لا يعلمها ولا حجة في ظلامتها ولا رطب ولا تواب enzyme 2091

صدق الله العليم

سورة الانعام
Dedication

To the souls and memories of my parents, may God rest them in peace.

To my brother and sisters who shared the naughty childhood, the dreams and reality.

To my children who are my life fruits and the meaning of living.
Acknowledgments

Sincere thanks go to my supervisor Professor Dr. Galal A. Ali, for his invaluable advice, persuasion and guidance throughout the master courses and thesis study. His motivation to develop my interest in pavement industry is gratefully appreciated.

The thanks are dedicated to my dear husband Abdul Aziz without whom I would be lost, and whose gentle care, love and assistance made possible the successful completion of this study.

Thanks are also extended to Dr. Kamal Masoud for providing the research data.

Special thanks are also conveyed to Hadia and Awadallah, the engineers of the Ministry of Urban Planning and Infrastructure for providing the required related documents and reports that made possible the development of various designs.
Abstract

Flexible pavements are widely used despite some doubts regarding their economics under different conditions. Lack of research, less construction technology know-how and cement high rates compared with asphalt in the past are the main reasons for not implementing concrete pavement in Sudan.

The purpose of this study is to conduct comparison in total present cost between flexible pavement and jointed plain concrete pavement to locate a feasible long term good performance pavement type.

Two roads were selected to illustrate the case study, Elmonerra – Elsaffya road is considered as national highway (Road A), and Omdurman ring road representing the state road (Road B). The principles and cost comparison were applied for the two case study roads.

The two most important parameters that govern pavement design, namely sub-grade strength and traffic loading was determined in this study from Road A and Road B material laboratory tests reports and traffic surveying data. For flexible pavement design of both roads, the sub-grade resilient modulus M_R was obtained from correlation with CBR. The design traffic in term of million ESAL was obtained from AASHTO equation for 20 year design life. The rigid pavement design used modified modulus of sub-grade reaction k as measure of sub-grade strength, while design traffic was also million ESAL.

The AASHTO and PCA methods were applied for rigid pavement design in comparative manner with AASHTO and Asphalt Institute (AI) methods for flexible pavement design.
Typical standard pavement cross sections obtained by AASHTO design for flexible and jointed plain concrete pavements were adopted for life-cycle cost analysis (LCCA). The two components of LCCA, construction and maintenance costs were calculated for the entire roads using 2016 rates. The total present-worth of cost for each road pavement cost were used for comparison. It was found that the feasible long term pavement performance can be achieved by using jointed plain concrete pavement with saving of (28 %) for road A and (6 %) for road B.
تجريد

ان الرصف الأسفلتي لتعبيد الطرق يعتبر الأوسع استثماراً على الرغم من وجود بعض التحذيرات حول مدى جدوى ملامسته اقتصادياً في ظل ظروف مختلفة. كما وأن قلة أجراء البحوث العلمية ومعرفة التقنيات الحديثة للتشخيص والاستعراضات مقارنة بسعار الأسفلت في السابق من أهم مهارات استخدام الرصف الصلب في السودان.

الهدف الرئيسي لإجراء هذه الدراسة هو عقد مقارنة لتكاليف الكلية الخاصة بتشييد كل من الرصف المرن والرصف الصلب باستخدام البلاطات القصيرة الغير مسلحة لغرض الحصول على رصف ذو جدوى اقتصادية ويتمتع بداء جيد طويل المدى.

تم اختيار مشروع طريق المنيرة – الصفية والذي يمثل الطريق القومي (الطريق A) وقطاع من طريق ام درمان الدائري الذي يتم الطريق الولائي (الطريق B) كحالتين للدراسة وتم تطبيق المبادئ الرئيسية والمقارنة عليهم.

هناك عدة عوامل تتحكم في عملية التصميم لعل من أكثرها تأثيراً عامل مقاومة الطبقة التاسيسية وحركة الطرق المرور التصحيحية والذين تم حسابهما لانتشار البيانات الحقيقة السريع الحركي وتقارير اختبارات المواد. في حالة تصميم الرصف المرن تم قياس مقاومة الطبقة التاسيسية باستخدام معدل المرونة MR والذي يتم الحصول عليه معايرة بقيم معامل تحمل كاليفورنيا CBR، أما الحركة التصحيحية فتم حسابها بواسطة AASHTO معدلة ESAL باستخدام وحدة الحمل المحوري القياسي المكافئ، وذلك باستخدام فترة 20 عاماً عصر التصميم للمشروع الطريق. أما في حالة تصميم الرصف الصلب فتم قياس مقاومة الطبقة التاسيسية بواسطة معامل رد الفعل k والذي تم الحصول عليه باستخدام AASHTO. أما الحركة التصحيحية لهذا النوع من الرصف تم حسابها بوحدة الحمل المحوري القياسي المكافئ، كما تم في تصميم الرصف المرن.

