Abstract

The objective of this work is to enhance the thermal and tensile properties (tensile strength, elongation at break and modulus) of natural rubber (NR) by converting it into new nanocomposite natural rubber (nano-NR) . Montmorillonite (MMT) modification with fatty amides (FAs) as surfactants vegetarian organic was used as an additive to NR to improve it's characteristics. For the sake of comparison nano-NR was produced using the conventional procedure of Dodecyl ammonium chloride (DDA) as surfactants petroleum organic (DDA-MMT). 1 to 5 part per hundred rubber (phr) of FAs-MMT and DDA-MMT was used.

The nano-NR was synthesized by melt-blending of the FAs-MMT and NR. Fatty amides (FAs), which were synthesized from palm oil, have been used as organic surfactant and the clay modification layer distance increases from 1.21 to 2.65 nm. The nano-NR was then characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and tensile properties measurement .

The XRD ,TEM and TGA results confirmed the production of nano-NR, they show higher thermal stability and observed that the results of a device tensile reinforcement of tensile properties in comparison with those of the pure NR,micro-NR and nano-NR based on DDA. The optimum phr for FAs-MMT and DDA -MMT is found to be 3 and 2 respectively. The use of FAs reduced the dependence on petroleumbased surfactants. In addition to renewable resources, this nano-NR are considered as environmentally friendly. The use FAs-MMT with synthetic rubber is recommended for further research.

الخلاصة

الغرض من هذا العمل هوتحسين الخواص الحرارية والشدية (مقاومة الشد، الآستطالة عند الكسر ومعيار المرونة) للمطاط الطبيعي (NR) بواسطة تحويل المطاط الطبيعي الى مركبات نانوية جديدة (nano-NR) بواسطة أضافة المونتموريلونيت (MMT) المحور بالأميدات الدهنية (FAs) كمروغات عضوية نباتية تستخدم بأضافتها الى المطاط الطبيعي للتطوير كما يبين التشخيص . لأجل مقارنة المركب النانوي المنتج يستخدم منتج تقليدي دوديسيل كلوريد الأمونيوم كمروغ عضوي بترولي (DDA) يضاف الى المونتموريلونيت لتحويله الى المطاط الطبيعي من 1 الى م جزء لكل مئة جزء مطاط (phr) للأستخدام.

المطاط الطبيعي النانوي يحضر بواسطة مزج منصهر المطاط مع MMT المحور بالأميدات الدهنية (FAs) التي تحضر من زيت النخيل لتستخدم كمروغ وتزيد المسافة بين طبقات MMT المحور من 1.21nm الى 2.65nm . تشخص المركبات النانوية الناتجة بأستخدام حيود الأشعة السينية (XRD) ، الأنتقال الألكتروني الميكروسكوبي (TEM) ، التحليل الحراري الوزني (TGA) وقياس الخواص الشدية .

أن نتائج TGM ، XRD و TGA تؤكد أن المنتج هو مركب نانوي ويبين أن له إستقرارية حرارية عالية ولوحظ من نتائج جهاز الشد تقوية في الخواص الشدية عند مقارنتها مع المطاط الطبيعي النقي والمطاط الطبيعي ذو المكون التقليدي والمطاط الطبيعي النانوي المعتمد على المروغ العضوي البترولي (DDA). أن أفضل نسبة phr مضافة من MMT المحور بمروغ نباتي و بترولي تبين بأنه كان ٣ و ٢ على التوالي، أن أستخدام FAs يختزل الآعتماد على المروغات البترولية وبأستخدامها نحصل على مركبات نانوية صديقة للبيئة. لمزيد من البحث نوصي بأستخدام FAs مع المطاط الصناعي .

Table of Contents

	Subject	Page
Abstract		V
Table of Contents		VII
List of Figures		Х
List of Tables		XII
List of Abbreviations		XIII
	Chapter One : Introduction	<u> </u>
No.of	Subject	D
Section		Page
1	Introduction	2
1-1	Background	2
1-2	Justification of the study	5
1-3	Objectives of the study	7
	Chapter Two: Literature Review	<u></u>
2	Literature review	9
2-1	Natural rubber	9
2-2	Clay mineral fillers	12
2-2-1	Clay minerals are made of two distinct structural units	16
2-2-2	Clay minerals are made of two distinct structural sheets	17
2-3	Clay mineral fillers primary characteristics	19
2-3-1	Particle size	19
2-3-2	Particle structure	20
2-3-3	Surface activity	21
2-4	Types clay mineral fillers	23

