Chapter 1

Banach Spaces and Isometric Extensions Problems with

Sharp Corner Points

In this chapter for any Banach space y. we define collection of
“sharp corner points” of the unit ball B;(Y™). Which is empty if Y is
strictly convex and dim Y= 2. Then we prove that any surjective
isometry between two unit spheres of banach spaces X and Y has linear
isometric extension on the whole space if Y is a Gateanux
differentiability space (in particular. Separable spaces or reflexive spaces)
and the intersection of “sharp corner points” and weak™ - exposed points
of B(Y") is weak - dense in the latter .

Section (1.1): Some Lemmas:

The famous Mazur-Ulam theorem stated that any surjective isometry
V' between two real normed spaces with V() = 0 (zero element) must
be linear. P. Mankiewicz proved that any surjective isometry between the
convex bodies (i.e. open connected subsets) of two normed spaces can be
extended to a surjective affine isometry on the whole space.

In 1987, D. Tingley proposed the following problem .

Problem (1.1.1) [1]:

Let X and Y be real normed spaces with unit spheres S; (X) and S{(Y),
respectively. Suppose that V: §;(X) = S1(Y) is a surjective isometry. Is
V, necessarily the restriction of a linear or affine isometry on X?

We only consider the isometric extension problem in real normed
spaces, since it is clearly negative in the complex case. This problem is
interesting and easy to understand. Moreover, it is very important. If this
problem has a positive answer, then the local geometric property of a
mapping on the unit sphere will determine the property of the mapping on
the whole space.

However, it is very difficult to solve. As Professor E. Odell said *‘this
is a very difficult problem that remains unsolved after 25 years’’. D.
Tingley only proved that any isometry V,, between the wunit spheres
S1(Xmy) and S; (Yn)) necessarily maps the antipodal points to antipodal



points, that is Vo(—x) = =V, (x) for any x € §; (X)) (both X,y and

Y(m) are real finite-dimensional normed spaces).

For quite a while (about 15 years), there has been no progress at all
on this problem, until it was solved in Hilbert space and ¢°(I' ) space
(1 < p < o) .In the past decade, the isometric extension problem was
considered in various classical Banach spaces and many good results
were obtained, through studying the specific form of norm and a lot of
special skills .

By now, the isometric extension problem has been solved
affirmatively if X is any classical Banach space and Y is a general Banach
space . However, little progress has been obtained if X and Y are both
general Banach spaces, even in the two-dimensional case. Recently, the
isometric extension problem was considered in somewhere-flat Banach
spaces and polyhedral Banach spaces and some impressive results were
obtained . Moreover, this problem was also considered in the F-spaces .

We attempt to study the isometric extension problem in general
Banach spaces through some geometric properties of the Banach spaces
including weak*-exposed points, Gateaux differentiability, and so on.

Theorem (1.1.2) [1]:

Let X be a Banach space and Y be a Gateaux differentiability space. If
P(Y™) is the set of weak*-exposed points in B;(Y*) and P(Y*) N S
C(Y™) is weak®-dense in P(Y"), then any surjective isometry between
two unit spheres S;(X) and S;(Y) can be extended to a linear isometry
on the whole space.

From this theorem, we deduce a result concerning the isometric
extension of isometry between unit spheres S;(X) and S;(Y), where X is
a general Banach space and Y is an Asplund generated space.

Theorem (1.1.3) [1]:

Let X be a Banach space and Y be an Asplund generated space.
Suppose that 1}, is an isometric mapping from the unit sphere S; (X) into
S1(Y), which satisfies the following condition:

(*) For any x4,x, € §;(X) and 44,4, € R,
I A1 Voxy + AVox; 1= 1 = A4 Vox; + A,Vox, € Vo[S(X)].
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Let Z = span{lyx : x € S;(X)}. Suppose that P(Z*)Nn S C(Z¥) is
weak*-dense in P(Z™). Then V, can be extended to a linear isometry on
the whole space.

Consequently, we obtain that if Y = (£%), co(I'), c(I'), €°(I') or some
C(2) (for example, the set of ‘‘Gg-points’” is dense in (2), then the
answer for the isometric extension problem is also affirmative.

In this section, all normed spaces are over R and Y* denote the dual
space of a normed space Y.S;(Y)(B;(Y)) denotes the unit sphere (unit
ball) of a normed space Y.

