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Chapter 1 

Linear Elliptic Equations and New Hardy Inequalities  

We apply results then provide two applications of inequalities. We improve 
recent results by showing that the blow-up phenomena of the gradient can also 
occur in Hardy spaces. The Hardy inequalities for Sobolev–Zygmund spaces are 
obtained via an integral formula estimating the oscillation in a ball of radius 푟of a 
general function푢in the usual Sobolev space. We shall give a pointwise estimate 
for the solution 푢of linear equation −∆푢 = −div(퐹	)for a bounded function 퐹, 
using the distance function 훿.[1] 

Section (1.1): An Equivalence Relation Between The Growth of The 
Data and The Growth of The Solution 

The main motivation of this chapter comes from the study of the blow-up of the 
gradient of very weak solution of linear equation. We recall that  

⎩
⎪
⎨

⎪
⎧ there	is	a	unqiue	solution	푢 ∈ 퐿 (Ω)satisfying																																														

− 푢∆휑푑푥 = 푓휑푑푥 ,∀휑 ∈ 퐶 (Ω),휑 = 0	on	휕Ω,																																				

where	푓 ∈ 퐿 (Ω; 훿)with	훿(푥)is	the	distance	of	푥	to	the	boundary	of	Ω.

			(1) 

In particular, there exists a 푐 > 0:∫ |∆푢| 훿푑푥 ≤ 푐 ∫ |푓|훿푑푥. We recall below 
(see Proposition (1.1.6)) some known results in that sense, 

One of the main features of this chapter is to emphasize the role of the Hardy 
inequalities in the study of the Brezis’ problem. But at the same time, we give an 
alternative proof of the blow-up in 퐿(log 퐿) and we generalize this blow-up result 
by proving that it happens also in some weighted spaces or Hardy spaces. The 
techniques to obtain such results rely partly on some new Hardy inequalities and 
the following equivalence, for 푢 solution of(1), 푓 ≥ 0, 

푢
훿
∈ 퐿 (Ω)if	and	only	if 푓훿(1 + |log 훿|)푑푥 푖푠	 inite.																(2) 
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Here, Ω is a bounded open set of class 퐶 , . It is well known that the following 

Hardy inequality
( )

≤ 푐 |∇휐| ( ) holds for 휐 ∈ 푊 , (Ω), 1 < 푝 ≤ +∞ but 

not for 푝 = 1. Nevertheless, we know that the following Hardy inequality holds 
true: 

|휐|
훿
푑푥 ≤ 푐 |∇휐|∗∗(푡)푑푡

∗

= 푐|∇휐| ( )whenever	휐 ∈ 푊 퐿(log 퐿)						(3) 

with|∇휐|∗∗(푡) = ∫ |∇휐|∗(휎)푑휎 for 푡 > 0, |∇휐|∗ the decreasing monotone 

rearrangement of|∇휐|, and 푊 퐿(log 퐿) = 휑 ∈ 푊 , (Ω):∫ |∇휑|∗∗(푡)푑푡 <
∗

+∞ ,Ω∗ = (0, |Ω|) =means |Ω| (see next paragraph for more details). Therefore, 

we recover from (2) and (3),that is if 푓 ∉ 퐿 Ω; 훿(1 + |log 훿|) , 푓 ≥ 0, then the 
solution 푢 of(1) satisfies 

|∇푢|∗∗(푡)푑푡
∗

= +∞.																																														(4) 

Some of our results, in this chapter will generalize the Hardy inequality (3). 
Namely we shall prove in Theorem (1.2.1). 

If 훺 is an open bounded Lipschitzian set of ℝ , then there exists a constant 
푐 > 0 such that 

|휐(푥)|
훿푥

푑푥 ≤ 푐 |∇휐|(1 + |log 훿|)푑푥 ≡ 푐 |휐|,

∀휐 ∈ 푊 (Ω; 1 + |log δ|). 

Again from relation (2) and Theorem (1.2.1), we recover the result shown that 

|훻푢||log 훿|푑푥 = +∞,																																															(5) 

whenever 푢 is solution of (1) with 푓 ∉ 퐿 (훺; 훿(1 + | log 훿 |)), 푓 ≥ 0. 
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A more general Hardy inequality including (3) can be obtained using the Hardy 
space insteadof 퐿(log 퐿). More precisely, if we denote by ℋ (훺) the Hardy space, 
we can associate theSobolev space 

푊 ℋ (훺)the	closure	of퐶 (훺)in	 휑 ∈ 푊 , (Ω):
휕휑
휕푥

	∈ ℋ (훺), 푖	 = 1, . . . ,푁 : 

푊 ℋ (훺) = 퐶 (훺)‖⋅‖. 

For nonnegative functions we shall define 

푊 ℋ (훺) = 퐶 (훺)‖⋅‖. 

We shall prove here in Theorem (1.2.16) (Hardy inequality in Hardy space): 

Assume that 훺 is an open bounded set of class 퐶 . Then there exists a constant 
푐 > 0 suchthat 

∀휓 ∈ 푊 ℋ (훺),
휓
훿

(푥)푑푥 ≤ 푐
휕휓
휕푥 ℋ

. 

Note that if ∈ 퐿(log 퐿),휑 ∈ 푊 , (훺), then ∈ ℋ (훺). 

We will show that the blow-up result given in relation (4) is also true in ℋ (훺), 
that is to say: 

if 푓 ∉ 퐿 (Ω; 훿(1 + log 훿)),푓 ∈ 퐿 (훺; 훿), then the very weak solution of (1) 
satisfies 

휕푢
휕푥 ℋ ( )

= +∞.																																														(6) 

Since the dual of 퐿(log 퐿) is 퐿 , the above results lead us to reconsider the 
study of Hardyinequalities for Sobolev spaces in the “borderline” cases 

푊 퐿 (Ω) = 휐 ∈ 푊 , (Ω): |∇휐| ∈ 퐿 (Ω) ,			where	훼 > 0 
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퐿 (Ω) = 휐 ∈ 퐿 (Ω):∃휆(휐) = 휆 > 0	so	that 푒 | ( )| 푑푥 < +∞ . 

Indeed, we will show that three existsc > 0,∀휑 ∈ 푊 퐿 (Ω), one has 

|휑(푥)| ≤ 푐 훿(푥)(1 + |log 훿(푥)|) |∇휑| ( ).																											(7) 

The idea the proof relies on the observation that there is a link between the 
oscillation of 휑and (7) namely, we will show that there exists a constant 훾훺 > 0  
such that∀휑 ∈ 푊 퐿 (Ω),∀퐵(푥; 푟),ball of radius 푟 > 0 centered at 푥 ,contained 
in 훺 , one has 

osc
( , )

휑 ≤ 훾Ω(1 + |log 푟|) 푟|∇휑| ( ).																												(8) 

The proof of (8) relies on an integral formula related to the relative rearrangement 
of|∇휑|with respect to 휑. 

Let us mention that we will also prove a similar property for the solution 푢 ∈
퐻 (Ω), of(ℒ ) 

−∆푢 = −푑푖푣	(퐹),퐹 ∈ 퐿 (훺) . 

In particular,we willshow here in Theorem (1.2.12). 

If 훺 is an open bounded set of class 퐶 ,then the unique solution 푢 of (ℒ ) 
satisfies, there exists a constant 푐 > 0: 

|푢(푥)| ≤ 푐 |퐹| 훿(푥)(1 + |log 훿(푥)|),									∀푥 ∈ Ω. 

For a Lebesgue measurable set E of 훺 we denote by |퐸| its measure. 

The decreasing rearrangement of a measurable function 푢:훺 → ℝis given by 

푢∗:Ω∗ = ]0, |Ω[ → ℝ,					푢∗(푠) = inf{푡 ∈ ℝ: |푢 > 푡| ≤ 푠}, 

푢∗(0) = ess	sup푢 ,					푢∗(|Ω|) = ess	sup 푢. 

We shall use the following Lorentz spaces, for 1 < 푝 < +∞, 1 ≤ 푞 ≤ +∞ 
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퐿 , (Ω) = 휐:Ω → ℝ	measureable|휐| , = 푡 |휐|∗∗(푡)
푑푡
푡

< +∞
| |

, 

For푞 < +∞: 

퐿 , (Ω) = 휐:Ω → ℝ	measureable|휐| , = sup
| |
푡 |휐|∗∗(푡) < +∞ , 

휒  is the characteristic function of a set 퐸 ⊂ 훺 and|휐|∗∗(푡) = ∫ |휐|∗(푠)푑푠 for 
푡 ∈ Ω∗ = ]0, |Ω|[. 

We denote by 휕 = ,휕 = . We define the following sets 

 

푊 퐿 , (Ω) = 푊 Ω, |⋅| , = {휐 ∈ 푊 , (Ω): |∇휐| ∈ 퐿 , (Ω)}. 

We shall denote by 푐 various constants depending only on the data. 

The notation ≈ stands for equivalence of nonnegative quantities, that is 

Λ ≈ Λ 			⇔ 			 ∃푐 > 0, 푐 > 0			such	that푐 Λ ≤ Λ ≤ 푐 Λ . 

퐵(푥; 푟) will denote the ball of ℝ  centered at 푥 of radius 푟 > 0. 

퐶 (Ω) = {휑 ∈ 퐶 (Ω):휑	has	compact	support}
퐶 (Ω) = {휑 ∈ 퐶 (Ω),휑 ≥ 0}.																																 

For 훼 > 0, we set 

퐿 (Ω) = 휐:Ω → ℝ	measurable:	‖휐‖ = sup
| |

|휐|∗(푡)

1 + log | |
< +∞ , 

퐿(log L) = 휐:Ω → ℝ	measurable:	|휐| ( ) = |휐|∗∗(푡)푑푡
| |

< +∞ . 

We note that 퐿 (훺) = 퐿 (훺) and 퐿(log 퐿) are associate each other.  
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To define the Hardy spaces for 훺, we first recall the definition of ℋ (ℝ ) And 
BMO(ℝ ). 

We first begin with the definition ofℋ (ℝ ). we consider휃 ∈ 퐶 (ℝ )such 

that 휃(푥) = 0 for|푥| ≥ 1,∫ 휃푑푥ℝ = 1, |∇휃| ≤ 1. We set 휃 (푥) = 푡 휃  for 
푡 > 0. 

For 푓 ∈ 퐿 (ℝ ) we define 

푀 푓(푥) =

and 

ℋ (ℝ ) = {푓 ∈ 퐿 (ℝ ):푀 푓 ∈ 퐿 (ℝ )}. 

Property (1.1.1) [1]: 

(i) If 푓 ∈ 퐿 (ℝ ), 푞 > 1 or in 퐿(log 퐿)having compact support and 

∫ 푓(푥)ℝ 푑푥 = 0, then 푓 ∈ ℋ (ℝ ). Moreover, we have a constant 푐 > 0 
such that 푀 푓(푥) ≤ 푐푀푓(푥)for	푎. 푒. 푥,푀푓, is the usual Hardy–Littelwood 
maximal operator. 

(ii) There exists a constant 푐 > 0 such that, ∀푓 ∈ ℋ (ℝ ) 

|푓| ℝ ≤ 푐|푀 푓| ℝ . 

(iii) ℋ (ℝ )endowed with the norm |푓|ℋ = |푀 푓	|  is a Banach space. 

(iv) The set 휑 ∈ 퐶 (ℝ ):∫ 푓(푥)푑푥ℝ = 0  is dense in ℋ (ℝ ). 

We shall use the dual of ℋ (ℝ )called BMO(ℝ )(set of bounded mean 
oscillation functions)is defined as follows: 

Definition (1.1.2) [1]: (BMO(ℝ푵))  

For any cube 푄of ℝ and 푓 ∈ 퐿 (ℝ ), we denote by |푄|itsmeasure and 

푓 = 	
| |∫ 푓(푥)푑푥the average of 푓over 푄. We will say that 푓 ∈ 	BMO(ℝ )if 
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sup
⊂ℝ

1
|푄|

|푓(푥) − 푓푄|푑푥 < +∞. 

A function 푓 ∈ BMO(ℝ )is said to be in log VMO(ℝ )(vanishing mean oscillation 
with logarithmrate) if it is bounded and 

sup
⊂ℝ

|log|푄||
|푄|

|푓(푥) − 푓푄|푑푥 < +∞. 

Next we want to introduce the notion of ℋ (훺)as follows: 

 

Definition (1.1.3) [1]:(퓗ퟏ(휴)) 

Let Ωbe a bounded open set and ∆ (Ω) = 휑 ∈ 퐶 (Ω): ∫ 휑(푥)푑푥 = 0 . 

According to the above property, we can identify ∆ (훺)as a subspace ofℋ (ℝ ). 
We set for 휑 ∈ ∆ (훺) 

|휑|ℋ ( ) = 	 |휑|ℋ ℝ . 

Then we define 

ℋ (Ω) = ∆ (Ω)
|⋅|ℋ ℝ , the closure of ∆ (Ω)with respect to the above norm. 

For 휑 ∈ 퐶 (Ω) we have ∈ ℋ (Ω) for 푖 = 1, … ,푁. We denote by 

‖∇휑‖ℋ ( ) =
휕휑
휕푥 ℋ ( )

. 

and 

푊 ℋ (Ω) = 휑 ∈ 퐿 (Ω): for	푖 = 1, … ,푁,
휕휑
휕푥

∈ ℋ (Ω) . 

We endow it by the following norm 

‖|휑|‖ = ‖∇휑‖ℋ ( ) + |휑| ( )and퐶 (Ω) ⊂ 푊 ℋ (Ω). 
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We define 

푊 ℋ (Ω) = 퐶 (Ω)‖|⋅|‖,푊 ℋ (Ω) = 퐶 (Ω)‖|⋅|‖. 

Many properties can be developed for these spaces, we only state few of them 
which are necessary for our chapter.  

Proposition (1.1.4) [1]: 

(i) The embedding of 푊 ℋ (Ω) is continuous.  
(ii) The Poincaré —Sobolev inequality holds true on 푊 ℋ (Ω) that is there 

exists a constant 푐 > 0 such that for all 휓 ∈ 푊 ℋ (Ω) 

|휓| ( ) ≤ 푐‖∇휓‖ℋ ( ). 

Proof: 

Let 휓 ∈ 푊 ℋ (Ω). Then we have a sequence 휓 ∈ 퐶 (Ω) 

|휓 − 휓| + ‖∇(휓 − 휓)‖ℋ →
⎯⎯⎯ 0. 

But we have (see Property (1.1.1)) 

휕
휕푥

(휓 − 휓 ) ≤ 푐 푀
휕
휕푥

(휓 − 휓 ) , 

which shows that 

|∇(휓 − 휓)| ≤ 푐‖∇(휓 − 휓)‖ℋ . 

In particular휓 → 휓 in 푊 (Ω),and there exists 푐 > 0,∀휓 ∈ 푊 ℋ (Ω). 

|휓| ( ) ≤ 푐‖∇휓‖ℋ ( ), 

and 

‖|·|‖is	equivalent	to‖∇⋅‖ℋ . 

The following lemma due to Hajlasz implies relation (3). 

Lemma (1.1.5) [1]:  
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Let Ω be an open and bounded subset of ℝ . Supposethat there exists a constant 
푏 > 0 such that 

|퐵(푥, 푟) ∩ 훺 | ≥ 푏|퐵(푥, 푟)|for	every	푥 ∈ 휕훺, and	푟 > 0																							(9) 

(for instance if 휕훺 is 퐶 ). Then there exists a constant 푐 > 0 depending only on 푁 
and b suchthat the inequality 

|휐(푥)| ≤ 푐훿(푥)푀(|훻휐|)(푥)																																				(10) 

holds for all 휐 ∈ 퐶 (훺) and all 푥 ∈ Ω. 

Here, 푀(|∇푢|) is the maximal function of |∇푢|. 

Indeed, to obtain relation (3), we have a constant 푐 > 0 

푐 푀(|∇휐|)∗(푠) ≤ |∇푢|∗∗(푠), ∀푠 > 0,																																						(11) 

and from relations (10) and (11), we deduce relation (3), knowing from Donaldson 
Trudinger’sresult that 퐶 (Ω) is dense in the closed set 푊 퐿(log 퐿). 

We recall also the following results obtained previously for the very weak 
solution of (1): 

Proposition (1.1.6) [1]: 

Let Ω be an open bounded set of 퐶 , in ℝ , 푓 ∈ 퐿 (Ω,훿). Then there exists a 
constant 푐 > 0 such that for any solution u of (1), one has: 

(i) |∇푢| , ( , )
≤ 푐|푓	| ( ; ), |푢| , ( ) ≤ 푐|푓	| ( ; ),푁 ≥ 2. 

(ii) If 푓 ≥ 0, then 푢 ≥ 0. 
(iii) If 푓 ∈ 퐿 (훺; 	훿(1	 + 	 | log 훿 |)), then 

푢 ∈ 푊 , (훺)					and	|∇푢| ( ) ≤ 푐|푓| ( ; ( | |)). 
(iv) If 훺 is a ball, 푓 is radial or 푁 = 1 and 푓 ∈ 퐿 (]푎, 푏[= 훺, 훿), then 

푢 ∈ 푊 , (훺)						and				|훻푢| ( ) ≤ 푐|푓| ( ; ). 

Here 훿(푥) is the distance of 푥 ∈ 훺 to be boundary 휕훺. 
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Now we shall prove the equivalence relation (2) for the very weak solution (1) 
which shallmotive the next paragraph concerning Hardy inequalities. 

Let us consider u the very weak solution of (1). We then have 

Theorem (1.1.7) [1]:  

Let 훺 be an open bounded set of 퐶 , in ℝ . There exists a constant 푐 > 0 
depending only on 훺 such that for all 푓 ∈ 퐿 (훺, 훿(1 + | log 훿 |)),푓 ≥ 0, and every 
weak solution푢 of (1), one has 

푢
훿
푑푥 ≤ 푐 푓(1 + | log 훿 |)훿푑푥 , 

and 

푓훿| log 훿 |푑푥 ≤ 푐 푓훿	푑푥 +
푢
훿
푑푥 . 

 

Proof: 

Since the set {휑 ∈ 퐶 (훺):휑 = 0	on	휕훺} is dense in 푋 (훺) = 푊 , (훺) ∩
푊 , (훺) for any 푝 > 1, we can easily replace the set of test functions by 
푋 (훺),푝 > 푁 (fixed). 

Consider 휑 ∈ 푋 (훺), the first eigenfunction of the operator −∆ say −∆휑 =
휆 휑 , 휆 > 0. 

We know that there exist 푐 > 0, 푐 > 0: 

푐 훿 ≤ 휑 ≤ 푐 훿.																																																	(12) 

For 0 < 휀 < let 휑 = 휑 log(휑 + 휀). Then 휑 ∈ 퐶 (훺),휑 = 0 on 휕훺. 
Therefore, one can useit as a test function 
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																											− 푓휑 log(휑 + 휀)푑푥

= 푢∆(휑 log(휑 + 휀))푑푥 .															(13) 

Developing the Laplacian term, one has 

∆(휑 log(휑 + 휀))

= ∆휑 log(휑 + 휀) +
휑

휑 + 휀
+ |∇휑 |

1
휑 + 휀

+
휀

(휑 + 휀)
. (14) 

Since −∆휑 = 휆 휑  and 푐 = Max |∇휑 | < +∞, we derive from relations 
(13) and (14). 

푓휑 log(휑 + 휀)푑푥

≤ +휆 푢휑 log(휑 + 휀)푑푥 + 휆
휑 푢
휑 + 휀

푑푥

+ 푐 푢
1

휑 + 휀

+
휀

(휑 + 휀)
푑푥.																																																							(15) 

We estimate each term of relation (15) as follows 

푐 푢
1

휑 + 휀
+

휀
(휑 + 휀)

푑푥 ≤ 푐
푢
훿
푑푥,																													(16) 

휆
휑 푢
휑 + 휀

푑푥 ≤ 푐
푢
훿
푑푥,																																					(17) 
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휆 푢|휑 log(휑 + 휀)|푑푥 ≤ 푐
푢
훿
푑푥.																													(18) 

Therefore, we have 

푓휑 log(휑 + 휀)푑푥 ≤ 푐
푢
훿
푑푥.																															(19) 

Next, we write 

푓휑 |log(휑 + 휀)|푑푥

= − 푓휑 log(휑 + 휀)푑푥

+ 2 푓휑 log(휑 + 휀)
{ }

푑푥.							(20) 

For 0 < 휀 < , we have 

																																			2 푓	휑 log(휑 + 휀)
{ }

푑푥

≤ 푐 푓훿 푑푥.																						(21) 

So, from (19) to (21), we have 

푓휑 |log(휑 + 휀)|푑푥 ≤ 푐
푢
훿
푑푥 + 푓훿 푑푥 .																									(22) 
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From which we derive the second statement, letting 휀 → 0. While for the first 
statement, we userelations (13) and (14) to have 

푢|훻휑 |
휑 + 휀

1 +
휀

휑 + 휀
푑푥

= 휆 푢휑 log(휑 + 휀) +
휑

휑 + 휀
푑푥

− 푓휑 푙표푔(휑 + 	휀)푑푥.																																																																							(23) 

From which we derive 

푢|훻휑 |
휑 + 휀

푑푥 ≤ 푐 푢푑푥 + 푐 푓	휑 |log(휑 + 휀)|푑푥.																(24) 

Using Proposition (1.1.4) and relation (12) 

푢|훻휑 |
휑 + 휀

푑푥	 ≤ 푐 푓(1 + | log 훿 |)훿 	푑푥.																			(25) 

We can define Hopf’s maximum principle: (Let 푢 = 푢(푥), 푥 = (푥 , … ,푥 ), be a 푐  
function which satisfies the differential inequality 

퐿푢 = 푎 (푥)
,

휕 푢 + 푏 (푥) 휕 푢 ≥ 0 

in a domain Ω. Suppose the (symmetric) matrix 푎 = 푎 (푥)  is locally 
uniformly positive in Ω (that is, for any given compact subset Ω  of Ω, the 
quadratic from 

푎 (푥) 푛 푛  
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is positive and uniformly bounded from 0 for all 푥 in Ω  and all vectors 푛 in ℝ  
with |푛| = 1), and the coefficients 푎 , 푏 = 푏 (푥) are locally bounded in Ω. 

If 푢 takes a maximum value 푀 in Ω, then 푢 ≡ 푀 in Ω.) [5] 

By the Hopf maximum, we deduce that there exists a neighbourhood of boundary 
denoted by훺 ⊂ 훺 such that min ∈ |훻휑 | (푥) > 0. 

Thus, 

푢
훿
푑푥	 ≤ 푐 푓(1 + | log 훿 |)훿 	푑푥,																											(26) 

using relation (25). While on 훺\훺 , inf \ 훿(푥) > 0 and then 

푢
훿

\

푑푥 ≤ 푐 푢 푑푥 ≤ 푐 푓훿 푑푥.																														(27) 

From the two last relations, we have 

푢
훿
푑푥 ≤ 푐 푓(1 + | log 훿 |)훿 푑푥.																																(28) 

As a corollary of the above theorem, we can deduce the same equivalence 
replacing the operator −∆by a general operator, say let us consider 

퐿 = − 휕 푎 (푥)휕 휑
,

+ 푏 (푥)휕 휑 + 푐 (푥)휑, 

under the same assumption say 푎 ∈ 퐶 , (훺),푏 ∈ 퐶 , (훺), 푐 ∈ 퐿 (훺), 푐 ≥
0,∃휈 > 0 such that ∀휉 = (휉 , . . . , 휉 ) ∈ ℝ  

푎 , (푥)휉 휉
,

≥ 휈 |휉| , 
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푐 (푥) − ∑ 휕 푏 (푥) ≥ 0 a.e. in 훺. We denote by 퐿∗its adjoint. 

Corollary (1.1.8) [1]:  

Let 푓 ≥ 0, 푓 ∈ 퐿 (훺; 훿) and 푤 be the very weak solution of 

퐿푤 = 푓	in	훺, 푤 = 0	on	휕훺 

in the sense of 

푤퐿∗휑푑푥 = 푓휑 푑푥,																																											(29) 

∀휑 ∈ 푋 (훺) = 푊 , (훺) ∩푊 , (훺), 푝 > 푁. 

If 푓 ∈ 퐿 (훺; 	훿(1 + | log 훿 |)), then 

푤
훿
푑푥 ≤ 푐 푓(1 + | log 훿 |)훿 푑푥, 

and 

푓훿|log 훿|푑푥 ≤ 푐 푓휑 	푑푥 +
푤
훿
푑푥 . 

Proof: 

Let us denote by 퐺 ∆the Green function associated to −∆ with the Dirichlet 
boundarycondition and by 퐺  the one associated to 퐿 with the Dirichlet boundary 
condition. 

One has 퐺 ∗(푦, 푥) = 퐺 (푥, 푦),∀(푥, 푦) ∈ 훺,푥 ≠ 푦. According to Stampacchia’s 
result one has two constants 

푐 > 0, 푐 > 0,∀(푥,푦) ∈ 훺 × 훺\{(푥, 푥),푥 ∈ 훺},
푐 퐺 ∆(푥,푦) ≤ 퐺 (푥,푦) ≤ 푐 퐺 ∆(푥, 푦). 																						(30) 

Therefore, we have 푐 푢(푥) ≤ 푤(푥)푐 푢(푥), a.e. 푥 ∈ 훺, where 
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											푢(푥)

= 퐺 ∆ (푥,푦)푓(푦)푑푦	is	the	very	weak	solution	of	(1)																		(31) 

and 

푤(푥) = 퐺 (푥, 푦)푓(푦)푑푦 is	the	very	weak	solution	of	(29). 

Therefore, from relation (31), we derive 

푐
푢
훿
푑푥 ≤

푤
훿
푑푥 ≤ 푐

푢
훿
푑푥.																																			(32) 

From relation (32) and Theorem (1.1.7) we get the result.  

A first consequence of the above Theorem (1.1.7) and its Corollary (1.1.8) is 
that we recover the blowup result. 

Theorem (1.1.9) [1] : 

Let 푢 be the very weak solution of (1) with 푓 ≥ 0, 푓 ∈ 퐿 (훺,훿). If 푓 ∉
퐿 (훺; 훿(1 + 	 | log 훿 |)), then 

|훻푢|∗∗(푡)
∗

푑푡 = +∞. 

Proof: 

If∫ |훻푢|∗∗(푡)∗
푑푡 < +∞, then 푢 ∈ 푊 , (훺). Applying a density argument, 푢 

satisfies:∀휑 ∈ 퐶 (훺) with 휑 = 0 on 휕훺 

훻푢 · 훻휑 푑푥 = 푓휑 푑푥 
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Integrating by parts this last relation leads to∫ 훾 푢 푑훤 = 0. Since 푓 ≥ 0 

then 훾 푢 ≥ 0,choosing 휑 such that > 0, we deduce that 

훾 푢 = 0	on	휕훺,			푢 ∈ 푊 , (훺), 

where 훾  denotes the trace operator and is the normal trace of 휑. 

Therefore, one has 

푢 ∈ 푊 퐿(log 퐿) = 휑 ∈ 푊 , (훺), |훻휙|∗∗(푡)
∗

푑푡 < +∞ . 

By using the result of Donaldson Trudinger, we know that the closure of 퐶 (훺) 

with respectto the norm ‖휑‖ = ∫ |훻휙|∗∗(푡)푑푡
∗

= |훻휑| ( )is 푊 (퐿(log 퐿)). 

Therefore, using relation (3)(consequence of Lemma (1.1.5)), we have 

0 ≤
푢
훿
푑푥 ≤ 푐 |훻푢| ( ) < +∞. 

But Theorem (1.1.7) implies∫ 푑푥 = +∞ with is a contradiction.  

We have shown also that if 푓 ∉ 퐿 (훺, 훿(1 + | log 훿 |)), 푓 ≥ 0, then the very 

weak solution 푢 of (1) satisfies∫ |훻푢|| log 훿 |푑푥 = +∞. We can recover such 
result using the sameargument as in Theorem (1.1.9) provided that we show the 
Hardy inequality given in Theorem (1.2.1). Asfar as we know such inequality has 
not been proved yet. Moreover, we can show that Theorem (1.2.1) yields relation 
(3). 

  



18 
 

Section (1.2): Non-Standard SobolevSpaces and Hardy Inequalities 

We shall consider the following norm on 퐶 , (훺) (set of Lipschitz functions 
having compactsupport) 

‖휐‖ = |훻휐|(1 + | log 훿 |)(푥) 	푑푥 

and we define the following Sobolev space 푊 (훺; 1 + | log 훿 |) = 푊 , ‖⋅‖ as the 
closure of푊 , (훺) = {휐 ∈ 푊 , (훺)	with	compact	support}, with respect to  ‖·‖ . 

We note that ‖휐‖is equivalent to∫ |훻휐|| log 훿 | 푑푥 and for 푝 > 1 

푊 , (훺) ⊂ 푊 (훺; 퐿 log 퐿) ⊂ 푊 (훺; 1 + | log 훿 |), 

where ⊂  stands for continuous embedding. 

One has 

Theorem (1.2.1) [1]: 

Assume that 훺 is an open bounded Lipschitzian set of ℝ . Then there exists a 
constant 푐 > 0 such that 

|휐(푥)|
훿(푥)

푑푥 ≤ 푐 |훻휐|(1 + | log 훿 |)푑푥 ≡ 푐 ‖휐‖,			∀휐 ∈ 푊 (훺; 1 + | log 훿 |). 

Proof: 

Since the boundary 휕훺 Lipschitzian, we can decompose 훺 as 훺 = 훺 ∪
	(∪ 훺 ), with dist(훺 , 휕훺) > 0 and (훺 ) are a covering ofthe boundary. 

Furthermore, there exist an open set 풪 ⊂ ℝ , a number 0 < 훽 < 1, a system 
of coordinates(푥 , . . . ,푥 ) for 푖 = 1, . . . ,푚 and a family of Lipschitz functions 
푎 :풪 	→ ℝ such that for anypoint 푥 ∈ 휕훺 ∩ 휕훺  can be written as 푥 = (푥 , 푎 (푥 )) 
and 

훺 = {푥 = (푥 , 푥 )with푥 ∈ 풪 ,			푎 (푥 ) < 푥 < 푎 (푥 ) + 훽}. 
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For 푥 ∈ 훺 , the distance 훿(푥) to the boundary is equivalent to 푥 − 푎 (푥 ).Let 
휐 ∈ 푊 , (훺), for 푖 = 1, . . . ,푚, 휐 ≥ 0, one has 

휐(푥)
훿(푥)

푑푥 ≤ 푐 푑푥
풪

휐(푥)
휕

휕푥
log 푥 − 푎 (푥 ) 푑푥 .										(33) 

Integrating by part this last relation, we have 

휐(푥)
휕

휕푥
log 푥 − 푎 (푥 ) 푑푥  

= −
휕휐
휕푥

(푥) log 푥 − 푎 (푥 ) 푑푥 + 휐(푥 , 푎 (푥 ) + 훽) log훽 

						≤ −
휕휐
휕푥

(푥) log 푥 − 푎 (푥 ) 푑푥 																																																				(34) 

(since 휐 ≥ 0, log훽 < 0). 

From relations (33) and (34), we derive 

휐(푥)
훿(푥)푑푥 ≤ 푐

휕휐
휕푥

(푥)(1 + |log 훿(푥)|)푑푥
풪

.											(35) 

From relation (35), we derive 

휐(푥)
훿(푥)푑푥 ≤ 푐 |∇휐|(푥) (1 + |log 훿(푥)|)푑푥.																										(36) 

For a signed 휐 ∈ 푊 , (훺), one has |휐| ∈ 푊 , (훺) and then relation (36) holds true 
since 
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|훻휐(푥)| = |∇|휐(푥)‖a. e. 

Since 푊 , (훺) is dense in 푊 (훺, 1 + | log 훿 |) we derive the result.  

Corollary (1.2.2) [1]: 

This is a Corollary of Theorem (1.2.1). Under the same assumption as for 
Theorem (1.2.1), there exists a constant 푐 > 0 such that 

|휐(푥)|
훿(푥)

푑푥 ≤ 푐 |훻휐|∗∗(푡)푑푡
∗

 

∀휐 ∈ 푊 (훺; 퐿(log 퐿)). 

Proof: 

If 휐 ∈ 푊 (훺; 퐿(log 퐿 |)), we have 

|훻휐|(1 + |log 훿|)푑푥 ≤ ‖훻휐‖ ( |)‖1 + | log 훿 |‖ ( ) , 

and 1 + | log 훿 | ∈ 퐿 (훺), we deduce the result.  

