties of the flow map formed from a set of 
trajectories of a  Hamiltonian system: for example, in the scalar 푑 = 1 case 
it is area-preserving;  more generally it is said to be symplectic. To see what 
is involved in these ideas  we need a few more definitions. A general 
mapping Ψ ∶ ℝ → ℝ   is said to be  symplectic, with respect to the 
canonical structure matrix 푱, if its Jacobian Ψ퐳 is  such that  

                                  Ψ퐳 푱 Ψ = 푱                                             (2.39) 

In the scalar case it is then easy to calculate that  

if   Ψ퐳 = 푎 푏
푐 푑    then   Ψ퐳 푱 Ψ퐳 = 0 −푎푑 + 푏푐

푎푑 − 푏푐 0 , 

so that Ψ is simplectic iff detΨ퐳 ≡ 푎푑 − 푏푐 = 1. Hence if this holds, and if 
퐳 ∈ Ω ⊂ ℝ  is mapped into 퐳 = Ψ(퐳) ∈ Ω ⊂ ℝ , we have  

d퐳
 

Ω
= detΨ퐳

 

Ω
d퐳 = d퐳

 

Ω
, 

i.e., the mapping is area-preserving. So the symplectic property generalizes 
the  area preserving property to 푑 > 1.  

To apply this concept to the mapping produced by integrating a 
differential  equation we define, in the language of differential geometry, the 
differential one-form of a function 푓 ∶ ℝ → ℝ, in the direction 휉 ∈ ℝ ,  

         d푓(흃) ∶= ∇퐳푓 ⋅ 흃 ≡
휕푓
휕푧

휉 .                                     (2.40) 
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Then for two such functions, 푓 and 푔, we can define a differential two form,  
called the wedge product, as  

  (d푓 ⋀ d푔)(흃,휼) ∶= d푔(흃) d푓(휼) − d푓(흃) d푔(휼).         (2.41) 

In particular, we can apply (2.40) to the components 푧  of 퐳 ≡ (퐪,퐩) to 
obtain  d푧 (흃) = 휉  and write these as a vector d퐳 ≡ (d퐪, d퐩) =
(d푧 , d푧 , … , d푧 ) . It  is also easy to see that if we apply (2.40) to the 
components of the transformed  variable 퐳 = Ψ(퐳) we obtain  

                  d퐳(훏) = Ψ퐳d퐳(훏) ≡ Ψ풛훏.                                   (2.42) 

Furthermore, we can apply (2.41) to these components and then define the  
wedge product  

                          d퐪 ⋀d퐩 ∶= d푞  ⋀d푝 .                             (2.43) 

It is the conservation of this quantity that turns out to be the key  
characterization of Hamiltonian systems.  

First of all, with a calculation as in the scalar case, we see that  

흃 퐽 휼 = d퐪 (흃), d퐩 (흃) 퐽 d퐪(휼), d퐩(흃)  

          = [d푝 (흃)d푞 (휼) − d푞 (흃)d푝 (휼)] 

                         = d푞  ⋀d푝 ≡ d퐪 ⋀d퐩.                               (2.44) 

Then if we premultiply (2.39) by 흃  and postmultiply by િ, and compare the  
result with the combination of (2.44) with (2.42), we deduce immediately 
that a  mapping from (풒,풑) to (풒,풑) is symplectic iff  

                                                   d퐪 ⋀d퐩 = d퐪 ⋀d퐩.                   (2.45) 
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The fundamental result that the flow map of a Hamiltonian system is 
symplectic  can be derived directly from (2.39), but (2.45) is crucially 
important in  characterising the behaviour of the flow.  

Numerical methods for approximating ODE systems that retain these 
properties  are called symplectic integration schemes or, more generally, 
geometric integrators  − see Hairer, Lubich and Wanner (2002)[3]. The 
simplest of these share the staggered  structure of the leap-frog scheme. For 
simplicity we start with the scalar 푑 = 1  case, where we alternate between 
the pair of equations  

    푞 = 푞 + ∆푡ℋ 푞 ,푝 ⁄  

                    푝 ⁄ = 푝 ⁄ − ∆푡ℋ 푞 ,푝 ⁄ .            (2.46) 