Let Y be a normed space and y, € S;(Y"):

A(yp) ={y € $;(Y):y5 = 1};
ANY*) ={y €5V ):AY™) # ¢};

P(yo) ={y € $1(Y): y(y) = Ly"(y) < 1lforanyy €
S;(Y)with y* # yg};

Ply*) = {y" € 5:(Y"): P # ¢}.
Remark (1.1.4) [1]:

Let Y be a normed space and y5 € S;(Y*). A(yg) is the set of “‘norm-
attaining points’’ of y5. A(Y") is the subset of S;(Y*) in which any y*
norm-attains at some point in S;(Y). P(y,) is the set of ‘‘peak-functions’’
J(y) € Y™, which have (only) a peak at y, (where ] is the canonical
mapping from Y to Y™). y, € P(Y") is called the weak™-exposed point of
unit ball B (Y™). It is evident that any y, € P(yp) is a smooth point of

S1(Y). Conversely, if y, is a smooth point of S;(Y), there exists a unique
Yo € P(Y") with y5(yo) = 1.



Lemma (1.1.5) [1]:
Let X and Y be normed spaces. Suppose that V, is a surjective
isometry between S; (X) and S; (Y). Then we have

lx1 + x50l = 2 & [[Vox; + Voxall = 2, Vxq,x; € S1(X).

Proof:

We only need to prove the ‘=" part, because V! is also a
surjective isometry from S; (Y) onto S; (X). Suppose that || x; + x, l|I= 2.
By the Hahn-Banach theorem, there exists x; € S(X) such that xy(x; +
x;) =l x; + x, lI= 2. Hence

2 =|lx; + x5 = |x8(x1 +x,)| < |x8(x1)| + |x8(x2)| <2
and we have

xo(x1) = x5(x2) = 1. (1)
Let x, (1 — %) X, + %xz (Vvn € N). By Equation. (1) , we get a sequence
{x,} € S;(X). Foreachn € N and x € S;(X), suppose that

1%, + x|l = 2. (2)
By the Hahn-Banach theorem and the similar method, there exists
X(nx) € S1(X™) such that x(,, ,y (¥, + x) = 2, which implies that

xikn,x)(xl) = xén,x)(xZ) = xikn,x)(x) - 1
Therefore, we obtain

g + x| = 2. (3)
since

2 =X +x) < |lxg +x|[ < 2.
Note that

|56, — VO_l(_Vofn)” = [|[VoXpn + VoXpll = [12Vox,|| = 2,¥n € N. (4)
By the similar methods we used to deduce (3) from (2), we have that

lx, = Vo '(=VoX,)ll = 2. Vn€EN (5)
by (4) . Note that V} is isometric and (5). We can obtain

”Voxz + Vofn” = 2, vn € N.
Letn — oo. We get || Vox; + Vyx, I= 2 and complete the proof.

We need to prove the following lemma.

¢



Lemma (1.1.6) [1]:

Let X and Y be normed spaces. Suppose that V, is a surjective
isometry between S;(X) and S;(Y). If yg € P(Y™), then V5 [A(y$)] S
S1(X) is convex.

Proof:
Since y; € P(Y™), there exists y, € P(y;) (S A(yy)). Therefore,
for any x4, x, € V3 1[A(y$)] and A € [0,1], we have

2=y5(y0 + Vox1) < |lyo + Voxqll < 2,
that is Il yo + Vox; II= 2. By Lemma (1.1.5), we have that || V; 1y, +
x1 I= 2, and there exists x; € S;(X™) such that

x1 (Vo tyo + %) = 2,
by the Hahn-Banach theorem. Note that |x] (V5 1y,)| < 1 and |x](x;)| <
1. We get that

xI(V0_13’0) =x1(x) =1,

and thus
Vily, + x Vily, + x
2 =x;<vo—1y0+—° y; 1) < |(vgly, + 22— y; H <2
that is
Vitly, + x
Vily, + o Yo 1| _
2
By Lemma (1.1.5), we obtain
Vo '¥o + x4
Yo + Vo <T =