2-4-1	1:1 Clay minerals (e.g. Kaolinite)	23
2-4-2	2:1 Clay minerals (e.g. Montmorillonite)	27
2-5	Structure and properties of layered for 2:13phyllosilicates (e.g. Montmorillonite)3	
2-6	Structure and properties of organoclay (modified layered silicate)	34
2-7	Nanocomposites	37
2-8	Nanocomposites structure	39
2-9	Effect clay and organoclay on engineering properties in natural rubber	42
2-9-1	Effect montmorillonite and modified montmorillonite (organclay) on thermal stability in natural rubber	42
2-9-2	Effect montmorillonite and modified montmorillonite (organclay) on tensile properties in natural rubber	42
	Chapter Three: Material and Methods	
3	Chapter Three: Material and Methods Material and methods	46
3 3-1	Chapter Three: Material and Methods Material Material	46
3 3-1 3-1-1	Chapter Three: Material and Methods Material Material Synthesis of fatty amides (FAs)	46 46 46
3 3-1 3-1-1 3-1-2	Chapter Three: Material and MethodsMaterial and methodsMaterialSynthesis of fatty amides (FAs)Preparation of organoclay (modification of montmorillonite	46 46 46 48
3 3-1 3-1-1 3-1-2 3-1-3	Chapter Three: Material and MethodsMaterial and methodsMaterialSynthesis of fatty amides (FAs)Preparation of organoclay (modification of montmorillonitePreparation of natural rubber/clay nanocomposite	46 46 46 48 48
3 3-1 3-1-1 3-1-2 3-1-2 3-1-3 3-1-4	Chapter Three: Material and MethodsMaterial and methodsMaterialSynthesis of fatty amides (FAs)Preparation of organoclay (modification of montmorillonitePreparation of natural rubber/clay nanocompositeInitiating specimens of natural rubber / clay nano- composite	46 46 48 48 49
3 3-1 3-1-1 3-1-2 3-1-2 3-1-3 3-1-4 3-2	Chapter Three: Material and MethodsMaterial and methodsMaterialSynthesis of fatty amides (FAs)Preparation of organoclay (modification of montmorillonitePreparation of natural rubber/clay nanocompositeInitiating specimens of natural rubber / clay nano-compositeMajor techniques of characterization methods	46 46 48 48 49 50
3 3-1 3-1-1 3-1-2 3-1-2 3-1-3 3-1-4 3-2 3-2 3-2-1	Chapter Three: Material and MethodsMaterial and methodsMaterialSynthesis of fatty amides (FAs)Preparation of organoclay (modification of montmorillonitePreparation of natural rubber/clay nanocompositeInitiating specimens of natural rubber / clay nano- compositeMajor techniques of characterization methodsX-ray diffraction (XRD) analysis	46 46 48 48 49 50 50
3 3-1 3-1-1 3-1-2 3-1-2 3-1-3 3-1-4 3-2 3-2-1 3-2-2	Chapter Three: Material and MethodsMaterial and methodsMaterialSynthesis of fatty amides (FAs)Preparation of organoclay (modification of montmorillonitePreparation of natural rubber/clay nanocompositeInitiating specimens of natural rubber / clay nano- compositeMajor techniques of characterization methodsX-ray diffraction (XRD) analysisTensile properties measurements	46 46 48 48 49 50 50 50 52
3 3-1 3-1-1 3-1-2 3-1-2 3-1-3 3-1-3 3-1-4 3-2 3-2-1 3-2-2 3-2-3	Chapter Three: Material and MethodsMaterial and methodsMaterialSynthesis of fatty amides (FAs)Preparation of organoclay (modification of montmorillonitePreparation of natural rubber/clay nanocompositeInitiating specimens of natural rubber / clay nano- compositeMajor techniques of characterization methodsX-ray diffraction (XRD) analysisTensile properties measurementsThermogravimetric analysis (TGA)	46 46 48 48 49 50 50 50 52 57

Chapter Four: Results and Discussion		
4	Results and discussion	62
4-1	Effect of clay and organoclay content in natural rubber	62
4-1-1	X-ray diffraction (XRD) analysis	62
4-1-2	Tensile properties measurements	64
4-1-3	Thermogravimetric analysis (TGA)	68
4-1-4	Transmission electron microscopy (TEM)	70
4-2	Comparative results of different surfactants for clay modification	72
4-2-1	X-ray diffraction (XRD) analysis	72
4-2-2	Tensile properties measurements	74
4-2-3	Thermogravimetric analysis (TGA)	77
4-2-4	Transmission electron microscopy (TEM)	80
	Chapter five: Conclusions and Recommendations	
5	Conclusions and recommendations	82
5-1	Conclusions	82
5-2	Recommendations	84
References		85
Appendices		98
Appendix A1(Figures)		99
Appendix A2(Tables)		104
Appendix A3(Scientific papers& conference published) -		