One of the purpose of this paragraph is to show the relations (7) and (8). To do 
this, we recallthe following results and definition: 

Definition (1.2.3) [1]: 

Let 푢 ∈ 퐿 (훺), 휐 ∈ 퐿 (훺). Then the quotient( )∗ ∗converges as 휆 → 0 to a 
function denoted by 휐∗  in 퐿 -weak (that is for 휎	(퐿 ; 퐿 )-topology). Moreover, if 
퐿(훺,휌) is a Banach function space, with the norm ρ being rearrangement invariant, 
forsimplicity, we write 

휌(휐∗) = 휌(휐), 

then 

																																							휌(휐∗ ) ≤ 휌(푣)whenever	휐 ∈ 퐿(훺;휌)																																	(37) 
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휐∗  is called the relative rearrangement of 휐 with respect to 푢. 

Theorem (1.2.4) [1]: 

Let 푢 ∈ 푊 , (훺),푢 = 푢| ( , ), the restriction of 푢 to 퐵(푥, 푟) ⊂ 훺. Then 

osc
( , )

푢 ≤	
훼
훼

푠 (|훻푢|∗ )∗(푠)푑푠, 

where 훼  denotes the measure of the unit ball in ℝ , |훻푢|∗  is the relative 
rearrangement of|훻푢| with respect to 푢, 

osc
( , )

푢 = ess	sup
( , )

푢 − ess	inf
( , )

푢. 

We recall the following Zygmund spaces for 훼 > 0 

퐿 (Ω) = 휐:Ω → ℝ	measurable‖휐‖ ( ) = sup
| |

|휐|∗(푡)

1 + log | |
< +∞ , 

푊 퐿 (Ω) = 휐 ∈ 푊 , (Ω): |∇휐| ∈ 퐿 (Ω) , 

푊 퐿 (Ω) = 푊 , (Ω) ∩푊 퐿 (Ω). 

Theorem (1.2.5) [1]: 

Let 훺 be an open bounded set of ℝ , 푟 > 0,푥 ∈ 훺 such that 퐵(푥; 푟) ⊂ 훺,푢 ∈
푊 퐿 (훺). Then 

osc
( , )

푢 ≤ 	
훼
훼

푒 푁 |Ω| Γ 훼 + 1;휔 (푟) ‖∇푢‖ ( ) 

where 훤(푎; 푥) = ∫ 푒 푡 푑푡, 

휔 (푟) =
1
푁

1 − log
훼
|훺|

푟 . 

Proof: 
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One has 

푡 (|∇푢|∗ )(푡)
푑푡
푡
≤ 푡 |∇푢|∗(푡)

푑푡
푡
																									(38) 

We then have from Theorem (1.2.4) 

osc
( , )

푢 ≤	
훼
훼

‖∇푢‖ 푡 1 + log
|Ω|
푡

푑푡
푡

. 

By usual change of variables one has 

푡 1 + log
|Ω|
푡

푑푡
푡

= 푒 푁 |Ω| 푒 푡 푑푡
( )

, 

with 휔 (푟) as in the theorem. This ends the proof.  

Corollary (1.2.6) [1]: 

Under the same assumptions as for Theorem (1.2.5), one has for all푢 ∈
푊 퐿 (훺),퐵(푥, 푟) ⊂ 훺 

osc
( , )

푢 ≤	 푐 (훼; |Ω|)푟(1 + |log 푟|) ‖∇푢‖ ( ). 

Proof: 

By the asymptotic expansion of 훤(푎; 푥) 

훤	(푎; 	푥) 푒 푥→
~					 . 

Therefore, 

																																								훤(훼 + 1;휔 (푟)) 푒 ( )휔 (푟)→
~			 .																																			(39) 

Using Theorem (1.2.6), with relation (39) we deduce the result.  

Corollary (1.2.7) [1]: 
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This is another Corollary of Theorem (1.2.5). Under the same assumption as for 
Theorem (1.2.5), one has for 푢 ∈ 푊 퐿 (훺) and for all 푥 ∈ 훺 

|푢(푥)| ≤ 푐 (훺)훿(푥)(1 + |log 훿 (푥)|) ‖훻푢‖ , 

where 푐 (훺) is constant depending only on 푁 and 훺. 

Proof: 

Let 훺 be an open bounded set such that ∀푥 ∈ 훺,퐵(푥; diam(훺)) ⊂ 훺, where 
diam(훺)is the diameter of 훺. For 푢 ∈ 푊 퐿 (훺), we consider 푢 its extension by 
zero, we have 푢 ∈ 푊 퐿 (훺)  and according to Corollary (1.2.6) of Theorem 
(1.2.5), ∀푥 ∈ 훺 

osc
( , )

푢 ≤ 	 푐 훼, Ω 푟(1 + |log 푟|) ‖훻푢‖ . 

Since 퐵(푥, 훿(푥)) ⊂ 훺, 훿(푥) = dist(푥; 	휕훺) for 푥 ∈ 훺, we deduce 

osc
, ( )

푢 ≤ 	 푐 (Ω)훿(푥)(1 + |log 훿(푥)|) ‖훻푢‖ . 

Thus 

|푢(푥)| ≤ osc
, ( )

푢 ≤ 	 푐 (Ω)훿(푥)(1 + |log 훿(푥)|) ‖훻푢‖ . 

We shall provethat this behavior similar to Corollaries (1.2.6) and (1.2.7) can be 
obtained for 

(ℒ )
−∆푢 = −div(퐹),
푢 ∈ 퐻 (Ω),
퐹 ∈ 퐿 (Ω)

 

under the assumption that 훺 is of class 퐶 .  

Now we can define the Lax–Milgram theorem (Let 퐻 be a Hilbert space and 푉 a 
normed space. Let 퐵:퐻 × 푉 → 푅 be a continuous, bilinear function. Then the 
following are equivalent: 

(i) (coercivity) for some constant 푐 > 0, 
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inf
‖ ‖

sup
‖ ‖

|퐵(ℎ, 푣)| ≥ 푐; 

(ii) (existence of a "weak inverse") for each continuous linear functional 
푓 ∈ 푉∗, there is an element ℎ ∈ 퐻 such that 퐵(ℎ, 푣) = 〈푓, 푣〉 for all 
푣 ∈ 푉.) [6] 

Note that from Lax–Milgram theorem the problem(ℒ ) has a unique solution. 

To obtain the local behavior, we shall give a direct proof of the following 
theorem: 

Theorem (1.2.8) [1]:  

Let u be the unique solution of (ℒ ). Then there exists a constant푐  depending 
only on N and Ω such that for all 푥 ∈ 훺, all 푟 > 0 with 퐵(푥, 5푟) ⊂ 훺 

osc
( ; )

푢 ≤ 푐 |퐹| 푟(1 + | log 푟 |). 

Proof: 

We first assume that 퐹 ∈ 퐶 (훺) . Let 푥 ∈ 훺, 푟 > 0 such that 퐵(푥; 5푟) ⊂ 훺 
(we settemporarily 퐵(5푟) = 퐵(푥; 5푟)). 

Let 푥 ∈ 퐵(푥; 푟), 푗 = 1,2 such that 푢(푥 ) = sup ( ; ) 푢, 푢(푥 ) = inf ( ; ) 푢. 
Using the Greenrepresentation of the solution 푢, one has 

																		푢(푥 ) − 푢(푥 )

= 훻 퐺(푥 ,푦) − 훻 퐺(푥 , 푦) · 퐹(푦)푑푦.																					(40) 

Thus, we derive from relation (40) that 

																																				0 ≤ 푢(푥 ) − 푢(푥 ) ≤ |퐹| (퐼 + 퐼 ),																																							(41) 

where 퐼 = ∫ |훻 퐺(푥 ;푦) − 훻 퐺(푥;푦)|푑푦, 푗 = 1,2. 

We spilt each 퐼  as follows 
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퐼 = 퐼 + 퐼 , 퐼 = 훻 퐺(푥 ;푦) − 훻 퐺(푥, 푦)
( )

푑푦.																					(42) 

By the mean value theorem, one has 

퐼 = 훻 퐺(푥 ;푦) − 훻 퐺(푥;푦)
\ ( )

푑푦

≤ |푥 − 푥 | 훻 퐺 푥 + 푡 푥 − 푥 ;푦
\ ( )

푑푡푑푦.																								(43) 

Let us set 푥 (푡) = 푥 + 푡(푥 − 푥). Then it is known that 

훻 퐺 푥 	(푡);푦 ≤ 푐 (훺) 푥 (푡) − 푦 .																										(44) 

For 푦 ∈ 훺\퐵(5푟), we have 

푥 (푡) − 푦 ≥ |푥 − 푦| − 푥 − 푥 (푡) ,																																	(45) 

and 

푥 − 푥 (푡) ≤ 푥 − 푥 ≤ 푟 ≤
1
5

|푥 − 푦|. 

Therefore, one has 

푥 (푡) − 푦 ≥ |푥 − 푦| −
1
5

|푥 − 푦| =
4
5

|푥 − 푦|.																							(46) 

From (43) to (46), then we have 

퐼 ≤ 푐 (훺) 푥 − 푥 |푥 − 푦|
\ ( )

푑푦.																															(47) 

Since 
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|푥 − 푦| 푑푦 ≤ 푐
\ ( )

푡 푡 푑푡

( )

≤ 푐 (1 + | log 푟 |).												(48) 

From (47) and (48) we deduce 

퐼 ≤ 푐 푟(1 + | log 푟 |).																																												(49) 

While for the term 퐼 , we bound it as follows 

퐼 ≤ 훻 퐺(푥, 푦) 푑푦
( )

+ 훻 퐺(푥 ;푦) 푑푦
( )

.																												(50) 

Since퐵(5푟) ⊂ 퐵(푥푗; 5푟 + |푥 − 푥푗|) ≐ 퐵푗, and |훻 퐺(푥, 푦)|푐 |푥 − 푦| , we 
obtain fromrelation (50) 

퐼 ≤ 푐 |푥 − 푦| 푑푦
( )

+ 푐 |푥 − 푦| 푑푦

≤ 푐 푡 푡 푑푡 + 푐 푑푡

| |

, 퐼 ≤ 푐 푟

≤ 푐 푟(1 + | log 푟 |).																																																																																(51) 

Combining relations (41), (42), (49) and (51), we derive 

																0 ≤ 푢(푥 ) − 푢(푥 ) = osc
( ; )

푢 ≤ 푐 (훺)|퐹| 푟(1 + |log 푟|).																	(52) 

If 퐹 ∈ 퐿 (훺) , we consider 퐹 ∈ 퐶 (훺)  such that |퐹 | ≤ |퐹|  and 퐹 (푥)

→
⎯⎯⎯ 퐹(푥)a.e. Then the solution 푢 ∈ 퐻 (훺) if −∆푢 = −div(퐹 ) is such that 

|훻푢 | ≤ 푐 |퐹 |  for any 푝 < +∞. 

Therefore 푢  converges uniformly to 푢 solution of (ℒ ). Since relation (52) 
holds for 푢 , wecan pass easily to the limit to conclude.  
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Arguing as in the preceding proof, the boundary growth of the solution can be 
obtained provided that 휕훺 satisfies for instance the regularity property given in 
relation (9) which is the caseif 휕훺 ∈ 퐶 . Then we have 

Theorem (1.2.9) [1]:  

If 훺 is a bounded open set of class 퐶 then there exists aconstant 푐 > 0 such 
that ∀푥̅ ∈ 휕훺, one has 푟(푥̅) > 0 such that ∀푟 < 푟(푥̅),∀푥 ∈ 퐵(푥̅; 푟) ∩ 훺. 

|푢(푥)| ≤ 푐 |퐹| 푟(1 + | log 푟 |), 

where 푢 is the solution of (ℒ ). 

The proof of this Theorem (1.2.9) as for the next one is similar to the one given 
for Theorem (1.1.8), wesketch only the proof of Theorem (1.2.10). 

The above proof leads to the following behavior of 푢 with respect to the 
distance function. 

Theorem (1.2.10) [1]: 

Assume that 훺 is an open bounded set of class 퐶 . Then the unique solution 푢 
of(ℒ ) satisfies, there exists a constant 푐 > 0: 

|푢(푥)| ≤ 푐 |퐹| 훿(푥)(1 + |log 훿 (푥)|), ∀푥 ∈ 훺. 

Proof: 

Let 푥 ∈ 훺 and 푥̅ ∈ 휕훺 such that |푥 − 푥̅| = 훿(푥). Thus, the segment ]푥̅,푥] is 

containedin 훺. We consider 푟 = ( ) ,퐾(2푟) = 퐵(푥, 훿(푥)) ∩ 훺. Then for 퐹 ∈
퐶 (훺)  

푢(푥) = 훻 퐺(푥;푦) − 훻 퐺(푥̅, 푦) 퐹(푦)
\ ( )

푑푦

+ 훻 퐺(푥;푦) − 훻 퐺(푥̅;푦)
( )

퐹(푦)푑푦 

≤ |퐹| (퐼 + 퐼 ) 
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we have 

|퐼 | ≤ 푐 |푥 − 푥̅| |푥(푡) − 푦|
\ ( )

with			푥(푡) = 푥 + 푡(푥̅ − 푥),										(53) 

and |푥(푡) − 푦| ≥ |푥 − 푦| arguing as in the proof of Theorem (1.2.8). Thus, 
relation (53) implies 

|퐼 | ≤ 푐 훿(푥) |푥 − 푦| 푑푦
\ ( )

≤ 푐 훿(푥)
푑푡
푡

( )

( )

≤ 푐 훿(푥)(1 + |log 훿 (푥)|).																																																																			(54) 

While for 퐼 , one has 

|퐼 | ≤ 푐 |푥 − 푦| 푑푦
; ( )

+ 푐 |푥̅ − 푦| 푑푦
( ̅; ( ) | ̅|)

≤ 푐훿(푥).										(55) 

Thus, from (53) to (55), 

|푢(푥)| ≤ 푐 |퐹| 훿(푥)(1 + |log 훿 (푥)|).																																		(56) 

Thanks to the above theorem, we can weaken the regularity assumption for the 
domain Ω,supposed to be of class 퐶 , , to obtain the existence of a very weak 
solution when 푓 ∈ 퐿 (훺; 훿(1 + | log 훿 |)). 

Corollary (1.2.11) [1]: 

Let 푓 ∈ 퐿 (훺; 훿(1 + | log 훿 |)) with 훺 being an open bounded setof class 퐶 . 
Then there exists a unique solution 푢 ∈ 푊 , (훺) such that 

훻푢훻휑푑푥 = 푓휑푑푥, 

∀휑 ∈ 퐶 (훺) with 휑 = 0on훿훺. 

Proof: 
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Let 푓 = min(|푓|; 푘) sign(푓) and 푢 ∈ 퐻 (훺) such that 

훻푢 훻휑푑푥 = 푓 휑푑푥 , ∀휑 ∈ 퐻 (훺).																												(57) 

Setting 

퐹 (푥) =
훻푢

|훻푢 	|
if	훻푢 ≠ 0,

0 otherwise,
 

from Lax–Milgram theorem and regularity result we have a unique 휑  satisfying 

휑 ∈ 푊 , (훺)
	

, 훻휑 훻휑푑푥 = 퐹 훻휑푑푥 , ∀휑 ∈ 퐻 (훺).											(58) 

Then, taking 휑  as the test function in (57), we have 

푓 휑 푑푥 = 훻푢 훻휑 푑푥 = |훻푢 |푑푥 .																															(59) 

Using Theorem (1.2.10), we have 

|훻푢 |푑푥 ≤ 푐 푓 훿(1 + | log 훿 |)푑푥 |퐹 |

≤ 푐 |푓 |훿(1

+ | log 훿 |)푑푥 .																																																															(60) 

By linearity, we conclude that (푢 ) is a Cauchy sequence in 푊 , (훺). Thus, we 
have a solution 푢and it is the very weak solution (1). 

As we stipulate in the introduction, we can improve Hardy inequality (3) by 
replacing퐿(log 퐿) by ℋ (훺). 
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Lemma (1.2.12) [1]: 

Assume that 훺 is a bounded open set of class 퐶 . Then 

log 훿 ∈ BMO(ℝ ). 

Proof: 

The function 훿 belongs to the Muckhenouptclass 퐴  for all 푝 > 2. Moreover, 
there exists a constant 푐(훺, 푝) such that 

1
|푄|

훿(푥)푑푥
1

|푄|
훿(푥) 푑푥 ≤ 푐(훺, 푝)	for	any	cube	푄	inℝ .		(61) 

But it is well known that the above estimate implies log δ belongs to the BMO set 
say 

1
|푄|

log 훿 − (log 훿) 푑푥 ≤ log 푐(훺, 푝),																													(62) 

where (log 훿) = | |∫ (log 훿)푑푥. 

Corollary (1.2.13) [1]: 

This is a Corollary of Lemma (1.2.12). Let 휑  be the first eigenvalue of −∆ in 
훺 with Dirichlet boundarycondition, and define 푤:ℝ → ℝ by 

푤(푥) =
휑 (푥) if	푥 ∈ 훺,
훿(푥) if	푥 ∉ 훺. 

Then log푤 ∈ BMO(ℝ ). 

Proof: 

We have two constants 푐 > 0, 푐 > 0 such that 푐 훿(푥) ≤ 휑 (푥) ≤ 푐 훿(푥). 
Therefore, wehave 

min(1; 푐 )훿(푥) ≤ 푤(푥) max(1; 푐 )훿(푥) .																															(63) 
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From relation (61) one has 푤 ∈ 퐴  for all 푝 > 2 and then log푤 ∈ BMO(ℝ ). 

We shall use the following result on multiplication in BMO(ℝ ). 

Theorem (1.2.14) [1]:  

Let 푎 ∈ log VMO(ℝ ) (Vanishing Mean Oscillation withlogarithm rate) with a 
being constant outside of a ball 퐵(푂, 푟 ). Then the multiplier operation푓 → 푎푓 
maps BMO(ℝ ) into itself and is bounded. 

As a consequence of the above results, we have: 

Lemma (1.2.15) [1]: 

There exists a constant 푐(훺) > 0 such that ∀휓 ∈ 퐶 (훺) with∫ 휓(푥)푑푥 = 0, 
for푖 = 1, . . . ,푁, for all 푘 > 0 

(i) |∫ log휑 휓푑푥| ≤ 푐(훺)|휓|ℋ ( ), and 

(ii) |∫ 푇 (log 훿)휓푑푥| ≤ 푐(훺)|휓|ℋ ( ) where 

푇 (휎	) = 휎 if|휎| ≤ 푘,
푘	sign(휎) otherwise. 

Proof: 

Since ∈ 퐶 (훺), an extension theorem for Lipschitzian functions, allowsus to 

extend it to a function a in 퐶 , (ℝ ) with |푎| , = | | ( ). More precisely, for 

푥 ∈ ℝ  

푎(푥) =
휕휑
휕푥

(푥) = Max sup
휕휑
휕푥

(푦) −
휕휑
휕푥 ( )

|푥 − 푦|;푦 ∈ Ω ; inf
∈

휕휑
휕푥

(푦)  

																∈ 퐶 , (ℝ ) 

and 

|푎(푥) − 푎(푦)| ≤
휕휑
휕푥 ( )

|푥 − 푦|, ∀푥, 푦 ∈ ℝ . 
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Therefore 푎 ∈ log VMO(ℝ ). Let w be as in Corollary (1.2.13) of Lemma (1.2.12) 
i.e. 

푤(푥) =
휑 (푥) if	푥 ∈ 훺,
훿(푥) if	푥 ∉ 훺. 

Then log푤 ∈ BMO(ℝ ) and 푎 log푤 ∈ BMO(ℝ ). 

Now, consider 휓 ∈ 퐶 (훺) with∫ 휓(푥)푑푥 = 0, then 휓 ∈ ℋ (ℝ ). Therefore 
by the dualityℋ (ℝ ) − 퐵푀푂(ℝ ) one has 

푎(푥) log푤 (푥)휓(푥)푑푥
ℝ

≤ 푐|푎 log푤 | |휓|ℋ .																				(64) 

Since 휓 = 0 on ℝ\훺, we have 

휕휑
휕푥

log휑 휓 푑푥 = 푎(푥) log푤 (푥)휓(푥)푑푥
ℝ

.																										(65) 

From relations (64) and (65) we derive statement (i). 

While for the second statement, we know from a property of BMO functions 
that 푇 (log 훿) ∈ BMO(ℝ ) since log 훿 ∈ BMO, therefore 푎푇 (log 훿) ∈ BMO(ℝ ). 
Moreover, we know that 

|푇 (log 훿)| ≤ 2| log 훿 | 	,																																					(66) 

therefore, we have for 휓 ∈ 퐶 (훺) with∫ 휓(푥)푑푥 = 0, 

푎(푥)푇 (log 훿 (푥))휓(푥)푑푥
ℝ

≤ 푐|휓|ℋ 	.																									(67) 

Since 

휕휑
휕푥

푇 (log 훿)휓푑푥 = 푎푇 (log 훿)휓푑푥
ℝ

.																												(68) 
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We derive the second statement.  

As an application of Lemma (1.2.15), we shall prove: 

Theorem (1.2.16) [1]:  

Let 푊 ℋ (훺) = 퐶 (훺)‖|⋅|‖. Assume that 훺 isan open bounded set of class 
퐶 . Then there exists a constant 푐 > 0 such that 

∀휓 ∈ 푊 ℋ (훺),
휓
훿

(푥)푑푥 ≤ 푐
휕휓
휕푥 ℋ

 

Proof:  

Let 휓 ∈ 푊 ℋ (훺). There exists a sequence 휓 ∈ 퐶 (훺),휓 ≥ 0 suchthat 

휕휓
휕푥

→
휕휓
휕푥

inℋ (훺)	for	푖 = 1, . . . ,푁 

(due to the definition of ℋ (훺)). We set 휐(푥) = −휑 log휑 + 휑  where 휑  is the 
first eigenfunction of −∆ with the Dirichlet boundary condition. Thus 훻휐(푥) 	=

−훻휑 (log휑 ) and−∆휐 = 휆 휑 (log휑 ) − | | in 훺. Therefore, 휐satisfies the 

following equation in Ω 

(BVP) −∆휐	 −	휆 휐	 = 	−휆 휑 	+
|훻휑 |
휑

in	훺,

휐	 = 	0																																															 on	휕훺.
 

Using 휓  as a test function, we derive 

휓
|훻휑 |
휑

푑푥 =
휕휐
휕푥

휓
휕푥

푑푥 − 휆 (휐 − 휑 )휓 푑푥 ,																	(69) 

we have from Lemma (1.2.15), 

휕휐
휕푥

휓
휕푥

푑푥 = −
휕휑
휕푥

(log휑 )
휕휓
휕푥

푑푥 ≤ 푐
휕휓
휕푥 ℋ

.								(70) 
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By the Sobolev–Poincaré inequality, we have 

휆 (휐 − 휑 )휓 ≤ 푐 |휓 | ≤ 푐 |훻휓 | ≤ 푐
휕휓
휕푥 ℋ

	.															(71) 

From relation (69) to (71), we deduce letting 푛 → +∞ 

휓
|∇휑 |
휑

푑푥 ≤ 푐
휕휓
휕푥 ℋ

.																																						(72) 

There exists a neighborhood of the boundary denoted 훺  such Min |훻휑 | > 0 
andMin \ 훿(푥) > 0. Then 

휓
훿
푑푥 ≤ 푐 휓

|훻휑 |
휑

푑푥 ≤ 푐
휕휓
휕푥 ℋ

,																										(73) 

and 

휓
훿
푑푥

\

≤ 푐 휓푑푥 ≤ 푐|∇휓| ≤ 푐
휕휓
휕푥 ℋ

.																								(74) 

Adding these two last equations we derive the result.  

Theorem (1.2.17) [1]:  

Let 푓 ∈ 퐿 (훺, 훿)\퐿 (훺; 훿(1 + | log 훿 |)), 푓 ≥ 0. Thenthe unique very weak 
solution u of (1) satisfies 

휕푢
휕푥 ℋ

= +∞. 

Proof: 

Assume that∑
ℋ

< +∞, we have 푢 ∈ 푊 , (훺) (since ℋ ⊂ 퐿 ) and 
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훻푢훻휓푑푥 = 푓휓푑푥 , ∀휓 ∈ 푊 , (훺) ∩ 퐻 (훺). 

We choose as a test function 휓 = 휑 푇 (log 훿) ∈ 푊 , (훺) ∩ 퐻 (훺) since 

휕휓
휕푥

=
휕휑
휕푥

푇 (log 훿) +
휑
훿
푇 (log 훿)

휕훿
휕푥

∈ 퐿 (훺), 

− 푓휑 푇푘(log 훿)푑푥 = −
휕푢
휕푥

휕휓
휕푥

푑푥 

	= −
휕휑
휕푥

푇 (log 훿)
휕푢
휕푥

푑푥 	

+ −
휑
훿
푇 (log 훿)

휕훿
휕푥

휕푢
휕푥

푑푥 .															(75) 

Applying Lemma (1.2.15), since ∈ ℋ (훺) (then there exists 휑 ∈ 퐶 (훺) 

with∫ 휑 (푥)푑푥 = 0 such that 휑 → in ℋ ). We have 

휕휑
휕푥

푇 (log 훿)
휕푢
휕푥

푑푥 ≤ 푐(훺)
휕푢
휕푥 ℋ

	.																										(76) 

Then from relations (75) and (76), we have 

																			− 푓	휑 푇 (log 훿)푑푥

≤ 푐
휕푢
휕푥

푑푥 +
휕푢
휕푥 ℋ

	.															(77) 

We know that∫ 푑푥 ≤ 푐
ℋ

, therefore relation (77) implies 
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																																			− 푓휑 푇 (log 훿)푑푥 ≤ 푐
휕푢
휕푥 ℋ

.																																				(78) 

Since 

푓휑 |푇푘(log 훿)|푑푥 = − 푓휑 푇 (log 훿)푑푥 + 2 푓휑 푇 (log 훿)푑푥
{ }

 

										≤ 푐
휕푢
휕푥 ℋ

+ 푐 푓훿푑푥 since	| log 훿 | ≤ 푀	whenever	훿 ≥ 1.											(79) 

Letting 푘 → +∞ in relation (79), we deduce 

푓휑 | log 훿 |푑푥 ≤ 푐
휕푢
휕푥 ℋ

+ 푐 푓훿푑푥 ,																												(80) 

which contradicts the fact that∫ 푓훿| log 훿 |푑푥 = +∞.  
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Chapter 2 

  Second-Order Elliptic Operator and Optimal Hardy Weight 

For a general subcritical second-order elliptic operator 푃in a domain Ω ∈ ℝ , 
we construct Hardyweight 푊 which is optimal in the following sense. The operator 
푃	 − 휆푊 is subcritical in Ω for all 휆 < 1, null-critical in Ω for 휆 = 1, and 
supercritical near any neighborhood of infinity in Ω for any 휆 > 1. Moreover, if 푃 
is symmetric and 푊 > 0, then the spectrum and the essential spectrum of 푊 푃 
are equal to [1,∞), and the corresponding Agmon metric is complete. [2] 

Section (2.1): Construction of Hardy-Weights 

Let 푃 be a symmetric and nonnegative second-order linear elliptic operatorwith 
real coefficients which is defined on a domain Ω ⊂ ℝ  or on anoncompact 
manifold Ω, and let 푞 be the associated quadratic form definedon 퐶 (Ω). A Hardy-
type inequality with a weight푊 ≥ 0 has the form 

																											푞(휑) ≥ 휆 푊(푥)|휑(푥)| 푑푥 for	all	휑 ∈ 퐶 (Ω),																										(1) 

where 휆 > 0 is a constant. Such an inequality aims to quantify the positivity of 푃: 
for instance, if (1) holds with 푊 ≡ 1 it means that the bottom of thespectrum of 
the corresponding operator is positive. A nonnegative operator푃 is called critical in 
Ω if the inequality 푃 ≥ 0 cannot be improved, meaning that (1) holds true if and 
only if 푊 ≡ 0. On the other hand, when (1)holds with a nontrivial 푊, then the 
operator is subcritical inΩ. Given asubcritical operator 푃 in Ω, there is a huge set of 
weights 푊 satisfying the inequality (1); We will call these weights, Hardy-weights. 
A naturalquestion is to find “large”Hardy-weights. 

We can define Agmonmetric (Let 퐸 ∈ ℂ. The Agmon metric for ℎ (휀) at the 
energy 퐸 is defined by 

푔 = min(푇, inf{|퐼푚	휀||휀 ∈ 푆 , ℎ (휀) = 퐸|})) [7]. 

The search for Hardy-type inequalities with “as large as possible” 
weightfunction 푊 was proposed by Agmon, and we feel that it deservesthe name 
Agmon’s problem. Agmon raised this problem in connection withhis theory of 
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exponential decay for solutions of second-order elliptic equations.Given a Hardy-
type inequality (1), there is an associated Agmonmetric; if this Riemannian metric 
turns out to be complete, then Agmon’stheory gives the exponential decay at 
infinity (with respect to the Agmonmetric) of solutions of the equation 푃푢 = 푓. 

Before proceeding, we recall a classical Hardy-type inequality, in order 
tomotivate the concept of “large” Hardy-weights: 

Example (2.1.1)[2]: 

ForΩ = ℝ \{0}, 푛 ≥ 3 , the following Hardy-type inequality for 푃 = −∆ holds 

|∇휑| 푑푥
ℝ \{ }

≥
푛 − 2

2
|휑(푥)|

|푥|ℝ \{ }
							∀휑 ∈ 퐶 (ℝ \{0}).										(2) 

In Example (2.1.1), the Hardy-weight 푊 decays to zero at infinity and blowsup 
at zero, and furthermore its behavior is borderline for the Hardy-typeinequalities 
under consideration. Perhaps the easiest way to illustrate this is the following: for 
any 휀 ∈ ℝ, define a smooth positive weight 푊  which isequal to 

푊 ≔ |푥|  

outside the unit ball. If 휀 < 0, then 푊  is a short-range potential, while if휀 ≥ 0, 
then 푊  is long-range. More precisely, if 휀 < 0, then for any constant퐶 > 0 there 
exists 푅 > 0 such that 

|∇휑| 푑푥
ℝ

≥ 퐶 푊 (푥)|휑| 푑푥
ℝ

										∀휑 ∈ 퐶 ({|x| > 푅}),																							(3) 

and the operator 푊 푃has a discrete positive spectrum. In particular, 
thecorresponding Rayleigh-Ritz variational problem admits a minimizer. On the 
other hand, for any 휀 > 0, there are no constants 퐶 > 0 and 푅 > 0such that (3) 
holds true, and the bottom of the (essential) spectrum of theoperator 푊 푃equals 
0. Therefore, 푊 , which agrees with |푥|  outsidethe unit ball, is the only long-
range potential in the family {푊 } ∈ℝ suchthat the Hardy-type inequality (1) holds. 
Moreover, 휆 = 	 퐶 ∶= 	 (푛 − 2) /4	is the best constant for (1) not only in the 
punctured space, but in a fixedneighborhood of either zero or infinity. On the other 
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hand, the correspondingRayleigh-Ritz variational problem does not admit a 
minimizer. 

This indicates that the weight 퐶 |푥|  is a “large” Hardy-weight for 푃 = −∆ on 
ℝ \{0}. 

Agmon’s theory gives the following (almost optimal) a priori decay 
estimatesfor nongrowing solutions u of the Poisson equation in ℝ : for every휀 >
0, there is a constant 퐶 = 퐶(푓, 휀) such that for every x outside the unitball, 

|푢(푥)| ≤ 퐶|푥| . 

We thus might expect that the construction of good Hardy-weights will leadto 
valuable spectral information about 푃. 

In this chapter we use a general albeit simple construction of Hardy-
weightswhich allows one to recover practically all classical Hardy inequalities in 
aunified way. We use this construction to study Agmon’s problem. In particular,in 
some important cases we find an optimal Hardy weight; Thisincludes the case of a 
general nonselfadjoint operator 푃 defined on a punctureddomain. 