Therefore, there exists y; € S;(Y™) such that

. . Vo '¥o + x4
vi (o) + y1 [VO <—2 =2,

by the Hahn-Banach theorem. From the similar arguments as above, we
get that

u)‘ _ )

yi(o) = y1 [Vo < >

Note Equation (6) and y, € P(yy). We have y; = y; and



-1
% [VO (W)‘ -1 @

-1
Since x, € V5 '[A(y5)], we get that v [Voxz + Vo (Vo 3;0+x1)] =2,

-1
which implies that ||V0x2 + 1 (W) | = 2. By Lemma (1.1.5) , we
get that
Vs tyo + x
X, + 0 }’g 1| _ ’

and there exists x; € S;(X™) such that

Vitly, + x
2
by the Hahn-Banach theorem. Note that |x3(x,)|, [Vy 2yol, 125 (x)] < 1.
We have

x;(Vo_13’0) = x,(x1) = x5(x3) = 1,
and

X3 [V0_13’0 + (Axg + (1 = Dxy)] = 2.
Therefore, we get that ||V 1y, + (Ax; + (1 — D)x,)|| = 2, which implies
that

lyo + Vo(Axy + (1 — Dx)ll = 2, (8)
by Lemma (1.1.5) .Then, from (8) and the similar argument we used to
deduce (7), we can also obtain

YolVo(Axy + (1 — Dx)] = y1(vo) =1,
that is Ax; + (1 — Dx, € V5 1 [A(y$)]. Thus Vg H{A(v$)] is convex and
the proof is completed.



Lemma (1.1.7) [1]:

Let X and Y be normed spaces. Suppose that V, is a surjective
isometry between S;(X) and S;(Y). If y; € P(Y™), there exists x; €
S1(X™) such that

Yo = = x (Vs 'y) = 5 (1),
for any y € S1(Y).

Proof:

Ify € S;(Y) and yy(y) = 1, then y € A(y;). By Lemma (1.1.6) ,
Vs H[A(y$)] € S1(X) is convex and does not meet with the interior of
B;(X). (It is evident that the interior of B; (X) is not empty). Therefore,
by the Eidelheit Separation theorem, there exists x; € S;(X™) such that

sup{xg(%): ¥ € By(X)} < inf{xg (x): x € Vg [A(yg)1},
which implies that

1 < inf{xg(x): x € Vo ' [A(ye)]} < inf{llxgll - llx|l: x € Vg HA(y)]} = 1
that is x5 (x) = 1 for any x € V5 1 [A(y{)].

Furthermore, if § € S;(Y) and yu(¥) = —1, then —§ € A(yy).
Since yy € P(Y"), there exists yy € P(yy) (S A(¥p)), and we have that

22 Ve = Vo ol = 17 = yoll = 1y (F — yo)| = 2,
that is ||V Yyo + (V5 19)I| = 2. By Lemma (1.1.5) , we have ||y, +
Vo(=V5 19|l = 2. Therefore, there exists y; € S;(Y*) such that

}’f(YO + Vo(—Vo_lf’)) =2,
by the Hahn-Banach theorem. Then we have

1) = }’f(Vo(—Vo_lf’)) = 1. )
Note that Equation (9) and y, € P(y,). We have that y; = y; and thus
y5[Vo(—V5 19)] = 1. By the conclusion in the previous part of this proof,
we obtain immediately that xg(—Vy 1) = 1, that is x5(Vy 1y) = —1.
Thus the proof is completed.

We will give the definition of ‘‘sharp corner points’’. These points
play an important role in our result concerning the isometric extension
problem in Gateaux differentiability space (in particular, separable spaces
or reflexive spaces).



Definition (1.1.8) [1]:
Let Y be normed space. Then y; € S;(Y™) is called a sharp corner
point of B; (Y™"), if it satisfies the following conditions:

(1) For any y € S;(Y) with |yy(¥)| <1 and € > 0, there
exists y. € S;(Y) such that

Yo(Fe) =1 and |[[7e 2 yll < 1+ |ys(¥)] +&.

(i) For any y € §;(Y) with 0 < |ys(¥)| <1 and ¢ >0,
there exists y. € S;(Y) such that

vo(¥)

lye )
These sharp corner points of B; (Y ™) are denoted by S C(Y™). Then
we will give an important lemma as follows.

yo(Ve) = and [|7: —yll <1 - 1lyo(W)] + e

Lemma (1.1.9) [1]:

Let X and Y be normed spaces. Suppose that V, is a surjective
isometry between S;(X) and S;(Y). If y; € P(Y*)Nn S C(Y™), then we
have

Vs 'y) = y5(») Vy € S, (¥).
where x5 € §;(X™) is the functional obtained in Lemma (1.1.7) .

