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  Chapter 1 

Sampling Theorem and Average Sampling 

  Some examples are presented to show the generality of the sampling theorem. Index 

Terms - Fourier transform, generating function, sampling, shift-invariant subspace, 

Zak transform . Regular and irregular average sampling theorems for spline subspaces 

  are obtained . 

Section(1.1) Shift-Invariant Subspace and Sampling Theorem 

  A fundamental question in signal processing is how to represent a signal in terms of 

a discrete sequence. Shannon’s popular sampling theorem states that finite energy 

band-limited signals are completely characterized by their samples values. Realizing 

that the Shannon interpolating function                    is in fact a scaling 

function of an MRA, Walter [268] found a sampling theorem for a class of wavelet 

subspaces. Suppose      is a continuous orthonormal scaling function of an MRA 

        such that                        for some        

 Let                        Walter showed that there is an           such that 

                                                  

   

                                                                   

holds for any            if   
      Following Walter’s [268] work, Janssen [233] 

studied the shift sampling case by using the Zak-transform. Xia and Zhang [277] 

discussed the so-called sampling property                Walter [294], Xia [295], 

and Chen–Itoh [288], [289] studied the more general case “oversampling.” Chen et 

al. [285], [287], Chen and Itoh [286], Liu [255], and Liu and Walter [234] even 

studied irregular sampling in wavelet subspaces. Furthermore, Aldroubi and Unser 

[282],[283],[284], [291] studied the sampling procedure in shift invariant subspaces. 

They established a more comprehensive sampling theory for shift-invariant 

subspaces. One of their important result states that when               is a 

generating function, the orthogonal projection       of a function             on 

the shift-invariant subspace       is given by 

                                            

   

                                                           

where           
 

 is the biorthogonal basis of            in      , and       is the 

     -inner product. They then found that the     can be replaced by an 

interpolating generating function      if  

                              

 

                      

transform        of      satisfies                        for some      (see 

[284]). In fact, these constraints are related to those of Walter sampling theorem  
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  Our purpose in this correspondence is to find a weaker constraint on the generating 

function       such that a formula similar to (1) [or(2) with interpolating generating 

function      instead of     ] holdsfor any function      in the shift-invariant 

subspaces      . We find a condition for (1) that is sufficient and necessary. In 

thisway, we are able to remove the continuity and regularity constraintsimposed on 

the generating function       by Walter [268] or imposedon its Fourier transform 

       by Aldroubi and Unser [284]. We also make a case to show the generality of 

our result in Section .We now introduce some notations used in this correspondence. 

Fora measurable subset           denotes the measure of    For a measurable 

function       we write 

                                                  
     

   
   

                                                                

                                                     
     

   
   

                                                               

                                     
                                      
                                 

                                                    

Suppose an        function        is such that the sampling         makes sense  

               
                             

 

                           

                 in          sense. Let us now consider the shift-invariant subspace 

sequence          generated by      

                           
      

 

           
                                               

                    

 

                                 

 

   

Then              
   is well defined since       and         are both    

sequences. In fact       as the Fourier coefficients of the                   

          
     

 

                                                         

                       may not be a Riesz basis of      . It is shown that 

            is a Riesz basis of       if and only if 

                                                   
           

                                            

                                    
 

 

 

 
 

                             

                                                 
 

 
    If      satisfies (7), it is 

called a generating function (see [284]). 

Theorem             : Suppose             is a generating function such that 

the sampling         makes sense, and          
    Then , there is an 
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            such that 

                                    

 

                                                               

holds in the       sense if and only if 

                                             
 

      
                                                                           

holds. In this case                        holds for a.e.         

Proof : Step 1—Sufficiency : Assume  
 

      
         . Then    

          holds for a.e.       , and there is a        
  such that 

                           
 

      
              

    

 

                                                                      

holds in the          sense. Let                        Then 

        
 

 

      
      

      
 

  

 

                                                   

  
              

 
 

        
 

  

 

    

          
 
 

 

        
 

  

 

      

It is easy to see             due to (7). Hence, we can take the Fourier inverse of 

     in       denoted by               we derive 

                                             
      

      
                                                                           

or 

                                                                                                                         

Take inverse Fourier transform on both sides of (11) and refer to (10) 

                                                                      

 

                                            

Formula (13) implies             [due to the fact that           is a Riesz basis 

of      ]. For any              there is a        
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Therefore                         

Step 2—Necessity: On the contrary, if there is an            such that (8) holds in 

the       sense, then 

                                                                    

 

                                           

holds in the       sense. By taking the Fourier transform on both sides  

                                                                                                         

Equation (17) implies that                         holds for a.e.         

i.e.                              holds for all       and for a.e.       

because        is    periodic. Meanwhile 

                                                            

 

                                                 

holds except for a zero measure subset of   . Otherwise, there is a measurable subset 

  with measure       such that 

                    

 

                                                                                

Then                holds  for any       and for all      . Hence 

                       
 

 

 

 
 

                                                                        

holds for any      . However          holds for a.e.       . It forces (18) to 

hold for a.e.       . Therefore 

                          

 

                                                                         

holds for a.e.         i.e.            for a.e.      . Formula (17) is now 

rewritten to be 

             
      

      
                                                                                                              

Since             [due to           ], we derive 

     
      

      
 

  

 

    
              

 
 

        
 

  

 

                                                 

                           
 

 
    

 

 
  

 

      
 

   

 

                                                  

From (7) and (23), we conclude that   
 

      
          holds. This completes the 

proof. 

   If      satisfies the conditions of the Walter sampling theorem or the proposition of 
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 Aldroubi and Unser, there must be a constant      such that                   

Obviously ,  
 

      
                    Therefore, the Walter sampling theorem 

and the Aldroubi and Unser proposition can be obtained as a corollary of our theorem 

(refer to Examples (1.1.3), (1.1.3) ,(1.1.5)). A related problem is the study of 

truncation error and aliasing error. We do not estimate them here and refer to Walter, 

Unser and Daubechies [292] and Chen and Itoh [288], [289].As done by Janssen 

[233] for Walter’s sampling theorem, Chen et al. [287] for the irregular sampling 

theorem, and Chen and Itoh [288] for the over sampling theorem, the shift-sampling 

theorem for shift-invariant subspace can be obtained by using the Zak transform. 

Suppose           is such that the sampling           makes sense, and 

           
  for some           Then , the Zak transform         of       is 

defined by 

                         

 

                                                                                  

A generating function     may not satisfy 
 

      
          but may satisfy 

 

       
         for some          . Then , it can be dealt with by the shift-

sampling theorem (see Example (1.1.6)).We now present the shift-sampling theorem 

without proof (since it is very close to the previous). 

Theorem             : Suppose            is a generating function such that 

the sampling           makes sense , and            
  for some            

Then, there is an               such that 

                     

 

                                                                    

holds in the       sense if and only if 

                                 
 

       
                                                                                

holds. In this case                        holds for a.e.         

 Since the Haar function is not continuous and Shannon’s      function is not regular 

enough, they can not be covered by Walter’s sampling theorem. Since the Fourier 

transform of the Haar function is not regular enough and the Fourier transform of the 

Shannon function is not continuous, they are covered by [284], although we should 

note that there is no such restriction for the more general sampling theorems 

presented in [291]. Both functions are covered by our sampling theorem (see 

Examples (1.1.3)  and (1.1.4)). 

Example             :Haar function                The piecewise continuity of  

     implies that the sampling         makes sense.  
 

      
            implies 

that our sampling theorem can be applied and                 
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Example             : Shannon function                  The continuity of 

     implies that the sampling         makes sense. 
 

      
            implies 

that our sampling theorem can be applied , and                 The following 

Example (1.1.5) shows that there exists a generating function      such that 

          as   tends to a point           but  
 

      
          holds. It implies 

that our sampling theorem is substantially more general than Walter sampling 

theorem. 

Example            : For a positive number           take       as the Fourier 

inverse of         defined by 

                         

                     
                            
                             
                                

                                                       

 Then                     
           

 Obviously,                 
   

 

    Therefore       is a generating function. 

The fact              implies that      is continuous. Then , the  

                                     
                 

 

                  

                            
    However            as               

Hence, neither Walter’s sampling theorem nor Aldroubi and Unser’s Proposition can 

be applied to deal with the      [since both of them require the condition     

           for some      ]. However               implies that our sampling 

theorem is available. The       is given by 

                        

                             
                                    
                                                           
                                                  

                                    

   The following Example (1.1.6) (by [233]) shows the usefulness of shift-sampling 

theorem. It is also very interesting to find some works on centered spline 

interpolating in [271] , [290]. 

Example             : B-spline of order 2 scaling function 

 

      
  

 
          

        

 
          

      

 
                                    

      is a generating function (see [249]). 

    
               

   
  implies that     

                  
 
 is not an 

         function.  

However                                             implies that the  
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shift-sampling theorem is available. The          is given by 

   
 

       
       

  
 

 

                                                                           

Section(1.2) Spline Subspace and Average Sampling 

  Sampling theory is one of the most powerful results in signal analysis. The objective 

of sampling is to reconstruct a signal from its samples. For example, if   is band-

limited to         then   is uniquely determined and can be reconstructed by its 

samples at          , which is the classical Shannon sampling theorem. Although 

the assumption that a signal is band-limited is eminently useful, it is not always 

realistic since a band-limited signal is of infinite duration. Thus, it is natural to 

investigate other signal classes for which a sampling theorem holds. A simple model 

is to consider shift-invariant subspaces, e.g., wavelet subspaces, which generalize the 

space of band-limited signals. In fact, there have been many results concerning the 

sampling in shift invariant subspaces for both regular and irregular sampling 

(see[240,243,254,257,268,270,271,272,273,274,275,276,277 ]). In particular, for the 

spline subspace                                
   generated by           

         (N convolutions)       it was shown that for  any 

                      
   

 
         

   

  

where 

        
      

        
   
          

    

  In [243,254], Aldroubi , Grochenig and Liu studied irregular sampling in spline 

subspaces . In practice , measured sampled values may not be values of  a signal   

precisely at times      but only local averages of   near      Specifically, measured 

sampled values are  

                      

for some collection of averaging functions             which satisfy the following 

properties: 

            
 

 
    

 

 
                

 
               

     It is clear that from local averages one should obtain at least a good approximation 

of the original signal if b is small enough. Wiley, Butzer and Lei studied the 

approximation error when local averages are used as sampled values [278,279]. 

Furthermore, Feichtinger and Grijchenig [280,281] proved that a signal is uniquely 

determined by its local averages under certain conditions. We study the 

reconstruction of functions in spline subspaces from local averages. 
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  We show that every         is uniquely determined by its local averages on the 

intervals     
 

 
     

 

 
  for certain sampling points       

Definition              :The Fourier transform and the Zak transform of 

          is defined by  

                   

 

 

                              

   

  

respectively. Recall that a family of functions           in a Hilbert space   is 

called a frame if there exist two positive constants   and   such that 

               
 

   

          

for every       The numbers   and   are called the lower and upper frame bounds, 

respectively. A frame that ceases to be a frame when any one of its elements is 

removed is called an exact frame. It is well known that exact frames and Riesz bases 

are identical. First, we study average sampling with regular sampling points. 

Lemma              : Let    be a closed subspace of       and          

      be a frame for    with bounds   and    Suppose that   is continuous and 

                         Then for any frame           of  

              
 

   

                         

Proof : Let                 be the dual frame of               . Then for 

any                                       Therefore, 

    
      

 
                 

   

             

   

 

 
      

               

Suppose that                    is of upper frame bound      . Then for any        

        
 

   

    
      

         

   

 

 

  

                            
      

 

 
      
   

 

 

 

 

        
 

               

This completes the proof. 

Theorem               : Let                                  Then 

          is a Riesz basis for    and  for any            
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where                       and the convergence is both in       and uniform on 

 . 

Proof  : Let   
 

                               
 

     and 

               
 

 
   

                
 
 

      Then   
 

         and   
 

         are dual Riesz 

bases for   . Since              has no zero on        (see [271,249]), it is easy 

to check that           and           are also dual Riesz bases for   . On the other 

hand, for any           suppose that                
 

     for some       

     
    

                Then 

            
 

  
                        
  

  

                                                         

            
 

  
        

 

          
 

 
      

 

    
         

     
  

  

   

 
 

  
            

 

 
        

  

  

                      

         
 

 
       

   

                                         

            
 

 
       

 

 

  

   

                               

          
 

 
     

 

 

                                                          

                                                                                                     

Hence, for any           

                           

   

                         

   

  

By Lemma (1.2.2) , the above series is convergent uniformly on  . 

Theorem               : Suppose that      is a real sequence such that 

                          for some two constants   and  . Then there is 

a frame       for    such that for any           

                           

   

  

Where                      and the convergence is both in        and uniform on 

 . 
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Proof : By [249]                   is a Riesz basis for     with bounds  

                   
 

  and     . Suppose that                   is the dual 

Riesz basis of                 . Define 

                                                

   

                                                      

Then        is well defined for each                            and       

            for any         (see [275]). Put                 
      

      
     By 

(32)        . For any       we have 

                    

  

  

                  

      

      

                                                

                                               

  

  

      

      

                                                             

      

      

      

                                                   

where Fubini’s theorem is used. Suppose that                      and  

                       for some       
      Then 

     

      

      

                

      

         

                                                    

                                          
 

 
     

 

    

                                                

                               
 

 
   

   

                                        

      
 

 
                                                     

By [243], there exist two constants          depending only on N and      such 

that 

                                        
         

 

 
  
 

   

       
                                       

Since                  and                    are Riesz bases for    and 

       respectively, we have 

                                        
      

         
                                                             

and 
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Putting (33),(34),(35),(36),(37) together, we have 

      
    

    
           

 

   

 
      
    

    
  

Hence,       is a frame for      Let      be the dual frame. 

 Then for any        

 

                   

   

                       

   

 

By Lemma (1.2.2) , the above series is convergent uniformly on     
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  Chapter 2 

Channeled Sampling and Sampling Theorems 

First, we give  a single  channel  sample formula in    , which extends results by   

G. G. Walter and W. Chen and S. Itoh. We then find necessary and sufficient 

conditions for two-channel sampling formula to hold in   . We show that some 

subspaces may not have a regular point. We also present a reconstruction algorithm 

which is slightly different from the  known one but is more efficient. We study the 

aliasing error and prove that every smooth square integrable function can be 

approximated by its sampling series .                                                                               

Section(2.1) Translation Invariant Subspaces and Channeled Sampling 

  The classical Whittaker-Shannon-Kotel’nikov (WSK) sampling theorem [264] states 

that if a signal      with finite energy is band-limited with the bandwidth     then it 

can be completely reconstructed from its discrete values by the formula 

           
          

       

 

    

 

which converges both in       and uniformly on     which has been extended in 

many directions (see [244], [265] and [267]). In 1992, G. G. Walter [268] developed 

a sampling theorem in wavelet subspaces, noticing that the sampling function 

         in the WSK theorem is a scaling function of a multi resolution analysis. He 

assumed that the scaling function      is a continuous real valued function with 

                        for     large, which does not hold for         . 

Following G. G. Walter’s work, A. J. E. M. Janssen [233] used the Zak transform to 

generalize Walter’s work. Later, W. Chen and S. Itoh [263] extended Walter’s result 

by requiring only the condition           on the scaling function without any 

decaying property. However, there were some gaps in the proof of the main result in 

[263]. 

   We first re-examine the results in [263] and then extend it to single and double 

channel sampling formulas in the translation invariant subspaces of a multi resolution 

analysis. 

Definition              : A function              is called a scaling function 

of a multi resolution analysis (MRA in short)      if the closed subspaces     of         

                                        

satisfy the following properties , 

 (i)                     

 (ii)                          

 (iv)                and  only if                  

 (v)                     is a Riesz basis of     

Then                    becomes (iii)                      
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(a Riesz basis of    for each      The wavelet subspace    is defined to be the 

orthogonal complement of    in      so that                    Then there exists a 

wavelet              that induces a Riesz basis                  of    . 

Moreover                          forms a Riesz basis of       . For any 

              we let 

               
 

  
          
 

  

                                                       

             
 

  
           
 

  

   

be the Fourier and inverse Fourier transforms of      and       respectively. For a 

measurable function      on a set        we let 

            
     

   
   

                        
     

   
   

       

be the essential infimum of        on X and the essential supremum of       on X 

respectively. 

Proposition              : (see [231]) Let             . Then 

(i)                    is a Bessel sequence if and only if there is a constant       

such that 

               
 

 

                        

(ii)                  is a Riesz sequence if and only if there are constants 

          such that 

                 
 

 

                        

We call   and   lower and upper Riesz bounds for a Riesz sequence                  

 respectively. For later use we give a corollary of Proposition (2.1.2) . 

Corollary              : Let                          and 

                       
 

  
               
 

  

            

(i)                     is a Bessel sequence if                  is a Bessel 

sequence. 

 (ii)                     is a Riesz sequence if                 is a Riesz 

sequence and              

Proof : (i) Let                  be a Bessel sequence with 
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Then 

                 
 

 

                          
 

 

                                            

                                          
 

 

       
 
 
          

 
 
                  

so that                   is a Bessel sequence by Proposition (2.1.2). 

 (ii) Let                  be a Riesz sequence with bounds   and    Then, as in (i) 

we have 

        
 
 
                  

 

 

                                                                  

                         
 
          

 
 

 

 

so that                     is a Riesz sequence by Proposition (2.1.2).  

In this section we give a single channel sampling in      which extends results in G. 

G. Walter [268] and W. Chen and S. Itoh [263]. 

Lemma             : [231] Let            be such that               is a 

Bessel sequence. Then, for any       
               converges in       and 

            

 

      
         

 

      
    

 

          

Let    be the discrete Fourier transform on             defined by  

                
    

 

                                          
            

      
         respectively. We denote               by        for            

 when             are well defined. 

Lemma              : If             
   and              

          then 

             
 

                                                                                 

             
                      

 

                              

Proof : Since              
        and               

         

             
             

         Hence we can expand 

            
           into its Fourier series     

    
 in            where 
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by  Parseval’s  identity. Hence the conclusion follows.   

Theorem             : Suppose that     is a scaling function for an MRA      

such that     ’s are well defined and             Then, there exists          

such that                  is a Riesz basis of      and 

                 

 

                                                                  

if and only if            
 
          

 
     In this case, we have          

      

      
   

Proof : Assume               
 
            

 
       Then  

 

        
 

 

 
                   so that  

 

      
          Let  

 

      
     

    
  be its 

Fourier series, where        
  and set       

      

      
  Then              and  

           
    

 

              
           

 

 

by Lemma (2.1.4) . Hence                                    Now, we 

show that                   is a Riesz sequence. Since         
      

      
   we have 

  

  
                

 

 

  
               

 
 

        
  

  

  
                   

where    and    are Riesz bounds for                 . Hence               

is a Riesz sequence by Proposition (2.1.2)  (ii). For any 

                    where       
   we have by Lemma (2.1.4),  

             
    

 

              
    

 

             

Since         
 
       

                                
    

 

                   

 

                                                

Where                           by  Lemma (2.1.5) . Hence 

                                        

 

                         

 

                      

by Lemma (2.1.4) since                  is a Riesz sequence. Thus we have (1) 

by taking inverse Fourier transform on (3). Then  

                                 so that                  is a Riesz 
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basis of   . Conversely assume that there exists           such that          

:      is a Riesz basis of  0 and (1) holds. In particular   =        so that 

                        

 

            

 

                                  

Hence 

              
 

 

         
 
              

 

 

 

so that 

  

  
         

 
 
  

  
                      

where         and         are Riesz bounds for                  and 

                 respectively. Thus             
 
          

 
       

If            then                             so that 

        
 
     

      
                                 

 
      

      
          

Hence we have: 

Corollary              : Suppose that      is a scaling function for an MRA 

     such that     ’s are well defined and            Then there exists            

such that                  is a Riesz basis of   and (1) holds if and only if 

                      In [268], G. Walter requires that      is a continuous on   

and                         for     large. Then           so that the results in 

[268] is a special case of Corollary (2.1.7) . On the other hand , W.Chen and S. Itoh 

[263] claimed: under the same hypothesis as in Theorem (2.1.6) , there exists 

          with which (1) holds if and only if                     However,there 

are some gaps in the argumentsin [263]. In the proof of sufficiency for Theorem 1 in 

[263] ,      
              belongs to          but not necessarily in          

(unless         
 
    ) so that                         and the (2) 

becomes only a formal Fourier series expansion of a function in          (see [263]). 

Even if                   and         
 
       (2) holds but (3) may not hold 

since                 is not a Bessel sequence unless         
 
     Also, in 

the proof of necessity, we may not have (4) unless                  is a Riesz 

sequence.We may extend Theorem (2.1.6)  by the same reasoning to a single channel 

sampling as: 

Theorem              : Let      be a measurable function on   such that 

                           Suppose that      is a scaling function for an 

MRA      such that        ’s are well defined and              where  
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                       Then, there exists            such that                  

is a Riesz basis of    and 

                    

 

                                                                 

if and only if             
 
            

 
      In this case, we have       

     

            

Example             : Shannon function        
     

  
 is continuous on   and 

                
    Since            on        but                  for       

large, the WSK sampling theorem is not covered by [263] or [268] but follows 

Corollary (2.1.7). 

Example               : Let      be the continuous scaling function 

considered by Chen and Itoh (Example 3 in [263]) such that 

         

                    
                            
                              
                                    

  

with         
 

 
    Then we can easily see that         

 

 
  for  

    large so that                  Even though    
 
         on         

so that    
 
               and    

 
                      

 
    

 
     so that we 

cannot  expect a sampling formula from      suggested either by Theorem (2.1.6).  

Example               : Let             with           so that 

           
 
         

 
    and       a scaling function Then                 

and               so that                                    Hence if 

             
            

      then we obtain the 

shift-sampling                            

  We let      be a scaling function for an MRA      and      the associated wavelet. 

Let       and       be in        and             
            for         and 

              

Assume that            and            are well defined and            and 

           are in   . Let 

                  
    

 

                    
    

 

   

                  
    

 

                    
    

 

   

and                     

 
  Then          

       and                         

We always assume that              for         and                   
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 in           Set                            
 

   Then                  is well 

defined a.e. in  . 

Lemma               : Let          and         be eigenvalues of 

         with                    If                then 

                              

Proof : Since           is nonsingular Hermitian  a.e. in         

                                       

Since          
        and                 all entries of      and so 

           are also in           so that the characteristic equation of             is 

of the form                            where       and      are real-valued 

functions in             

   Hence                     Since 

                                                

          
                             

                         

so that 

           
            

  
                    

                                         
         

For any              

              
     

                 
 

 

  

 

   

so that              
   

      for a.e. in         

Definition              : For any      and      in         we call 

      

 
 
 
 
              

 
 

 

                                   

 

                                   

 

            
 

 

  

 
 
 
 
 

 

the Gramian of         which is well defined a.e. in         

   Then as a Hermitian matrix       has real eigenvalues. 

Theorem              : In [266] let         and         be eigenvalues of 

the Gramian     of        such that                  

 Then                          is a Riesz sequence if and only if there are 

constants           such that 

                                                                                                  

Lemma               : Set  
     
     

       
     

     
  on    If                 
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then         
              

               for          and               

 1, 2              is a Riesz sequence. 

Proof :Since         
                                    

      for 

          Since                      
         we may expand        into its 

Fourier series               
    

  Where          
 . Then by Lemma (2.1.4),  

               
    

 

                
    

 

       

         
                 

          

 

     

so that 

        
                                    

 

        

Let 

      

 
 
 
 
               

 
 

 

                      
                

 

           
                           

 

             
 

 

 

 
 
 
 
 

 

be the Gramian of         and                   the eigenvalues of       Then we 

have by periodicity of                            Let       and       be 

unitary matrices, which diagonalize      and     respectively          

            
        

        
      

    

and 

            
        

        
      

    

Then 

 
        

        
       

        

        
        

where 

           
            

            

            
    

so that 

                                        
                  

                                            

                         
                  

                                                          

On the other hand, 
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where       is the unitary matrix such that 

                 
        

        
      

 

 

 

with                  Set      
                     

 
 which is also a unitary 

matrix. Then we have from diagonal entries of both sides of (9), 

        
          

                 
                 

                                 

        
          

                 
                 

                                

Then we have from (6), (7), (8), (11) and (11) 

                         
          

                                    

                         
          

                                    

since         
            

            
            

                          

Hence 

                   
    

 
                                                                         

                                                                
    

 
                      

by Lemma (2.1.12)  so that                                 is a Riesz sequence 

by Theorem (2.1.14)  .  

Theorem               :Under the above setting, there exist 

                   such that                                 is a Riesz basis 

of    for which two-channel sampling formula 

                      

 

                   

 

                                  

holds if and only if                 on         In this case 

        
                                                                           

Proof : Assume                on        and define       by (13). Then 

                   and                                is a Riesz sequence by 

Lemma (2.1.15)  . For any          

                 

 

              

 

                                                               

where          
  for         since                           is a Riesz 

basis for   . Applying the bounded linear operator       to (14) gives 

                         

 

                 

 

                                         

On the other hand, we have by Lemma (2.1.4)   

             
    

 

               
    

 

       

Since 
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by (15), where              
            by Lemma (2.1.5)  . Taking inverse 

Fourier transform on (16) gives (12), which implies  

                                           so that                              

is a Riesz basis of   . Conversely assume that there exist                      such 

that                               is a Riesz basis of    and (12) holds. In 

particular, 

                      

 

                  

 

   

                      

 

                  

 

   

By taking Fourier transform and using Lemma (2.1.4)  , we have 

 
     

     
            

      

      
     

We then have as in the proof of Lemma (2.1.15)   

                       

where      and      are Gramians of      and         respectively. Hence 

                            so that 

            
       

        
 
              

              
 
       

 

       
 
                       

where                  and                 are eigenvalues of      and      

respectively. Therefore, 

           
       

 

       
 
 
          

 

          
                       

so that                since both                       and 
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                              are Riesz sequences.   

Example                : For Haar orthogonal system                  and 

       
   

 

 
 
      

  
 

 
   
     Let           and         

     with         
 

 
   

Then                                                              
 
 
      

  
 

 
   
    

and                 
 
 
         

  
 

 
   
         Then              

      
    so 

that                which satisfies the condition of Theorem (2.1.16)  . Hence we 

have a sampling formula 

                    

 

                 

 

 

Corollary               : If                
   and              

          then  

                    

 

                                                               

             
                                

 

                            

Proof : Since              
        and                  

         

             
                

          Hence we can expand 

            
              into its Fourier series     

    
 in            where 

    
 

  
             

               
                                         

     
 

  
     

    

 

                           

 

                                   

  
 

  
          

    

 

                                      

 

                         

 

  

by  Parseval’s  identity. Hence the conclusion follows.   

Corollary               : Suppose          and           are eigenvalues of 

      with                       If                then 

                                

Proof : Since       is nonsingular Hermitian  a.e. in         

                                         

Since          
        and                 all entries of      and so        

are also in           so that the characteristic equation of         is of the form 

                           where       and      are real-valued functions in 

            Hence                       Since 
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so that 

           
              

  
                      

                                                    
         

For any              

              
     

                 
 

 

  

 

   

so that              
   

      for a.e. in         

Section(2.2) Multivariate Shift Invariant and Sampling Theorems 

   We consider shift invariant subspaces of        of the form  

                                 
                                                                                       

where           and   is a       matrix , det       Fix some      
   If there 

is a frame                   
    for    such  that for any           

                         

      

                                                                            

where the convergence is both in        and pointwisely on      then we say that    

is a regular point for    and the (regular) sampling theorem holds on   . Note  that a 

function in         is only defined almost everywhere. For the sampled values 

           to make sense, we require that f be continuous near        . Similarly, 

we can consider irregular sampling, i.e.,        is replaced by            for 

some      
  satisfying               Now some problems arise: 

  (i) Does every    of the form (17) have a regular point? 

  (ii) Characterize all regular points for given   . 

  (iii) Find conditions for the irregular sampling theorem to hold. 

  There are many results concerning the last two problems. For example, see [242, 

243, 244, 250, 251, 252, 233, 255, 234, 240]. Most of them are focused on univariate 

functions. 

We study the sampling theorem for multivariate functions. We first prove that every 

subspace    of the form (17) must have a frame like 

                  
   for some         Then we give an equivalent condition for f 

to be continuous near sampling points        . We give a characterization of 

regular points for    and give a representation of       Also, we illustrate that there is 

some shift invariant subspace which has no regular point. We study irregular 

sampling for    and show that if the generating function   satisfies some conditions, 

then we can find some      such that every         can bereconstructed from 

irregular sampled values                provided        . Our result covers 

many of known ones, such as Kadec’s 1/4-theorem and some results in [233, 257, 
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240]. We also present a reconstruction algorithm which is slightly different from the 

known one but more efficient.  

Definition              : A stands for some fixed     matrix with det     .  

 The Fourier transform and the Zak transform of           are defined 

by                         
 

  
   and 

                       
          

      

                                 

We call a function   is    -periodic if                a.e.        . 

                                      

      

                            

 inverse of      the transpose of A.                           

Example             : Let        
     

  
   then                                   

Since                             thanks to Lemma (2.2.11), it is easy to 

check that                      

Example              : Subspaces generated by centered B-splines defined by 

        
     

  
 
   

         

or equivalently                                      (m convolutions). 

Let                                    It can be shown (see [249, 240]) that 

                    is a Riesz basis for    and            has no zero on  . 

Therefore, 0 is a regular point. On the other hand, since    is symmetric with respect 

to        it is easy to see that        
 

 
     . Hence     

 

 
 is not a regular point 

(see [233]). 

Example              : 

Let        

 
 
 
 

 
 
 

                              
                          
                         
                             

                                 

                                               
                                              

  

 
 Then                    is an orthogonal basis for the space    it spans . On the 

other hand, it is easy to check that 
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Hence               for           and                 for  

             Therefore     has no regular point. 

Lemma            : Suppose that          and                                
   . 

(i)                  
   is a frame for    with bounds    and    if and only if 

                                              

Moreover ,                  
   is a Riesz basis for    if and only if the above 

inequalities are satisfied with      
   

(ii)                  
   is a Bessel sequence with upper bound    if and only if 

                                    

Lemma              : Suppose that                  
   is a frame for      .  

Let 

        
                         

                                      
   

Then                          
   is the dual frame of                   

  .  

Lemma              : Let            and    be defined by (17). Then we 

have 

                                                                         

Moreover, there is some         such that                  
   is a frame for   . 

Lemma              : Suppose that                  
   is a frame for some 

  . Fix some      
  and       Then the following two assertions are equivalent: 

(i) For any           
                         converges pointwisely to a 

function continuous on 

                                

(ii)   is continuous on   and                        
 

          

Proof :  (i) (ii). Obviously,   is continuous on  . Since                    is 

convergent for any           
        we have 

             
 

      

              

Define 

                 

      

                
       

Then    is a bounded linear functional on    with the norm 
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Note that for fixed       is continuous on            
   we have 

   
          

            

By the Banach-Steinhaus theorem      
          

           Consequently , 

   
          

          
 

      

    

(ii) (i). By the Cauchy inequality                     is convergent uniformly on 

E for any        Now the conclusion follows. 

Lemma              : Suppose that     is  continuous  and 

           
 

       is bounded on     Then we have for any        and almost 

every                                 

Proof : Let                        
          

        Then 

               Therefore ,  

            

      

                 

It follows that 

             
 

 

                 

                       
 

 

              

         

                                                                        

      

 

 

      

      

Hence               for almost every                       Now the 

conclusion follows since             is      -periodic with respect to  . 

Lemma              : Let              
   and        

    be two frames 

for some     Suppose that   is continuous  and           
 

                

Then       is continuous and         
 

       is bounded on   . 

Proof : Let                          
   be the dual frame of                   

     

For any         we have  

                             

      

                                               

                                
 
                    

            

               

 
 

  
    

                                                                 

where    is the lower frame bound of                  
     Let   
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be the upper frame bound of           
    Then 

        
 

      

    
      

         

      

 

 

    
      

 

  
      
      

 

 

 

 

                  
   

 

  
                                                               

Lemma               : For any             we have 

             
                                                                        

Proof : By the Poisson summation formula (see [253]), we have 

      

      

                     

      

             

where       is the Schwartz class which consists of infinitely continuously 

differentiable functions with rapidly decaying at the infinity. Substituting  

                   for    we get 

        

      

                                   

      

      
         

Now (20) follows. Since       is dense in           (20) holds for any          . 

Lemma               : Suppose   that             and  

                                   
    Then                  

   is a frame for    

with bounds    and     if and only if 

                          
 

 

       

                        

Also ,                  
   is Bessel sequence if and only if the right hand 

inequality holds. 

Proof : By Lemma (2.2.11), we have 

             
 

 

       

                              
 

 

       

   

                                       

Now the conclusion follows from Lemma (2.2.5) . 

Theorem               : Let                  
   be a frame for some   . 

Suppose that   is continuous and                     is bounded on   . Then    is a 

regular point for    if and only if there are two positive constants   
  and   

  such that 

  
                       

                                                                          

If (2.1) is satisfied , let 

        
                          

                                          
                                                               

Then(18) holds and the convergence is both in        and uniform on   . 
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Proof : Suppose that    is a regular point. Then there is a frame                  
    

for     such that 

                        

      

           

In particular   

                          

      

  

Hence 

                          

Therefore                           
           .Now (21) follows by Lemmas 

(2.2.5) and (2.2.9). Next we prove the sufficiency. Let       be defined by (22) and 

                       
                                                  

                                                             
                                     

Then 

            
          

           
 
  

 

            
            

By Lemma (2.2.5) , (2.2.6) and (2.2.7) ,                  
   and  

                         
   are a pair of dual frames for    . For any  

                            we have 

                                             
       

          
 

      

            

                                                                               
 

              

   

                                                            
         

 

              

    

                                                      

      

                                           

                                                                                                                  

Hence 

                                

      

                 

      

   

The uniform convergence follows by Lemma (2.2.10). 

Let us introduce the multi-index [253]:                                     

                                                
     

         
    

                      
          

        and  
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      We write   

   simply when there is no confusion . When 

we write   
      we mean that   

   exists almost every where in the classical sense 

and for any                 with         for       and                  
   

 is locally absolutely continuous on almost all straight lines parallel to the  -th 

coordinate axis. 

  In the following, we give two criteria on irregular sampling and an algorithm to 

reconstruct a function from irregular sampled values, which is slightly different from 

known results but more efficient in some cases. 

Example               : Subspace of bandlimited functions given in Example 

(2.2.2) .Since                              it is easy to  

                                                                 

So the condition      in (26) is equivalent to    
 

 
   which is just the kadec’s 1/4-

theorem. 

Lemma               Let            be such that              Then 

                                  

 

    

  

       

          

where            and            
               or               is an 

   -dimensional rectangle. 

Lemma              : If   is differentiable on              
       and there 

is some          such that           then 

         
 

 

     
   

  
         
 

 

                               

Lemma              : Suppose that   is a rectangle in    with side lengths  

                   and            for any           Then for any 

                                        
      

    
          

        

  

Proof : Let                                           and  

                                                   It suffices to prove the 

following inequality. 

                   
      

    
          

          

                                  

For        we have 
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            (  is some measurable subset of        and                ) 

 
   

 

  
              

 

 

  
 

   
     

 
     

   

                                                         

   
   

 

  
  

 

   
     

 
 

 

                                                                                               

where Lemma (2.2.16) is used. Hence (24) holds for        Suppose that (24) holds 

for some           Then 

                                          
      

    
          

          

  

A similar argument shows that 

                
  

     
 

  
  

 

     
                        

 
 

 

   

  
     

 

  
   

 

     
  

     

 

  

Hence 

                
                  

                   
  

  
      

    
          

          

 
     
 

 
      

    
   

 

     
  

               

 

    
      

    
          

           

                                                                                 

By induction, (24) holds for any         

Theorem               : Let                  
    be a frame for some      

Suppose that                    and 

     
                       Let    be a regular point and (21) be satisfied 

for some   
     

       If      is such that one of the following conditions is 

satisfied, 

                           
 

          

                                                                               

or 
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then for any sequence           
        satisfying              there is a 

frame           
   for    such that 

                        

      

                                                                           

where the convergence is both in        and uniform on   . 