Our construction relies on two observations, which are both well known.First, 
usingAgmon-Allegretto-Piepenbrink (AAP) theory, we will see that there is a 
correspondence betweenpositive supersolutions of 푃 and nonnegative Hardy-
weights. Explicitly, toevery positive supersolution휐 of 푃, we associate the weight 
푊: = 푃휐/휐,which satisfies (1) with 휆 = 1. The second step (that we call the 
supersolutionconstruction) is a way of producing positive supersolutions of 
푃 −hence Hardy-weights. The construction is the following: let 휐  and 휐  betwo 
linearly independent positive (super)solutions of the equation 푃푢 = 0in Ω. Then 
for 0 ≤ 훼 ≤ 1, the function 

휐 ≔ 휐 휐  

is a positive supersolution of the equation 푃푢 = 0 in Ω, thus yielding aHardy-
weight 푊 ≔ 푃휐 /휐 . We will find that all these weights are proportional, 

푊 = 4훼(1 − 훼)푊(휐 , 휐 ), 푊(휐 , 휐 ) =
1
4
∇ log

휐
휐

, 



40 
 

and the prefactor4훼(1 − 훼) achieves its maximum 1 at 훼 = 1/2. In particular, if 
the equation 푃푢 = 0 admits two linearly independent positive(super)solutions in Ω, 
then 푃 is subcritical in Ω. Moreover, with the freedomof choosing 휐  and 휐 , this 
construction allows us in fact, to recoverin a unified way all the classical Hardy 
inequalities. It is also a very easymethod for producing new examples. 

We show that with a careful choice of 휐  and 휐 , the preceding construction 
gives rise to Hardy-weights 푊(휐 , 휐 ) which deserve the title of optimal 
weights.We first give a temporary definition of optimal weights. 

Definition (2.1.2) [2]: 

Consider a symmetric subcritical operator in Ω, and let 푊be a nonzero 
nonnegative weight satisfying the Hardy inequality 

																										푞(휑) ≥ 휆 푊(푥)|휑(푥)| 푑푥	 		for	all			휑

∈ 퐶 (Ω),																									(4) 

with 휆 > 0. We denote by 휆 = 휆 (푃,푊,Ω)the best constant satisfying (4); 휆  is 
called the generalized principal eigenvalue. The weight 휆 푊 issaid to be an 
optimal Hardy-weight for the operator 푃 in Ωif the followingproperties hold: 

(i) The operator 푃 − 휆 푊 is critical in Ω; that is, the inequality 

푞(휑) ≥ 푉(푥)휑 (푥)푑푥 										∀휑 ∈ 퐶 (Ω) 

is not valid for any 푉 ≩ 휆 푊. 

(ii) The constant 휆  is also the best constant for (4) with test 
functionssupported in the exterior of any fixed compact set in Ω. 

(iii) The operator 푃 − 휆 푊 is null-critical in Ω; that is, the 
correspondingRayleigh-Ritz variational problem 

inf
∈풟 , ( )

푞(휑)

∫ 푊(푥)|휑(푥)| 푑푥
																																										(5) 
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admits no minimizer. Here 풟 , (Ω) is the completion of 퐶 (Ω) 
withrespect to the norm 푢 ↦ 푞(푢). 

Properties (ii) and (iii) indicates in a way that 푊 is “long range”. Notethat 
contrary to the “short range” case, the validity of (i) in the case ofa “long range” 
potential is quite delicate. Indeed, it is known that 푃 − 휆 푊 is always critical when 
property (ii) does not hold. On the other hand, in the “long range” case 푃 − 휆 푊 is 
in generalsubcritical. 

In order to motivate the definition, let us mention that the weight 퐶 |푥| of 
Example (2.1.1) is an optimal Hardy-weight. 

Motivated byExample (2.1.1), we study in detail the case of a general 
(nonsymmetric) subcriticaloperator 푃 in the punctured domainΩ⋆ ≔ Ω\{0}: 
Theorem (2.1.16) states that if one chooses two positive solutions 휐 , and 휐  
appropriately inΩ⋆, then for 훼 = 1/2, the corresponding weight 푊(휐 , 휐 ) 
constructed by thesupersolution construction is an optimal Hardy-weight in Ω⋆. 
The followingtheorem states the result for symmetric operators. 

Theorem (2.1.3) [2]: 

Let 푃 be a symmetric subcritical operator in Ω, and let퐺(푥): = 퐺 (푥, 0) be its 
minimal positive Green’s function with a pole at0 ∈ Ω. Let 푢 be a positive solution 
of the equation 푃푢 = 0 in Ωsatisfying 

lim
→

퐺(푥)
푢(푥) = 0,																																																			(6) 

where ∞ is the ideal point in the one-point compactification of Ω. Consider the 
supersolution휐: = √퐺푢. Then 

푊 ≔
푃휐
휐

=
1
4
∇ log

퐺
푢

 

is an optimal Hardy-weight with respect to 푃 and the punctured domainΩ⋆ =
Ω\{0}. If furthermore 푊 > 0, then the spectrum and the essentialspectrum of the 
Friedrichs extension of the operator −푊 ∆ on 퐿 (Ω,푊푑푥)are equal to [휆 ,∞) 
and the corresponding Agmon metric is complete. 
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We assumethat 0 ∈ Ω and denote Ω⋆ ≔ Ω\{0}. In addition, we fix a reference 
point푥 ∈ Ω, 푥 ≠ 0. When there is no danger of confusion we will omit indices.In 
particular, for a matrix 퐴(푥) = 푎 (푥) and a vector field 푏(푥) we denote 

(퐴(푥)휉) = 푎 (푥) 휉 ,			푏(푥) ⋅ 휉 = 푏 (푥)휉 ,		where	휉 = (휉 , … , 휉 ) ∈ ℝ . 

Moreover, for 푥 ∈ Ωwe introduce a norm on ℝ  associated to a positivedefinite 
symmetric matrix 퐴(푥), 

|휉| ≔ 휉 ⋅ 퐴휉. 

We write Ω ⋐ Ω  if Ω is open, Ω is compact and Ω ⊂ Ω . 

Before embarking to the general setting and proofs, we give a short proofof 
Theorem (2.1.3) for the case of the classical Hardy inequality (2). This 
willilluminate the main ideas and steps of the proof in the general case. 

Example (2.1.4) [2]: 

Let 푃 = −∆ be the Laplace operatoron Ω⋆ ≔ ℝ \{0}, where 푛 ≥ 3, and denote 
by 퐺(푥): = |푥|  thecorresponding positive minimal Green function with a pole 
at zero (up to amultiplicative constant). 

Consider the positive superharmonic function in Ω⋆. 

휐(푥) ≔ 퐺(푥)ퟏ = 퐺(푥) / = |푥|( )/ . 

We obtain the Hardy-weight 푃휐/휐 = 퐶 |푥| , and by the (AAP) theory weget the 
classical Hardy inequality (2). 

To prove that we indeed obtain an optimal Hardy-weight, we analyze 
theoscillatory properties of the corresponding radial equation 

																																				−푢 −
푛 − 1
푟

푢 − 휂
퐶
푟
푢 = 0								푟 ∈ (0,∞),																									(7) 

where 휂 ∈ ℝ . Note that (7) is Euler’s equation. Consequently, for 휂 ≠ 1two 
linearly independent solutions of (7) are given by 
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																																									푢 ± (푟) = 푟( )/ 푟( )/ ±
,																																					(8) 

while for 휂 = 1 two linearly independent solutions of (7) are expressed by 

푢 (푟) = 푟( )/ , 푢 (푟) = 푟( )/ log(푟 ).																		(9) 

The difference in the structure of the solutions for 휂 < 1, 휂 = 1 and 휂 > 1cannot 
be over-stressed. 

For 휂 < 1 both solutions are positive, and therefore, the operator푃 −
휂퐶 |푥| is subcritical in Ω⋆. 

On the other hand, for 휂 = 1 only 푢 (푟) = 푟( )/  is positive, andmoreover, it 
is dominated by |푢 | near both ends 푟 = 0 and 푟 = ∞. ByProposition (2.2.1) we 
infer that 푢  is a ground state and the operator 푃 −푊is critical in Ω⋆, where 
푊: = −∆(푢 )/푢 = 퐶 |푥|  is the correspondingHardy-weight. 

Furthermore, an elementary calculation shows that for 휂 = 1 we have thatthe 
ground state 푢  is not in 퐿 (Ω⋆,푊	푑푥), which shows the null-criticalityof the 
Hardy operator −∆ − 퐶 |푥|  in Ω⋆. 

Finally, for 휂 > 1 the solution of (7) given by 

																											ℜ픢{푢 (푟)} = 푟( )/ cos
휂 − 1

2
log(푟 ) 																													(10) 

oscillates near zero and near infinity, and therefore, the best possible constantfor 
the validity of the Hardy inequality in any neighborhood of eitherthe origin or 
infinity is also 퐶 . In particular, the bottom of the spectrumand the bottom of the 
essential spectrum of the corresponding weightedLaplacian (with weight 푊 =
퐶 |푥| ) is equal 1. 

The entire (essential) spectrum of the operator 푃: = 퐶 |푥| (−∆)is obtainedby 
an explicit spectral representation of the operator 푃 restricted tothe radial 
functions, using the Mellin transform. Denote by 퐿 (Ω⋆,푊푑푥)the subspace of 
radially symmetric functions in퐿 (Ω⋆,푊푑푥). Recall thatthe Mellin transform 
ℳ: 퐿 (0,∞) → 퐿 (ℝ) is the unitary operator defined by 
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ℳ푓(휉) ≔
1

√2휋
푓(푟)푟 푑푟. 

In fact, the composition of the unitary operator 

퐿 (0,∞), 푟
퐶
푟
푑푟 → 퐿 (0,∞); 					푓(푟) →

|푛 − 2|
2

푓 푟 /( ) , 

and the Mellin transform, gives a unitary operator 

픘: 퐿 (Ω⋆,푊푑푥) ≅ 퐿 (0,∞), 푟
퐶
푟
푑푟 → 퐿 (ℝ), 

which is a spectral representation for 푃 restricted to radial functions. Inthis 
representation, 푃 is just the multiplication by (1 + 4휉 ). Indeed, thisfollows from 
the fact that due to (7) and (8) (with 휉 = 휂 − 1/2), wehave  

퐶 |푥| (−∆) − (4휉 + 1) (푟 ) = 0.																								(11) 

The proof (Theorem (2.1.14)) in the general case is basedon similar 
considerations and calculations. Loosely speaking, to obtain thegeneral result, we 
just replace 푟( ) in equations (8), (9), (10), and(11) by 퐺/푢 

We review the theory of positive solutions and formulateour main result for 
nonsymmetric operators defined on punctureddomains. 

Let Ω ⊂ ℝ ,푛 ≥ 2be a domain (or more generally, a smooth 
noncompactmanifold Ω of dimension 푛). We assume that 휈 is a positive measure 
on Ω, satisfying 푑휈 = 푓 vol with 푓 a positive function; vol being the volume 
formof Ω(which is just the Lebesgue measure in the case of a domain of 
ℝ ).Consider a second-order elliptic operator 푃 with real coefficients which (inany 
coordinate system (푈; 푥 , . . . , 푥 )) is either of the form 

																																						푃푢 = −푎 (푥)휕 휕 푢 + 푏(푥) ⋅ ∇푢 + 푐(푥)푢,																											(12) 

or in the divergence form 

																						푃푢 = −div 퐴(푥)∇푢 + 푢푏(푥) + 푏(푥) ⋅ ∇푢 + 푐(푥)푢,																			(13) 
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Here, the minus divergence is the formal adjoint of the gradient with respectto the 
measure 휈. We assume that for every  푥 ∈ Ωthe matrix 퐴(푥): = 푎 (푥) is 
symmetric and that the real quadratic form 

																																			휉 ⋅ 퐴(푥)휉 ≔ 휉 푎 (푥)휉
,

								휉 ∈ ℝ 																																	(14) 

is positive definite. Moreover, throughout the chapter it is assumed that푃 is locally 
uniformly elliptic, and the coefficients of 푃 are locally sufficientlyregular in Ω. All 
our results hold for example when 푃 is of the form(13), and 퐴, 푓 are locally Hölder 
continuous,푏, 푏 ∈ 퐿 (Ω;ℝ ,푑푥), and푐 ∈ 퐿 / (Ω;ℝ,푑푥)for some 푝 > 푛. 
However it would be apparent fromthe proofs that any conditions that guarantee 
standard elliptic theory aresufficient. 

The formal adjoint 푃∗ of the operator 푃 is defined on its natural space퐿 (Ω, d휈). 
When 푃 is in divergence form (13) and 푏 = 푏, the operator 

푃푢 = −div[(퐴∇푢 + 푢푏)] + 푏 ⋅ ∇푢 + 푐푢, 

is symmetric in the space 퐿 (Ω, d휈). Throughout the chapter, we call thissetting the 
symmetric case. We note that if 푃 is symmetric and 푏 is smoothenough, then 푃 is 
in fact a Schrödinger-type operator of the form 

푃푢 = −div(퐴∇푢) + (푐 − div푏)푢. 

Definition (2.1.5) [2]: 

Denote by 퐶 (Ω) the cone of all positive solutions of the elliptic equation 
푃푢 = 0 in Ω. The operator 푃 is said to be nonnegative inΩ, and write 푃 ≥ 0 in Ω, 
if 퐶 (Ω) ≠ ∅. We say that 푃 satisfies the positiveLiouville theorem in Ω if 
dim 퐶 (Ω) = 1. 

For a nonzero (real valued) function 푊, let 

휆 = 휆 (푃,푊,Ω) ≔ sup{휆 ∈ ℝ|푃 − 휆푊 ≥ 0	inΩ} 

be the generalized principal eigenvalue of the operator 푃 with respect to 
thepotential 푊 in Ω. We also denote 
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휆 ≔ 휆 (푃,푊,Ω) ≔ sup{휆 ∈ ℝ|∃퐾 ⊂⊂ Ω	s.t.	푃 − 휆푊 ≥ 0		inΩ\K}. 

Clearly, 휆 ≤ 휆 . Moreover, 푃 − 휆 푊 ≥ 0 in Ω. If 푃 is a symmetricoperator, 
then in light of the Agmon-Allegretto-Piepenbrink (AAP) theorem , 휆  and 휆  
have the following spectral interpretation: 

Proposition (2.1.6) [2]: 

Assume that the operator 푃 is a symmetric in 퐿 (Ω, d휈), and 푊 > 0. Suppose 
also that 휆 (푃,푊,Ω) > −∞. Define 

푃 ≔ 푊 푃. 

Then 푃 is symmetric on 퐿 (Ω,푊d휈), has the same quadratic form as 푃,and 휆  
(resp. 휆 ) is the infimum of the spectrum (resp. essential spectrum)of the 
Friedrichs extension of 푃. 

Denote by 푞 the quadratic form associated to 푃, and assume that 푃 ≥ 0 inΩ. 
Then the following Hardy-type inequality holds true with the best constant휆 =
휆 (푃,푊,Ω) ≥ 0: 

																																		푞(휑) ≥ 휆 푊휑 푑휈										∀휑

∈ 퐶 (Ω).																																(15) 

Next, we introduce the definition of (sub)criticality: 

Definition (2.1.7) [2]: 

Assume that 푃 ≥ 0 in Ω. The operator 푃 is said to besubcritical in Ωif there 
exists a nonzero nonnegative continuous function 푊such that 휆 (푃,푊,Ω) >
0,otherwise, 푃 is critical in Ω. So, in the criticalcase, 휆 (푃,푊,Ω) = 0 for any 
nonnegative nonzero continuous function 푊. 

If 푃 ≱ 0 in Ω, then 푃 is said to be supercritical in Ω. 

The (sub)criticality of 푃 in Ω has an equivalent characterization in termsof the 
structure of the cone of positive solutions 퐶 (Ω). This characterizationis based on 
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the notion of positive solution of minimal growth, andit is a key to our theorems 
and proofs. We recall the definition. 

Definition (2.1.8) [2]: 

(i) Let ⋐ Ω , and let 푢 be a positive solution of the equation 푃푤 = 0 in Ω\K. 
We say that 푢 is a positive solution of minimalgrowth in a neighborhood 
of infinity in Ω if for any 퐾 ⋐ 퐾′ ⋐ Ωwith smoothboundary and any 
(regular) positive supersolution휐 ∈ 퐶 (Ω\퐾′) ∪ 휕퐾′ of the equation 
푃푤 = 0 in Ω\K′satisfying 푢 ≤ 휐on 휕퐾′, we have 푢 ≤ 휐 inΩ\K′. 

(ii) Let 푥 ∈ Ω. A positive solution of the equation 

푃푢 = 0									inΩ\{푥 } 

of minimal growth in a neighborhood of infinity in Ωis called a positiveminimal 
Green function, if the singularity at 푥  is not removable. Theappropriately 
normalized Green’s function is denoted by 퐺 (푥, 푥 ). 

The aforementioned characterization of a subcritical operator is given inthe 
following proposition. 

Proposition (2.1.9) [2]: 

Suppose that 푃 ≥ 0 in Ω. The operator 푃 is subcriticalin Ω if and only if it 
admits a positive minimal Green function 퐺 (푥, 푥 )in Ω. Moreover, in the critical 
case, the equation 푃푢 = 0 admits a unique(up to multiplicative constant) positive 
global solution in Ω, which is calledAgmon’s ground state (or in short a ground 
state). 

The operator 푃 is subcritical (resp. critical) in Ω if and only if its formaladjoint 
푃⋆. is subcritical (resp. critical) in Ω. 

We note that a ground state of a critical operator 푃 in Ω is a positiveglobal 
solution of the equation 푃푢 = 0 in Ωthat has minimal growth in aneighborhood of 
infinity in Ω. 

Let 푃 be subcritical in Ω and 푊 ≩ 0. Clearly 휆 ≔ 휆 (푃,푊,Ω) ≥ 0,but 휆  
might be either 0 or positive. Moreover, the operator 푃 − 휆푊 issubcritical in Ωfor 
0 ≤ 휆 < 휆 , but 푃 − 휆 푊 might be either subcritical orcritical in Ω. The case of a 
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perturbation by a compactly supported potentialis well understood. In particular, 
we have: 

Proposition (2.1.10) [2]: 

Let 푃 be a subcritical operator in Ω and 푊 ≥ 0 a nonzerobounded compactly 
supported weight in Ω (or more generally, 푊 is a semismallperturbation potential 
of the operator 푃 in Ω). Then 휆 (푃,푊,Ω) > 0.Moreover, the operator 푃 − 휆푊 is 
critical in Ω for 휆 = 휆 , and subcriticalfor 0 ≤ 휆 < 휆 . 

Next, we define null-criticality. 

 

Definition (2.1.11) [2]: 

We say that the operator 푃 −푊 is null-critical (resp.positive critical) in Ω with 
respect to the measure 푊푑휈 if 푃 −푊 is criticalin Ω, and 휑 휑⋆ ∉
퐿 (Ω,푊d휈)(resp. 휑 휑⋆ ∈ 퐿 (Ω,푊d휈), where 휑 , and휑⋆are the corresponding 
ground states of 푃 −푊 and 푃⋆ −푊 in Ω. 

Positive criticality is closely related to the large time behavior of the heat 
kernel. Moreover, if 푃 is symmetric, it is equivalent to theexistence of a minimizer 
for the corresponding variational problem. Indeed,let 푞 be the quadratic form 
associated to a subcritical operator 푃 in Ω.Consider the space 풟 , (Ω), the 
completion of 퐶 (Ω) with respect to thenorm 푢 ↦ 푞(푢) . Since 푃 is subcritical, 
we know that 풟 , (Ω) ↪ 푊 , (Ω) and 휆 (푃,푊,Ω)is characterized by the 
Rayleigh-Ritz variationalproblem: 

휆 = inf
∈풟 , ( )\{ }

푞(푢)

∫ 푢 푊d휈
.																																											(16) 

We have 

Lemma (2.1.12) [2]: 

Assume that 푃 is symmetric and 푊 > 0 in Ω. Then 푃 −푊is positive-critical in 
Ω if and only if the infimum in the variational problem(16) is attained, and the 
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infimum is equal 1. Furthermore, if it is the case,then the corresponding ground 
state 휑  satisfies 휑 ∈ 풟 , (Ω), and realizesthe infimum uniquely (up to a 
multiplicative constant). 

Finally, we define precisely what we mean by saying that 푊 is “as largeas 
possible” weight function. 

Definition (2.1.13) [2]: 

Let 푃 be a subcritical operator in Ω. A nonzero nonnegativefunction 푊 is said 
to be an optimal Hardy-weight with respect to 푃 andthe domain Ω if 푃 −푊 is null-
critical in Ω, and for any 휆 > 1, the operator푃 − 휆푊 is supercritical in any 
neighborhood of infinity in Ω. 

Let 푉 ∈ 퐶 (ℝ ) be a potential such that the operator −∆ + 푉(푥) iscritical in 
ℝ . Consider the operator 푃 ≔ −∆ + 1 + 푉(푥), and the potential 푊(푥): = 1. 
Then 

휆 (푃,푊,ℝ ) = 휆 (푃,푊,ℝ ) = 1 

On the other hand, the operator 푃 −푊 is null-critical in ℝ  for 푛 ≤ 4, and 
positive-critical if 푛 > 4. 

The following theorem provides the existence of an optimal Hardy-weight. 

Theorem (2.1.14) [2]:  

Let 푃 be a subcritical operator in Ω, and let 퐺(푥): = 퐺 (푥, 0) be its minimal 
positive Green function with a pole at0 ∈ Ω. Let 푢 be a positive solution of the 
equation 푃푢 = 0 in Ω satisfying 

lim
→

퐺(푥)
푢(푥) = 0,																																																					(17) 

where ∞ is the ideal point in the one-point compactification of Ω. Considerthe 
positive supersolution 

휐 ≔ √퐺푢 

of the operator 푃 in Ω⋆. Then for the associated Hardy-weight 
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																																																	푊 ≔
푃휐
휐

=
1
4
∇ log

퐺
푢

																																												(18) 

we have 휆 (푃,푊,Ω⋆) = 1, and 푊 is an optimal Hardy-weight with respectto 푃 
and the punctured domain Ω⋆. 

Assume further that 푃 is a symmetric operator and 푊 is positive in Ω⋆,then the 
spectrum and the essential spectrum of the Friedrichs extension of the operator 
푊 푃 on 퐿 (Ω⋆,푊d휈) is equal to [1,∞), and the correspondingAgmon metric 

d푠 ≔ 푊(푥) 푎 (푥)d푥 d푥
,

,					where 푎 ≔ 푎  

is complete. 

Remark (2.1.15) [2]: 

(i) If 푃 is a symmetric operator, or more generally if퐺 (푥, 푦) ≍ 퐺 (푦, 푥), 
then a global positive solution u satisfying (17) always exists. 

(ii) If 푢 , 푢  are two positive solutions of 푃푢 = 0 near infinity in Ω suchthat 

lim
→

푢 (푥)
푢 (푥) = 0,																																																					(19) 

then 푢  is a positive solution of minimal growth in a neighborhood of infinityin 
Ω(see Proposition (2.2.1)). Therefore, in Theorem (2.1.14) we must take 푢 =
퐺(the Green function) as a solution satisfying (19). 

(iii) By the uniqueness of the ground state, it follows that 휐 = √퐺푢 is the 
ground state of 푃 −푊 in Ω⋆. 

As a consequence of the criticality of 푃 −푊, we get the following 
positiveLiouville theorem: 

Corollary (2.1.16) [2]: 

Under the assumptions of Theorem (2.1.14), suppose that 휐is a positive 
supersolution of the equation (푃 −푊)푤 = 0 in Ω⋆. Then 휐 isactually a solution of 
the above equation, and is equal (up to a multiplicativeconstant) to √퐺푢. 
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We prove Theorem (2.1.14) in four steps, see theorems (2.2.2), (2.2.5), (2.2.10), 
and (2.2.14). 

We recall a standard procedure to eliminatethe zero-order term of the operator 
푃. Denote by 풱 the space 퐶 , (Ω)(resp. 푊 , (Ω)) if 푃 is of the form (12) (resp. 
(13)). Let ℎ ∈ 풱 be apositive continuous function and define a map 

푇 :풱 → 풱,					휐 →
휐
ℎ

.																																														(20) 

The operator 푃 ≔ 푇 ∘ 푃 ∘ 푇 given more explicitly by 

푃 푢 =
푃(ℎ푢)
ℎ

																																																					(21) 

is called the h-transform of 푃. 

Fix 휑 ∈ 퐶 (Ω). Then the corresponding ℎ-transform is called a groundstate 
transform. Clearly, 

푃 ퟏ = 0. 

Moreover, we have 

 

Proposition (2.1.17) [2]:  

Let 휑 ∈ 퐶 (Ω), and let 푃  bethe corresponding ground state transform. Then 

휆 푃 ,푊,Ω = 휆 (푃,푊,Ω), 휆 푃 ,푊,Ω = 휆 (푃,푊,Ω). 

Moreover, 푃 . is subcritical in Ω if and only if 푃 is subcritical in Ω. 

The map 푇 |풱∩ ( , )extends to an isometry between 퐿 (Ω, dν) 
and퐿 (Ω,휑 dν). In the symmetric case this implies that 푃 and 푃  are 
unitaryequivalent. 

Proof: 

The map 푇  respects the structure of positive solutions, 
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푇 퐶 (Ω) = 퐶 (Ω), 

and preserves support of functions, namely supp 휐 = supp 푇 휐. The claimabout 휆  
and 휆  then follows from their definitions and Proposition (2.1.9).The last two 
claims about the isometry are standard. When 푃 is symmetricit provides 
independent proof of the spectral claims of the proposition.  

We note that in the subcritical case, the corresponding Green’s functionsatisfies 

퐺 (푥, 푦) =
1

휑(푥)퐺
(푥, 푦)휑(푦). 

On the other hand, in the critical case (i) is the ground state of the equation푃 푢 = 0 
in Ω. In addition, if the operator 푃 is symmetric, then 

푃 푢 = −
1
휑

div(휑 퐴(푥)∇푢),																																							(22) 

and 푃  is manifestly symmetric in 퐿 (Ω,휑 dν). 

Calculations are genuinely simplified after a ground state transform. Indeed, if 
푃ퟏ = 0, then 

																																					푃(푢휐) = 푢푃(휐) − 2퐴∇푢 ⋅ ∇휐 + 휐푃(푢),																																		(23) 

																																							푃 푓(휐) = 푓 ( )푃(휐) − 푓 (휐)|∇휐| ,																																				(24) 

holds for all functions 푢, 휐 ∈ 풱 and 푓 ∈ 퐶 (ℝ). 

The construction of the optimal Hardy-weight using the supersolutionmethod is 
based on the following simple observation  

Lemma (2.1.18) [2]:  

Let 휐  be two positive solutions(resp. supersolutions) of the equation 푃푢 =
0,푗 = 0,1, in a domain Ω, andlet 휐 ≔ 휐 /휐 . Then for any 0 ≤ 훼 ≤ 1 the function 

휐 (푥) ≔ 휐 (푥) 휐 (푥) = 휐 (푥)휐 (푥)																										(25) 

is a positive solution (resp. supersolution) of the equation 
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[푃 − 4훼(1 − 훼)푊(푥)]푢 = 0					inΩ,																														(26) 

where 푊 is the Hardy-weight given by 

																																																		푊(푥) ≔
|∇휐|
4휐

≥ 0.																																																							(27) 

In fact, 휐  are linearly independent if and only if 푊 ≠ 0. 

Optimizing (26) in 훼, we find for 훼 = 1/2: 

 

Corollary (2.1.19) [2]: 

The function 휐 휐  is a positive (super)solution of the equation 

[푃 −푊(푥)]푢 = 0						inΩ. 

In particular, 푃 −푊 ≥ 0 in Ω. 

We call the above procedure the supersolution construction, and the 
correspondingpotential 푊 is called a Hardy-weight. When 휐  are positivesolutions 
it is often useful to apply the ground state transform with respectto v0. This h-
transform maps the pair of solutions (휐 , 휐 ) of 푃 to a pair of solutions (ퟏ, 휐 /휐 ) 
of the equation 푃 푢 = 0. For example, (26) is thenobtained by applying (23) and 
(24) with = 푃  , and 푓(푡) = 푡 . Notethat the Hardy-weight 푊 is unchanged under 
this ground state transform. 

Remark (2.1.20) [2]: 

Lemma (2.1.18) has a straightforward generalization to the casewhen  
휐  are positive (super)solutions of (푃 − 푉 )휐 = 0, 푗 = 0,1. In that case  
휐  is a (super)solution of the equation 

[푃 + (1 − 훼)푉 + 훼푉 − 4훼(1 − 훼)푊]푢 = 0.																								(28) 

Example (2.1.21) [2]: 

Suppose that 푃 = −∆, and assume that Ω is a smoothbounded convex domain. 
Consider the function 휐 (푥): = 훿(푥): = dist(푥, 휕Ω)which due to the convexity is a 
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positive superharmonic function in Ω, and let휐 : = 1. Then the associated weight 
푊(푥) = 훿(푥) /4 is the correspondingHardy-weight, and we get the well known 
Hardy inequality 

|∇휙| 푑푥 ≥
1
4

|휙|
훿(푥) 푑푥									∀휙 ∈ 퐶 (Ω).																									(29) 

It is known that the operator −∆ −푊 is subcritical in Ω, but 

휆 (−∆,훿(푥) ,Ω) = 휆 (−∆, 훿(푥) ,Ω) = 1/4.																													(30) 

That is, 1/4 is the best constant in the above inequality in a strong sense.In fact, 
(30) can be deduced from Theorem (2.2.4) (see Example (2.3.17)). Notealso, that if 
one takes instead the superharmonic function 휐 (푥) = 훿(푥) with 0 < 훽 < 1, then 
one obtains the Hardy inequality without the bestconstant. 

The supersolution construction can be generalized to the case of finitelymany 
positive supersolutions. 

Proposition (2.1.22) [2]: 

Suppose that 푃 ≥ 0 in Ω, and let 푢 , . . . ,푢  be positive (super)solutions of 
푃휐 = 0 in Ω. Let 훼 , . . . ,훼  be nonnegative numberssuch that∑ 훼 = 1. 

Then 

																																																											푢 ≔ 푢 																																																											(31) 

is a positive supersolution of the equation 푃휐 = 0 in Ω. Moreover, 푢 is apositive 
(super)solution of (푃 −푊) = 0 in Ω, where 

푊 ≔ 훼 훼 ∇ log
푢
푢

. 

Proof: 

Consider the function 푢 defined by (31). We compute that 
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푃푢 − 훼
푃푢
푢

푢 = 훼 (1 − 훼 )
∇푢
푢

− 2 훼 훼 〈퐴
∇푢
푢

,
∇푢
푢
〉 푢 

= 훼 (1 − 훼 )
∇푢
푢

+ 훼 훼
∇푢
푢

−
∇푢
푢

−
∇푢
푢

−
∇푢
푢

푢 

= 훼 1 − 훼
∇푢
푢

+ 푊 푢 = 푊푢, 

since by hypothesis∑ 훼 = 1. 

The supersolution construction given in Proposition (2.1.22) will be used when 
we study the case of a subcritical operator which is definedon a manifold with 푁 
ends, with 푁 ≥ 2. 

Let us focus again on the case of two ends. Let 푊 be the Hardy-weightgiven in 
Lemma (2.1.18) by (27). The set of solutions of the equation 

(푃 − 휆푊)푢 = 0				inΩ 

for 휆 ∈ ℝ plays a crucial role throughout the article. Indeed, under theassumptions 
of Lemma (2.1.18), for 휆 < 1 the equation 푃 − 휆푊 admits twopositive 
(super)solutions 

휐 ±
(푥) = 휐 (푥) ± 휐 (푥) ± , wher푒	훼± ≔

1 ± √1 − 휆
2

.																	(32) 

At the maximum 휆 = 1 the construction gives a positive (super)solution 휐 /2 of 
(푃 −푊)푢 = 0. We obtain a second solution for 휆 = 1 by differentiating(26) with 
respect to the parameter 훼 and substituting 훼 = , 

휕 {[푃 − 4훼(1 − 훼)푊(푥)]휐 }| = (푃 −푊) 휐 휐 log
휐
휐

= 0. 

To avoid justification of the differentiating with respect to 훼, we give 
anindependent proof of this formula. 
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Lemma (2.1.23) [2]: 

Assume that 푃 is a subcritical operator in Ω. Let 휐  be twolinearly independent 
positive solutions of the equation 푃푢 = 0 in Ω, where푗 = 0,1. Let 푊 be the 
associated Hardy-weight given by (27). Then theequation 

(푃 −푊)푢 = 0					inΩ,																																													(33) 

admits a solution 푤 ≔ 휐 휐 log . 