AASHTO تم تطبيق طريقتين الجمعية الأمريكية لموظفي الطرق الولائية الاشنو وجمعية الاسمنت الاميركي PCA لموضوع الرصف الصلب مقارنة بطريقة الاشنو وطريقة معهد الاسفلت AI لتصميم الرصف المرن.

أعمال القطاع العرضي النموذجي لنوعي الرصف المرن و البلاطات القصيرة IPCL، لكل طريق والمصممين على طريقة الاشنو وذلك لغرض عمل تحليل لدورة التكلفة خلال فترة عمر تصميم الطريق والتي تعتبر من أهم LCCA.
مكوناتها تكاليف التشييد وتكاليف الصيانة. هذه التكاليف تم حسابها للكامل طول الطرقين لكل نوع من الرصف باستخدام السعر الحالي للعام 2014. واخيرا تم ايجاد القيمة الحالية الكلية للتكليف وإجراء المقارنة التي أثبتت الجدوى الاقتصادية لاستخدام الرصف الصلب بواسطة البلاطات القصيرة لاداء جيد طويل المدى وذلك بتوفير في التكلفة الكلية تبلغ نسبة (6%) للطريق القومي ونسبة (6%) للطريق الولائي.
TABLE OF CONTENT

Dedication II
Acknowledgement III
Abstract- English IV
Abstract- Arabic VI
List of Tables XVII
List of Figures XIX

CHAPTER ONE: INTRODUTORY BACKGROUND

1.1 General 1
1.2 Problem Statement and Significant 1
1.3 Objectives
 1.3.1 General Objectives 2
 1.3.2 Specific Objectives

1.4 Scope of Work 4
1.5 Methodology 6
1.6 Content 7

CHAPTER TWO: LITERAITURE REVIEW, FLEXIBLE PAVEMENT, RIGID PAVEMENT AND DESIGN PARAMETERS

2.1 Literature review 9
2.2 Flexible Pavements 9
 A. Flexible Pavement Types 10
 1. Conventional Flexible Pavements 10
 2. Full-Depth Asphalt Pavements 11
 B. Flexible Pavement Structure 11
 1. Surface Course 11
 2. Base Course and Sub-base Course 11
 C. Flexible Pavement Design 12
 1. Asphalt Institute Design Method 12
 1.1 Full Depth Asphalt Concrete 12
 1.2 Asphalt Concrete Surface and

[VIII]
1.1.5 Drainage Coefficient
2. PCA Method
 2.1 Fatigue Design
 2.2 Erosion Design
D. Jointed Plain Concrete Construction
E. Jointed Plane Concrete Maintenance
 1. Preventive Maintenance
 1.1 Joints and Cracks Sealing
 1.2 Retrofitting of Dowels
 1.3 Sub-sealing
 2. Rehabilitation
 2.1 Restoration
 2.2 Resurfacing
 2.3 Reconstruction
 2.4 Pavement Design Parameters
 A. General
 1. Design Traffic
 1.1 Computation of Design Traffic
 1.1.1 EALF for Flexible & Rigid Pavements
 1.1.2 Number of Repetition of Each Axle Load Group
 a. Growth Factor
 b. Directional distribution factor
 c. Lane Distribution Factor
 d. Truck Factor
 1.1.3 Traffic Analysis for Individual Axle Loads Group
 2. Resilient Modulus
 2.1 Sub-grade Soils M_R
 2.2 Sub-bases E_{SB}
 2.3 Bases E_{BS}
 2.4 Asphalt Concrete Surface Course E_P
 3. Sub-grade Reaction Modulus
 3.1 Composite Modulus of Sub-grade
 3.2 Modified Modulus of Sub-grade
 Reaction due to Rigid Foundation near Surface k

CHAPTER THREE: CASE STUDY
3.1 Introduction
 A. Road A Characteristics
B. Road B Characteristics 43