If, as in the pendulum case, ℋ  depends only on 푝 and ℋ  only on 푞 this is 
an  explicit method; more generally, it is implicit. In either case, if we take 
the  differentials of these equations we obtain  

d푞 = d푞 + ∆푡 ℋ d푞 + ℋ d푝 ⁄            

      d푝 ⁄ = d푝 ⁄ − ∆푡 ℋ d푞 + ℋ d푝 ⁄ ,              (2.47) 

where we have omitted the arguments from the common Hamiltonian in  
(2.46). Now when we take the wedge product of these two equations, its  
antisymmetry implies that terms d푞풏 ⋀ℋ d푞풏 and ℋ d푝 ⁄  ⋀ d푝 ⁄  
are  zero. So we take the wedge product of the first equation with d푝 ⁄  
and  substitute from the second equation in the d푞  term to get, after 
omitting these null  terms,  

d푞  ⋀d푝 ⁄ = d푞  ⋀ d푝 ⁄ − ∆푡ℋ d푝 ⁄ + ∆푡ℋ d푞  ⋀d푝 ⁄ .  (2.48) 

The two terms in ∆푡 cancel and we have the discrete symplectic property  

                                         d푞  ⋀d푝 ⁄ = d푞  ⋀d푝 ⁄ .              (2.49) 
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If the whole procedure is repeated for a system with 푑 > 1 the same result is  
obtained: this is because, from the definitions of (2.41) and (2.43), it is easy 
to  see that for any matrix 퐴 we have  

d퐚 ⋀(퐴d퐛) = (퐴 d퐚) ⋀d퐛, 

so that if 퐴 is symmetric and 풂 = 풃 the antisymmetry of the wedge product  
again implies that the result is zero.  

In the ODE literature this staggered leap-frog method is usually referred 
to as  the Störmer-Verlet method; and the commonly used Asymmetrical 
Euler methods  differ from it only in their superscript labelling. Their 
effectiveness in the long  time integration of Hamiltonian ODE systems is 
amply demonstrated in the  references already cited.  

The transfer of these ideas to PDEs is relatively recent; and there are 
several  alternative approaches. One is to discretise in space so as to obtain a 
Hamiltonian  system of ODEs to which the above ideas can be applied 
directly: there is  increasing interest in mesh-free or particle methods to 
achieve this step, but as we  have hitherto excluded particle methods we 
shall continue to do so here;  alternatively, one may first make a 
discretisation in space and then apply the  'method of lines ' to integrate in 
time, but we will not consider this here either. A  more fundamental 
formulation is due to Bridges[1].This leads to a multi-symplectic  PDE 
which generalises the form of (2.37) to  

              퐊퐳 + 퐋퐳 = ∇퐳푆(퐳),                                                         (2.50) 

where 퐊 and 퐋 are constant skew-symmetric matrices. Unfortunately, these  
matrices and linear combinations of them are often singular, and the 
formulation of  a given system in this way not very obvious. We will 
therefore apply a more  straightforward approach to a wave equation 
problem that generalises (2.26) and  (2.27).  

Suppose we have a Hamiltonian ℋ(푢, 푣) which is now an integral over 
the  space variable (푠) of a function of 푢, 푣 and their spatial derivatives. 
Then to derive  a Hamiltonian PDE we define a variational derivative of ℋ. 
For example, consider  
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   ℋ(푢,푣) = 퐸(푥, 푡) d푥 ≡ 푓(푢) + 푔(푢 ) +
1
2
푣 d푥,    (2.51) 

where we have not specified the interval on which 푢 and 푣 are defined and 
the  equations are to hold; the integrand 퐸(푥, 푡) is called the energy density. 
The  variational derivative of a functional 풢(푢) is defined by the relation  

훿 풢(푢)(훿푢) d푥 = lim
→

풢(푢 + 휖훿푢) − 풢(푢)
휖

; 

and applying this to (2.51), with boundary conditions that ensure any 
boundary  terms are zero, gives  

훿 ℋ(푢, 푣)(훿푢)d푥 = lim
→
휀 [푓(푢 + 휖훿푢) − 푓(푢) + 푔((푢 + 휖훿푢) ) − 푔(푢 )] d푥 

= [푓 (푢)훿푢 + 푔 (푢 )(훿푢) ] d푥             

                                      = [푓 (푢) − 휕 푔 (푢 )] 훿푢 d푥.                        (2.52) 

Comparing the two sides we deduce that  

                        훿 ℋ(푢, 푣) = 푓 (푢) − 휕 푔 (푢 ).                                       (2.53) 

The resulting Hamiltonian PDE is given as  

                                            
푢
푣 = 0 +1

−1 0
훿 ℋ
훿 ℋ .                          (2.54) 

That is,  

                                   푢 = 푣,   푣 = 휕 푔 (푢 ) − 푓 (푢).                        (2.55) 

Moreover, from these equations we can deduce a local energy conservation 
law  of the form 퐸 + 퐹 = 0: from differentiation of the terms in the energy 
density of  (2.51) and substitution from (2.55) we get, after cancellation and 
collection of  terms,  

           퐸 = 푓 (푢)푣 + 푔 (푢 )푣 + 푣[휕 푔 (푢 ) − 푓 (푢)] 

                                          = [푣푔 (푢 )] =:−퐹 .                               (2.56) 
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The quantity 퐹(푥, 푡) = −푣푔 (푢 ) is called the energy flux.  