Proof:
We take two steps to complete the proof:

a. |[ys()| = |x5(Vy 'y)| forany y € S, (Y).

Indeed, for any y € S;(Y), we can assume that |yy(y)| <1
(otherwise we can immediately get (a) by Lemma (1.1.7) [1]). Note
Yo €S C(Y") and Lemma (1.1.7) . For any € > 0, there exists y. € S;(Y)
such that

xo(Vo '9e) = yo(Fe) = 1,
and

1+ x5V ty) = 121 — x5 (Vg ') =

X0 (Vo_l (if’e)) — X (Vo_l}’) |

<|IVo ') — Vo 'l = I7: £yl < 1+ lyg(W] + &
Since ¢ is arbitrary, we obtain that

lxg (Vo I < lyg)|, vy € S1(Y).

A



If [ys(¥)| = 0, it is clear that |x3(Vy 1y)| = 0. Otherwise, note that y €S
C(Y) and Lemma (1.1.7) . For any € > 0, there exists y. € S;(Y) such
that

lxo (Vo ¥ = lys (¥ = 1,
and
1= |xg (Vg ") = o (Vg ' 7] = Ixo (Vo ' p)I
< |xg (Vo_lye) — X (V0_13’)|
< IV 'y — Vo 'yl
=lye —yll < 1-|ys )| + &
Therefore, we get that

VoI < (Vg 'y)l, vy € $1(Y)
and complete the first step.

b. y5(v) = x;(Vg 'y) for any y € Sy (Y).
Indeed, if y§(y) = 0, then we have x;(V; 1y) = 0 because of (a).
Otherwise, note that yy €S C(Y™) and Lemma (1.1.7) [1]. For any € > 0,
there exists Y. € S;(Y) such that

f (7 =1=\ _ k(= _yg(y)
xo(Vo "e) = ¥vo(Fe) = —Iya‘(y)l )

and

1=yl = lxg (Vo Pl < lxg (Vg W + (Vo 9:) — x5 (Vg »)]
< lyeI + I (Vo 9 = Vo ') < lyg D1+ 1IVe 5 — Vol

= yoWI+1ye —yll <1 +e.
We can get

yo(y) _

0 < |xg (Vo ") — 2oV ' W = (xg (Vo ' 7| = lxg (Vo ')
0 < (Vs Yo(y)

that is
< oo )| - < TN T xS(Vo‘ly)D <e
|3’0 )] |3’0 )]

Since ¢ is arbitrary, we have that x; (V5 1y) and y§(y) have the same sign
Yo
lyo )]

because yo (V) = The proof is completed.



Proposition (1.1.10) [1]:
Let Y be a strictly convex Banach space and dimY = 2. Then we
have that S C(Y) = ¢.

Proof:

It is clear that if y; € S;(Y™), there exists at most one element yg €
S1(Y™) such that y5(y,) = 1. Otherwise, if there exists y; € S;(Y) such
that y, # y; and y5(y;) = 1, then for any 1 € (0,1), we have that

1=yo(yo + (1 =Dy1) < lyoll - lIAyo + (1 = Dyl < 1,
which is impossible. Assume that S C(Y") # ¢ and y €S C(Y"). Note
that kery # {6} since dimY > 2. For any y € S;(Y) nkeryg,y # 6
and € > 0, there exists unique y such that

yo() =1 and llyoxyll<1+|ys()I+e=1+e
Since ¢ is arbitrary, we get that ||y, + y|| < 1 and

2=|lyo+y+yo—vll <llyo +¥ll + llyo —yll <2,
that 1s

lyo +y+yo =yl = llyo + ¥l + llyo = ¥ll.
Since Y is strictly convex, we get that y, +y =y, —y, which is

impossible.

Proposition (1.1.11) [1]:
Let Y be a real Banach space. Then any smooth point of S; (Y*) is not
a sharp corner point.

Proof:

Suppose that f, is a smooth point of S;(Y™). There is a unique y," €
S1(Y™) such that y5*(fy) = 1. If there does not exist y, € S;(Y) such
that g(yo) = yo (g) for any g € Y™, that is, A(f) = ¢, f, is clearly nota
sharp corner point.