3.2 Determination of Road A and B, ESAL Factors 43
 A. Initial Traffic Volume & Annual Growth Rate 44
 1. Road A 44
 2. Road B 44
 B. Traffic Loading Composition 45
 C. Road A and Road B, Growth Factor 46
 D. Road A and Road B, Directional Distribution Factor 46
 E. Directional Distribution Factor 46
 F. Road A and Road B, Truck Factor 47

3.3 Determination of ESAL for the Design Lane Traffic 48
 A. Flexible Pavement ESAL for Road A 48
 B. Flexible Pavement ESAL for Road B 48

3.4 Material Properties 49
 A. Road A Sub-grade and Construction Materials Laboratory Testing Results 49
 B. Road A Sub-grade and Construction Materials Laboratory Testing Results 50
 C. Resilient Modulus M_R 51
 1. Road A, Existing and Improved Sub-grade Resilient Modulus M_R. 51
 2. Road B, Existing and Improved Sub-grade Resilient Modulus M_R. 52
 3. Pavement Structure Resilient Modulus and Moduli 54
 3.1 Road A Sub-Base Resilient Modulus E_SB 54
 3.2 Road B Sub-Base Resilient Modulus E_SB 56
 3.3 Road A Base Resilient Modulus E_BS 56
 3.4 Road B Base Resilient Modulus E_BS 56
 3.5 Road A Asphalt Concrete Resilient Modulus E_P 57
 3.6 Road B Asphalt Concrete Resilient Modulus E_P 57
 3.5 Geometrical Properties 57
 3.6 Flexible Pavement Structural Design 57
 A. Asphalt Institute Design Method 58
 1. Road A Structural Pavement Design 58
 2. Road B Structural Pavement Design 58
 B. AASHTO Design Method 59
 1. Road A Structural Pavement Design 59
 2. Road B Structural Pavement Design 61
3.7 Comparison of Flexible Pavement Thickness between AI and AASHTO Design Method 62
3.8 Determination of Rigid Pavement ESAL Factors 64
 A. Road A and Road B Truck Factor 64
3.9 Determination of Rigid Pavement ESAL for the Design Lane Traffic 65
 1. Rigid Pavement Design Traffic for Road A 65
 2. Rigid Pavement Design Traffic for Road B 65
3.10 Traffic Analysis for Individual Axle Load Groups 66
 A. Expected Repetition (N_i) for Road A and Road B 66
3.11 Sub- grade Reaction Modulus 67
 A. Road A Sub-grade Reaction Modulus 67
 1. Composed Modulus of Sub-grade Reaction 67
 2. Modified Modulus of Sub-grade Reaction 67
 B. Road B Sub-grade Reaction Modulus 68
 1. Composed Modulus of Sub-grade Reaction 68
 2. Modified Modulus of Sub-grade Reaction 68
3.12 Jointed Plain Concrete Pavement Thickness Design Methods 68
 A. AASHTO Method 68
 1. Determination of Road A Layers Thicknesses 68
 2. Determination of Road B Layers Thicknesses 69
 B. PCA Method 70
 1. Determination of Road A Pavement Thicknesses 70
 2. Determination of Road B Pavement Thicknesses 71
3.13 Jointed Plain Concrete Pavement Components Design 73
 A. Road A JPCP Components Design 73
 1. Slab Dimensions 74
 2. Tie Bars 74
 3. Dowel Bars 74
 4. Contraction Joint Design 75
 B. Road B JPCP Components Design 75
 1. Slab Dimensions 75
 2. Tie Bars 75
 3. Dowel Bars 76
 4. Contraction Joint Design 76
3.14 Comparison of JPCP Thickness between AASHTO and PCA Design Method 77
CHAPTER FOUR: MATERIALS AND PAVEMENTS
COMPARATIVE ANALYSIS

4.1 Background 79
 A. Petroleum Oil 79
 B. Cement 81
4.2 Pavements Life Cycle Cost Analysis 83
 A. Life Cycle Cost Analysis Components 83
 1. Road A and Road B Initial Cost (Construction Cost) 84
 1.1 Road A Flexible Pavement Structural Design and Quantities 84
 1.2 Road A JPCP Structural Design and Quantities 86
 1.3 Road B Flexible Pavement Structural Design and Quantities 88
 1.4 Road B JPCP Structural Design and Quantities 90
 2. Road A and Road B Maintenance and Rehabilitation Cost 92
 2.1 Maintenance and Rehabilitation Plan 92
 B. Estimating Total Life Cycle Cost 92
 1. Calculation of Net Present Value 93
 2. Pavement Residual Value 93
 C. Road A and Road B Life Cycle Cost 94
 1. Road A Flexible Pavement Maintenance and Rehabilitation Cost 95
 2. Road A JPCP Maintenance and Rehabilitation Cost 95
 3. Road B Flexible Pavement Maintenance and Rehabilitation Cost 96
 4. Road B JPCP Maintenance and Rehabilitation Cost 96