List of Figures

No.of	Subject	D
Figures		Page
2.1	a- Clarify Mafic Silicate b- Felsic Silicate	14
2.2	Clarify Silicon Tetrahedron and Aluminium Octahedron unit	16
2.3	Clarify Tetrahedral sheet	
2.4	Clarify Octahedral sheet	18
2.5	Layers unit of Kaolinite	23
2.6	Layers unit structure sheet of Kaolinite	24
2.7	Layers unit of Montmorillonite	29
2.8	Structure of 2:1 phyllosilicate	32
2.9	Alkyl chain aggregation in mica-type Silicates: a) lateral monolayer b) lateral bilayer c) paraffin-type monolayer d) paraffin-type bilayer	36
2.10	Schematic illustration of three types of polymer/ clay layers (micro & nano) Composites	41
3.1	Dumbbell dimension diagram for tensile test: A)length of test specimen (75 mm) B)Width of test specimen (12.5 mm) C)length (25 mm) D) length of bench marker (20 mm)	49
	E) width (4 mm) and thickness (1mm).	
3.2	Instorn universal tasting machine model 4301	52
3.3	 In an undeformed thermoplastic polymer tensile sample a) The polymer chains are randomly oriented. b) When a stress is applied, neck develops as chains become aligned locally aligned. 	53

	The neck continues to grow until gage chains	
	in the entire gage length have aligned.	
	c) The strength of the polymer is increased.	
3.4	Stress-strain curves of specimen NR /organoclay nano-	54
	composite (nano-NR)	54
4.1	Tensile strength of a -NR/Na-MMT microcomposites	66
	and b -NR/FAs-MMT nanocomposites	00
4.2	Modulus of a -NR/Na-MMT microcomposites and b-	66
	NR/FAs-MMT nanocomposites	00
4.3	Elongation at break of a-NR/Na-MMT micro-	67
	composites and b- NR/FAs-MMT nanocomposites	0,
4.4	TGA thermograms of a -Na-MMT, b- FAs, c- FAs-	
	MMT, d- NR, e -NR/2phr Na-MMT microcomposite	70
	& f - NR/3phr FAs- MMT nanocomposite	
4.5	TEM image at of a-NR/2 % Na-MMT microcomposite	
	and b-NR/3 % FAs-MMT nanocomposite	71
4.6	Tensile strength of a-NR/Na-MMT microcomposites &	75
	b -NR/DDA-MMT, c- NR/FAs-MMT nanocomposites	, 0
4.7	Modulus of a-NR/Na-MMT microcomposites and b-	75
	NR/DDA- MMT, c- NR/FAs-MMT nanocomposites	10
4.8	Elongation at break of a-NR / Na-MMT micro-	
	composites and b -NR/DDA-MMT, c-NR/FAs-MMT	76
	nanocomposites	
4.9	TGA thermograms of a-Na-MMT, b -DDA, c -FAs, d-	
	DDA- MMT, e -FAs-MMT, f -NR, g -NR/2 phr Na-	78
	MMT microcomposite and h- NR/2 phr DDA-MMT,	70
	i- NR/3 phr FAs-MMT nanocomposite	
4.10	TEM image at of a-NR/2 phr DDA-MMT&b- NR/3phr	81
	FAs-MMT	01

List of Tables

No. of Table	Subject	Page
Tuble		
4.1	XRD analysis of natural clay (Na-MMT) and modified	62
	clay(FAs-MMT)	
4.2	XRD analysis of NR/unmodified clay (Na-MMT) and	63
	NR/modified clay(FAs-MMT)	
4.3	Unmodified and modified MMT characterized by XRD	72
4.4	XRD analysis of NR/unmodified MMT and NR/modified	73
	MMT composites	

List of Abbreviations

Symbol	Description
	N (1D 11
NK	Natural Rubber
Nano-NR	Nanocomposites natural rubber
Micro-NR	Microcomposites natural rubber
MMT(Na-MMT)	Montmorillonite (Sodium -montmorillonite)
ТОТ	Tetrahedral- Octahedral- Tetrahedral
FAs	Fatty amides
DDA	Dodecyl ammonium chloride
ODA	Octadecyl amine ammonium chloride
FH	Fatty Hydrazide
FAs-MMT	Organoclay (Fatty amides- montmorillonite)
DDA-MMT	Organoclay (Dodecyl ammonium chloride - montmorillonite)
XRD	X-ray diffraction
TGA	Thermogravimetric analysis
TEM	Transmission electron microscopy
T _m	Melting point
Tg	Glass transition point
Phr	Part per hundred rubber

PLS	Polymer layered silicate
РЕО	Polyethylene oxide
PVA	Polyvinyl alcohol
SAXD	Small angle X-ray diffraction
WAXD	Wide angle X-ray diffraction
МРа	Megapascals
Gpa	Gigapascals
MRB	Malaysian rubber board
CCD	Charge-coupled device
EFTEM	Energy Filtering Transmission Electron Microscop
CEC	Cation exchange capacity
Rpm	Revolution per minute
TS	Tensile strength
Lo	Is the original, unstretched length of the specimen
L	Is the stretched length of the specimen
UTS	Ultimate tensile strength
NR/2 Phr Na-MMT	The blending of 98 % natural rubber with 2% montmorillonite (Sodium- montmorillonite)
NR/3Phr FAs-MMT	The blending of 97% natural rubber with 3% fatty amides- montmorillonite
NR/2PhrDDA-MMT	The blending of 98 % natural rubber with2% Dodecyl ammonium chloride- montmorillonite