For example, let 푓 = 0 and 푔(푢 ) = (푎푢 )  with constant 푎. Then 
(2.55)  becomes  

                                            푢 = 푣,   푣 − 푎 푢 ,                               (2.57) 

which is equivalent to the second order wave equation (2.26). If we set 
푤 = −푎푢  we get the first order pair of equations (2.27) to which we 
applied the  staggered leap-frog method in Section 2.4. Furthermore, since 
푣푔 (푢 ) = 푣푎 푢 = −푎푣푤 the local energy conservation law becomes  

                                          
1
2
푣 +

1
2
푤 + [푎푣푤] = 0,            (2.58) 

which we could deduce directly from (2.27). It is this local property that we  
shall  now show is preserved in a discrete form by the staggered leap-frog 
scheme.  It can  be regarded as the simplest consequence of the symplectic 
character of the  method, and corresponds to the energy being a constant of 
the motion in the ODE  case. Consideration of wedge product relations of the 
form (2.49), which now  have to be integrated or summed over the space 
variables, is beyond the scope of  thisthesis.  
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Chapter Three 
Consistency, Convergence and Stability 

3.1 Definition of the problems considered 
In this chapter we shall gather together and formalise definitions that we 

have introduced in earlier chapters. This will enable us to state and prove the 
main part of the key Lax Equivalence Theorem. For simplicity we will not 
aim at full generality but our definitions and arguments will be consistent 
with those used in a more general treatment. In the problems which we shall 
consider, we make the following assumptions:  

 The region Ω is a fixed bounded open region in a space which may 
have one, two, three or more dimensions, with co-ordinates which 
may be Cartesian (푥,푦, … ), cylindrical polar, spherical polar, etc.; 

 The region Ω has boundary ∂Ω;  
 The required solution is a function 푢 of the space variables, and of 푡, 

defined on Ω × [0, 푡 ]; this function may be vector-valued, so that our 
discussion can be applied to systems of differential equations, as well 
as to single equations; 

 The operator 퐿(⋅) involves the partial derivatives of 푢 in the space 
variables; 퐿 does not involve 푡 explicitly; for the most part we shall 
assume that 퐿 is a linear operator. 

 The boundary conditions will prescribe the values of 푔(푢) on some or 
all of the boundary Ω, where 푔(⋅) is an operator which may involve 
spatial partial derivatives;  

 The initial condition prescribes the value of 푢 for 푡 = 0 over the 
region Ω. 

Hence we write the general form of the problems considered as  

                                             
휕푢
휕푡

= 퐿(푢)   in   Ω × (0, 푡 ],                   (3.1푎) 

                                      푔(푢) = 푔    on   휕Ω ⊂ 휕Ω,                        (3.1푏) 

                                      푢 = 푢    on   Ω   when   푡 = 0.                   (3.1푐) 
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We shall always assume that (3.1) defines a well-posed problem, in a sense 
which we shall define later; broadly speaking, it means that a solution 
always exists and depends continuously on the data.  

3.2The finite difference mesh and norms 

Our finite difference approximation will be defined on a fixed mesh, with 
the time interval Δ푡 constant both over the mesh and at successive time 
steps. The region Ω is covered by a mesh which for simplicity we shall 
normally assume has uniform spacing Δ푥,Δ푦, … in Cartesian co-ordinates, or 
Δr,Δθ, . .. in polar co-ordinates. Individual values at mesh points will be 
denoted by 푈 ; in two or more space dimensions the subscript 푗 will be used 
to indicate a multi-index, as a condensed notation for 푈 , ,푈 , , , etc. We 
shall assume that a fixed, regular finite difference scheme is applied to a set 
of points where 푈  is to be solved for and whose subscripts 푗 lie in a set 퐽Ω, 
and it is only these points which will be incorporated in the norms. Usually 
this will be just the interior points of the mesh; and this means that where 
made necessary by curved boundaries, derivative boundary conditions etc. 
The values of 푈 at all such points on time level 푛 will be denoted by 푈 : 

                                                       푈 ∶= 푈 , 푗 ∈ 퐽Ω .                   (3.2) 

To simplify the notation we will consider schemes which involve only 
two time levels: for one-step methods this means that each 푈 , if a vector, 
has the same dimension as 푢. However, as we have seen with the leap-frog 
method in Section 2.4, we can include multi-step methods by extending the 
dimension of 푈  compared with u. For example, if a scheme involves three 
time levels, so that 푈  is given in terms of 푈  and 푈 , we can define a 
new vector 푈  with twice the dimension, whose elements are those of 푈  
and 푈 .  