CHAPTER FIVE: RESULTS AND DISCUSSION

5.1 Results 98
9.2 Discussion 99
CHAPTER SIX: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary 102
6.2 Conclusions 103
6.3 Recommendations 104

REFERENCES 105

APPENDICES

APPENDIX A

Figure A-1: Design Chart for Full Depth HMA 107
Figure A-2: Design Chart for Emulsified Asphalt Mix Type І 107
Figure A-3: Design Chart for Emulsified Asphalt Type ІІ 108
Figure A-4: Design Chart for Emulsified Asphalt Type ІІІ 108
Figure A-5: Design Chart for HMA Over 4in Untreated Base 109
Figure A-6: Design Chart for HMA Over 6in Untreated Base 109
Figure A-7: Design Chart for HMA Over 8in Untreated Base 110
Figure A-8: Design Chart for HMA Over 10in Untreated Base 110
Figure A-9: Design Chart for HMA Over 12in Untreated Base 111
Figure A-10: Design Chart for HMA Over 18in Untreated Base 111
Figure A-11: Design Chart for Flexible Pavement Based
On the Mean Values of Each Input 112
Figure A-12: Chart for Estimating Layer Coefficient
Of Dense-Graded Asphalt Concrete based
On Elastic Modulus 113
Table A-1: Minimum Thickness of HMA over Emulsified
Asphalt Bases 113
Table A-2: Suggested Levels of Reliability for Various
Functional Classifications 114
Table A-3: Standard Normal Deviates for Various Levels
Of Reliability 114
Table A-4: Recommended Drainage Coefficients for
Untreated Bases and Sub-bases in Flexible Pavements 115
Table A-5: Minimum Thicknesses for Asphalt Surface
And Aggregate Base

APPENDIX B

Figure B-1: Design chart for rigid pavement based on the
Mean Values of each Input

Figure B-2: Stress Ratio Factors versus Allowable Load Repetitions
Both With and Without Concrete Shoulder

Figure B-3: Erosion Factors versus Allowable Load Repetitions
Both With and Without Concrete Shoulders

Table B-1: Recommended Dowel Size and Length

Table B-2: Recommended Load Transfer Coefficients for
Various Pavement Types and Design Conditions

Table B-3: Recommended Drainage Coefficients Values C_d
for Rigid Pavements

Table B-4: Equivalent Stresses for Slabs without Concrete Shoulders

Table B-5: Erosion Factors for Slabs with Doweled Joints and no
Concrete Shoulders

Table B-6: Erosion Factors for Slabs with Doweled Joints under
Tridem Axles

APPENDIX C

Table C-1: Asphalt Institute's Equivalent Axle Load Factors
for Flexible Pavement

Table C-2: Equivalent Axle Load Factors for Rigid Pavement
$D = 9\text{in}, P_t = 2$

Table C-3: Lane Distribution Factor

Table C-4: Design Sub-grade Resilient Modulus

Figure C-1: Correlation for Estimating Resilient Modulus of HMA

Figure C-2: Correlation for Estimating Resilient Modulus of Sub-base

Figure C-3: Correlation for Estimating Resilient Modulus of bases

Figure C-4: Chart for Estimating Modulus of Sub-grade Reaction

Figure C-5: Chart for Modifying Modulus of Subgrade Reaction
due to Rigid Foundation Near Surface
APPENDIX D

Table D-1: Road A Construction Materials Laboratory Tests Results 137
Table D-2: Road A Sub-grade Laboratory Tests Results 138
Table D-2: Road B Construction Materials Laboratory Tests Results 139
Table D-4: Road B Sub-grade Soil Laboratory Tests 140
LIST OF TABLES

