Appendix A: NS-2 Code

UDP:

start new simulator
set ns [new Simulator]
set nf [open out.nam w]
$ns namtrace-all $nf

#open tracefile
set nd [open out.tr w]
$ns trace-all $nd

proc finish {} {
 global ns nf
 $ns flush-trace
 close $nf
 exec nam out.nam &
 exit 0
}

set the colors of the packets being sent
$ns color 1 Blue
$ns color 2 Red
$ns color 3 black
$ns color 4 gold
$ns color 5 orange

nodes for users and routers connect
set U0 [$ns node]
set U1 [$ns node]
set U2 [$ns node]
set U3 [$ns node]
set U4 [$ns node]
set U5 [$ns node]
set U6 [Sns node]
set U7 [Sns node]
set R1 [Sns node]
set R2 [Sns node]
#colors for the nodes
SU0 color darkgreen
SU1 color darkgreen
SU2 color darkgreen
SU3 color darkgreen
SU4 color darkgreen
SU5 color darkgreen
SU6 color darkgreen
SU7 color darkgreen
SR1 color purple
SR2 color purple
labeling the nodes
SU0 label "User 1"
SU1 label "CBR1 L 25.89Mb"
SU3 label "CBR2 L 25.91Mb"
SU3 label "CBR3 L 25.93Mb"
SU4 label "User 2"
SU5 label "CBR1 R 25.89Mb"
SU6 label "CBR2 R 25.91Mb"
SU7 label "CBR3 R 25.92Mb"
SR1 label "router1"
SR2 label "router2"
shapes for the routers
SR1 shape box
SR2 shape box
how connections are established and bandwidth for our lines
creating our udp agents and attaching it to the correct nodes
set udp0 [new Agent/UDP]
$ns attach-agent $U0 $udp0
$udp0 set fid_ 1
set udp1 [new Agent/UDP]
$ns attach-agent $U1 $udp1
$udp1 set fid_ 3
set udp2 [new Agent/UDP]
$ns attach-agent $U2 $udp2
$udp2 set fid_ 4
set udp3 [new Agent/UDP]
$ns attach-agent $U3 $udp3
$udp3 set fid_ 5
set udp4 [new Agent/UDP]
$ns attach-agent $U4 $udp4
$udp4 set fid_ 2
set udp5 [new Agent/UDP]
$ns attach-agent $U5 $udp5
$udp5 set fid_ 6
set udp6 [new Agent/UDP]
$ns attach-agent $U6 $udp6
$udp6 set fid_ 7
set udp7 [new Agent/UDP]
$ns attach-agent $U7 $udp7
$udp7 set fid_ 8

to find out what is going on in the queue
$ns duplex-link-op $U0 $R1 queuePos 0.5
$ns duplex-link-op $R1 $R2 queuePos 0.5
$ns duplex-link-op $U4 $R2 queuePos 0.5

create a exponential traffic source and attach it to ud0
set vbr1 [new Application/Traffic/Exponential]
$vbr1 set packetSize_ 128
$vbr1 set burst_time_ 1200ms
$vbr1 set idle_time_ 800ms
$vbr1 set rate_ 64k
$vbr1 attach-agent $udp0
$udp0 set class_ 1

create a CBR traffic source and attach it to udp1
set cbr1 [new Application/Traffic/CBR]
$cbr1 set packetSize_ 128
#sending at 25.89MB

$cbr1$ set interval_ 0.000039552
$cbr1$ attach-agent $udp1$
$udp1$ set class_ 3

#create a CBR traffic source and attach it to $udp2$
set $cbr2$ [new Application/Traffic/CBR]
$cbr2$ set packetSize_ 128

#sending it at 25.91MB
$cbr2$ set interval_ 0.000039521
$cbr2$ attach-agent $udp2$
$udp2$ set class_ 4