If yo € S;(Y) given above exists, we assume that f; is also a sharp
corner point. For any y € §;(Y) with 0 < fy(y) < 1 and € > 0, we see
that | y — yo IS 1 — fo(y) + ¢, that is,

ly =voll = 1= f(») = folvo) = fo ().
Note that f4 (o) — fo(¥) <Il y — ¥, II. We have that



ly — oll = fovo) = fo) = fo(o — ¥),

which implies that
Yo — )Y )
—) =1
iy =
However, it is impossible since f, € S;(Y™) is a smooth point.

Section (1.2): Gateaux differentiability spaces

In this section, let us recall some results for Gateaux
differentiability space, separable space, Asplund generated space, and so
on.

Definition (1.2.1) [1]:

A Banach space E is said to be a Gateaux differentiability space
(weak-Asplund space) if for any continuous convex function f on it,
there exists a dense (dense Gg) subset Ey € E such that f is Géateaux
differentiable at any x, € E,.

Proposition (1.2.2) [1]:

A Banach space E is a Gateaux differentiability space if and only if
any weak” compact convex subset of E* is the weak™ closed convex hull
of its weak*-exposed points .

Proposition (1.2.3) [1]:

Let E and E; be Banach spaces. Suppose that T : E — E; is linear
and continuous. If E is a Gateaux differentiability space and T(E) is
dense in E;, then E; is also a Gateaux differentiability space. In
particular, if a Banach space F is the image of a Gateaux differentiability
space by a linear continuous mapping, then F is also a Gateaux
differentiability space.

Definition (1.2.4) [1]:

A Banach space E is called Asplund generated if there exists an
Asplund space X and a linear continuous operator T : X — E such that
T(X) is dense in E.



Remark (1.2.5) [1]:

Recall that a Banach space E is called an Asplund space if for any
continuous convex function f on it, there exists a dense Gg subset Ey € E
such that f is Fréchet differentiable at any x, € E,. Moreover, we have
the following important facts:

(i) A Banach space E is an Asplund space if and only if E* has the
Radon-Nikodym property.

(i1) All the reflexive spaces [5] that is ( Let X be anormed space and X™*
= (X™*) *denote the second dual vector space of X. the Canonical map
X —> X define byX(F) = F(X),F € X* gives an isometric linear
isomorphism (embedding) from X into X** the space X is called reflexive
if this map is surjective ) and cy(I") space (for any index set I') are
Asplund spaces.

Proposition (1.2.6) [1]:

Any weakly compactly generated space is an Asplund generated
space. Any subspace of an Asplund generated space is a weak-Asplund
space.

Proposition (1.2.7) [1]:

Any separable Banach space is a weak-Asplund space. Moreover,
if a Banach space E whose dual space E* admits a strictly convex norm,
then E is also a weak-Asplund space .

Definition (1.2.8) [1]:

Let € be a compact space. Then ¢, € (1 is called a Gg-point if there
exists a countable collection of open subsets {G,, € Q:n € N} such that
{to} = Nyp=1G,. Q is said to be scattered if any subset of Q has an
isolated point.

Proposition (1.2.9) [1]:
Let Q be a compact space. Then C(Q) is Asplund if and only if ( is
scattered .

Theorem (1.2.10) [1]:
Let X and Y be normed spaces. Suppose that V/;, is an isometry from
S1(X) into S;(Y) and

IVox — 1AIVoyll < llx — 14]1], vx,y € S;(X),2 € R.

VY



Then V, can be extended to an isometry on the whole space. Moreover, if
V, 1s surjective, then V;, can be linearly extended too.

Sketch of proof:
For integrating , we write the main idea of the proof as follows:
Let

X
x|V, (—) x %0,

Vx ={ o\l
0, x =0.

Then we have that |[Vx —Vy|| < ||[x — y|| for any x,y € S;(Y) and
WVx—=Vyll=llx—=ylliflxlI=llyll, x =6 or y=80. Indeed, V is an
isometry. Otherwise, there exist xy, Yo € X with ||yoll > |lxl| > 0 such
that ||[Vx, — Vyoll < |lx — yll. We can take z, € X such that [|zy]| =
lvoll and z, € yyx, (the semi-line with the starting point y, and crossing
Xo). Then we get the following inequality:

Izo — Yoll = l[zo — x0ll + l[x0 — Yoll > [[Vzg — Vxoll + [[Vxe — Vsl

2 |[Vzo = Vyoll,
which is impossible. If V, is surjective, we can also get a linear isometric
extension by the Mazur-Ulam theorem.

We can now show the following.