To compare 푈 with 푢 we need to introduce norms which can be used on 
either, and in particular on their difference. Thus we first denote by 푢  mesh 
values of the function 푢(푥, 푡) which will usually be the point values 
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푢 푥 , 푡 . We hope to show that the mesh values of 푈 converge to these 
values of 푢. Then as for the mesh point values 푈  above we define  

                                                       푢 ∶= 푢 , 푗 ∈ 퐽Ω .                           (3.3) 

We shall consider just two norms. Firstly, the maximum norm is given by 

                                          ‖푈 ‖ ∶= max 푢 , 푗 ∈ 퐽Ω .                     (3.4) 

If we evaluate the maximum norm of 푢  the result will approximate the 
usual supremum norm ‖푢‖  with 푢 considered as a function of 푥 at fixed 
time 푡 , but will not in general be equal to it. The norms will only be equal if 
the maximum value of the function |푢(푥, 푡 )| is attained at one of the mesh 
points.  

 

 

 

 

 

 

Figure (3.1): Definition of control volume. 

Secondly, we shall use a discrete 푙  norm which will approximate the 
integral 퐿  norm. To do so, we introduce a ‘control volume’ with measure 푉  
associated with each interior mesh point: these will be non-overlapping 
elements whose union approximates Ω. Usually, as shown in Figure (3.1), a 
mesh point 푥  will lie at the centre of the control volume – see also Section 
2.1 on finite volume methods; but this need not be the case so long as there 
is a one-to-one correspondence between mesh points and control volumes. In 
three-dimensional Cartesian geometry, 푉 = Δ푥Δ푦Δ푧; in three-dimensional 
cylindrical 
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geometry, 푉 = 푟 Δ휃Δ푟Δ푧, and so on. Then, we define  

                                 ‖푢 ‖ ≔ 푉
∈ Ω

푈

⁄

.                   (3.5) 

For mesh points near the boundary the control volume may or may not be 
modified to lie wholly in Ω. In either case, the sum in (3.5) clearly 
approximates an integral so that ‖푢 ‖  approximates but does not in general 
equal the integral 퐿  norm  

                              ‖푢(⋅, 푡 )‖ ∶= |푢(푥, 푡 )|
 

Ω
푑푉

⁄

        (3.6) 

at time 푡 . However, if we define 푢  as the root mean square value of 
푢(푥, 푡 ) averaged over the 푗th control volume we clearly do have an exact 
match. For a single differential equation the notation 푈  is clear; if we are 
dealing with a system of differential equations, 푈  is a vector and 푈  
denotes a norm of this vector. The choice of which vector norm to use is 
immaterial to the subsequent analysis, but of course it must be used 
consistently throughout. 

3.3Finite difference approximations 

The general form of difference scheme we shall consider will be written  

                                                퐵 푈 = 퐵 푈 + 퐹 .                (3.7) 

As the notation implies, the difference operators 퐵 ,퐵  are independent 
of 푛, corresponding to the assumption that 퐿(⋅) does not depend explicitly 
on 푡; but, although based on fixed difference operators, they may depend on 
the point where they are applied. Thus at each point 푗 ∈ 퐽Ω, a linear 
difference operator 퐵 will be written in the form of a sum over near 
neighbours also in 퐽Ω:  

                        (퐵푈 ) = 푏 , 푈
∈ Ω

   ∀푗 ∈ 퐽Ω;               (3.8) 
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We shall always assume that 퐵  is linear, of the form (3.8), so that it can 
be represented by a square matrix. To extend the theory to nonlinear 
problems it would be necessary for 퐵  to be nonlinear but not necessarily 
퐵 ; but to cover schemes like the box scheme by such an extension would 
require 퐵  to be nonlinear too.  

We shall furthermore assume that 퐵  is invertible, i.e. its representing 
matrix is non-singular. Hence we can write (3.7) as  

                                              푈 = 퐵 [퐵 푢 + 퐹 ]                (3.9) 

We shall also assume that (3.7) is so scaled that formally it represents the 
differential equation in the limit and hence 퐵 = 푂(1 ∆푡⁄ ). Thus 

                               퐵 푢 − [퐵 푢 + 퐹 ] →
휕푢
휕푡

− 퐿(푢)        (3.10) 

as the mesh intervals Δ푡,Δ푥, . .. are refined in some manner which may 
depend on consistency conditions being satisfied.  