#create a CBR traffic source and attach it to $udp3$
set $cbr3$ [new Application/Traffic/CBR]
$cbr3$ set packetSize_ 128

sending at 25.92MB
$cbr3$ set interval_ 0.000039506
$cbr3$ attach-agent $udp3$
$udp3$ set class_ 5

#create a CBR traffic source and attach it to $udp4$
set $vbr2$ [new Application/Traffic/Exponential]
$vbr2$ set packetSize_ 128
$vbr2$ set burst_time_ 880ms
$vbr2$ set idle_time_ 1280ms
$vbr2$ set rate_ 64k
$vbr2$ attach-agent $udp4$
$udp4$ set class_ 2

#create a CBR traffic source and attach it to $udp5$
set $cbr4$ [new Application/Traffic/CBR]
$cbr4$ set packetSize_ 128

#sending at 25.89MB
set cbr4 set interval_ 0.000039552
set cbr4 attach-agent $udp5
$udp5 set class_ 3
create a CBR traffic source and attach it to udp6
set cbr5 [new Application/Traffic/CBR]
$cbr5 set packetSize_ 128
sending it at 25.91MB
$cbr5 set interval_ 0.000039521
$cbr5 attach-agent $udp6
$udp6 set class_ 4
create a CBR traffic source and attach it to udp7
set cbr6 [new Application/Traffic/CBR]
$cbr6 set packetSize_ 128
sending at 25.92MB
$cbr6 set interval_ 0.000039506
$cbr6 attach-agent $udp7
$udp7 set class_ 5
Use LossMonitor agents instead of Null agents as sinks to allow collection of data
set sink0 [new Agent/Null];
$ns attach-agent $U0 $sink0
set sink1 [new Agent/Null];
$ns attach-agent $U1 $sink1
set sink2 [new Agent/Null];
$ns attach-agent $U2 $sink2
set sink3 [new Agent/Null];
$ns attach-agent $U3 $sink3
set sink4 [new Agent/Null];
$ns attach-agent $U4 $sink4
set sink5 [new Agent/Null];
$ns attach-agent $U5 $sink5
set sink6 [new Agent/Null] ;
$ns attach-agent $U6 $sink6
set sink7 [new Agent/Null] ;
$ns attach-agent $U7 $sink7
connecting sinks to the udp agents
$ns connect $udp0 $sink4
$ns connect $udp1 $sink5
$ns connect $udp2 $sink6
$ns connect $udp3 $sink7
$ns connect $udp4 $sink0
$ns connect $udp5 $sink1
$ns connect $udp6 $sink2
$ns connect $udp7 $sink3
#setting up the time for when the simulation start and when certain background traffics turn on
and off and when the users begin to speak
$ns at 0.0 "$vbr1 start"
$ns at 0.0 "$vbr2 start"
$ns at 0.0 "$cbr1 start"
$ns at 0.0 "$cbr4 start"
$ns at 20.0 "$cbr1 stop"
$ns at 20.0 "$cbr4 stop"
$ns at 20.0 "$cbr2 start"
$ns at 20.0 "$cbr2 stop"
$ns at 20.0 "$cbr5 start"
$ns at 40.0 "$cbr5 stop"
$ns at 40.0 "$cbr2 stop"
$ns at 40.0 "$cbr3 start"
$ns at 40.0 "$cbr6 start"
$ns at 55.0 "$cbr6 stop"
$ns at 55.0 "$cbr3 stop"
$ns at 55.0 "$vbr1 stop"
$ns at 55.0 "$vbr2 stop"
$ns at 60.0 "finish"
$ns run