Theorem (1.2.11) [1]:

Let X be a Banach space and Y be a Gateaux differentiability
space. Suppose that I/, is a surjective isometry between S;(X) and S; (V).
IfP(Y")NnS C(Y") is weak*-dense in P(Y™), then V, can be extended
to a linear isometry on the whole space.

Proof:
For any x4, x, € §;(X) and 1 € R, we have that

Vox1 — [AVoxall =  sup  [|y*(Voxy — [A[Vox2)].
Y*ES (Y™)

By Proposition (1.2.2), we get that

Vox1 — [AVoxall =  sup  [|yo(Voxy — |A[Vox)]
Y*ES (Y™)
= sup lyo (Vox1 — |AIVox2)]. (10)
YoEP(Y*)NAS C(Y™)



By Lemma (1.1.9) , for any y, € Py(Y™), there exists x5 € S;(X™) (xq is
obtained in Lemma (1.1.7) such that

lvo Vox1 — [AVox2)| = lyo (Vox1) — v (141Vox2)]
= |xg(x1) — xg(12]x2)]
< [l = [Alxzl. (11)
Note Equations. (10) and (11). We get immediately that

IVox1 — 1AIVox2l < llxg — [Alx2|l, Vxq,x, € 51(X), 1€ R,
and complete the proof because of Theorem (1.2.10).

Corollary (1.2.12) [1]:
Let X be a Banach space and Y be a separable Banach space (more
generally, Y™ admits a strictly convex norm).

Suppose that V, is a surjective isometry between S; (X) and S;(Y).
P )N S C(Y") is weak*-dense in P(Y™), then V; can be extended
to a linear isometry on the whole space.

Corollary (1.2.13) [1]:

Let X be a Banach space and Y = (#1). Suppose that V, is a
surjective isometry between S;(X) and S;(Y). Then V, can be extended
to a linear isometry on the whole space.

Proof:
Note that Y is separable and Corollary (1.2.12). We only need to
check that P(Y*) € S C(Y™). It is easy to see that

PY*) ={{0,.}:{0,} € (#*),0, = +1,n € N}.
Let yo € P(Y™) and y € §;(Y) with |[yg(¥)| < 1. If y5 = {63} and y =
{y(n)}, we can take § = {y(n)} such that

y(n) = 63|ly(n)|, vn €N.
Then we have that {y(n)} € S;(Y),yq(y) = 1 and

BESY —Z|y<n)+y(n>| Zw yGl £yl

Z||y(n>| £ 6,y(0)] = Z vl + Z By ()



=1+y;(y) <1+ |y

Moreover, if y5(y) # 0, we can also take y = é‘g;' - ¥ and have that
0
_ - |7 O)
I =yl = ) |2 621y ()l -y
y y a |y0 (}’)| n y y
n=1
Yo(¥)
= (n) ————= 6 (n)‘
Z ‘y i Y
n=1
N Y% < Y5
= D ] - 2225 0y(m) = 1202 yi (1) = 1= |y )l
;y IACOIP“hiad %G1 Yol

Then we complete the proof.

Corollary (1.2.14) [1]:

Let X be a Banach space and Y = (¢y). Suppose that , is a surjective
isometry between S;(X) and S;(Y). Then V, can be extended to a linear
isometry on the whole space.

Proof:
Note that Y is separable and Corollary (1.2.12) [1]. We only need to
check that P(Y*) €S C(Y™). It is easy to see that

p(r*) = {4ej:n € N),
where e, = (0, ...,0,1,0,...) € (1) for any n € N. Let e;, € P(Y*) and
y € 51(Y) with |ep (¥)| < 1. We can take = e, € S;(¥). Then we
have that

17 £yl = ||{en, (W) £ yM}|| = sggleno (n) £ y(m)|

<1+ |y(ng)|l=1+

Moreover, if ep (¥) # 0, we can take

en, ).

en, (V)
en. )|

y=y+

—en, () | en, € S, (1.

that is, y = {y(n)} with



y(no)
ym) ={ly(mo)l’
y(n), ifn # n,.

ifn= No,

We can get that

y (1) _
ly(no)l

Ny —yll = S%pli(n) —y(m)| = ‘ y (1)

=1-|y(ny)|l =1-
Then we complete the proof.

en, ).