Proof: Let    be defined as in Lemma (2.2.6). Set 

                                   

      
 

  

Then q(x, y) is well-defined on      due to Lemma (2.2.10). Note that  

                   

We need only to show that                         
    is a frame for   . In fact 

, if it is the case, then (27) holds with           
    being the dual frame and the 

uniform convergence follows by Lemma (2.2.10) . For any        let 

                          Then 

          
          

      
 

                            
  
    

       

 

  
    

      
       

 

      
 

 
 

  
    

      

where   and    are the frame bounds for                  
    First, we assume 

(25) is satisfied. By Lemma (2.2.15), we have 
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  Since 

                   
 

      
 

                                                                              

                                     
          

 

 

              

     
      

             

we have 

                       
 

      
 

      
         

  
   

     

  
    

                       

Similarly we can prove that 

                     
 

      
 

 
   

     

  
    

                                                         

Hence                        
    is a frame for      

Next we assume that (26) is satisfied. Put                     
   By Lemma 

(2.2.17), we have 
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On the other hand, we see from (26) that 

 
 

     
      

 

        
 

  

     
 

     
               

 

      
 

  

 

       

 

  
 

     
                         

 

 

  

  

 

       

          

                                   
 

     
                             

 

 

  

  

 

       

   

                    
     

                                             

Hence 
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Proposition               : [see 251] Suppose that         
   is a frame 

for some Hilbert space H with bounds A and B. Let   be a constant such that 

       
 

 
  For any        define 

            
      

 

           

                                       

Then              and                  where  

                             The relaxation parameter   plays an important 

role in the above algorithm. If we know the exact value of the frame bounds, then 

           is the best choice since  is minimized in this case. For Theorem 

(2.2.18), the operator   can be defined by 

                                         

      
 

  

If (25) is satisfied, the frame bounds for                        
    are 

   
     

  
  

and  
   

     

  
  . So we can choose      

   
     

  
  

   
     

  
     which leads to 

                                 
  
    

         
    

     

  
    

         
    

     
                                                     

In the above algorithm, the functions                  are still irregular. So we 

have to compute them one by one. On the other hand, the decaying factor  is close to 

1 if   
    

       
    

  is very large, which corresponds to a very slow convergence rate.  

Section(2.3) An Aspect of the Sampling Theorem 

  The sampling theorem shows that a function satisfying certain conditions can be 

reconstructed from a sequence of sampled values. For example, the classical Shannon 

sampling theorem says that for each  

                
          

 
        

 

 
   
 

 
      

          
           

        

 

    

                                 

where the convergence is both in       and uniform on     and the Fourier transform 

is defined by 

                   
 

  

     

Let       
      

  
   Then                  is an orthonormal basis for         a 

shift invariant subspace of      . A natural extension of the classical Shannon 

sampling theorem is to study the sampling theorem in shift invariant subspaces of 
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     . Recall that                
     is a frame for the closed subspace   it 

spans, if there are two positive numbers   and   such that 

               
 

   

                     

  and   are called the lower and upper frame bounds, respectively. In this case, 

      if and only if there is some         
  such that                 where the 

convergence is in      . We refer to [239] for an overview on frames and Riesz 

bases. In particular, if             then   is called a shift invariant subspace 

generated by    Now a natural question arises: characterize the shift invariant 

subspace   generated by           such that the sampling theorem holds, i.e. there 

is a frame                   for   such that 

                  

   

            

where the convergence is both in       and uniform on  . Since functions in       

are only defined almost everywhere, for the sampled values to make sense, we 

require that every function in   be continuous. 

  Many authors have contributed to this topic. For example, see [228, 229, 

232,233,234,235,236,237,238]. In particular, we proved the following result. 

Proposition              : (see [240]) Suppose that           and 

               is a frame for the space   it spans. Then the following two 

assertions are equivalent: 

(i)                 converges pointwisely to a continuous function for any  

              
  and there is a frame                   for   such that 

                  

   

           

where the convergence is both in       and uniform on  . 

(ii)   is continuous                  is bounded on   and 

                                    

for some constants          where 

                           

   

 

is the Zak transform of   and 

                        

   

           

Definition              : A closed subspace   in       is called a sampling 

space if there is a frame                 for   such that               

converges pointwisely to a continuous function for any           
  and 
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where the convergence is both in      and uniform on  . 

  By Proposition (2.3.1), many sampling spaces can be given. First, we point out that 

a sampling space may not have a Riesz basis of the form                    To see 

this, let                       and          For any                we have 

            

   

       
       

and 

                    

   

    

                 

   

    

      

Hence 

                      

   

                     

   

  

Therefore, 

                   

   

  

Since                     
  and                  

  , the above series 

converges uniformly on  . Hence   is a sampling space. However, for any        

                            on            Consequently,                 

cannot be a Riesz basis for  . 

Proposition             : (see [240]) Suppose            Then the 

following two assertions are equivalent. 

 (i) For any              
                     converges pointwisely to a 

continuous function. 

 (ii)   is continuous and                       for some constant    

Proposition              : Suppose that                        
   and 

                
      

     

             
      

     

                            

are their Fourier transforms, respectively. Then 

         
   

 

 

   

                       

   

    

           

When one side of the above equation is finite, the Fourier transform of  
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Proposition             : (see [230], [231])  Suppose that         and  

                          Then               is a frame for   with bounds   

and   if and only if 

                    

   

                 

Moreover                   is a Riesz basis for   if      has measure      

Theorem              : Let   be a sampling space. Then there is a sampling 

space   such that       and   has a Riesz basis of the form 

                     

Proof : Let                    be a frame for   and   and   be the lower and 

upper frame bounds, respectively. By Proposition (2.3.1) , 

       
   

            
 

   

                                                                                    

Put                      for           and   for others. Let            . 

Then we have 

             

   

              
 

   

               
 

   

      

But 

     
                 

 

   

        
             

                         
 

   

         
          

Hence 

   
 
                    

   

      
 
             

It follows from Proposition ( 2.3.5) that                   is a Riesz basis for the 

space   it spans. 

Next we show that   is a sampling space. Since             we have 

            
 

   

        
                                                                                    

By (33) and (34), we have                           Hence,                

converges uniformly on   for any              
 . On the  other hand, for any 

     there is some           
 such that 

             

   

                        

   

                

   

 

 and            
      

     Then we have 
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Hence 

                          
      

   

                                                         

Therefore, 

                                  

   

                                                                                

Since both sides are continuous, the above equation holds for any        On the 

other hand, we see from (36) that         
       

           . on     . Hence 

                                           

   

                                                            

Again, the above equation holds for any       since both sides are  continuous. 

Now we see from (37) and (38) that 

                             

   

             

   

                     

                     
 

   

         
 
                                                            

 Hence the series in (39) is convergent both in       and uniformly on     Similarly 

we can prove that 

                                         

   

                                                                          

where the convergence is both in        and uniform on   . Hence 

                                   

   

 

with the same convergence. Consequently   is a sampling space.At last, let us prove 

that        For any         there is some         
            such that 

                      Let                       Then we have  

                                                       Hence        

This completes the proof. 

Theorem              : Suppose that           and            . If there are 

two positive numbers   and   such that 

                         

   

 

 

              

   

                                                       

and  
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then   belongs to some sampling space. 

 

Proof : Since             we have 

           

   

   

    

               

     

        

            

 

  

      

Thus                is convergent pointwisely almost everywhere. And so are the 

series                and                . 

Since                 is continuous. For any k   Z, we have 

                   
 

  

               

   

       

 
 

 
 
 

                                   

Note that                              thanks to (41). We have 

                                  

   

                                                                  

On the other hand, since 

              

   

   

    

            
 

  

          

we have 

                 
 

   

                  

Now we can rewrite inequalities (41) and (42) in the following form. 

                              
 

   

 

 

                                                         

                                                                                                                  

Let 

                                                                                                  

      

 
 

 
                                                                

            
 

 
  
 

 
                                            

                                                                                       

  

 Since           has period 1, the set    is shift invariant, i.e.  

                         for each k   Z . 

By (47) , we have 
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It follows from (45) that 

                                            

   

     
 
                                                

and 

                                                  

   

     
 
                                            

Hence                        (45) and (49), we have 

   
 
                    

   

     
 
             

Therefore                    is a Riesz basis for the subspace   it spans  . 

On the other hand, since             is continuous . For each     and          

we have 

                              
 

  

                                                                    

                               

   

   

    

                                     

Since  

                      

   

                     

   

     

we see from (50) that as a function of     

                                       It follows from (52) that 

          

   

                     

   

 

     

    

      
 
         

Thus every function in   is continuous. Moreover, for any         there is some 

        
  such that 
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where the convergence is both in       and uniform on  . By setting       in (52) 

, we get 

                       

   

             

   

  

But                           thanks to  (44). Therefore ,                a.e. Thus 

for       given by (53) ,                                By Proposition(2.3.4),  

                                                                                                   

                 
      

   

                                   

                       Therefore    is a sampling space. Moreover, since 

                          we have           This completes the proof. 

Example            : Suppose that supp                  Then for 

                the  series in (41) and (42) contain only one term            

respectively. Thus (41) and (42) are satisfied for            Moreover    defined 

by (47) satisfies 

                                     
        

 

 
  
 

 
                                                            

                                                                                 

     

Hence 

             

   

    

    
      

  
 

and 

                 
            

        
   

     

This is the classical Shannon sampling theorem. 

Example             : If                   
      

  
 
 
    then all series in (41) 

and (42) in Theorem (2.3.7) are continuous functions with no zeros. Thus in this case 

(41) and (42) are satisfied for some          

Example             : Let       be a sequence of positive numbers, 

            and      be a continuous function with period   and           Let 

                    
 

 
     

 

 
           

For any                 we have 
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Let 

       
   

 
    

         
           

Then (41) and (42) in Theorem (2.3.7) are satisfied. In other words    belongs to 

some sampling space. However , since  

                  

   

  

is continuous and has zeros                    itself is not a frame for the closed 

space it spans. 
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Chapter 3 

Reconstruction in Multiply Generated Shift-Invariant Spaces with Symmetric 

Averaging Functions 

  The problem of  reconstructing  a function   from a set of  nonuniforml distributed, 

weighted-average sampled values              
 

  
         is studied in the 

context of shift-invariant subspaces of         generated by p-frames. The special 

but important case where the weighted-average sampled values are of the 

form               
 

  
             is also studied. We show that every square 

integrable function can be approximated by its average sampling series. As special 

cases we also obtain new error bounds for regular sampling. Examples are given. In 

fact, any shift-invariant space    with a stable generator   is the range space of a 

bounded one-to-one linear operator   between         and        Thus, regular and 

irregular sampling formulas in    are obtained by transforming, via     expansions in 

         with respect to some appropriate Riesz bases . 

Section(3.1)Nonuniform Average Sampling  

  The reconstruction of a function   on    from its samples              where   is 

a countable index set, is a common task in many applications in signal or image 

processing. The sampling set               is often nonuniform and prevents the 

use of standard methods from Fourier analysis. For example, the loss of data packets 

during transmission through the Internet or from satellites can be viewed as a 

nonuniform Sampling  / reconstruction problem. In geophysical exploration, the 

Earth’s magnetic field is measured by a combination of airborne, fast-moving 

acquisition devices, as well as scattered stationary devices resulting in highly 

nonuniform sampling patterns, and a huge data set. The goal is to reconstruct the 

magnetic field and use it to reveal geological features. In the sampling and 

reconstruction problem, the function   is usually assumed to belong to a shift-

invariant space of the form 

                    

    

 

   

             
                         

Where               is called the generator of  . If                 and 

                     then       is the classical space of band-limited functions 

often used as a model in sampling theory (see [201], [208], [214], [221], [224]). 

However, since band-limited functions are analytic, they have infinite support, thus 

local errors may propagate, and the reconstruction algorithms can be computationally 

inefficient. Moreover, many applied problems impose different a priori constraints on 

the type of functions. For this reason, the sampling and reconstruction problems have 

been investigated in spline subspaces [200], [211], [219], wavelet subspaces [151], 

[154], [200], [204], [206],[207], [212], [214], [215], [224], and general shift-invariant 
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spaces [135], [197], [198], [201], [222]. The assumption that the sample values 

                can be measured exactly is not always valid. To take into account 

the characteristics of the acquisition devices , a weighted-average value in the 

neighborhood of    is assumed. This means that the sampled data is of the form 

               
         

 

  

                                                                                    

Where      
 

  
     Each function     reflects the characteristic of the sampling 

device used to measure the average sampling value of   in the neighborhood of    . 

 One of the goals of a sampling theory is to find conditions on the sampling set 

                such that a small change in the function   produces a small 

change in the sample values                 and such that   can be reconstructed 

from               exactly and in a stable way. Equivalently, we must find 

conditions on   such that 

                     
 

    

 

 
 

                                                           

where     are defined by (2) and where    and    are positive constants independent 

of   . Another important goal in sampling theory is to find fast algorithms for 

reconstructing the function   from its sample values. 

When the sampling set is uniform, the weighted-average sampling and reconstruction 

problem has been studied in [220] for the particular case where the functionals in (2) 

are of the form             (i.e., a single device   is used to obtain all the 

measurements) , the sampling is critical (i.e., no oversampling), and in (1)    

          and        

  The case of uniform sampling with multiple devices has been studied by Sun and 

Zhou [217], under the assumption that 

                              
 

 
       

 

 
                                                        

Define the Fourier transform    of an integrable function   by  

                                                                        

     if                         then any band-limited function   with 

             
 

 
 
 

 
  is uniquely determined from its averages            provided 

that (4) holds. He also showed that   can be reconstructed by iterative algorithms. 

Sun and Zhou [218] also studied average sampling  under assumption (4) and 

            even and nondecreasing on          They gave density conditions on 
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  under which f satisfies (3) and derived frame algorithms for the reconstruction. 

They also gave bounds on the error of reconstruction when a nonband-limited 

function is reconstructed by the frame algorithms. In [219], Sun and Zhou showed 

that if the maximal gap between consecutive sampling points is smaller than a 

characteristic length, then a function in a spline subspace is uniquely determined from 

local averages obtained from averaging functions satisfying (4). For       and 

      in (1), Aldroubi gave conditions on the density of   and the diameter of the 

support of the sampling functionals      under which a function   can be 

reconstructed by iterative approximation-projection algorithms (A-P algorithms for 

short) [196]. In [196], estimates were also derived for the convergence rates of the A-

P algorithms in terms of the generating function   and the diameter of the support of 

the functionals     . It should be noted that A-P algorithms are not frame algorithms 

and do not require knowledge of the frames associated with                A-P 

algorithms are robust, their convergence is geometric, and they perform optimally 

even if the samples are corrupted by noise [135] ,[196],[197]. 

    We will consider the sampling problem in          where               

                  is a  -frame for          i.e., there exists a positive constant   

(depending on   and p) such that 

                          

 

  

   

    

 

  

 

   

                               

We also assume that 

                 
                   

                                          

Under these conditions, the space        in (1) is well defined and it is a closed linear 

subspace of        (see [197]). For this case, the well-posedness sampling condition 

(3) can then be written as 

                                  
 

    

 

   

                                             

which is similar to a frame condition.However, the set               does not 

necessarily form a frame for        since the functions               are not 

necessarily in       .The sampling theory in such spaces is new, since all previous 

results consider spaces in which       (single generator)  , and   assume        

               to be a Riesz basis, instead of a (possibly redundant) frame. 

Moreover, for average sampling in shift-invariant spaces, only the case       has 

been considered so far [196].  
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   We show that a function            can be reconstructed from its average samples 

by an iterative A-P algorithm, provided that the sampling set X satisfies a density 

condition that depends on   and the set               . Our results treat the case of 

averaging functions in which the only requirement is that         is compact for 

each      (Theorem (3.1.8)). But we also treat the important case where     

         for each      (Theorem (3.1.7)).However , for this case, we do not 

assume that   has compact support. We prove that the A-P algorithms converge even 

if the samples are corrupted by noise and that the reconstruction result is optimal in 

some sense (Theorem (3.1.9)). and , we present estimates for the rate of convergence 

of the A-P algorithms of Theorems (3.1.7) and (3.1.8) in terms of the generator   and 

the sampling functions               

  For the sampling problem we need to impose regularity requirements on the space 

      .Wiener amalgam spaces are useful in this context and they are defined as 

follows: A measurable function   belongs to 

                    if it satisfies 

                                             

      

 

   

                         

If       a measurable function   belongs to        if it satisfies 

                       
      

                                                          

In this case         coincides with          Endowed with this norm          

becomes a Banach space [208], [209]. The subspace of continuous functions 

    
                      is a closed subspace of        and thus also a 

Banach space [208], [209]. We have the following inclusions between the various 

spaces: 

    
          

          
                                                      

The following convolution relations hold for          [196]: 

  (i)                and          
     then             

    and 

                                                                                                                

  (ii) If              
      and         

      then 

            

    

       
                                                                             

                                          

    

 

    
   

                                             

  (iii) If              and         
      then the sequence        defined by  

                                 

  
                              and 
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 In addition to the requirement that the generator   of       satisfies (12) and (13) , 

we also require                   to be continuous. Thus, together, the requirements 

are that   satisfies (12) and belongs to     
       (here     

       denotes the 

Cartesian product     
               

    of   copies of     
   ). With these 

requirements, it is well known that the space        is a space of continuous   -

functions and we have the following properties [135], [199]: 

(i) The space         is a closed linear subspace of         and there exists a 

positive constant B (depending on   and p) such that 

                        
      

   
 
   

       

 

   

                                          

          
                  

    

                
                    

 (ii) The space       is a closed linear subspace of     
   and we have the norm 

equivalence                    

(iii) There exists                  
           such that, for every            

                         

    

 

   

                       

    

 

   

        

Hence the operator    defined by 

                                           

    

 

   

                                       

is a bounded projection from         onto      . 

(iv) If                  is separated , i.e.    
    
             then 

                             
 

    

 

   

                                                             

We will assume throughout that the sampling set   is separated and that the sampling 

functionals     satisfy the following properties: 

  (i)     
   
          

       and 

  (ii)                 
 

  
     

  Fast approximation-projection (A-P) iterative algorithms for the reconstruction of 

functions from their samples have been introduced by Feichtinger and Gröchenig for 

the case of band-limited functions [210]. These schemes have been extended by 

Aldroubi and Feichtinger to general shift-invariant spaces [197]. We will develop the 
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theory of fast A-P iterative reconstruction schemes for the case of average sampling. 

First, we need to introduce the notion of   -density useful in this regard. 

Definition            : A set                  is   -dense in    if 

               for every                                                                                       

where         are balls centered at    and with radius      

  This definition implies that the distance of any sampling point to its next neighbor 

isat most    . Thus, strictly speaking,    is the inverse of a density, i.e., if    

increases ,the number of points per unit cube decreases. A special but important case 

for average sampling is when the sampling functions     are obtained by translation 

of a single function    Thus ,               and the weighted samples are of the 

form                       For this case, the iterative algorithm that we develop 

uses a quasi-reconstruction operator      in the iteration scheme. To define this 

operator, we start from a partition of unity          defined as follows: 

Definition            : A bounded uniform partition of unity (BUPU) associated 

with              is a set of functions         that satisfy: 

  (i)                             

  (ii)                     and 

  (iii)                        

The operator      is then defined by 

                                         
   

            
         

   

                      

where             
         and where   

                         Obviously the 

quasi-reconstruction operator       does not belong to the space      . However, 

we can use this operator in an A-P iterative scheme to reconstruct the exact function 

          as follows: 

Lemma               Let         
    and let               where 

        
      . Then 

(i) the oscillation (or modulus of continuity) 

   
 
              

      
                   belongs to         

(ii) the oscillation           satisfies 

                                                                                                        

where                     and 

              
                      

(iii) the oscillation           satisfies 

                
                    for all                                                     
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In particular                
                   

Lemma            : Let   be any sampling set with   -density        let 

             be a BUPU associated with   (see Definition (3.1.2)), and let 

         
     Then there exists a constant          such that for any 

               we have 

                                                
        

where the constant                       does not depend explicitly on the 

sampling set   or on the partition of unity in definition (19). Here     denotes the 

smallest integer greater than or equal to    

 Proof: Let               where          
       and (see [135] ,[197] ). 

From (12), we have           and 

                                        

   

                                         

                                       

   

             

   

  

                               

   

 

                              

   

 

                                            

   

               

From this pointwise estimate and Lemma (3.1.3) , we get that 

                               
                                                

Thus using (12), (20), and (22), we obtain 

                                                                                 

                                                                                                         

Lemma             : Let            such that       
 

  
         and define  

                where      is any positive real number. Then, for every 

                
                    

Proof :We will estimate the      -norm of              
    Since 

     
 

  
        and          

          we have 

                     
                          

           

 

  

     

Therefore 
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By direct computations, we have 

              
          

  

 

     

                   
       

    

                                  

               

 

     

    
          

          
          

               
     

    

   

   

 

     

              
          

           

    

    
            

                      
     

 

     

                                                 

                                     
     

 

       

                                                               

and 

            

 

     

    
          

                   
       

    

                   

   

 

     

    
          

             
       

    

                      

                         

 

     

                 
   

                                                             

By Lemma (3.1.3), for any        there exists       such that 

                
                  

Write 

                     

 

     

  

 

         

                  
   

                               

Then 

          
     

 

       

              



 

51 

and 

                      
     

 

         

                                            

                         

 

         

                  

By (27)        as         Combining (24), (25), and (26), we have 

                                                

Lemma             : Let   be a bounded projection from          onto        

Then there exist        and        such that for every separated   -dense set   

with        and for every positive          the operator         is a contraction 

on       . 

Proof : 

                       
 

   

 

   

                                                

                                                                     

                                                                                                

                                                                       
                    

Using (22) and the upper bound inequality of (14), the first term of the last inequality 

in (28) can be estimated as follows: 

                                   
     

                
                   

The second term               
      can be estimated as follows. Write 

  
    

      
    

  for               Since each   
        

   and           (11) 

implies that   
       

    Noting that 

            
              

      

 

 

   

                                 

and using Lemma (3.1.4) , we obtain 

               
                 

      

 

 

   

  

     

 

                                                                
           

Hence, by (14), 

                              
                      

     
   

                            

By combining (28), (29), and (30), we get 
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Let       be any positive real number. Using Lemma (3.1.3)(ii), we may choose    

so small so that    
     

                     for all         Then, by Lemma 

(3.1.5) , we may choose    so small that  

         
        

     
   

             for all          Therefore, we can choose 

   and    so that, for any        and          we have  

                                                                                             

To get a contraction, we choose              

Theorem             : Let   be in     
        let   be a function in       

such that    
 

  
      and let   be a bounded projection from     onto      . Then 

there exists a density                 and        such that any           can 

be recovered from its weighted average samples                           on any 

  -dense set                  and for any              by the following A-P 

iterative algorithm: 

                               
                                               

                             
                                                     

   In this case, the iterate fn converges to f uniformly and also in the        - and 

    norms. Moreover, the convergence is geometri c, that is    

                              
               

for some                    and          

Proof: Let             be the error after   iterations of algorithm (33). Then the 

sequence    satisfies the recursion 

                                                                                

Using Lemma (3.1.6) , we may choose    and     so small that 

                     Therefore, by (34), we obtain 

                                                                                                                            

and 

                                             
            

Thus                       Since, for        the      - and   -norms are 

equivalent, the inequality above also holds in the      - norm and the proof is 

completed. 

   Theorem (3.1.7) treats the case of a single averaging function    shifted to the 

points      for obtaining the measurements                    

In practice, this is the situation when a single measuring device is used to obtain the 

discrete data. For this case     is what is called the impulse response of the 

measuring device. More generally, we can allow the 

averaging function     to depend on the point   . Thus, the averaging functions can 

be described by the infinite vector             . For this case, and under some 
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uniformity on the size of the averaging functions     , we can recover the function   

exactly by using the quasi-reconstruction operator 

                                                                   
   

                                                   

in the following A-P iterative algorithm: 

Theorem             : Let   be in     
         let P be a bounded projection 

from    onto        and let the averaging sampling functional 

s         
   satisfy 

    
 

  
     and       

 

  
       where       is independent of    . Then there 

exists a density               and              such that if              

is separated and   -dense in    , and if the average sampling functionals     satisfy  

                  
   for some             then any           can be 

recovered from its weighted-average samples                    by the following 

iterative algorithm: 

                                         
                                              

                            
                                               

  In this case, the iterate fn converges to f uniformly and also in the      - and   -

norms. Moreover, the convergence is geometric, that is, 

                              
               for some 

                    and         

Proof : Let                     
              We have 

                                                                         

                                                                                        

                                                                                                   

The second term               of the last inequality can be estimated as follows: 

Write                    for               Clearly,  

           for             and         
 
      For each     we have the following 

pointwise estimate: 
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From this pointwise estimate and Lemma (3.1.4) it follows that 

                                             Thus we conclude that 

                                             

 

   

                 

                                                     
     

                           

By combining (29), (38), and (40) we get 

                       
     

                   
              

                                                                         
     

                           

The  rest  of  the  proof  is  similar to the last part of  the  proof  of Lemma (3.1.6). 

Let       be any positive real number. Using Lemma (3.1.3)(ii), we may choose    

so small so that                              for all         Then we may 

choose    so small that            
                                   for 

all          Therefore, we can choose    and    so that for any        and 

         we have 

                                                                                            

To get a contraction, we choose              

In practice, the sampled data is often corrupted by noise. Moreover, the assumption 

that the function   belongs to some specific space       is often an idealization. 

Thus, it is important to know whether the A-P algorithms (33) and (37) still converge 

under nonideal circumstances. To investigate these situations, we only assume that 

the data         
            belong to     but we do not assume that          

             

are local averages of a function          . For this case we use the initialization 

                                          
         

   
   

                                       

where              is the BUPU in definition (19). Algorithm (33) becomes 

                                                                                                                

and algorithm (37) becomes 
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Theorem            : Under the same assumptions as in Theorem (3.1.7), 

algorithm (43), with the initialization (42), converges to a function          which 

satisfies               
     Correspondingly, under the assumptions of Theorem 

(3.1.8), algorithm (44) converges to a function            which satisfies 

             
          

 Proof: By Lemma (3.1.6), the operator         is a contraction on      . It 

follows that the sequence of functions    in (43) is convergent to a function    in 

     . By taking the limits of both sides of (43), and using (42), we get 

              
          

 The proof of the second part of Theorem(3.1.9) is almost identical, except using the 

contractive property of the operator         on      . 

Theorem             : Assume that   and   satisfy the conditions of 

Theorem (3.1.7) , and that            
   for every             and 

                   
 

  
        for some            Then the convergence rate 

  in Theorem (3.1.7) satisfies 

            
      

     
                

                                    

                                            
     

            
    
     

                

where B is the upper bound constant in (14). We have a corresponding result for the 

situation in Theorem (3.1.8). 

Proof : Consider   and    as in Lemma (3.1.5) . Assume further that         
  . 

Let us first estimate           
   for            Note that 

                            

 

 

                               

                                                                                                                          

                                    

 

 

        
       

             

which leads to the following estimate to        : 

               
     

                                                                       

                    
     

       
       

                   
     

             

Thus, for every          
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Hence, 

                    
          

       

      

       
           

       

      

 

                        

            
          

       

      

                
                   

Next we estimate the      -norm of             
   By (26) and (45), 

                            
       

 

     

                                  

               
           

 

     

                

                                                 
            

 

       

                                              

Combining (24), (25), and (46), we obtain the following estimate for the      -norm 

of   : 

                 
                 

 

       

                                             

                                                                       
           

 

       

                      

If                    
 

  
        for some               then, by (47), 

                 
           

          
            

         

                         
            

                            

The desired result in Theorem(3.1.10) then follows from(31),(45),and (48). 

Theorem              : Assume that   and               satisfy the 

conditions of Theorem (3.1.8) and that            
   for every               Then 

the convergence rate   in Theorem (3.1.8) satisfies 

                                        
           

     
                                    

where   is the upper bound constant in (14) and   is the upper bound in Theorem 

(3.1.8). 

Section(3.2)Average Sampling in Shift Invariant Subspaces  

  The sampling theory says that if a function      satisfies certain conditions, then it 

is uniquely determined and can be reconstructed from its sampled values at a 

sequence of sampling points            i.e., there exist some functions       such 

that 
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For example, every band-limited function  

                           can be reconstructed by the formula  

                                     

   

  

This is the classical Shannon sampling theorem. Although the assumption that a 

function is band-limited is eminently useful, it is not always realistic since a band-

limited function is of infinite duration. Thus, it is natural to investigate other function 

classes for which a sampling theorem holds. A simple model is to consider shift-

invariant subspaces, which generalize the space of band-limited functions and have 

the form 

                                 

for some generating function       In fact, there have been many results concerning 

the sampling in shift-invariant subspaces for both regular and irregular sampling, see 

[135,140, 150,154,157,159,263,162,169,176,178,179,182,183,191,192,194]. 

 For physical reasons, e.g., the inertia of the measurement apparatus, measured 

sampled values obtained in practice may not be values of a function   precisely at 

times      but only local averages of   near     Specifically, measured sampled values 

are 

                       

for some collection of averaging functions            which satisfy the following 

properties: 

             
 

 
    

 

 
               

 
                

Observe that the averaging procedure is allowed to vary form point to point.  

  It is clear that from local averages one should obtain at least a good approximation 

of the original function if   is small enough. Wiley [193], Butzer and Lei [166,167] 

studied the approximation error when local averages are used as sampled values. 

Furthermore, Gröchenig [174] proved that if sampling points    satisfy 

               
 

   
                             

then every        is uniquely determined and can be reconstructed by local 

averages        around      Specifically, there are some functions            such 

that 

                                  

   

                                                                                      

In [166], Feichtinger and Gröchenig proved that if 
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then every        is uniquely determined by 

                     

  

    

                                          

and can be reconstructed with a formula similar to (50). If       are taken to be 

translations of a generating function, i.e.,                for some averaging 

function       then the average sampling procedure can be viewed as prefiltering, 

which is widely studied in literature. In [161,162,191], Aldroubi and Unser studied 

the reconstruction of signals by means of prefiltering and sampling in more general 

sense.  

  In [184,186,189], we studied average sampling in shift invariant subspaces with 

arbitrary averaging functions and gave the optimal upper bound for the support length 

of averaging functions for some special cases. In [156,158,160], Aldroubi, 

Feichtinger, Sun and Tang studied density conditions on sampling points and fast 

iterative reconstruction algorithms, for which the performance were analyzed when 

the data were corrupted by noise. We study the reconstruction of functions in shift 

invariant subspaces from local averages with equally spaced sampling points and 

symmetric averaging functions. Specifically, the averaging function        is 

symmetric with respect to        and nonincreasing on                A simple 

example is 

        
 

  
                                  

We present an average sampling theorem and give explicit error bounds for the 

aliasing error and the truncation error. Since the classical point sampling can be 

viewed as a special case of average sampling, i.e.,         are   functions 

concentrated at      our results also give new error bounds for regular sampling. At 

the end of section, we give some examples. 

The Fourier transform and the Zak transform of         are defined by  

                 
 

 

                                 

   

    

respectively; 

                                   

   

  

We call      an averaging function if                      and       
 

 
          

 Recall that a family of functions             belonging to a Hilbert space   is said 

to be a frame if there exist positive constants   and   such that       

         
 

          for every        The numbers   and   are called the 
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lower and upper frame bounds, respectively.             is said to be a Riesz basis 

for   if it is complete in   and there are positive constants   and   such that for any  

                  
       

        
     

 

 

 

      
   

A frame that ceases to be a frame when any one of its elements is removed is said to 

be an exact frame. It is well known that exact frames and Riesz bases are identical. 

Let              be a frame for some Hilbert space  . The frame operator   is 

defined by 

             
   

                

It can be proved that S is a bounded, invertible, and self-adjoint operator on H. Let 

            Then              is also a frame for  , called the dual frame of 

             For any f   H, we have 

             
     

            
     

    

We refer to [142,152] for details on the frame theory. 

Proposition            : (see [175]). If      is differentiable on        

               and                 then 

        
 

 

   
 

  
                 

 

 

    

Lemma            :If      is differentiable on                     and there 

is some            such that          then 

        
 

 

   
   

  
         
 

 

     

where                        

Proposition             : Let f be an integrable  function on       and let  

            
 

 
                      for           (  a positive constant); 

furthermore, let   be a nonnegative, nonincreasing and integrable function. Then 

          

 

 

          

 

 

    

Lemma            : Let                   be a Riesz basis for some    

        Suppose that   is locally absolutely continuous and             Then for 

any              
                          is  locally absolutely continuous and 

           
            a.e. 

Proof : For any              
  and        we have 
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thanks to              Hence      
          is both absolutely convergent 

almost everywhere and convergent in         for any       

Similarly,     
          is convergent almost everywhere. Suppose that 

    
 
           is convergent for some   . Then for any        we have 

                      

   

      
        

   

 

  

     

Hence                     is well defined on  . Moreover, the above equation 

also implies that   is locally absolutely continuous and 

           
        

   

      

This completes the proof .  

Theorem            : Let                 be a Riesz basis for    with 

bounds   and    Suppose that   is locally absolutely continuous,  

                                and there are two positive constants    and    

such that 

                                                                                                                     

Let                be a sequence of averaging functions such that 

             
 

 
      

 

 
           is even and nonincreasing on    

 

 
    

If        
   

 
    there is a frame                 for    such that for any          

                                             

     

                                                                        

where the convergence is both in       and uniform on     

Proof: For any              there  is   some c =              
    such  that  

           
           . By the definition of  Riesz basis, we have 

 

 
    

       
       

 

   

  
 

 
    

   

By Lemma (3.2.4),   is locally absolutely continuous and  

          
             . By  Proposition (3. 2.1), for any     
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It follows from Proposition (3. 2.3) that 

                

 
 

 

                                                                              

                     
  

  
            

   

 

           

   

 

    
 

  
            

   

 

    

A similar argument shows that 

                
 

 
 
 

             
 

  
            
 

 
 
 

    

Hence 

              
 

     

   
                

 
 

 
 
 

            
 

 

     

     

                  

                                

 
 

 
 
 

         

     

   
 

  
           

 
 

 
 
 

  

     

 

          
 

  
       

            

     

 

 

     

  

 
 

 
 
 

                                               

             
 

  
 
 

  
               

 

 

  

 
 

 
 
 

                                                               

         
 

  
       

 

 
 

 
 
 

     
    

  
    

                                                                    

where           
    

      But 
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Therefore,  

         
 

     

      
  

 
 
 

     
  

 

 
     

  

 
 
 

     
   

Similar arguments show that 

         
 

     

 
 

 
     

  

 
 
 

     
       

Let        be the orthogonal projection of       onto       Then 

                  for any          It follows that 

 

 
     

  

 
 
 

     
            

 

     

 
 

 
     

  

 
 
 

     
       

Consequently,                  is a frame for   . Let                be the dual 

frame. Then for any           

                   

     

              

     

  

To prove the uniform convergence,we need only to show that         
 

      is 

bounded on   . Since 

                      

 

 

                                              

                   . It follows that for           (and thus for any      ), 

                         
 

     

   
 

  
          

 

 

  

     
 

 
      

 

                          

Hence, for any 

                

     

           

    
        

 
            

     

    
   

 

 
      

  

 
     

   

Therefore, 

         
 

     

 

   

    
      

         

     

      
      

        

  
      
     

 

 

  

Since                is a frame for    with upper bound              
    we have 

                       
 

     

 

   

 
 
 
       

  

     
  
    

                                                         

This completes the proof.  
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Proposition              : Suppose   that                     and 

                                 Then                is a Riesz basis for    with 

bounds   and   if and  only  if 

                                                                                                                       

Moreover, if the above inequalities hold and let 

                                                    
     

            
                                                                 

then                      is the dual Riesz basis of                   with bounds 
 

 
  

and  
 

 
. Consequently, 

                            

     

          

Lemma             :Let the hypotheses be as in Theorem(3. 2.5) . Moreover, 

suppose that   satisfies the first order Strang–Fix condition [181]         

                        and              . Let                      and    

be the orthogonal projection operator from       onto    .  If     
        then 

              
 

 
  
  

 
        

           

               
         

 

   
                           

Proof : Define    as in (56). By Proposition (3.1.6), it is easy to check that  

                         and                            are dual Riesz bases 

for    . Hence 

              
 

 
  

 

 
         

 

 
    

     

 

and 

                                 
   

 
                     

     

                             

For any          we have 
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Noting that 

                                
       

 

            
                                                                   

we see from (58) that 

                            
 

 
                                                                            

           
 
                     

 
 

       

            
 

 

       

   

          
   

  
        

               
 

 

       

    
  

  
         

 

 

       

   

               
   

  
        

  
 

 
      

                                                                            

On the other hand, by setting                                      we have 

            
   

 
                     

   

 

   

  

                                         

            
   

 
                     

   

 

   

  

                                 

            
   

 
              

   

 

    

    

                                     

            
   

 
  
 

   

   

    

                                                        

                
 

 

       

             
 
 
  

  

 

       

   
   

  
     

                              

Putting (57), (60), and (61) together, we have 

             
 

   
                                                                               

 
 

   
                                  

   

 
  

   

                   

 

  

     
 

 
   

  

 
        

                                                                

Next we prove the second inequality. By [163],  
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Hence 

                           
 

   

             
 

 

 

            

By (56), it is easy to see that                                              Hence, 

                        
 

   

                                                              

                                                             
            

             
  

  

             
                

It follows that    

          
   

 
  

   

                   

   

  

                                       

                
 

  
          

   

 
              

   

 

    

    

                  

 
 

  
           

   

 
  
 

   

 
 

 
 
 

           
  

             
    

           
  

   
    

 
    

 
 

        

                                                              

        
  

   
         

 

 

       

    
   

   
     

                                          

On the other hand, we see from (59) that 

                            
 
                     

Hence 

           
     

 

   
                                                                   

  
 

   
                                    

   

 
  

   

                   

 

 

     
 

   
                                                                                                

Theorem              : Let the hypotheses be as in Theorem (3.2.5). Moreover, 

suppose that                        
       Let 
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(i) If   is locally absolutely continuous and            then  

                                                                                                                      

where 

      
  

        
  
 

 
  
  

 
        

   

  
         

          
    

 

   
   

(ii) If       
     and      

                    then 

   
    

                            

                           

   

    

                                                                   

            
 

     

                               

   

    

  

   

    

 

 

     

 

                        

   

 

           

   

    

  

   

    

   

 

         

     

          

                         

     

      

                

   

    

  

   

    

   

     

 

      
   

 
                   

       

        

           

   

    

  

   

    

     

     

 

     
        

 
      

                                                                                                       

Noting that 

      

   

              

   

       

        
          

we have 

                          
 

   

      
    

    

  
     

  
 

                                                      

Since                is a frame for    with upper bound  
 

     
  

 
 
        

we have 
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Let                     and    be the orthogonal projection operator form 

      onto   . Then           and so 

                                                                              

                            
  

        
          

       

            
        

      

Now (63) follows from Lemma (3.2.7) . Next we prove (ii). For any              we 

have 

         
 

   

             

   

    

              
 

   

       

   

                      

   

   

    

            
      

where                            Similarly to (i) we can prove that 

                          where   is a constant independent of    By the 

wavelet theory (see [177]), we know that             as      Therefore, 

                   This completes the proof.  