Proof: 

In light of the ground state transform with respect to the function휐 , we may 
assume that 휐 = 1, and let us denote 휐 ≔ 휐 . So, 푃ퟏ = 푃휐 = 0and, by the 
construction of 푊, (푃 −푊)휐 / = 0 in Ω. Then using (23)and (24) we obtain 

푃 휐 / log 휐 = 푃 휐 / log 휐 − 2퐴∇휐 / ⋅ ∇ log 휐 + 휐 / 푃(log 휐) 

= 푃 휐 / log 휐 + 휐 / 1
휐
푃(휐) 

= 푊휐 / log 휐. 

 

Section (2.2): Null-Criticality and The Essential Spectrum 

In the present section we show the first assertion of the main theorem (Theorem 
(2.1.14)). Namely, we show that under assumption (17), the operator 푃 −푊 is 
critical in Ω⋆. We start with a preliminary result. 

Proposition (2.2.1) [2]: 

Let 푃 be a second-order elliptic operator in and let 푢 , 푢  be two positive 
solutions of 푃푢 = 0 near infinity in such that 

lim
→

푢 (푥)
푢 (푥) = 0. 



57 
 

Then 푢  is a positive solution of minimal growth in a neighborhood of infinity in 
Ω. 

Proof: 

Let 퐾 be a smooth compact set in such that 푢  and 푢  are positive and 
continuous in (Ω\퐾) ∪ 휕퐾, and are solutions of 푃푢 = 0 in Ω\퐾. Let {Ω }be an 
exhaustion of Ω, such that 퐾 ⊂ Ω , and let 푤  be the solution of the following 
Dirichlet problem: 

푃푤 = 0 		inΩ \K,
푤 (푥) = 푢 on ∂퐾,
푤 (푥) = 0 	on ∂Ω .

																																																(34) 

Then by the generalized maximum principle, {푤 } ∈ℕ is an increasing sequence of 
nonnegative functions, satisfying 푤 ≤ 푢 , and therefore, converging to a positive 
solution w of 푃푢 = 0 in Ω\퐾, that clearly has minimal growth at infinity in 훺. 
Thus, it is enough to show that 푢 = 푤 in Ω\퐾. We obviously have 푤 ≤ 푢 . On 
the other hand, by hypothesis, if 휀 > 0, there is 푘  such that 푢 ≤ 휀푢  on 휕Ω k, for 
every 푘 ≥ 푘 . By the generalized maximum principle, this implies that 푢 ≤ 푤 +
휀푢  in Ω \퐾 and it follows 푢 ≤ 푤 + 휀푢  in Ω\퐾.	By letting 휀 → 0, we conclude 
that 푢 ≤ 푤. Thus, 푢 = 푤 in Ω\퐾. 

We are ready to show the criticality statement of Theorem (2.1.14). 

Theorem (2.2.2) [2]: 

Under the hypotheses of Theorem (2.1.14), the operator 푃 −푊is critical in 
Ω⋆ ∶= Ω\{0}, and has a ground state √퐺푢. 

Proof: 

By Corollary (2.1.19) and Lemma (2.1.23), the equation (푃 −푊)푢 = 0 admits 
two solutions 

푢 = √퐺푢and푢 = −√퐺푢 log
퐺
푢

. 

By assumption (17), these solutions are positive near infinity and 
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lim
→

푢 (푥)
푢 (푥) = 0. 

Proposition (2.2.1) then implies that 푢  is a positive solution of the equation 
(푃 −푊)푢 = 0 of minimal growth in a neighborhood of infinity in Ω. By the same 
argument and using the positive solution −푢  in a neighborhood of zero, we 
conclude that 푢  has minimal growth in a neighborhood of zero. The second part 
of Lemma (2.3.6) implies now that 푢  has minimal growth at infinity in  
Ω⋆. Therefore, 푢  is a ground state of 푃 −푊 in Ω⋆,  so, 푃 −푊is critical in Ω⋆. 

Alternative proof: 

(i) Let 훼 ∈ (0, 1 2⁄ ) and consider 푣 ∶= 퐺 푢 . Then 푣  and 푣( ) are 
positive solutions of 푃 − 4훼(1 − 훼)푊 that satisfies 

푣
푣( )

=
퐺
푢

. 

Therefore, assumption (17) and the singularity of Green's function at 0imply 

lim
→

푣( )(푥)
푣 (푥) = 0			and lim

→

푣 (푥)
푣( )(푥) = 0. 

Consequently, applying Proposition (2.2.1), we deduce that 푣  has minimal growth 
at zero, and 푣( ) has minimal growth at infinity (both for the operator 푃 −
4훼(1 − 훼)푊). This implies that √퐺푢 = lim → ⁄ 푣 = lim → ⁄ 푣( ) has 
minimal growth at zero and at infinity for 푃 −푊, as we explain now. 

Indeed, let v be a positive supersolution for 푃 −푊 in a neighborhood of zero, 
that we assume for simplicity to be 퐵(0,1)\{0}. Then 푣 is a positive supersolution 
of 푃 − 4훼(1 − 훼)푊 in 퐵(0,1)\{0} for 0 ≤ 훼 ≤ 1. Since on 휕퐵(0,1), 푣 and 푣  are 
bounded above and below by positive constant that does not depend on 훼, we 
deduce that there is a constant 퐶 independent of 훼such that 

푣 ≤ 퐶푣. 

Letting 훼 → 1 2⁄ , we deduce that 
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√퐺푢 ≤ 퐶푣, 

hence √퐺푢 has minimal growth at zero. The proof at infinity repeats the same 
argument with the solution 푣( ). 

Alternative proof: 

(ii) Here we explain how to prove the criticality of 푃 −푊, using once more 
the log solution, but without the use of the notion of minimal growth. By 
performing a ground state transform with respect to 푢, we can assume 
that 푢 = 1. 

We need to prove that the operator 푄 ∶= 푃 −푊 is a critical operator in Ω∗. 
Notice that the supersolution construction gives that 푄 퐺 ⁄ = 0on Ω∗, where 퐺 
is the Green function for 푃 with a pole 0. Let us perform a ground state transform 
for 푄 with respect to its positive solution 퐺 ⁄ . We get a second-order elliptic 
operator .푄 ∶= 	 푄 ⁄ . By Lemma (2.1.17), the operator 푄 is critical in  Ω∗ if and 
only if 푄 is critical in Ω∗. By Lemma (2.1.23) we have, 

푄(log(퐺)) = 0					inΩ⋆. 

So, in Ω⋆, we have two solutions of the equation 푄푢 = 0, namely 1 and 푤 ∶=
log(퐺). Note that 

lim
→

푤(푥) = −∞,					 lim
→
푤(푥) = ∞, 

where the first limit is due to our assumption (17). 

We claim that this implies that 푄 is critical in Ω⋆. 

Assume on the contrary that 푄 is subcritical in Ω⋆, and let 퐺(푥) = 퐺
⋆(푥, 푥 ) 

be the corresponding Green function with a pole at 푥 ∈ Ω⋆. Let 퐾 be a compact 
annular domain around 0 containing 푥  such that 퐺(푥) = 푀 on the inner boundary 
and 퐺(푥) = 푀  in the outer boundary, where 푀 > 1 is a large positive number. 
So, Ω = 퐾 ∪ 퐾 ∪ 퐾  where 퐾 is a neighborhood of 0, and 퐾  is a neighborhood 
of ∞. 

By the minimality of 퐺 and the fact that 푄ퟏ = 0, we have 
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inf
∈ ∗

퐺(푥) = 0. 

Therefore, either lim inf → 퐺(푥) = 0 or llim inf → 퐺(푥) = 0. Suppose first that 
lim inf → 퐺(푥) = 0, and let 

퐷 ∶= {푥 ∈ 퐾 |	푀 < 퐺(푥) < 푘}. 

퐷 is a union of open, relatively compact, connected sets in Ω⋆, whose 
boundaries are contained in {푥 ∶ 퐺(푥) = 푀} ∪ {푥 ∶ 퐺(푥) = 푘}. Furthermore, the 
sequence {퐷 } ∈ℕ is increasing and is an exhaustion of 퐾 \{0}. Let 푣  be the 
solution of the Dirichlet problem 

푄푢 = 0 in퐷 ,																																		
푢(푥) = 1 on	휕퐷 ∩ {푥:퐺(푥) = 푀},
푢(푥) = 0 on	휕퐷 ∩ {푥:퐺(푥) = 푘},

																																			(35) 

Let 퐶 > 0 such that 퐺 ≥ 퐶  on {푥:퐺(푥) = 푀}. Then by the maximum principle 
0 ≤ 푣 ≤ 퐶퐺. For k big enough, the set 휕퐷 ∩ {푥 ∶ 퐺(푥) = 푀}is independent of 
푘, and by the maximum principle 푣  is a bounded nondecreasing sequence, 
converging to a positive function 푣  which solves the equation 푄푢 = 0 in 퐾 \{0}, 
and satisfies 푣 ≤ 퐶퐺 in 퐾 \{0}. On the other hand, we have an explicit formula 
for 푣 : 

푣 (푥) =
log 푘 − 푤(푥)
log푘 − log푀

. 

Hence 푣 = 1, and consequently 퐺 ≥ 퐶  in 퐾 \{0} which contradicts our 
assumption. 

A similar argument shows that lim inf → 퐺(푥) = 0 cannot happen. Hence, we 
obtain a contradiction to our assumption that 푄 is subcritical in Ω⋆. 

We present three proofs of Theorem (2.2.2). The shortest one uses the log 
solution for 푃 −푊, as well as the notion of minimal growth and is as follows: 

Now, we prove that for any 휆 > 1 the equation (푃 − 휆푊)푢 = 0 does not admit 
any positive solution neither in any neighborhood of infinity in Ω, nor in any 
punctured neighborhood of 0. 
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We first state the following lemma. 

Lemma (2.2.3) [2]:  

Let 푣  be two positive solutions of the equation 푃푢 = 0, 푗 = 0,1, in a domain 
Ω, and let 푣 ∶= 푣 푣⁄ . Then for any 휆 ∈ ℝ and 훼 ∈ ℂ satisfying 휆 = 4훼(1 − 훼), 
the function 

푣 (푥) ∶= 푣 (푥) 푣 (푥) = 푣 (푥)푣 (푥)																															(36) 

is a solution of the equation 

[푃 − 휆푊(푥)]푢 = 0						inΩ,																																														(37) 

where 

																																																				푊(푥) ∶=
|∇푣|
4푣

≥ 0.																																																				(38) 

We have the following theorem. 

Theorem (2.2.4) [2]: 

Under the assumptions of Theorem (2.1.14) we have 

휆 (푃,푊,Ω) = 휆 (푃,푊,Ω⋆) = 1. 

More precisely, for any 휆 > 1 the equation (푃 − 휆푊)푢 = 0 does not admit any 
positive solution neither in any neighborhood of infinity in Ω, nor in any punctured 
neighborhood of 0. 

Proof: 

To simplify the notations we assume that 푢 = ퟏ in the assumptions of Theorem 
(2.1.14) (in particular, 푃ퟏ = 0 in Ω). The general case then follows by ground state 
transform (see Proposition (2.1.17)). 

Fix 휆 > 1 and 퐾 a compact subset of Ω containing 0. We need to show that the 
operator 푃 − 휆푊 cannot be nonnegative on 퐾 ∶= Ω\퐾. 

By Lemma (2.2.3), we have 
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(푃 − 휆푊)퐺 = 0					in퐾 , 

where 훼 is a complex number satisfying 4훼(1 − 훼) = 휆. Inverting the relation, we 
get that 

(푃 − 휆푊)퐺 = 0, 

where 

휉 ∶=
√휆 − 1

2
. 

By taking the real part 

휑 ∶= ℜ픢 퐺 cos(휉 log(퐺)), 

we obtain an oscillatory solution of the equation 

(푃 − 휆푊)푢 = 0			in퐾 . 

We claim that the existence of such an oscillatory solution 휑 implies that 푃 −
휆푊is supercritical in 퐾  (i.e. 푃 − 휆 ≱ 0 in 퐾 ). 

Indeed, since lim → 퐺(푥) = 0, we can find a connected component 푈 of the 
open, relatively compact set {푥 ∶ 0 < 푎 < 퐺(푥) < 푏} contained in 퐾 , where 푎 and 
푏 are chosen so that 

cos(휉 log푎) = cos(휉 log 푏) = 0, 

and such that 휑 has a constant sign on 푈, for example 휑 > 0 on 푈. Then since 휑 
vanishes on the boundary of 푈 and is positive on 푈, it has a local maximum point 
in 푈. If the generalized maximum principle for 푃 − 휆푊 would hold, we would 
deduce that 휑 is zero on 푈, which is a contradiction. Therefore, the generalized 
maximum principle for 푃 − 휆푊 does not hold in 퐾 , and hence 푃 − 휆푊 ≱ 0 in 
퐾 . Since 퐾 is an arbitrary compact set containing 0, it follows that 푃 − 휆푊 
cannot admit a positive (super)solution in any neighborhood of infinity in Ω. 

Similarly, one shows that for any 휆 > 1, the generalized maximum principle for 
푃 − 휆푊 does not hold in any punctured neighborhood of the origin. 
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The next result demonstrates that the asymptotic behavior of the constructed 
optimal Hardy-weight near 0 is exactly like the classical Hardy potential near the 
origin. Without loss of generality we may assume that the matrix 퐴 = 푎 at 0 is 
equal to the identity matrix. 

Theorem (2.2.5) [2]: 

Assume that 푛 ≥ ퟑ, the coefficients of 푷 are smooth enough near 0, and 
푎 (0) = 훿 . Suppose further that the assumptions of Theorem (2.1.14) holds true. 
Then 

lim
→

|푥| 푊(푥) = 퐶 =
푛 − 2

2
. 

Proof: 

It is well known that near the origin we have 퐺(푥)	~	|푥| . Moreover, we 
know also the asymptotic near 0 of |∇퐺(푥)|. Hence, an elementary calculation 
shows that 

lim
→

|푥| ∇

4
= 퐶 . 

The next result demonstrates that if 푃 is symmetric, Theorem (2.2.4) implies 
that the decay of the weight 푊 near infinity is "optimal" in the following sense. 

Corollary (2.2.6) [2]: 

Suppose that 푃 satisfies the assumptions of Theorem (2.1.14), and assume 
further that 푃 is a symmetric operator. Then for every 휆 > 1and every locally 
regular potential 푊 such that 푊 = 푊 outside a compact neighborhood of 0, the 
(Friedrichs extension of the) operator 푃 − 휆푊 has an infinite negative spectrum, in 
the sense that 

sup dim(퐹) ∶ 퐹 ⊂ 풟 , (푞), 푞|퐹 < 0 = ∞, 

where 푞 is the quadratic form associated to 푃 − 휆푊. 
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In particular, if 

lim
→

푊(푥) = 0, 

then (the Friedrichs extension of) 푃 − 휆푊 has an infinite number of negative 
eigenvalues accumulating at zero. 

Proof: 

In view of 휆 (푃,푊,Ω) = 휆 푃,푊,Ω , the first part follows from Theorem 
(2.2.4). In fact, 휆 푃,푊,Ω = 1implies that for every 휆 > 1, the operator 푃 − 휆푊 
cannot be nonnegative in any neighborhood of infinity, that is 휆 푃 −
휆푊,ퟏ,Ω) ≤ 0. For the sake of completeness, that the operator 푃 − 휆푊 has a finite 
negative spectrum if and only if 휆 푃 − 휆푊,ퟏ,Ω > 0. 

The negative spectrum is the union of the negative essential spectrum and the 
negative eigenvalues of finite multiplicities. However, under the condition 
lim → 푊(푥) = 0, the essential spectrum of the Friedrichs extension of 푃 − 휆푊 is 
contained in [0,∞). 

Under the hypotheses of Theorem (2.1.14), we know (by Theorem (2.2.2)) that 
the operator 푃 −푊 is critical in Ω⋆. Let 휑  be the ground state of 푃 −푊, and 휑∗  
be the ground state of 푃⋆ −푊 (which is also a critical operator in Ω⋆). We study 
integrability properties of these ground states. In particular, if 푃 is symmetric, we 
study whether the corresponding ground state belongs to 퐿 (Ω⋆,푊d푣). Note that 
since 휑  is continuous its integrability is determined by its behavior at infinity and 
zero. 

Definition (2.2.7) [2]:  

Assume that 푃 −푊 is critical in Ω⋆, and let 휑  and 휑⋆ be the ground states of 
푃 −푊, and 푃⋆ −푊, respectively. We say that 푃 −푊is null-critical at infinity if  

휑 (푥)휑⋆(푥)푊
\

d푣 = ∞, 

for (any) compact set 퐾 containing zero. Similarly, we define null-criticality at 
zero. 
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We have: 

Theorem (2.2.8) [2]: 

Under the assumptions of Theorem (2.1.14), the operator 푃 −푊 is null-critical 
at infinity and at zero. 

Proof: 

Recall that the explicit form of 휑  is known. On the other hand, in contrast to 
the symmetric case, the explicit form of 휑 is unknown in the nonsymmetric case. 
Consequently, the proof is much subtler. Therefore, to illustrate the idea of the 
proof in the general case, we first present the proof in the symmetric case. 

So, let us first assume that 푃 is a symmetric operator. We assume as before that 
푃ퟏ = 0, the general case then follows by the ground state transform. Recall that for 
휉 ≥ 0, the function 

휑 ∶= 퐺 ⁄ cos(휉 log(퐺)) 

solves the equation 

(푃 − (4휉 + 1)푊)푢 = 0. 

In particular 휑 = 퐺 ⁄  is the ground state. 

Define a set 

Ω ∶= 푥 ∶ −
휋

2휉
< log퐺(푥) < 0 																																				(39) 

and consider the solutions 휑 ,휑 . These solutions as formal eigenfunctions of a 
mixed value boundary problem on Ω  lead to the following orthogonality relation  

휑 휑 푊 d푣 = 0.																																															(40) 

Let us prove (40) in detail. Assume first that Ω is regular enough, then we have 
the following Green formula for 푃: 
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푃 휑 휑 − 휑 푃 휑 d푣 = 〈퐴∇ 휑 휑 − 퐴∇ 휑 휑 , 휎⃗〉 푑휎,					(41) 

where d휎 is the induced measure on 휕Ω  and 휎⃗ is the outward unit normal 
vector field on 휕Ω . By construction, the functions 휑 ,휑  vanish on the set 
log퐺 = −휋 (2휉)⁄ . On the other hand, on the part of the boundary contained in 
{log퐺 = 0} we have 

휑 = 1					and∇휑 = ∇휑 																																															(42) 

for all 휁. It follows that the right hand side of the Green formula (41) vanishes. 
This establishes (40) since the left hand sides of (40) and (41) are nonzero multiple 
of each other. 

For a nonregularΩ  the claim follows by approximation of  Ω by regular 
domains. 

Now, assume that 휑 ∈ 퐿 (Ω\퐾,푊d푣) and note that 

휑 ≤ 휑  

for all 휉 ≥ 0. Letting 휉 → 0 in (40), we conclude by the dominated convergence 
theorem that  

휑 푊
{ }

d푣 = 0, 

which is a contradiction since 휑 > 0 and 푊 ≩ 0 on {퐺 < 1}. The proof of the 
null-criticality near zero is analogous. 

The general case: The proof follows the same idea as above, but since an 
explicit formula for the ground state 휑⋆ of the adjoint operator 푃⋆ −푊 is not 
available, we construct instead an approximating sequence for 휑∗ . 

Consider the domain Ω defined by (39), and let 휑⋆ be the solution of the 
Dirichlet problem 
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(푃⋆ −푊)푢 = 0 inΩ ,																														
													푢(푥) = 휑⋆ on{log퐺 = 0},													
													푢(푥) = 0 	on{log퐺 = −π (2ξ)⁄ }.

																										(43) 

Since 푃⋆ −푊 is subcritical in Ω , the generalized maximum principle implies that 
휑⋆ is positive, 휑⋆ ≤ 휑∗ on Ω , and the sequence 휑∗  is increasing with respect to 
휉. 

Therefore, as 휉 ↘ 0, we have 휑⋆ → 휑⋆ ≤ 휑⋆ locally uniformly in Ω⋆\퐾, where 
퐾 = {퐺 > 1} is a neighborhood of zero, and 휑∗ is a nonnegative solution of the 
equation (푃⋆ −푊)푢 = 0 in Ω\퐾. Since 휑⋆ is a ground state of 푃⋆ −푊 in Ω⋆, it 
has minimal growth at infinity of Ω, and hence 휑⋆ ≤ 휑⋆. Thus, 휑⋆ = 휑⋆, and we 
obtain 

lim
↘
휑⋆ = 휑⋆. 

We use Green's formula for the operator 푄 ∶= 	푃 − 푊: 

푄[푢]휑⋆ d푣 = 푄[푢]휑⋆ − 푢푄⋆ 휑⋆ d푣 = 퐵.푇. ,																								(44) 

where 푢 is either 휑  or 휑 , and 퐵.푇. is the corresponding boundary term. We 
claim that 퐵.푇. is independent of the choice of either 휑  or 휑  . Indeed, the claim 
readily follows from (42),(43), and the explicit form 

												퐵.푇. = 〈퐴∇[휑 ]휑⋆ − 퐴∇ 휑⋆ 휑 + 퐛휑 휑⋆ − 퐛휑 휑⋆, 휎⃗〉
{ }

푑휎.										(45) 

We have 

4휉 휑 휑⋆푊 d푣 = 푄 휑 휑⋆ d푣 = 퐵.푇. 

= 푄 휑 휑⋆ d푣 = 4(3휉) 휑 휑⋆푊 d푣.					 

Hence, 
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휑 휑⋆푊 d푣 = 9 휑 휑⋆푊 d푣. 

Assuming that 휑 휑⋆푊 is 푣-integrable inΩ\퐾, we can pass to the limit 휉 → 0 
and obtain the contradiction 1 = 9. The case of a nonregular domain 
Ω  can again be treated by approximations. The proof of null-criticality near zero 
is analogous. 

Corollary (2.2.9) [2]: 

Assume further that 푃 is subcritical in Ω, symmetric in 퐿 (Ω, d푣), and 푃ퟏ = 0. 
Then 

|∇퐺|
퐺

																																																																(46) 

is not 푣-integrable neither near 0 nor near infinity in 훺. 

We assume that 푃 is a subcritical symmetric operator defined on 훺. We 
continue our study of the supersolution construction with the pair (푢,퐺), where 
퐺(푥) = 퐺 (푥, 0)and 푢 satisfy (17). Moreover, we assume that the corresponding 
(optimal) Hardy-weight 푊 is strictly positive in Ω⋆. 

Recall that for any 휆 > 1, the function 

휑 ∶= 휑(휉,푥) = 푢
퐺
푢

⁄

exp(i휉 log(퐺 푢⁄ )) 																												(47) 

with 휉 = ±√휆 − 1/2 solves the equation 

(푃 − 휆푊)푢 = (푃 − (1 + 4휉 )푊)푢 = 0					inΩ⋆. 

So, for any 휆 > 1 the equation (푃 − 휆푊)푢 = 0 admits (at least two) 
 "nongrowing" generalized eigenfunctions. Therefore, Snol's principle (or 
Blochtype property) suggests that the spectrum 휎 and the essential spectrum 휎  
of 푊 푃 in 퐿 (Ω⋆,푊d푣) is equal to [1,∞). In fact, for such an operator 푃, we 
find an invariant subspace "spanned" by the functions 휑  on which 푃 has a 
canonical form with purely absolutely continuous spectrum that is equal to [1,∞). 
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Define 풰 (Ω⋆)to be the space of measurable functions that are proportional to 
푢 on the level sets of 퐺 푢⁄ , and denote by 퐿 (Ω⋆,푊d푣) the space 퐿 (Ω⋆,푊d푣) ∩
풰 (Ω⋆). Explicitly, 푣 ∈ 풰 (Ω⋆)if and only if 푣 = 푢푓(퐺 푢⁄ ) for some 
measurable function 푓 ∶ (0,∞) → ℂ. 

Lemma (2.2.10) [2]: 

Under the normalization 푢(0) = 1, the map 

퐿 (Ω⋆,푊d푣) → 퐿 (0,∞),
1

4푡
d푡 , 

																																																						푣 = 푢푓(퐺 푢⁄ ) ↦ 푓(푡),																																															(48) 

is an isometry. 

Proof: 

Assume first that 푃 has smooth coefficients. Then by Sard's lemma, almost 
every point 푡 ∈ ℝ  is a regular value of the function 퐺 푢⁄ , and hence for such 
points t, the set {퐺 푢⁄ = 푡} is a smooth (푛 − 1)-dimensional submanifold. Note 
also that the function 푊|∇(퐺 푢⁄ )|  is smooth in Ω⋆(see the computation below). 

On the other hand, by Green's formula, for any smooth neighborhood Ωof 0, we 
have 

〈푢퐴∇퐺 − 퐺퐴∇푢, 휎⃗〉 d휎 = 훾,																																						(49) 

where 훾 = 푢(0) = 1. 

Consequently, the coarea formula and (49) imply that for any two functions in 
퐿 (Ω⋆,푊d푣)we have 

푢푓
퐺
푢

푢푔∗
퐺
푢

푊
⋆

d푣 = 푢푓
퐺
푢

푢푔∗
퐺
푢

푊
|∇(퐺 푢⁄ )|⋆

d푣										 

																																					= d푡 푓(푡)푔∗(푡)푢
1

4푡
〈퐴∇

퐺
푢

, 휎⃗〉
{ ⁄ }

d휎 
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																																																= d푡 푓(푡)푔∗(푡)
1

4푡
〈(푢퐴∇퐺 − 퐺퐴∇푢), 휎⃗〉

{ ⁄ }
d휎 

																																															= 푓(푡)푔∗(푡)
1

4푡
d푡,																																																			(50) 

where in passing from the second line to the third line of (50) we used the coarea 
formula, and that ∇(퐺 푢⁄ ) is parallel (in the metric |	⋅	| ) to the normal vector 휎⃗ of 
the level set {퐺 푢⁄ = 푡}, and therefore, 

푊
|∇(퐺 푢⁄ )| =

1
4(퐺 푢⁄ ) |∇(퐺 푢⁄ )| =

〈퐴∇(퐺 푢⁄ ), 휎⃗〉
4푡

. 

Hence, in the smooth case we have the isometry 

푢푓
퐺
푢

푢푔∗
퐺
푢

푊
⋆

d푣 = 푓(푡)푔∗(푡)
1

4푡
d푡.																										(51) 

The regular case is obtained by a standard approximation argument (note that one 
may assume that 푢 = ퟏ). 

In the sequel of the present section, we assume that the positive solution 푢 is 
normalized so that 푢(0) = 1. 

Before proceeding with the study of the essential spectrum we note that the 
proof of Lemma (2.2.10) implies the following corollary, which allows us to 
estimate in average the potential 푊, and provides (in the symmetric case) an 
alternative proof of the null-criticality of the operator 푃 −푊 near 0 and ∞. 

Corollary (2.2.11) [2]: 

Suppose that the hypotheses of Theorem (2.1.3) are satisfied, and that 푢(0) =
1. Then for any 0 < 푎 < 푏 and 휉 ∈ ℝ we have 

푢퐺푊 d푣 = 휑 푊 d푣 =
1
4

(log 푏 − log푎).																			(52) 
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Proof: 

As in (50), we use the coarea formula on the domain 푎 ≤ ≤ 푏  (instead of the 

domain Ω⋆) with the functions 푓(푥) = 푥 and 푔(푥) = ퟏ, to obtain 

푢퐺푊 d푣 =
1
4

푡 d푡 =
1
4

(log 푏 − log 푎). 

Theorem (2.2.12) [2]: 

Suppose that the hypotheses of Theorem (2.1.3) are satisfied, and 푊 > 0 in Ω⋆. 
Then the spectrum 휎 and the essential spectrum 휎  of (the Friedrichs extension 
of) 푃 ∶= 푊 푃 acting on 퐿 (Ω⋆,푊d푣)satisfy 

휎 푃,Ω⋆ = 휎 푃,Ω⋆ = [1,∞). 

In fact, the spectrum of 푃 restricted to 퐿 (Ω⋆,푊d푣) is purely absolutely 
continuous with respect to the Lebesgue measure. 

Moreover, for any neighborhood 푈 ⊂ Ω⋆of 0 or infinity of Ω, the (essential) 
spectrum of the Friedrichs extension of the operator 푃 on 퐿 (푈,푊d푣)satisfies 

휎 푃,푈 = 휎 푃,푈 = [1,∞). 

 

Proof: 

Using formulas (23) and (24) we find that 

1
푊
푃 푢푓(퐺 푢⁄ ) = −4푢푓 (퐺 푢⁄ )

퐺
푢

.																																(53) 

This proves that 퐿 (Ω⋆,푊d푣)is an invariant subspace of  푃, and the operator 
restricted to this subspace is unitarily equivalent to the symmetric operator 

퐷 ∶ 퐿 (0,∞),
1

4푡
d푡 → 퐿 (0,∞),

1
4푡

d푡  
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defined by 

(퐷푓)(푡) ∶= −4푡 푓 (푡).																																															(54) 

The spectral representation of 퐷, in terms of the Mellin transform (with 푛 = 1), 
has been derived in Section (2.1) (see in particular, (11)). More explicitly, it is the 

composition of the Mellin transform with the isometry from 퐿 (0,∞), d푡 to  

퐿 (0,∞), d푡 , which is given by 

																																																									푓(푡) ↦
1
2
푓

1
푡

.																																																							(55) 

It follows 

																																		휎 퐷, (0,∞) = 휎 퐷, (0,∞) = [1,∞).																																		(56) 

Recall that by Theorems (2.2.2) and (2.2.5) we have 

휎 푃,Ω⋆ = 휎 푃,Ω⋆ ⊂ [1,∞). 

Therefore, (57) implies that 

휎 푃,Ω⋆ = 휎 푃,Ω⋆ = [1,∞). 

It remains to explain why we can localize the spectral result at a neighborhood 
푈 ⊂ Ω⋆ of either 0 or infinity of Ω. 

It is not difficult to check using the above results that 푃 on 퐿 (Ω⋆,푊d푣)is 
unitarily equivalent to the operator  

퐷푓 = −4(푡 푓 ) de ined	on퐿 (0,∞), d푡 . 

Moreover, a neighborhood of 0 (resp. of ∞) in Ω⋆ corresponds to a neighborhood 
of 0 (resp. of ∞) in (0,∞). 

Therefore, it is enough to prove that the essential spectrum of 퐷 restricted to a 
neighborhood of 0 or ∞ in (0,∞) is [1,∞). First, we know that the essential 
spectrum is preserved under compactly supported perturbation, and this implies 

that 휎 퐷, (0,∞)  is equal to the union of 휎 퐷,푈  and 휎 퐷,푈 , where 
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푈  (resp. 푈 ) is any neighborhood of 0 (resp. ∞) in (0,∞). Let 푈  be a 
neighborhood of 0, and define 푈  to be the neighborhood of ∞ obtained from 푈  
by the transformation 푡 ↦ . Consider the following isometry 푇 between 

퐿 (푈 , d푡) and 퐿 (푈 , d푡) given by 

푇푓(푡) =
1
푡
푓

1
푡

. 

A computation shows that 

푇퐷 = 퐷푇, 

and this implies that the essential spectrum of 푃 restricted to 푈  is equal to the 
essential spectrum of 푃 restricted to 푈 . Since the union of these two essential 
spectra is [1,∞), we get that each one is equal to [1,∞). 

Collecting the transformations (48),(54), and (55), we obtain a spectral 
representation of 푃 = 푊 푃 restricted to 퐿 (Ω⋆,푊d푣). 

We provide below a more detailed and explicit construction of the above 
transform ℱ using methods related to classical Fourier transform. This also gives 
independent proof of Theorem (2.2.12). 