TCP:

starting the simulator
set ns [new Simulator]
set nf [open out.nam w]
$ns namtrace-all $nf
open trace file
set nd [open out.tr w]
$ns trace-all $nd
proc finish {} {
 global ns nf
 $ns flush-trace
 close $nf
 exec nam out.nam &
 exit 0
}
set the colors of the packets being sent
$ns color 1 Blue
$ns color 2 Red
$ns color 3 black
$ns color 4 gold
$ns color 5 orange
nodes for users and routers connect
set U0 [ns node]
set U1 [ns node]
set U2 [ns node]
set U3 [ns node]
set U4 [ns node]
set U5 [Sns node]
set U6 [Sns node]
set U7 [Sns node]
set R1 [Sns node]
set R2 [Sns node]

colors for the nodes
SU0 color darkgreen
SU1 color darkgreen
SU2 color darkgreen
SU3 color darkgreen
SU4 color darkgreen
SU5 color darkgreen
SU6 color darkgreen
SU7 color darkgreen
SR1 color purple
SR2 color purple

labeling the nodes
SU0 label "User 1"
SU1 label "CBR1 L 25.89Mb"
SU3 label "CBR2 L 25.91Mb"
SU3 label "CBR3 L 25.93Mb"
SU4 label "User 2"
SU5 label "CBR1 R 25.89Mb"
SU6 label "CBR2 R 25.91Mb"
SU7 label "CBR3 R 25.92Mb"
SR1 label "router1"
SR2 label "router2"

shapes for the routers
SR1 shape box
SR2 shape box
how connections are established and bandwidth for our lines
$ns duplex-link SU0 $R1 64kb 5ms DropTail
$ns duplex-link SU1 $R1 26Mb 5ms DropTail
$ns duplex-link SU2 $R1 26Mb 5ms DropTail
$ns duplex-link SU3 $R1 26Mb 5ms DropTail
$ns duplex-link SU4 $R2 64kb 5ms DropTail
$ns duplex-link SU5 $R2 26Mb 5ms DropTail
$ns duplex-link SU6 $R2 26Mb 5ms DropTail
$ns duplex-link SU7 $R2 26Mb 5ms DropTail

link between routers
$ns duplex-link $R1 $R2 25.92Mb 50ms DropTail

more control over the layout
$ns duplex-link-op SU0 $R1 orient right-down
$ns duplex-link-op SU1 $R1 orient right
$ns duplex-link-op SU2 $R1 orient right-up
$ns duplex-link-op SU3 $R1 orient up
$ns duplex-link-op $R1 $R2 orient right
$ns duplex-link-op SU4 $R2 orient left-down
$ns duplex-link-op SU5 $R2 orient left
$ns duplex-link-op SU6 $R2 orient left-up
$ns duplex-link-op SU7 $R2 orient up

creating our TCP agents for the two users speaking
set tcp0 [new Agent/TCP]
$ns attach-agent SU0 $tcp0
$tcp0 set fid_ 1
set tcp1 [new Agent/TCP]
$ns attach-agent SU4 $tcp1
$tcp1 set fid_ 2