In practice we can handle only finite sums. The error made by cutting off infinite 

sums is the truncation error. Specifically, it is defined by 

                          

     

  

For the truncation error, we have 

Theorem             : Let the hypotheses be as in Theorem (3.2.5). Then for 

any          we have          and 

       
  

        
           

   

  
      

  
 
                                                 

       
          

            
           

   

  
      

  
 
                                       

where       
           is defined by 
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Proof : For any           there is some                   
  such that  

                         By Lemma (3.2.4),   is locally absolutely continuous 

and            
           a.e. Thus 

             

   

       
        

   

 

 

   

                                           

                         
 

  
               

 

 

  

           
      

Therefore              Similarly to (64) we can prove that 

         
 

     

             
   

  
      

  
 
 
 

   

Now the conclusion follows by (54) and the fact that               is a frame for    

with upper bound              
 
. 

Theorem              :Let the hypotheses be as in Theorem (3.2.5). Put 

                     and 

                               

     

  

Then 

       
  

  
           

 

 
      

  
 
                              

                    
 

 
      

  
 
                                  

where      is defined as in Theorem (3.1.9) and    is a constant determined in the 

proof. 

Proof : By [256], for any          

                   

   

                                                 

Let                
   

    
    Then       

 
              

 
. By Lemma (3.2.2) , 

it is easy to see that 

           
     

     

 

  
      

  
 

 
    

Hence, 
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Since                                   
                    has an upper frame 

bound     
    thanks to Proposition (3.1.6). Hence 

                     

     

  
  

  
           

 

 
      

  
 
   

On the other hand, by (53) ,                   is bounded on   and 

  
     

 
             

 

 

  
           
 

  

   

    
 

 

  
 
         

 

         
 

 

  

               

Hence 

                   

     

 

   

   
 
             

     

 

   

 

               
 

 
      

  
 
                   

The proof is over.  

Example               : Subspaces generated by the centered B-  

                                 
      

   
 
   

                     

It was shown that                    is a Riesz basis for the subspace   
   
  it 

spans and         has no zero on        for any       (see[170]). Therefore    

meets the requirements of Theorem (3. 2.5). Since  

                                  
          

 
 
       

   

    

     

we have 

         
   

                
   

       
        

   

    

              

Let   
   

                        By Theorem (3.2.5), every      
   

 is uniquely 

determined by its local averages       for any sequence of symmetric averaging 

functions               satisfying  

      
 

          
   
            

   
     In Table 1, we give the 
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values of     
   
   for         

Example               : Let                  Then 

                     
 

            It is easy to check that 

             and        Hence (52) holds for 

         
 

  
  

    
  
 
         

  
 
 
                          

which is just [187]. We refer to [187,188] for more results on average sampling for 

band-limited functions. 

Corollary              : Let the hypotheses be as in Theorem (3.2.5). Then for 

any           we have      
     and 

        
   

 
  

        
           
   

  
   

  
        

  
 

   

                               

             
   

 
          

            
           
   

  
   

  
        

  
 

   

            

where       
           is defined by 

            

   

   
       

   

          
 

 
    

                          

  

Proof : For any            there is some                   
  such that 

                               By Lemma (3.2.4),    is locally absolutely 

continuous and    
             

           a.e. Thus 

     
         

 

      

       
        

   

 

 

   

                                           

                         
 

  
               

 

 

  

           
      

Therefore    
           Similarly to (64) we can prove that 

           
 

        

             
   

  
   

  
        

  
 

   

 

 

   

Now the conclusion follows by (54) and the fact that               is a frame for    

with upper bound              
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Section(3.3) Riesz Bases in         Related to Sampling  

  The Whittaker–Shannon–Kotel’nikov sampling theorem states that any function    

in the classical Paley–Wiener space       

                          
 
            

i.e., bandlimited to         may be reconstructed from its samples            on the 

integers  as 

                                        

 

    

                                                                        

where sinc denotes the cardinal sine function                        

 This theorem and its numerous offspring have been proved in many different ways, 

e.g., using Fourier expansions, the Poisson summation formula, contour integrals, etc. 

(see [145,153). But the most elegant proof is probably the one due to Hardy [144], 

using that the Fourier transform F is an isometry between     and           For 

any         one has 

      
 

    
            

 

  

         
     

   
                       

so any value       of   is the inner product in          of    and the complex 

exponential              The key point in Hardy’s proof is that an expansion 

converging in          is transformed by     into another expansion which 

converges in the topology of     . This implies, in particular, that it converges 

absolutely and uniformly on  . Recall that the Paley–Wiener space     is a 

reproducing kernel Hilbert space (RKHS) whose reproducing kernel is         

              This technique has been coined in [145] as the Fourier duality in 

Paley–Wiener spaces. Thus, expanding    with respect to the orthonormal basis 

                and transforming by     we obtain the Shannon sampling formula 

(67). An irregular sampling formula in     at a sequence         of real points may 

be obtained by perturbating the orthonormal basis                  in such a way 

that the sequence of complex exponentials                  forms a Riesz basis for 

    . This is the case if, for instance, the sequence            verifies the Kadec 

condition:                    Moreover, the Paley–Wiener–Levinson sampling 

theorem states that any function        can be recovered from its samples 

           by means of the Lagrange-type interpolation  series 

            
    

              

 

    

             

where   stands for the infinite product 
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On the other hand, the Paley–Wiener space     is a particular case of a shift-

invariant space, i.e., a closed subspace in        generated by the integer shifts of a 

single function             Whenever the sequence  

              forms, at least, a frame sequence in        (i.e., it is a frame for its 

closed linear span), the corresponding shift-invariant space can be described as 

               

   

         
         

The generator ϕ is stable if the sequence {              is a Riesz basis for   . For 

    , a stable generator is          Wavelet subspaces are important examples of 

shift-invariant spaces generated by the scaling function of the corresponding 

multiresolution analysis. See [137,138,149] for the general theory of shift-invariant 

spaces and their applications. In addition, sampling theory in shift-invariant spaces 

and, in particular, in wavelet subspaces has been largely studied in the recent years. 

Let us cite, for instance, the works of Aldroubi and Gröchenig [135], Aldroubi and 

Unser [136], Chen, Itoh and Shiki [140,141], Janssen [147], Sun and Zhou [150,154], 

or Walter [148,151] among others. The main aim in this section is to show that the 

Fourier duality for Paley–Wiener spaces can be generalized to the case of a shift-

invariant space    with a stable generator  . To this end, we define a bounded one-

to-one linear operator   between          and        as 

                                                                                     

                          
 

                                          

where the kernel transform             
       is given by the Zak transform 

of    namely                                    Recall that the Zak transform of 

          is formally defined as  

                          

    

              

The shift-invariant space    coincides with the range space of  . Thus, sampling 

expansions in    can be seen as transformed expansions via   of expansions in 

        with respect to appropriate Riesz bases. Taking into account the definition of 

    these bases should have the particular form         
   Taking the sampling points 

               we obtain the regular sampling in     whereas perturbing this 

sequence as                       we obtain the irregular sampling.  Let 

          be a stable generator for the shift-invariant space 
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i.e., the sequence              is a Riesz basis for   . A Riesz basis in a separable 

Hilbert space is the image of an orthonormal basis by means of a bounded invertible 

operator. Recall that the sequence              is a Riesz sequence, i.e., a Riesz 

basis for    if and only if 

                      

where      denotes the essential infimum of the function  

                      in         and       it's essential supremum. 

Furthermore      and      are the optimal Riesz bounds [142]. We assume along 

the section that, for each       the series                converges. Thus, by 

using the Riesz’ subsequence theorem [142] we can choose the point wise 

                          for each          as the representative element of the 

class               in      . Moreover, if   is a continuous function and the 

series               converges uniformly in compact subsets of   , we can take 

any        as a continuous function in   . Besides,    is a RKHS since the 

evaluation functionals are bounded in   . Indeed, for each fixed       we have 

        
 

    
           

   

                                                                  

where we have used Cauchy–Schwartz’s inequality in                     and 

the Riesz basis condition 

         
 

   

                 
 

   

               

Inequality (68) shows that convergence in the      -norm implies pointwise 

convergence in  . The convergence is uniform in subsets of the real line where  

           
                  is bounded. The reproducing kernel of    is given 

by                                   
    where the sequence                denotes 

the dual Riesz basis of              . Recall that the function    has Fourier 

transform           [136]. 

  For each        consider the function      
       defined by the Fourier series 

                       

   

    

Notice that                                    where   denotes the Zak transform 

of    . See [143,146] for properties and uses of the Zak transform. Thus, for each 

            we can define the function 

                                                     

                          

If we denote by T the linear transform which maps             into     i.e.        

     then we can identify the range space of   as the shift-invariant     

i.e                  Indeed, for           we have that 
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which belongs to   . Furthermore, for each        there exists a sequence       

       such that                    in        Since              is an 

orthonormal basis in          there exists a function             such that 

                       for every    . Hence,          Moreover, the following 

result holds: 

Theorem             : The mapping   is an invertible bounded operator 

between         and    . 

Proof: The operator   is bijective since it maps the orthonormal basis                

in        into the Riesz basis                in    . Concerning the continuity, for 

            we have 

           
                      

   

        

     

 

 

                                                        
 

   

               
     

where we have used the upper Riesz basis condition for               . Having in 

mind the periodicity relations of the Zak transform, the function    satisfies 

           
            in  

         where       and         Now, for        

consider                     For each      we have 

                                                                      

Since   is a bounded invertible operator, the sequence              is a Riesz basis 

for    if and only if                 is a Riesz basis for        . The following 

theorem which can be found in [139] gives a characterization of Bessel sequences, 

Riesz bases and frames in        having the form                   From now on, 

    
  (respectively     

 ) will denote the essential supremum (respectively infimum) 

of     in        

Theorem            :Given a function              the following results 

hold: 

  (i) The sequence                 is a Bessel sequence in         if and only if the 

function   satisfies     
      

  (ii) The sequence                is a Riesz basis for         if and only if the 

function   satisfies         
        

      In this case, the optimal Riesz 

bounds of                 are     
 
 

 
and     

 . 

  (iii) The sequence                 is a frame in          if and only if is a Riesz 

basis for        .Thus we have the following corollary in   . 
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Corollary            : Given a function          consider            

           Then, the sequence              is a Riesz basis for    if and only if  

        
        

     . 

  Regular sampling in    arises by considering appropriate Riesz bases in         . 

Namely, for a fixed            the regular samples at            of        are 

given by                                
                     where    

          The sequence        
           in         has the biorthonormal 

sequence                     provided         
        Hence, stable regular 

sampling in    reduces to studying whenever the sequence        
           is a 

Riesz basis for           and this depends on the function    as stated in Theorem 

(3.3.2).Expanding           with respect to the Riesz basis                     

via the invertible bounded operator   we obtain a regular sampling formula for    

Lemma             : Given            there exists a function        

satisfying the interpolation condition                   where       if and only if 

the function      belongs to           In this case                  

Proof: Assume that there exists a function        satisfying the interpolation 

condition                    where     . For      
       we have 

                                  
                

                                          
 

 

            

which implies that                             in        and consequently the function 

     belongs to        . Conversely, if      is in        , we define 

                 For       it satisfies 

           
 

   
                                         

Thus we can characterize stable regular sampling in    . 

Theorem             : Consider           such that the  function 

       
      . The following conditions are equivalent: 

  (i)          
         

      . 

  (ii) There exists a Riesz basis         for    such that, for each        we have 

then pointwise expansion 

                    

   

        

Furthermore, in this case the sampling functions are                where 

               The sampling series converges in the      -norm sense, absolutely 

and uniformly in subsets of   where    is bounded. 
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Proof: First we prove that (i) implies (ii). Consider                 Condition (i) 

implies that               
             

     and , as a consequence, Corollary 

(3.3.3)  gives that                 is a Riesz basis for   . For each          there 

exists a sequence         in       such that                         where the 

convergence is also point wise for each       since    is a RKHS. Taking    

        and using the interpolatory condition                we obtain that 

          for any         

Conversely, assume that the condition (ii) holds.Taking                      

we obtain that                   and , as a consequence,                 is a 

Riesz basis for   . Since                Corollary (3.3.3) gives condition (i).  

  Absolute convergence comes from the inconditional character of a Riesz basis. The 

uniform convergence is a standard result in the setting of the RKHS theory.  

 A straightforward calculation gives the Fourier transform of Sa. Indeed   

                 
       

     

          
      in        

  Usually, one may consider irregular sampling as a perturbation of the regular 

sampling. In the present setting, we can try to recover any function        from its 

perturbed samples                    where           and         is a 

sequence in         Since                                      where  

                      a challenge problem is to prove that              is a 

Riesz basis for        . 

  One possibility is to use a perturbation technique on the Riesz basis             

       
           which gives the sequence of regular samples                 As 

a consequence, we need a perturbation result for those Riesz bases in         

appearing in Theorem (3.3.2). 

   For an infinite matrix                defining a bounded operator in       we 

denote its operator norm as             
     

              

Theorem             : Let        
      

     be in         such that  

                  . Let         be a sequence of functions in         with 

Fourier expansions             
      

           Suppose that the infinite 

matrix               with entries                              satisfies the 

condition            Then, the sequence        
          is a Riesz basis for 

       . 

Proof :To this end we use the following result on perturbation of Riesz bases in a 

Hilbert space   which can be found in [142]: let        
  be a Riesz basis for   with 

Riesz bounds      and let        
 be a sequence in  . If there exists a constant 

     such that 
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then        
 is a Riesz basis for  . For any          

     
    in         we have 

 

         
                      

 

   

                                                            

                     
         

   

       
     

   

  

 

   

 

                         
   

 

 

   

          
   

 

 

   

 

           
        

                                               

Taking into account that in our case       
    we obtain that        

          is a 

Riesz basis for        .  

  As a consequence of the above perturbation theorem in           we obtain an 

irregular sampling result in     

Theorem             : Given             such  that 

                       Let             be a sequence in         

such that the infinite matrix                  whose entries are given by 

                                                                                         

satisfies                Then, there exists a Riesz basis         for    such that 

any function        can be expanded as 

                       

   

         

The convergence of the series is absolute and uniform in subsets of   where      is 

bounded. Also, it converges in the       norm sense. 

Proof :Applying Theorem (3.3.6) to 

                                   

   

                                  

                                                

   

         

we obtain that        
                        is a Riesz basis for        . 

Denote by         its dual Riesz basis. Now, given          we expand the function 

                   with respect to         . Thus , 
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Applying the operator     we get 

              

   

               
      

Furthermore, since T is an invertible bounded operator, the sequence 

               is a Riesz basis for   . The pointwise convergence properties of 

the series come out as in Theorem (3.3.5).  

  The next result yields a uniform bound of the norm       regardless the sequence 

            in                 

Theorem             : For any sequence             in        the following 

inequality holds: 

          
          

                      

   

                                                

Proof : Assume that the second term in the above inequality is finite. Otherwise, the 

inequality trivially holds. For any                     we have 

          
            

   

 

 

   

                            

     

     

   

                                  

                               

     

               

   

   
     

        
 

 
     

              

   

 

                   
  

   

               

     

      
   

                

     

         
   

           
   

         

   

                  
 

   

                                             

Having in mind that 

       

   

                                  

   

 

                                      

   

      

we obtain the desired result.  

  A comment about the second term in (69) is in order. Namely, looking for an 

estimation of the ratio between                           and 

          
  for a fixed       led Chen et al. to introduce in [6] the classes of 

functions   
        Next we give a particular example when Theorem (3.3.8) works. 

Namely, suppose that the stable generator           and for some      it 

satisfies                                  Then, it is easy to prove that, for            

           
     

       

 

             

where       denotes the interval                       
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Corollary             : Let            be a stable generator such that 

           where       
   

       Then, the condition                  implies 

the existence of a Riesz basis          for    such that any function in this space can 

be expanded as 

                       

   

            

The convergence in the series is absolute and uniform in subsets of    where    is 

bounded. It converges also in the      -norm sense. 

Proof :The mean value theorem gives 

   
           

                        

   

             

Theorem (3.3.7) concludes the proof. 

Corollary              : Given        there exists a function          

satisfying the interpolation condition                    where       if and only 

if the function        belongs to           In this case                      

Proof: Assume that there exists a function          satisfying the interpolation 

condition                     where     . For        
         we have 

                                      
                  

                                                
 

 

            

which implies that                                   in        and consequently the 

function        belongs to        . Conversely, if        is in        , we define 

                    For       it satisfies 

           
 

     
                                         

Thus we can characterize stable regular sampling in    . 
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Chapter 4 

Dual Frames in         and Multivariate Generalized Sampling 

 Involved samples are expressed as the frame coefficients of an appropriate function 

in         with respect to some particular frame in        . Since any shift-invariant 

space with stable generator is the image of         by means of a bounded invertible 

operator, our generalized sampling is derived from some dual frame expansions in 

       . An        theory involving the frame theory is exhibited.Sampling 

formulas which are frame expansions for the shift-invariant space are obtained. In the 

case of overcomplete frame formulas, the search of reconstruction functions with 

prescribed good properties is allowed.Finally,approximation schemes using these 

generalized sampling formulas are included.  

Section(4.1) Generalized Sampling in Shift-Invariant Spaces 

  Suppose that   linear-time invariant systems (filters)                    are defined 

on a shift-invariant space    of       

                       

   

          
       

where the function          is a stable generator for   . The main aim in this work 

is to recover any function        by means of a stable sampling formula. More 

precisely, by using a frame expansion which involves the samples 

                              where the sampling period       necessarily satisfies 

    . Whenever s > r we are in the oversampling case. The advantages of the 

oversampling technique in practical applications are well-known (see [119], [125] or 

[130]). 

  This problem goes back to [126] where a sampling formula is given, which allows 

to recover a bandlimited function   by using the sequence of samples 

                              which involves s filtered versions of  . Note that, according 

to the Whittaker–Shannon–Kotel’nikov sampling theorem, the space of functions 

bandlimited to an interval         i.e., the classical Paley–Wiener space      

                                      where    stands for the Fourier transform 

                    
  

  
   , is an example of a shift-invariant space where the 

generator is a scaled version of the cardinal sine function                    

Wavelet subspaces are also important examples of shift-invariant spaces. 

  Papoulis’ result has been extended to a general shift-invariant space by using the 

filter banks technique. Concretely [85] extended Papoulis’ result for some important 

particular [107, 131] extended it in the general case. 
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  The case where the number of channels s is larger than the sampling period    i.e., 

the oversampling case, has been also considered in [85] by means of an example. In 

[132] studied this general setting for classical bandlimited functions.  

  We propose a new approach involving the theory of frames in a separable Hilbert 

space  . Recall that a sequence      is a frame for   if there exist two constants 

        (frame bounds) such that 

                 
 

 

                                      

Given a frame      for   the representation property of any vector      as a series 

           is retained, but, unlike the case of Riesz bases, the uniqueness of this 

representation (for over complete frames) is sacrificed. Suitable frame coefficients    

which depend continuously and linearly on   are obtained by using the dual frames 

     of     , i.e.,       is another frame for   such that                

           for each     . For more details on the frame theory see the superb 

monograph [82] and references therein. 

   The shift-invariant space    is the image of         by means of the isomorphism 

              which maps the orthonormal basis              for         onto 

the Riesz basis              for   . 

   Our starting point is to write the samples                             as the frame 

coefficients with respect to a particular frame in         of the function 

                      Searching for its dual frames we obtain those expansions 

for   in         having the samples                             as frame coefficients. 

Thus, applying the isomorphism   to the above frame expansions of   we will obtain 

sampling expansions for         in    involving its samples 

                           .  

  The use of several different dual frames allow us to obtain a variety of 

reconstruction functions. Thus we can try to find some reconstruction functions with 

“good properties.” For instance, following an idea in [85], those with compact 

support. All these steps will be carried out throughout the remaining sections. Let 

          be a stable generator for the shift-invariant space 

                

   

        
              

i.e., the sequence               is a Riesz basis for   . A Riesz basis in a separable 

Hilbert space is the image of an orthonormal basis by means of a bounded invertible 

operator. Recall that the sequence               is a Riesz sequence, i.e., a Riesz 

basis for    if and only if                   
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Where      denotes the essential infimum of the function                       

in        and      it's essential supremum. Furthermore,      and     are the 

optimal Riesz bounds [82]. 

  We assume throughout the section that the functions in the shift-invariant space    

are continuous on  . Equivalently, that the generator   is continuous on   and the 

function                is uniformly bounded on   (see [113]). Thus, any 

       is defined on   as the pointwise sum                       

  Besides,    is a reproducing kernel Hilbert space (RKHS) since the evaluation 

functionals are bounded in   .Indeed, for each fixed       we have 

                       
    

    
            

   

                                                               

where we have used Cauchy–Schwartz’s inequality in                         

and the Riesz basis condition 

         
 

   

               
 

   

                

Inequality (1) shows that convergence in the      -norm implies pointwise 

convergence which is uniform on  .The reproducing kernel of    is given by 

                                       
    where the sequence               denotes the 

dual Riesz basis of              . Recall that the function    has Fourier transform 

          [115].On the other hand, the space    is the image of         by means 

of the isomorphism              which maps the orthonormal basis 

             for         onto the Riesz basis               for    (see [120]), i.e.    

                                       

   

              

Notice that for each              the function         is given by  

                             The kernel transform           
       is 

defined as                     where    denotes the Zak transform of  . Recall that 

the Zak transform of           is formally defined in    as            

                     See [92] for properties and uses of the Zak transform.  

  The following shifting property of   will be used later: For                   

and       we have 

                                                                                                       

  We close this section citing [81,116,127] for the general theory of shift-invariant 

spaces and their applications. Whenever the generator   is a  B-spline, the 

corresponding shift-invariant space has been proved to be very fruitful in signal 

processing applications [80]. Besides, sampling in shift-invariant spaces has been a 

topic largely studied in recent years, see, for instance, the papers by Aldroubi and 

Gröchenig [78], Aldroubi and Unser [115], Chen et al. [117], Janssen [124], Sun and 
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Zhou [128], or Walter [120]. Average sampling in shift-invariant spaces is also an 

important topic related to generalized sampling (see, for instance, [114] or [129] and 

references therein) . Throughout the section we distinguish two types of linear-time 

invariant system  : 

(a) The impulse response   of   belongs to                Thus, for any        

we have 

                             

 

  

                               

where                       Notice that    is a continuous and bounded function in      . 

(b) The impulse response   has the form        
           

  
     where      

denotes the kth derivative of the Dirac delta and    ,    are constants for    

            For each        we have 

             
           

 

   

               

In this case we also assume that      exists on  , and                    is 

uniformly bounded on   for each                Given a linear-time invariant 

system   of the type (a) or (b), next lemma assures that, for each fixed        the 

Zak transform                       
       

   defines a function in 

       . 

Lemma           : Let   be a linear-time invariant system of the type (a) or (b) 

above. For any       the sequence                 belongs to        

Proof :Whenever   is of the type (b), the result trivially holds. Assume that   is a 

system of the type (a) with impulse response    Then, for any       we have 

            
 
                  

 

  

   

 

 

   

                                          

                           

   

 

 
 

 

  

   

 

 

                                                     

   

 

 
 

 

  

   

 

      
   

where                            , and we have used a version of the 

Minkowski inequality for integrals [122].  Now, consider s linear-time invariant 

systems                    of the type (a), (b), or both. For notational ease we 

choose t = 0 without loss of generality. The apparently more general set of samples  
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                                 where        for                is reduced to the case 

considered here by taking the appropriate shifted systems.For                the 

function    in         defined by 

               
      

   

                                                                      

plays an important role throughout this section. Indeed, next lemma gives an 

expression for the samples                              which involves the functions 

                  and the function          in          

Lemma            : Let   be a function in    such that         where 

           . For every                we have 

                                  
                                                                       

Proof : Assume that    is a filter of the type (a). For each     we have 

                                                                                                    

                                
   

                         

                                 
   

                                      

Parseval’s equality and a change in the summation index gives 

                              
      

   

         

                   
                 

Assume now that    is a filter of the type (b). Under our hypotheses on    we have 

that                                                Hence, for each      , one 

gets 

               
             

 

   

                                                                

                                 
               

   

 

   

 

                                      
      

   

 

   

         

               
                                                  

Observe that, under appropriate hypotheses, the Poisson summation formula gives a 

different expression for the functions    . For instance, assuming that 

                              one has 
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where we have used that       
             when    is a system of the type (a). 

Lemma (4.1.2) leads us to study when the sequence           
                          (or 

equivalently the sequence         
                          where      

       for each 

              , is a Bessel sequence or a frame for        .To this end, associated 

with the functions                    we introduce the       matrix function 

defined for           as 

      

 

 
 
 
 
            

 

 
                 

   

 
  

     
      
 

       
 

 
  

 

              
   

 
  

 

            
 

 
                

   

 
  

 
 
 
 

 

              
    

 
  
         
           

                                            

and its related constants 

             
         

      
                       

         
      

             

where       denotes the transpose conjugate of the matrix     , and      

(respectively, λmax) the smallest (respectively, the largest) eigenvalue of the positive 

semi definite matrix          . Observe that                 Notice that in 

the definition of the matrix      we are considering the 1-periodic extensions of the 

involved functions                    

Lemma            : Let    be in         for                and let     be 

its associated matrix. Then: 

(i) The sequence          
                       is a Bessel sequence in         if and 

only if       
       for             In this case, the optimal Bessel bound is     . 

(ii) The sequence          
                       is a frame for          if and only if 

               . In this case, the optimal frame bounds are      and     . 

Proof : Notice that the equivalence between the spectral and the Frobenius norms 

(see [123]) gives       
        for               if and only if        For 

      or     
         denotes the space of the functions                 

  such 

that 

             
          

   

 

                  
 

 

   

                            

the Euclidean norm of      in   . For any             we have 
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Denote                   
 

 
              

   

 
   

 
  whenever 

              
          we obtain 

                 
               

 

   

 

   

                                                                          

                    
 

 
          

     

 
       

     

 
 

 

   

 

         

  

   

                      

                         
 

 
                    

   
 

 
                      

   

 

           

If       then, for each            , we have 

                      

   

 

                  
                

    

from which         
                      is a Bessel sequence of    

       and the optimal 

Bessel bound is less than or equal to     . Let      . Then, there exists a set 

             of positive measure such that       
             for    

   . Let       
       such that its associated vector function      is 0 if   

             and       is an eigenvector of norm 1 associated with the largest 

eigenvalue of           if       . We have that             
         

and, using (6), we obtain 

                
               

 

   

 

   

  
 

 
         

   

 

   
 

 
          

   

Therefore if       then         
                      is not a Bessel sequence in 

  
      , and if        then the optimal Bessel bound is       This completes the 

proof of (i).To prove part (ii) of the Lemma, assume first that                

By using part (i), the sequence         
                      is a Bessel sequence in 

  
      . Moreover, using (64) and the Rayleigh–Ritz theorem (see [123]), for each 

      
       we obtain 
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Hence, the sequence         
                      is a frame for         with optimal 

lower frame bound bigger or equal that     . Conversely, if         
                       

is a frame for         we know by part (i) that        In order to prove that 

     , consider any constant      . Then, there exists a set             with 

positive measure such that       
             for         Let             

such that its associated vector function      is 0 if                 and      is 

an eigenvector of norm 1 associated with the smallest eigenvalue of           if 

      . Since   is bounded, we have that              
          From (6) we 

get 

                
               

 

   

 

   

 
 

 
        

   

 

     
 

 
          

   

Denoting by   the optimal lower frame bound of         
       

   
            , we 

have obtained that        for each      . Thus          and consequently, 

      . Moreover, under the hypotheses of part (ii) we deduce that      and      

are the optimal frame bounds.  

  In order to complete the statement of Lemma (4.1.3),it is worth mentioning that one 

can also prove that the sequence         
                      is a Riesz basis for         

if and only if it is a frame for         and     . Consider the functions        

            given in (3), and its related matrix G. It is worth to point out that, Lemmas 

(4.1.2), (4.1.3), and the isomorphism  gives the following result: There exist two 

constants       such that 

                  
 

 

      

                    
 

                                                

if and only if             . Equation (7) coincides with the definition of 

stable uniform averaging sampler given by Aldroubi and  co-workers in [105]. In 

[105] a necessary and sufficient condition for (7) is given for a shift-invariant space 

with several generators. That condition is equivalent to this given above as one can 

easily check. 

   The main aim in this section is to recover any function   in the shift-invariant space 

   from its samples                             by means of a stable sampling formula, 

i.e., the sampling formula will be an expansion with respect to an appropriate frame 

for   . Having in mind Lemma (4.1.2), for each               we have  

                    
 

 
        

 

 
 

   

   

                         

where        . Assuming that      
        for each                we obtain 

that 
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The above expansions also hold in         by considering the 1-periodic extensions 

of   and                    Thus we have the matrix expression 

                              

   

                        

   

 

 

                       

where               
    

 
                             and 

                                  
   

 
   

 

. In order to recover  , assume 

that there exists a vector                   with entries in         such that 

                                  a.e. in      . 

  As it will be proved later (see Theorem (4.2.2) below), a necessary and sufficient 

condition for the existence of such a vector (not necessarily unique) is that     . If 

we left multiply (8) by                    we get 

                                          

   

                       

   

 

 

    

                          
       

   

 

   

                           
 

      

  

in the        -sense. Finally, the isomorphism   gives 

                                

 

      

                

where we have used (2). In addition, much more can be said about the above 

sampling expansion. In fact, the following result holds: 

Theorem            : Assume that     
       for              If  there exists 

a vector                   with entries in        such that  

                                                                                             

then, for each       , we have 

                                                   

 

      

                                               

where                         Moreover, the sequence                              is 

a frame for    with frame bounds         and          The convergence of the 

series in (10) is in the       sense, absolute and uniform on   . 

Proof : Given   , consider        in        . Above we have proved that 
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Thus, the sequences         
                        and         

                         are 

Bessel sequences for         satisfying the representation property (11). In [82] we 

obtain that they are dual frames for        .Next, applying the isomorphism   to 

(11) one gets the sampling expansion (10) in     where                       

Moreover, the sequence                            is a frame for   . From Lemma )4.1.3( 

the optimal frame bounds for                                  are     and    .  

   Hence,      
                 and        

          are frame bounds 

for                                          
                        (see [82]). 

  Point wise convergence in the sampling series is absolute due to the unconditional 

convergence of a frame expansion. The uniform convergence on   is a consequence 

of (11). Notice that the frame bounds in Theorem (4.1.4) are optimal whenever 

              is an orthonormal basis for    because, in this case,   is an unitary 

operator. In the general case, the optimal frame bounds could be computed 

orthonormalizing the Riesz basis               as                , where the 

orthonormal generator    has Fourier transform             (see [82]), and using 

(5).The functions    for               are determined from the Fourier 

 coefficients of    with respect to the orthonormal basis               Indeed, 

                                           
              

   

                                

The Fourier transform in (12) gives                                  where 

we have used [82].Observe that condition (9) is equivalent to                a.e. 

in      . In particular, this matrix equality implies that rank           a.e. in 

      and, as a consequence, necessarily       In the next result we give a 

characterization of the existence of a sampling formula like (10). It is also proved that 

Theorem )4.1.4( provides all these formulas. 

Theorem            : Assume that      
       for                Then the 

following statements are equivalent: 

(i) There exists a frame for   having the form                            such that for 

each          

                                                   

 

       

                                                 

(ii)         If these equivalent conditions hold, the reconstruction functions are 

given by          , where the functions     
                      satisfy  

                            

Proof: First, assume that                              is a frame for    for which 

formula (13) holds. Applying the isomorphism      to (13) we get 
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where        
                     The sequence                                 is 

a frame for         and therefore, the functions      
        Since 

                      
               

   

 

   

                      

and         
                        is a Bessel sequence for        , we obtain that the 

sequences                                 and         
                        are dual 

frames for         (see [82]). In particular, according to Lemma (4.1.3), we deduce 

that         This proves (ii). Besides, for each         
       we have [82]: 

                                
                       

                     
   

 

   

        

Having in mind that 

             
                         

 

 
        

 

 
 

   

   

          
         

  

        
                                      

 

 
      

 

 
 

   

   

            

Parseval’s equality allows us to write the right-hand side in (14) as  

          
 

 
         

 

 
 

   

   

         
 

 
        

 

 
 

   

   

          

 

   

 

    
            

          

   

 

       
 
 
                   

   

 

    

Since the left-hand side in (14) equals    
          

   

 
  , we obtain that 

                              Conversely, assume that         Hence, the 

inverse matrix                exists a.e. in        Consider the firstrow 

                  of the pseudo-inverse matrix  

                            of        Its entries    are essentially 

bounded in       since the functions    and                   are essentially 

bounded in      . From                we obtain that 

                                      a.e. in        Thus, (i) comes out by 

using Theorem (4.1.4) .  

 When ever the functions    are continuous on  , the condition        is equivalent 

to                             It can be proved that the first row 



 

91 

                  of the pseudo-inverse matrix      gives precisely the 

canonical dual frame         
                        of the frame 

       
                        . Other suitable solutions for (9) are given by the first row 

of the matrix                           where      is any      matrix 

function with entries  in          When ever       we are in the Riesz bases 

setting, and the following result holds: 

Corollary            : Assume that       and       . Then, there exists a 

unique frame                               for    for which the sampling formula (13) 

holds. In this case, this frame is a Riesz basis for   with Riesz bounds          and  

         . Moreover, the functions                    form the first row of the 

matrix      The functions                    satisfy the interpolation property 

                      , where                  and     . 

Proof : In this case, the unique solution of                                      is 

given by the first row of       . By using that                 we obtain 

        
               

                                                                                                

                         
 

 

      

                                      
 

 
        

 

 
            

   

   

   

 
 

 

 

                                                                    

Therefore, the dual frames         
                        and  

          
        

             
are biorthogonal. Hence [82], they form a pair of 

biorthogonal Riesz bases. The Riesz bounds for                            follow from 

Theorem (4.1.4) having in mind that, in this case                .  