 

 

Alternative proof: 

The idea is to find a spectral representation of 푃 restricted to 퐿 (Ω⋆,푊d푣), 
that is a unitary operator 

푈 ∶ 퐿 (Ω⋆,푊d푣) ⟼ 퐿 (ℝ) 

such that 푈푃푈  is the multiplication by a real function with values in [1,∞). 
Since the ground state transform is unitary, we may assume that 푢 = 1. For the 
sake of brevity, we will denote ℱ푓(휉) by 푓(휉). We thus have to prove that for 
every 푓 ∈ 퐶 (Ω⋆)which is constant on the level sets of 퐺, the following two 
identities hold 
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|푓| 푊
⋆

d푣 = 푓 푊
ℝ

d휉				(Plancherel − type	formula)														(57) 

and 

								푓(푥) =
2
휋

푓(휉)휑(−휉,푥)
ℝ

d휉			∀푥 ∈ Ω⋆(the	inversion	formula).							(58) 

For a fixed 푟 > 0, we define Ω(푟) to be the open, relatively compact set 

Ω(푟) ∶= {−푟휋 < log(퐺) < 푟휋}, 

and for any 푘 ∈ ℤ, we denote 

휑 (푥) ∶= 휑
푘
푟

, 푥 = √퐺 exp i
푘
푟

log(퐺) 					푥 ∈ Ω(푟). 

Consider the  "torus"퐓  to be the closure of Ω(푟) divided by the equivalence 
relation 

푥 ≡ 푦 ⇔ log퐺(푥) = log퐺(푦) mod(2휋푟). 

The set of complex valued continues functions 퐶(퐓 ;ℂ) can be identified to the 
set of complex valued continuous functions on the closure of 훺(푟), each of which 
is constant on the level sets of 퐺, and its value on the set {log퐺 = −휋푟} is equal to 
its value on the set {log퐺 = 휋푟}. In particular, for every 푘 ∈ ℤ, we have 

exp 푖 log퐺 ∈ 퐶(퐓 ;ℂ). We also define the space 퐿 (퐓 ;ℂ), with the induced 

measure from Ω . We want to decompose the elements of 퐿 (Ω(푟);ℂ) "Fourier 
series" with respect to the family {휑 } ∈ℤ. First, we check the orthonormality. 

Corollary (2.2.13) [2]: 

The operator ℱ given by 

																										ℱ푓(휉) ∶=
2
휋

푓(푥)휑(휉, 푥)푊(푥)
⋆

d휈(푥)					휉

∈ ℝ,																						(59) 
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(where 휑(휉, 푥) is defined by (47)) is a well defined unitary operator from 
퐿 (Ω⋆,푊d푣) onto 퐿 (ℝ, d휉), whose inverse is given by 

ℱ 푔(푥) =
2
휋

푔(휉)휑(−휉, 푥)
ℝ

d휉. 

Furthermore, 

ℱ
1
푊
푃ℱ 푓(휉) = (1 + 4휉 )푓(휉). 

Lemma (2.2.14) [2]: 

For any 푟 > 0 it holds 

2
휋푟

휑 휑 푊
( )

d푣 = 훿 , 				∀푘, 푙 ∈ ℤ. 

Proof: 

Notice that 휑 = 휑 . If 푘 ≠ 푙 and 푘 ≠ −푙, then 휑 and 휑 are generalized 
eigenfunctions of 푃 with different associated eigenvalues, and to prove their 
orthogonality we need to establish the identity 

(푃[휑 ]휑 − 휑 푃[휑 ])
( )

d푣 = 0. 

To this end, we have to check that the boundary term in the corresponding Green 
formula is zero. This boundary term is given by 

퐵.푇.≔ 〈퐴∇[휑 ]휑 − 퐴∇[휑 ]휑 , 휎⃗〉
( )

d휎. 

We compute 

∇휑(휉,⋅) = exp(i휉 log(퐺)) ∇퐺 ⁄ + i휉퐺 ⁄ exp(i휉 log(퐺))∇퐺. 
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Since exp i log(퐺)  and exp i log(퐺) are constant (equal to (−1)  and(−1)  

respectively) on 휕훺(푟), we have 

퐵.푇. = 푖(−1)
(푘 − 푙)
푟

〈퐴∇[퐺], 휎⃗〉
( )

d휎. 

On the other hand, applying the Green formula on the pair (1,퐺), we obtain 

푃[퐺]ퟏ
( )

d푣 − 퐺푃[ퟏ]
( )

d푣 = 〈퐴∇[퐺]ퟏ − 퐴∇[ퟏ]퐺, 휎⃗〉
( )

d휎, 

and recalling that we assumed that 푃ퟏ = 0, and that also 푃퐺 = 0 on Ω(푟), we get 

〈퐴∇[퐺], 휎⃗〉
( )

d휎 = 0, 

and thus 퐵.푇. = 0. 

If 푘 ∈ ℤ and 푙 = −푘 ≠ 0, then 휑 휑 = 휑 휑 and the orthogonality of 휑  
and 휑  have been already established. On the other hand, for 푘 ∈ ℤ, and 푙 = 푘, we 
have 

|휑 | 푊
( )

d푣 = 퐺푊
( )

d푣, 

and the integral is equal to 휋푟 2⁄  according to Corollary (2.2.11).  

Continuation of the alternative proof of Theorem (2.2.12): Since 퐓  is compact, the 
Stone-Weierstrass theorem implies that the vector space generated by the sequence 
{exp(i푘 푟 log(퐺)⁄ )} ∈ℤis dense in 퐶(퐓 ;ℂ) (in the topology of uniform 
convergence). Therefore, the orthonormal series (휋푟 2⁄ ) ⁄ 휑 ∈ℤis complete in 

퐿 (Ω(푟); ℂ). Consequently, by Parseval's equalities, the following discrete 
analogues of (57) and (58) are available for every 푓 ∈ 퐿 (Ω(푟);ℂ): 

|푓| 푊
퐓

d푣 =
1
푟

푓
푘
푟

∈ℤ

																																								(60) 
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and 

																																					푓(푥) =
1
푟

2
휋

푓
푘
푟

∈ℤ

휑 −
푘
푟

, 푥 																																							(61) 

Fix now 푓 ∈ 퐶 (Ω⋆) ∩ 퐿 (Ω⋆,푊d푣), and choose푟 > 0 such that the support 
of 푓 is included in Ω(푟) (this is possible since the fact that 퐺 tends to 0 at infinity 
implies that {Ω(푟)} is an exhaustion of Ω⋆). Let us apply (60) and (61) to the 
function 푔 ∶= exp(i훼 log(퐺)) 푓, for 훼 ∈ (0, 1 푟⁄ ): we get 

|푓| 푊
퐓

d푣 =
1
푟

푓
푘
푟

+ 훼
∈ℤ

, 

and 

푓 =
1
푟

2
휋

푓
푘
푟

+ 훼
∈ℤ

휑 −
푘
푟
− 훼,⋅ . 

We integrate these two equalities with respect to 훼 ∈ (0, 1 푟⁄ ): recalling that 푓 has 
support in Ω(푟), we obtain 

|푓| 푊
⋆

d푣 = 푓
ℝ

d휉, 

and 

푓(푥) =
2
휋

푓(휉)휑(−휉, 푥)
ℝ

d휉. 

This is exactly (57) and (58). 

We conclude this section with the following conjecture that arises naturally 
from our study.  

Section (2.3): The Induced AgmonMetric and Rellich-Type 
Inequalities with Boundary Singularities and Applications 
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In the this section we prove that the Agmon metric corresponding to optimal 
Hardy-weight 푊 in Ω⋆ is complete. The completeness of Ω⋆ in this metric implies 
sharp decay estimates for solutions of the equations the 푃푢 = 푓 in Ω⋆ (below).  

Lemma (2.3.1) [3]: 

Suppose that the assumptions of Theorem (2.1.14) are satisfied and let 푊 be the 
corresponding optimal Hardy-weight. Assume further that 푊 is strictly positive. 
Then Ω⋆ is complete in the Agmon (Riemannian) metric 

																				d푠 ∶ 푊(푥) 푎 (푥)
,

d푥 d푥 , where 푎 ∶= 푎 .											(62) 

Proof: 

Let 훾 be a curve in Ω⋆ such that 훾(푡) → ∞ in Ω⋆when 푡 → 푇. Here, 푇 is finite or 
infinite. We have to show that the length 퐿(훾) of 훾 for the metric d푠  is infinite. 
Denoting 푣 ∶= , we compute 

							퐿(훾) = 푊 훾(푠) |훾 | d푠 =
1
2

|∇ log 푣| 훾(푠) |훾 | d푠.											(63) 

Define ∇  to be the gradient with respect to the metric |⋅	| . For a function 푓 and a 
vector 푣 ∈ 푇 훺, by definition of the gradient, we have the following identity 

d푓 (푣) = 〈∇푓, 푣〉 = 〈퐴∇ 푓,푣〉, 

which shows that ∇ = 퐴 ∇. From this, we see that 

|∇ 푓| = 〈퐴 ∇ 푓,∇ 푓〉 = 〈퐴∇푓,∇푓〉 = |∇푓| . 

Using this last identity, we get 

퐿(훾) =
1
2

|∇ log 푣| 훾(푠) |훾 (푠)| d푠 ≥
1
2

d
d푠

log 푣 훾(푠) d푠 

≥
1
2

d
d푠

log 푣 훾(푠) d푠 =
1
2

lim
→

log 푣 훾(푡) − log 푣 훾(0) . 
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Since 훾(푡) → ∞ in Ω⋆ as 푡 → 푇, and lim → |log 푣(푥)| = ∞, we deduce that 
퐿(훾) = ∞.  

Let 푃 be a Schrödinger operator of the form 

																																						푃푢 = − 휕 푎 (푥)휕 푢
,

+ 푐(푥)푢																																					(64) 

defined on a domain Ω ⊂ ℝ . A theorem of Agmon states that under certain 
conditions on 푃, solutions 푢 of the equation 푃푢 = 푓 in Ω that do not grow too fast, 
in fact, decay rapidly. The main condition which is required for the validity of the 
theorem is given by 

(푃휙,휙) ≥ 휆(푥)|휙| d푥			∀휙 ∈ 퐶 (Ω),																															(65) 

where 휆 is a nonnegative weight function. The decay is then given in terms of a 
function ℎ satisfying 

|∇ℎ(푥)| < 휆(푥)a. e.		Ω																																									(66) 

Any Hardy-weight 푊 given by (27) provides us with a natural candidate for 휆 and 
ℎ. Assume that our Hardy-weight 푊 obtained by the supersolution construction 
with a pair (푣 , 푣 ) is strictly positive a.e, in Ω, and set 

휆 ∶= 푊,					ℎ ∶=
휇
2

log
푣
푣

, 

where 0 < 휇 < 1. Then 휆 and ℎ clearly satisfy (66). Suppose also that a solution 푢 
of 푃푢 = 푓 in  훺 satisfies the growth condition. By Lemma (2.3.1) the induced 
Riemannian metric 

																			d푠 ∶= 푊(푥) 푎 (푥)
,

d푥 d푥 ,			where 푎 ∶= 푎 																(67) 

is complete. Therefore, the following Rellich-type inequality holds true 
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(1 − 휇 ) |푢| 푊(푥)
푣
푣

d푥 ≤
|푃푢|
푊(푥)

푣
푣

d푥.															(68) 

Assume that for some 0 < 휇 < 1 we have 

|푃푢|
푊(푥)

푣
푣

d푥 < ∞. 

Then letting 휇 → 0 (using the monotone and dominated convergence theorems) we 
obtain the following Rellich-type inequality: 

|푢| 푊(푥) d푥 ≤
|푃푢|
푊(푥) d푥.																																					(69) 

Indeed, without loss of generality assume that 푃ퟏ = 0. Then using (23) and 
(24) it follows that for any two smooth enough functions 푢 and 푣 with 푢 ∈ 퐶 (Ω) 
we have 

(푃푢,푢푣 ) = (푃(푢푣), 푢푣) +
1
2

(푢 ,푃푣 ) − (푃푣, 푢 푣).																					(70) 

Now let 푤 be a positive solution of the equation 푃푤 = 0 in Ω, and let 0 ≤ 휇 ≤
1. We use (70) with the pair 푢 ∈ 퐶 (Ω) and 푣 = 푤 ⁄ , recalling that 

푃푤 = 4휇(1 − 휇)푊푤 ,			where	푊 ∶=
푃푤 ⁄

푤 ⁄ . 

It follows that 

(푃푢, 푢푤 ) = 푃 푤 ⁄ ,푤 ⁄ 푢 + [2휇(1 − 휇)− 휇(2 − 휇)](푢 ,푊푤 ) 

																																																		

≥ (1 − 휇 ) 푢 푊푤 d푥,																																												(71) 

where we used the Hardy inequality 푃 −푊 ≥ 0 to derive the second line. Assume 
now that 푊 > 0 in Ω, then the Cauchy-Schwarz inequality implies the following 
Rellich-type inequality 
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(1 − 휇 ) 푢 푊퓌 d푥 ≤ (푃푢)
1
푊
퓌 d푥			∀푢 ∈ 퐶 (Ω). 

Therefore, for a general symmetric, subcritical operator 푃, and a positive Hardy-
weight W obtained by the supersolution construction with a pair (푣 , 푣 )of two 
positive solutions, we obtain for 0 ≤ 휇 ≤ 1 that 

(1 − 휇 ) |푢| 푊(푥)
푣
푣

d푥 ≤
|푃푢|
푊(푥)

푣
푣

d푥		∀푢 ∈ 퐶 (Ω).														(72) 

Moreover, using an approximation argument, it follows that if 푃 −푊 ≥ 0is 
critical in Ω, and 0 ≤ 휇 < 1, then (1 − 휇 ) is the best constant for the inequality 
(72). 

We summarize these results in the following corollary. 

Corollary (2.3.2) [3]: 

Assume that 푃 is a symmetric subcritical operator in Ω, and let 푊 > 0 be a 
Hardy-weight obtained by the supersolution construction with a pair (푣 ,푣 ) of 
two positive solutions 푣  and 푣  of the equation 푃푢 = 0 in Ω. Fix 0 ≤ 휆 ≤ 1. Then 

(i) For fixed 0 ≤ 휇 < 1 and all 푢 ∈ 퐶 (Ω) the following Rellich-type 
inequality holds true 

																			휆(1 − 휇 ) |푢| 푊(푥)
푣
푣

d푥

≤
|푃푢|
푊(푥)

푣
푣

d푥.																				(73) 

(ii) For any 0 ≤ 훼 ≤ 1 and all 푢 ∈ 퐶 (Ω) the following Hardy-Rellichtype 
inequality holds true 

휆 |푢| 푊(푥) d푥 ≤ 훼 푢푃[푢]푑푥 + (1 − 훼)
|푃푢|
푊(푥) d푥																				(74) 

(iii) If 푃 −푊 is critical in Ω, then 휆 = 1 is the best constant in inequalities  
(73) and (74). 
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Example(2.3.3) [3]: 

Consider the Poisson equation in the punctured space Ω⋆ = ℝ \{0},푛 ≥ 3 with 
the optimal Hardy-weight 

푊(푥) ∶=
푛 − 2

2
|푥| . 

The corresponding induced Riemannian metric is given by 

d푠 ∶= 푊(푥) d푥 . 

By Lemma (2.3.1), Ω⋆ is complete in the above Agmon metric. By (68),(69), and 
(72), for any 0 ≤ 휇 < 1 the following Rellich-type inequality (with the best 
constant) holds true 

푛 − 2
2

(1 − 휇 )
|푢(푥)|

|푥| ( )
⋆

d푥 ≤ |∆푢| |푥| ( )
⋆

d푥		∀푢 ∈ 퐶 (Ω)					(75) 

In fact, it is known that (1 − 휇) is indeed the best constant for the above 

inequality. Note also that the choice 휇 = 2 (푛 − 2)⁄  recovers the classical Rellich 
inequality: 

푛 (푛 − 4)
16

|푢(푥)|
|푥|⋆

d푥 ≤ |∆푢|
⋆

d푥, ∀푢 ∈ 퐶 (Ω⋆). 

Now we explain how our results can be extended to the case of boundary 
singularities, where the singularities of the Hardy-weight are located at 휕훺 ∪
{∞}and not at an isolated interior point of Ω as above. So, we apply the 
supersolution construction with two global positivesolutions 푢 ,푢  of the equation 
푃푢 = 0 in Ω that have singularities "at the boundary", instead of at an interior 
point, and get an optimal Hardy-weight 푊 in the entire domain Ω. To understand 
the setting, we begin by presenting an example. 

Example (2.3.4) [3]: 

Let 푃 = −∆, and consider the cone 
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Ω ∶= {푥 ∈ ℝ 	|	푟 > 0,휔 ∈ ∑}, 

where ∑ is a Lipschitz domain in the unit sphere 푆 ⊂ ℝ , 푛 ≥ 2, and (푟,휔) 
denotes the spherical coordinates of 푥. Let 휃 be the principal eigenfunctionof the 
(Dirichlet) Laplace-Beltrami operator on with eigenvalue휆 = 휆 (∑), and set 

훼 ∶=
2 − 푛 + (−1) (2 − 푛) + 4휆

2
. 

Then for 푗 = 0 (resp. 푗 = 1) the positive harmonic function 푢 (푟,푤) ∶= 푟 휃(휔) is 
the (unique) Martin kernel at ∞ (resp. 0). 

Applying the supersolution construction with the pair (푢 , 푢 ), we obtainthe 
Hardy-weight 

푊(푥) ∶=
(푛 − 2) + 4휆

4|푥| . 

Consequently, the corresponding Hardy-type inequality reads as 

|∇휙| d푥 ≥
(푛 − 2) + 4휆

4|푥|
|휙|
|푥| d푥			∀휙 ∈ 퐶 (Ω).																		(76) 

It follows from Theorem (2.3.4) that 푊 is an optimal Hardy-weight, and thatthe 
spectrum and the essential spectrum of 푊 (−∆) is [1,∞). Note that(76) and the 
global optimality of the constant is known. 

We assume that theMartin boundary 훿훺 of Ωand 푃 is equal to the minimal 
Martin boundary and consists of 휕훺 ∪ {휉 , 휉 }, where 휕훺\{휉 , 휉 }is assumed to be 
a regular manifold of dimension 푛 − 1 without boundary (in fact, it is enough to 
assume that 휕Ω\{휉 , 휉 } is Lipschitz and satisfies the interior sphere condition). 
Note that it might be that one or two of the Martin points 휉 , 휉  belong to 휕Ω. 

We denote by Ω the Martin compactification of Ω. Hence, 

Ω ∶= Ω ∪ {휉 , 휉 }. 

We assume that there exists a bounded domain 퐷 ⊂ Ω such that 휉  and 휉 belongs 
to two different connected components of Ω\퐷that are neighborhoods of 휉  and 휉 . 
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We need the following definition of minimal growth at a portion of the 
boundary 훿훺: 

Definition (2.3.5) [3]: 

Let 휔 ⊂ 훿훺be a closed set, and let 푢 be a positive solution of 푃푢 = 0 in a 
neighborhood Ω ⊂ Ωof 휔. We say that 푢 has minimal growth at 휔 if for every 
positive supersolution 푣 of the equation 푃푢 = 0 in a relative neighborhood of 휔, 
we have 

푢 ≤ 퐶푣 

in a neighborhood Ω ⊂ Ω  of 휔. 

We need two lemmas. The first one concerns minimal growth: 

Lemma (2.3.6) [3]: 

Assume that the coefficients of 푃 are locally regular up to a Lipschitz portion 훤 
of 휕훺. Let W be a nonnegative potential which is 퐿 up to 훤, such that 푃 −푊 ≥
0 in Ω. 

(i) Let 휔 ⊂ 훤 be the closure of a nonempty open set, and let 푢 be a positive 
solution of 푃 −푊 in a relative neighborhood of 휔. The following are 
equivalent: 

a) 푢has minimal growth for 푃 −푊 at 휔. 
b) 푢 vanishes continuously on 휔. 

(ii) Let 휔 = 휔 ∪ 휔 , where 휔  and 휔  are closed sets in 훿Ω, and let 푢 be a 
positive solution of 푃 −푊 in a neighborhood of 휔. If 푢 has minimal 
growth for 푃 −푊 at 휔  and at 휔 , then 푢 has minimal growth for 
푃 −푊 at 휔. 

 

 

Proof: 

(i) First, we extend 푃 (resp. 푊) in a neighborhood 푈 of 휔 in ℝ such that the 
corresponding extension 푃 (resp. 푊) has Hölder continuous coefficients 
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(resp. the extension is 퐿 ). If 푈 is small enough, then the extended 
operator 푃 −푊 is nonnegative in 푈, and we can find a positive solution 
휃 of the equation 푃 −푊 푢	 = 0 in 푈. By elliptic regularity, 휃 ∈
퐶 , (푈), and therefore 푃 ∶= 휃 푃 −푊 휃 has Hölder continuous 
coefficients in Ω ∩ 푈. By performing a ground state transform with 
respect to 훺, we see that it is enough to prove the lemma for 푃 instead of 
푃 −푊; so we will assume that 푢 is a solution of 푃 instead. The fact that 
(ia) implies (ib) now follows from. 

For the proof that (ib) implies (ia) we may assume that 휔 is bounded. Let 
풪 ⊂ 훺be a neighborhood of 휔 on which 푢 is a positive solution of the equation 
푃푢 = 0 that vanishes continuously on 휔. Let {Ω } ∈ℕ be an exhaustion of  Ω such 
that 풪 ∶= 풪 ∩ Ω  is regular. Let 푤 ∶= lim → 푤 , where wk solves the Dirichlet 
problem 

푃푤 = 0			 in풪 ,														
푤 (푥) = 푢 on	휕풪 ∩ 휕풪 ,			
푤 (푥) = 0 on	휕Ω ∩ 휕풪 .

																																							(77) 

Then 푤 has minimal growth at 휔 (this follows from the local boundary Harnack 
principle. For every 휀 > 0, we can find 푘  big enough such that 푢 < 휀 on 휕Ω ∩
휕풪 for every 푘 ≥ 푘 . Then, since 푃ퟏ = 0, 푢 + 휀 is a solution of 푃, and by the 
maximum principle 푢 < 푤 + 휀. Letting 푘 → ∞ and then 휀 → 0, we obtain 푢 ≤ 푤, 
which concludes the first part of the lemma. 

Part (ii) follows directly from the definition of minimal growth. 

We now turn to the second lemma concerning the regularity of the 
supersolution construction and the corresponding Hardy-weight on a portion of the 
boundary where the solutions 푢  and 푢  vanish. 

 

Lemma (2.3.7) [3]: 

Let Σ be an open subset of 휕훺. Assume that 훺 is equipped with a Riemannian 
metric 픤, regular up to Σ. Let 푢  and 푢  be two positive functions defined in a 
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neighborhood Ω ⊂ Ωof Σ that are 퐶  up toΣ and vanish continuously on Σ. 
Suppose that the gradients of 푢  and 푢  restricted to vanish nowhere. Then 

푊 ∶=
1
4
∇ log

푢
푢

 

has a continuous extension up to (here the gradient and its norm are computed with 
respect to 픤 and not to the Euclidean metric). If, in addition, 푢 푢⁄ has a 
continuous extension to Σ, then 푢 푢⁄  is in fact 퐶  up to 훴. 

Proof: 

Let us denote by 휎⃗ the unit exterior normal to Σ. Since 푢  and 푢 vanishes on Σ, 
the gradient of 푢  and 푢  are collinear to 휎⃗ on Σ. Next, we claim that near we have 
for 푖 = 0,1, 

|∇푢 |
푢

=
1
훿

+ 푔 ,																																																					(78) 

where 훿 is the distance to 휕훺 with respect to the metric given by 픤, and 푔  is 
continuous up to Σ. Indeed, for 푥  be a point of Σ, let 훾  be the unit speed 
geodesic starting at 푥 , with 훾 (0) = −휎⃗ the interior normal. Let 푟 ≥ 0 be the 
coordinate on 훾 (so that 푟 = 훿 in restriction to 훾 , for 푟 small enough), then the 
restricting 푢  (resp. |∇푢 |) to 훾 provides us with a function 푓 (푟)(resp. 푔 (푟)). 
Notice that 푓  is 퐶 ,푔  is 퐶  and 푓 (0) = 푔 (0) = |∇푢 | ≠ 0(this comes from the 
fact that  훻푢  is collinear to 휎⃗, since ui vanishes on Σ). A Taylor expansion in r 
gives (dropping the subscript 푖) 

푔(푟)
푓(푟) =

푔(0) + 푔 (0) + 표(푟)

푟푓 (0) + 푓 (0) + 표(푟 )
=

1
푟

+
푔 (0)
푓 (0) −

푓 (0)
2푓 (0) + 표(푟), 

hence (78) follows. From the same kind of consideration, we get in a neighborhood 
of Σ, 

∇푢 (푥)
푢 (푥) =

1
훿
훾 ( )(푥) + 푋 , 
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where 푋  is a continuous vector field defined in a neighborhood ofΣ and exp  is 
the mapping sending a point 푥 to the unique point on 푥 ∈ Σ such that 푥 ∈ 훾 . The 
lemma follows at once, by noticing that 

∇
푢
푢

=
푢
푢

∇푢
푢

−
∇푢
푢

=
푢
푢

(푋 − 푋 ), 

and that 

푊 =
∇

4
. 

We also need the following analogue of Proposition (2.2.1) for a domain with 
boundary: 

Proposition (2.3.8) [3]: 

Let 푃 be a second-order nonnegative elliptic operator on Ω either of the form 
(12) or (13) with coefficients that are locally regular up to 휕Ω\{휉}, where 휉 ∈ 휕Ω. 
If 푢 and 푣 are two positive solutions of the equation 푃푤 = 0 in a relative 
neighborhood of 휉, which satisfy 

lim
→
∈

푢(푥)
푣(푥) = 0, 

and both vanish on a punctured neighborhood of 휉 in 훿훺, then 푢 has minimal 
growth at 휉. 

Proof: 

The proof is almost exactly the same as the proof of Proposition (2.2.1). This 
time, we take a sequence of bounded sets {Ω ∶= 퐵 \퐵 }, where {퐵 }is a 
decreasing sequence of relative neighborhoods in Ω of 휉 converging to 휉such that 
휕Ω is piecewise smooth. With this definition, {휕Ω } exhausts a punctured 
neighborhood 휉 ∈ 휕Ω(cf. the proof of Proposition (2.2.1)). Let 푤 ∶= lim → 푤 , 
where 푤  is the solution of the Dirichlet problem 
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푃푤 = 0			 inΩ ,																																
푤 (푥) = 푢 on	휕퐵 \휕Ω,																					
푤 (푥) = 0 on(휕Ω ∩ 휕Ω) ∪ 휕퐵 .

																										(79) 

It follows (using the boundary Harnack principle and arguments) that 푤 has 
minimal growth at 휉. The end of the proof follows exactly the lines of the proof of 
Proposition (2.2.1).  

We now establish the following. 

Theorem (2.3.9) [3]: 

Assume that 푃 is subcritical in Ω. Suppose that the corresponding Martin 
boundary 훿훺 is equal to the minimal Martin boundary and is equal to 휕훺 ∪
{휉 , 휉 }, where 휕훺\{휉 , 휉 } is assumed to be a regular manifold of dimension 푛 − 1 
without boundary, and the coefficients of 푷 are locally regular up to	휕훺\{휉 , 휉 }. 

Denote by Ω the Martin compactification of Ω, and assume that there exists a 
bounded domain 퐷 ⊂ Ω such that 휉  and 휉  belongs to two different connected 
components 퐷  and 퐷  of Ω\퐷 such that each 퐷  is aneighborhood in Ωof 휉  , 
where 푗 = 0,1. 

Let 푢  and 푢  be the minimal Martin functions at 휉  and 휉  respectively. 
Consider the supersolution 푣 ∶= 푢 푢 , and assume that 

lim
→
∈

푢 (푥)
푢 (푥) = lim

→
∈

푢 (푥)
푢 (푥) = 0.																																										(80) 

Then the associated Hardy-weight 푊 ∶= 푃 푣 푣⁄  is optimal in  Ω. Moreover, if 푃 
is symmetric and 푊 does not vanish on Ω\{휉 , 휉 }, then the (essential) spectrum of 
the operator 푊 푃 acting on 퐿 (Ω,푊d푣) is [1,∞). 

 

 

Proof: 
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We know that 푢  vanishes continuously on 휕훺\{휉 , 휉 }. Also, by Hopf's 
boundary point lemma, we know that the gradient of 푢  does not vanish on 휕훺. 
Define a metric 픤 on 훺, regular up to 휕훺, by 

픤(⋅,⋅) ∶= 〈퐴 ⋅,⋅〉. 

We have ∇픤= 퐴∇, and therefore, 

푊 ∶=
∇픤

픤

4
=

∇

4
. 

Now, we can apply Lemma (2.3.7) with  Σ = 휕훺\{휉 , 휉 }, to get that 푊 is 
continuous up to the boundary 휕훺\{휉 , 휉 }. Also, we know that 푢 푢⁄  has a 
continuous positive extension up to 휕훺\{휉 , 휉 }. Hence, the log solution 

푢 푢 log
푢
푢

, 

as well as the oscillating solutions 

푢 푢 cos 휉 log
푢
푢

, 

vanish continuously on 휕훺\{휉 , 휉 }. By elliptic regularity up to the boundary, since 
W is continuous up to 휕훺\{휉 , 휉 }, all these solutions are in fact 퐶 ,  up to 휕훺, for 
some 훼 ∈ (0,1). 

Consequently, (80) and Proposition (2.3.8) imply that 푢 푢  has minimal 
growth at 휉  and 휉 . It also vanishes continuously on 휕훺\{휉 , 휉 }, and therefore 
has minimal growth on 휕훺\{휉 , 휉 } by Lemma (2.3.6). Therefore, again by Lemma 
(2.3.6), it has minimal growth on 훿훺, i.e. at infinity in Ω, and the criticality of 
푃 −푊 follows. 

The optimality of the constant 1 near 휉  and 휉  follows from the existence of 
the oscillating solutions. Such a solution contradicts the generalized maximum 
principle near 휉  and 휉  for the operator 푃 − 휆푊 with the corresponding 휆 > 1 (as 
in Theorem (2.2.4)). 
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Concerning the null-criticality, the proof follows the same lines as in the proof 
of Theorem (2.2.8); here again we use the vanishing of the oscillating solutions on 
휕Ω\{휉 , 휉 }. This implies that the boundary of Ω will not cause trouble in the 
various integrations by part. The same remark also applies to the proof concerning 
the entire spectrum in the symmetric case. 

The following example deals with an important class of operators with 
boundary singularities which satisfy the assumptions of Theorem (2.3.9), and in 
particular (80). 

Example (2.3.10) [2]:  

Consider a Fuchsian linear subcritical elliptic operator of the form (12) defined 
on the cone Ω ∶= {푥 ∈ ℝ 	|	푟 > 0,휔 ∈ Σ}, where Σ is a Lipschitz domain in the 
unit sphere 푆  in ℝ ,푛 ≥ 2, and (푟,휔) denotes the spherical coordinates of 푥. 
We assume that the coefficients of 푃 are up to the boundary locally Hölder 
continuous except at the origin. The operator 푃 has Fuchsian singularities both at 0 
and ∞ means that there exists a positive constant 푀 such that near 0 and ∞ we 
have 

푀 휉 ≤ 푎 (푥)휉 휉
,

≤ 푀 휉 			휉 ∈ ℝ , 

and 

|푥| |푏 (푥)| + |푥 ||푐(푥)| ≤ 푀. 

It is known that the Martin boundary of Ω for 푃 is equal to the minimal Martin 
boundary, and is the union of the Euclidean boundary and ∞. For 푗 = 0 (resp. 
푗 = 1), denote by 푢  the minimal Martin function with pole 0 (resp. ∞). 푢  vanish 
on 휕Ω\{0}, and 

lim
→
∈

푢 (푥)
푢 (푥) = lim→

∈

푢 (푥)
푢 (푥) = 0.																																										(81) 
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Applying Theorem (2.3.9), we conclude that if 푊 is the weight obtained by the 
supersolution construction applied to 푢  and 푢 , then 푊 is an optimal Hardy-
weight. Moreover, in the symmetric case the spectrum of 푊 푃 is equal to [1,∞). 
In particular, the Hardy-weight of Example (2.3.4) is optimal. The same 
conclusions hold true for a bit more general domains. 

The following example deals with the case where one of the conditions of (80) 
is not satisfied. 