Moreover, we assume that the matrix 퐵  is uniformly well-conditioned in the 
sense that there is a constant 퐾 such that, in whichever norm is being used to 
carry out the analysis,  

                                                       ‖퐵 ‖ ≤ 퐾 ∆푡,                    (3.11) 

even though 퐵  is represented by a matrix of ever-increasing dimension as 
the limit Δ푡 → 0 is approached.  

Consistency, order of accuracy and convergence 

For brevity we shall characterise the whole of the spatial discretisation by 
a single parameter ℎ: this may be just the largest of the mesh intervals 
∆푥,∆푦, . .., though this may need to be scaled by characteristic speeds in each 
of the co-ordinate directions; or ℎ may be the diameter of the largest control 
volume around the mesh points. Then taking the limit along some designated 
refinement path we shall denote by ‘∆푡(ℎ) → 0’, or sometimes just Δ푡 → 0 
or ℎ → 0: we shall always need Δ푡 to tend to zero but stability or consistency 
may require that it does so at a rate determined by ℎ, for example Δ푡 =
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푂(ℎ ) being typical in parabolic problems and Δ푡 = 푂(ℎ) in hyperbolic 
problems.  

The truncation error is defined in terms of the exact solution 푢 as  

                     푇 ∶= 퐵 푢 − [퐵 푢 + 퐹 ],                (3.12) 

and consistency of the difference scheme (3.7) with the problem (3.1a)–
(3.1c) as  

                          푇 → 0      as   ∆푡(ℎ) → 0    ∀푗 ∈ 퐽Ω           (3.13) 

for all sufficiently smooth solutions u of (3.1a)–(3.1c). Note that this 
includes consistency of the boundary conditions through the elimination of 
the boundary values of 푈 in the definition of 퐵  and 퐵 . If 푝 and 푞 are the 
largest integers for which  

      푇 ≤ 퐶[(∆푡) + ℎ ]     as   ∆푡(ℎ) → 0    ∀푗 ∈ 퐽Ω           (3.14) 

for sufficiently smooth u, the scheme is said to have order of accuracy 푝 in 
Δ푡 and 푞 in ℎ: or 푝th order of accuracy in Δ푡, and 푞th order of accuracy in ℎ.  

Convergence on the other hand is defined in terms of all initial and other 
data for which (3.1a)–(3.1c) is well-posed, in a sense to be defined in the 
next section. Thus (3.7) is said to provide a convergent approximation to 
(3.1a)–(3.1c) in a norm ‖ ⋅  ‖ if 

    ‖푈 − 푢 ‖ → 0     as   ∆푡(ℎ) → 0,푛∆푡 → 푡 ∈ (0, 푡 ]      (3.15) 

for every 푢  for which (3.1a)–(3.1c) is well-posed in the norm: here we 
mean either of the norms (3.4) or (3.5). 

3.4 Stability and the Lax Equivalence Theorem 

None of the definitions (3.12)–(3.15) in the last section was limited to 
linear problems: they are quite general. In this section  however we are able 
to consider only linear problems. Suppose two solutions 푉  and 푊  of (3.7) 
or (3.9) have the same inhomogeneous terms 퐹  but start from different 

q 
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initial data 푉  and 푊 : we say the scheme is stable in the norm ‖ ⋅  ‖ and for 
a given refinement path if there exists a constant 퐾 such that  

              ‖푉 −푊 ‖ ≤ 퐾‖푉 −푊 ‖,   푛∆푡 ≤ 푡 ;                    (3.16) 

the constant 퐾 has to be independent of 푉 ,푊  and of Δ푡(ℎ) on the 
refinement path, so giving a uniform bound.  

Since we are dealing with the linear case (3.16) can be written  

     ‖(퐵 퐵 ) ‖ ≤ 퐾,   푛∆푡 ≤ 푡 .                                                   (3.17) 

Notice that for implicit schemes the establishment of (3.11) is an important 
part of establishing (3.17); consider, for example, the box scheme for linear 
advection, and the effect of having boundary conditions on one side or the 
other.  