  Finally, sampling formula (13) for    gives 

                               
 
        The uniqueness of the coefficients of an 

expansion with respect to a Riesz basis implies                      .  

 First, recall that               is a frame sequence with bounds            

i.e.,a  frame for its closed linear span , if and only  if                   

            where                     [82]. In this case,   is a bounded 

surjective operator from         onto   . For any              we have     

     . Since               a.e. in   and      , we deduce that        , where 

       
        if and only if       in              . Under the new hypothesis 

                                                   the sampling result (10) 

in Theorem (4.1.4) also holds. One can check that the proof in Theorem (4.1.4) 
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applies, having in mind that the operator                     defined for 

                  as          where         
                         
                                    

  

is an isomorphism satisfying the shifting property (2). In this case, the sequence 

                              where                             is also a frame for   .  

Notice that the function    defined in (3) is nothing but the Zak transform              

As in Lemma (4.1.2), one can prove for any        that                 

                                            where          , and           . As a 

consequence, stable generalized irregular sampling in    depends on whether the 

sequence                                                is a frame for       . This sequence 

can be seen as a perturbation of the frame                                               

appearing in Theorem (4.1.4). Hence, by using similar techniques as those in [120], 

the theory on perturbation of frames (see [82]) yields generalized irregular sampling 

in the shift-invariant space   , for suitable error sequences        . This is work in 

progress and will appear elsewhere [121]. 

   In the over sampling setting, i.e.,        Theorem (4.1.4) allows us different 

choices for the vector                          and consequently, different 

reconstruction functions    . One may use this flexibility in order to obtain 

appropriate sampling functions   . For instance, if the generator   and the impulse 

responses of the linear-time invariant systems    have compact support, the functions 

   are trigonometric polynomials and we can choose      in order to obtain 

sampling functions    with compact support (which involves low computational 

complexities and avoids truncation errors). We illustrate this assertion in the case of 

cubic splines: 

   The cubic B-spline is defined as               , where   denotes the 

characteristic function of the interval        It is known that    is a stable generator 

for the cubic splines in       with nodes at the integers (see[118]). Consider the 

      linear-time invariant systems defined as 

                

  
 
 

 

                  

  
 
 

  
 
 

                  

   

  
 
 

  

and the sampling period      . Denoting by 

              
 

   

             
                      

           

  

if there exists a vector                            whose entries are polynomials, 

and such that                    for some non-negative integer l, then the vector 

                        whose entries are trigonometric polynomials, satisfies 
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                  Thus we have obtained reconstruction functions    with 

compact support (see  (12)). In particular, solving a linear system of 12 equations 

with 12 unknowns we find a vector      whose entries are polynomials of degree 3, 

satisfying                   The corresponding sampling functions                

are 

                                                            

 

                                                            

 

                                                                

The associated sampling formula for         reads: 

                                                         

   

  

         uniformly on     . 

Section(4.2) Shift-Invariant Spaces and its Approximation Properties 

   The classical Whittaker–Shannon–Kotel’nikov sampling theorem states that any 

function   band-limited to            i.e.,  

                    
   

    
          may be reconstructed from its sequence of 

samples           as 

                    

 

    

       

where sinc denotes the cardinal sin function,                     Thus, the Paley–

Wiener space of functions band-limited to            is generated by the integer 

shifts of the sinc function. The WSK sampling formula has its counterpart in   

dimensions. It reads: 

                                   

    

                 
   

where now the function   is band-limited to the  -dimensional cube  

                                   
  

 

           

            

Although Shannon’s sampling theory has had an enormous impact, it has a number of 

problems, as pointed out by Unser in [80,106]: It relies on the use of ideal filters; the 

band-limited hypothesis is in contradiction with the idea of a finite duration signal; 

the band-limiting operation generates Gibbs oscillations; and finally, the sinc function 

has a very slow decay, which makes computation in the signal domain very 

inefficient. Besides, in several dimensions it is also inefficient to assume that a 

multidimensional signal is band-limited to a d-dimensional interval. 



 

94 

  Moreover, many applied problems impose different a priori constraints on the type 

of functions. For this reason, sampling and reconstruction problems have been 

investigated in spline spaces, wavelet spaces, and general shift-invariant spaces. See, 

for instance, [78,106,113] and the references therein. In many practical applications, 

signals are assumed to belong to some shift-invariant space of the form  

   
                               

   where the function   in        is called the 

generator of   
  . Assuming that            is a stable generator, i.e., the sequence 

                is a Riesz basis for   
 , the shift-invariant space   

  can be described 

as 

                   
             

      

         
                                             

  On the other hand, in many common situations the available data are samples of 

some filtered versions of the signal itself. This leads to generalized sampling (or 

average sampling following some recent authors [105]) in   
 : Suppose that s linear 

time-invariant systems (filters)                    are defined on the shift-invariant 

subspace   
  of       . In mathematical terms we are dealing with (continuous) 

operators which commute with shifts. The goal is to recover any function   in   
  

from an appropriate subsequence of the set of samples                             , by 

means of a sampling formula which is a frame expansion in   
 . Recall that a 

sequence       is a frame for a separable Hilbert space H if there exist two constants 

        (frame bounds) such that                    
 

         for all  

     Given a frame       for H the representation property of any vector      as 

a series           is retained, but, unlike the case of Riesz bases, the uniqueness 

of this representation (for over complete frames) is sacrificed. Suitable frame 

coefficients    which depend continuously and linearly on   are obtained by using 

the dual frames      of      , i.e.,      is another frame for H such that 

                           for each      . For more details on the frame 

theory see the superb monograph [82] and the references therein.  

  Under appropriate hypotheses, any function in a shift-invariant space in        can 

be recovered from its samples in the lattice    of    (see [103]). If we sample the 

function on the sub-lattice    , where   denotes a matrix of integer entries with 

positive determinant, we are using the sampling rate          and, roughly 

speaking, we will need the generalized samples                              from 

        linear systems    for the recovery of   . The one-dimensional case has 

been treated in [85,89,107]: Under suitable hypotheses, we can recover any function 

in   
  from the sequence of generalized samples                              where the 
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number of channels is         . In this work we obtain, in the light of the 

      -theory, sampling formulas for   
  of the type 

                                           

    

 

 

   

                                  

where the sequence of reconstruction functions                             forms a 

frame for the shift-invariant space   
 . To this end, first observe that the shift-

invariant space   
  is the image of          under the isomorphism     

          

  
 , which maps the orthonormal basis        

        for          onto the Riesz 

basis               for   
    

  Next we express the generalized samples                              as the inner 

products of the function        
               with respect to a particular frame 

in         . Searching for its dual frames we obtain those expansions for   in 

        having the samples                              as the frame coefficients. 

These frame expansions have precisely the form 

                                          
          

    

 

   

                           

where the functions       
                       are obtained by solving a matrix 

equation 

                                                           
                                    

where      is an          matrix of functions defined in        (the so-called 

modulation matrix in the filter-bank jargon) which only depends on the generator   

and on the systems                   (see (26) infra). Finally, applying the 

isomorphism    to the frame expansion (17) for   we will obtain the aforesaid 

sampling expansions for        in   
  , where                          Besides, 

the perturbation theory for frames gives generalized irregular sampling for 

appropriate sequences of perturbed generalized samples 

                                       

  Moreover, in the oversampling case, i.e., whenever           we are dealing with 

overcomplete frames and several different dual frames allow us to obtain a variety of 

reconstruction functions. Thus we can try to find some reconstruction functions 

                   with “good properties", such as compact support, exponential 

decay, etc. As one can see in the present section, this relies on the search of solutions 

of  (18) with prescribed properties. From a mathematical point of view, this is 

equivalent to solving  (18) whenever the entries of the matrix function      belong to 

a prescribed algebra of functions . 
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 This section shows that a generalized sampling formula like (16) allows to construct 

an       -approximation scheme as follows: For a suitable smooth function    (in a 

Sobolev space), consider the operator   , formally defined as 

                                     

    

 

   

         

The aim is to obtain a good approximation of f by means of the scaled operator    

given by               where                 .  

For   in an appropriate Sobolev space we obtain an estimation for the   -

approximation error of the type          
 

 
         as      , where       

denotes the approximation order which coincides with the order of the Strang–Fix 

conditions satisfied by the generator  . 

   Looking for an estimation like the one above with respect to the   -norm leads to 

extend the sampling formula (16) to the larger space   
                             

    

Thus, for any function   in an appropriate Sobolev space, we obtain an analogous 

estimation for the   -approximation error: Namely,          
 

 
         as       

where now the approximation order   depends both on the order of the Strang–Fix 

conditions satisfied by the generator  , and on the greatest order of the partial 

derivatives appearing in the systems     if any.  

  We introduce the needed preliminaries on the shift-invariant space   
 , on the linear 

time-invariant systems    , and on the lattices in    in order to derive a generalized 

sampling theory in   
 . Moreover, we study some sequences in          which play a 

crucial role in what follows. Let           be a stable generator for the shift-

invariant space 

  
              

    

             
                

i.e., the sequence                is a Riesz basis for   
 . A Riesz basis in a separable 

Hilbert space is the image of an orthonormal basis by means of a bounded invertible 

operator. Recall that the sequence                is a Riesz sequence in       , 

i.e., a Riesz basis for   
  if and only if                  where      denotes 

the essential infimum of the function                         in          and 

     it's essential supremum. Furthermore,       and      are the optimal Riesz 

bounds [82].  

    Besides,   
  is a reproducing kernel Hilbert space (RKHS) since the evaluation 

functionals are bounded in   
  . Indeed, for each fixed        we have 
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where we have used Cauchy–Schwartz’s inequality on                       

and the Riesz basis condition 

         
 

    

                
 

    

        
   

Inequality (19) shows that convergence in the       -norm implies pointwise 

convergence which is uniform on   .The reproducing kernel of     
 is given by 

                                  
     where the sequence                denotes the 

dual Riesz basis of               . Recall that the Fourier transform of the function 

   is     
  

 
  On the other hand, the space     

 is the image of          by means of 

the isomorphism      
             

  which maps the orthonormal basis 

       
   

    
 for          onto the Riesz basis          

    
  for     

   For 

              we have                                     where      , 

    , are the Fourier coefficients of   , i.e., for each       

                  
   

      
    Notice that any function          in     

  , where 

            , can be expressed as                                      
   where    

denotes the Zak transform of  . Recall that the Zak transform of            is 

formally defined in     as                               . See [92] for 

properties and uses of the Zak transform. The following shifting property of    will 

be used later: For              and      we have 

                              
                               

                                        

We consider   linear time-invariant systems    in        such that              

                of the following types: 

(a) The impulse response    of    belongs to                  Thus, for any 

      
  we have 

                                       

 

  

           

(b) The impulse response    is a linear combination of partial derivatives of shifted 

delta functionals, i.e., 

                 
              

      

            

If there is a system of this type, we also assume that                    is 

uniformly bounded on    for        .Whenever the linear system    is of type (a), 

 the Minkowski inequality for integrals shows that the sequence 

                      
      for any fixed        (see [89]). Trivially, the same 

applies for    of type (b). Therefore, for any fixed       , the function  
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     belongs to          and the following 

expression for    holds: For any             
  we have 

                                                                 
                                              

The proof is analogous to the one of [89]. In particular, for any      we have 

                                  
                         

       

 

      

             

where the functions  
 
                 given by 

                                                
       

    

                           

will play a central role throughout this section. 

  Given a nonsingular matrix   with integer entries, we consider the lattice in    

generated by    i.e.,                        . 

  Without loss of generality we can assume that           otherwise we can 

consider        where   is some     integer matrix satisfying det        

Trivially,             . We denote by    and     the transpose matrices of   

and     respectively. The following useful generalized orthogonal relationship holds 

(see [86]): 

                                  
     

       

      
                                            

                                        
  

Where                                 The set       has      elements 

(see [108] or [109]). One of these elements is zero, say        ; we denote the rest of 

elements by              ordered in any form.Note that the sets, defined as 

      
       

                           satisfy (see [109]): 

                                                

    

   

         

Thus, for any function   integrable in        and   -periodic we have 

      

 

       

           

 

  

  

    

   

  

Given   linear time-invariant systems                    the aim is to recover any 

function       
  from its generalized samples at a lattice        of   , i.e., from 

the sequence of samples                             .  (80) gives 

                                  
                  

                                 

As a consequence, the recovery of the function      
             , and hence 

of       
  , from the sequence of generalized samples leads us to study the 
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properties (completeness, Bessel, frame, or Riesz basis properties) of the sequence 

   
 
               

                      in   
         

Next, we carry out the study of the completeness, Bessel, frame, or Riesz basis 

properties of the sequence   
 
               

                      in   
       . To this end, we 

introduce the           matrix of functions 

     

 
 
 
 
           

                   
        

           
                  

        
 

     
 

      
             

 
      

         
 
 
 
                      

 

                         
                      

              

                                                                           

and its related constants 

            
        

      
                       

        
      

            

where       denotes the transpose conjugate of the matrix       and      

(respectively     ) the smallest (respectively the largest)eigen value of the positive 

semi definite matrix         . Observe that               Note that in the 

definition of the matrix      we are considering the   -periodic extension of the 

involved functions                     The following result remains true for 

arbitrary functions    in           , j = 1, 2, . . . , s, not necessarily given by (23). 

Lemma             : Let    be in             for                and let      

be its associated matrix as in (26). Then: 

(a) The sequence   
 
               

                      is a complete system for            if 

and only if the rank of the matrix      is      a.e. in       . 

(b) The sequence   
 
               

                      is a Bessel sequence for            if 

and only if         
        (or equivalently        

 In this case, the optimal Bessel bound is            

 (c) The sequence   
 
               

                          a frame for            if and only if  

                

In this case, the optimal frame bounds are           and            

(d) The sequence   
 
               

                      is a Riesz basis for            if and 

only if it is a frame and            

Proof : Properties (a), (b) and (c) depend on the behavior of the   -norm of the 

sequence of inner products       
 
               

                                  for any function 

              . First, we obtain a representation for this   -normby using that the 

sequence       
          is an orthogonal basis for                 For any    

            we have 
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where we have considered the   -periodic extension of   . Then, 

          
 
               

                

    

 

   

 

   

                                                         

                       
 

    
                        

    

   

 

             

  

   

  

Denoting                                      
         

  the equality above 

reads 

          
 
               

                

    

 

   

 

   

  
 

    
          

   
            

          

Where we have denoted    
                

                       
              

(s times) with the usual norm. On the other hand, using that the function    is    -

periodic, we obtain that the set  

       
      

               
                

       
          has 

the same elements          
            

                  
           Thus 

the matrix             has the same columns of     , possibly in a different order. 

Hence                a.e. in        if and only if                 a.e. in 

         . Moreover, 

          
           

      
                      

           
      

                        

  To prove (a), assume that there exists a set              with positive measure 

such that                         Then, there exists a measurable function 

        , such that            and          in  . This function can be 

constructed as in [97]. Define              such that             if      , and 

         if                   Hence, from (28) we obtain that the system is not 

complete.  

  Conversely, if the system is not complete, by using (28) we obtain a      different 

from 0 in a set with positive measure such that             Thus          

     on a set with positive measure. Parts (b) and (c) in Lemma (4.2.1) have been 

proved in [89] for the univariate case. By using (28) and (29), the proofs for the 
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general case are completely analogous. To prove (d) we assume that          and 

that the sequence is a frame. We see that it is also a Riesz basis by proving that the 

analysis operator 

               
                  

 
               

                                  

is surjective (see [82]). To this end, notice that when          the matrix      is a 

square matrix and hence, the condition       implies that the inverse matrix 

       exists and its entries are essentially bounded. Let                         be an 

element of     
  . For               we define the function 

                   
         

    

  

and let F be the function such that                               
     

         . This function belongs to            because the entries of        are 

essentially bounded. We have that                           
  , and using (27) 

we obtain that 

        
 
         

                               
        

    

   

  

 

         

 

                          
        

 

         

                         

and consequently,                                   Conversely, assume that the 

sequence   
 
               

                       is a Riesz basis. Let                          be its 

dual Riesz basis. Then, by using (27) we obtain 

            
            

      
        

    

   

  

 

         

               

Therefore, for                   we have 

           
            

     

    

   

                            
   

Thus the matrix      has a right inverse; in particular,         . As a consequence 

of (a) we have          and, finally,           Next we discuss the meaning of 

Lemma (4.2.1), whenever the functions                    are given by (23), in 

terms of the average sampling terminology introduced by Aldroubi et al. in [105]. 

Thus, following [105] , we say that: 

 (i) The set of systems                is an M-determining filtering sampler for   
  if 

the only function       
  satisfying             for all               and 

     is the zero function. 
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 (ii) The set of systems                 is an  -stable filtering sampler for   
  if 

there exist two positive constants    and    such that 

     
              

    

 
 

   

       
                            

   

If                  is an  -stable filtering sampler for   
  , then any function 

      
  can be recovered, in a stable way, from the sequence of generalized samples. 

Roughly speaking, the operator which maps     
  into the sequence of samples 

                          has a bounded inverse. An  -determining filtering sampler 

for   
  can distinguish between two distinct functions in   

  , but the recovery is not 

necessarily stable. Notice that from (25), parts (a) and (c) of Lemma (4.2.1) read as 

follows: 

  (i) The set of systems                is an  -determining filtering sampler for   
  

if and only if                 a.e. in        (and hence, necessarily,    

     ). 

  (ii) The set of systems                is an  -stable filtering sampler for   
  if and 

only if                These properties can be expressed in terms of the 

function               . Indeed, as                 if and only if 

                , we have that the set of systems                 is an M-

determining filtering sampler for   
  if and only if                  a.e. in   

       Provided that the function      
        for each                (or 

equivalently      ), since                is the product of the eigenvalues, we 

have that 

       
                                                                                

              
                        

            
        

       
           

and therefore, the set of systems                 is an  -stable filtering sampler for 

  
  if and only if 

       
        

                    

If the functions                    are continuous on   , the above condition reads: 

                 for all            Hence, the set                is an  -stable 

filtering sampler for   
  if and only if 

                                                                                                         

In the above section we have proved that, provided that the functions      
        

for each                the set                is an   stable filtering sampler for  

  
  if and only if       . In this section we obtain the corresponding stable 

sampling formulas leading to the recovery of any function        
  from the 



 

113 

sequence of its generalized samples                            . The sampling formula 

will be unique in the case           These, explicitly given, sampling 

formulas consist of the major difference with the analogous results included in [105]. 

  Now we prove that the expression (22) allows us to obtain F from the generalized 

samples                            . Applying the isomorphism    we get generalized 

regular sampling formulas in   
  . Assume that      

        for                 

then,              
         Hence using (24) and (22), for               we 

obtain that 

                  
         

    

           
       

    

       
      

       

 

                                                         

       

          
              

    

 

                                                                     
    

       

  

This can be written in matrix form as  

                             
         

    

              
         

    

 

 

 

in         , where the matrix function      is given in (26) and      denotes the 

vector                                      
         

 

  In order to recover the 

function    let                   be a vector with entries in          such that 

                                                
   Later, we will show that a 

necessary and sufficient condition for the existence of such a vector is that        

As a consequence, we get  

                                          
         

    

 

   

                                 

Finally, the isomorphism    gives 

                                      

    

 

   

         

where we have used the shifting property (20) and that the shift-invariant space   
  is 

a RKHS. In addition, much more can be said about the above sampling expansion. In 

fact, the following result holds: 

Theorem            : Assume that the functions    given in (23) belong to 

         for each                 Let      be the associated matrix defined in 

       as in (26). The following statements are equivalents: 

(a)      ; 
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(b) The set of systems                is an   stable filtering sampler for   
 ; 

(c) There exists a vector                  with entries      
        satisfying 

                                                          
                                         

 (d) There exists a frame for   
  having the form                             such that 

for any       
  

                                                 

    

 

   

                                   

In case the equivalent conditions are satisfiedwe have that the reconstruction 

functions                   in the sampling formula (33) are  necessarily  given 

through  a vector                   satisfying (32), by 

                                    

    

                                                                      

Where              
   are the Fourier coefficients of     , i.e.,        

        
       

      The sampling series in (33) also converges absolutely and 

uniformly on   . If          then the sequence                                is a 

Riesz basis for   
  and the sampling functions                    satisfy the 

interpolation property                           where                 and      . 

Proof :Part (c) in Lemma )4.2.1( proves that conditions (a) and (b) are equivalent. If 

      then                     
               and , consequently, there exists 

the pseudo-inverse matrix                         ; its entries are essentially 

bounded and its first row satisfies (32); therefore (a) implies (c). If                   

satisfies (32) with      
       , we have proved earlier that formula (33) holds in 

       where    is equal to      or, equivalently, is given by (34). Since we have 

assumed that     
        for each                Lemma (4.2.1) (b) proves that 

  
 
              

                       is a Bessel sequence in         . The same argument 

proves that              
                            is also a Bessel sequence in 

        . These two Bessel sequences satisfy  (see (25) and (31)): 

                                 
             

    

 

   

      
                      

Hence, they form a pair of dual frames for          (see [82]).  Since 

                       
              and    is an isomorphism, the sequence 

                             is a frame for   
  ; hence (c) implies (d). Notice that since 

we have assumed that {  
 
              

                       is a Bessel sequence with 

bound 
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           and                                 
               we have 

           
 

    

 

   

  
  

    
     

     
   

 

    
             

   

  If                              is a frame for   
  , then formula (33) gives  a stable 

way to recover       
  from its generalized samples. Indeed, 

                                 

    

 

   

 

 

                           

                    
 

    

 

   

                                       

where   is a Bessel bound for                             . Hence the set 

               is an   stable filtering sampler for   
  . Therefore (d) implies (b). 

The pointwise convergence in the sampling series is absolute due to the unconditional 

convergence of a frame expansion; it is uniform on   as a consequence of (19).  

   If        then, according to Lemma (4.2.1) (d), the frame 

                                     
          

                
 is a Riesz basis for   

  . 

Applying formula (33) for         and having in mind the uniqueness of the 

coefficients in a Riesz basis, we get the interpolatory property             

             The equivalence between conditions (a), (b) and (d) in Theorem (4.2.2) 

was established in [105] for average sampling, at the lattice   , in finitely-generated 

shift-invariant spaces by using another techniques. Notice that our generalized 

sampling on the more general sampling lattice     can be seen as a problem of 

generalized sampling in a finitely-generated shift-invariant space on the sampling 

lattice   . Indeed, the generalized sampling of the functions                   

 at     can be thought as a bounded map from       to            : 

                        

    

 

          

              

or also as 

   
 
 
                     

           

    

    

   

 

          

              

where                       
                               and 

                      
              which can be seen as generalized sampling 

at    of the functions   having the form:       
              

    
      The 

sampling formulas (33), explicitly given by using (c), are the novelty of the result 
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proved here. The solutions of (32) with entries in          are exactly the first row 

of the           matrices of the form 

                                           
                                                           

where       is the pseudo-inverse matrix of                                    

and      is an arbitrary            matrix with entries in         . Indeed, if the 

vector                   satisfies (32), it can be easily checked that the  

         matrix                              
           

  

is a left inverse of the matrix     , and it can be expressed in the form (35) by taking 

             Conversely, any matrix of the form (35) is a left inverse of G(x) and 

its first row satisfies (32). Finally, notice that if the functions                    are 

continuous on   , the condition (a) in Theorem         reads:                 

for all        (see (30)). 

Given an error sequence                            in   , the aim in this section is to 

study when it is possible to recover any function       
  from the sequence of 

perturbed samples                                       Having in mind expression (21) 

for the systems                    for              
  we have 

                                                        
                                   

where we have used that                                      
         for 

any          (36) leads us to study the frame property of the perturbed sequence 

                            
                                       

         On the other hand, we 

know  that , whenever                        , the  sequence      

                        
                      is a frame for          with optimal frame 

bounds           and          . In the case of         , the above sequence 

is a Riesz basis for         . 

  One possibility is to use frame perturbation theory in order to find the  suitable error 

sequences for which the sequence                       
                           is a frame 

for         . The following result on frame perturbation, which proof can be found in 

[82] will be used later: 

Lemma            : Let         
  be a frame for the Hilbert space   with frame 

bounds      and let         
  be a sequence in  . If there exists a constant       

such that              
  

           for each       then         
  is a frame 

for   with bounds          
 
 and          

 
 I f         

  is a Riesz basis, 

then         
  is a Riesz basis. Given an error sequence                               

  

we define on        the operator                         where 
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for each                 
       The operator norm is defined as usual 

          
            

         
 
    

         
                       

 
    

 

 
                 

 
 

   

 

                              

Theorem             : Assume that      
        for               with 

       If the error sequence                            satisfies the inequality  

     
               then there exists a frame      

                    for   
  such that, 

for any       
  

                           
    

    

 

   

                                                        

where the convergence of the series is in the        sense, absolute and uniform on 

  . Moreover, when          the sequence      
                   a Riesz basis for   

  

, and the interpolation property        
                         holds. 

Proof :The sequence                        
                      is a frame  (a Riesz basis 

if         ) for          with frame (Riesz) bounds           and            

For any            
       

      in           we have 

                           
                                 

                   
 

    

 

   

 

                                          
            

    

     
       

     

          

 

    

 

   

 

                                    

    

       

 

 

    

 

   

                                    

                                        

    

   

    

 
 

   

                           

                              

 
 

   

      
                  

 
      

    
        
      

By using Lemma )4.2.3( , the sequence                      
                           is a 

frame for          (a Riesz basis if        ). Let      
                   be its 

canonical dual frame. Hence, for any              we have 
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Applying the isomorphism    , one gets (37) in        where     
         

     Since 

   is an isomorphism between          and   
 , the sequence      

                   is a 

frame for   
  (a Riesz basis if         ). Point wise convergence in the sampling 

series is absolute due to the unconditional character of a frame. The uniform 

convergence on    is a consequence of the reproducing property (19) in   
  . The 

interpolatory property in the case          follows from the uniqueness of the 

coefficients with respect to a Riesz basis. Formula (37) in Theorem )4.2.4( is useless 

from a practical point of view, since the frame      
                   , which depends on 

the error sequence                          is impossible to determine. As a consequence, 

in order to recover any function     
  from the samples  

                               ,  we should use the frame algorithm (see [87]). 

 In order to approximate the sequence            
      defining        

  , the 

frame algorithm can be implemented in the        setting as in [90].  

   Following the techniques in [90] (see also [86,103]), whenever the generator   and 

the impulse responses of the systems                  , are compactly supported 

one could obtain a bound for      
  in terms of                        

    Finally, it is worth to mention the recent related   [83,99,110].  

We denote by   
                               the usual Sobolev space, 

and by                
                    the corresponding semi norm of a 

function       
      . We assume here that all the systems                    are 

of type (a), i.e.,            , belonging the impulse response    to the Hilbert 

space       . Recall that a Lebesgue measurable function          belongs to 

the Hilbert space        if 

    
                 

    

 

  

      

   

   

    

Notice that                        Moreover                            

(see [96]); thus the sequence of generalized samples                              

belongs to         for any             Besides, we assume that the generator   

satisfies the Strang–Fix conditions of order  , i.e., 
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Given a vector                 with entries in          and satisfying (32), first we 

note that the operator       
                 

        given by 

                                           

    

 

   

         

is a well-defined bounded operator onto    
  . Besides,        for  all        

  . 

Under appropriate hypotheses we prove that the scaled operator   
             

where               for        approximates, in the    norm sense, any function 

  in the Sobolev space    
     as       Concretely we have: 

Theorem            :Assume that                                        

for some    . Let   be a vector with entries in          and satisfying (32). If the 

generator   satisfies the Strang–Fix conditions of order r, then, for each 

       
      and      , the    approximation error satisfies 

       
   

 
         

    where the constant   is independent of    and    

Proof :Using that   
       for each         

  then, for each            and 

       
  , Lebesgue’s Lemma [84] gives 

      
   

 
             

        
 
               

where we have used that    
       

    Now, for each       
      and       

there exists a function          
  such that                     

   

where the constant    is independent of f and h (see [98]), from which we obtain the 

desired result. Notice that the approximation property given in Theorem (4.2.5)is 

similar to those given by integral operators in [98]. 

   For the efficiency and stability of the reconstruction process given in Theorem 

(4.2.2), it is very desirable for the reconstruction functions                   to be 

well localized; see [88,93,101] and the references therein. In this section we study 

two particular cases, reconstruction functions with exponential decay and 

reconstruction functions with compact support, by using directly formulas (34).Thus 

we prove that whenever the generator   and the functions                   decay 

exponentially fast, there are many sampling formulas like (33) involving 

reconstruction functions    with exponential decay, i.e., there exist constants       

and         such that                       First we introduce some complex 

notation, more convenient for this study. We denote        
     

        
    for 

                
                    

   and the   torus by 

                                             We define 
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where            denote the columns of the matrix    . Note that for the vector 

                        we have              Provided that the functions    are 

continuous  on   ,  we have the following result: There exists a vector 

                 with entries essentially bounded in    and satisfying 

                                                                                                          

if and only if 

                                                                                                                

For              , the corresponding reconstruction function       in the sampling 

formula (33) is 

                                          

    

                                                                          

where             
   are the Laurent coefficients of the functions                  

        
  

       Let   denote the algebra of all holomorphic functions in a 

neighborhood of the   torus   . Note that the elements in   are characterized as 

admitting a Laurent series where the sequence of coefficients decays exponentially 

fast [96].The following theorem shows that, whenever the generator   and the 

functions                   have exponential decay, if the vector d has entries in   

then the reconstruction function      d has also exponential decay. It also proves that 

condition (39) is also sufficient for the existence of a vector d with entries in H and 

satisfying (38). Its proof uses the standard technique for proving extensions of 

Wiener     Lemma in group algebras. 

Theorem             : Assume that the generator   and the functions        

            have exponential decay. Then, there exists a vector               with 

entries in   and satisfying                        for all        if and only if 

                for all       . In this case, all of such vectors   are given as 

the first row of a          matrix      of the form 

                                            
                                                           

where      is any          matrixwith entries in Hand 

                             The corresponding reconstruction functions 

                     given by (98) have exponential decay. 

Proof : The hypotheses say that                       thus                     

Assuming that               for all        we have that                   

for all        and then, the matrix               has entries in  . As a 

consequence, the entries of                            belong to  . Now it is 

easy to check, as we did in this Section, that all the vectors   with entries in   and 

satisfying (38) are given as the first row of matrices      satisfying (41), where the 

entries of      belong to  . Since                     their Laurent coefficients 

       have exponential decay, i.e., there exist  
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      and           such that                                    Without 

loss of generality, we can also assume that               for all       ; then the 

reconstruction functions                                             satisfy 

                       

    

          

    

                

Notice that, in particular, the solution obtained from the pseudo-inverse matrix     , 

which is unique in the case       , gives reconstruction functions     with 

exponential decay. 

Theorem            : Let      be an     matrix whose entries are Laurent 

polynomials. Then, there exists an     matrix      whose entries are also Laurent 

polynomials satisfying               if and only if             for all 

            From this theorem, we derive the following corollary: 

Corollary            : Assume that the generator   and the functions        

            have compact support. Then, there exists a vector                 whose 

entries are Laurent polynomials and satisfying                        if and only 

if                 for all           . The reconstruction functions          

            obtained from such vectors d by (40) have compact support. A vector 

     satisfying                        whose entries are Laurent polynomials can 

be obtained by solving a linear system whose unknowns are precisely the coefficients 

of                      From one of these vectors, say                     we can get 

all of them. Indeed, it is easy to check that they are given by the first row of the 

         matrices of the form 

                                                                                                           

where                 
     

            
     

                  
           

  and      is any 

           matrix with Laurent polynomial entries. The interested reader can find 

in [100,111,112] methods to check if the condition in the theorem holds, and also 

another method to find a particular solution      of (42). Both involve the use of 

Grobner bases. 

 Finally, notice that having reconstruction functions with compact support implies 

low computational complexity and truncation errors are avoided. A related topic is 

the local reconstruction in shift-invariant spaces which invokes only finite samples to 

reconstruct a function on a bounded interval: See [102,104]. The aim in section is to 

validate the sampling formulas 
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obtained in this Section  for the shift-invariant space   
  , in a larger space. To this 

end, assume that the generator                 . Recall that a Lebesgue 

measurable function         belongs to the Banach space               

             
        

          

    

                                           

in particular,                 Observe that if there are constants       and 

     such that         
 

        
                                Let   

  be the 

  -closure of the linear span of the integer translates of            

    
                               

      As the integer translates of   are    stable 

(they form a Riesz sequence in       ), then this space can be expressed as   
  

                 
     where      denotes the semi-discrete convolution 

                  and     
   denotes the space of sequences on    vanishing at   

(see [98]). As a consequence,   
 is a set of continuous functions on    and the set 

inclusion   
     

  holds . Let A be the set of functions   of  the   form       

            
  

     with             The   space  ,  normed by           and 

with point wise multiplication is a commutative Banach algebra. If       and 

        for every     , the function     is also in   by Wiener’s Lemma. 

Consider   linear time-invariant systems                  . In addition, assume that  

                           where   is the largest order among the partial 

derivatives appearing in the systems of type (b) (    if no partial derivatives 

appear).Thus we have that                
      for the systems of the type (b). 

This is also true for   the systems  of type (a) since                      (see[96]). 

 As aconsequence, the Fourier transforms of these sequences, which are precisely the 

functions                    defined in (23), belong to the algebra    The next result 

describes when  (90)has a solution   with entries in the algebra  : 

Lemma             :There exists a vector                 with entries    in the 

algebra                     and satisfying  

                                                                                                            

if and only if                 for all       . 

Proof : The proof is the same as the one in [166, Lemma 1] although for a slightly 

different matrix  . For any vector   satisfying the above lemma, Theorem          

gives the corresponding sampling formula in   
   : 

                                        

    

 

   

                                          

where                            In particular, formula (44) holds for the space 

                     The reconstruction functions                     are 

determined from the Fourier coefficients of           ,  
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        . More specifically, 

                                                    

    

                                                      

Since      
                     and            we obtain that the 

reconstruction functions       
                     (notice that          

          , see [96]). By using a density argument, in the next theorem we extend 

the sampling formula (44) to the whole space   
  in a point wise sense. 

Theorem             : Let                 be a vector with entries    in the 

algebra                    and satisfying (43). Then, for any       
  the following 

sampling formula holds point wise: 

                                                        

    

 

   

                         

where the reconstruction function      , given by (45), belongs to        for 

             Moreover, assuming that           
   for          (i.e.,   and 

its derivatives are continuous on    vanishing at infinity), then the convergence of 

the sampling series in (46) is also absolute and uniform on   . 

Proof : Consider the Banach space   
      of all functions   which, together with 

all their partial derivatives     of order       are continuous and bounded on    

with the norm       
       

     
         

        For any vector   with entries in A 

and satisfying (43) there exists a constant       such that, for each  

    
                         

             
  

                                              

                                               

    

 

   

                      

[91]. Let       
  and         

   such that                         For 

      we define                         From the assumptions on   we have 

that         
       Moreover, for       and           we have 

                      

       

               
       

           
 
         

Since the sequence         
            

  is a Cauchy sequence in the Banach space 

  
     , we deduce that    converges in the   

  norm to   as      In particular  

        
           

 Using  that the  sampling  formula  holds   for                           and 

inequality (47) we obtain that, for all         

                                            
            and then 

            for all       . This proves that the sampling formula (46) holds 
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point wise. It remains to prove the absolute and uniform convergence of the series in 

(46). Let       . Assuming that         
   we have that          

    

Since      converges uniformly to      on   , and     
   is a closed subspace in 

        we obtain that          
    From this fact and using the Lebesgue 

dominated convergence theorem (whenever    is a system of type (a)), we obtain that 

                      
   for each                Hence, by using that 

         
      and the inequality 

                         

     

    
     

                         
         

we obtain that the series in (46) converges absolutely and uniformly on   .  Observe 

that, under the assumed hypotheses, in the proof of the theorem we have  

                                               
     

                                                                 

 In the case that the continuous functions   and              belong to the Wiener 

space                                      then the generator   and its 

derivatives              belong to             
    Finally, notice that our 

space   
  differs from the shift-invariant space   

 introduced in [79]. Following this 

reference,under appropriate hypotheses, a similar sampling result can be proved for 

functions in   
  having locally uniform convergence. 