Example (2.3.11) [2]: 

Let 푃 = −∆ and Ω = ℝ ,푛 > 1. Let 푣 (푥) ∶= 퐶 푥 |푥|⁄  be the Poisson 
kernel at the origin, and 푣 ∶= ퟏ. We note that in contrast to the pair (푣 , 푥 ), the 
pair (푣 ,ퟏ) does not satisfy one of the assumptions in (80). An elementary 
computation shows that 

푊(푥) ∶=
1
4

1
|푥 | +

푛(푛 − 2)
|푥| , 

which is obviously greater than the corresponding well known Hardy potential1/
(2|푥 |) , and we get the following Hardy inequality 

|∇휙| 푑푥
ℝ

≥ 푊(푥)|휙| 푑푥
ℝ

											∀휙 ∈ 퐶 (ℝ ). 

GeorgiosPsaradakis kindly informed us recently that indeed the above 
inequalitycan be improved, and in fact, the following improved Hardy 
inequalityholds true 

|∇휙| 푑푥
ℝ

≥
1
4

1
|푥 | +

(푛 − 1)
|푥|ℝ

|휙| 푑푥									∀휙 ∈ 퐶 (ℝ ).									(82) 

We show below, that this inequality is in fact optimal. 

We note that, for every 0 ≤ 휇 ≤ one can considerthe Hardy inequality 

|∇휙| 푑푥
ℝ

≥
휇

|푥 | +
훽(휇)
|푥|ℝ

|휙| 푑푥									∀휙 ∈ 퐶 (ℝ ),												(83) 
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wherefor a fixed 휇,훽(휇) ≔ 1 − 푛 − 1 − 4휇 is the best constant. Moreover, 
inequality (83) cannot be improved by a Sobolev term. 

Claim: The Hardy inequality (83) is optimal. In particular, the operator−∆ −

| | − ( )
| | is critical in ℝ  with the ground state 휓(푥) ≔ 푥 |푥| ( )/ . 

Furthermore, no Sobolev improvement of (83) is possible. 

Indeed, for 휇 ≤ 1/4, consider the subcritical operator 

푃 ≔ −∆ −
휇

|푥 |  

in Ω = ℝ . Let 훼  be the largest root of the equation 훼(1 − 훼) = 휇, andlet 

훽(휇) ≔ 1 − 푛 − 1 − 4휇 

be the nonzero root of the equation 

훽 훽 + 푛 − 1 + 1 − 4휇 = 0. 

Then 

푤 (푥) ≔ 푥 ,푤 (푥) ≔ 푥 |푥| ( ) 

are two positive solutions of the equation 푃 푢 = 0 in Ω. Moreover, 푤  hasminimal 
growth on 휕Ω, and 푤  has minimal growth on 휕Ω ∪ {∞}\{0}. Inparticular, 

lim
→

푤 (푥)
푤 (푥) = lim

→

푤 (푥)
푤 (푥) = 0. 

Although the potential |푥 |  is not smooth on  휕Ω\{0}, it can be 
easilychecked that the proof of Theorem (2.3.9) applies also to the case of 
theoperator 푃  in Ω with the pair of the positive solutions 푤  and 푤 . This yields 

that inequality (83) is optimal. The criticality of −∆ − | | − ( )
| | implies that no 

Sobolev improvement is possible. 

The criticality result for Hardy-weights obtained by a particular 
supersolutionconstruction (Theorem (2.2.2)) can be extended to the case where 



93 
 

wehave a finite number of ends in Ω, instead of just two ends (e.g., one 
isolatedsingularity and  ∞). 

Definition (2.3.12) [2]: 

Let 푀 be a noncompact manifold. We say that 푀 has푁-ends 퐸 , . . . ,퐸 , if each 
퐸  is a smooth non-compact connected manifoldwith boundary such that 

푀 = 퐸 ,											and 퐸 = ∅, 

where 퐸  is a relatively compact, open set of 푀. We denote the ideal “infinity”  
point of each 퐸  by 푥  (that is, 푥  is the ideal limit point when푥 → ∞ in 푀 ∩
퐸 \(휕퐸 ∩푀)). 

Lemma (2.3.13) [2]: 

Let 푃 be a symmetric operator on a manifold 푀 with ends퐸 , . . . ,퐸 . For 
푖 = 1,2, let 푃 = 푃 + 푊  be a nonnegative operator in 푀,where 푊  is a potential, 
and let 휙 be a positive solution of 푃 푢 = 0 in 퐸 .Assume further that 

휑 ≤ 퐶휑 in퐸 , 

and that 휑  has a minimal growth at 푥  with respect to 푃 . Then 휑  has aminimal 
growth at 푥  with respect to 푃 . 

Proof: 

We first modify 휑  so that it has minimal growth for 푃  on 퐸  (seenas a 
manifold with boundary). To this purpose, let us consider 푈 a compact,smooth, 
open set which is a neighborhood of  휕퐸  in 퐸 . Let 휓 be a positive solution of 
푃 푢 = 0 in 푈, with minimal growth at  휕퐸 ∩ 푀. Now considera positive function 
휑 (푥) (resp. 휑 (푥)) which is equal to 휓(푥) on a neighborhoodof 휕퐸 , and to 
휑 (푥) (resp. 휑 (푥)) near 푥 . Let 푊  be a potential such that (푃 + 푊 )휑 = 0 in 퐸 . 
By the (AAP) theorem, 푃 : = 푃 + 푊 is nonnegative. Also, by construction, 휑  has 
minimal growth (globally)in 퐸 , considered as a subdomain of 푀, and therefore 푃  
is critical in 퐸 .Furthermore, we still have (with a different constant 퐶) 
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휑 ≤ 퐶휑 in퐸 . 

Now, 푃  is critical in 퐸 ,and 휑  is its ground state. Therefore, 휑  has minimal 
growth (globally) on퐸 . Since 휑 (푥) = 휑 (푥) near 푥 , the lemma is proved.  

We now formulate the result that claims thatin the case of finitely many ends 
the supersolution construction produces an푁 − 1-parameter family of critical 
Hardy-weights. 

Theorem (2.3.14) [2]: 

Suppose that 푃 is a symmetric subcritical operator in amanifold 푀 with ends 
퐸 , . . . ,퐸 ,푁 ≥ 2. Assume that for each 1 ≤ 푖 ≤ 푁there exists a function 푢  which 
is a positive solution of the equation 푃푢 = 0in 푀 of minimal growth near each end 
푥 , 푗 ≠ 푖, and satisfying 

lim
→

푢 (푥)
푢 (푥) = 0							∀푗 ≠ 푖. 

Consider the supersolution construction 

휐 ≔ 푢 , 

where 0 < 훼 ≤ 1/2 for all 1 ≤ 푗 ≤ 푁, and∑ 훼 = 1. 

Then the corresponding Hardy-weight 푊: = 	푃휐/휐 is critical with respectto 푃 
and 푀. 

Proof:  

Note that by the definition of minimal growth, for each 푖, and every푘, 푗 ≠ 푖 we 
have 

푢 (푥) ≍ 푢 (푥)as				푥 → 푥 . 

Denote 푢 ≔ ∏ 푢 . Fix 1 ≤ 푖 ≤ 푁 and 푘 ≠ 푖. Then near 푥  the following 
inequality holds 
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휐 = 푢 푢 ≤ 퐶푢 푢 = 퐶(푢 푢 ) / 푢
푢

/
≤ (푢 푢 ) / . 

Recall that it follows from the proof of Theorem (2.2.2) (or Theorem (2.3.9)) 
that(푢 푢 ) /  has minimal growth at 푥  with respect the symmetric operator푃 −
푊 , , where 푊 ,  is the Hardy-weight corresponding to the pair (푢 , 푢 ). 

Hence, by Lemma (2.3.13), 휐 has minimal growth at 푥 . Since this is true forall 
1 ≤ 푖 ≤ 푁, it follows that the operator 푃 −푊 is critical in 푀.  

Now we present some further examples, and discuss some 
additionalapplications and extensions. First, we present a straightforwardexample 
of an optimal Hardy-weight. 

Example (2.3.15) [2]: 

Consider the Laplace operator 푃 = −∆ on the unit diskΩ = 퐵(0,1) ⊂ ℝ . Take 
휐 (푥) ≔ − log|푥|, the Green function of theunit ball with a pole at the origin, 
and let 휐 ≔ ퟏ. Then the correspondingoptimal Hardy-weight is given by 푊(푥) =
(4|푥| log|푥|) defined on퐵(0,1)⋆ ≔ 퐵(0,1)\{0}. We obtain the classical Leray 
inequality withthe best constant 

|∇휙| 푑푥
( , )⋆

≥
1
4

|휙|
(|푥| log|푥|) 푑푥

( , )⋆
		∀휙 ∈ 퐶 (퐵(0,1)⋆), 

In particular, the operator −∆ −푊 is null-critical in 퐵(0,1)⋆,and 
휆 (−∆,푊,퐵(0,1)⋆) = 휆 (−∆,푊,퐵(0,1)⋆) = 1. 

Analogously, in higher dimension 푛 ≥ 3, let 휐 (푥) ≔ 퐶 (|푥| − 1) bethe 
Green function of the unit ball 퐵(0,1) with a pole at the origin, and let휐 ≔ ퟏ. 
Then 

푊(푥) =
(푛 − 2)

4 |푥|(1 − |푥| )
, 

and the following optimal inequality holds true 
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|∇휙| 푑푥
( , )⋆

≥
푛 − 2

2
|휙|

|푥|(1 − |푥| )
푑푥

( , )⋆
		∀휙 ∈ 퐶 (퐵(0,1)⋆). 

In particular, the operator  ∆ −푊 is null-critical in 퐵(0,1)⋆, furthermore, we 
have 

휆 (−∆,푊,퐵(0,1)⋆) = 휆 (−∆,푊,퐵(0,1)⋆) = 1. 

Example (2.3.16) [2]: 

The aim of the present example is to give an alternativeproof that 1/4 is the 
best constant in the classical Hardy inequality (29)for a smooth convex bounded 
domain Ω (see the discussion in Example (2.1.21)). 

If we use the supersolution construction with 푃 = −∆,푢 = 퐺 (the Green 

function), and 푢 = ퟏ, we get an optimal Hardy-weight 푊 ≔ ∇ .Recall that 

퐺vanishes on 휕Ω (in fact, 퐺(푥) ≍ 훿(푥) near the boundary). ByHopf’s lemma, 
휕퐺/휕휎⃗ does not vanish on 휕Ω, where 휎⃗ is the outer normalvector to 휕Ω. Hence, by 
the proof of Lemma (2.3.7), we have 

																																																					푊(푥)~
1

4훿(푥) as			푥 → 휕Ω.																																	(84) 

Since we know that 휆 (푃,푊,Ω) = 1, we deduce that 1/4 is indeed the 
bestconstant in the classical Hardy inequality (29). It is also easy to deduce from 
the fact that 푃 −푊 is null-critical that the classical Hardy inequality (29)has no 
minimizer (this also follows from the subcriticality of −∆ − 훿(푥) /4).We do not 
know if the asymptotic of W given by (86) remains true if Ω hasa rougher 
boundary. On the other hand, the spectrum and the essential spectrum of 

−4훿(푥) ∆on 퐿 Ω, 4훿(푥) 푑풱  is equal to [1,∞). 

In the next two examples we apply the supersolution construction topositive 
solutions with boundary singularities. 

 

Example (2.3.17) [2]: 
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Consider the operator 푃푢 ≔ −푢′′ on ℝ , and apply thesupersolution 
construction with the positive solutions 푢 (푥) = 푥,푢 (푥) = ퟏ.By Theorem (2.3.9), 
we readily get the classical Hardy inequality on ℝ  withthe optimal Hardy-weight 
푊(푥): = 1/(4푥 ). We note that the corresponding transform (59) is just the 
classical Mellin transform. 

 

 

Example (2.3.18) [2]: 

Consider the operator 푃푢 ≔ −푢 + 푢 defined on ℝ, with푢 (푥) = 푒 , 푢 (푥) =
푒 . Applying Theorem (2.3.9) we obtain the optimal Hardy-weight 푊: = ퟏ, and 
we get the trivial inequality 푃 −푊 = −d /푑푥 ≥ 0 in ℝ. The corresponding 
transform (59) is just the classical Fouriertransform on ℝ. 

The supersolutionconstruction provides bounds for solutions near infinity in 
termsof the Green function 퐺 and a global solution 푢. In particular, we have 

Lemma (2.3.19) [2]: 

Let 푃 be a subcritical operator in Ω, and let 푊 be a Hardyweightin Ω associated 
to a pair (휐 , 휐 ), where 휐 , 휐  are positive solutions of the equation 푃푢 = 0 in Ω. 
Let v be a positive supersolution of the equation 

(푃 − 푉)휐 = 0 

of minimal growth at infinity with respect to 푃 − 푉 in Ω. 

Suppose further that 

푉(푥) ≤ 4훼(1 − 훼)푊(푥)inΩ′ 

holds true for some 1/2 ≤ 훼 ≤ 1, and some neighborhood Ω′of infinity in Ω.Then 
for any 1/2 ≤ 훽 ≤ 훼 there exists a constant 퐶 such that the inequality 

휐(푥) ≤ 퐶휐 (푥)휐 (푥) 

holds true in a neighborhood of infinity of Ω. 
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Example (2.3.20) [2]: 

Let Ω be a smooth bounded convex domain and 푢 a positivesolution of the 
equation 

(푃 − 푉)푢 = 0, 

of minimal growth in a neighborhood of infinity in Ω. Suppose further thatfor some 
1/2 ≤ 훼 ≤ 1, the inequality 푉(푥) ≤ 훼(1 − 훼)훿 (푥) holds true ina neighborhood 
Ω′ of infinity of Ω. Then 

푢(푥) ≤ 퐶훿(푥) inΩ . 

In order to apply Lemma (2.3.19) for the pair (푢,퐺), where 퐺 is the 
Greenfunction and 푢 is a global positive solution satisfying (17), one needs toknow 
the behavior of the optimal Hardy-weight W near infinity, and tocompare 
pointwise푉 and 푊, if 푉 is a (non-optimal) Hardy potential. Infull generality, it 
seems hopeless to get an asymptotic of 푊 at infinity, since∇퐺 might vanish on a 
nonempty set with an accumulation point at infinityin Ω. 

However, in the symmetric case we have an asymptotic of 푊 in averageat 
infinity, as follows from Corollary (2.2.11), which, if u is normalized so 
that푢(0) = 1, gives that 

푢퐺푊	푑휈 =
1
4

(log 푏 − log 푎). 

Moreover, in average, we can compare 푊 and any Hardy-weight 푉 nearinfinity. 

Proposition (2.3.21) [2]: 

Suppose that 푃 is symmetric and the hypotheses of Theorem (2.1.3) are 
satisfied (with 푃, 푢,퐺 and 푊 as in the theorem). Let 푉be a nonnegative potential 
such that 푃 − 푉 ≥ 0 in Ω⋆. Then for every1 < 푎 < 푏 < ∞(or −∞ < 푎 < 푏 <
−1),we have 
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푢퐺푉	푑휈 ≤ 푢퐺푊	푑휈 =
5
4

[log(푏 + 1) − log(푎 − 1)]. 

Proof: 

By performing a ground state transform, wνe may assume that 푢 = 1.We start 
with the following inequality 

푉	휐 d휈
⋆

≤ 휐	푃[휐]d휐
⋆

					∀휐 ∈ 퐶 (Ω⋆), 

which holds true by our assumption. 

Fix 1 < 푎 < 푏 < ∞, and let 휓 be a smooth nonnegative cut-off 
functionsupported in {푎 − 1 ≤ log퐺 ≤ 푏 + 1}, such that 휓 = 1 on {푎 ≤ log퐺 ≤
푏}.Set 휐 ≔ 퐺 / 휓, and recall that (푃 −푊)(퐺) / = 0. Therefore, by (23) we have 

휐푃[휐]	푑휈
{ }

= 퐺푊휓 −
1
2
〈∇퐺,∇휓 〉 + 퐺휓푃[휓] 	푑휈

{ }
. 

Now, integrate by part the last term to get 

퐺푉	푑휈
{ }

≤ 퐺푊휓 	푑휈
{ }

+ 퐺|∇휓| 	푑휈
{ }

		(85) 

Consider the function 휓 defined by 

휓(푥) ≔

1																									
푏 + 1 − log퐺(푥)
log퐺(푥) − 푎 + 1

0

푥 ∈ {푎 ≤ log퐺 ≤ 푏},								
푥 ∈ {푏 ≤ log퐺 ≤ 푏 + 1},
푥 ∈ {푎 − 1 ≤ log퐺 ≤ 푎},

elswhere.

 

Now, take a sequence {휓 } ⊂ 퐶 (Ω⋆) of smooth function 0 ≤ 휓 ≤ 휓 
whichconverges in 푊 ,  to 휓. Since 휓 is in 푊 , (Ω⋆), we can find such a 
sequence{휓 }. Applying (87) to 휓  and passing to the limit as 푘 → ∞ gives 

퐺푉휓	푑휈
{ }

≤ 퐺푊휓 	푑휈
{ }

+ 퐺|∇휓| 	푑휈
{ }

. 
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We use finally the fact that 휓 is supported in {푎 − 1 ≤ log퐺 ≤ 푏 + 1}, that0 ≤
휓 ≤ 1 and that |∇휓| ≤ 4푊to get the result.  

It is natural to formulate the following conjecture about the 
pointwiseasymptotic of the optimal Hardy-weight 푊. 

The main result (Theorem (2.1.14)) providesus with an optimal Hardy-weight 푊 
defined in the punctured domainΩ⋆ rather in Ω. This drawback can be easily 
relaxed using the followingregularization procedure. Let 푊 ≤ 푊 be a (locally) 
regular nonnegativepotential in Ω such that 푊 = 푊 outside a punctured 
neighborhood of the origin. Clearly, 푃 −푊 is subcritical in Ω. Let 푉 ∈ 퐶 (Ω) be 
a smoothnonzero nonnegative function such that 푃 −푊 − 푉 is critical in 
Ω(see,Lemma (2.1.10)). Then the potential 푊 ≔ 푊 − 푉 is critical in Ω, null-
criticalat infinity of Ω, and 휆 푃,푊,Ω = 1. Moreover, in the symmetric case, 
byTheorem (2.2.12), the corresponding spectrum and essential spectrum of 
푊 푃is equal [1,∞). So, 푊 is an optimal Hardy-weight for 푃 in Ω. 

We briefly discuss some extensionsof the previous results to the case of 푝-
Laplacian type equations. We assume that 푝 ≠ 2. The celebrated 푝-Laplacian is the 
quasilinear ellipticoperator 

∆ (푢) ≔ div(|∇푢| ∇푢). 

Let 푉 ∈ 퐿 (Ω) be a given function (potential), we consider the functional 

푄 (휙) ≔ (|∇휑| + 푉|휑| )d푥 휑 ∈ 퐶 (Ω)																											(86) 

and the associated differential operator 

푄 (푢) ≔ −∆ (푢) + 푉|푢| 푢.																																										(87) 

The notions of criticality and subcriticality of 푄  have been studied in this 
context. In particular,the Agmon-Allegretto-Piepenbrink theorem extends to this 
case. Due to the nonlinearity of the operator, if the potential 푉 isnonzero it is likely 
that our supersolution construction will not yield in generalan optimal weight, as 
we can see from the following result in the radiallysymmetric case. 
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Theorem (2.3.22) [2]: 

Assume that the functional 

																						푄v(휙) ≔ (|∇휙| + 푉(|푥|)|휙| )d푥 						휙

∈ 퐶 (Ω),																						(88) 

is subcritical in a radially symmetric domain Ω ⊂ ℝ ,where the potential푉 is 
radially symmetric. Suppose further that either 1 < 푝 ≤ 2 and 푉 ≤ 0, or 푝 ≥ 2 and 
푉 ≥ 0. Let 휐 , 휐  be two linearly independent positive radiallysymmetric 
supersolutions of the equation 푄 (푢) = 0 in Ω⋆ ≔ Ω\{0}. 

Define the function 

휐 (|푥|) ≔ 휐 (|푥|) 휐 (|푥|) 						푥 ∈ Ω⋆, 

where 0 ≤ 훼 ≤ 1, and let 

푊 (푡) ≔ 훼(1 − 훼)(푝 − 1) log
휐 (푡)
휐 (푡)

log 휐 (푡) . 

Then 휐  is a positive supersolution of the equation 

푄 −푊 (푢) = 0					inΩ⋆,																																													(89) 

and the following improved inequality holds 

푄v(휙) ≥ 푊 |휙| d푥 					∀휙 ∈ 퐶 (Ω⋆). 

Moreover, if 푝 ≠ 2 and 푉 is not identically zero, then for every 훼 ∈ (0,1) the 
functional 푄 −푊  is subcritical in Ω⋆. 

Notice that in the case where 푝 ≠ 2, the supersolution constructionyields a 
weight 푊  which is not easy to optimize with respect to 훼. Onthe other hand, for 
the case of the 푝 -Laplacian itself in a general domainΩ ⊂ ℝ , we can take 푢 = ퟏ, 
and thus optimize 푊 : 

Proposition (2.3.23) [2]: 



102 
 

Assume that 휐 is a positive supersolution (resp. solution) of the equation 
−∆ (푢) = 0 in Ω. Then for 훼 ∈ (0, 1), 휐  is a positivesupersolution (resp. 
solution) of the equation 푄 (푢) = 	0 in Ω, where 

푊 ≔ 훼 훼(1 − 훼)(푝 − 1)
∇휐
휐

. 

In particular, for the optimal value 훼 = , the following logarithmic 

Caccioppoliinequality holds: 

푝 − 1
푝

∇휐
휐

|휑| d푥 ≤ |∇휑| d푥 						휑 ∈ 퐶 (Ω),																		(90) 

where 휐 is any positive 푝-superharmonic function in Ω. 
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Chapter 3 

Multiple Solutions for Semi-Linear Elliptic Systems with Sign-
Changing Weight 

With the help of the Nehari manifold and the Lusternik–Schnirelmann category, 
we investigate how the coefficient ℎ(푥)of the critical nonlinearity affects the 
number of positive solutions of that problem and get a relationship between the 
number of positive solutions and the topology of the global maximum set of ℎ. [3] 

This chapter is concerned with the multiplicity of positive solutions to the 
following elliptic system: 

퐸 ,

⎩
⎪
⎨

⎪
⎧−∆푢 = 푓(푥)|푢| 푢 +

훼
훼 + 훽

ℎ(푥)|푢| |푣| , in	Ω,			

−∆푣 = g(푥)|푣| 푣 +
훽

훼 + 훽
ℎ(푥)|푢| |푣| 푣, in	Ω,			

푢 = 푣 = 0,																																																																		 on	 ∂Ω,

 

where Ω is a bounded domain in ℝ with smooth boundary, 훼,훽 > 1 satisfy 
훼 + 훽 = 2∗ = (푁 ≥ 3)and 1 < 푞 < 2. Moreover, we assume that 푓, g and ℎ 
satisfy the following conditions. 

(H1) 푓, g ∈ 퐶(Ω). 

(H2) There exist a non-empty closed set 푀 = {푥 ∈ Ω; ℎ(푥) = max ∈ ℎ(푥) =
1} and a positive number 휌 > 2 when푁 ≥ 6, 휌 >  when 3 ≤ 푁 ≤ 5 such that 
ℎ(푧) − ℎ(푥) = 푂(|푥 − 푧| ) as 푥 → 푧 and uniformly in 푧 ∈ 푀. 

(H3) 푓(푥), g(푥) > 0for 푥 ∈ 푀. 

Remark (3.1) [3]: 

Let 푀 = {푥 ∈ ℝ ; dist(푥,푀) < 푟} for 푟 > 0. Then by (H1)–(H3), there exist 
퐶 , 푟 > 0 such that 

푓(푥), g(푥), ℎ(푥) > 0			for	all			푥 ∈ 푀 ⊂ Ω 

and 



104 
 

ℎ(푧) − ℎ(푥) ≤ 퐶 |푥 − 푧| for	all			푥 ∈ 퐵 (푧) 

uniformly in 푧 ∈ 푀, where 퐵 (푧) = {푥 ∈ ℝ ; 	|푥 − 푧| < 푟 }. 

For 푓 ≡ λ, g ≡ 휇, we have that 퐸 .  permits at least two positive solutions 
when the pair of parameters (휆, 휇), belongs to a certain subset of ℝ . In further 
studies involving sign-changing weight functions, two positive solutions were 
obtained for the subcritical case 2 < 훼 + 훽 < 2∗and for the critical case 훼 + 훽 =
2∗. The tool of them is thedecomposition of the Nehari manifold. 

For 2 < 푞 < 2∗, if 푁 > 4,0 ∈ Ω,푓, g and ℎ satisfy the following conditions. 

(A1) 푓, g and ℎ are positive continuous functions in Ω. 

(A2) There exist 푘 points 푎 ,푎 , … , 푎 in Ω such that 

ℎ 푎 = max
∈

ℎ(푥) = 1for		1 ≤ 푖 ≤ 푘, 

and for some 휌 > 푁, ℎ(푥) − 	ℎ 푎 = 푂 푥 − 푎  as 푥 → 푎 and uniformly in 푖. 

(A3) Choose 휌 > 0 such that 

퐵 (푎 ) 퐵 (푎 ) = ∅			for			푖 ≠ 푗			and			1 ≤ 푖, 푗 ≤ 푘, 

and⋃ 퐵 (푎 ) ⊂ Ω,			where퐵 (푎 ) = {푥 ∈ ℝ ; 	|푥 − 푧| ≤ 휌 }. 

퐸 . admits at least 푘 positive solutions when 푓 and g are small enough.  

We aim to investigate how the coefficient ℎ(푥) of the critical nonlinearity 
affects the number ofpositive solutions of 퐸 .  when 1 < 푞 < 2 in this work. We 
try to consider the relationship between the number ofpositive solutions and the 
topology of the global maximum set of ℎ by the idea of category. Furthermore, we 
will study 퐸 .  under the conditions (H1)–(H3), i.e., we do not need to 
assume푓,푔, ℎ are positive solutions and 0 ∈ Ω. We have the following. 
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Remark (3.2) [3]: 

Suppose (A1)–(A3) hold. By Theorem (3.20), we obtain that 퐸 .  has at least 
푘 + 1 positive solutions when‖푓‖ ∗and ‖g‖ ∗are small enough. 

We give some notations and preliminary results. Then, we discusssome 
concentration behavior and prove Theorem (3.20). 

We propose to study 퐸 .  in the framework of the Sobolev space 퐻 =
퐻 (Ω) × 퐻 (Ω) using the standard norm 

‖(푢,푣)‖ = |∇푢| + |∇푣| d푥 . 

Denote 

푆 , ∶= inf
( , )∈ \{ }

∫ |∇푢| + |∇푣| d푥

∫ |푢| + |푣| d푥
. 

wededuce that 

푆 , =
훼
훽

+
훽
훼

푆. 

where 푆 is the best Sobolev constant, that is 

푆 ∶= inf
∈ ( )\{ }

∫ |∇푢| d푥

∫ |푢| ∗ d푥
∗
. 

It is well known that 푆 is independent of Ω, and for each 휀 > 0, 

푢 (푥) =
[푁(푁 − 2)휀 ]( )⁄

(휀 + |푥| )( )⁄ 																																											(1) 

is a positive solution of critical problem 
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−∆푢 = |푢| ∗ 푢			inℝ  

with∫ |∇푣 |ℝ d푥 = ∫ |푣 | ∗

ℝ d푥 = 푆 ⁄ . Actually, 푆 is never attained on a 
domain Ω ≠ ℝ . 

Positive solutions to 퐸 .  will be obtained as critical points of the 
corresponding energy functional 퐼 . ∶ 퐻 → ℝgivenby 

퐼 . (푢,푣) =
1
2
‖(푢, 푣)‖ −

1
푞

푓푢 + g푣 d푥 −
1

훼 + 훽
ℎ푢 푣 d푥, 

where 푢 = max{푢, 0} and 푣 = max{푣, 0}. From the assumption, it is easy to 
prove that 퐼 , is well defined in 퐻 and퐼 , ∈ 퐶 (퐻,ℝ). 

As 퐼 . is not bounded below on 퐻, we consider the behaviors of 퐼 . on the 
Nehari manifold 

푁 . = (푢, 푣) ∈ 퐻\{0}; 	 퐼 , (푢, 푣)(푢, 푣) = 0 . 

Clearly, (푢, 푣) ∈ 푁 ,  if and only if 

|∇푢| + |∇푣| d푥 − 푓푢 + g푣 d푥 − ℎ푢 푣 d푥 = 0. 

On the Nehari manifold 푁 , , from the Sobolev embedding theorem and the Young 
inequality, 

퐼 , (푢, 푣) =
1
2
−

1
2∗

|∇푢| + |∇푣| d푥

−
1
푞
−

1
2∗

푓푢 + g푣 d푥																	 

													≥
1
2
−

1
2∗

‖(푢, 푣)‖ −
1
푞
−

1
2∗

‖푓 ‖ ∗ + ‖g ‖ ∗ 퐶‖(푢, 푣)‖ 								(2) 

															≥ − ‖푓 ‖ ∗ + ‖g ‖ ∗
( )⁄

퐶,																																																																		(3) 
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where 퐶 denotes positive constants (possibly different) independent of (푢, 푣) ∈ 퐻. 
Let 

휓 , (푢, 푣) ∶= 퐼 , (푢, 푣)(푢,푣) 

																																									

= |∇푢| + |∇푣| d푥 − 푓푢 + g푣 d푥 − ℎ푢 푣 d푥. 

Then for (푢, 푣) ∈ 푁 , , 

휓 , (푢,푣)(푢, 푣) = (2 − 푞)‖(푢,푣)‖ − (2∗ − 푞) ℎ푢 푣 d푥																												(4) 

																															

= (2 − 2∗)‖(푢, 푣)‖ + (2∗ − 푞) 푓푢 + g푣 d푥.																	(5) 

We split 푁 ,  into three parts: 

푁 , = (푢,푣) ∈ 푁 , ; 	휓 , (푢,푣)(푢, 푣) > 0 ; 

푁 , = (푢,푣) ∈ 푁 , ; 	휓 , (푢,푣)(푢, 푣) = 0 ; 

푁 , = (푢,푣) ∈ 푁 , ; 	휓 , (푢,푣)(푢, 푣) < 0 . 

In the sequel, we shall use Λ∗ to denote different small parameters. Then we have 
the following results. 

Lemma (3.3) [3]: 

Suppose that (푢 ,푣 ) is a local minimum for 퐼 , on 푁 , . Then, if (푢 ,푣 ) ∉
푁 , , (푢 ,푣 ) is a critical point of 퐼 , . 

Lemma (3.4) [3]: 
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There exists Λ∗ > 0 such that if ‖푓 ‖ ∗ + ‖g ‖ ∗ ∈ (0,Λ∗),푁 , = ∅. By 
Lemma (3.4), for ‖푓 ‖ ∗ + ‖g ‖ ∗ ∈ (0,Λ∗), we write 푁 , = 푁 , ⋃푁 , and 
define 

휃 , = inf
( , )∈ ,

퐼 , (푢,푣) ; 						휃 , = inf
( , )∈ ,

퐼 , (푢, 푣). 

For each (푢, 푣) ∈ 퐻 with∫ ℎ푢 푣 d푥 > 0, set 

푡 =
(2 − 푞)‖(푢, 푣)‖

(2∗ − 푞)∫ ℎ푢 푣 d푥
> 0. 

Then 

Lemma (3.5) [3]: 

For each (푢, 푣) ∈ 퐻 with∫ ℎ푢 푣 d푥 > 0, we have the following. 

(i) If ∫ 푓푢 + g푣 d푥 ≤ 0, there is a unique 푡 > 푡 such that 
(푡 푢, 푡 푣) ∈ 푁 , and 퐼 , (푡 푢, 푡 푣) = sup 퐼 , (푡푢, 푡푣). 

(ii) If ∫ 푓푢 + g푣 d푥 > 0, there are unique 0 < 푡 < 푡 < 푡 such 
that (푡 푢, 푡 푣) ∈ 푁 , , (푡 푢, 푡 푣) ∈ 푁 , and 퐼 , (푡 푢, 푡 푣) =
inf 퐼 , (푡푢, 푡푣) ; 퐼 , (푡 푢, 푡 푣) = sup 퐼 , (푡푢, 푡푣). 

Lemma (3.6) [3]: 

If ‖푓 ‖ ∗ + ‖g ‖ ∗ ∈ (0,Λ∗), then 

(i) 휃 , < 0; 
(ii) 휃 , ≥ 휌 for some 휌 > 0. 

