Design of Electro Hydraulic Actuator

A Thesis Submitted to the College of Graduate Studies at Partial Fulfillment of the Requirements for the Degree of M.Sc in Mechatronics Engineering

By

Bokhari Abd Allah Mohammed Ahmed

Supervisor

Dr. Ala-Addeen Awouda

June 2014
Approval Page

Name of Candidate:

Be Khani Abdalla Mohamed Ahmed

Thesis title:

Design of Electro-Hydraulic Actuator

Approved by:

1. **External Examiner**
 - Name: Sakha Musa Abdalla
 - Signature: [signature]
 - Date: 3/1/2014

2. **Internal Examiner**
 - Name: Dr. Abdelhalim Hamed Asadow Deit Zarandi
 - Signature: [signature]
 - Date: 3/1/2014

3. **Supervisor**
 - Name: [signature]
 - Signature: [signature]
 - Date: [signature]
Sudan University of Science and Technology
College of Graduate Studies

Declaration

I, the signing here-under, declare that I’m the sole author of the (M.Sc.) thesis entitled

which is an original intellectual work. Willingly, I assign the copy-right of this work to the College of Graduate Studies (CGS), Sudan University of Science & Technology (SUST). Accordingly, SUST has all the rights to publish this work for scientific purposes.

Candidate’s name: .. Date: ..

Candidate’s signature: ...
To: my country

parents

Patience:

wife

To my little Aseel
ABSTRACT

In this research, a non-linear model for the guide vane electro hydraulic actuator of turbine no.4 at Rosaries Hydro Power Station has been developed using MATLAB/SIMULINK integrated environment, and the performance of the model is compared with the real plant using a state feedback controller and a PID controller with the same (PID) gains as built in the real plant. The performance of the two controllers is investigated.

To understand the dynamic behaviors of the system, it has been represented by 3rd order differential equations defining the dynamics of plant, and using a fact that the dynamic pressure changes in the hydraulic cylinder chambers becomes linearly dependent on cylinder chambers volumes above and below some prescribed cut off frequencies, the order of system equations reduced to 2nd order. Then these equations were used to design the state feedback controller, so as to control the non-linear model.

For the position control of the single rod hydraulic actuator, state feedback gains are determined by using the linear reduced order system equations.

The dynamic performance of the system is investigated by running open loop and closed loop frequency response and step response tests.
المستخلص

في صياغ هذا البحث، تم تطوير نموذج حاسوبي لا خطي لمشغلة حاكم أبواب التوربينة رقم (4) بمحطة توليد كهرباء الروصيرص، باستخدام حزمة برامج (MATLAB\SIMULINK) المتکاملة. تمت مقارنة أداء النموذج مع المشغل الحقيقي مرة باستخدام متحكم التغذية الراجعة لحالة النظام، وأخرى باستخدام متحكم بنفس المعاملات المستخدمة في متحكم المشغلة الحقيقية. ومن ثم تمت مقارنة أداء المتحكمين.

لفهم الإستجابة الديناميكية للنظام تم تمثيله بمنظومه معادلات من الرتبة الثالثة، و بالإستفادة من حقيقة أن تغييرات الضغط الهيدروليكى أمام وخلف مكبس المشغلة تصبح مرتبطة خطيا فوق و تحت تردد قطع محدد. تم خفض رتيبة معادلات النظام إلى الرتبة الثانية. ومن ثم استخدمت هذه المعادلات لتصميم متحكم التغذية الراجعة لحالة النظام للتحكم في النموذج اللاخطي.

للتحكم في موقع المشغلة الهيدروليكية أحادية المكبس، تم تحديد كسب الحلقة الراجعة لكل متغير حالة باستخدام معادلات خطية للنظام من الرتبة الثانية. ومن ثم تمت مناقشة أداء النظام بالتحقق من الإستجابة الترددية لحالتى الحلقة المفتوحة والمغلقة، والإستجابة لإشارة الخطوة.
ACKNOWLEDGEMENTS

I would like to thank, after Allah,

Sudan University of Science and Technology

for great efforts to facilitate this study, especially

Dr. Ala-Addeen Awouda

for his wise guidance, that teaches me how to catch knowledge before graduate and now.