  We denote by   
                                   the usual Sobolev 

space, and by                
                    the corresponding seminorm 

of a function      
        

Theorem             : Let     
               and              be 

compactly supported functions and let   be the quasi-projection                    

                                                 
    

                                                   

If         for every polynomial   of degree at most       then  

                                 
       where             and   is a 

constant independent of       and   .From this result, and assuming that the 

generator   satisfies the Strang–Fix conditions of order    we deduce by using 

Theorem (4.2.10) that, for any function         
       

      

       
       

 
                          

Theorem             : Assume that ϕ is a compactly supported generator in 

  
      where       with m being the largest order of the partial derivatives 

appearing in the systems     Let                 be a vector with entries in the 

algebra A and satisfying (43). If the generator   satisfies the Strang–Fix conditions 

of order r then, for each         
       

      and        , the following 
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inequality             
    

 
           

                
             and the 

constant   is independent of   and    

Proof : From Theorem (4.2.10)  we have that   
        for any          

   and 

       From (48)        
       and from (47), there exists a constant       

such that    
  
 
         

  for all       
       Hence, for any       

       and  

              we obtain that 

     
    

 
              

                
       

 
      

                       
                        

   

                         
              

         
                          

where we have used that                  
      Given       satisfying the 

Strang–Fix conditions of order    there exists a compactly supported function 

            satisfying the conditions of Theorem (4.2.11). An example of such a 

function    can be found in [98]. Let   be the quasi-projection operator defined in 

(48). Note that for       
   we have that                        

    
     

   

and hence       
  . Moreover, from Theorem (4.2.11), for                we 

have that                   
                   

       where the constants 

               are independent of   and  . By using (50), for any 

         
       

                  

      
   

 
     

      
 
       

              
  

     
     

        
   

 
                

 

   

 

                                  
   

 

   

       

 

   

        
           

where the constant C is independent of   and       

Corollary               : Suppose that   is a compactly supported generator in 

  
         where      with largest order of the partial derivatives appearing in the 

systems     Let                 be a vector with entries in the algebra A and 

satisfying (43). If the generator   satisfies the Strang–Fix conditions of order     

then, for each         
       

         and the following inequality holds: 

      
     

   
 
                               

     
                    and the 

constant   is independent of   and        

Proof : From Theorem (4.2.10)  we have that   
     

       for any              
   

and        From (48)        
       and from (47), there exists a constant       
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such that    
  
 
         

  for all       
       Hence, for any       

       and   

we obtain that 

     
     

   
 
              

     
               

           
 

 

                                   
                            

   

                         
              

             
               

where we have used that                      
      Given       satisfying the 

Strang–Fix conditions of order      there exists a compactly supported function 

            satisfying the conditions of Theorem (4.2.11). An example of such a 

function    can be found in [98]. Let   be the quasi-projection operator defined in 

(48). Note that for       
   we have that                        

    
     

   

and hence       
  . Moreover, from Theorem (4.2.11), for                we 

have that                                                
         where the 

constants                are independent of   and    . By using (50), for any 

         
       

                    

      
     

  
 
     

          
 
       

                  
           

                                                
     

            
   

 
                    

 

   

 

                                                                 
 

   

       

 

   

                     

where the constant C is independent of   and        
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Chapter 5 

Approximation with Sampling and Recovery of Bandlimited Functions 

 We explain the algorithm underlying ΣΔ quantization in its simplest version, we 

review the mathematical results that are known, and  we generalize the simple first-

order ΣΔ scheme to higher orders, leading to better bounds. A generalization of 

Kadec’s 1/4 theorem to higher dimensions is considered. Finally, the developed 

techniques are used to approximate biorthogonal functions of particular exponential 

Riesz bases for           and a wellknown theorem of Levinson is recovered as a 

corollary. 

Section(5.1) A family of Stable Sigma-Delta Modulators of Arbitrary Order 

  Digital signal processing has revolutionized the storage and transmission 

of audio and video signals as well as still images, in consumer electronics 

and in more scientific settings (such as medical imaging). The main advantage of 

digital signal processing is its robustness: although all the operations have to be 

implemented with, of necessity, not quite ideal hardware, the a priori knowledge that 

all correct outcomes must lie in a very restricted set of well-separated numbers makes 

it possible to recover them by rounding off appropriately. Bursty errors can 

compromise this scenario (as is the case in many communication channels, as well as 

in memory storage devices), making the “perfect” data unrecoverable by rounding 

off. In this case, knowledge of the type of expected contamination can be used to 

protect the data, prior to transmission or storage, by encoding them with error 

correcting codes; this is done entirely in the digital domain. These advantages have 

contributed to the present widespread use of digital signal processing. 

  Many signals, however, are not digital but analog in nature; audio signals,for 

instance, correspond to functions       modeling rapid pressure oscillations, which 

depend on the “continuous” time   (i.e. t ranges over   or an interval in  , and not 

over a discrete set), and the range of   typically also fills an interval in  . For this 

reason, the first step in any digital processing of such signals must consist in a 

conversion of the analog signal to the digital world, usually abbreviated as     

conversion. For different types of signals, different     schemes are used; in this 

paper, we restrict our attention to a particular class of     conversion schemes 

adapted to audio signals. Note that at the end of the chain, after the signal has been 

processed, stored, retrieved, transmitted,..., all in digital form, it needs to be 

reconverted to an analog signal that can be understood by a human hearing system; 

we thus need a     conversion there. 

  The digitization of an audio signal rests on two pillars: sampling and 

Quantization , both of which we now briefly discuss. We start with sampling. It is 

standard to model audio signals by bandlimited functions, i.e. functions         

for which the Fourier transform 
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vanishes outside an interval          Note that our Fourier transform is normalized 

so that it is equal to its inverse, up to a sign change, 

                
 

   
           
 

  

   

The bandlimited model is justified by the observation that for the audio signals of 

interest to us, observed over realistic intervals                             
  is 

negligible compared with                     
 for                   Here and 

later in this section       denotes the       norm. For bandlimited functions one can 

use a well-known sampling theorem, the derivation of which is so simple that we 

include it here for completeness: since    is supported on         it can be 

represented by a Fourier series converging in                 

          
       

   

                             

where 

    
 

  
             
 

  

              
 

 
 
 

 
   

  

 
     

We thus have 

                  
 

 
 
 

 
    

  

 
         

   

              

which by the inverse Fourier transform leads to 

                           
  

 
 
            

         
   

     
  

 
              

   

             

This formula reflects the well-known fact that an  -bandlimited function is 

completely characterized by sampling it at the corresponding Nyquist frequency 
 

 
   

However, (18) is not useful in practice, because                     decays too 

slowly. If, as is to be expected, the samples   
  

 
  are not known perfectly, and have 

to be replaced, in the reconstruction formula (1) for       by         
  

 
       with 

all         then the corresponding approximation     may differ appreciably from 

      Indeed, the infinite sum                 need not converge. Even if we 

assume that we sum only over the finitely many   Satisfying   
 

 
     (using the 

tacit assumption that the   
  

 
  decay rapidly for   outside this interval)  , we  will 

still  not be  able   to ensure  a better   bound   than                          since 
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  may well be large, this is not satisfactory. To circumvent this, it is useful to 

introduce oversampling. This amounts to viewing     as an element of             

with        for          we can then represent    by a Fourier series in which the 

coefficients are proportional to 

   
  

  
           

 

  
 
 

 
    

  

  
          

   

                 

Introducing a function   such that    is       and        
 

   
 for                  

for           we can write 

           
 

  
    

  

  
          

   

   
  

 
    

resulting in 

                          
 

  
    

  

  
 

   

  
 

 
    

 

 
                                                             

Because   is smooth with fast decay, this series now converges absolutely and 

uniformly; moreover if the   
  

  
  are replaced by  

       
  

  
     in (2) ,with           then the difference between the 

approximation        and     can be bounded uniformly: 

                                
 

  
  

   

   
 

 
    

 

 
                                           

where      
            

     does not depend on  . Oversampling thus buys the 

freedom of using reconstruction formulas, like (2), that weigh the different samples in 

a much more localized way than (1) (only the   
  

  
  with      

  

  
  “small” contribute 

significantly). In practice, it is customary to sample audio signals at a rate that is 

about 10 or 20% higher than the Nyquist rate; for high quality audio, a traditional 

sampling rate is 44,000 Hz. The above discussion shows that moving from “analog 

time” to “discrete time” can be done without any problems or serious loss of 

information: for all practical purposes    is completely represented by the sequence 

   
  

  
  

   
 . At this stage, each of these samples is still a real number. The 

transition to a discrete representation for each sample is called quantization. The 

simplest way to “quantize” the samples   
  

  
  would be to replace each by a  

truncated  binary expansion. If we know a priori that                for all t (a 

very realistic assumption), then we can write 
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with   
        for all      Ifwe can “spend” κ bits per sample, then a natural 

solution is to just select the    
            constructing        from  

                                 
    

   

   

                                   

                           where   is independent of   or  . Quantized 

representations of this type are used for the digital representations of audio signals, 

but they are not the solution of choice for the     conversion step. (Instead, they are 

used after the     conversion, once one is firmly in the digital world.) The main 

reason for this is that it is very hard (and therefore very costly) to build analog 

devices that can divide the amplitude range        into       precisely equal bins.   

  It turns out that it is much easier (= cheaper) to increase the oversampling rate, and 

to spend fewer bits on each approximate representation     of    
  

  
   By appropriate 

choices of     one can then hope that the error will decrease as the oversampling rate 

increases. Sigma-Delta (abbreviated by ΣΔ) quantization schemes are a very popular 

way to do exactly this. In the most extreme case, every sample   
  

  
  in (1) is 

replaced by just one bit, i.e. by a    with             we shall restrict our attention 

to such 1-bitΣΔ quantization schemes. Although multi-bit ΣΔ schemes are becoming 

more popular in applications, there are many instances where 1-bit ΣΔ quantization is 

used . 

  The following is an outline of the content of the section. We explain the algorithm 

underlying ΣΔ quantization in its simplest version, we review the mathematical 

results that are known, and we formulate several questions. We generalize the simple 

first-order ΣΔ scheme to higher orders, leading to better bounds. In particular, we 

show, for any      an explicit mathematical algorithm that defines, for every 

function   that is bandlimited (i.e. the inverse Fourier transform of a finite measure 

supported in       ) with absolute value bounded by        and for all        

“bits”   
   

         such that, uniformly in    

                      
 

 
    

   
  
 

 
    

 

 
 

 

    
   
                                                      

Moreover, we prove that our algorithm is robust in the following sense.  

Since we have to make a transition from real-valued inputs   
  

  
  to the discrete 

valued             we have to use a discontinuous function as part of our 

algorithm. In our case, this will be the sign function,             if        

           if        In practice, one cannot build, except at very high cost, an 

implementation of sign that “toggles” at exactly 0; we shall therefore allow every 

occurrence of         to be replaced by       where   can vary from one time step 

to the next, or from one component of the algorithm to another, with only the 
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restrictions that               for         and            for           where 

      is known. (Note that this allows for both continuous and discontinuous    if 

we impose a priori that      can take the values 1 and −1 only, then the restrictions 

reduce to the first condition.) Moreover, whenever our algorithm uses multiplication 

by some real-valued parameter    we also allow for the replacement of   by          

where  can again vary, subject only to              where the tolerance   is again 

known a prioiri. We can now formulate what we mean by robustness: despite all this 

wriggle room, we prove that (4) holds independently of the (possibly time-varying) 

values of all the   and    within the constraints. 

   For the sake of convenience, we shall set (by choosing appropriate units if 

necessary)       and        We are thus concerned with coarse quantization of 

functions                            

                       for most of our results we also can consider the larger class 

         is a finite measure supported in                   With these 

normalizations (3) simplifies to 

                          
 

 
   

 

 
      

 

 
 

 

                                                                        

with g as described before         

                         
 

   
                                                        

   It is not immediately clear how to construct sequences         
  
   

   with 

  
          for each       such that 

                            
 

 
   

       
 

 
                                                                     

provides a good approximation to  . Taking simply   
           

 

 
   does not 

work because there exist infinitely many independent bandlimited functions   that 

are everywhere positive (such as the lowest order prolate spheroidal wave functions 

[67], [68] for arbitrary time intervals and symmetric frequency intervals contained in 

         picking the signs of samples as candidate   
  would make it impossible to 

distinguish between any two functions in this class. First order ΣΔ-quantization 

circumvents this by providing a simple iterative algorithm in which the   
  are 

constructed by taking into account not only   
 

 
  but also past   

 

 
   we shall see 

below how this leads to good approximate       Concretely, one introduces an 

auxiliary sequence          (sometimes described as giving the “internal state” of the 

ΣΔ quantizer) iteratively defined by 
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and with an “initial condition”    arbitrarily chosen in       . In circuit 

implementation, the range of   in (8) is        However, for theoretical reasons, we 

view (8) as defining the    and   
  for all    At first glance, this means the    are 

defined implicitly for        However, as we shall see below , it is possible to write 

   and   
  directly in terms of      and      when        We shall now show by a 

simple inductive argument that the    of (8) are all bounded by 1. We prove this in 

two steps: 

Lemma           : For any        and           the sequence           defined 

by the recursion (8) is uniformly bounded,        for all      

Proof : Suppose             Because          we have    
 

 
       so that 

   
 

 
             It then follows that 

   
 

 
                 

 

 
              

For negative    we first have to transform the system (8) into a recursion 

in the other direction. To do this, observe that for        

         
 

 
            

 

 
                

         
 

 
              

 

 
                 

In all cases we have, thus            
 

 
                  

 

 
    The 

recursion (8) therefore implies, for        

                            
 

 
              

 

 
                                                 

which we can now extend to all    making it possible to compute    for 

      corresponding to the “initial” value              The same inductive 

argument then proves that these    are also bounded by 1. We have thus: 

Proposition            :The recursion (8), with         and          defines a 

sequence           for which          for all     . 

   From this we can immediately derive a bound for the approximation error 

                  

Proposition            : For                define the sequence    through the 

recurrence (8), with    chosen arbitrarily in         Let g be a function satisfying 

(6). Then 
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Proof : Using (5), summation by parts, and the bound         we derive 

       
 

 
   

       
 

 
 

 

   
 

 
     

 

 
     

        
 

 
 

 

                 

                                                      
 

 
           

 

 
         

   

 
  

 

  

                                             
 

 
        

 

 
         

   

 
  

 

 

                                                    
 

 
         

    
 
 

    
   
 

  

 

  
 

 
         

This extremely simple bound is rather remarkable in its generality. What makes it 

work is, of course, the special construction of the   
  via (8); the   

  are chosen so 

that, for any    the sum     
  

     closely tracks     
 

 
  

      since 

    
 

 
 

 

   

    
 

 

   

                  

If we choose        (as is customary), then we even have 

                    
 

 
 

 

   

    
 

 

   

                                                                             

this requirement (which can be extended to negative  ) clearly fixes the   
  

unambiguously. The “Σ” in the name ΣΔ-modulation or ΣΔ-quantization stems from 

this feature of tracking “sums” in defining the   
  ; ΣΔ-modulation can be viewed as a 

refinement of earlier Δ-modulation schemes, to which the sum-tracking was added. 

There exists a vast literature on ΣΔ-modulation in the electrical engineering 

community; see e.g. the review books [58] and [71]. This literature is mostly 

concerned with the design of, and the study of good design criteria for, more 

complicated ΣΔ-schemes. The one given by (8) is the oldest and simplest [58], but is 

not, as far as we know, used in practice. We shall see below how better bounds than 

(10), i.e. bounds that decay faster as      can be obtained by replacing (8) by other 

recursions, in which higher order differences play a role. Before doing so, we spend 

the remainder of section on further comments on the first-order scheme and its 

properties. 

  In practice, one cannot use filter functions   that satisfy the condition in (6) because 

they require the full sequence    
  
   

 to approximate even one value       It would 
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be closer to the common practice to use   that are compactly supported (and for 

which the support of    is therefore all of    in contrast with (6)). In this case, the  

reconstruction formula (5) no longer holds, and the approximation error has 

additional contributions. Suppose G is supported in         so that, for a given    

only the   
  With     

 

 
     can contribute to the sum    

         
      Then we 

have 

            
 

 
   

       
 

 
 

 

          
 

 
   

 

 
       

 

 
 

 

                      

                                                                      
 

 
    

 

 
    

        
 

 
 

 

   

The second term can be bounded as before. We can bound the first term by 

introducing again an “ideal” reconstruction function g, satisfying supp  

             and                
      Then 

        
 

 
   

 

 
       

 

 
 

 

                                                                            

 
 

 
    

 

 
        

 

 
         

 

 
  

 

                               

              
 

 
      

 

 
      

 

 
  

 

          
              

By imposing on   that the    distance of G and      to g and       respectively, be 

less than     for at least one suitable    we see that this term becomes comparable to 

the estimate for the first term. (This means that   depends on λ; the support of G 

typically increases with   ) 

   In practical applications, one is generally interested only in approximating 

     for   after some starting time              If finite filters are used this means that 

one needs the   
  only for   exceeding some corresponding    . There is then no need 

to consider the ”backwards” recursion (9), introduced to extend Lemma )5.1.1( 

(bound on the     uniform in      ) to Proposition)5.1.2( (bound on the      

uniform in  ). 

   Note that in practice, and except at the final     step mentioned in the 

introduction, bandlimited models for audio signals are always represented in sampled 

form. This means that once a digital sequence    
  
   

 is determined , all the filtering 

and manipulations will be digital, and an estimate closer to the electrical engineering 

practice would seek to bound errors of the type 
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using discrete convolution with finite filters   
   rather than expressions of the type 

(10) or (11). If we were interested in optimizing constants relevant for practice, we 

should concentrate on (13) directly. For our present level of modeling however, in 

which we want to study the dominant behavior as a function of    working with (10) 

or (11), or their equivalent forms for higher order schemes, below, will suffice, since 

(13) will have the same asymptotic behavior as (11), for appropriately chosen    
 . 

Unless specified otherwise, we shall assume, for the sake of convenience, that we 

work with reconstruction functions    satisfying (6). Since such g are supported on 

all of    we will always need to define    for all       (rather than  ). For first-

order ΣΔ, we could easily “invert” the recursion so as to reach        For the higher 

order ΣΔ considered from this Section  onwards, such an inversion is not 

straightforward; instead we will simply give, for every algorithm that defines    for 

        a parallel prescription that defines    for        

  In practice, one observes better behavior for                than that proved in 

Proposition )5.1.3(. In particular, it is believed that, for arbitrary 

                              
   

 

  
         

 

 
   

       
 

 
 

 

 

  

     

     
 

  
       

with   independent of        or of the initial condition    for the recursion (8). 

Whether the conjecture (14) holds, either for each         or in the mean (taking an 

average over a large class of functions in    or   ) is still an open problem. 

    It is not surprising that a better bound than (10) would hold, since we used very 

little in its derivation. In particular, we never used explicitly that the   
 

 
  were 

samples of the entire (because bandlimited) function     

  For some special cases, i.e. for very restricted classes of functions    (14) has been 

proved. In particular, it was proved by  . Gray [72] that if one restricts oneself to 

       where            and          then 

        
   

 

  
          

 

 
   

       
 

 
 

 

 

  

     

     

 

  

   
 

  
                          

in Gray’s analysis the integral over   is a sum over samples, and   is replaced by a 

discrete filter    (see above), but his analysis applies equally well to our case. A 

different proof can be found in [63]. Gray’s result was later extended by Gray, Chou 

and Wong [72] to the case where the input function      is a sinusoid       

           with           

   For general bandlimited functions, there were no results, to our knowledge, until 

the work of [61], [62], [63], who proved, by a combination of tools from number 

theory and harmonic analysis, that, for all        and all   for which  



 

126 

                            
        

 

 
 

 

      
 
 
                                               

 In             analysis the value of   depends on         as well as    his    (into 

which the     factor from (10) has been absorbed) is compactly supported, and has 

to satisfy various technical conditions. Although there is no mathematical proof for 

the moment, numerical simulations of intermediate results in             work 

suggest that (16) may still hold, for general          if the upper bound    
 

 
  

 is 

replaced by    
 

 
  

.  For more details concerning the whole analysis and this 

discussion in particular, we refer the reader to [62], [63]. 

   Remarkably, an iterative procedure very similar to (8) can be used to compute the 

binary expansion of a number in        Consider the recursion 

                                      
                      
                       

                                                            

with initial condition                        and with the sequence       

defined by             for         here α is any number in         By 

induction one derives again that            for all    so that 

            

 

   

                    

 

   

                                          

                                      

 

   

  

                              
                  

which converges exponentially like a binary expansion. (Since the              

       
 
    is not quite a binary expansion; however, for         the 

                        are the digits for the binary expansion of  
   

 
 .)  

 The only difference between the two recursions is the presence of the multiplications 

by 2 in (17). When the recursive equations are converted into block diagrams for 

circuits that would implement these recursions in practice , the diagram for (17) 

would require only one item more (a multiplier by 2) than the diagram for (8). The 

similarity of the two algorithms or circuits seems to contradict the claim in the 

introduction, that ΣΔ quantization is much cheaper to implement than binary 

quantization of less frequent samples. However, the two algorithms behave very 

differently when imperfections, in particular imperfect quantizers, are introduced. 

Quantizers are never perfect. Although we desire to use                for our 1-

bit quantizer, in practice we may have                          where   is 

unknown except for the specification          the value of   may vary from one 

circuit to another, and it may even, due to thermal fluctuations, vary from one time 

step   to the next. More generally, we may have                for           
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whereas for          we have only the bound             (Note that if   is 

restricted to take only the values   and     the second condition is automatically 

satisfied, implyingthat for          the behavior of      can be completely arbitrary.) 

A good algorithm or circuit is one that will perform well even without very stringent 

requirements on     if extremely tight specifications on   are necessary to make 

everything work well, then this will translate into an expensive circuit.  

   Let us replace the sign function in (8) by such a nonideal quantizer; the new 

recursion is then 

                                   

 
 

               
 

 
    

                
 

 
   

                                                          

and let us assume that , for all         

                                      
                                
                                    

                                              

It turns out that the    are then still bounded, uniformly, independently of 

the detailed behavior of     as long as (19) is satisfied: 

Lemma             : Let   be       let        be as defined in (18), and let    

satisfy (19) for all    If            then              for all        

Proof : We use  induction   again.   Suppose                    Because       

              
 

  
       We now distinguish three cases. If 

         
 

  
       then            

 

  
                   Likewise, if 

       
 

  
        then             

 

  
                      Finally , 

if               
 

  
       then             

 

  
        so that 

            
 

  
             

 

  
                    

   Note that Lemma )5.1.4( holds regardless of how large   is; even      is allowed. 

To discuss the case        we need to reconsider the recursion , because for generic 

     we can no longer “invert” the relationship between    and     . Therefore, we 

simply posit the following recursion for        inspired by (9), 

                                 

 
 
 

 
              

   

 
       

                  
   

 
   

                                               

An immediate generalization of Lemma )5.1.4( is then 
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Lemma             : Let f be in     let         be as defined in (18) or (20), and let 

   satisfy (18) for all          Assume also that                Then           

   for all           

  By the same argument as in the proof of Proposition )5.1.3(, Lemma )5.1.5( has as 

an immediate consequence the following : 

Corollary            : Let f be in      let   be     and suppose g satisfies 

(6).Suppose, also, the sequence    
  
   

 is generated by (18), with imperfect 

quantizers       that satisfy (19). Then ,  for all         

                      
  

 
   

       
 

 
 

 

  
     

 
                                                     

  If one replaces the “perfect” reconstruction function g by a suitable compactly 

supported      as in this subsection , then one can also derive estimates similar to 

(21), exploiting the compactness of the support of   . Although we must pay some 

penalty for the imperfection of the quantizer in all these cases (the constants 

increase), the precision that can be attained is nevertheless not limited by the 

imperfection: by choosing   sufficiently large, the approximation error can be made 

arbitrarily small. 

   The same is not true for the binary expansion-type schemes (17). Suppose we use 

(17) to generate bits             and consider the approximation 

            
 
    to the input    as before; however, the quantizer has been 

changed to, say                        with           Suppose now     
  

 
  for 

the sake of definiteness, assume         Then (34)  with this imperfect quantizer , 

will give          so that                  
 
           for  all    implying 

           
  

 
 for  all    The mistake made by the imperfect quantizer cannot be 

recovered by computing more bits, in contrast to the self-correcting property of the 

ΣΔ-scheme. In order to obtain good precision overall with the binary quantizer , one 

must therefore impose very strict requirements on     which would make such 

quantizers very expensive in practice (or even impossible if τ is too small). On the 

other hand [73], ΣΔ-quantizers are robust under such imperfections of the quantizer, 

allowing for good precision even if cheap quantizers are used (corresponding to less 

stringent restrictions on  ). It is our understanding that it is this feature that makes ΣΔ-

schemes so successful in practice.  

    It would be better, however, to see the approximation error decay faster with    

faster even than the   
 

  estimate conjectured to hold for first order ΣΔ-quantization 

of bandlimited functions. For this faster decay we must turn to higher order schemes. 

  Proposition           :Take        take         and suppose   satisfies (6). 

Suppose that the   
          are such that there exists a bounded sequence          

for which 
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 Then     for all          

                 
 

  
   

      
  

 
 

   

   
 

  
      

   

   
 
  
                                          

Proof : It follows from (22) that 

      
 

  
   

      
  

 
 

  

      
 

  
    

         
  

 
 

 

                            

                                                               
 

  
      

        
  

 
  

 

                             

Where    
    is the k-th order forward difference. Thus (see [59, p. 137]), 

  
        

  

 
              

 
 
 

 

   

     
    

 
                                                           

                                   
 

    
         

    

 
          

   

 

                       

where    is the k-th order B-spline                            (  convolution factors). 

Note that    is positive, and supported on       (so that we can just as well replace 

the integration limits by    and   ). Moreover                    for all 

        It follows that we can estimate 

       
 

 
   

      
  

 
  

   

                                                     

                                     
 

  
                

    

 
           

 

  

  

 

 

                                
 

  
                                  

 

  

   

 
 

  
       

    
  
                            

The key to better decay in   for the approximation rate is thus to construct algorithms 

of type (22) with       and uniformly bounded      A ΣΔ algorithm which has such 

uniform bounds on the “internal state variables” is called “stable” in the electrical 

engineering literature; see e.g. [66]. We are thus concerned here with establishing the 

existence of stable ΣΔ schemes of arbitrary order. We first discuss the cases       

and    before proceeding to general     We shall consider the recursion 
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where the function   still needs to be specified. We are interested in applying this to 

the case where the    are samples of a function         however, our discussion of 

the boundedness of        is valid for arbitrary input sequences           provided 

              

Several choices for   have been considered in the literature; see e.g. [58]. One family 

of choices described in [58] is 

                                                                                                                     

where   is a fixed parameter. A detailed discussion of the mathematical properties of 

this family is given in [70]. Another very interesting choice, proposed by N. Thao 

[69], is 

               
           

 
    

          

 
 

 

                            

In both cases, one can prove that there exists a bounded set       
  so that if 

         for all    and               then              for all        see [70].  

It follows that we have uniform boundedness for the    if       
 

 
   for 

bandlimited   with          implying       bound according to (23). As in the 

first order case, it turns out that for (28) this      bound can be improved by a more 

detailed analysis; for constant input one achieves, in a root-mean squared 

sense            bound. Numerical observations suggest that this result can be 

improved to         decay rate for appropriately “balanced” F; they also suggest that 

this result can be extended to general band-limited functions (instead of constants). 

We refer to[70], [74], [75] for a detailed analysis and discussion of these schemes. 

   Robustness is an issue for second-order (and higher-order) schemes, just as it was 

for the first-order case. In fact, the problem becomes trickier because the quantization 

scheme should be able to deal not only with imperfect quantizers, but also with 

imprecisions in the multiplicative factors defining F in (28) (below). The analysis in 

[70] shows that we do indeed have such robustness, for a wide family of second-order 

sigma-delta schemes.  

   Proving more refined bounds than (23) for higher order ΣΔ schemes, even for 

constant input, turns out to be much harder than for first order (where already the 

analysis leading to (16) is highly nontrivial – see [62], [63]). This is mainly because 

even for         constant, the dynamical system (26) is much more complex than 

(8). In particular, the map 
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has        as an invariant set, regardless of the value of             In 

contrast   the maps 

       
                                                                                                            

                   
 
 
   

                 
 

 
             

                     
 

 
     

                                       

have invariant sets    that depend on the value of             The sets    have 

fascinating properties which are still poorly understood; for instance, for each fixed 

     seems to be a tile for    under translations by      (This tiling property is 

observed for many    and we conjecture that it holds for a large family of    even 

though we can prove only a few special cases – see below.) For      the    for (27) 

can have interesting fractal boundaries; for “large” x, these    are disconnected.  

 On the other hand, the sets    for (28) are connected neighborhoods of (0, 0) 

bounded by four parabolic arcs ; because of the explicit characterization of these sets, 

a proof that the    -translates of    tile    is straightforward in this case. The 

smoothness of the boundaries also makes it possible to refine (23) for this choice 

constant input (see [74]). 

Neither of the two schemes (27) or (28) is easy to generalize to higher order. We shall 

therefore concentrate our attention here on yet another choice for    

                                                                                                            

with       to be fixed below. In addition, we shall also allow the signfunctions in 

(26) and (30) to be imperfect quantizers, and the multiplication by M to be imperfect 

as well. Our recursion thus reads, for        

                                 

                                                               
                                                                       

         
                      

          

                           

where we assume that   
      

 satisfy (2), and               

    The approach in [19] can be used to show that this second-order recursion does 

produce uniformly bounded              We shall provide a different argument here, 

that, unlike the analysis in [19], generalizes to arbitrary order. Prescribing initial 

values            (or equivalently           ) the recursion (31) determines 

                      In addition, we also need to give a prescription for        

Observe that the equations for           can be rewritten as 

                                 this suggests a symmetry between      and 

    . We use this to define the following recursion for           with        

   
                                                                            

           
                              

         
    

to be used for         If we introduce also                  for        this 

becomes 
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We define           and use this together with the already prescribed values 

        in (32). This recursion will then serve to determine the values of          for 

       The sequences           will then satisfy, for all     

                

  We introduce an algorithm to generate    for       because our approximation 

formula (5), using g supported on all of     requires them; in practice one uses only 

compactly supported    and    with       are not needed. Since the negatively-

indexed    are kept for only theoretical reasons, we would be justified in keeping the 

sign function“clean” in their recursion, i.e. without the   
    

     “imperfections”; 

we left them in for the sake of generality. It is clear, by comparing (32) with (31), that 

if we can prove that (31) implies uniform bounds on           for        starting 

from some initial condition                     (with        to be determined), 

then the same uniform bounds on            for       will follow, provided 

                        Since            we need to impose only the additional 

constraint                            for this to hold. This will allow us to 

restrict our arguments to the       case. We then have: 

   Lemma            : If                           then 

                       for all         

Proof: By induction. Suppose                      If 

                             then 

                     
                                

                                                      

where we have used that                 If                           

then                                                        

Lemma           : Suppose          and                           Define   

to be the smallest integer strictly larger than 
  

   
      If        then there exists at 

least one               such that                                         

Proof: Suppose                           are all                

     Because                 are all      we have                      which 

implies 
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Lemma             : Let                  be as in Lemma (5.1.9). If 

                                      

for some                then for all    satisfying             

                                           

Proof: By induction. Suppose                                      with 

                   we prove that this implies 

                                          If 

                                      then          (since        )    

hence 

                                                     

                                

On the other hand, if 

                                    

then 

                                               

                                            

Lemma             : Let                  be as above. Then the      decrease 

monotonically in    with                     until              drops below 

                       All subsequent       with       remain negative. 

Proof: As long as                             with        we have 

            so                                  If 

                                       then 

                                         by Lemma (5.1.10) if 

             so that                                     

Proposition            : Suppose              for all        Let        and 

   be defined as in (31) and (32), with    
      

   
   Then   if                

        there exists                         for all         Moreover, if 

               then         
                   

      
 for all        

Proof: We first discuss the case      The bound on    is proved in Lemma (5.1.8)  

we now turn to     Suppose               is a stretch of        preceded by 

       We have then, for all                

               

 

   

           

 

   

   

By Lemma (5.1.11), these      decrease monotonically by at least         at every 

step until they drop below a certain negative value, after which they stay negative. 

Consequently                                              

at least until this last expression drops below zero. It follows that 
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The initial condition            ensures that the upper bound (33) holds for all 

        The lower bound         
                   

      

 

  for      is proved 

entirely analogously.  

  To treat        note that the “initial conditions” for the recursion (32) satisfy 

                    and                        It follows that we can repeat 

the same arguments to derive an identical bound on      for         

 A third-order    scheme. Let us consider the construction we discussed for second 

order, but take it one step further. For       define the recursion 

 
 
 

 
      

   
      

   
                                                                                                   

  
   
      

   
     

   
                                                                                                

  
   
      

   
     

   
                                                                                                 

      
      

   
             

    
      

   
         

    
      

   
   

      

where   
     

    
  satisfy (19)     

      
        and where       will be fixed below 

in such a way as to ensure uniform boundedness of the     
   
         provided we 

start from appropriate initial conditions      
   
      

   
      

   
. We assume again that 

             for all        

    We shall keep this discussion to a sketch only; a formal proof of this third order 

case will be implied by the formal proof for arbitrary order in the next. 

   This preliminary discussion will help us understand the more general construction, 

however. 

   First of all, exactly the same argument as in the proof of Lemma (5.1.8) establishes 

that       
   
                           

   

  Next, imagine a long stretch of       
   

        
   

                              

Then the corresponding        are all automatically equal to    unless      
   

 

                 
       Arguments similar to those in the proofs of Lemmas 

(5.1.9),(5.1.10),(5.1.11) then show that if     
   

                            

the     
   

 will decrease monotonically, by at least       at each step, until     
   

 

       drops below                (in at most     
   

   
              

after which all the subsequent  
    
   

 in the stretch are negative, provided we chose  

    
      

   
    As before, this argument leads to 
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    One could then imagine repeating the same argument again to prove the desired 

bound on the    
   
    prove that if one has a long stretch of     

   
         

   
 that are all 

positive, then necessarily the corresponding     
   

 must dip to negative values and 

remain negative, in such a way that the total possible growth of the     
   

 must remain 

bounded. We will have to make up for a missing argument, however: when we 

followed this reasoning at the previous level, we were helped by the a priori 

knowledge that consecutive   
   

 just differ by some minimal amount   

     
   

    
   
            We used this to ensure a minimum speed for the dropping 

    
   

   and thus to bound the     
   

. In our present case, we have no such a priori 

bound on      
   

    
   
   so that we need to find another argument to ensure 

sufficiently fast decrease of the     
   

. What follows sketches how this can be done. 

   Suppose   
   
        

   
         

   
      Then we must have, within the first    

indices of this stretch (with   , independent of    to be determined below) that some 

    
   

             Indeed, if     
   
            

   
              then the 

corresponding      are    unless     
   

                          As before, 

this forces the     
   

 down, until they hit below              in at most    

steps, after which they remain below this negative value. This forces the     
   

 to 

decrease, and one can determine    so that if     
   
            

   
                  

then      
   

                 must follow. Once  
    
   

 has dropped below 

             the picture changes. We can get               and the argument 

that kept the     
   

 down can then no longer be applied. In fact, some of the     
   

 

with       may exceed   again, causing the     
   

 toincrease. However, as soon as 

we have    consecutive   
   
                  we must have, for at least one of 

the corresponding indices, that   
   
                  which forces the 

subsequent   
   

 below this value too, and we are back in our cycle forcing the   
   

 

down, until they hit below                So if                    
      

then the   
   

 do not get a chance to grow to positive values within the first    indices 

after  
    
   

              This forces all the     
   

 to be negative for         

          since         this then leads, by the same argument as on the previous 

level, to a bound on     
   

. 