Table 3.1: Road A Initial Year Traffic Volume (AADT0) 44
Table 3.2: Road B, Sheryan El Shamal Segment AADT Statistic 44
Table 3.3: Road A, Axle-Load Data Presentation 45
Table 3.4: Road B Trucks Axle-Load Repetition per Day 45
Table 3.5: Road A and Road B Growth Factors 46
Table 3.6: Road A and Road B Directional Distribution Factors 46
Table 3.7: Roads A and B Lane Distribution Factors 46
Table 3.8: Computation of Road A Truck Factor for Flexible Pavement 47
Table 3.9: Computation of Road B Truck Factor for Flexible Pavement 48
Table 3.10: Determination of Road A Existing Sub-grade Design CBR 51
Table 3.11: Determination of Road B Existing Sub-grade Design CBR 52
Table 3.12: Determination of Road A Sub-Base Design CBR 55
Table 3.13: Comparison of Pavement Thickness between AI and AASHTO Design Method for Road A 62
Table 3.14: Comparison of Pavement Thickness between AI and AASHTO Design Method for Road B 63
Table 3.15: Computation of Road A Truck Factor for Rigid Pavement 64
Table 3.16: Computation of Road B Truck Factor for Rigid Pavement 65
Table 3.17: Computation of Road A Expected Repetition \(N_i \) for the Applied Axle Load Group 66
Table 3.18: Computation of Road B Expected Repetition \(N_i \) for the Applied Axle Load Group 67
Table 3.19: Calculation of Road A JPCP Slab Thickness 70
Table 3.20: Calculation of Road B JPCP Slab Thickness 72
Table 3.21: Comparison of Thickness between AASHTO and PCA Design Method for Road A 77
Table 3.22: Comparison of Thickness between AASHTO and PCA Design Method for Road B 77
Table 4.1: Annual Cement Production and Prices 2007 – 2011 83
Table 4.2: Road A Flexible Pavement Quantities 85
Table 4.3: Road A Flexible Pavement Construction Cost 85
Table 4.4: Road A JPCP Quantities 86
Table 4.5: Road A JPCP Construction Cost 87
Table 4.6: Road B Flexible Pavement Quantities 88
Table 4.7: Road B Flexible Pavement Construction Cost 89
Table 4.8: Road B JPCP Quantities 90
Table 4.9: Road B JPCP Construction Cost 91
Table 4.10: Flexible Pavement Maintenance and Rehabilitation Plan 92
Table 4.11: Rigid Pavement Maintenance and Rehabilitation Plan 92
Table 4.12: Road A Flexible Pavement Maintenance and Rehabilitation Cost 94
Table 4.13: Road A JPCP Maintenance and Rehabilitation Cost 95
Table 4.14: Road B Flexible Pavement Maintenance and Rehabilitation Cost 96
Table 4.15: Road B JPCP Maintenance and Rehabilitation Cost 97
Table 5.1: Summary of Road A Present worth Life Cycle Cost Analysis 98
Table 5.2: Summary of Road B Present worth Life Cycle Cost Analysis 98
LIST OF FIGURES