Thanks, and appreciation, to

Drs. Alkhawad and Musab Zarog

who triggers the first thought about mechatronics in our mind.

Gratitude also, to the

Sudanese Hydro Generation company

for their support and offering time for research. Great thanks to the persons who stimulated us and provided technical support for this work, especially engineering staff at

Kenana Sugar Company.

Finally I would like to acknowledge the continuous support offered by my parents and wife.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>II</td>
</tr>
<tr>
<td>المستخلص</td>
<td>III</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>V</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>VI</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>X</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XII</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>XIII</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>XVI</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Proposed Solution</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Methodology</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Objectives</td>
<td>5</td>
</tr>
<tr>
<td>1.6 Thesis outlines</td>
<td>5</td>
</tr>
<tr>
<td>Chapter 2: Background</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Valve Controlled Actuator circuit</td>
<td>7</td>
</tr>
</tbody>
</table>
2.3 Pressure relief Valve

2.4 Electro Hydraulic Flow Control Valve

2.5 Hydraulic Supply Pressure

2.5.1 Screw Type Positive Displacement Pump

2.5.2 Positive Displacement Pump Protection

2.6 Linear Hydraulic Actuator

2.7 Hydraulic Power Supply efficiency analyses

Chapter 3: Mathematical Modeling

3.1 Hydraulic Actuator Model

3.2 Hydraulic Power Supply Model

3.3 Load Model

3.4.1 Mathematical Modeling of the System

3.4.1.1 Electro Hydraulic Transducer

Transfer function (EHT)

3.4.1.2 Main flow valve model

3.4.2 Steady State Characteristics of the System

3.4.3 Linearized Valve Coefficients

3.4.3.1 Extension Case

3.4.3.2 Retraction Case

3.4.4 Dynamic Characteristics of the System

Chapter 4: Controllers Design

4.1 State Space Representation

4.2 State Feedback Gain controller

4.3 PID Controller

4.3.1 Structure of the controller
Chapter 5: Simulation and Results

5.1 System Identification

5.1.1 Control Module

5.1.2 Potential Buffer Amplifier

5.1.3 Electro Hydraulic Transducer

5.1.3.1 Electrical Part

5.1.3.2 Hydraulic Part

5.1.3.3 Operation principle

5.1.3.4 Main valve dither

5.1.4 Hydraulic Cylinder Friction

5.2 Frequency Response

5.2.1 Open Loop Frequency Response of the EHT

5.2.2 Open loop Frequency Response of the Actuator

5.2.3 Close loop frequency response of the EHA

5.3 Step Response of the system

5.4 Comparison

Chapter 6: Conclusions and Future work

6.1 conclusions

6.2 Future Work

REFERENCES

APPENDICES

A: Transfer Function Derivation for the Actuator

B. MATLAB FILES

C. PLANT DOCUMENTATION
LIST OF FIGURES

FIGURES

Figure 2.1: Valve controlled Hydraulic Actuator .. 8
Figure 2.2: Manually Adjustable Pressure Relief valve 10
Figure 2.3: Diagram of Three Land, Four-way Flow Control Valve Spool 11
Figure 2.4 Tow screws, low pitch pump ... 15
Figure 4.5: Plant Linear Actuator (a) cross section (b) layout of the actuator 18
Figure 2.6: Constant Pressure Valve Controlled Actuator Circuit 19
Figure 2.7 Valve Characteristic Curves for Different Valve Openings 22
Figure 2.8: Valve Losses of a C.P Valve Controlled Circuit for Maximum Energy Efficiency ... 23
Figure 3.1: MATLAB SIMULINK Model of the Hydraulic Actuator 29
Figure 3.2: MATLAB SIMULINK Model of the Hydraulic Cylinder Chamber Volumes ... 29
Figure 3.3: Hydraulic Power Supply Simulink schematic 30
Figure 3.4: Frequency response of the TR-h7/80F 0.6 33
Figure 3.5: Schematic of the main valve stage ... 35
Figure 3.6: The MATLAB Simulink model of the valve 37
Figure 3.7: Convention of valve ports flow (extension) 40
Figure 3.8: Convention of valve ports flow (retraction) 44
Figure 3.9: Chambers Pressure Ratios ... 49
Figure 3.10: Block diagram of the EHA..50