 We present this argument formally, for schemes of arbitrary order; the proof consists 

essentially of careful repeats of the last paragraph at every level. This then also leads 
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to estimates for the bounds   
   and corresponding conditions on the   

     We assume 

again that            for all       To define the    scheme of order J for which 

we shall prove uniform boundedness of all internal variables, we need to introduce a 

number of constants. As before, the    -scheme will use nonideal quantizers with an 

inherent imprecision limited by     and all the multipliers in the algorithm will be 

known only up to a factor         where              We pick   so that 

             and we define 

     
         

     
                       

       

     
                     

   
 

         
                             

         
 
                                                    

       
 
 

  

         
  
  
 

 
     

            

   
                            

where   ranges from   to    For        the scheme itself is then defined as follows 

 
  
 

  
   

   
      

   
                                                                                             

         
   
       

   
    

     
                                                                                   

       
      

   
           

    
      

   
           

    
      

   
       

           
   

    
   
     

     
                              

           
   

   
 
     

   
                                     

  

where    
      

          
   
      and   

       
 
 satisfy (19) for all    We start 

with initial conditions   
   
        

   
    and we apply (36) recursively to determine 

     
   
        

   
   for              Prescribing these initial conditions is equivalent to 

prescribing   
   
           

   
  

   For n < 0, we mirror this system, obtaining 

 
 
 

 
   

   
      

   
                                                                                      

         
   
       

   
    

     
                                                                                   

             
      

   
        

    
      

   
        

    
      

   
      

                           
   

    
   
      

     
          

   
    

 
     

   
            

      

To set the recursion running for        we prescribe the mirrored initial conditions 

     
   

            
    

    
     
     

 . These conditions are chosen to guarantee that 

  
   
             

   
are given the same values as in the prescription for the forward 

recurrence. We now use (37) recursively to generate the           If we take, for 

simplicity   
   
     for             then the “initial conditions” for the       

recursion have likewise        
   

     for             If we relax our constraints on 
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the initial conditions somewhat, imposing   
   
     for appropriate    , then we also 

impose that            
    

    
     
     

        In both cases, one readily sees, as 

before, that the proof of a uniform bound for the    
   
  in the       recursion 

simultaneously provides the same uniform bound for the    
   
  in the       

recursion. 

Proposition            : Suppose              for all      . Let     for 

             be defined as in (35), let the imperfect quantizers   
       

 
 Satisfy (36) 

for all      , and let the sequences           and    
   
 
     

               be as 

defined by (34) or (37), with initial conditions   
   
     for              Then 

   
   
               

         
 
 for all        

  The proof of Proposition (5.1.13) is essentially along the lines sketched for the third-

order case, albeit more technical in order to deal with general  . The whole argument 

is one big induction on    We start by stating two lemmas for the lowest value of    to 

start off the induction argument. 

Lemma            :    
   
                            for all         

Proof:The argument is very similar to that used in the proof of Lemma (5.1.8), 

except that    does not appear in the definition of   .We work by induction. Suppose 

     
   

                         If      
   

           
         then    and 

    
   

 have the same sign, so that    
   
         

   
                   

   
       

          
   

                           If      
   

             
        then 

   
   
         

   
                              

Lemma            :If     
   

         
   

             with         then there 

must exist                such that     
   

                   Moreover, for all 

                
    
   

                       A similar statement holds if 

    
   

         
   

                   and other signs are reversed accordingly. 

Proof:The argument is again similar to the proofs of Lemmas (5.1.9),(5.1.10). 

Suppose     
   

            
   

 are all                    Then we have 

                         Hence 

     
   

      
   

                

  

   

                                                                  

                                                             

This establishes that     
   

                  for some                  

Next, suppose that     
   

                       for some   with 
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                If     
   

                   then             hence 

      
   

      
   

                   
   

                        

if      
   

                    then 

      
   

                                                

In both cases       
   

                  and we continue by induction. 

   Next we introduce auxiliary constants, for              

       
                                  

  
                     

          
              

        

  
                     

           
              

         

          
                      

        
                   

            

These have been tailored so that 

Lemma             : The constants defined above by  (37)  satisfy,  for 

             

                           
                        

                                                        

                                 
             

                                                                                   

                                                 
       

 

     
                                                                  

Proof: The first equation is proved by straight substitution: 

          
                                                                              

              
 
           

 

      
 
      

  
          

  
            

                         
 
           

               
  

                                               

                 
 
           

                   

 
       

          

The second equation is proved by induction. First we consider the case      

  
         

           
          

      
         

     

Now suppose that    
             

  holds for some        Then (42) immediately 

implies that 

     
                

                   
          

     

leading to 

     
          

        
                

      

It remains to prove the third inequality. Because the definition of      
   is slightly 

different for       than for        we handle the case       separately.Now 
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where we have used     
  

         
     

     

    For       we use    
              

  and      
           

   to upper bound the 

right-hand side of (40), and we replace the various    and    by their definitions; 

then we see that the equation holds if          
                  or, 

equivalently, if                     
       From the definition of ν one 

easily checks that this is indeed the case, completing the proof. 

Corollary               : Show that  

      
   

    
   

Proof :   
 

 
                    

 

 
              

              
 

 
              

           
 

 
              

        
 

 
             

From (8) we get    
     taking ln we get       

      then        
      and  

      
   

    
   

Section(5.2) Multidimensional Bandlimited Functions  

  The subject of recovery of bandlimited signals from discrete data has its origins in 

the Whittaker– Kotel’nikov –Shannon (WKS) sampling theorem (stated below), 

historically the first and simplest such recovery formula. Without loss of generality, 

the formula recovers a function with a frequency band of        given the function’s 

values at the integers. The WKS theorem has drawbacks. Foremost, the recovery 

formula does not converge given certain types of error in the sampled data, as 

Daubechies and DeVore mention in [49]. They use oversampling to derive an 

alternative recovery formula which does not have this defect. Additionally for the 

WKS theorem, the data nodes have to be equally spaced, and nonuniform sampling 

nodes are not allowed. As discussed in [48], nonuniform sampling of bandlimited 

functions has its roots in the work of Paley, Wiener, and Levinson. Their sampling 

formulae recover a function from nodes      , where        
 

 forms a Riesz basis 

for           More generally, frames have been applied to nonuniform sampling, 

particularly in the work of Benedetto and Heller in [44,45], [48]. 

  We derive a multidimensional oversampling formula (see  (46)), for nonuniform 

nodes and bandlimited functions with a fairly general frequency domain; investigates 

the stability of  (46) under perturbation of the sampled data. This Section  presents a 

computationally feasible version of  (46) in the case where the nodes are 
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asymptotically uniformly distributed. Kadec’s theorem gives a criterion for the nodes 

      so that        
 

 forms a Riesz basis for         .Generalizations of Kadec’s 

1/4 theorem to higher dimensions are considered in this Section, and an asymptotic 

equivalence of two generalizations is given. Investigates approximation  of the 

biorthogonal  functionals of Riesz bases. Additionally, we give a simple proof of a 

theorem of Levinson. 

   We use the  -dimensional    Fourier transform 

                            
 

  

             
   

where the inverse transform is given by 

              
 

     
               
 

  

             
   

This is an abuse of notation. The integral is actually a principal value where the limit 

is in the    sense. This map is an onto isomorphism from     
   to itself. 

Definition             Given a bounded measurable set E with positive measure, 

we define 

              
                         

Functions in     are said to be bandlimited. 

Definition            :The function  sinc :     is defined by  

          
      

 
 . We also define the multidimensional sinc function 

            by                                               We recall 

some basic facts about     : 

  (i)     is a Hilbert space consisting of entire functions, though in this section we 

only regard the functions as having real arguments. 

 (ii) In     ,    convergence implies uniform convergence. This is an easy 

consequence of the Cauchy–Schwarz inequality.  

 (iii) The function                is a reproducing kernel for          That is, if 

           , then we have 

                                           

 

  

                                                           

   (iv) The WKS sampling theorem (see [69]). If             , then 

                         

   

        

where the sum converges in          , and hence uniformly. 

  If           is a Schauder basis for a Hilbert space  , then there exists a unique set 

of functions     
   
     (the biorthogonalsof            such that        

 
 
       . 
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The biorthogonals also form a Schauder basis for  . Note that biorthogonality is 

preserved under a unitary transformation. 

Definition            : A sequence          such that the map         is 

an onto isomorphism is called a Riesz basis for  . The following definitions and facts 

concerning frames are found in [57]. 

Definition            : A frame for a separable Hilbert space   is a sequence  

           such that for some            

                                  
 

 

                                                               

The numbers A and B in  (44) are called the lower and upper frame bounds. Let H be 

a Hilbert space with orthonormal basis      . The following conditions are 

equivalent to            being a frame for  . 

  (i) The map         defined by           is bounded linear and onto. This map 

is called the synthesis operator. 

  (ii) The map          (the analysis operator) given by  

              is an isomorphic embedding. 

Given a frame         with synthesis operator  , the map         given by 

                   is an onto isomorphism.   is called the frame operator associated 

to the frame. It follows that S is positive and self-adjoint. The basic connection 

between frames and sampling theory of bandlimited functions (more generally in a 

reproducing kernel Hilbert space) is straightforward. If            is a frame for 

            with frame operator  , and            , then 

                           

 

                         

 

  

                                                                   

 

  

implying that                     
      , so that              

           . 

Note that in the case when       , we recover the WKS theorem. 

Definition              A sequence        satisfying the second inequality in  

(44) is called a Bessel sequence. 

Definition              An exact frame is a frame which ceases to be one if any 

of its elements is removed. It can be shown that the notions of Riesz bases, exact 

frames, and unconditional Schauder bases coincide. 

Definition              A subset   of    is said to be uniformly separated if 

    
         

              

Definition            : If           is a sequence of real numbers and    is a 

function with   in its domain, then     denotes the sequence          . In [49], 

Daubechies and DeVore derive the following formula 
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where   is infinitely smooth and decays rapidly. Thus oversampling allows the 

representation of bandlimited functions as combinations of integer translates of   

rather than the sinc function. In (45) is a generalization of the WKS theorem. The 

rapid decay of   yields a certain stability in the recovery formula, given bounded 

perturbations in the sampled data [49].We derive a multidimensional version of  

(45).Daubechies and DeVore regard        as an element of             for some 

     . In their proof the obvious fact that                    allows for the 

construction of the bump function                which is   on        and   

off           If their result is to be generalized to a sampling theorem for     in 

higher dimensions, a suitable condition for   allowing the existence of a bump 

function is necessary. If       is chosen to be compact such that for all 

                  , then in [51], a   -version of the Urysohn lemma, implies the 

existence of a smooth bump function which is   on   and   off      It is to such 

regions that we generalize  (45): 

Theorem              Let            be compact such that for all 

                    Choose                
  such that          , defined by  

           
         is a frame for       with frame operator  . Let      with 

                       where              and                   . If 

       and        , then 

                        
 

  
         

  
 
 

   

       
  
 
 

   

                                   

where         
        

        . Convergence of the sum is in     
  , hence also 

uniform. Further, the map                defined by 

                           is bounded linear, and is an onto isomorphism iff  

          is a Riesz basis for      . 

Proof: Define               
 

 
    Note that          is a frame for        with frame 

operator   . 

Step 1: We show that 

                          
  
 
      

   
 
       

      

 

                                          

We know supp                   , so we may work with          via its frame 

decomposition. We have 

            
      

                           
 

   
               

This yields 



 

143 

                           
 

   
         

             

since              . Taking Fourier transforms we obtain 

                            
 

     
                                                          

Now 

                                
     

  
 
 

 

  

        
  
 
  

which, when substituted into  (48), yields (47). 

Step 2: We show that 

                           
  
 
 

 

     
          

               
  
 
 

 

                        

where convergence is in   . 

We compute      
         

      . For            we have 

         
         

                
 

       
          

 

       

Letting        
         

  
             

          
          

 

       

This gives 

     
        

               
         

         
 

       
          

                                
         

         
 

  
    

  
 
 
                  

 

  

   

                          
         

         
 

            
      

  
 
    

 

  

   

     
         

         
 

    
  
 
                

so (49) follows from (47). 

Step 3: We show that 

                   
         

           
 

  
        

                                        

First we show    
              

 

  
         

 

 
  , or equivalently that  

       
 

  
     

      
 

 
   We have for any           , 
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By definition of the frame operator                                   which then 

becomes       
                       Substituting      

 

  
        

 

 
  into the 

equation above we obtain 

 

  
     

      
 

 
                    

 

            
 

 
         

We now compute the desired inner product: 

   
         

           
 

   
         

 

 
         

 

 
 

               
 

  

                                         

                                        
  

   
             

                      

 

 

     
 

  
        

         

Note that  (49) becomes 

                          
 

  
   

  
 
 

 

          
         

  
 
 

 

                                 

Step 4: The map                given by 

                                   is bounded linear and self-adjoint. Let 

        be the standard basis for        and let         be an orthonormal basis for 

     . Then 

                     
 

           
       

 

 

                                     
 

  

where   is the synthesis   operator, i.e.,        . Define 

                   by                 . Clearly   is unitary. It follows that 

                 , which concludes Step 4. From here on we identify   with  . 

Clearly   is an onto isomorphism iff   and    are both onto, i.e., iff the map      

    is an onto isomorphism. 

Step 5: Verification of  (46). Recalling Definition )5.2.8(,  

            
  

 
   

   
; for each       , let            

  

 
   

   
.  

Noting that    
 

 
         

 

 
              and recalling that          is a frame for 

      , we have 
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and 

      
  
 
  
 

 

              
 

 
             

 

                             

       
         

 

 
     

 

             

Note that  (51) becomes 

     
 

  
   

  
 
  

 

          
  
 
 

 

   
 

  
   

  
 
  

 

           
  
 
 

             

 

  

                           

       

        
 

  
          

              
 

 

  
 

  
                      

 

  
                     

  
 

  
         

    
  

 
 

 

  
 

  
        

  

 
  

   

     
  

 
 

   

  

which proves (46). 

Step 6: We verify that convergence in  (46) is in       (hence uniform). Define 

        
 

  
         

    
  

 
 

     

 

and 

         
 

  
     

 
 
 

    
  

 
 

     

   

Then 

                  
 

  
     

 
 
 

        
  

 
                                            

     

 

  
 

  
     

 
 
 

           
    

  
 
 

     

  

so 

              
 
  

 

  
                    

 
 
 

 
    

  
 
 

     

 

  

  

          

 
 

  
      

 
 
 

    
     

 

 

 

                      

 If       is a orthonormal basis for       , then the map            (the synthesis 

operator) is bounded linear, so 
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But    
 

   
 
   , so                 

    as      . As      is an onto 

isomorphism, we have         , implying that          as       

Note that  (45) is conveniently written as 

                        
 

  
     

 
 
 

    
  

 
 

 

                                                           

Proposition            : If             is compact, then the following are 

equivalent: 

  (i)             for all    . 

  (ii) There exists a continuous map               such that 

                                   The following is a simplified version of 

Theorem (5.2.9) , which is proven in a similar fashion: 

Theorem               Choose           
  such that          defined by 

        
 

       
           is a frame for          

  . If        ,then 

                                    

   

               

   

                                  

The matrix   and the convergence of the sum are as in Theorem (5.2.9). 

 (46) generalizes  (54) in the same way that  (45) generalizes the WKS equation. We 

can write  (54) as 

                                              

   

                                                             

    Frames for      satisfying the conditions in Theorems )5.2.9( and )5.2.11( occur 

in abundance. The following result is due to Beurling in [47]. 

Theorem              Let        be countable such that 

     
 

 
   

         
                       

    
    
   

          
 

 
  

   If E is a subset of the closed unit ball in    and E has positive measure, then 

                 is a frame for      .  

  A desirable trait in a recovery formula is stability given error in the sampled data. 

Suppose we have sample values 

        
 

 
      where              If in  (45) we replace  

  
 

 
  by    , and call the resulting expression    , then we have 

                 
 

 
        

 

 
  

   

               
        

   It follows that  (45) is certainly stable under    perturbations in the data, while the 

WKS sampling theorem is not. For a more detailed discussion see [49]. Such a 

stability result is not immediately forthcoming for  (46), as the following example 
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illustrates. Restricting to      , let         satisfy           , and        for 

      The forthcoming discussion in this Section  shows that         is a Riesz 

basis for         . 

   Note that when       is a Riesz basis, the sequence          
is its biorthogonal 

sequence. The matrix   associated to this basis is computed as follows. The 

biorthogonal functions         for                    are   

        
                     

          
        

And        
        

         
  That these functions are in          is verified by applying 

the Paley–Wiener theorem [56], and the biorthogonality condition is verified by 

applying  (43). Again using  (43), we obtain 

                      
      

                
                             

                      
  

          
                                                           

                            
         

              
                         

Note that the rows of   are not in   , so that as an operator acting on   ,   does not 

act boundedly. Consequently, the equation 

                          
 

  
      

 
 
 

    
  

 
 

 

                                                                     

is not defined for all perturbed sequences    
 

 where 

     
 

 
 

      
 

 
    

 where                 

Despite the above failure, the following shows that there is some advantage of  (46) 

over  (44). 

If     
 

 is some perturbation of   
 

 such that      
 

      
 

 
 

   , then 

    
    

                   
    

  
 

 
      

 
     

 
   

 

    
  

 
 

 

                    

                                                  
    

 

 
      

  

 
  

 

                                                

from here on, we focus on the case where         is an    perturbation of the lattice 

  , and         is a Riesz basis for         
 . In this case, under the additional 

constraint that the sample nodes are asymptotically the integer lattice, the following 

theorem gives a computationally feasible version of  (46). The summands in  (46) 

involves an infinite invertible matrix  , though under the constraints mentioned 
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above, we show that B can be replaced by a related finite-rank operator which can be  

computed concretely. Precisely, one has the following. 

Theorem               Let         be an enumeration of   , and  

              such that 

    
   

                                                               

Define          
     by         

 

       
          and   

 

       
         ,  and let 

      be the standard basis for      . Let                  be the orthogonal 

projection onto span           . If         is a Riesz basis for         
 , then for 

all              , we have 

                           
   

 

  
      

      
     

 
 
 

 

   

    
  

 
                              

where convergence is in    and uniform. Furthermore, 

    
          

                                                   

                                                                                               
  

Convergence of the sum is in    and also uniform. 

proof : Step 1:   is a compact perturbation of the identity map, namely 

                      
   

          
      

                                             

Since         is a Riesz basis for         
                is an onto 

isomorphism where          ; so   simplifies to 

                 . We examine 

                                                 

where   is a compact operator. If an operator         is compact then so is   , 

hence         in the operator norm because 

                                              

     
                                     

We have 

       
   

                
   

         
                  

    
   

            
                                                

Now     
       restricted to the first   rows and columns is the Grammian matrix for 

the set              which can be shown (in a straightforward manner) to be linearly 

independent. We conclude that  

   
      is invertible as an      matrix. By     

      
   we mean the inverse as an 

l × l matrix and zeroes elsewhere. Observing that the ranges of    
      and 

    
      

  are in the kernel of       , and that the range of        is in the kernels 

of    
      and     

      
  , we easily compute 

             
      

                   
                             

so that 
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implying 

      
   

             
      

          
   

        
   

           
      

       

Step 2: We verify  (58) and its convergence properties. Recalling  (53), we have 

       
 

  
               

      
     

 
 
 

       
  
 
 

 

   

 

    
 

  
                 

      
  
 
 

 

   

 

implying 

       
 

  
      

      
    

 
 
 

       
  
 
 

 

   

                                               

           
 

  
                 

      
  
 
 

 

   

 
 

  
   

  
 
       

  
 
 

 

     

  

Therefore, 

        
 

  
      

      
    

 
 
 

      
  
 
 

 

   

 

 

                                              

  
 

  
                 

     
  
 
 

 

   

 
 

  
   

  
 
      

  
 
 

 

     

 

         

 

 
 

  
                       

 
 
 

 
    
  
 
 

 

   

    
  
 
  

    
  
 
 

 

     

  

         

   

after taking the inverse Fourier transform. Now 

        
 

  
      

      
    

 
 
 

      
  
 
 

 

   

 

 

                                              

        
 

  
             

 
 
 

 
    
  
 
 

 

   

 

         

 
 

  
    

  
 
  

    
  
 
 

 

     

 

         

 

 
 

  
           

 
 
     

 
 

  
     

  
 
  
  

     

 

 
 

                                        

since      
 

 
  

 
 is a Riesz basis for           

   Since      as     and 

   
  

 
  

 
         the last two terms in the inequality above tend to zero, which 

proves the required result. Finally, to compute     
        , recall that 
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                     Proceeding in a manner similar to the proof of  (52), we 

obtain 

   
                     

                                              

                                                

The entries of    
      agree with those of     when             

Theorem               Under the hypotheses of Theorem )5.2.14( , 

                           
   

       
      

       

 

   

                  
                     

where convergence of the sum is both    and uniform. The following lemma forms 

the basis of the proof of the preceding theorems, as well as the other results in the 

section. 

Lemma               Let         be an enumeration of   , and let 

           
   Define  

       
    by        

 

    
 
 

          and       
 

    
 
 

            

Then for any       , and any finite sequence        
    we have 

   
  

    
 
 

              
  

    
 
 

             

 

   

 

 

                                                  

                                                                     
 

 

   

 

   

                       

Proof : Let            where                     Then 

         
  

    
 
 

                   

 

   

                                         

                                  
  

    
 
 

                      

 

   

                                                   

Now for any      
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where                  
                      . Then  (61) becomes 

          
  

    
 

 

        

 

   

           
        

                     
  

 
 
             

 
 

             

  

                      
  
  
 

 
          

  
 

 

              
        

             

 
  

    
 
 

   
  

 

 
              

  

 

 
        

 

   

  

so 

            
        

                 
             

      
  

 

 
              

  

 

         

    
 
 

 

   

   

For brevity denote the outer summand above by              . Then 

           
 

 

      
 

   

 
 

                   
             

 

  

      
 

   

 
 

 

                                                               
 
  

 

       

 

 

 

             

  

so that  
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Corollary               Let          be an enumeration of   , and let 

           such that    
   

                   Define  

       
    by        

 

    
 
 

          and       
 

    
 
 

          Then the map 

           
           

   defined by              satisfies the following 

estimate: 

                                                                                                             

Proof : Lemma )5.2.15( shows that   is uniformly continuous on a dense subset of 

the ball in     ), so   is bounded on         
 . The inequality (62) follows 

immediately.  

Corollary              Let         ,            , and let       and   be 

defined as in Corollary )5.2.16(. For each      define    by            for 

        and        for    . 

 If                  , then              in the operator norm. In particular, 

T is a compact operator. 

Proof : As 

              

 

   

              

 

   

             

 

   

 

                                                          

 

     

        

 

     

    

the estimate derived in Lemma )5.2.15( yields 

  

               

 

   

  

 

         

 

     

  

 

                          

                                                                          
   

 
           

 

   

 

 

  

so               as    . As    has finite rank, we deduce  

that   is compact.  

Theorem             : Let           
  be a sequence of distinct points such 

that 
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Then the sequence of functions          , defined by         
 

   
       

is a Riesz basis for           Theorem )5.2.18( shows that in the univariate case of 

Theorem )5.2.13(, the restriction that           is a Riesz basis for         can be 

dropped. The following example shows that the multivariate case is very different. 

Let       be an orthonormal basis for a Hilbert space  . Let        with          

, then                 is a Riesz basis for   iff          . Verifying that the map  , 

given by        for       and       , is a continuous bijection is routine, so   

is an isomorphism via the Open Mapping theorem. In the language of Theorem 

)5.2.13(                   is a Riesz basis for          iff                         

               that is, iff                   
   Corollary )5.2.16( yields the 

following generalization of Kadec’s theorem in d dimensions. 

Corollary            : Let           be an enumeration of    and let 

              such that 

                           
   

                
     

  
                                                                

Then the sequence           defined by         
 

       
          is a Riesz basis for 

        
 . 

 The proof is immediate. Note that  (62) implies that the map   given in Corollary 

)5.2.16( has norm less than 1. We conclude that the map 

                 is invertible by considering its Neumann series. 

The proof of Corollary )5.2.16( and Corollary )5.2.19( are straightforward 

generalizations of the univariate result proved by Duffin and Eachus [50]. Kadec 

improved the value of the constant in the inequality (63) (for      ) from 
     

 
 to 

the optimal value of 1/4; this is his celebrated “1/4 theorem” [52].Kadec’s method of 

proof is to expand      with respect to the orthogonal basis 

                   
 

 
   

   
                                                   

for          , and use this expansion to estimate the norm of T .  

 In the proof of Corollary )5.2.18( and Corollary )5.2.19( we simply used a Taylor 

series. Unlike the estimates in Kadec’s theorem, the estimate in  (62) can be used for 

any sequence             such that 

                      not only those for which the exponentials          

form a Riesz basis. An impressive generalization of Kadec’s 1/4 theorem when 

      is Avdonin’s “1/4 in the mean” theorem [43].Sun and Zhou (see [55]) refined 

Kadec’s argument to obtain a partial generalization of his result in higher dimensions: 

Theorem               Let             
  such that         

 

 
 , 
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and 

                      If              

then   
 

     
             is a Riesz  basis for         

  with   frame bounds    

    )2 and (1+    )2 . 

In the one-dimensional case, Kadec’s theorem is recovered exactly from Theorem 

)5.2.20(. When        the value    satisfying          
 

 
 and           is an 

upper bound for any value of   satisfying  

         
 

 
 and            The value of    is not readily apparent, whereas the 

constant in Corollary )5.2.19( is 
    

  
 . A relationship between this number and    is 

given in the following theorem (whose proof is omitted). 

Theorem               Let    be the unique number satisfying 

          
 

 
 and             Then 

                                 
   

     
    
  

       

     

                                                        

Thus, for sufficiently large d, Theorem )5.2.20( and Corollary )5.2.19( are essentially 

the same. 

   We apply the techniques developed previously to approximate the biorthogonal 

functions to Riesz bases  
 

   
         for which the synthesis operator is small 

perturbation of the identity. 

 Definition              :A Kadec sequence is a sequence         of real numbers 

satisfying 

   
   

             
 

 
                                                       

Definition               Let             be a sequence such that  

          
 

   
        

 
 is a Riesz basis for         . If      , the 

 -truncated sequence           is defined by          if        and  

       otherwise. Define        
 

   
          for           

Let                        be the orthogonal projection onto span              

Proposition               Let             be a sequence such that        

(defined above) is a Riesz basis for         . If        is the standard exponential 

orthonormal basis for          and the map   (defined above) satisfies the estimate  

            , then the following are true: 
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  (i) For     , the sequence          is a Riesz basis for        . 

  (ii) For     , the map    defined by           satisfies    
     

 

   
   

Proof : If            
    , then 

            
 

              

 

         

     

               
 

   

so that 

                                                                                                                         

From this,             which implies (i) and (ii).  

 Define the biorthogonal functions of          to be       
 
 
  . Passing to the Fourier 

transform, we have 
 

   
                               and 

           
 

   
       

        

Define the biorthogonal functions of        similarly. 

Lemma              If            satisfies the hypotheses of Proposition 

)5.2.24( , then 

   
   

                                                                                      

Proof : Note that 

                         
             

         
     

                           

so that for all       
      

       . Similarly    
      

       . We have 

    
     

      
         

             
        

      
     

         

Now  (84) implies       
                     so that 

    
     

     
        

                 
         

Applying Proposition )5.2.24( yields 

     
     

   
 

    
    

                 
                                

which for fixed   goes to   as    . We conclude             
     

  , which, 

upon passing to the Fourier transform, yields                    

Theorem             : Let             be a sequence (with         for 

     ) such that 

           
 

   
        

 
 is a Riesz basis for           and let         be the standard 

exponential orthonormal basis for         . If the map   given by          

satisfies the estimate            then the biorthogonals    of 

 
 

   
                           in           are 

                          
    

        
     

                                                                  

where 
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Proof : We see that                   where                        when 

        and                         when       . Without loss of 

generality, let       .  (43) implies that            when       . By the WKS 

theorem we have 

                             

   

    

                                     

     
               

    

   

    

                       

           
     

               
   

                                      

where    is a polynomial of degree at most   . Noting that 

              
  

  
 

 

   

                 

 

   

                
  

  
 

 

   

  

we have 

         
          

     
     

  

  
 

 

     

                                               

Again by  (43),                when        so that 

     
     

     
           

  
  

  
 

 

     

                                          

This determines the zeroes of   . We deduce that 

       
                  

   
   

     
    for some constant    . Absorbing constants, we have 

         
       

     
                  where 

                   
 

  
     

 

   
 

 

   

     
  
  

  
 

 

    

                           

Now           , so             
            

    
  Taking limits,  

     
 

    
     

         This yields                    
     

         
 
 
    

  Define 
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Basic complex analysis shows that   is entire, and       and    
 
 
    

 
 
 

uniformly on compact subsets of  . Furthermore,   
          for all    since each    

is a zero of   of multiplicity one. Together we have 

   
   

          
    

         
     

        

By the foregoing lemma,         . Observing that convergence in 

         implies pointwise convergence yields the desired result.Levinson proved a 

version of Theorem )5.2.26( in the case where         is a Kadec sequence. His 

original proof is found in [53]. We recall that if       is a Riesz basis arising from a 

Kadec sequence, then the synthesis operator L satisfies            . Levinson’s 

theorem is then recovered from Theorem )5.2.26(.  

Corollary               Let            be compact such that for all 

                        Choose                          
  such that 

                   , defined by                  
           

   is a frame for       with 

frame operator  . Let      with                        where 

             and                       . If          and        , then 

        
 

       
              

       

      
 

        

       
  

      
 

   

             

where              
             

        . Convergence of the sum is in     
  , 

hence also uniform. Further, the map                defined by 

                                       
   

 is bounded linear, and is an onto 

isomorphism iff                      is a Riesz basis for      . 

Proof : Define                            
 

      
    Note that                         

is a frame for             with frame operator        . 

Step 1: We show that 

      
       

      
           

                 
  

 
        

      

                     

We know supp                        , so we may work with          via its 

frame decomposition. We have 

                
           

         

                                  
      

        
                          

            This yields 

                                          
      

        
                   

             

since                   . Taking Fourier transforms we obtain 

                                   
      

          
                              

Now 
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which, when substituted into  (69), yields (68). 

Step 2: We show that  

        

   
       

      
 

      

          
                          

                         
  

      
 

 

       

where convergence is in   .We compute           
                   

      . For 

                we have 

                 
              

                               
 

 

                                                             
                    

 

            

Letting             
                   

       
                            

                          
                    

 

            

This gives 

          
                  

           

          
                        

                   
 

            
                    

          
                         

                   
 

  
    

  
      

 
                  

 

       

      

                
                         

                   
 

            
      

  
      

    

 

       

           

              
                         

                   
 

    
  

      
                     

so (70) follows from (68). 

Step 3: We show that 

        
                         

                    

  
 

      
 
             

                                   

First we show         
                        

 

      
 
         

           
 

      
  , or 

equivalently that  

                 
 

       
          

           
 

      
   We have for any                , 
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By definition of the frame operator 

                                        
   

            

 

 which then becomes                 
                                 

Substituting      
 

      
 
             

 

      
  into the equation above we obtain 

 

      
 
          

           
 

      
                              

 

 

                                                                                  
 

      
                   

We now compute the desired inner product: 

        
                        

                    

             
 

      
  

              
 

      
         

 

      
 

                        
 

       

        

           
      

 

        
                  

                      

 

 

     
 

       
             

         

Note that  (70) becomes 

        
 

       
   

       

      
 

      

               
         

  
      

 

 

            

Step4: The map               given  by 

                                        
   

      is bounded linear and self-

adjoint. Let         be the standard basis for        and let         be an 

orthonormal basis for      . Then 

                     
 

           
       

 

                     
 

  

where   is the synthesis   operator, i.e.,        . Define                   by 

                . Clearly   is unitary. It follows that                  , 

which concludes Step 4. From here on we identify   with  . Clearly   is an onto 

isomorphism iff   and    are both onto, i.e., iff the map                    is an 

onto isomorphism. 

Step 5: Verification of  (67). Recalling Definition (5.2.8), 

                 
       

      
   

        

   for each       , let 

                 
       

      
   

        
. Noting that  

   
 

      
         

 

      
                   and recalling that                         is 

a frame for            , we have 

    
       

      
   

 

      

                                    
 
           

               

and 
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Note that  (72) becomes 

     
 

      
 
   

       

      
  

      

               
  

      
 

 

  

  
 

      
 
   

       

      
  

      

                
  

      
 

                     

 

  

                                         

                              

   
 

       
                   

            
              

      
      

  
 

       
   
      

            
                        

  
 

      
 
                       

                                                                                                      

  
 

      
 
              

    
  

      
 

 

                                                                      

  
 

      
 
             

       

      
  

        

     
  

      
 

   

                            

which proves (67). 

Step 6: We verify that convergence in  (67) is in       (hence uniform). Define 

             
 

      
 

              
    

  
      

 

          

 

and 

              
 

      
 

              
    

  
      

 

          

   

Then 

                       
 

       
              

        
       

      
         

          

 

                                           
 

      
 

              
           

    
  

      
 

          

  

so 

                   
 
  

 

       
                             

 
    

  
      

 

          

 

  

       

   

                                
 

      
 
               

         
          

 

 

 

                         

 If                
 is a orthonormal basis for            , then the map 
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                 (the synthesis operator) is bounded linear, so 

                   
 
 

 

      
 
                 

  
          

  

 

 

      

      
 

      
 
                   

 
 

          

            

But              
    , so                      

    as         . As      

is an onto isomorphism, we have              , implying that               

as      Note that (45) is conveniently written as 

       
 

      
 
              

    
  

      
 

 

                    

Corollary               Let              be an enumeration of   , and  

             such that                                Define        

       by         
 

       
               and   

 

       
         ,  and let       be the 

standard basis for      . Let                  be the orthogonal projection onto 

span           . If         is a Riesz basis for         
 , then for all 

              , we have 

          
   

 

      
 
      

      
              

 

   

    
  

      
              

where convergence is in    and uniform. Furthermore, 

    
               

 
                                                                  

                                                                                               
  

Convergence of the sum is in    and also uniform. 

Proof: Step 1:   is a compact perturbation of the identity map, namely 

                                      
   

          
      

                                       

Since         is a Riesz basis for         
                is an onto 

isomorphism where          ; so   simplifies to                 . We 

examine                                                 where   is 

a compact operator. If an operator         is compact then so is   , hence 

        in the operator norm because 

                                              

     
                                     

We have                                       
                  

                  
   

            
                                                                                     

Now     
       restricted to the first   rows and columns is the Grammian matrix for 

the set              which can be shown (in a straightforward manner) to be linearly 

independent. We conclude that    
      is invertible as an      matrix. By 

    
      

   we mean the inverse as an l × l matrix and zeroes elsewhere. Observing 
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that the ranges of    
      and     

      
  are in the kernel of        , and that the 

range of        is in the kernels of    
      and     

      
  , we easily compute 

             
      

                   
                             

so that                           
      

         implying 

      
   

             
      

          
   

        
   

           
      

       

Step 2: We verify  (75) and its convergence properties. Recalling  (74), we have 

       
 

      
 
               

      
              

       
  

      
 

 

   

 

    
 

      
 
                      

      
  

      
 

 

   

 

implying 

       
 

      
 
      

      
             

       
  

      
 

 

   

                                

 
 

      
 
                     

      
  

      
 

 

   

 
 

      
 
   

  
      

       
  

      
 

 

     

  

Therefore, 

        
 

      
 
      

      
             

      
  

      
 

 

   

 

 

                                

  
 

      
 
                      

     
  

      
 

 

   

 
 

      
 
   

  
      

      
  

      
 

 

     

 

                  
 

 

 
 

      
 
                                

 
      

  
      

 
 

   

    
  

      
  

      
  

      
 

 

     

  

                  
 

                             

after taking the inverse Fourier transform. Now 
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since      
 

      
  

 

 is a Riesz basis for                     
   Since      

as     and    
  

      
  

 

         the last two terms in the inequality above tend to 

zero, which proves the required result. Finally, to compute     
        , recall that 

                     Proceeding in a manner similar to the proof of  (73), we 

obtain          
                               

                          

                                                                                                    

The entries of    
      agree with those of     when                  

Corollary                Let              be an enumeration of   , and let 

          
   Define        

    by        
 

    
 
 

               and 

       
 

    
 
 

           Then for any        ,  and any finite sequence             
         

we have 

   
  

    
 
 

                   
  

    
 
 

             

      

        

 

 

                                                  

                                                  
 

      

        

 

   

         

Proof :Let                 where                     Then 

                   
  

    
 
 

                        

      

        

 

  
  

    
 
 

                          

      

        

                                          

Now for any    , 
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where                  
                      . Then  (78) becomes 

                    
  

    
 
 

             

      

        

           
        

                     
  

                 
             

  

                                
  
  
 

 
          

  
 

 

              
        

             

 
  

    
 
 

   
  

 

 
              

  

 

 
             

      

        

  

so 

                      
        

                 
             

      
  

 

 
              

  

 

              

    
 
 

      

        

   

For brevity denote the outer summand above by              . Then 

                     
 

 

       

   

 
 

                   

             

 

  

       

   

 
 

 

                                                                                      
 
  

 

       

 

 
 

             

  

so that  
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Corollary              : Let                       be a sequence (with 

             for           ) such that                     
 

   
         

    
      

  

is a Riesz basis for           and let                   be the standard exponential 

orthonormal basis for         . If the map   given by                    satisfies 

the estimate            then the biorthogonals 

         of 
 

   
                                     in          are  

                        
    

             
          

                        

where 

                                    
 

       
     

 

        
 

 

        

              

Proof : We see that                             where                                 

when             and                                   when       . 