It is now appropriate to formalise our definition of well-posedness. We 
shall say that the problem (3.1) is well-posed in a given norm ‖  ⋅ ‖ if, for all 
sufficiently small ℎ, we can show that (i) a solution exists for all data 푢  for 
which ‖푢 ‖ is bounded independently of ℎ, and (ii) there exists a constant 
퐾  such that for any pair of solutions 푣 and 푤,  

               ‖푣 − 푤 ‖ ≤ 퐾 ‖푣 − 푤 ‖,     푡 ≤ 푡 .                       (3.18) 

This differs from the usual definition in that we are using discrete norms; but 
we have chosen each of these so that it is equivalent to the corresponding 
function norm as ℎ → 0, if this exists for 푢, and we define 푢  appropriately. 
An important feature of either definition is the following: for 푢 to be a 
classical solution of (3.1a) it must be sufficiently smooth for the derivatives 
to exist; but suppose we have a sequence of data sets for which smooth 
solutions exist and these data sets converge to arbitrary initial data 푢  in the 
‖  ⋅ ‖ norm, uniformly in ℎ; then we can define a generalised solution with 
this data as the limit at any time 푡  of the solutions with the smooth data, 
because of (3.18). Thus the existence of solutions in establishing well-
posedness has only to be proved for a dense set of smooth data (with the 
definition of denseness again being uniform in ℎ).  



52 
 

There is clearly a very close relationship between the definition of well-
posedness for the differential problem and that of stability given by (3.16) 
for the discrete problem. This definition of stability, first formulated by Lax 
in 1953, enabled him to deduce the following key theorem: 

Theorem (3.1): (Lax Equivalence Theorem) 

For a consistent difference approximation to a well-posed linear 
evolutionary problem, which is uniformly solvable in the sense of (3.11), the 
stability of the scheme is necessary and sufficient for convergence. 

Proof (of sufficiency): 

Subtracting (3.12) from (3.7) we have  

퐵 (푈 − 푢 ) = 퐵 (푈 − 푢 ) − 푇 , 

i.e., 

                         푈 − 푢 = (퐵 퐵 )(푈 − 푢 )       − 퐵 푇 .           (3.19) 

Assuming that we set 푈 = 푢 , it follows that 

 푈 − 푢 = −[퐵 푇 + (퐵 퐵 )퐵 푇 + ⋯+ (퐵 퐵 ) 퐵 푇 ].   (3.20) 

Now in applying the theorem, (3.11) and (3.16) are to hold in the same 
norm, for which we shall also deduce (3.15); we can combine these two to 
obtain  

                                           ‖(퐵 퐵 ) 퐵 ‖ ≤ 퐾퐾 ∆푡                                  (3.21) 

from which (3.19) gives  

‖푈 − 푢 ‖ ≤ 퐾퐾 ∆푡 ‖푇 ‖. 

Thus convergence in the sense of (3.15) follows from the consistency of 
(3.13), if 푢 is sufficiently smooth for the latter to hold. For less smooth 
solutions, convergence follows from the hypotheses of well-posedness and 
stability: general initial data can be approximated arbitrarily closely by data 
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for smooth solutions and the growth of the discrepancy is bounded by the 
well-posedness of the differential problem and the stability (3.15) of the 
discrete problem.  

Calculating stability conditions 

As we are dealing with linear problems, if in (3.16) 푉  and 푊  are 
solutions of the difference equations (3.7), then the difference 푉 −푊  is a 
solution of the homogeneous difference equations with homogeneous 
boundary data. That is, establishing stability is equivalent to establishing the 
following: 

 퐵 푈 = 퐵 푈    and   푛∆푡 ≤ 푡    ⇒    ‖푈 ‖ ≤ 퐾‖푈 ‖,                 (3.22) 

which is what is meant by (3.17). The constant 퐾 will generally depend on 
the time interval 푡  and allows for the sort of exponential growth that might 
occur with 푢 = 푢 + 푢, for example. For simple problems one will often 
find: either 퐾 = 1, there is no growth and the scheme is stable; or 푈 ∼
 휆 푈 , with |휆| > 1 even as Δ푡 → 0 for some mode, so the scheme is 
unstable.  

Thus when establishing a maximum principle we have to establish 
stability in the maximum norm: strictly speaking, we have also to establish a 
minimum principle so as to be able to say not only  

                                               푈 ≤ max푈 ≤ ‖푈 ‖                      (3.23) 

but also 

                                              푈 ≥ min푈 ≥ −‖푈 ‖                    (3.24) 

and can then deduce 

                                                  ‖푈 ‖ ≤ ‖푈 ‖ .                              (3.25) 

Amaximum principle is seldom available or even appropriate for 
hyperbolic problems. As we have noted, the first order scheme (1.23) 
satisfies a maximum principle whenever 0 ≤ 휈 ≤ 1 so that it is then stable in 
the maximum norm: but we can show that this can never be true of a second 
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order scheme. For example, consider the Lax–Wendroff method written in 
the form (1.39). If it were to satisfy a maximum principle, then for any set of 
non-positive values for 푈  one should never have 푈 > 0: yet if 0 < 휈 <
1,  setting 푈 = 푈 = 0 and 푈 = −1 gives a positive value for 푈 . 
This does not of course demonstrate that the scheme is actually unstable in 
the maximum norm, merely that we cannot prove such stability by this 
means.  