Remark (3.7) [3]: 

From Lemmas (3.5) and (3.6), it is easy to know if (푢,푣) ∈ 푁 , , 



109 
 

ℎ푢 푣 d푥 > 0. 

Next we establish that 퐼 , satisfies the (PS) -condition for 푐 ∈ −∞, 휃 , +

푆 ,
⁄ . 

Lemma (3.8) [3]: 

For ‖푓 ‖ ∗ + ‖g ‖ ∗ ∈ (0,Λ∗), 퐼 , satisfies the (PS) -condition for 푐 ∈

−∞,휃 , + 푆 ,
⁄ . 

Proof: 

Let {(푢 , 푣 )} ⊂ 퐻 be a (PS) -sequence for 퐼 , and 푐 ∈ −∞,휃 , + 푆 ,
⁄ . 

After a standard argument,we know that {(푢 , 푣 )} is bounded in 퐻. Thus, there 
exist a subsequence still denoted by {(푢 , 푣 )} and (푢, 푣) ∈ 퐻 such that(푢 , 푣 ) ⇀
(푢, 푣) weakly in 퐻. By the compactness of Sobolev embedding, we get 

 ∫ 푓(푢 ) + g(푣 ) d푥 = ∫ 푓푢 + g푣 d푥 + 표(1); 
 ‖(푢 − 푢, 푣 − 푣)‖ = ‖(푢 ,푣 )‖ − ‖(푢, 푣)‖ + 표(1); 

 ∫ ℎ(푢 − 푢) (푣 − 푣) d푥 = ∫ ℎ(푢 ) (푣 ) d푥 − ∫ ℎ푢 푣 d푥 +
표(1). 

Moreover, we can obtain 퐼 , (푢, 푣) = 0 in 퐻 (the dual space of 퐻). Since 
퐼 , (푢 , 푣 ) = 푐 + 표(1)and 퐼 , (푢 , 푣 ) = 표(1) in 퐻 , we deduce that 

1
2
‖(푢 − 푢, 푣 − 푣)‖ −

1
2∗

ℎ(푢 − 푢) (푣 − 푣) d푥 = 푐 − 퐼 , (푢, 푣) + 표(1)					(6) 

and 

표(1) = 퐼 , (푢 , 푣 )(푢 − 푢, 푣 − 푣) = 퐼 , (푢 , 푣 ) − 퐼 , (푢, 푣) (푢 − 푢, 푣 − 푣) 

= ‖(푢 − 푢,푣 − 푣)‖ − ℎ(푢 − 푢) (푣 − 푣) d푥 + 표(1). 
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Now we may assume that 

‖(푢 − 푢,푣 − 푣)‖ → 푙			and ℎ(푢 − 푢) (푣 − 푣) d푥 → 푙			as			푘 → ∞, 

for some 푙 ∈ [0, +∞). 

Suppose 푙 ≠ 0 and notice the fact ℎ ≤ 1, using the Sobolev embedding theorem 
and passing to the limit as 푘 → ∞, wehave 

푙 ≥ 푆 , 푙 ∗, 

that is, 

																																																																		푙 ≥ 푆 ,
⁄ .																																																														(7) 

Then by (6), (7) and (푢, 푣) ∈ 푁 , ⋃{0}, 

푐 = 퐼 , (푢,푣) +
1
푁
≥ 휃 ,

1
푁
푆 ,

⁄ , 

which contradicts the definition of 푐. Hence 푙 = 0, i.e., (푢 , 푣 ) → (푢,푣) strongly 
in 퐻. 

Then we obtain the existence of a local minimizer for 퐼 , on 푁 , . 

Lemma (3.9) [3]: 

For ‖푓 ‖ ∗ + ‖g ‖ ∗ ∈ (0,Λ∗), the functional 퐼 , has a minimizer 
푢 , ,푣 , ∈ 푁 , and it satisfies: 

(i) 퐼 , 푢 , , 푣 , = 휃 , ; 
(ii) 푢 , ,푣 , is a positive solution of 퐸 , ; 

(iii) 퐼 , 푢 , , 푣 , → 0as ‖푓 ‖ ∗ ,‖g ‖ ∗ → 0. 
(iv) 푢 , , 푣 , → 0as ‖푓 ‖ ∗ ,‖g ‖ ∗ → 0. 

Proof: 

(i)–(ii) are consequences . Moreover, by (3) and Lemma (3.6), 
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0 > 퐼 , 푢 , ,푣 , ≥ − ‖푓 ‖ ∗ + ‖g ‖ ∗
( )⁄

퐶. 

We obtain 퐼 , 푢 , , 푣 , → 0 as ‖푓 ‖ ∗ , ‖g ‖ ∗ → 0. 

Now we show (iv). By 푢 , , 푣 , ∈ 푁 , and (5), 

푢 , ,푣 , ≤
2∗ − 푞
2∗ − 2

푓 푢 , + g 푢 , d푥																				 

≤ 퐶 ‖푓 ‖ ∗ + ‖g ‖ ∗ 푢 , ,푣 , .																											(8) 

Since 퐼 , is coercive and bounded below on 푁 , , 푢 , ,푣 ,  is bounded in 퐻 
and so that by (8) we know 

푢 , , 푣 , ≤ 퐶 ‖푓 ‖ ∗ + ‖g ‖ ∗ . 

Then 

푢 , ,푣 , → 0			as‖푓 ‖ ∗ + ‖g ‖ ∗ → 0 

Now, we will recall and prove some lemmas which are crucial in the proof of 
the main theorem. For 푏 > 0, we define 

퐽 (푢,푣) =
1
2
‖(푢, 푣)‖ −

푏
2∗

ℎ푢 푣 d푥 

and 

푁 (푢,푣) = {(푢,푣) ∈ 퐻\{0}; 	(퐽 ) (푢,푣)(푢, 푣) = 0}. 

Then we have the following. 

Lemma (3.10) [3]: 

For each (푢, 푣) ∈ 푁 , , we have the following. 

(i) There is a unique 푡( , )such that 푡( , )푢, 푡( , )푣 ∈ 푁 and 
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max 퐽 (푡푢, 푡푣) = 퐽 푡( , )푢, 푡( , )푣 =
1
푁
푏

‖(푢, 푣)‖ ∗

∫ ℎ푢 푣 d푥
. 

(ii) For 휇 ∈ (0,1), there is a unique 푡( , )such that 푡( , )푢, 푡( , )푣 ∈ 푁 . 
Moreover, 

퐽 푡( , )푢, 푡( , )푣 ≤ (1 − 휇) 퐼 , (푢, 푣) +
2 − 푞

2푞
휇 퐶 ‖푓 ‖ ∗ + ‖g ‖ ∗ . 

Proof: 

(i) For each 푢 ∈ 푁 , , let 

ℎ(푡) = 퐽 (푡푢, 푡푣) =
1
2
푡 ‖(푢, 푣)‖ −

푏
2∗
푡 ∗ ℎ푢 푣 d푥. 

Then since Remark (3.7), we have ℎ(푡) → −∞ as 푡 → ∞, 

ℎ (푡) = 푡‖(푢, 푣)‖ − 푏푡 ∗ ℎ푢 푣 d푥 

and 

ℎ (푡) = 푡‖(푢, 푣)‖ − 푏(2∗ − 1)푡 ∗ ℎ푢 푣 d푥. 

Set 

푡( , ) =
‖(푢, 푣)‖ ∗

∫ 푏ℎ푢 푣 d푥

∗

> 0. 

Then ℎ 푡( , ) = 0, 푡( , )푢 ∈ 푁  and ℎ 푡( , ) = (2 − 2∗)‖(푢,푣)‖ < 0. Hence 
there is a unique 푡( , )such that 푡( , )푢, 푡( , )푣 ∈ 푁 and 
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max 퐽 (푡푢, 푡푣) = 퐽 푡( , )푢, 푡( , )푣 =
1
푁
푏

‖(푢, 푣)‖ ∗

∫ ℎ푢 푣 d푥
. 

(ii) For 휇 ∈ (0,1), we have 

푓 푡( , )푢 + g 푡( , )푣 d푥 ≤ ‖푓 ‖ ∗ + ‖g ‖ ∗ 퐶 푡( , )푢, 푡( , )푣  

≤
2 − 푞

2
‖푓 ‖ ∗ + ‖g ‖ ∗ 퐶휇 +

푞
2
휇 푡( , )푢, 푡( , )푣  

=
2 − 푞

2
휇 퐶 ‖푓 ‖ ∗ + ‖g ‖ ∗ +

푞휇
2

푡( , )푢, 푡( , )푣 .													 

Then let 푏 = and by part (i), 

퐼 , (푢, 푣) = max 퐼 , (푡푢, 푡푣) ≥ 퐼 , 푡( , )푢, 푡( , )푣  

≥
1 − 휇

2
푡( , )푢, 푡( , )푣 −

1
2∗

푡( , )

∗

ℎ푢 푣 d푥

−
2 − 푞

2푞
휇 퐶 ‖푓 ‖ ∗ + ‖g ‖ ∗  

= (1 − 휇)퐽 푡( , )푢, 푡( , )푣 −
2 − 푞

2푞
휇 퐶 ‖푓 ‖ ∗ + ‖g ‖ ∗  

= (1 − 휇)
1
푁

‖(푢,푣)‖ ∗

∫ ℎ푢 푣 d푥
−

2 − 푞
2푞

휇 퐶 ‖푓 ‖ ∗ + ‖g ‖ ∗  

= (1 − 휇) 퐽 푡( , )푢, 푡( , )푣 −
2 − 푞

2푞
휇 퐶 ‖푓 ‖ ∗ + ‖g ‖ ∗ . 

This completes the proof. 
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Following the same method as and Remark (3.1), let 휂(푥) ∈ 퐶 (ℝ )be a 
radially symmetric function with 0 ≤ 휂 ≤ 1, |∇휂| ≤ 퐶, and 

휂(푥) = 1, if|푥| ≤
푟
2

,

0, if|푥| ≥ 푟 .
 

For any 푧 ∈ 푀, we define 

휔 , (푥) = 휂(푥 − 푧)푣 (푥 − 푧) 

where 푣 (푥) is given by (1). We know 

∇휔 , d푥 = 푆 + 푂(휀 )and 휔 ,
∗

d푥 = 푆 + 푂(휀 ).										(9) 

We have the following. 

 

Lemma (3.11) [3]: 

ℎ ω ,
∗

d푥 =
푆 ⁄ + 표(휀 ),							 if	푁 ≥ 6,								

푆 ⁄ + 표 휀 , if	3 ≤ 푁 ≤ 5.
 

Then we have the following results. 

Lemma (3.12) [3]: 

There exist 휀 > 0 small enough such that for 휀 ∈ (0, 휀 ), we have 휎(휀 ) > 0 
and 

sup 퐼 , 푢 , + 푡√훼휔 , , 푣 , + 푡 훽휔 , < 휃 , +
1
푁
푆 ,

⁄ − 휎(휀 )	uniformly	in	푧 ∈ 푀 

Furthermore, there exists 푡 > 0such that 

푢 , + 푡 √훼휔휀,푧,푣 , + 푡푧− 훽휔휀,푧 ∈ 푁 , for	all			푧 ∈ 푀. 

Lemma (3.13) [3]: 

We have 
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inf
( , )∈

퐽 (푢, 푣) = inf
( , )∈

퐽 (푢, 푣) =
1
푁
푆훼,훽
푁 2⁄ , 

where 퐽 (푢,푣) = ‖(푢,푣)‖ − ∗ ∫ 푢 + 푣 d푥 and 푁 = {(푢, 푣) ∈
퐻\{0}; 	(퐽 ) (푢, 푣)(푢, 푣) = 0}. 

Proof: 

We have 

inf
( , )∈

퐽 (푢, 푣) =
1
푁
푆훼,훽
푁 2⁄ . 

Thus it suffices to show that inf( , )∈ 퐽 (푢, 푣) = 1

푁
푆훼,훽
푁 2⁄ . Since 

max
푎
2
푡 −

푏
2∗
푡 ∗ =

1
푁

푎
푏 ∗⁄

푁 2⁄
for	any			푎 > 0		and		푏 > 0, 

by (9) and Lemma (3.11) we deduce that 

sup 퐽 푡√훼휔휀,푧, 푡 훽휔휀,푧 =
1
푁

⎝

⎜
⎛ (훼 + 훽)∫ ∇휔 , d푥

훼 훽 ∫ ℎ 휔 ,
∗

d푥
∗⁄

⎠

⎟
⎞

⁄

 

										=
1
푁
푆훼,훽
푁 2⁄ + 푂(휀 ). 

Then we obtain 

inf
( , )∈

퐽 (푢,푣) ≤
1
푁
푆훼,훽
푁 2⁄ ,			as		휀 → 0+. 

Since ℎ ≤ 1, for each (푢, 푣) ∈ 퐻\{0}, we have 

sup 퐽 (푡푢, 푡푣) ≤ sup 퐽 (푡푢, 푡푣). 

Hence 
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1
푁
푆 ,

⁄ = inf
(푢,푣)∈푁∞

퐽∞(푢,푣) = inf
(푢,푣)∈퐻\{0}

sup
푡≧0

퐽∞(푡푢, 푡푣) 

≤ inf
( , )∈\{ }

sup 퐽 (푡푢, 푡푣) = inf
( , )∈

퐽 (푢, 푣) ≤
1
푁
푆훼,훽
푁 2⁄ . 

This completes the proof. 

We use the idea of category to get positive solutions of 퐸 ,  in 퐻 and give the 
proof of Theorem (3.20).Initially, we give the following two lemmas related to the 
category. 

Proposition (3.14) [3]: 

Let 푅 be a 퐶 , complete Riemannian manifold (modeled on a Hilbert space) 
and assume 퐹 ∈ 퐶 (푅,ℝ)boundedfrom below. Let −∞ < inf 퐹 < 푎 < 푏 < +∞. 
Suppose that h satisfies the (PS)-condition on the sublevel {푢 ∈ 푅; 퐹(푢) ≤ 푏}and 
that a is not a critical level for 퐹. Then 

⋕ {푢 ∈ 퐹 ; 	∇퐹(푢) = 0} ≥ cat (퐹 ), 

where ℎ ≡ {푢 ∈ 퐻; ℎ(푢) ≤ 푎}. 

Proposition (3.15) [3]: 

Let 푄,Ω and Ω be closed sets with Ω ⊂ Ω . Let 휙 ∶ 푄 → Ω ,휑 ∶ Ω → 푄 be 
two continuous maps such that 휙 ∘ 휑 is homotopically equivalent to the embedding 
푗 ∶ Ω → Ω . Then cat (푄) ≥ cat (Ω ). 

The proof of Theorem (3.20) is based on Propositions (3.14) and (3.15). To argue 
further, we need to introduce the following lemma. 

Lemma (3.16) [3]: 

Let {(푢 , 푣 )} ⊂ 퐻 be a nonnegative function sequence 

with∫ (푢 ) (푣 ) d푥 = 1 and ‖(푢 ,푣 )‖ → 푆 , . Thenthere exists a sequence 
{(푥 , 휀 )} ∈ ℝ × ℝ such that 

휔 (푥) = 휔 (푥),휔 (푥) ∶= 휀 푢 (휀 푥 + 푥 ),푣 (휀 푥 + 푥 )  
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contains a convergent subsequence denoted again by {휔 } such that 휔 → 휔 =
(휔 ,휔 ) strongly in 픇 , (ℝ ) × 픇 , (ℝ )with 휔 (푥) > 0and 휔 (푥) > 0in ℝ . 
Moreover, we have 휀 → 0 and 푥 → 푥 ∈ Ω as 푘 → ∞. 

Next we define the continuous map 훷 ∶ 퐻\퐺 → ℝ  by 

훷(푢, 푣) ∶=
∫ 푥 푢 − 푢 , 푣 − 푣 , d푥

∫ 푢 − 푢 , 푣 − 푣 , d푥
, 

where 퐺 = (푢, 푣) ∈ 퐻; 	∫ 푢 − 푢 , 푣 − 푣 , d푥 = 0 . Then we have the 

following. 

Lemma (3.17) [3]: 

For each  0 < 훿 < 푟 	, there exist Λ , 훿 > 0	 such that if 

(푢, 푣) ∈ 푁 ,푁 (푢,푣) < 푆 ,
⁄ + 훿  and ‖푓 ‖ ∗ + ‖g ‖ ∗ < Λ , then 

훷(푢,푣) ∈ 푀 . 

Proof: 

Suppose the contrary. Then there exists a sequence {(푢 ,푣 )} ⊂ 푁 such that 
퐽 (푢 , 푣 ) = 푆 ,

⁄ + 표(1), ‖푓 ‖ ∗ + ‖g ‖ ∗ = 표(1), and 

훷(푢 ,푣 ) ∉ 푀 for	all		푘. 

It is easy to show that {(푢 ,푣 )} is bounded in 퐻 and there is a sequence {푡 } ⊂
ℝ such that (푡 푢 , 푡 푣 ) ∈ 푁 and 

1
푁
푆 ,

⁄ ≤ 퐽∞(푡푘∞푢푘, 푡푘∞푣푘) ≤ 퐽∞
1 (푡푘∞푢푘, 푡푘∞푣푘) ≤ 퐽∞

1 (푢푘,푣푘) =
1
푁
푆 ,

⁄ + 표(1). 

We obtain 푡 = 1 + 표(1)as 푘 → ∞ and 

lim
→

퐽 (푢 , 푣 ) = lim
→

1
푁
‖(푢 , 푣 )‖ = lim

→

1
푁

(푢 ) + (푣 ) d푥 
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																																											= lim
→

1
푁

ℎ(푢 ) (푣 ) d푥

=
1
푁
푆훼,훽
푁 2⁄ + 표(1).																	(10) 

Define 

푢 =
(푢 )

∫ (푢 ) (푣 ) d푥
( )⁄ ,

(푣 )

∫ (푢 ) (푣 ) d푥
( )⁄ . 

We see that∫ (푈 ) (푈 ) d푥 = 1. It follows from (10) and the definition of푆 ,  
that 

lim
→

(푈 ,푈 ) = 푆 , . 

By Lemma (3.18), there is a sequence {(푥 , 휀 )} ∈ ℝ × ℝ such that 휀 →

0, 푥 → 푥 ∈ Ω and 휔 (푥) = 휀 푈 (휀 푥 + 푥 ),푈 (휀 푥 + 푥 ) →
(휔 ,휔 )strongly in 픇 , (ℝ ) × 픇 , (ℝ )with 휔 > 0 and 휔 > 0 in ℝ as 
푘 → ∞. Then by (10), 

1 = 표(1) + ℎ(푈 ) (푈 ) d푥

= 휀 ℎ 휔
푥 − 푥
휀

휔
푥 − 푥
휀

d푥 + 표(1) = ℎ(푥 ), 

as 푘 → ∞, which implies 푥 ∈ 푀. By the Lebesgue dominated convergence 
theorem again, we have 

훷(푢 , 푣 ) =
∫ 푥 푢 − 푢 , 푣 − 푣 , d푥

∫ 푢 − 푢 , 푣 − 푣 , d푥
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																															=
∫ 푥(푢 ) (푣 ) d푥

∫ (푢 ) (푣 ) d푥
= +표(1),			as‖(푓 )‖ ∗ + ‖(g )‖ ∗ → 0 

																=
휀 ∫ 푥 휔 휔 d푥

휀 ∫ 휔 휔 d푥

+ 표(1), 

→ 푥 ∈ 푀			as			푘 → ∞, 

which is a contradiction. 

Lemma (3.18) [3]: 

There exists Λ > 0 small enough such that if ‖푓 ‖ ∗ + ‖g ‖ ∗ < Λ  and 

(푢, 푣) ∈ 푁 ,  with 퐼 , (푢,푣) < 1

푁
푆훼,훽
푁 2⁄ +  (훿 is given in Lemma (3.17)), then 

훷(푢,푣) ∈ 푀 . 

 

 

Proof: 

By Lemma (3.10), for 휇 ∈ (0,1), there is a unique 푡( , )such that 
푡( , )푢, 푡( , )푣 ∈ 푁 and 

퐽 푡( , )푢, 푡( , )푣 ≤ (1 − 휇) 퐼 , (푢, 푣) +
2 − 푞

2푞
휇 푐 ‖푓 ‖ ∗ + ‖g ‖ ∗ . 

Thus there exists Λ > 0 small enough such that if ‖푓 ‖ ∗ + ‖g ‖ ∗ < Λ  and 

퐼 , (푢,푣) < 1

푁
푆훼,훽
푁 2⁄ + , 

퐽 푡( , )푢, 푡( , )푣 ≤
1
푁
푆 ,

⁄ + 훿0. 
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By Lemma (3.17) and 푢 , , 푣 , → 0as ‖(푓 )‖ ∗ + ‖(g )‖ ∗ → 0, we 

complete the proof. 

Now we denote 푐 , ∶= 휃 , + 1

푁
푆훼,훽
푁 2⁄ − 휎(휀0)and consider the filtration of the 

manifold of 푁 , as follows: 

푁 , 푐 , 	; = (푢,푣) ∈ 푁 , ; 	 퐼 , ≤ 푐 , . 

Then cat (푀)critical points of 퐼 , will be obtained from 푁 , 푐 , in the 
following. 

Lemma (3.19) [3]: 

Let 훿,Λ > 0 be as in Lemmas (3.17) and (3.18). Then for ‖푓 ‖ ∗ +
‖g ‖ ∗ < Λ , 퐼 , has at least cat (푀)criticalpoints in 푁 , 푐 , . 

Proof: 

For 푧 ∈ 푀, by Lemma (3.12), we can define 

훤(푧) = 푢 , + 푡 √훼휔 , , 푣 , + 푡 훽휔 , ∈ 푁 , 푐 , . 

Furthermore, 퐼 , satisfies the (PS)-condition on 푁 , 푐 , . Moreover, it follows 

from Lemma (3.18) that 훷 푁 , 푐 , ⊂ 푀 for‖푓 ‖ ∗ + ‖g ‖ ∗ < Λ . Define 

휉 ∶ 	 [0,1] × 푀 → 푀  by 

휉(휃, 푧) = 훷 푢 , + 푡 √훼휔( ) , ,푣 , + 푡 훽휔( ) , ∈ 푁 , 푐 , . 

Then straightforward calculations provide that 휉(0, 푧) = 훷 ∘ 퐹(푧)and 
lim → −휉(휃, 푧) = 푧. Hence 훷 ∘ 퐹 is homotopic tothe inclusion ∶ 푀 → 푀  . By 
Propositions (3.14) and (3.15), 퐼 , has at least cat (푀)critical points in 
푁 , 푐 , . 

Theorem (3.20) [3]: 

Assume (H1)–(H3) hold. Then for each 훿 < 푟 , there exists Λ > 0 such that 
if‖푓 ‖ ∗ + ‖g ‖ ∗ < Λ 퐸 . has at least cat (푀) + 1 distinct positive 
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solutions, where 푓 = max{푓, 0} , g = max{g, 0} , 푞∗ =
∗

∗ and cat means 

theLusternik–Schnirelmann category. 

Proof: 

Note Lemmas (3.9) and (3.19), and applying 푁 , ⋂푁 , = ∅and the strong 
maximum principle, weobtain the conclusion of Theorem (3.20). 
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Chapter 4 

Multiple Solutions for aClass ofQuasi-Linear EllipticEquations 
InvolvingCritical SobolevExponent 

With the help of Neharimanifold and a mini-max principle, we prove that 
problem admits at least two or three positive solutions under different conditions. 
[4] 

Thischapteris concerned with the multiplicity of solutions to the following 
nonlinear 푝-Laplacian equation: 

퐸 ,

−∆ 푢 = 푔(푥)|푢| ∗ 푢 + 푓(푥), 푥 ∈ Ω
푢 > 0,																																													 푥 ∈ Ω
푢 = 0,																																													 			푥 ∈ ∂Ω,

 

where ∆ 푢 = div(|∇푢| ∇푢), 1 < 푝 < 푁, 푝∗ = ,Ωis an open bounded 

domain in ℝ with smooth boundary and 푓,푔 are two real functions on 
Ω.Moreover, we assume that thedomain Ω satisfies 

(H)퐵 (0) ∩ Ω = ∅ and 퐵 (0)\퐵 (0) ⊂ Ω for 휌 > 0is sufficiently small, where 

퐵 (0) = {푥 ∈ ℝ ; |푥| < 푟}. 

Under the assumption푓(푥) ≢ 0 and 푔(푥) ≢ 1, 퐸 ,  can be regarded as a 
perturbationproblem of the following equation: 

(퐸)
−∆ 푢 = |푢| ∗ 푢,																							 푥 ∈ Ω
푢 > 0,																																													 푥 ∈ Ω
푢 = 0,																																													 			푥 ∈ ∂Ω,

 

For the case 푝 = 2, it is well known the existence of solutions of (퐸) is affected 
by the shapeof the domain Ω. This has been the focus of a great deal of research by 
several authors. Inparticular, the first striking result is due to that if Ω is star-shaped 
with respect to some point, (퐸) has no solution. However, if Ω is an annulus, (퐸) 
admits a solution. For a non-contractible domain Ω,(퐸) has a solution. 
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When 푝 = 2, 푓(푥) > 0 and 푔 ≡ 1, 퐸  admits at least two solutions. The idea is 
to divide Nehari manifold into differentparts and apply the Ekelandvariational 
principle. In a similar way, the existence of four solutions for 퐸 ,  in a non-
contractible domain for ‖푓‖ ( )issufficiently small and 0 ≤ 푓 ≢ 0. 

For the case 푝 ≠ 2. 퐸 , has at least two solutions if 휆 > 0 is sufficiently small 
and 푓,푔 satisfy some integrability in Ω. 

In this work we aim to obtain a better information on the number of solutions of 
퐸 ,  byusing the Nehari manifold and a mini-max principle. 

Set 푋 ∶= 푊 , (Ω)and 푋∗denotes the usual dual space of 푋. The following 
assumptionsare used in this chapter: 

(푓)	0 ≤ 푓 ≢ 0 and 푓(푥) ∈ 푋∗. 

(푔 )	푔 ∈ 퐶(Ω) and 푔 = max{푔, 0} ≢ 0 in Ω. 

(푔 )	푔(푥) ≥ 0. 

(푔 )	푔(푥) ≡ 1. 

The main results of this chapter are concluded in the following theorems. In the 
first tworesults, we consider Ω as a general bounded domain, and for the third 
result, we assume thatthe domain is non-contractible. 

Theorem (4.1) [4]:  

Suppose (푓) and (푔 ) hold. Then there exists Λ > 0 such that 퐸 ,  has at 
least one solution if 0 < ‖푓‖ ∗ < Λ . 

Proof: 

Suppose (푓) and (푔 ) hold. From Lemma (4.10), it follows that there exists 
Λ = min{휆 , 휆 } such that 퐸 ,  has at least one solution if 0 < ‖푓‖ ∗ < Λ . 
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Theorem (4.2) [4]: 

Suppose (푓), (푔 ) and (푔 ) hold. Then there exists Λ > 0 such that 퐸 , has 
at least two solutions if 0 < ‖푓‖ ∗ < Λ . 

 

Proof: 

Since (푓), (푔 ) and (푔 ) hold and suppose 0 < ‖푓‖ ∗ < Λ = min{휆 , 휆 }, we 
from Lemma (4.10) get the first solution 푢 , ∈ 푁 , and from Lemma (4.11) get 
the second solution 푢 , ∈ 푁 , . Moreover, 푁 , ⋂푁 , = ∅, this implies that 
푢 , and 푢 ,  are distinct. 

Theorem (4.3) [4]: 

Suppose (퐻), (푓) and (푔 ) hold. Then there exists Λ > 0 such that 퐸 , has 
at least three solutions if 0 < ‖푓‖ ∗ < Λ . 

Proof:  

We complete the proof by Lemmas (4.10), (4.11), (4.22), (4.23) and the fact 

−∞ < 훼 , < 0 < 훼 , <
1

2푁
푐 + 푆 < 훾 , <

2
푁
푆 , 

if 0 < ‖푓‖ ∗ < Λ . 

Associated with 퐸 , , we consider the energy functional 퐽 ,  for each 푢 ∈ 푋, 

퐽 , (푢) =
1
푝

|∇푢| 푑푥 −
1
푝∗

푔푢
∗
푑푥 − 푓푢 푑푥, 

where 푢± = ± max{±푢, 0}. From the assumption, it is easy to prove that 퐽 ,  is 
well definedin 푋 and 퐽 , ∈ 퐶 (푋,ℝ). Furthermore, let 푢 ∈ 푋 be a critical point of 
퐽 , , then 

|∇푢 | 푑푥 = 푓푢 푑푥 ≤ 0, 
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since 푓(푥) ≥ 0. This implies that 

푢 = 0			a. e.		inΩ. 

Thus 푢 ≥ 0.  

Now we define Harnack inequality (Let 푢 be a non negative weak super 
solution of the equation 

div	퐴(푥,푢,∇푢) + 퐵(푥, 푢,∇푢) = 0 

in Ω. Let 퐵  be a ball such that 퐵 ⋐ Ω and let 푀 be a constant such that 푢 ≤ 푀 in 
퐵 . Then there exists 푐 depending on 푛,푀, 푎 ,푏 ,푃 and the weight 푣 such that 

휔 (퐵 ) 푢휔 푑푥 ≤ 푐 min 푢 + ℎ(푟)  

where 

ℎ(푟) = 휑 ; 3푟 + 휑 ; 3푟 + 휑 ; 3푟 ) [8]. By Harnack 

inequality, we obtain that 푢 > 0 in Ω. 

For convenience, we will denote positive constant (possibly different) as 푐 from 
then on. 

Throughout the chapter by |	⋅	|  we denote the 퐿 -norm. On the space 푋 we 
consider thenorm 

‖푢‖ = |∇푢| 푑푥 . 

Set also 

풟 , (ℝ ) ∶= 푢 ∈ 퐿 ∗(ℝ ); 	
휕푢
휕푥

∈ 퐿 (ℝ )for	푖 = 1, … ,푁  

equipped with the norm 
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‖푢‖풟 , ℝ = |∇푢|
ℝ

푑푥 . 

We then define the Palais-Smale (simply by (PS)) sequences, (PS)-values, and 
(PS)-conditionsin 푋 for 퐽 ,  as follows. 

Definition (4.4) [4]: 

(i) For 훽 ∈ ℝ, a sequence {푢 } is a (PS)  -sequence in 푋 for 퐽 ,  if 
퐽 , (푢 ) = 훽 + 표(1) and 퐽 , (푢 ) = 표(1)strongly in 푋∗ as 푘 → ∞; 

(ii) 훽 ∈ ℝ is a (PS)-value in 푋 for 퐽 ,  if there exists a (PS) -sequence in 푋 
for 퐽 , ; 

(iii) 퐽 ,  satisfies the (PS) -condition in 푋 if every (PS) -sequence in 푋 for 
퐽 ,  contains a convergent subsequence.  

Lemma (4.5) [4]: 

Let {푢 } be a (PS)-sequence of 퐽 , 퐽 , for	푔 ≡ 1  in 푋. Then there existsa 

number 푛 ∈ ℕ, sequences 휀 , 푥 , 1 ≤ 푗 ≤ 푛of radii 휀 → 0 (as 푘 → ∞), and 

points푥 ∈ Ω, a solution 푢 ∈ 푋 ⊂ 풟 , (ℝ ) to 퐸 , 퐸 , for	푔 ≡ 1 , and 

nontrivial solutions푢 ∈ 풟 , (ℝ ), 1 ≤ 푗 ≤ 푛to the “limiting problem” of 퐸 , , 
such that a subsequence of {푢 }, still denoted by {푢 }, satisfies 

푢 − 푢 − 푢

풟 , ℝ

→ 0	as	푘 → ∞, 

here 푢 denotes the scaled function 

푢 (푥) = 휀 푢
푥 − 푥
휀

, 1 ≤ 푗 ≤ 푛. 

Moreover, 
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퐽 , (푢 ) → 퐽 , (푢 ) + 퐽 푢 as		푘 → ∞, 

where 퐽 (푢) = ∫ |∇푢|ℝ 푑푥 − ∗ ∫ 푢
∗

ℝ 푑푥. 