Without loss of generality, let       .  (1) implies that            when       . 
By the WKS theorem we have 

                             

   

    

                                     

     
               

    

   

    

                       

          
     

               
   

                                      

where    is a polynomial of degree at most   . Noting that 

              
  

  
 

 

   

                 

 

   

                
  

  
 

 

   

  

we have 

         
          

     
     

  

  
 

 

     

                                               

Again by  (1),                          when             so that 

          
     

     
                

       
  

  
 

 

     

                                          

This determines the zeroes of   . We deduce that 
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for some constant    . Absorbing constants, we have 

         
       

     
                  where 

                   
 

  
     

 

   
 

 

   

     
  
  

  
 

 

    

                           

Now           , so             
            

    
  Taking limits,  

     
 

    
     

         This yields                    
     

         
 
 
    

  

Define 

                  
 

  
     

 

   
 

 

   

                                  

Basic complex analysis shows that   is entire, and       and    
 
 
    

 
 
 

uniformly on compact subsets of  . Furthermore,   
          for all    since each    

is a zero of   of multiplicity one. Together we have 

   
   

          
    

         
     

        

Corollary             : Let                       be a sequence such that 

                 (defined above) is a Riesz basis for         . If                  is 

the standard exponential orthonormal basis for          and the map   (defined 

above) satisfies the estimate              , then the following are true: 

  (i) For     , the sequence                    is a Riesz basis for        . 

  (ii) For     , the map    defined by                     satisfies    
     

 

   
   

Proof :If                      
    , then 

                      
      

                             
      

 

                                                 
          

  

                                                                 
      

   

so that 

                                                                                                                      
From this,             which implies (i) and (ii).  

 Define the biorthogonal functions of                    to be            
 

 
       . 

Passing to the Fourier transform, we have 
 

   
                                         

and                
 

   
            

       Define the biorthogonal functions of 

                 similarly. 

Corollary                If                     satisfies the hypotheses of 

Proposition (5.2.25), then 
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Proof :Note that                           
                  

              
     

   so  

that for all       
      

       . Similarly    
      

       . We have 

    
     

      
         

             
        

      
     

         Now  (84) implies 

      
                     so that     

     
     

        
                 

         

Applying Proposition (5.2.25) yields      
     

   
 

    
    

                 
            

which for fixed   goes to   as    . We conclude             
     

  , which, 

upon passing to the Fourier transform, yields                    

Corollary               Let                        be a sequence and 

         
  

      
 is a Riesz basis for         . If                   is the standard 

exponential orthonormal basis for          and the map     satisfies the estimate  

             , then the following are hold: 

  (i) For     , the sequence             
  

      
 is a Riesz basis for        . 

  (ii) For     , the map    
  defined by    

                     
  satisfies     

     
 

      
   

Proof : For                       
      we have  

      
                    

      

                        
          

      

            

                    
  

          

                                  
      

   

 

so that 

                    
                                                                                          

  Hence         
      which gives (i) and (ii) .  

  Hence from Definition (5.2.4) we can show that  
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Chapter 6 

Channeled Sampling and Sampling Expansion with Symmetric Multi-Channel 

Sampling in Shift-Invariant Spaces 

   We find necessary and sufficient conditions under which a regular shifted sampling 

expansion hold on      and also introduce a single channel sampling on      

together with some illustrating examples. We then find necessary and sufficient 

conditions under which an irregular or a regular shifted sampling expansion formula 

holds on      and obtain truncation error estimates of the sampling series. We also 

find a sufficient condition for a function in       that belongs to a sampling 

subspace of      . Several illustrating examples are also provided. We use Fourier 

duality between      and          to find conditions under which there is a stable   

asymmetric multi-channel sampling formula on     .                                                   

Section(6.1) Channeled Sampling   

  The celebrated WSK (Whittaker–Shannon–Kotel’nikov)-sampling theorem says that 

any signal      of finite energy with band-width  , that is,         can be 

reconstructed via its regularly spaced discrete sample values               as 

                               which converges both in       and uniformly on 

 , where,        
      

  
 is the cardinal sinc function and     is the Paley–Wiener 

space:  

           
                             

Here                   is the Fourier transform of       which is normalized as   

         
 

   
       

 

  
         for                  so that      is a unitary 

operator from       onto      .  

  As a natural generalization of the WSK-sampling theorem, many authors have 

developed sampling theory on general shift invariant spaces.  

For any      in      , we let                                    be the closed 

subspace of       generated by integer translates                 of      and 

call      the shift invariant space generated by     . Then     is the shift invariant 

space generated by sinct, of which                      is anorthonormal basis. 

For example, Walter11developed a regular sampling theorem on a shift invariant 

space     , where      is a continuous real valued orthonormal generator (in fact, a 

scaling function of an MRA) with decaying property                          

for     large. Following [33], Janssen used Zak transform to generalize Walter’s result 

to regular shifted sampling. Zhou and Sun found a necessary and sufficient condition 

for a regular sampling expansion to hold on      when      is a space of 

continuous functions generated by a frame generator     . Later noting that       

does not satisfy the Walter’s decaying condition, Chen and Itoh extended Walter’s 

work by removing too much restrictive conditions in [33] like continuity and the 
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decaying property on      when      is a Riesz generator. Zhao, Liu, and Zhao 

extended further results in  [37] by considering frame generators. However, there are 

some gaps in the arguments of the proofs of results in [37]and [41]. We first find 

necessary and sufficient conditions under which a regular and a regular shifted 

sampling expansion to hold on       and then extend them into a single channeled 

sampling expansion.  

  In the following, we assume that      is a frame or a Riesz (stable) generator of 

       that is,                   is a frame or a Riesz basis of      so that 

                     

   

                            
         

where f(t) is the          of                 . We are then concerned on the 

problem: When is there a function       called an interpolation generating function of 

      for which the sampling expansion formula 

                    

   

           

holds in      -sense. 

  For any      in       and               in   , let                       : 

discrete Fourier transform of                                 : discrete-

continuous convolution product of   and                                       . 

Then 

                                      and  

         
         

                      

   

  

                      
        and  

               
          

     
  Moreover, we have (see [4]) that           

        is 

 (i) a Bessel sequence with a Bessel bound      , i.e. 

                    

     

                                   

if and only if 

                                                                                                                         

 (ii) a frame of       with frame bounds          , i.e., 

                           

     

                 

if and only if 

                                                                                                             

 (iii) a Riesz basis of       with Riesz bounds          , i.e., 
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if and only if 

                                                                                                           

(iv) an orthonormal basis of        i.e                             if and only if 

             a.e. on  . Here we use supp f for any      in          to denote the 

support of   viewing   as a distribution on  , that is,                             

a.e. on some neighborhood of   . 

We begin with two simple lemmas, which play key roles in the following. 

Lemma           : For any              and              in   , let 

                             

   

          

   

 

be the discrete convolution product of c and d. Then 

                                                        

   

                                                         

which means that                     
 
 is the Fourier series expansion of  

                        . Moreover,            and 

                               
 

  

 

                       

   

                                              

Proof :Since        and                   ,                          of which 

theFourier series is 

                
 

  
   

                              
                      

    follows. Then             by Riemann–Lebesgue lemma and (6)is an 

immediate consequence of the Parseval’s identity. In particular, (6) implies that 

                         if and only if           . 

Lemma           : Let                  
                 and assume that 

         converges in      . If either      or              is a Bessel 

sequence, then 

                                                                                                                            

Proof : Since                                converges in        

                                    converges in      , that is,               

              
           converges to             in      . Hence to show (7), it is 

enough to show that                converges to              in      . when either  

       or                  is a Bessel sequence. Now 
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so that            
 
                

                provided that either        so 

that      converges to         uniformly on [0, 2π] or                  is a Bessel 

sequence so that                  by (1). In the following, we let      be a 

complex valued square integrable function on   such that      is a frame or a Riesz 

generator of      , that is ,                 is a frame or a Riesz basis of        

We also assume               
  and set                                       . 

Then 

                         

   

                           

where each                                  converges in      . In 

particular,for each                         converges absolutely, which we 

may set to be                         .Note that as a shift invariant space, 

      contains          for any n in   if      is in      . For a measurable set   in 

 , we let     be the Lebesgue measureof E and       the characteristic function of  

 . For a measurable function     on   , let          
     

    
   

       and 

           
     

    
   

        be the essential infimum and essential supremum of      , 

respectively. 

Theorem            Assume that      is a frame generator of      and 

            
 . If there is      in      such that              is a Bessel 

sequence(respectively, a frame) of       for which the sampling expansion formula 

                                  

    

                                                                  

holds in the    sense, then 

                                                                                           

and there is a constant       

 (respectively, there are constants          ) such that 
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(b) If               
  and there is             such that (8) holds, then (9), (11) 

hold and 

                          
 

       
               

                                                                

Proof:(a) Assume that                  is a Bessel sequence of      with a 

Bessel bound    for which the sampling expansion formula(8)  

                       

    

                                                              

       

    

                                                  
    

Then by Lemma (6.1.2)   

                                                                                                           

and so 

                            
                             

                                      

from which (9) follows immediately. We also have from (13) 

          a.e. on (supp  )
c
 and            

       

       
 a.e. on supp        so that (11) holds 

by (9). Now (14) implies 

                               
     

     
                                                                            

so that 
  

  
             a.e. on       , where          are frame bounds of 

                  [see (2)]. If                   is also a frame of         

withframe bounds        , then (15) implies  
  

  
              

  

  
 a.e. on supp  . 

Hence (10) holds. 

(b) Assume               
   and (8) holds on       for some             . Then 

(9) and (11) hold by the same arguments as in the proof of (a).We now have from 

(11) and 
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so that (12) holds. Theorem         gives some necessary conditions for the sampling 

expansion formula (8) to hold. Conversely, we have: 

Theorem             Assume that      is a frame generator of       and  

              
 . If there are constants β ≥ α > 0 such that 

                                                                                                            

then there is a frame generator      of       for which 

                               

     

                                                                                      

holds for any                           satisfying 

                                                                                                                          

If moreover              a.e. on    then (8)–(11) hold and                
  for any 

         . 

Proof : Inequality  (16) implies that  
  

      
χsupp                           So 

that 

  

      
                            

     

                                     

in   . Define       by (11) , that is        = 
       

      
             

         . Then 

  
 

  

       
 
               

  

 

                     
                 

so that              . Since  

                                                 

     

                                                     

by Lemma (6.1.2) , we have by Fourier inversion 

                                  . Now (19) implies  

                                               
                                 

since (20) holds on        by (11) and       =       = 0 a.e. on         
   Then as 

in the proof of Theorem         , (14) holds so that 

                 
     

         
                                                            

Hence, we have by (16) and (21) 

                     
  

    
              

  

    
                                                         

so that                   is at least a Bessel sequence of      . Now for any 

                  in       with                 in   , 

                                                                                                            

by (20). If                         , then                
  and 
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                       in          by Lemma        . Hence, 

we get 

                           
 
             

     

                                                           

by Lemma         since                   is a Bessel sequence. Then we have 

(17) by taking Fourier inversion on (24).On the other hand, we also have from (23) 

                                                     since 

                    Let 

                     
         

     

                             

series expansion of                     
                  . Then   

                          
                                                             

                        

     

               

                  

     

                                                          

          

     

                                                 

so that (22) implies                   is a frame of      .  

Finally, assume 

                               
                                                                       

Then (18) holds for any                 in    since                   . 

Hence              
  for any           and (17) holds on      , that is, (8) holds. 

(9),(10),(11) then follows from (8) by Theorem        . 

Corollary              If      is a frame generator of      ,               
   

and              on       , then there is a frame generator      of       for which 

(8), (9),(10), (11) hold. 

Proof : If               
   and             on       , then 

                satisfies the condition (25) so that the conclusion follows from 

Theorem         . In [41], the authors assumed that      is a frame generator of 

      and               
  and then claimed (see Theorems 1 and 2 in [41]) that 

there is      in       for which the sampling expansion formula (8) holds if and only 

if the condition (12) is satisfied. In particular, in [41], the authors assumed nothing on 

the sequence                  . However in [41] have some gaps. Assume first 

that (8) holds. Then                         , which needs not imply 

                      (see  [41]) in general unless either                  is at least a 

Bessel sequence or              
  (see Lemma (6.1.2)). Conversely if the condition 

(12), instead of the condition (16), holds in Theorem         , then we still have 
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(19),(20),(21) and (23).  However                 may not be in          so that 

(24) may not hold and                   may not be a Bessel sequence in 

general. Hence ,contrary to the claim in  [41], we cannot be sure if (8) holds assuming 

only the condition (12). 

Lemma             Assume that      is a Riesz generator of      and 

               
 . Assume that there is             for which the sampling 

expansion formula (8) holds. If either               
   or                is  a 

Bessel sequence, then                    and 

                                                                                  

                                     
     

      
                                                                                  

Theorem             Assume that      is a frame generator of      and 

             
 .Then there is a Riesz generator      of      for which (8) holds if 

and only if      is also a Riesz generator of      and 

                                    
                                                                          

Furthermore in this case, we have, in addition to (26) and (27); 

                                                                                                            

Proof : First assume that (8) holds on      for some Riesz generator      of      . 

Then we have (13), (14) and so (9). Since                 =   ,                    

must be a Riesz basis of      so that (26) and (27) hold by Lemma        .Now (28) 

comes from (15):               
     

      
 a.e. on   and (29) comes immediately from 

                         .Conversely, assume that      is a Riesz generator of 

     and (28) hold. Define       by (27). Then  

                             , where                              so that 

                  .The rest of the proof is the same as the one in Theorem         . 

Corollary             Assume that      is a frame generator of V (φ) and 

              
 . Then there is a Riesz generator      of       for which (8) holds if 

and only if      is also a Riesz generator of       and           on       . 

Proof: If               
 , then                                so that 

               
      

          and                
      

          . 

Hence the condition (27) is equivalent to            on       . Therefore, the 

conclusion follows from [33], Walter assumed that      is a continuous real-valued 

orthonormal generator with                           for |   large. Then 

              
  so that the main Theorem of [33] is a special case  in [37], Chen and 

Itoh claimed in [37] that assuming      is a Riesz generator of       with 

              
 , (8) holds for some      in      if and only if           

         . However, from [41], there are some gaps in [37], which are filled and 
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extended by Theorem (6.1.7). As it was done in [37] and [41].We now assume that 

     is a complex valued square integrable function on   such that      is a frame 

generator and                  
  for some   in      . 

                    

   

                                          

                     

   

                                     

                                   

   

                                      

transform  of      (see [13]).  

Theorem             Assume that      is a frame generator of       and 

               
  for some   in      . 

 (a) If there is a frame generator       of       for which the regular shifted 

samplingexpansion formula  

                         

   

                                                                      

holds, then there are constants           such that  

                  a.e. on         

                                                           

                         
     

       
                                                                                  

(b) Conversely, if there are constants β ≥ α > 0 such that 

                            a.e. on   then there is a frame generator       of 

      for which (30) and (31) hold. 

(c) There is a Riesz generator       of     ) for which (30) holds if and only if      

is a Riesz generator and             
            

      Furthermore, in 

this case, we  have                  for n in   and          
     

       
      a.e. on  . 

Corollary               If      is a frame generator of      , 

                 
 , and             on       , then there is a frame 

generator       of       for which (30) and (31) hold. 

Example               The Shannon function                  is a 

continuous real-valued  Riesz  (in fact orthonormal) generator and  

                       Since             on        but                   for     

large so that      does not satisfy the Walter’s decaying condition, the WSK 

sampling theorem is not covered by the sampling theorem in [33] but follows from 

Corollary        . Channeled sampling expansion recovers a signal via discrete 

sample values taken from one or more channeled (output) signals, which are obtained 
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by passing the original (input) signal through a linear time invariant system of pre-

filters. Channeled sampling goes back to the work by Shannon, where sample values 

are taken from the original signal and its derivative. For general discussion of 

channeled sampling on Paley–Wiener spaces, we refer to [38], [39]and references 

therein. Here we consider a single channel sampling on shift invariant spaces. Let 

           be a frame generator and                       a transfer function 

(or apre-filter). Let                                   .Then                 for 

any          . Note that if                or                 , then C        

             . 

Lemma              If              is such that                 is a 

Bessel sequence and                   , then                is also a 

Bessel sequence. 

Proof : Let       be a Bessel bound of               . Then  

                

   

                                                    

                   
 
                          

                   
 
                         

so that                      is also a Bessel sequence (cf. (1)). 

In the following, we assume that             is a frame generator and       

                is a transfer function such that either                     , or 

             .Then                      is a Bessel sequence by Lemma 

         and                        since                  . We assume 

further that                 
 . Then for any                            with 

              
                                                            

by Lemma         since                      is a Bessel sequence. Moreover 

for any n in       

            

   

                

converges absolutely and                         (cf. Lemma        ). We 

then have the following, whose proof is essentially the same as the one in Theorem 

       . 

Theorem              Let              be a frame generator and       

                a transfer function such that either                      or 

                     .Assume                  
 . Then there is a Riesz 

generator      of        for which the channeled sampling expansion formula  

         

   

                         

holds if and only if      is a Riesz generator of      and 
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                                        Furthermore in this case,         is 

interpolatory, i.e                 for    .And        
     

      
 
   
     a.e. on  . 

Example              Let                                    be the 

cardinal B-spline of degree 1. Then      is a continuous Riesz generator (see [4]) and 

       
 

   
  
          

  
 
 

               .Take a transfer function            

with          . Then                     so that             

                    and                for            Therefore 

                                      so that           
 
           

and                   . Hence, by Theorem (6.1.13), for any            
 

 
   there 

is a Riesz generator      of       for which we have  the sampling expansion 

       

 

                                                                 

 but also uniformly on   since                           

Example              Let              so that         
 

   
            Then 

     is an orthonormal generator of V             Take a measurable function 

     on   such that      and        belong to         . Then 

                                 
 

   
                         so that 

  

   

                            
 

  
         

        
        

that is,                 
 . On the other hand, by the Poisson summation formula, 

                                            on       . Hence by Theorem 

(6.1.13),there is a Riesz generator           
 

        
            of PWπ for 

which we have the sampling expansion                         on    , 

which converges not only in       but also uniformly on  .  It is exactly the single 

channel sampling introduced in [38]. 

Corollary              : Suppose that       is a frame generators of       

and               
 .Then there is a Riesz generators       of       for which (8) 

holds if and only if       is also a Riesz generators of       and 

                          
     

 
   

        
     

 
   

                                                       

Furthermore in this case, we have, in addition to (26) and (27); 
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Proof : First assume that (8) holds on       for some Riesz generator       of 

     . Then we have (13), (14) and so (9) . Since         
 =         =      

                     must be a Riesz basis of       so that (26) and (27) hold by 

Lemma        .Now (28) comes from (15):       
              

   
   

       
    a.e. on   

and (29) comes immediately from                                     .Conversely, 

assume that       is a Riesz generator of       and (28) hold. Define        by (27). 

Then                                       , where              
           

          so that                                  . The rest of the proof 

is the same as the one in Theorem         . 

Section (6.2) Sampling Expansion  

  For any      in       , let      = span                    be the closed 

subspace of      spanned by integer translates                     of      . We 

call       the shift invariant space generated by       and       a frame or a Riesz or 

an orthonormal generator if                     is a frame or a Riesz basis or an 

orthonormal basis of        For more details on the structure of shift invariant spaces 

with single and multiple generators, we refer to [24] and [31].When       =         

 
     

  
       is an orthonormal generator of        =     , the Paley–Wiener space 

of signals band-limited in        and the celebrated WSK (Whittaker–Shannon–

Kotel’nikov) sampling theorem says                                        

which converges both in      and absolutely and uniformly on  . As a natural 

generalization of WSK-sampling theorem, many authors studied sampling expansion 

procedure on the general shift invariant space       under various assumptions like 

continuity and/or decaying condition on the generator      . For example, Walter 

considered a real-valued continuous orthonormal generator satisfying        

                with        Chen, Itoh, and Shiki considered a continuous Riesz 

generator satisfying                       with     
 

 
  and Zhou and Sun 

considered a continuous frame generator      satisfying                      . 

( See [11],[12],[13],[23],[25] and [32]) . Noting that the Paley–Wiener space PW  is 

a prototype of the reproducing kernel Hilbert space, we first find conditions under 

which      can be recognized as  a reproducing kernel Hilbert space in section, we 

find necessary and sufficient conditions under which an irregular sampling expansion 

and a regular shifted sampling expansion hold on       We can relax most of the 

restrictions imposed on the generator       before. We also introduce a notion of the 

sampling space, which was first considered by Zhou and Sun, and find a sufficient 

condition for a function in       to be in some sampling space.  Let             

be a sequence of elements of a separable Hilbert space H with the inner product       

and                           the closed subspace of H spanned by            . 
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Then             is called a Bessel sequence (with a Bessel bound B) if there is  a 

constant       such that           
 

                     (or equivalently 

    ),a frame sequence  (with frame bounds      ) if there are constants        

such that A||   ||2
              |

2
   B||   ||2        , a Riesz sequence (with 

Riesz bounds      ) if there are constants          

           

   

        

 

                         
  

where                     , an orthonormal sequence if         =      for all m 

and n in  . If               is a frame sequence or a Riesz sequence or an 

orthonormal sequence in  , then we say that               is  a frame or a Riesz 

basis or an orthonormal basis of the Hilbert subspace   in  . On             , we 

take the Fourier transform to be normalized as 

                    
 

   
   

 

  

                                 

so that         becomes a unitary operator from       onto      .  

For any             , let                            

                            Then                         , 

                      
         and  

           
     

                                        . 

 Let        be the support of a locally integrable function        as a distribution 

on   (see [29]), that is,          is the largest open subset of   on which  

           a.e. Let                       and                 . For any 

                 
   let                         be the discrete Fourier 

transform of    . Then                                       and 

            
  

 
                . For any                 and                   in 

  , the discrete convolution product of c and d is defined by 

                                              .Then              
 
     belongs 

to           and its Fourier series is                    so that 

                
 
     

 
  

 

                                                                                   

Proposition             Let             and           . Then 

(a)                     is a Bessel sequence with a Bessel bound    if and only if  

                a.e. on        , 

(b)                     is a frame sequence with frame bounds       if and only 

if 
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(c)                     is a Riesz sequence with Riesz bounds  

      if and only if                     a.e. on         , 

(d)                      is an orthonormal sequence if and only if  

            = 1 a.e. on        . 

Proof : (See [28] ) For any             and                   
  ,  let 

                                      be the semi-discrete convolution 

product of c and      , which may or may not converge in      . In terms of the 

operator T, called the  pre-frame operator of                    , (see [28]): 

                   is a Bessel sequence with a Bessel bound B if and only if T is 

a bounded linear operator from    into       and           
               ,       , 

                    is a frame sequence with frame bounds       if and only if T 

is a bounded linear operator from     onto       and  

                                     
     

                                                         

where                                   and       
is the orthogonal 

complement of        in   ,                     is a Riesz sequence with Riesz 

bounds       if and only if T is an isomorphism from    onto       and 

                     
     

                                      is an orthonormal 

sequence if and only if T is a unitary operator from    onto      . 

Lemma            : Let             . If                     is  a Bessel 

sequence, then for any 

                       
               

  
                                                               

so that 

           
     

     

 

  

     
 
                                                           

                                                         
  

 

                                                                

Proof : See [12] and [28]. Let       be a frame or    a Riesz generator. Then   is an  

isomorphism from       
  onto      so that 

                                                           

where                    is the   -      of                     . By (36), we 

have                            a.e. on       so that   

                                                                                                   

Proposition             : Let              be a frame generator and 

                         , where       . Then c         if and only if  

                                    where                  is the canonical 

dual frame of                   
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Proof : Note that we have by (35) for any                       , 

                           
                                                             

                                                              
      

         
            

             

                       
 

  
                   

        

  

 

       

since          
      

       
            (see [22]), where       is the characteristic 

function of a subset   of  . Hence 

                       
   

       
 

  
                      

        

  

 

 

   

  

                                  

Now,          if and only if      ( ξ) = 0 a.e. on    (see (37)). 

 That is,                              a.e. on         Hence the conclusion follows. A 

Hilbert space H consisting of complex-valued functions on a set   is called a 

reproducing kernel Hilbert space  (RKHS in short)  if the  point evaluation        

      is a bounded linear functional on H for each t in  . In an RKHS    there is a 

function        on      , called the reproducing kernel of   satisfying   

(i)            for each   in  , 

(ii)                           .  

 Moreover, any norm converging sequence in an RKHS H converges also uniformly 

on any subset of E, on which        is bounded (see [30]). If a shift invariant space 

     with a frame generator      is an RKHS, then its reproducing kernel is given 

by 

                           

   

                            

   

                                               

where                    is the canonical dual frame of                    . 

We now find conditions on the generator        under which       can be recognized 

as an RKHS. Since all functions in an RKHS must be pointwise well defined, we 

only consider generators        satisfying       is a complex valued square integrable  

                                                                                                               

If       is recognizable as an RKHS with the reproducing kernel        as in (38), 

where       is a frame generator satisfying (39), then  

                     

    

                             
 

    

 

                                             
      

                , 

where   is an upper frame bound of                  . Hence 
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Conversely, we have: 

Proposition           : Let      be a function satisfying (39) and (40). 

(a)  If       is a frame generator, then                                

is an RKHS in P which any                   is the pointwise limit of 

                

   

                                 

(b) If      is a Riesz generator, then                              is an RKHS in 

which any                   is the pointwise limit of  

                

   

                                 

(c) If                        is a continuous frame generator satisfying 

            , then       is an RKHS in which any                    is the 

pointwise limit Of                     , which converges also in       and 

uniformly on R to a continuous function on                             . 

Proof : Assume that       is a frame generator satisfying (39) and (40). Then for 

any c in               converges not only in       but also absolutely on   since 

                 
  for any t in   by (40). Then       is a Hilbert space under the 

         product since for any                    with         , 

                   implies       so           on  . Moreover for any 

                           in       and any t in  ,                         

 
 

  
                  by (34). Hence      is an RKHS so that (a) is proved. Then    

(b)  follows   from  (a)  since            so  that           and                

when        is a Riesz generator satisfying (39) and (40). Finally let 

                      be a frame generator and                Then for any c 

in   ,               converges not only in       but also absolutely and uniformly 

on R to  a continuous function      on  . 

  Hence                  . Now for any                  in      , 

decompose   into            where          and           .  Then 

                    so that                 on    since            is continuous 

on   . Hence                           so that       =      is an RKHS as in 

(a). Hence (c) is proved. Note that when       is a frame generator satisfying (39) 

and (40) ,                   converges also absolutely on   for any c in l
2
. 

However V ( ) as a space of the pointwise limits of                            

 may  not  be a Hilbert space under the   -      product since                  

implies         only a.e. on   unless       is a Riesz generator or a frame 

generator as in (d).We say that two functions       and      in       are equivalent 
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(see [23]) if they generate the same shift invariant space, that is,        = V (  ). It 

is then easy to see that        and       equivalent if and only if                  

and              . In particular,          and        are equivalent frame 

generators if and only if there are c and d in    such that 

                                                                                                

Since (41) implies                                                   and so 

                                        
                 we must have                      

                               if       and       are equivalent frame 

generators. 

Lemma             Let      and       be equivalent frame generators. Then 

      is a Riesz generator if and only if       is a Riesz generator. 

Proof: Since      and       are equivalent frame generators ,           

Now      is a Riesz generator if and only if                 

(see Propositions )6.2.1((b) and )6.2.1((c)) so that      is a Riesz generator if  and 

only if        is a Riesz generator. Concerning the condition in Proposition 

)6.2.4((c), Zhou and Sun’s [38] proved. 

Lemma           : (see [22]). For any       in      , the followings are 

equivalent. 

(a)              and              . 

(b) For any c in   ,            converges pointwise to a continuous function on  . 

(c) For any c in   ,             converges uniformly to a continuous function on  . 

Moreover for any two equivalent frame generators       and                    

and                if and only if               and               .Here, 

                     
 

 for j = 1, 2.  Note that   (t)   C( ) and               

if either   (t)   C( ) and                       for     
 

 
 or              , 

and         has a compact support since when                           , 

                            
   

 
              by the Plancherel–P´olya inequality 

(see [30]). We also have: 

Proposition              If               is such that  

         

   

                                                        

and                  . 

Proof: Since          
                   and                                   , 

                    so                   . Also 

                            converges in         . Hence we  have by the Poisson 

summation formula (see Lemma )6.2.20( below) 
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so that 

               

   

                          

   

 

 

        

 

                                                              
 

        
   

Hence                      
 

        
       

Theorem            : Let       be a frame generator satisfying (39) and (40) so 

that       is an RKHS. Then for any sequence           of points in   with 

                  the followings are equivalent on      . 

(a) There is a frame              of       such that 

                        

   

                                                                                  

and              is a moment sequence of a function to             , that is , 

                                                                                                                 

for some      in      . 

(b) There is a Bessel sequence                in Vp( ) such that 

                                  

   

                                                                          

and there is a constant       such that 

                         
  

   

        
     

                                                                   

 (c) There are constants         such that 

                         
     

          
 

   

         
     

                                       

(d)                is a frame of      , where        is the reproducing kernel of 

     . Furthermore, if any one of the above equivalent statements holds, then the 

sampling series (42) or (44) converges both in       and absolutely and uniformly 

on any subset   of   on which      is bounded. 

Proof: Since                                  for any f in       and any n in  , (c) is 

equivalent to (d). Assume (d) and let              be the canonical dual frame of 

              . Then 

                               
   

          

   

                     

so that (42) holds. Let   be the frame operator of               Then 

                          so that 
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so that               is the moment sequence of          to             . Hence 

(a) holds.  Conversely assume (a) and let    be the frame operator of             . 

Then we have from (42) and (44) 

         

   

                                           

so that                 and for           and    , 

                                                  

                                                                                  
                 

Hence                          so that                must be the 

canonical dual frame of             . Hence (d) holds. (a) implies (b) with 

                  since (a) also implies (c). Assume (b). Then by (45) 

                      
 

   

           
 

   

          
     

            

so that both                 and               are Bessel sequences in       . 

Then                 and               are dual frames of        (see [28]) so 

that (d) holds. Finally assume, e.g., that (c) holds. Then              
  for any 

        . Hence as a frame expansion, the sampling series (42) or (44) converges 

both in       and absolutely on  . Now for the reproducing kernel  

                                          

                  
     

    

   

                                

 

     

            

where    is an upper frame bound of                   . Hence as a series in the 

RKHS      , the sampling series (42) or (44) converges also uniformly on any 

subset   of   on which      is bounded. Inspection of the proof of Theorem (6.2.8) 

shows that the reconstruction frame                in (a) is uniquely determined as 

the canonical dual frame of                 but               in (b) need not be 

unique but may beany dual frame of                . Note also that Theorem 

)6.2.8( remains true on               in the cases of Propositions )6.2.4((b) and 

)6.2.4((c).In particular, in the case of Proposition )6.2.4((c), the sampling series (42) 

or (44) converges uniformly on   to a continuous function      on  . Equivalence of 

(a) and (c) in Theorem )6.2.8( was first proved in [26] assuming that       is a 

continuous Riesz generator satisfying the growth condition 

                         with    
 

 
 , which implies              . In [26], the 

authors used the Gram matrix A of the frame                    in order to realize 
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the reconstruction frame                  claiming that A is invertible (see [26]). 

But   is not invertible in general unless                    is a Riesz basis of 

     . As a special case of Theorem (6.2.8), we now consider regular shifted 

sampling at sampling points                where          . In the 

following, we let (see [13]) 

            

   

                                                             

in      . Then          is well defined a.e. on    and is quasi-periodic in the sense 

that                 
           and                         For any  

 measurable function      on  , let            
     

    
   

         and 

           
     

   
   

        be the essential infimum and the essential supremum of 

       respectively where     is the Lebesgue measure of  E. We first replace the 

inequality (46) by an equivalent one, which is easier to check.  

Lemma           : Let       be a frame generator satisfying (39) and (40) and 

         . Then the followings are equivalent. 

 (a) There are constants         such that 

                    
     

              

   

        
     

                               

  (b) There are constants         such that 

                                                                                                                

Proof : For any                    in       with            we have 

             

   

                                

where                     so that     
 
             . Hence by (32) and (37)  

            

   

   
 

  
            
  

 

           
 
     

                                  
 

  
            

 

  

           
 
     

Hence by (36) , (47) is equivalent to  

      

 

   

                     
 

  
  

 

   

                     
 
         

 

                                                                          

 

   

                             
  

which is also equivalent to 
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Let       be frame bounds of                  . Assume (a). Then we have by 

(33) and (49),                 
      a.e. on     so that (b) holds. Conversely 

assume (b). Then by (33) and (48) 

     
    

 
                   

     
    

 
        a.e. on     so that 

  

 
       

     
                

  

 
       

     
          ,i.e. (a) holds. 

Combining Theorem )6.2.8( and Lemma )6.2.9( , we have  

Theorem             : Let       be a frame generator satisfying (39) and (40) 

so that       is an RKHS and          . Then the followings are equivalent on 

     .  

(a) There is a frame               of      such that 

                         

    

                                                                             

Where                   is a moment sequence of a function in       to        

      . 

(b) There is a frame                   of       such that 

                          

   

                                                                       

(c) There is a Bessel sequence                in       such that 

                         

   

                                                                             

and there is a constant       such that 

            

   

           
     

                                                     

(d) There are constants            such that 

        
     

               

   

          
     

             

(e) There are constants         such that               a.e. on    . 

(f )                     is  a frame of      . Moreover if any one of the above 

equivalent statements holds , then                  , where 

                       
      

       
                                                                             

and the sampling series (50),(51),(52) converge both in       and absolutely and 

uniformly on any subset   of    on which      is bounded. 

Proof : Equivalences of (a), (c)–(f) come from Theorem )6.2.8( and Lemma (6.2.9). 

Assume (a) Then as in the proof of Theorem )6.2.8(   
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                                         , where   is the frame operator 

of                       is the reproducing kernel of      and  

                    for       comes from (38). Then as the canonical dual 

frame of                                                 where             . 

Hence (b) holds. 

                                                 

     

        

where                        
  by (40). Hence                        by (35)and so  

                 
 
     . Hence           

 
 
     

     
  on          since       and 

     are equivalent frame generators, from which we have  
 

  
              

   
 

   
 

a.e. on    where       and         are frame bounds of                       

and                   respectively. Hence (e) holds. Moreover we have from 

                               
      

       
 on             ,which implies (53) since  

                          by (e)  

                                                . Then             since  
 

        
                 a.e. on    (cf. (37)). The mode of convergence of the 

sampling series (50),(51),(52) was already proved in Theorem (6.2.8). Applying (51) 

to S(t), we have                         so that                       

provided that                   is a Riesz basis of      . In fact, we have: 

Proposition            : Let       be a frame generator satisfying (39) and 

(40) and          . Assume that any one of the six equivalent conditions in 

Theorem )6.2.10( holds. Then the followings are equivalent: 

(a)      is a Riesz generator ; 

(b)                           is a Riesz basis of         

(c)                        

(d)                     is a Riesz basis of      . Moreover, if any one of the 

above equivalent conditions holds,       =        

Proof: Note that (b) means that      is a Riesz generator of      . Then equivalence 

of (a) and (b) follows from Lemma )6.2.5(. We saw already that (b) implies (c). 

Assume (c) and let                       for some c in       . Then         

                       Now   

                                    

   

                    

          , where                         and                      . 

Hence            
 
         a.e. on         so that              a.e. on          i.e. 
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     . Hence     =         so that                     is a Riesz basis of 

       , i.e. (a) holds. Equivalence of (b) and (d) follows since                and 

                    are dual  frames each other. Finally when       is a Riesz 

generator satisfying (39) and (40),               since            so              .  