For this reason, and also because hyperbolic differential equations are 
much more commonly well-posed in the 퐿  norm than in the supremum 
norm, for hyperbolic problems we have to adopt the more modest target of 
proving stability in the 푙  norm (3.5). This gives weaker results because we 
have, recalling that 푉  is the measure of the 푗th control volume,  

                   min
∈ Ω

푉
⁄
‖푈‖ ≤ ‖푈‖ ≤ 푉

∈ Ω

⁄

‖푈‖ ;          (3.26) 

in the bounded region we are working with, the coefficient on the right is a 
finite constant while that on the left tends to zero as the mesh is refined. It is 
clear that we would prefer to derive a maximum norm error bound from a 
stability analysis but, if we have only 푙  stability and so obtain a bound for 
the 푙  norm of the error ‖퐸 ‖ , then (3.26) gives a poor result for ‖퐸 ‖ .  

However, it is the 푙  norm which is appropriate for Fourier analysis 
because of Parseval’s relation. Suppose we can assume periodicity on a 

normalized region –휋,휋  which is covered by a uniform (Cartesian) mesh 
of size Δ푥 = Δ푥 =. . . = Δ푥 = 휋 퐽⁄ . Then the Fourier modes that can be 
distinguished on the mesh correspond to wave numbers, which we denote by 
the vector 풌, having components given by  

                                           푘 = 0, ±1, ±2, … , ±퐽,                                    (3.27) 

where the last two with 푘Δ푥 = ±휋 are actually indistinguishable. Hence we 
can expand any periodic function on the mesh as  
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                                        푈 퐱 =
1

(2휋) ⁄ 푈(퐤)e 퐤⋅
(풌)

                (3.28) 

where the prime on the summation sign means that any term with 푘 = ±퐽  
has its weight halved, and we have also used a vector notation 퐱  for mesh 
points. This discrete Fourier expansion has an inverse which is the discrete 
Fourier transform  

                               푈(퐤)   =
1

(2휋) ⁄ (∆푥) 푈 퐱 e 퐤⋅
( )

          (3.29) 

where each component of 푗 runs from −퐽 to 퐽 with the mesh points on the 
periodic boundaries again having their weights halved so that all the weights 
are equal to the 푉  introduced in (3.5). 

Lemma (3.1): 

The Fourier modes (2휋) ⁄ e 퐤⋅풙  with components given by (3.27) are 
orthonormal with respect to the 푙  inner product used in (3.29), namely  

                                          〈푈,푊〉 ∶= (∆푥) 푈 푊
( )

.                   (3.30) 

Proof: 

It is sufficient to consider 푑 = 1. We first establish the fundamental 
trigonometric identity  

       
1
2

e + e ( ) + ⋯+ e ( ) +
1
2

e = sin 퐽휃 cos
1
2
휃 .    (3.31) 

From the summation 

1 + e + e + ⋯+ e ( ) = e − 1 e − 1  

we obtain by adding e − 1  

     
1
2

+ e + e + ⋯+ e ( ) +
1
2

e =
1
2

e − 1
e + 1

(e − 1)     (3.32) 
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                      =
1
2i

e − 1 cos
1
2
휃 .                                                (3.33) 

Combining this with a similar sum for −휃 gives (3.31). Now apply this with 
휃 = (푘 − 푘 )Δ푥, so that 퐽휃 = (푘 − 푘 )휋. We obtain  

e e
( )

= sin(푘 − 푘 )휋 cot
1
2

(푘 − 푘 )∆푥 ,     푘 ≠ 푘 , 

so that 

e e
( )

= (2휋 ∆푥⁄ )훿 , . 

Hence we have, with 푉  the control volume measure,  

‖푈‖ = 푉 푈
∈ Ω

≡ (∆푥) 푈 x
( )

 

                                                          =
2휋
∆푥

푈(퐤)
(풌)

2휋
∆푥

,    (3.34) 

i.e., 

                                      푈 = 푈(퐤)
(퐤)

= ‖푈‖ ,                       (3.35) 

which is the appropriate form of Parseval’s relation. 