Figure 4.1: Block Diagram Representation of the Closed Loop EHA...........56

Figure 4.2: Function blocks showing the PID settings
as built in Rosaries Unit no.4 Guide vane controller......................66

Figure 5.1: Control module 83SR51..68

Figure 5.2: Electro Hydraulic Transducer..72

Figure 5.3: Main valve dither (1.4 v; 0.1 to 40 Hz)......................................73

Figure 3.4: Estimated friction force versus velocity during the first 6 seconds
of unit no.4 G.V actuator extension..75

Figure 5.5: Electro Hydraulic Transducer response to a chirp signal..............76

Figure 5.6: Frequency response of the EHT..77

Figure 5.7: System response to exponentially decaying sinusoidal signal.....79

Figure 5.8: Open loop frequency response
(a) nonlinear EHA.(b) linearized Actuator...80

Figure 5.9: Closed loop system response of the non-linear EHA..................82

Figure 5.10: Load pressure at (a) lower (b) higher, frequency regions..........82

Figure 5.11: Frequency Response of non-linear model under control of state
gain controller and PID controller and the linearized model.............84

Figure 5.12: Step response of the non-linear and linearized models..............88

Figure 5.13: (a) settling time of non-linear model (b) real plant response......90
LIST OF TABLES

TABLES:

Table 3.1: Pole and Zero Comparison of Reduced and Full Order Transfer Functions.............52
Table 3.2: Numerical Values of the System Parameters.............53
Table 4.1: Numerical values of the PID gains as built in real the plant...65
Table 5.1: memory allocation in 83SR51 controller...............67
Table 5.2: Technical data for moving coil force motor...............70
Table 5.3: Frequency Response simulation Data.....................77
Table 5.4: Step Response Simulation Data............................82
LIST OF SYMBOLES

SYMBOLS

\(\Delta p \) Differenti al Pressure
\(p_A \) Cap end hydraulic cylinder chamber pressure
\(p_{A,ss} \) Steady state cap end hydraulic cylinder chamber pressure
\(p_{A,ss,ext} \) Steady state cap end side cylinder chamber pressure while extending
\(p_{A,ss,ret} \) Steady state cap end side cylinder chamber pressure while retracting
\(p_B \) Rod end side chamber pressure
\(p_{B,ss} \) Rod end side hydraulic cylinder chamber pressure
\(p_{B,ss,ext} \) Steady state rod end side cylinder chamber pressure while extending
\(p_{B,ss,ret} \) Steady state rod end side cylinder chamber pressure while retracting
\(p_L \) Load pressure
\(\overline{p}_L \) Normalized load pressure
\(p_s \) Supply pressure
\(p_t \) Oil sump tank pressure
\(q \) Volumetric flow rate
\(q_1 \) Flow rate through valve orifice opening 1
\(q_2 \) Flow rate through valve orifice opening 2
\(q_3 \) Flow rate through valve orifice opening 3
\(q_4 \) Flow rate through valve orifice opening 4
\(q_A \) Flow rate entering the cap end side of the hydraulic cylinder
\(q_{A,ss} \) Steady state flow rate entering the cap end of the hydraulic cylinder
\(q_B \) Flow rate exiting from the rod end side of the hydraulic cylinder
\(q_{B,ss} \) Steady state flow rate exiting from the rod end of the hydraulic cylinder
\(q_L \) Load flow rate
\(y \) Output vector
\(z_k \) Discrete output vector
\(A \) System matrix
\(A_{ext} \) System matrix for the extension of hydraulic cylinder
\(A_{ret} \) System matrix for the retraction of hydraulic cylinder