Combining Theorem )6.2.10( and Proposition )6.2.11( , we have: 

Theorem            : Let       be a Riesz generator satisfying (39) and (40) 

so that      is an RKHS and           . Then any one of the equivalent 

statements on      in Theorem (6.2.10) is also equivalent to each one of the 

following .      There is a Riesz basis                of V ( ) with which (50) 

holds.                         
               

    . 

(f)'                      is a Riesz basis of        Moreover if any one of the 

above equivalent statements holds, then  

                                                                                                   

where  

                             
      

       
                                                                                   

and  

                                                                                                                        

Proof: Theorem )6.2.10( (a) implies (a)'  by  Proposition )6.2.11( . Conversely 

assume (a)'. Then the sampling series (50) is a Riesz basis expansion so that 

                                       
                        

where   is the frame operator of               . Hence                 is a 

moment sequence of          to                so that Theorem )6.2.10( (a) 

holds. Equivalence of Theorems) 6.2.10( (e) and )6.2.10( (e)' follows since 

            , i.e.               when       is a Riesz generator. Since 

                                (f)' means that        is a Riesz generator of 

     . Then equivalence of Theorems )6.2.10( (f) and )6.2.10( (f)' follows from 

Lemma )6.2.5( since       and        are equivalent frame generators. We have (56) 

and                  by Proposition )6.2.11(. Hence (54) holds since (52) and 

(56) imply 

                         

   

                  

                    

    

                

Finally (51) implies                                 so that  

                       from which (55) follows since                  by (e)'. 

In Theorem )6.2.12(, we may express any                   
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which implies by (55)                                    
          

Hence                          
  , which gives a relation 

        

    

                                                  

Coefficients                of       and its sample values                  where  

       
                   Walter considered V ( ), where       is a real-

valued continuous orthonormal generator such that                        with 

      and             on  .Then                    since                 
  

so that the condition (e)' for       in Theorem )6.2.12( holds. Hence we have the 

sampling series expansion (51) with        on V ( ), which is a Riesz basis 

expansion and converges both in       and absolutely and uniformly on   since 

             . Chen and Itoh, extending Walter’s, considered a Riesz generator   

(t) satisfying only                  
  for some   in       and claimed (see [25]) 

that there is              such that the sampling expansion formula (51)holds on V 

( ) in       sense if and only if          
        [0, 2π] and in this case        

        
        . However there are some gaps in the arguments of the proof in [25]. 

Assuming only                  
  for some   in        which is weaker than the 

condition (40),       may not be an RKHS so that the point evaluation of functions 

in       need not be well defined. Moreover, Chen and Itoh assumed nothing on 

              but we must assume that               is at least a Bessel sequence to 

derive                 
         from (51) (see Lemma )6.2.2(). Then we also have  

                
 
      a.e. on   so that           

     which is already 

stronger than        
           . The condition        

             guarantees 

only that      with                 
         is in       and satisfies the 

interpolatory condition                      . In [26], the authors proved the 

equivalences of (a) in Theorem )6.2.10( , (a)' and (e)' in  Theorem )6.2.12( together 

with (55) assuming that       is a continuous Riesz generator satisfying         

              with     
 

 
  . Finally we consider the case (c) in Proposition )6.2.4(. 

Theorem            : Let                    be a continuous frame 

generator satisfying                and          . Then any one of the 

equivalent statements on               in Theorem (6.2.9) is also equivalent to 

(e)'' there are constants     > 0 such that                        

              a.e. on  . Moreover, if any one of the above equivalent statements 

holds, then  
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Where 

                                          
      

       
                                                                    

and sampling series (50),(51),(52) converge both in       and  absolutely and 

uniformly on  . 

Proof: By the same arguments as in Lemma )6.2.9(, we can easily see that the 

condition  (d) on                in  Theorem )6.2.10(  is now  equivalent  to  

       

  

 

                      

 

  

                   
 
               

                                                                   

  

 

                         
   

which is also equivalent to                     
 
             a.e. on       . 

Now by the same arguments as in the proof of Lemma )6.2.9(, one can see the 

equivalence of the condition (d) on       in Theorem (6.2.10) and (e)''. (57) and (58) 

are already proved in Theorem )6.2.10(. Finally, the sampling series  (52),(51),(52) 

converge uniformly on   since            . Zhou and Sun proved (see Theorem 

1 in [38]) the equivalence of the condition (b) in Theorem )6.2.10( and (e)'' in the 

case of      . It is interesting to note that the weaker condition (e) in Theorem 

)6.2.10( implies the stronger condition (e)'' for any continuous frame 

generator       with              . In [34], Zhou and Sun introduced a notion of 

“sampling space” as: a closed subspace V of       is a sampling space if   has a 

frame generator      such that                 converges pointwise to a 

continuous function on   for each                 in    and  

                              , which converges both in        and 

uniformly on  . By Theorem )6.2.13(, we can easily see that   is a sampling space if 

and only if   has a frame generator       in C( ) ∩        satisfying               

and the condition (e)'' in Theorem )6.2.16(. Then Theorem )6.2.10(naturally leads to 

the following relaxed notion of a sampling space. 

Definition             : A closed subspace   of         is called a sampling 

space if            for some frame generator       satisfying (39) and (40) and 

there are constants        such that                 a.e. on    for some   

in      . Then Theorem (6.2.10) implies that any sampling space         has a 

frame                    such that 

       

   

                                                 
             

absolutely on  .  
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Theorem             : Let       be a sampling space where       and   are 

the same as in Definition (6.2.14) . If            
      then there is a sampling 

space                where   (t) is a Riesz generator satisfying (39) and (40), and 

                 a.e. on   for some constants              

Proof: If       itself is a Riesz generator, then we may take            Hence 

assume that      is a frame generator with frame bounds         but not a 

Rieszgenerator. Then                                               and  

                 has a positive measure. Take                     , where 

          
 

    
        and                   . Then             and so 

      

   

                                                                

                           

   

                
 
             

             

so that min      
               max      

   a.e. on       . Hence       is a Riesz 

generator. Now                                      
           

on        by  Lemma (6.2.20) below. Therefore  

                                                      on     so that 

min                                 

                                                max                      a.e. on [0, 2 ].  

Finally we have                                               since 

                       and                  . Hence               so 

              Note that the sampling space       in Theorem (6.2.16) has a Riesz 

basis                for which we have a sampling expansion (see Theorem (6.2.12)): 

        

   

                            

Finally we give a sufficient condition that a function           belongs to some 

sampling space. 

Theorem            : (see [34]). Let          . If               and there 

exist constants          and           such that 

                    
     

   

               
 
     

   

               

 

            

                                                                                           
 
                                  

then   belongs to some sampling space. 

Proof : Let                                                , and          
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Then 

           
 

  

           
                  

           
 

 

  

          
 

  

 

  

     

                      

 

  

       
 

  

 

  

                         

so that              and                           . Then 

         

   

                 

 
 
 

 
                   

           
 

        

 

    
                                   

  

so that min 
 

  
                max   

 

  
                   and      is a Riesz 

generator. We also have 

   

   

                  

 
 
 

 
               

 
   

           
            

 
 

    
                                        

  

          

   

                                                            

                     is a continuous Riesz generator and                 by 

Proposition (6.2.7). On the other hand , we have by Lemma (6.2.20)  below , 

               

         
                                

         
             

                                                                                   

                

so that               a.e. on        and       is a sampling space. Finally we 

have supp                  = supp           by (59) and so         

                  by (60), which implies          . 

 We assume that       is a frame generator with frame bounds       satisfying the 

conditions (39) and (40) and for some constants         and           

               a.e. on supp     .Then by Theorem (6.2.9),       is an RKHS 

on which we have a sampling expansion (51) 
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where                is a frame of       with frame bounds  
 

  
  
 

  
  and      

satisfies (53).  Let c =             be the Fourier coefficients of   
 

        
         ) 

          so that   
 

        
         )=             . Then                   

and so we have by (32) 

               

   

                     

   

   
 

  
  

  

 

                        

Hence 

                             

   

  
 

  
                

   

                                            

                              

     

                                    

we call 

                        

     

                                                                              

 the nth truncation error of     . We first consider the   -estimate of            

Theorem              : We have 

            
 
     

   
 

   
  

     

            
                                       

                                             
 

 
 
 

 
 

 
                                                          

Proof :We have by (53) and (62)  

           
 
      

                
 

     
                                                                         

                                    

  

 

   

     

              

 

       

             
 
               

from which (63) follows immediately since                      is the canonical 

dual frame of {                  If moreover,      is a Riesz generator, then 

 

  
               

     

               
 
    

   
 

  
            

     

            

Concerning the point wise estimate of the truncation error (see [36]), we have from 

(61) and (62) 
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where                         so that the sampling series (51) converges 

uniformly on any subset of   on which   (t) is bounded . When             
       

we can improve the   -estimate of the truncation error. 

Lemma            : If                                          then 

            and              for any             In particular ,                

Proof: First               by  Proposition (6.2.7).  For any                

                   for some   in   . Hence                         and 

        

 

  

                

  

 

                              

                                                                               

so that              Finally               by Proposition (6.2.4)(d). 

Theorem             : If                      then 

            
 

 
              

   

     

         
 
 

 
 

                          

Hence the sampling series (51) converges uniformly on  . 

Proof : Now       
              by Lemma (6.2.18) so that 

            
 

   
  

 

  

   

     

                               

Hence 

           
 

   
  

 

  

   

     

                                        

                                
 

   
  

 

  

   

     

                         
  
            

from which (64) follows. 

 We first introduce a variance of the Poisson summation formula, which is effective 

in computing        . 

Lemma              :  Let                 so  that                       

and           . Then 
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which means that  
 

   
        is the Fourier series expansion of 

                        

   

                  

   

                       

  converges  in          or equivalently                 
 , then 

                                       

   

  
 

   
             

                                

 Proof : Assume that             . Then 

                         
        

   

                  

  

 

   

   

                           

                                                                        

   

  

       

   

             

  

  

          

so that 

                       

   

                                          

 Hence 

                       

   

                                                                         

                         
 

  
                         

   

               
   

         

where 

                        

   

                                                       

                                                

  

 

                       

   

          

                                                                     

  

    

          

                                                                 

  

  

               

by the Lebesgue dominated convergence theorem. Hence (65) holds. Now assume 

that              and 
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so that (66) holds. Lemma (6.2.20) is a more generalized version of the following 

result in [25]. 

Corollary             : (see [25]). If      is measurable on   and 

                 converges absolutely in         , then 

            

   

 
 

   
                          

          

                              

   

                                           

            

   

                                                                    

and                  converges in        . Hence the conclusion follows from 

Lemma (6.2.20) for      . 

Example             : (see [13],[26] and [33]). Let                   and 

                                

 

 

                    

 be the cardinal B-spline of degree    Then 

         
 

   
 
        

  
 
   

  and             
 

   
      

 

  
 
   

  
       . 

  It is known in [27] that        is an orthonormal generator and      for    is a 

continuous Riesz generator. Moreover since   n(t) has compact support,  

                 

   

  
 
            

 
                       

 
                       

     . Since               for      and                  

so that by Theorem (6.2.12), we have an orthonormal expansion 

          

   

                                        

which converges in       and uniformly on   since 

                   
 

   

               

      For                                                              and                 

                                          for         so that 

                            Then             
              and  

           
=1. Hence by Theorem (6.2.12), for any   with         and    

 

 
    

we have a Riesz basis expansion 

          

   

                               

which converges  in       and uniformly on   . For 
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                  it is known 

(see [13] and [26]) that 

           
    but  

 

 
      

 

 
      

 
        

 

 
      

 
   so that there is a 

Riesz basis expansion 

                      

   

  
 

 
                                                                  

which converges in       and uniformly on  . Since the optimal upper Riesz bound 

of the Riesz sequence                    is 1 (see [27]), we have for the 

sampling series (67) 

          
 
     

           
 

 
    

 

     

              

On the other hand, we have 

          

   

                  
 

   
   

   

      
 

  
    

 

               

                                                               
 

   
   

   

      
 

  
    

 

 
 

   
 

Hence, Theorem (6.2.19) gives for the sampling series (67) 

                  

     

   
 

 
     

  

 

 
 

 

Example              :   Let       =  
   

   be  the   Gauss kernel . Then 

           
   

   and 0 <                     <   so that       is a continuous 

Riesz generator satisfying  

                 

   

                                               

and                
 , we have by Lemma (6.2.20) 

              
  
 
         

 

   

                                 

Hence by Theorem (6.2.12),      is an RKHS and there is a Riesz basis expansion 

          
   

                      

which converges in       and uniformly on   . 

Example             : (see [22]). Let E be a measurable subset of        and  

         
 

   
      . Then                            so that 
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Hence       is a (tight) continuous frame generator or an orthonormal generator if  

       or         , respectively. Since              and                       

for  0     < 1, we have by Lemma (6.2.20) 

           
     

   

                                           

so that             on       . Hence by Theorem (6.2.13) , V ( ) is an RKHS 

and there is a frame                   of       such that  

                      

   

                                                                         

which converges in       and uniformly on  .When           , 

            
    on   so that       

      

         
 

 

   
             

      Hence, 

                   and so (68) becomes 

       

   

                                 

                           shifted cardinal series on     (see [30]). Moreover, 

applying Theorems (6.2.17) and  (6.2.19), we have for the sampling series (68) 

           
 
     

             

     

  

and 

           
 
 
  

   

  
   

     

            

 
 

            

Finally, we give an example of a Riesz generator      with             

Example             : For any                 the Fourier series expansion  

            
              

 

  
  

   

        
                   

     

where 

        
                   

 

  

                                     

                                 

 

  

                              

Hence if  supp            then        
 

  
    a.e. on   so that         a Riesz 
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                and (40) but            since   

       

   

                  
                                              

        
 

  
    

 

    
      

            

Since we have 

           
    and                       for             Theorem (6.2.12) 

implies that for any   with            there is a                       

       

   

                      

      converges  in       and absolutely on    . 

Corollary               : We have 

              
 

     
   

   
 

   
  

     

              
 

   

                                                         

                                     
 

 
 
 

 
 

 
            
   

                                                      

Proof :We have by (53) and (62)         

             
 

     
    

            
      

 

     
   

                                                              

                                     

  

 

   

     

           
    

   

 

 

       

             
 
               

from which (63) follows immediately since                      is the canonical 

dual frame of {                  If moreover,      is a Riesz generator, then 
 

  
                

 

        

                 
 
    

   

   
 

  
             

 

        

            

Concerning the point wise estimate of the truncation error (see [36]), we have from 

(61) and (62) 

            
  

   

 
 

   
      

     

            
 

   

            

where                         so that the sampling series (51) converges 

uniformly on any subset of   on which   (t) is bounded . When  

                        we can improve the   -estimate of the truncation error. 
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Corollary               : Let         
      so  that                       

and      . Then 

                               

      

                                         

                              

      

   
 

   
           

   

                      

                                                                          
 

   
  

   

              

   

                   

which means that  
 

   
               is the Fourier series expansion of 

                              

   

 

   

               

   

                             

   

 

  converges  in          or equivalently               
 , then  

                              

      

  
 

   
           

   

                  

 Proof : Assume that         
     . Then 

                                        
      

                    

  

 

   
      

         

                                                            

   

   

       

   

          
   

     

  

  

          
   

 

so that 

 

                              

      

                                          

 Hence 

                              

      

                                                                         

    
 

  
                                

      

        

   

         
   

         

   

  

where 

                               

      

        

   

                                                 

                                                      

  

 

                               
       

      

  



 

213 

                                                                                    
       

  

       

  

                                                       
            

  

     

             

by the Lebesgue dominated convergence theorem. Hence in lemma (6.2.20) (65) 

holds. Now assume that          
     and 

                            

      

                                         

                                                                        

      

  

in           so that (66) holds.  

Section (6.3) Asymmetric Multi-Channel Sampling  

  Reconstructing a signal from samples which are taken from its several channeled 

versions is called multi-channel sampling.The multi-channel sampling method goes 

back to the works of Shannon [19] and Fogel [8], where reconstruction of a band-

limited signal from samples of the signal and its derivatives was suggested. 

Generalized sampling expansion using arbitrary multi-channel sampling on the 

Paley–Wiener space was introduced first by Papoulis [17]. Since Papoulis’ 

fundamental work, there have been many generalizations and applications of multi-

channel sampling. See [2,6,7,15,16,18] and references therein.  

  Papoulis’ result has also been extended to a general shift invariant space by using 

the filter banks technique (see [5,20,21]). More recently Garcia and Pérez-Villalon 

[9] derived stable generalized sampling in a shift invariant space. Most previous work 

related to multi-channel sampling has assumed that the sampling rates of all channels 

are the same. 

  We consider an asymmetric multi-channel sampling in a shift invariant space 

     with a suitable Riesz generator     , where each channeled signal is sampled 

with a uniform but distinct rate. Using Fourier duality between      and          

[9,10,11], we derive a stable shifted asymmetric multi-channel sampling formula in 

    . The corresponding symmetric multi-channel sampling in      was handled in 

[10] where      is a continuous Riesz generator satisfying                          

In this case all signals in      are continuous on   (see[22]). We require only that 

the Riesz generator      is point wise well  defined everywhere on   and 

                           Hence we essentially allow any Riesz generator in 

       On the other hand, we allow more general filters than the ones in [9] by 

asking only that the impulse responses of filters belong to       (or the frequency 

responses of filters belong to             when                        
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        ), whereas they belong to      ∩       in [10]. Finally, we give an 

illustrative example. We take the Fourier transform to be normalized as 

                            

 

  

                     

so that 
 

   
       extends to a unitary operator from      onto      . For any 

          , let 

          

   

                           

   

               

Then                    
                          

        and 

        
     

        
  
 

        
  

 

  
      

  
 

         
 

In particular,           for a.e.   in   . We also let  

           

   

             

be the Zak transform [13] of      in      ). Then       ) is well defined a.e. on    

and is quasi-periodic in the sense that 

               
        ) and                     ). 

A Hilbert space H consisting of complex valued functions on a set   is called a 

reproducing kernel Hilbert space (RKHS in short) if there is a function        on 

     , called the reproducing kernel of   , satisfying 

  (i)           for each   in  , 

 (ii)                 = f         . 

 In an RKHS  , any norm converging sequence also converges uniformly on any 

subset of E, on which          
 

=        is bounded. A sequence             of 

vectors in a separable Hilbert space   is 

  (i) a Bessel sequence with a bound         if 

          
 

   

                

 (ii) a frame of H with bounds           )  if 

                
 

   

                

(iii) a Riesz basis of   with bounds             if it is complete in    
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  In the rest of the section, we let       be the shift invariant space, where      is a 

Riesz generator, that is,                  is a Riesz basis of      . Then 

                                     

   

                
    

 It is well known (see [3]) that      is a Riesz generator if and only if there are 

constants           such that                            . In this case, 

                 is a Riesz basis of       with bounds      . We assume 

further that 

 (i)      is everywhere well defined on  ; 

 (ii)                                            for each   in  . 

      We    then   allow  essentially  all Riesz   generators     since    for   any        

                  a.e. so that      has an equivalent representative satisfying the 

above two conditions. Then for each                    converges both in 

     and absolutely for each   in  . Hence      becomes an RKHS with the 

reproducing kernel (see[14])  

                               

   

                                      

      basis of               with bounds 
 

 
 

 

 
. As in [10,11] , we introduce an 

isomorphism   from          onto      defined as: 

         
 

  
                       
    

                 
 

  
                   

We then have: 

 (i)                            

 (ii)                                        

  Let                   be   LTI (linear time-invariant) systems with impulse 

responses                 . Develop a stable shifted multi-channel sampling 

formula for any signal              using discrete sample values from 

                 , where each channeled signal             for         is 

assigned with a distinct sampling rate 

                                                                   

   

 

   

                      

where                          is a frame or a Riesz basis of  

                     are positive integers, and                are real 

constants. Note that the shifting of sampling instants is unavoidable in some uniform 

sampling [13] and arises naturally when we allow rational sampling periods in (69). 
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Here, we assume that each         is one of the following three types: the impulse 

response      of an LTI system  is such that 

 (i)                      or 

 (ii)              or 

 (iii)                      when       =                                For 

type (i),                                 so that                    is an 

isomorphism. In particular, for any                          

                      converges absolutely on    since 

                     

   

                                            

 For types (ii) and (iii), we have: 

Lemma             Let      be an LTI system with the impulse response      of 

the type (ii) or (iii) as above and                               .Then 

(a)                                                 , 

(b)               ;  

(c) for an                                                    converges 

absolutely and uniformly on  . Hence                 . 

Proof:First assume             . Then              by the Riemann–Lebesgue 

lemma since                             .  Since  

             

   

       
 
       

 
         

              

   

 

 

         

        
         

 

  

 

                               

                                                               
                  

Thus for any   in  , we have by the Poisson summation formula (see [14]) 

           

   

                    

   

                      

Therefore for any   in   

                  
 

  
   

         

   

      

 

           

                 

                                          
 

  
            

   

           

 

          

 

                                                                      
                

By Young’s inequality on the convolution product,  

                           
 
      so that                   is 
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 a bounded linear operator. Hence for any  

                                         

   

  

                 

   

                        

   

  

which converges absolutely and uniformly on   by (b). Now assume that         

           . The case                is reduced to type (ii). So let               . 

Then                       so that                                     and 

so              ∩ 
    ). Since  

             

   

                                               

summation formula 

        
 

  
            

   

           

 

          

           

                   
 

          
                          

so that             . For any           , 

                                 
 

   
               

     
 

                                                      
     

                          

Hence                     is a bounded linear operator so that for any        

                                           converges in      . By (b),     

       also converges absolutely and uniformly on  . 

   By  Lemma (6.3.1)(b                . However,            may not converge in 

       unless                   is a Bessel sequence. 

 Lemma  (6.3.1) (b) improves   [10] , in which  the proof uses                     

             , and the integral version of  Minkowski  inequality. Note that the 

condition          
        implies                   and             . 

 (see [14]). Note also that           
        if                               , 

which holds e.g. for                        the cardinal B-spline of degree 

      , where              . We have as a consequence of Lemma (6.3.1): Let 

     be an LTI system with impulse  response      of type  (i) or (ii)  or (iii)  as above 

and               . Then for any                                           
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since      is a bounded linear operator from        into       or        and 

                     ,      . Let                    and         = 
 

  
          ,          .Then we have by (70) 

                                 
 

  
                                             

                                                                                                                                    

for any                           and        . Then by (71) and the 

isomorphism   from            onto      , the sampling expansion (69) is equivalent 

to 

                                                      
   

 

   

           

                  , where                           is a frame or a Riesz basis 

of           . This observation leads us to consider the problem when is 

                                           a frame or a Riesz basis of           ? Note  

                                                                                                           

                                   
                                         

 

  
         

where                      and                      
            for        . 

Let   be the unitary operator from           onto        , where         
  

 
  , 

defined by                   
  

 
  
   

 
                      We also let 

                          
  

                            
  

     
 

                           

       
 

  

 

   

                                                                  

largest eigenvalues of the positive semi-definite         matrix              , 

respectively. 

Lemma            Let                and                  be the 

essential infimum of        and the essential supremum of      ) respectively. Then 

                                            is 

(a) a Bessel sequence in            if and only if       or equivalently 

                                , 

(b) a frame of           if and only if               , 

(c) a Riesz basis of           if and only if                and 
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Proof : Since                                              is a Bessel sequence or a frame 

or a Riesz basis of            if and only if 

       
                                         

 

  
         

is a Bessel sequence or a frame or a Riesz basis of           respectively, all of the 

conclusions follow from [10]. Note that in [10], the authors use the Fourier transform 

                        
 

  
 so that they use            instead of           .  Assume 

that                so that 

                                                or equivalently 

       
                                         

 

  
         

is a frame of           . Then we can show easily (see [10]) that  

       
                                         

 

  
         

 has a dual frame of the form  

        
                            

 

  
         with  

      
                  for         and        

 

  
 

satisfying 

                    
  

                            
  

                                     

                                               
 

  
                                                    

where                                is the pseudo-inverse of  

                         
 

  

 

   

                                         

      
 

  

 

   

    
 

  

 

   

                                                     

          in (73), we have the canonical dual frame of the frame 

       
                                         

 

  
          

We are now ready to give the main results of this section. We first discuss the 

sampling expansion (69), which is a frame expansion in     . 
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Theorem          : Let    and    be the same as in Lemma (6.3.2). Assume 

     . Then the following are all equivalent. 

(a) There is a frame         
                          

 

  
         of       for 

which 

        

 

   

                                             

     

 

  

    

        

                                                                                                                                    

(b) There is a frame                           of       for which 

                                                

     

 

   

                                      

 (c)          

Proof: Assume        Then by Lemma (6.3.2) 

                                              is a Bessel sequence in           . First (a) 

implies (b) trivially. Assume (b). Applying the isomorphism      to (7) gives by (71) 

                                                 
     

         

 

  

  

                      

where                         is a frame of           . Then the Bessel sequence 

                                             is in fact a dual frame of                           

(see [3]). Hence (c) must hold by Lemma (6.3.2). Finally assume (c). Then  

               that         
                                         

 

  
         is 

a frame of           . Then we have a frame expansion on            

         

 

   

                
                                         

             

     

 
  

    

 

                                                                                                                                 

where              are given by (73). Then the sampling expansion (74) comes from 

(76) by applying the isomorphism   since 

             
                           

                                               
 

  
                         
                                                  

                                                                     

                      .  
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 Note that when              , the sampling series (74) converges not only in 

      but also uniformly on any subset of  , on which       is bounded.  

                                                                       
 

  

 

   

            

                                           
 

  

 

   

                                       

must be at least    the Nyquist sampling rate for signals in     . In the extreme case 

we have: 

Theorem            Let     and     be the same as in  Lemma (6.3.2). Then there 

is a Riesz basis           
                      

 

  
         of       for which 

        

 

   

   

     

 
  

    

                                            
  

                                                                                                                              

                                      
 

  

 

   

                               

 (i)       
                          

 

  
            

(ii)         
                                                    . 

Proof: Assume                and   
 

  

 
     . Then by Lemma (6.3.2), 

       
                                         

 

  
         is a Riesz basis of           . 

Then we have 

         

 

   

                
                                          

             

     

 
  

    

 

                                                                                                                                

where          
            

 
                 

 

  
         is the dual of 

       
                                         

 

  
        . Applying  the isomorphism 

  to (78) gives (9), where         
              

                    
              

                              

Conversely assume that the Riesz basis expansion (77) holds on      . Applying the 

isomorphism      to (77) gives 
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which is a Riesz basis expansion on           . Then   

       
                                         

 

  
         must be a Riesz basis of 

           so that                and   
 

  

 
      by Lemma (6.3.2). As the 

dual Riesz basis of         
                                         

 

  
        , 

                                       
 

  
         must be of the form 

        
            

 
                 

 

  
        , where   

        
                        

 

  
   satisfy  (73) with          . Hence 

         
              

                    
                          .Finally, we 

have 

             

 

   

          
                                   

     

 
  

    

 

so that         
                                When      , write     

               and       as     ,            and       

Corollary           : (see [12].) Let      . Then there is a Riesz basis 

               of       such that 

                                        

     

                                                    

if and only if       and 

                             
            

                                                                 

In this case, we also have 

(i)                       , 

(ii)          
     

       
 , 

(iii)                                                                                                                   

Proof : Note that for              
 

  
         

                       
 

  
 
 
          

  
so that            if and only if 

(80) holds. Therefore, everything except (81) follows from Theorem (6.3.4). Finally 

applying (79) to      gives 
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from which we have (81) by taking the Fourier transform. When             so that 

     is the identity operator, Corollary (6.3.5)  reduces to a  regular   shifted  sampling   

on       (see [14]). 

Corollary          : Let       and         be an integer. Assume 

          
       ,      , where         

 

 
      . Then the following 

are all equivalent. 

(a) There is a frame                of       for which 

                    
 

 
       

     

                

 (b) There is a frame                             of       for  which 

                               

     

 

   

               

(c)             
 
    

 
    . 

Proof : Since 

             
 

 
                                           

we have a shifted symmetric multi-channel sampling 

for   LTI systems                     with                        . Then 

          
 

  
                  and  

             
 

     
           

  
   . Hence        if and only if 

            
 
         . Therefore, Corollary (6.3.6) is a consequence of Theorem (6.3.3).  

Example           :                  be the Haar scaling function and 

                                               a B-spline of degree 1. Then       is 

 a continuous Riesz generator [4] and                            
 
            

First we  take                                            and two LTI systems 

      and       with impulse responses              
 
   
    and                

 
 
   . 

Then it’s easy to see that 

         
 

  
            

 

  
       

    

   

   
 

   
           

         
 

  
             

 

  
       

    

   

   
 

   
            

where                     Hence  
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 so that (see (72))                                           

                          
 
 

 

   
 
                

          

            
  

and             
 

      
 
                       
                     

     

The eigenvalues of             are 

 
 

      
                                  so that  

 

      
                                  

  

      
 . 

 Hence by Theorem (6.3.3), there is a frame                                   of 

the space of linear splines        for which the following asymmetric multi-channel 

sampling expansion holds: 

          
                                               

     

                                    

Which convergesin       and absolutely and uniformly on    . 

 We now take       and             so that      is the identity operator. Let 

        be an integer and        
 

 
. Note first that                         

                       
    

     

           

since       has compact support . Hence                    
    for each   in  . 

Since                        for                      
         

 

 
   

and             
  . Therefore, by Corollary (6.3.5), for any   with         

there is a  Riesz basis                   of       such that 

                      

    

                                   
 

 
   

On the other hand, by Corollary (6.3.6), for any      and any σ with        
 

 
  

, there is a frame                          such that 

               
 

 
                    

   

 

   

                 

Corollary            : Let                and                  be the 

essential infimum of        and the essential supremum of      ) respectively. Then 

             
                                               is 

(a) a Bessel sequence in            if and only if       or equivalently 

                                       , 

(b) a frame of           if and only if               , 
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(c) a Riesz basis of           if and only if                and 

 
       

            

 

    

    

Proof: Since              
                                               is a Bessel sequence or a 

frame or a Riesz basis of            if and only if 

                
                                                      

       
            

         

is a Bessel sequence or a frame or a Riesz basis of           respectively, all of the 

conclusions follow from [10]. Note that in [10], the authors use the Fourier transform 

                          
   

 
      

 

  
 so that they use            instead 

of           .  
Assume that                so that                

                                              or 

equivalently 

                
                                                      

       
            

         

is a series of frames of           . Then we can show easily (see in [10]) that  

                
                                                      

       
            

         

 has a series of dual frames of the form  

                
                                     

       

            
         with 

               
                  for      and             

       

            
 satisfying 

                 
  
       
       

                         
  
       
       

                                     

                      
       
  

                                                    

where                                is the pseudo-inverse of  

                               
       

            

 

    

                                  

                
       

            

 

    

    
       

            

 

    

                                       

we  choose           in (82), we have the canonical dual frame of the frame 

                
                                                     

       
            

           

Corollary             : Let    and    be the same as in Lemma (6.3.2). Assume 

     . Then the following are all equivalent. 

(a) There is series of a frames 
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of           
 
    for which 

      

 

   

                                                       

  

 

    

                                              

 

        

       
            

         

                                         

                                                                     

 

   

            

 

   

                      

(b) There is a series of frames                
 
                   of           

 
    

for which 

      

 

   

                                                   

 

        

 

    

   

                              

 

   

          

 

   

                                     

 (c)          
Proof : Assume        Then by Lemma (6.3.2) 

             
                                             is a Bessel sequence in           . First (a) 

implies (b) trivially.Assume (b). Applying the isomorphism      to (84) gives by (71)  

                                                             
     

              

      
            

         

   

                                        
where                 

 
                   is a frame of           . Then the 

Bessel sequence              
                                                 is in fact a dual 

frame of                 
 
                    (see [8]). Hence (c) must hold by 

Lemma (6.3.2). Finally assume (c). Then                that 

                  
                                                        

      

            
         is a frame 

of           . Then we have a series of frame expansions on            

       

 

    

                          
                                                                

  

     

      
            

       
  

 

                                                                                                                 
where                

       are given by (82). Then the sampling expansion (83) comes 

from (85) by applying the isomorphism   since 
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    .  

Corollary                Let     and     be the same as in  Lemma (6.3.2). Then 

there is a Riesz basis                   
        

 
   

 
                  

      

            
        

of           
 
    for which 

      

 

   

  

  

 

    

   

     

      
            

         

                                                   

 

   

                           
     

   

                                                     

 

   

           

 

   

                                         

                                   
      

            

 
    

             case, we also 

have 

(i)                 
              

 
   

 
      ,             

      

            
   and       

(ii)              
                                                             

                        . 

Proof : Assume                and   
      

            

 
    

  . Then by Lemma (6.3.2), 

                 
                                                       

      

            
         is a series 

of Riesz bases of           . Then we have  
 

       

 

    

                       
                                                              

                

     

      
            

       
  

 

                                                                                                                           

where                   
                

 
                   

      

            
        

is the dual of  

                
                                                         

      

            
        . Applying  

the isomorphism   to (87) gives (86), where  

                  
    

 

   

                                        
             

 

   

       

                               
                

    
 
    Conversely assume that the Riesz 

basis expansion (86) holds on          
 
   . Applying the isomorphism      to (86) 

gives 
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which is a series of Riesz bases expansions on           . Then  

                
                                                      

      

            
         must be a 

series of Riesz bases of            so that                and  

 
      

            

 
    

   by Lemma (6.3.2). As the series of dual Riesz bases of  

                
                                                      

      

            
         

                       
        

 
                      

      

            
        must be of the 

form                 
                 

 
                    

      

            
        , where  

                 
                           

      

            
   satisfy  (82) with         . 

Hence 

                   
    

 

   

                     
                  

                   
             

 

   

                         

Finally, we have 

 

           

 

   

                                                                                                           

  

 

    

                 
                                 

 

        

      
            

         

                         
                  

so that              
                                                              

When      , write               
 
                and         

 
   as     , 

       
 
                    and          

 
    

Corollary               (see [12].) Let      . Then there is a series of Riesz 

bases         
 
            of          

 
    such that 

      

 

   

                        

 

        

       

 

   

          

 

   

        

if and only if        and 
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In this case, we also have 

(i)        
 
               

 
          , 

(ii)          
     

       
   

(iii)                                                                                                                 

Proof :Note that for               
 

  
         and 

                    
 

  
 
 
          

  
so that             if and only if 

(89) holds. Therefore, everything except (90) follows from Theorem (6.3.4). Finally 

applying (88) to       
 
    gives 

      

 

   

                 

 

   

 

     

 

from which we have (90) by taking the Fourier transform.  

Corollary                Let       and         be an integer. Assume 

               
       ,         , where              

 

   
     . Then the 

following are all equivalent. 

(a) There is a series of frame         
 
            of          

 
    for which 

     

 

   

                
 

   
        

 

        

      

 

   

             

 

   

  

 (b) There is a series of frame                  
 
                     of  

         
 
    for       

      

 

   

                                     

     

   

    

 

 

   

      

 

   

            

 

   

  

 

                     

 

    

 

 

      

Proof : Since 

             
 

   
                                                  

we have a shifted symmetric multi-channel sampling for   LTI systems 

                           with                             . Then 

            
 

  
                        and 

          
 

     
                

    
    

. Hence        if and only if 

                 
   
    

      . Therefore, Corollary (6.3.13) is a consequence of 

Theorem (6.3.3).  

Corollary                Assume             
                ,then 

the following are all equivalent. 

(a) There is a series of frames         
 
            of          

 
    for which 
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 (b) There is a series of frames                  
 
                  of           

 
    for 

which 

      

 

   

                                

 

           

      

 

   

            

 

   

    

 

                  

 

    

 

 

      

Proof : Since 

                                         Now we have                      with 

                           . Then             
 

  
                and  

          
 

     
             

  
    

 . There for          if and only if  
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List of Symbols 

 

symbols  page 
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   Hilbert space  1 

   the Lebesgue space on line 1 

sup Supermum 2 

inf Infimum 2 

  Direc difference 2 

        Hilbert space 2 
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   Essential Lebesgue space 5 
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WKS Whittaker– Kotel’nikov –Shannon  12 

  Direct sum  13 

   Hilbert space 14 

max maximum  16 

min minimum  16 

det determinant  18 

   Lebesgue space 43 

   shift invariant space  43 

A-P approximation-projection  45 

ess essential 46 
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BUPU bounded uniform partition of unity 49 

op operator 52 

    Paley–Wiener space  71 

RKHS Reproducing kernel Hilbert space  71 

Lat lattice 98 
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Loc Local 170 
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