As 퐽 ,  is not bounded below on 푋, we consider the behaviors of 퐽 ,  on the 
Nehari manifold 

푁 , = 푢 ∈ 푋\{0}; 	푢 ≢ 0	and〈퐽 , (푢), 푢〉 = 0 , 

where 〈	, 〉 denotes the usual duality between 푋 and 푋∗. Clearly, for each 푢 ∈ 푋 
with 푢 ≢ 0,푢 ∈ 푁 ,  if and only if 

|∇푢| 푑푥 − 푔푢
∗
푑푥 − 푓푢 푑푥 = 0. 

Thus, on the Nehari manifold 푁 , , we have 

퐽 , (푢) =
1
푝

|∇푢| 푑푥 −
1
푝∗

푔푢
∗
푑푥 − 푓푢 푑푥									 

									=
1
푝
−

1
푝∗

|∇푢| 푑푥 − 1 −
1
푝∗

푓푢 푑푥 

																																							≥
1
푝
−

1
푝∗

‖푢‖ − 1 −
1
푝∗

‖푓‖ ∗‖푢‖.																															(1) 

Hence 퐽 ,  is coercive and bounded below on 푁 , . 

We now define 

휓 , (푢) ∶= 〈퐽 , (푢), 푢〉 = |∇푢| 푑푥 − 푔푢
∗
푑푥 − 푓푢 푑푥. 

Then for 푢 ∈ 푁 , , 

〈휓 , (푢),푢〉 = (푝 − 1) |∇푢| 푑푥 − (푝∗ − 1) 푔푢
∗
푑푥																			(2) 
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									= (푝 − 푝∗) |∇푢| 푑푥 + (푝∗ − 1) 푓푢 푑푥.																								(3) 

We split 푁 ,  into three parts: 

푁 , = 푢 ∈ 푁 , ; 	 〈휓 , (푢), 푢〉 > 0 ; 

푁 , = 푢 ∈ 푁 , ; 	 〈휓 , (푢), 푢〉 = 0 ; 

푁 , = 푢 ∈ 푁 , ; 	〈휓 , (푢),푢〉 < 0 . 

Then we have the following results. 

Lemma (4.6) [4]: 

There exists 휆 > 0 such that if 0 < ‖푓‖ ∗ < 휆 , we have 푁 , = ∅. 

Proof: 

Suppose otherwise, that is 푁 , ≠ ∅ for all 푓 ∈ 푋∗. Then for ∈ 푁 , , we 
from(2),(3), and the Sobolev imbedding theorem obtain that there is a positive 
constant 푐independent of 푢 such that 

|∇푢| 푑푥 ≤ 푐 |∇푢| 푑푥

∗

and |∇푢| 푑푥 ≤ ‖푓‖ ∗ |∇푢| 푑푥  

or 

|∇푢| 푑푥 ≥ 푐 ∗ and |∇푢| 푑푥 ≤ (‖푓‖ ∗) . 

If ‖푓‖ ∗ is sufficiently small, this is impossible. Thus we can conclude that there 
exists 휆 > 0 such that if 0 < ‖푓‖ ∗ < 휆 , we have 푁 , ≠ ∅. 

For each 푢 ∈ 푋 with∫ 푔푢
∗
푑푥 > 0, we set 
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푡 =
(푝 − 1)∫ |∇푢| 푑푥

(푝∗ − 1) ∫ 푔푢
∗
푑푥

∗

> 0. 

Lemma (4.7) [4]: 

Suppose that ‖푓‖ ∗ ∈ (0, 휆 ) and 푢 ∈ 푋 is a function satisfying 

with∫ 푔푢
∗
푑푥 > 0. 

(i) If ∫ 푓푢 푑푥 ≤ 0, then there exists a unique 푡 , > 푡 such that 푡 , 푢 ∈
푁 ,  and 

퐽 , 푡 , 푢 = sup 퐽 , (푡푢). 

(ii) If∫ 푓푢 푑푥 > 0, then there exists a unique 푡 ,
± such that 0 < 푡 , <

푡 < 푡 , , 푡 , 푢 ∈ 푁 ,  and 푡 , ∈ 푁 , . Moreover, 

퐽 , 푡 , 푢 = inf 퐽 , (푡푢), 푡 , 푢 = sup
,

퐽 , (푡푢). 

We remark that it follows Lemma (4.5), for 0 < ‖푓‖ ∗ < 휆 , we write 푁 , =
푁 , ⋃푁 , . Furthermore, by Lemma (4.6), it follows that 푁 ,  and 푁 , are 
nonempty, and by (1), we maydefine 

훼 , = inf
∈ ,

퐽 , (푢) ; 		훼 , = inf
∈ ,

퐽 , (푢). 

Then we have the following result. 

Lemma (4.8) [4]: 

(i) 훼 , < 0. 
(ii) There exist 휆 , 푑 > 0 such that 훼 , ≥ 푑  if 0 < ‖푓‖ ∗ < 휆 . 

Proof: 

(i) Given 푢 ∈ 푁 , , from (3) we obtain 
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퐽 , (푢) =
1
푝
−

1
푝∗

|∇푢| 푑푥 − 1 −
1
푝∗

푓푢 푑푥 

													≤
1
푝
−

1
푝∗

− 1 −
1
푝∗

푝∗ − 푝
푝∗ − 1

|∇푢| 푑푥 

=
푝∗ − 푝
푝∗

1
푝
− 1 |∇푢| 푑푥 < 0. 

This yields 훼 , < 0. 

(ii) For 푢 ∈ 푁 , , by (2) and the Sobolev embedding theorem, we get 

(푝 − 1) |∇푢| 푑푥 < (푝∗ − 1) 푔푢
∗
푑푥 

																																																															≤ (푝∗ − 1)|푔| 푆
∗

|∇푢| 푑푥

∗

, 

where 푆 is the best constant of the embedding of 푋 ↪ 퐿 ∗(Ω). Thus there exists 
푐 > 0 suchthat  

|∇푢| 푑푥 ≥ 푐. 

Moreover, 

퐽 , (푢) =
1
푝
−

1
푝∗

|∇푢| 푑푥 − 1 −
1
푝∗

푓푢 푑푥 

																≥
1
푝
−

1
푝∗

|∇푢| 푑푥 − 1 −
1
푝∗

‖푓‖ ∗‖푢‖ 

												= ‖푢‖
1
푝
−

1
푝∗

‖푢‖ − 1 −
1
푝∗

‖푓‖ ∗ . 

Hence, there exist 휆 ,푑 > 0 such that 훼 , ≥ 푑  if 0 ≤ ‖푓‖ ∗ < 휆 . 
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Lemma (4.9) [4]: 

(i) If 0 < ‖푓‖ ∗ < 휆 , then 퐽 ,  has a (PS)
,

-sequence {푢 } ⊂ 푁 , .  

(ii) If 0 < ‖푓‖ ∗ < min{휆 , 휆 }, then 퐽 ,  has a (PS)
,

-sequence {푢 } ⊂
푁 , . 

Now, we establish the existence of a local minimum for 퐽 ,  on  
푁 , . 

Lemma (4.10) [4]: 

Assume (푓) and (푔 ) hold. If 0 < ‖푓‖ ∗ < min{휆 , 휆 }, the functional 퐽 , has 
a minimizer 푢 , ∈ 푁 , and it satisfies 

(i) 퐽 , 푢 , = 훼 , ; 
(ii) 푢 ,  is solution of 퐸 , ; 

(iii) 푢 , → 0 as ‖푓‖ ∗ → 0; 
(iv) 퐽 , 푢 , → 0 as ‖푓‖ ∗ → 0. 

Proof: 

By (1) and Lemma (4.9) (i), there exists a minimizing sequence {푢 } ⊂
푁 , suchthat 

퐽 , (푢 ) = 훼 , + 표(1)and퐽 , (푢 ) = 표(1)in푋∗. 

After a standard argument, we get that {푢 } is bounded in 푋. Passing to 
asubsequence, there exists 푢 ,  such that as 푘 → ∞, 

(a) 푢 ⇀ 푢 , weakly in 푋, 
(b) 푢 ⇀ 푢 , weakly in 퐿 ∗(Ω), 
(c) 푢 → 푢 , strongly in 퐿 (Ω)for all 1 ≤ 푟 < 푝∗. 

Moreover, we can obtain 퐽 , 푢 , = 0 in 푋∗ and 푢 , ∈ 푁 , is a nontrivial 
solution of 퐸 , , since 푓 ≢ 0. 
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Next, we prove that 푢 → 푢 ,  strongly in 푋 and  
퐽 , 푢 , = 훼 , . From Lemma (4.7), (1), and fact 푢 , 푢 , ∈ 푁 , , it follows that 

훼 , ≤ 퐽 , 푢 , =
1
푁

푢 , −
푝∗ − 1
푝∗

푓푢 , 푑푥 

≤ lim
→

inf
1
푁
‖푢 ‖ −

푝∗ − 1
푝∗

푓푢 푑푥  

= lim
→

inf 퐽 , (푢 ) = 훼 , ,																																 

which implies that 퐽 , 푢 , = 훼 , and lim → ‖푢 ‖ = 푢 , . Standard 
argument shows that푢 → 푢 , strongly in 푋. Moreover, since  
푁 , = ∅, we obtain 푢 , ∈ 푁 , . 

Finally, by (3) and푢 , ∈ 푁 , , we obtain 

푢 , <
푝∗ − 1
푝∗ − 푝

‖푓‖ ∗ , 

which implies that 푢 , → 0 as ‖푓‖ ∗ → 0, and so 퐽 , 푢 , → 0 as  
‖푓‖ ∗ → 0. 

Lemma (4.11) [4]: 

Assume (푓), (푔 ) and (푔 ) hold. If 0 < ‖푓‖ ∗ < min{휆 , 휆 }, then 
thereexists푢 , ∈ 푁 , and it satisfies 

(i) 퐽 , 푢 , = 훼 , ; 
(ii) 푢 , is a solution of 퐸 , . 

Proof:  

By (1) and Lemma (4.9) (ii), there exists a minimizing sequence {푢 } ⊂
푁 , suchthat such that 

퐽 , (푢 ) = 훼 , + 표(1)and퐽 , (푢 ) = 표(1)in푋∗. 



133 
 

After a standard argument, we get that {푢 } is bounded in 푋. Passing to 
asubsequence, there exists 푢 ,  such that as 푘 → ∞, 

(a) 푢 ⇀ 푢 , weakly in 푋, 
(b) 푢 ⇀ 푢 , weakly in 퐿 ∗(Ω), 
(c) 푢 → 푢 , strongly in 퐿 (Ω)for all 1 ≤ 푟 < 푝∗. 

Moreover, we can obtain 퐽 , 푢 , = 0 in 푋∗ and 푢 , ∈ 푁 , is a nontrivial 
solution of 퐸 , , since 푓 ≢ 0. 

Next, we prove that 푢 , ∈ 푁 , . On the contrary, if 푢 , ∈ 푁 , , then by 
푁 , ⋃{0}isclosed in 푋, we have 

푢 , < lim
→

inf‖푢 ‖. 

From (푔 ), (푔 ) and 푢 , > 0 in Ω, we have 

푔 푢 ,
∗
푑푥 > 0. 

Thus, by Lemma (4.6), there exists a unique 푡 , 푢 , ∈ 푁 , . If 푢 ∈ 푁 , , then it is 
easy to seethat 

퐽 , (푢) =
1
푁
‖푢‖ −

푝∗ − 1
푝∗

푓푢 푑푥. 

So we can deduce that 

훼 , ≤ 퐽 , 푡 , ,푢 , < lim
→

퐽 , 푡 , 푢 ≤ lim
→

퐽 , (푢 ) = 훼 , . 

This is a contradiction. Hence 푢 , ∈ 푁 , . 

Then by the same argument as that in Lemma (4.10), we get that 푢 →
푢 , strongly in 푋and 퐽 , 푢 , = 훼 , > 0. 

Now, we suppose (퐻), (푓) and (푔 ) hold throughout. 

Denote 푉 ∶= 푢 ∈ 푋; |푢| ∗ = 1 , 
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퐽 , (푢) = max 퐽 , (푡푢) ∶ 푉 → ℝ 

and 

퐽 , (푢) = max 퐽 , (푡푢) ∶ 푉 → ℝ. 

 

Lemma (4.12) [4]: 

For each 푢 ∈ 푁 , and 푏 > 0, we have 

(i) There is a unique 푡 , such that 푡 , 푢 ∈ 푁 , and 

max 퐽 , (푡푢) = 퐽 , 푡 , 푢 =
1
푁
푏

‖푢‖ ∗

∫ 푢
∗
푑푥

. 

(ii) For 휇 ∈ (0,1), there is a unique 푡 , such that 푡 , 푢 ∈ 푁 , . Moreover, 

퐽 , (푢) ≥ (1 − 휇) 퐽 , 푡 , 푢 −
1

푞휇
‖푓‖ ∗ 

and 

퐽 , (푢) ≤ (1 + 휇) 퐽 , 푡 , 푢 +
1

푞휇
‖푓‖ ∗ , 

where + = 1. 

(iii) 훼 , → 푆  as ‖푓‖ ∗ → 0. 

Proof:  

(i) For each 푢 ∈ 푁 , , let 

ℎ(푡) = 퐽 , (푡푢) =
1
푝
푡 ‖푢‖ −

1
푝∗
푡 ∗ 푏푢

∗
푑푥. 
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Then ℎ(푡) → −∞ as 푡 → ∞, 

ℎ (푡) = 푡 ‖푢‖ − 푡 ∗ 푏푢
∗
푑푥 

and 

ℎ (푡) = (푝 − 1)푡 ‖푢‖ (푝∗ − 1)푡 ∗ 푏푢
∗
푑푥. 

Let 

푡 , =
‖푢‖

∫ 푏푢
∗
푑푥

∗

> 0. 

Then ℎ 푡 , = 0, 푡 , 푢 ∈ 푁 ,  and 푡 , ℎ 푡 , = (푝 − 푝∗)‖푢‖ < 0. 
Hence there is a unique푡 , such that 푡 , 푢 ∈ 푁 , and 

max 퐽 , (푡푢) = 퐽 , 푡 , 푢 =
1
푁
푏

‖푢‖ ∗

∫ 푢
∗
푑푥

. 

(ii) For 휇 ∈ (0,1), we have 

푓푢 푑푥 ≤ ‖푓‖ ∗‖푢‖ ≤
휇
푝
‖푢‖ +

1

푞휇
‖푓‖ ∗ , 

where + = 1.Then by part (i), 

퐽 , (푢) = max 퐽 , (푡푢) ≥ 퐽 , 푡 , 푢  

≥
1 − 휇
푝

푡 , 푢 −
1
푝∗

푡 , 푢
∗

푑푥 −
1

푞휇
‖푓‖ ∗ 
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= (1 − 휇)퐽 , 푡 , 푢 −
1

푞휇
‖푓‖ ∗ 

= (1 − 휇)
1
푁

‖푢‖ ∗

∫ 푢
∗
푑푥

−
1

푞휇
‖푓‖ ∗ 

= (1 − 휇) 퐽 , 푡 , 푢 −
1

푞휇
‖푓‖ ∗ .																																													 

Similarly, we obtain 

퐽 , (푢) ≤ max
1 + 휇
푝

‖푡푢‖ −
1
푝∗

(푡푢)
∗
푑푥 +

1

푞휇
‖푓‖ ∗ 

= (1 + 휇)퐽 , 푡 , 푢 +
1

푞휇
‖푓‖ ∗ 

= (1 + 휇) 퐽 , 푡 , 푢 +
1

푞휇
‖푓‖ ∗ . 

(iii) It follows from part (ii) and the fact that 훼 , = 푆 , where 훼 , =

inf ∈ , 퐽 , (푢)and 푁 , = 푢 ∈ 푋\{0}; 	푢 ≢ 0	and〈퐽 , (푢), 푢〉 = 0 . 

Lemma (4.13) [4]: 

Suppose {푢 } is a (PS) -sequence of 퐽 ,  with 

1
푁
푆 < 훽 <

2
푁
푆 − 휀  

for some 휀 > 0. Moreover, we let 푢 ⇀ 푢 ∉ 푁 , weakly in 푋. Then there exists 
휆 > 0 such that for 0 < ‖푓‖ ∗ < 휆 , {푢 } has a convergent subsequence. 

Proof: 

By Definition (4.4), we have 
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1
푁
푆 < 훽 = 퐽 , (푢 ) + 표(1) = 퐽 , (푢 ) + 퐽 푢 <

2
푁
푆 − 휀 , 

where 휄 ∈ ℕ. 

We suppose 0 < ‖푓‖ ∗ < min{휆 , 휆 }. Then, it follows from Lemma (4.5) that 
푢 ∈ 푁 , and 퐽 , (푢 ) ≥ 	훼 , > 0. However, by Lemma (4.12) (iii), we know that 
there exists 0 < 휆 < min{휆 , 휆 }such that for 0 < ‖푓‖ ∗ < 휆 , 

퐽 , (푢 ) + 퐽 푢 ≥ 퐽 , (푢 ) + 휄
1
푁
푆 ≥ 훼 , +

1
푁
푆 >

2
푁
푆 − 휀 , 

when 휄 ≥ 1. This contradicts to our assumption. Therefore 휄 = 0 and by Definition 
(4.4), wecomplete the proof.  

It is well known that the best Sobolev constant 

푆 = inf |∇푢|
ℝ

푑푥;푢 ∈ 풟 , (ℝ ), |푢| ∗ = 1  

is attained by the functions 

푢 (푥) = 훿 푁
푁 − 푝
푝 − 1

훿 + |푥|  

for any 훿 > 0. Moreover, the functions 푦 (푥) are the only positive radial solutions 
of 

−∆ 푢 = |푢| ∗ 푢 

in ℝ . Hence, 

푆 |푢 | ∗

ℝ
푑푥

∗

= ∇
ℝ

푑푥 = |푢 | ∗

ℝ
푑푥 = 푆 . 

Let 휑 ∈ 퐶 (ℝ ) be a radially symmetric function such that 
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휑 (푥) =

⎩
⎪⎪
⎨

⎪⎪
⎧0, 0 ≤ |푥| ≤

3휌
2

,

1, 2휌 ≤ |푥| ≤
1

2휌
,

0, |푥| ≥
3

4휌

 

and 

푢 (푥) = 훿 푁
푁 − 푝
푝 − 1

훿 + |푥 − (1 − 훿)푒| , 

where 푒 ∈ 핊 = {푥 ∈ ℝ ; 	|푥| = 1} and 0 < 훿 < 1. Set 

휔 (푥) = 휑 (푥)푢 (푥)and휗 . (푥) =
휔 , (푥)

휔 , (푥)
∗

∈ 푋. 

Lemma (4.14) [4]: 

휗 , (푥) → 푆 as 훿 → 0uniformly in 푒 ∈ 핊. 

Proof: 

It is sufficient to show 

휔 ,
∗

∗

→ 푆 ,			 휔 , → 푆 (4) 

uniformly in 푒 ∈ 핊 as 훿 → 0. In order to show (4), we estimate 

|푢 (푥)| ∗
∗
− 휔 , (푥) ∗

∗

= 1 − 휑 (푥) ∗ |푢 (푥)| ∗

ℝ
푑푥 

≤ 푐
훿

훿 + |푥 − (1 − 훿)푒|
푑푥 + 푐

훿

훿 + |푥 − (1 − 훿)푒|ℝ \
푑푥 

= 표(1) 
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as 훿 → 0 for all 푒 ∈ 핊. Similarly, 

∇휔 , (푥)
ℝ

푑푥 − |∇푢 (푥)|
ℝ

푑푥 

					= ∇휑 (푥)푢 (푥) + 휑 (푥)∇푢 (푥) 푑푥 − |∇푢 (푥)|
ℝ

푑푥 

≤ 휑 (푥) − 1 |∇푢 (푥)| 푑푥 + 푐 ∇휑 (푥)푢 (푥)
ℝ

푑푥

+ 푐 휑 (푥)∇푢 (푥) ∇휑 (푥)푢 (푥)
ℝ

푑푥 

≤ |∇푢 (푥)|
ℝ \ ⋃

푑푥 + 푐휌 |푢 (푥)|
\

푑푥 + 푐휌 |푢 (푥)| 푑푥

+ 푐 |∇푢 (푥)|
ℝ \ ⋃

푑푥

+ 푐 휌 |푢 (푥)|
\

푑푥 + 휌 |푢 (푥)| 푑푥 → 0 

as 훿 → 0 uniformly in 푒 ∈ 핊. Note the fact 

|∇푢 (푥)|
ℝ

푑푥 = |푢 (푥)| ∗

ℝ
푑푥 = 푆 , 

we complete the proof. 

 

Lemma (4.15) [4]: 

There is a 휌 > 0 such that for 0 < 휌 < 휌 , 

sup
, ∈핊

휗 , (푥) < 2 푆. 
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Proof: 

The assertion can be verified similarly as Lemma (4.14). Let us define 

Φ ∶ 푉 → ℝ ,Φ(푢) = 푥|푢| ∗

ℝ
푑푥, 

where the function 푢 is extended to ℝ by setting 푢 = 0 outside Ω. Set 

A = {푢 ∈ 푉;Φ(푢) = 0}. 

Lemma (4.16) [4]: 

Let 푐 = inf ∈ ‖푢‖ , then 푆 < 푐 . 

Proof: 

Apparently, 푐 ≥ 푆. To show 푆 < 푐 , we argue by contradiction. Suppose 
that푐 = 푆, then there is a sequence {푣 } ⊂ 푋 such that 

|푣 | ∗ = 1,Φ(푣 ) = 0			and			‖∇푣 ‖ → 푆		as		푘 → ∞. 

So the sequence 푢 = 푆 푣 satisfies 

퐽 , (푣 ) →
1
푁
푆 and퐽 , (푢 ) → 0		as		푘 → ∞. 

There exist {휀 }, {푥 } ∈ Ω, 휀 → 0 as 푘 → ∞, for the 

functions푣 = 푆 푢 , (푥), where 

푢 , (푥) = 휀
푁 − 푝
푝 − 1

휀 + |푥 − 푥 | , 

we have 

Φ(푣 ) = 푥 . 

From (퐻), we know 푥 ≠ 0 and this contradicts to our assumption that Φ(푣 ) =
0. Hence푆 < 푐 . 
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Lemma (4.17) [4]: 

There holds lim → Φ 휗 , (푥) = 푒. 

 

 

 

Proof: 

Since 

(푥 − 푒) 휔 , (푥)
∗

ℝ
푑푥

= (푥 − 푒)|푢 (푥)| ∗

ℝ
푑푥 + (푥 − 푒) 휑 (푥) ∗ − 1 |푢 (푥)| ∗

ℝ
푑푥 

															= (1 − 훿)푒 − 푒 + (푥 − 푒) 휑 (푥) ∗ − 1 |푢 (푥)| ∗

ℝ
푑푥 → 0 

as 훿 → 0. Thus 

Φ 휗 (푥) − 푒 =
∫ (푥 − 푒) 휔 , (푥)

∗

ℝ 푑푥

∫ 휔 , (푥)
∗

ℝ 푑푥
→ 0 

as 훿 → 0. 

To pursue further, we need the following result. 

Lemma (4.18) [4]: 

Let 퐾be a compact metric space, 퐾 ⊂ 퐾 be a closed set, 푋 be a Banach space 
and 휒 ∈ 퐶(퐾 ,푋). Let us define the complete metric space 푀 by 

푀 = {푘 ∈ 퐶(퐾,푋); 푘(푠) = 휒(푠)if	푠 ∈ 퐾 } 

with the usual distance. Let 휑 ∈ 퐶 (푋,ℝ)and let us define 
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푐 = inf
∈

sup
∈

휑 푘(푠) ,			 푐̂ = sup
( )

휑. 

If 푐 > 푐̂, then for each 휀 > 0 and each 푘 ∈ 푀 satisfying 

sup
∈

휑 푘(푠) ≤ 푐 + 휀, 

there exists 푣 ∈ 푋 such that 

푐 − 휀 ≤ 휑(푣) ≤ sup
∈

휑 푘(푠) ,			dist 푣, 푘(퐾) ≤ 휀 ,			‖휑 (푣)‖ ≤ 휀 . 

Let 푟 = − 훿 and 

퐵 =
1
2
− 훿 푒 ∈ ℝ ; 	

1
2
− 훿 ≤ 푟 , 0 < 훿 ≤

1
2

, 

where 훿 > 0 is small enough. Then we set 

퐹 = ℎ ∈ 퐶 퐵 ,푉 ; ℎ| = 휗 , (푥)  

and 

푐 = inf
∈

sup
∈

ℎ
1
2
− 훿 푒 .																																		(5) 

Lemma (4.19) [4]: 

For ℎ ∈ 퐹, we have ℎ 퐵 ⋂퐴 ≠ ∅. 

Proof: 

It is equivalent to show that for any ℎ ∈ 퐹, there exist − 훿 푒̃ ∈ 퐵 , 푒̃ ∈
핊suchthat 

Φ ℎ
1
2
− 훿 푒̃ = 0. 
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Set 휃 − 훿 푒 ≡ Φ ℎ − 훿 푒 , we claim that 

푑 휃,퐵 , 0 = 푑 퐼,퐵 , 0 ≠ 0. 

In fact, if − 훿 푒 ∈ 휕퐵 , we have 

ℎ
1
2
− 훿 푒 (푥) = 휗 , (푥),Φ ℎ

1
2
− 훿 푒 (푥) = Φ 휗 , (푥) = 푒 + 표(1) 

as 훿 → 0. Then we consider the homotopy 

퐺 푡,
1
2
− 훿 푒 = (1 − 푡)휃

1
2
− 훿 푒 + 푡퐼, 0 ≤ 푡 ≤ 1 

If − 훿 푒 ∈ 휕퐵 , 

퐺 푡,
1
2
− 훿 푒 = (1 − 푡) 푒 + 표(1) + 푡

1
2
− 훿 푒 ≠ 0 

as 훿 → 0. So the claim is proved and there exist − 훿 푒̃ ∈ 퐵 , 푒̃ ∈ 핊such that 

Φ ℎ
1
2
− 훿 푒̃ = 0. 

We complete the proof. 

By Lemmas (4.16) and (4.19), we obtain 

푆 < 푐 ≤ 푐 . 

On the other hand, it follows from Lemma (4.15) and (5) that for 0 < 휌 < 휌 , 

푐 ≤ sup
∈

휗 , (푥) ≤ sup
, ∈핊

휗 , (푥) < 2 푆. 

Thus 

푆 < 푐 ≤ 푐 < 2 푆. 
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Then we define 

훾 , = inf
∈

sup
∈

퐽 , ℎ
1
2
− 훿 푒 , 

훾 , = inf
∈

sup
∈

퐽 , ℎ
1
2
− 훿 푒  

 

Lemma (4.20) [4]: 

We have 

1
푁
푆 <

1
푁
푐 ≤ 훾 , <

2
푁
푆 . 

 

Proof: 

Since 

퐽 , (푢) = max
, ∈

퐽 , (푡푢) =
1
푁

|∇푢| 푑푥

∗
∗

 

and 

inf
∈

sup
∈

퐽 , ℎ
1
2
− 훿 푒 =

1
푁

inf
∈

sup
∈

ℎ
1
2
− 훿 푒 , 

we obtain the assertion from (5) and the fact 푆 < 푐 ≤ 푐 < 2 푆. 

Lemma (4.21) [4]: 

퐽 , 휗 , (푥) =
1
푁
푆 + 표(1) 

as 훿 → 0. 
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Proof: 

It is easy to obtain 휗 , (푥) ⇀ 0 weakly in 푋as 훿 → 0. Solving 

d퐽 , 푡휗 , (푥)

d푡
= 푡

∫ ∇휔 , (푥) 푑푥

휔 , (푥)
∗

∗ − 푡 ∗ −
∫ 푓휔 , (푥)푑푥

휔 , (푥)
∗

= 0, 

we see that ∫ 푓휔 , (푥)푑푥 → 0 and 

푡 휗 , = 휔 ,
∗ + 표(1)as		훿 → 0. 

As a result, 

퐽 , 휗 , (푥) = 퐽 , 푡 휗 , 휗 , =
1
푁
푆 + 표(1). 

 

Lemma (4.22) [4]: 

There exists Λ > 0 such that for 0 < ‖푓‖ ∗ < Λ , we have 

1
푁
푆 < 훾 , <

2
푁
푆 − 휀  

for some 휀 > 0. 

Proof: 

For ∈ 푉, by Lemma (4.12) we obtain 

(1 − 휇) 퐽 , (푢) −
1

푞푢
‖푓‖ ∗ ≤ 퐽 , (푢) ≤ (1 + 휇) 퐽 , (푢) +

1

푞푢
‖푓‖ ∗ . 

Thus 

퐽 , (푢) + (1 − 휇) − 1 퐽 , (푢) −
1

푞푢
‖푓‖ ∗ 
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																	≤ 퐽 , (푢) ≤ 퐽 , (푢) + (1 + 휇) − 1 퐽 , (푢) +
1

푞푢
‖푓‖ ∗ . 

Hence, for any 휀 > 0, there exist 휇(휀),Λ(휀) > 0 such that if 0 < ‖푓‖ ∗ < Λ(휀), 
we have 

훾 , − 휀 < 훾 , < 훾 , + 휀. 

Fix a small 0 < 휀 < , . Since 

1
푁
푆 <

1
푁
푐 ≤ 훾 , <

2
푁
푆 , 

there exists 0 < Λ < min{휆 , 휆 , 휆 }such that if 0 < ‖푓‖ ∗ < Λ , we get 

1
푁
푆 <

1
2푁

푐 + 푆 < 훾 , <
2
푁
푆 − 휀 . 

By Lemma (4.21), 퐽 , 휗 , (푥) = 푆 + 표(1) as 훿 → 0. Therefore 

훾 , > 퐽 , 휗 , (푥) =
1
푁
푆 + 표(1) 

for 훿small enough and the conclusion is obtained. 

Lemma (4.23) [4]: 

Suppose 0 < ‖푓‖ ∗ < Λ . Then there exists a solution 푢of 퐸 ,  suchthat 
퐽 , (푢) = 훾 , . 

Proof: 

By Lemma (4.18), there exists a (PS) ,  sequence {푢 } ⊂ 푋for 퐽 , . 
Furthermore, 

푢 = ℎ
1
2
− 훿 푒 , 
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where − 훿 푒 ∈ 퐵 and ℎ ∈ 퐹. Since {푢 }is bounded in 푋, we may assume 

that 푢 ⇀ 푢 weakly in 푋as 푘 → ∞. By Lemmas (4.13) and (4.22), we only need to 
prove that if 푢 ∈ 푁 , , 푢 → 푢  strongly in 푋. Indeed, suppose otherwise, we have 

‖푢 ‖ < lim
→

inf‖푢 ‖. 

Since − 훿 푒 ∈ 퐵 , we may obtain 0 < 훿 ≤ and 푒 ∈ 핊 such that 

1
2
− 훿 푒 →

1
2
− 훿 푒 ∈ 퐵 , as		푘 → ∞. 

Moreover, it is easy to see that 퐹is convex and closed. Therefore, 

푢 = ℎ
1
2
− 훿 푒 → ℎ

1
2
− 훿 푒 = 푢 ∈ 푉, 

where ℎ ∈ 퐹. Hence, there exists a unique 푡 > 0 such that 

훾 , ≤ 퐽 , (푢 ) = 퐽 , (푡 푢 ) =
1
푁
‖푡 푢 ‖ − 푡

푝∗ − 1
푝∗

푓푢 푑푥 

< lim
→

inf
1
푁
‖푡 푢 ‖ − 푡

푝∗ − 1
푝∗

푓푢 푑푥  

≤ lim
→

퐽 , (푢 ) = 훾 , .																																																																	 

This is absurd. Thus we obtain 푢 → 푢  strongly in 푋. 
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List of Symbols 

Symbol  Page 
퐿  Lebesgue measure  1 
푊 ,  Sobolev space 2 
퐿  Lebesgue space 2 
퐻  Hardy space 2 
Osc oscillation 4 
inf infimum 4 
ess essential 4 
퐿 ,  The Lebesgue measure 4 
sup supremum 5 

BMO bounded mean oscillation 5 
a.e almost everywhere 6 
loc locally 6 

VMO vanising mean oscillation 6 
min minimum 13 
퐿  Lebesgue space 14 
sign signature 27 
max maximum 29 
BVP bounded value problem 32 
Im imaginary  35 

AAP Agmon-Allegretto-Piepenbrink 37 
퐿  Hilbert space 39 
Re real  41 
rad radial 42 

supp support 50 
dim dimension 61 
mod modulas 72 
cat category 114 
PS Palais-Smale 123 
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