For a rectangular region of general dimensions a simple scaling will 
reduce the situation to the above case. However, note that not only is Δ푥 
then changed but we will also generally have Δ푘 ≠ 1 and that such a 
coefficient will be needed in the definition of 푈  for (3.35) to hold. It is 
also worth noting that when for example we have a problem on [0,1] with 
푢(0) = 푢(1) = 0 we extend this to a periodic problem on [−1,1] by 
imposing antisymmetry at 푥 = 0 and using a sine series. This is why we 
have taken –휋,휋  as our standard case above.  
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To establish (3.22) then, for a constant coefficient problem with periodic 
boundary conditions, we expand arbitrary initial data in the form (3.28) and, 
from the discrete Fourier transform of (3.22), obtain the same form at 
successive time levels with the coefficients given by  

                                      퐵 (퐤)푈 (퐤) = 퐵 (퐤)푈 (퐤),              (3.36) 

where, if the 푈  are 푝-dimensional vectors, 퐵  and 퐵  are 푝 × 푝 matrices. 
The matrix 

                                                  퐺(퐤) = 퐵 (퐤)퐵 (퐤)                   (3.37) 

is called the amplification matrix as it describes the amplification of each 
mode by the difference scheme. Because we have assumed that 퐵  and 퐵  
are independent of t we can write  

                                                    푈 = [퐺(퐤)] 푈                         (3.38) 

and using (3.35) have 

sup
‖푈 ‖
‖푈 ‖ = sup

∑ 푈 (퐤)(퐤)
⁄

∑ 푈 (퐤)(퐤)

⁄  

                       = sup
퐤

sup
(퐤)

푈 (퐤)
푈 (퐤)

= sup
퐤

|[퐺(퐤)] |.           (3.39) 

Thus stability in the 푙  norm is equivalent to showing that  

           |[퐺(퐤)] | ≤ K    ∀퐤,    푛Δ푡 ≤ 푡 .                              (3.40) 

Here |퐺 | means the 푝 × 푝 matrix norm subordinate to the vector norm used 
for 푈  and. 푈(퐤). 

Then clearly we have the following result.  

Theorem (3.2): (von Neumann Condition) 

A necessary condition for stability is that there exist a constant 퐾  such 
that  
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                  |λ(풌)| ≤ 1 + 퐾 Δ푡      ∀퐤,     푛Δ푡 ≤ 푡 ,             (3.41) 

for every eigenvalue 휆(퐤) of the amplification matrix 퐺(퐤). 

Proof: 

By taking any eigenvector of 퐺(퐤) as 푈(퐤) it is obviously necessary that 
there be a constant 퐾 such that |휆 | ≤ 퐾: then by taking 푛Δ푡 = 푡  we have 

|λ| ≤ 퐾 ⁄ ≤ 1 + (퐾 − 1)Δ푡 푡⁄     for    Δ푡 ≤ 푡 , 

the last inequality following from the fact that 퐾  is a convex function of 푠. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 
 

References: 

[1]T.J. Bridges, Multi-symplectic structure and wave propagation, Math. 
Proc. Comb.Philos. Soc. 121(1997), 147-190. 

[2]푃.퐶표푙푒푙푙푎 푎푛푑 푃.푅.푊표표푑푤푎푟푑,푇ℎ푒 푃푖푒푐푒푤푖푠푒 푃푎푟푎푏표푙푖푐 푚푒푡ℎ표푑(푃푃푚) 

 푓표푟 푔푎푠 − 푑푦푛푎푚푖푐푎푙 푠푖푚푢푙푎푡푖표푛, 퐽. 표푓 퐶표푚푝푢푡.푃ℎ푦푠. 54(1984), 174− 201.  

[3]E.Hairer, C.Lubich, and G. Wanner, Geometric Numerical Integration, 
Berlin, Springer- Verlag,  2002.  

[4]B.van leer, Towards the ultimate conservation difference scheme.   
monotonicity and conservation combined in a second order scheme, J. of  
Comput. Phys. 14(1974), 361-370.   

[5]퐵. 퐿푒푖푚푘푢ℎ푙푒푟 푎푛푑 푆.푅푒푖푐ℎ, 푆푖푚푢푙푎푡푖푛푔 퐻푎푚푖푙푡표푛푖푎푛 퐷푦푛푎푚푖푐푠,퐶푎푚푏푟푖푑푔푒,
 ambridge University Press,  2004.  

[6]퐾.푊.푀표푟푡표푛 푎푛푑 퐷.퐹.푀푎푦푒푟,푁푢푚푒푟푖푐푎푙 푠표푙푢푎푡푖표푛  

 표푓 푝푎푟푡푖푎푙 퐷푖푓푓푒푟푒푛푡푖푎푙 Equation, An Introduction, Cambridge         
University Press, 2005.  

[7]P.L. ROe, Appoximate Riemann solver, parameter vector, and   
difference scheme, J. of   Comput. Phys. 43(1981), 357-372. 

 

 

 

 

 

 

.  