Figure 1.1: Sudan Road Network 4
Figure 1.2: Traffic Volume in Sudan Road Network 5
Figure 2.1: Typical Conventional Flexible Pavement Cross Section 10
Figure 2.2: Typical Full Depth Pavement Cross Section 11
Figure 2.3: Determination of layer thicknesses 17
Figure 2.4: Typical Cross Section of Rigid Pavement 21
Figure 2.5: Jointed Plain Concrete Pavement Components 23
Figure 3.1: Road A Project Area Plan 41
Figure 3.2: Road A Project Site 42
Figure 3.3: Road B Project Area Plan 43
Figure 3.4: Road A Existing Sub-grade Design CBR 52
Figure 3.5: Road B Existing Sub-grade Design CBR 54
Figure 3.6: Road A Sub-base Design CBR 55
Figure 3.7: Road A Pavement Layers Thickness According To AI Design Method 58
Figure 3.8: Road B Pavement Layers Thickness According To AI Design Method 59
Figure 3.9: Road A Pavement Layers Thickness According To AASHTO Design Method 60
Figure 3.10: Road B Pavement Layers Thickness According To AASHTO Design Method 62
Figure 3.11: Road A JPCP Layers Thickness According To AASHTO Method 69
Figure 3.12: Road B JPCP Layers Thickness According To AASHTO Method 70
Figure 3.13: Road A JPCP Layers Thickness According To PCA Method 70
Figure 3.14: Road B JPCP Layers Thickness According To PCA Method 72
Figure 4.1: Medium Term Crude Petroleum Oil Prices Since May 1987 80
Figure 4.2: Monthly and Daily West Texas Intermediate Oil Prices since 2000 80
Figure 4.3: Petroleum Oil Prices for Brent in US$ and Euro 81
Figure 4.4: National Cement Production and Consumption From 1999 to 2008 82
Figure 5.1: Comparison between Flexible and Rigid Pavements
Total Costs for Road A and Road B 99
Figure 5.2: Initial cost of asphalt and concrete pavements (PCA) 100
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway officials</td>
</tr>
<tr>
<td>AC</td>
<td>asphalt concrete</td>
</tr>
<tr>
<td>ADT</td>
<td>average daily traffic</td>
</tr>
<tr>
<td>(ADT)_o</td>
<td>average daily traffic at start of design period</td>
</tr>
<tr>
<td>AI</td>
<td>Asphalt Institute</td>
</tr>
<tr>
<td>AS</td>
<td>area of steel</td>
</tr>
<tr>
<td>a_1, a_2, a_3</td>
<td>layer coefficients for asphalt surface, base, and subbase courses, respectively</td>
</tr>
<tr>
<td>CBR</td>
<td>California Bearing Ratio</td>
</tr>
<tr>
<td>CF</td>
<td>condition factor</td>
</tr>
<tr>
<td>CRCP</td>
<td>continuous reinforced concrete pavement</td>
</tr>
<tr>
<td>Cd</td>
<td>drainage factor for rigid pavements</td>
</tr>
<tr>
<td>C_W</td>
<td>allowable crack width</td>
</tr>
<tr>
<td>DTD</td>
<td>design temperature drop</td>
</tr>
<tr>
<td>D_SB</td>
<td>thickness of subbase under concrete slab</td>
</tr>
<tr>
<td>D_SG</td>
<td>thickness of subgrade above a rigid foundation</td>
</tr>
<tr>
<td>EALF</td>
<td>equivalent axle load factor</td>
</tr>
<tr>
<td>ESAL</td>
<td>equivalent single-axle load, which is the total number of repetitions of a standard 18-kip axle load during the design period</td>
</tr>
<tr>
<td>E_SB</td>
<td>resilient modulus of subbase for concrete pavement</td>
</tr>
<tr>
<td>E_C</td>
<td>elastic modulus of concrete</td>
</tr>
<tr>
<td>f'C</td>
<td>ultimate compressive strength of concrete</td>
</tr>
<tr>
<td>f_s</td>
<td>allowable stress in steel</td>
</tr>
<tr>
<td>ft</td>
<td>concrete indirect or splitting tensile strength</td>
</tr>
<tr>
<td>HMA</td>
<td>hot mix asphalt</td>
</tr>
<tr>
<td>.h</td>
<td>concrete slab thickness</td>
</tr>
<tr>
<td>JPCP</td>
<td>jointed plain concrete pavement</td>
</tr>
<tr>
<td>k</td>
<td>modulus of subgrade reaction</td>
</tr>
<tr>
<td>k_∞</td>
<td>modulus of subgrade reaction when D_SG is greater than 10 ft</td>
</tr>
<tr>
<td>LSF</td>
<td>load safety factor</td>
</tr>
<tr>
<td>M_R</td>
<td>resilient modulus; or effective roadbed soil resilient modulus</td>
</tr>
<tr>
<td>N_max</td>
<td>maximum number of steel bars per traffic lane</td>
</tr>
<tr>
<td>N_min</td>
<td>minimum number of steel bars per traffic lane</td>
</tr>
</tbody>
</table>
can number of passes of \(i_{th} \) axle load; or predicted number of load repetitions during \(i_{th} \) period; or predicted number of repetitions during \(i_{th} \) stage

- **PCC**: Portland cement concrete
- **PSI**: present serviceability index
- **\(P_{\text{max}} \)**: maximum percent steel
- **\(P_{\text{min}} \)**: minimum percent steel
- **SN**: structural number
- **\(S_C \)**: modulus of rupture of concrete
- **TH**: average daily high temperature during the month the pavement is Constructed
- **TL**: average daily low temperature during the coldest month of the year
- **Tf**: truck factor
- **t**: length of steel bar
- **\(W_{18} \)**: allowable 18-kip single-axle load applications for a given reliability
- **X**: crack spacing
- **Y**: design period in years
- **Z**: concrete shrinkage
- **\(Z_R \)**: normal deviate for a given reliability \(R \)
- **\(\alpha_c \)**: coefficient of thermal expansion for concrete
- **\(\alpha_s \)**: coefficient of thermal expansion for steel
- **\(\gamma_c \)**: unit weight of concrete
- **\(\Delta \text{PSI} \)**: serviceability loss
- **\(\sigma_w \)**: wheel load stress
- **\(\mu \)**: allowable bond stress for deformed bars