creating the UDP agents for background traffic
set udp1 [new Agent/UDP]
$ns attach-agent $U1 $udp1
$udp1 set fid_ 3
set udp2 [new Agent/UDP]
$ns attach-agent $U2 $udp2
$udp2 set fid_ 4
set udp3 [new Agent/UDP]
$ns attach-agent $U3 $udp3
$udp3 set fid_ 5
set udp5 [new Agent/UDP]
$ns attach-agent $U5 $udp5
$udp5 set fid_ 6
set udp6 [new Agent/UDP]
$ns attach-agent $U6 $udp6
$udp6 set fid_ 7
set udp7 [new Agent/UDP]
$ns attach-agent $U7 $udp7
$udp7 set fid_ 8
#to find out what is going on in the queue
$ns duplex-link-op $U0 $R1 queuePos 0.5
$ns duplex-link-op $R1 $R2 queuePos 0.5
$ns duplex-link-op $U4 $R2 queuePos 0.5
creating the file transfer agent
set ftp0 [new Application/FTP]
$ftp0 attach-agent $tcp0
$ftp0 set class_ 1
set ftp1 [new Application/FTP]
$ftp1 attach-agent $tcp1
$ftp1 set class_ 1
create a CBR traffic source and attach it to udp1
set cbr1 [new Application/Traffic/CBR]
cbr1 set packetSize_ 128
sending at 25.89MB
cbr1 set interval_ 0.000039552
cbr1 attach-agent $udp1
$udp1 set class_ 3
create a CBR traffic source and attach it to udp2
set cbr2 [new Application/Traffic/CBR]
cbr2 set packetSize_ 128
sending it at 25.91MB
cbr2 set interval_ 0.000039521
cbr2 attach-agent $udp2
$udp2 set class_ 4
create a CBR traffic source and attach it to udp3
set cbr3 [new Application/Traffic/CBR]
cbr3 set packetSize_ 128
sending at 25.92MB
cbr3 set interval_ 0.000039506
cbr3 attach-agent $udp3
$udp3 set class_ 5
create a CBR traffic source and attach it to udp5
set cbr4 [new Application/Traffic/CBR]
cbr4 set packetSize_ 128
sending at 25.89MB
cbr4 set interval_ 0.000039552
cbr4 attach-agent $udp5
$udp5 set class_ 3
create a CBR traffic source and attach it to udp6
set cbr5 [new Application/Traffic/CBR]
cbr5 set packetSize_ 128
sending at 25.91MB
set cbr5 set interval 0.000039521
set cbr5 attach-agent $udp6
$udp6 set class 4
create a CBR traffic source and attach it to udp7
set cbr6 [new Application/Traffic/CBR]
set cbr6 set packetSize 128
sending at 25.92MB
set cbr6 set interval 0.000039506
$udp6 set class 5
Use LossMonitor agents instead of Null agents as sinks to allow collection of data
set sink0 [new Agent/TCPSink] ;
$ns attach-agent $U0 $sink0
set sink1 [new Agent/Null] ;
$ns attach-agent $U1 $sink1
set sink2 [new Agent/Null] ;
$ns attach-agent $U2 $sink2
set sink3 [new Agent/Null] ;
$ns attach-agent $U3 $sink3
set sink4 [new Agent/TCPSink] ;
$ns attach-agent $U4 $sink4
set sink5 [new Agent/Null] ;
$ns attach-agent $U5 $sink5
set sink6 [new Agent/Null] ;
$ns attach-agent $U6 $sink6
set sink7 [new Agent/Null] ;
$ns attach-agent $U7 $sink7
attaching the agents to the sinks
$ns connect $tcp0 $sink4
$ns connect $udp1 $sink5
$ns connect $udp2 $sink6
$ns connect $udp3 $sink7
$ns connect $tcp1 $sink0
$ns connect $udp5 $sink1
$ns connect $udp6 $sink2
$ns connect $udp7 $sink3

setting up the time for when the simulation start and when certain background traffics turn on and off and when the users begin to speak
$ns at 0.0 "$ftp0 start"
$ns at 0.0 "$ftp1 start"
$ns at 0.0 "$cbr1 start"
$ns at 0.0 "$cbr4 start"
$ns at 20.0 "$cbr1 stop"
$ns at 20.0 "$cbr4 stop"
$ns at 20.0 "$cbr2 start"
$ns at 20.0 "$cbr5 start"
$ns at 40.0 "$cbr5 stop"
$ns at 40.0 "$cbr2 stop"
$ns at 40.0 "$cbr3 start"
$ns at 40.0 "$cbr6 start"
$ns at 55.0 "$cbr6 stop"
$ns at 55.0 "$cbr3 stop"
$ns at 60.0 "$ftp0 stop"
$ns at 60.0 "$ftp1 stop"
$ns at 60.0 "finish"
$ns run

RTP:

starting the simulator
set ns [new Simulator]
set nf [open out.nam w]
$ns namtrace-all $nf

#open tracefile
set nd [open out.tr w]
$ns trace-all $nd
proc finish {} {
 global ns nf
 $ns flush-trace
 close $nf
 exec nam out.nam &
 exit 0
}