XIV
\(\bar{P} \) Normalized power transmitted to the system
\(\bar{P}_{\text{max}} \) Maximum power transmitted to a load
\(\bar{P}_{\text{loss,RV}} \) Normalized power lost on the relief valve
\(\bar{P}_{\text{loss,fcv}} \) Normalized power lost on the flow control valve
\(\mathbf{T} \) Transformation matrix
\(\mathbf{T}_{\text{ext}} \) Transformation matrix for extension of hydraulic cylinder
\(\mathbf{T}_{\text{ret}} \) Transformation matrix for retraction of hydraulic cylinder
\(V_A \) Hydraulic cylinder cap end side volume
\(V_B \) Hydraulic cylinder rod end side volume
\(\alpha \) Hydraulic cylinder chambers volume ratio for a fixed cylinder position
\(\gamma \) Hydraulic cylinder area ratio
\(\phi \) Dynamic pressure change ratio of the hydraulic cylinder chambers
\(\lambda \) Normalized spool position
\(\rho \) Hydraulic oil density
\(\omega_n \) Natural frequency
\(\bar{q}_{L} \) Normalized load flow rate
\(q_{\text{max}} \) Maximum flowrate through the valve
\(t \) Time
\(u \) Reference valve spool position signal in terms of voltage
\(u_{\text{spool}} \) Valve spool position
\(u_{\text{max}} \) Maximum allowable valve spool position
\(u_{\text{ext}} \) State feedback control signal for the extension of the hydraulic cylinder
\(u_{\text{ret}} \) State feedback control signal for the retraction of the hydraulic cylinder
\(x \) Hydraulic cylinder position
\(x' \) Hydraulic cylinder velocity
\(x'' \) Hydraulic cylinder acceleration
\(X \) State vector
\(\zeta \) Damping ratio
\(A_A\) Hydraulic cylinder cap end side area
\(A_B\) Hydraulic cylinder rod end side area
\(B\) Input matrix
\(B_{\text{ext}}\) Input matrix for the extension of hydraulic cylinder
\(B_{\text{ret}}\) Input matrix for the retraction of hydraulic cylinder
\(C\) Output matrix
\(C_d\) Valve orifice discharge coefficient
\(I\) Identity matrix
\(k_v\) Valve flow gain
\(k\) State feedback gain vector
\(k_{\text{ext}}\) State feedback gain vector for the extension of the hydraulic cylinder
\(k_{\text{ret}}\) State feedback gain vector for the retraction of the hydraulic cylinder
\(k_{x2_{\text{ext}}}\) State feedback gain vector for the retraction of the hydraulic cylinder
\(k_{x4_{\text{ext}}}\) Linearized valve spool position gain of orifice 4 for extension
\(k_{p2_{\text{ext}}}\) Linearized valve pressure gain of orifice 2 for extension
\(k_{p4_{\text{ext}}}\) Linearized valve pressure gain of orifice 4 for extension
\(k_{x1_{\text{ret}}}\) Linearized valve spool position gain of orifice 1 for retraction
\(k_{x3_{\text{ret}}}\) Linearized valve spool position gain of orifice 3 for retraction
\(k_{p1_{\text{ret}}}\) Linearized valve pressure gain of orifice 1 for retraction
\(k_{p3_{\text{ret}}}\) Linearized valve pressure gain of orifice 3 for retraction
\(M\) Controllability matrix
\(M_{\text{ext}}\) Controllability matrix for the extension of hydraulic cylinder
\(M_{\text{ret}}\) Controllability matrix for the retraction of hydraulic cylinder
LIST OF ABBREVIATIONS

ABBREVIATIONS

AC Alternating Current
CP Constant Pressure
CQ Constant Flow
DC Direct Current
EHA Electro Hydraulic Actuator
EHT Electro Hydraulic Transducer
PID Proportional Integral Derivative
RHP Rosaries Hydro Power Station
RV Relief Valve
SFC State Feedback Controller
TF Transfer Function