#set the colors of the packets being sent
$ns color 1 Blue
$ns color 2 Red
$ns color 3 black
$ns color 4 gold
$ns color 5 orange

nodes for users and routers connect
set U0 [ns node]
set U1 [ns node]
set U2 [ns node]
set U3 [ns node]
set U4 [ns node]
set U5 [ns node]
set U6 [ns node]
set U7 [ns node]
set R1 [ns node]
set R2 [ns node]

#colors for the nodes
SU0 color darkgreen
SU1 color darkgreen
SU2 color darkgreen
SU3 color darkgreen
SU4 color darkgreen
SU5 color darkgreen
SU6 color darkgreen
SU7 color darkgreen
SR1 color purple
SR2 color purple

labeling the nodes
SU0 label "User 1"
SU1 label "CBR1 L 25.89Mb"
SU3 label "CBR2 L 25.91Mb"
SU3 label "CBR3 L 25.93Mb"
SU4 label "User 2"
SU5 label "CBR1 R 25.89Mb"
SU6 label "CBR2 R 25.91Mb"
SU7 label "CBR3 R 25.92Mb"
SR1 label "router1"
SR2 label "router2"

shapes for the routers
SR1 shape box
SR2 shape box

how connections are established and bandwidth for our lines
$ns duplex-link $U0 $R1 64kb 5ms DropTail
$ns duplex-link $U1 $R1 26Mb 5ms DropTail
$ns duplex-link $U2 $R1 26Mb 5ms DropTail
$ns duplex-link $U3 $R1 26Mb 5ms DropTail
$ns duplex-link $U4 $R2 64kb 5ms DropTail
$ns duplex-link $U5 $R2 26Mb 5ms DropTail
$ns duplex-link $U6 $R2 26Mb 5ms DropTail
$ns duplex-link $U7 $R2 26Mb 5ms DropTail
link between routers
$ns duplex-link $R1 $R2 25.92Mb 50ms DropTail
more control over the layout
$ns duplex-link-op $U0 $R1 orient right-down
$ns duplex-link-op $U1 $R1 orient right
$ns duplex-link-op $U2 $R1 orient right-up
$ns duplex-link-op $U3 $R1 orient up
$ns duplex-link-op $R1 $R2 orient right
$ns duplex-link-op $U4 $R2 orient left-down
$ns duplex-link-op $U5 $R2 orient left
$ns duplex-link-op $U6 $R2 orient left-up
$ns duplex-link-op $U7 $R2 orient up
creating our udp agents
set rtp0 [new Agent/UDP]
$ns attach-agent $U0 $rtp0
$rtp0 set fid_ 1
set udp1 [new Agent/UDP]
$ns attach-agent $U1 $udp1
$udp1 set fid_ 3
set udp2 [new Agent/UDP]
$ns attach-agent $U2 $udp2
$udp2 set fid_ 4
set udp3 [new Agent/UDP]
$ns attach-agent $U3 $udp3
$udp3 set fid_ 5
set rtp1 [new Agent/UDP]
$ns attach-agent $U4 $rtp1
$rtp1 set fid_ 2
set udp5 [new Agent/UDP]
$ns attach-agent $U5 $udp5
$udp5 set fid_ 6
set udp6 [new Agent/UDP]
$ns attach-agent $U6 $udp6
$udp6 set fid_ 7
set udp7 [new Agent/UDP]
$ns attach-agent $U7 $udp7
$udp7 set fid_ 8
#to find out what is going on in the queue
$ns duplex-link-op $U0 $R1 queuePos 0.5
$ns duplex-link-op $R1 $R2 queuePos 0.5
$ns duplex-link-op $U4 $R2 queuePos 0.5
#create a exponential traffic source and attach it to RTP0
set vbr1 [new Application/Traffic/Exponential]
$vbr1 set packetSize_ 128
$vbr1 set burst_time_ 1200ms
$vbr1 set idle_time_ 800ms
$vbr1 set rate_ 64k
$vbr1 attach-agent $rtp0
$rtp0 set class_ 1
#create a CBR traffic source and attach it to udp1
set cbr1 [new Application/Traffic/CBR]
$cb1 set packetSize_ 128
#sending at 25.89MB
$cb1 set interval_ 0.000039552
$cb1 attach-agent $udp1
$udp1 set class_ 3
#create a CBR traffic source and attach it to udp2
set cbr2 [new Application/Traffic/CBR]
$cbr2$ set packetSize_ 128
sending it at 25.91MB
$cbr2$ set interval_.000039521
$cbr2$ attach-agent $udp2
$udp2$ set class_ 4
create a CBR traffic source and attach it to udp3
set cbr3 [new Application/Traffic/CBR]
$cbr3$ set packetSize_ 128
sending at 25.92MB
$cbr3$ set interval_.000039506
$cbr3$ attach-agent $udp3
$udp3$ set class_ 5
create a CBR traffic source and attach it to RTP1
set vbr2 [new Application/Traffic/Exponential]
$vbr2$ set packetSize_ 128
$vbr2$ set burst_time_ 880ms
$vbr2$ set idle_time_ 1280ms
$vbr2$ set rate_ 64k
$vbr2$ attach-agent $rtp1
$rtp1$ set class_ 2
create a CBR traffic source and attach it to udp5
set cbr4 [new Application/Traffic/CBR]
$cbr4$ set packetSize_ 128
sending at 25.89MB
$cbr4$ set interval_.000039552
$cbr4$ attach-agent $udp5
$udp5$ set class_ 3
create a CBR traffic source and attach it to udp6
set cbr5 [new Application/Traffic/CBR]
$cbr5$ set packetSize_ 128
sending it at 25.91MB
$cbr5 set interval_ 0.000039521
$cbr5 attach-agent $udp6
$udp6 set class_ 4
#create a CBR traffic source and attach it to udp7
set cbr6 [new Application/Traffic/CBR]
$cbr6 set packetSize_ 128
sending at 25.92MB
$cbr6 set interval_ 0.000039506
$cbr6 attach-agent $udp7
$udp7 set class_ 5
Use LossMonitor agents instead of Null agents as sinks to allow collection of data
set sink0 [new Agent/Null] ;
$ns attach-agent $U0 $sink0
set sink1 [new Agent/Null] ;
$ns attach-agent $U1 $sink1
set sink2 [new Agent/Null] ;
$ns attach-agent $U2 $sink2
set sink3 [new Agent/Null] ;
$ns attach-agent $U3 $sink3
set sink4 [new Agent/Null] ;
$ns attach-agent $U4 $sink4
set sink5 [new Agent/Null] ;
$ns attach-agent $U5 $sink5
set sink6 [new Agent/Null] ;
$ns attach-agent $U6 $sink6
set sink7 [new Agent/Null] ;
$ns attach-agent $U7 $sink7
attaching the sinks to the agents
$ns connect $rtp0 $sink4
$ns connect $udp1 $sink5
$ns connect $udp2 $sink6
$ns connect $udp3 $sink7
$ns connect $rtp1 $sink0
$ns connect $udp5 $sink1
$ns connect $udp6 $sink2
$ns connect $udp7 $sink3

setting up the time for when the simulation start and when certain background traffics turn on
and off and when the users begin to speak
$ns at 0.0 "$vbr1 start"
$ns at 0.0 "$vbr2 start"
$ns at 0.0 "$cbr1 start"
$ns at 0.0 "$cbr4 start"
$ns at 20.0 "$cbr1 stop"
$ns at 20.0 "$cbr4 stop"
$ns at 20.0 "$cbr2 start"
$ns at 20.0 "$cbr5 start"
$ns at 20.0 "$cbr5 stop"
$ns at 20.0 "$cbr2 stop"
$ns at 20.0 "$cbr3 start"
$ns at 20.0 "$cbr6 start"
$ns at 20.0 "$cbr6 stop"
$ns at 55.0 "$vbr1 stop"
$ns at 55.0 "$vbr2 stop"
$ns at 60.0 "finish"
$ns run