Corollary (1.2.15) [1]:

Let X be a Banach space and Y = C(K) (K is a compact metric
space). Suppose that Z C Y is a linear closed subspace, and there exists a
dense subset T € K such that all the ‘‘peak functions’” whose peak is t €
T arein Z. If V, is an isometric mapping from S; (X) onto S;(Z), then V
can be extended to a linear isometry on the whole space.

Proof:
Note that C(K) is a separable Banach space and

PY*) ={x6;:k €K} (5;0 (y) = y(ko) forevery y = y(k) € Y).
It is easy to see that
{£6:teTycP(Z")
and {+5;:t € T} is weak*-dense in P(Z*). By Corollary (1.2.12), we
only need to prove that §; €S C(Z") for any t, € T (because it is similar

to prove that —6; €S C(Z") forany ¢ty € T').

For any 8; € P(Y"),z € §1(Z) with |6 (2)| = |z(tx)| < 1, and

€ >0 (if z(ty) # 0, we also assume that € < lz(zﬂ), there exists an open
neighborhood G (t,) of ¢ty in K such that
|z(k) — z(ty)| < &, Vk € G(ty). (12)

By Urysohn’s Lemma [6] that is (A topological space X is normed iff for
any two nonempty closed disjoint subsets A and B of X there’s
continuous map f:X — [0,1] such that F(A) = {0} and F(B) = {1}
afunction F with this property is called Urysho nfunction). we can get
y(k) € C(K) such that



y(te) =1, y(k) =0 (Vk € K\G(to))
and

0<y(k) <1, VkE€EK.
Then we can make a “‘peak function’ p; (k) € C(K) (whose peak is ¢,
and p¢ (to) = 1), which is equal to 0 on K\G(t;,) and takes non-

negative value on K. Let

2:(k) = min (y(k), p;, (k) ).
It 1s easy to see that Z.(k) is also a ‘‘peak function’” on K whose peak is
to and 0 < Z.(k) < 1, and thus Z, € S;(Z) by the hypotheses of Z. By
(12), we have that Z, + z € Z and

7+ 7| = AL
12: + 2l = max ( max |7(0) + 2001, max_|2(0)])

< max (é%%if, )Ife(k)l + max )IZ(k)I , keg\%o)IZ(k)l)
<1+ |zt +e) =1+6,(2) +e
Moreover, if 6{1‘0 (z) = z(ty) + 0, we first change above ‘peak function’’
p¢, (k) into p; (k) which may be very sharp in above neighborhood
G (ty), and let it satisfy the following condition:

|z(k)| — |z(to)
pe (k) <1-— , Vk € G(t,). 13
P, T 12() ° (1)
When we take
8¢, (2)
Z, =7+ ———6; (2) | P
&€ 6:0(Z)| to( ) pto
by the hypotheses of Z, we have that Z. € Z and
r z(ty)
, if k = tg;
|z(to)| 0
Z_e(k) = 9 Z(tO) _

z(k) + (1 — |Z(t0)|)mpto (k), ifk € G(to)\{to}
\z(k), if k € K\G(tp).




Z(to) —

Note that both z(k) and (1 — |z(ty)]) e Pto (k) have the same sign
0
because of (12). By (13), we obtain that
z(to) _ _
z(k) + (1 - IZ(to)l)mpto(k) = |z(k)| + (1 — |z(t0) DPe, (k)
0

<1
Then we have that z, € S,(Z),Z. —z € Z and

5;,(2)
5%,

Then we complete the proof by Corollary (1.2.12).

—6{(2) |Pe || =1- 6;0(z)|.

Theorem (1.2.16) [1]:

Let X be a Banach space and Y = C () (Q is a compact Hausdorff
space). Suppose that there exists a dense subset T € () such that T
contains all the Gg-points of (). If a linear closed subspace Z € Y contains
all such “‘peak functions’” whose peak is t € T and V, is an isometric
mapping from S;(X) onto S;(Z), then V; can be extended to a linear
isometry on the whole space.

Proof:

It is the case that {+8;:t € T} € P(Y™") and §; €S C(Z™) for any
t € T by the similar arguments of Corollary (1.2.13). There exists x; €
S1(X™) such that

5t,(2) = x; V5 '2), vz € 5,(2),
by Lemma (1.1.9) . Note that T = Q. We have
IVoxy — [AVox, |l = Sugl(VOxl)(w) — [ (Vox2) (w)]
wE
= sup|(Vox1)(t) — [A](Vox2) (0)]

teT

= sup|&; (Vox1) — 1418 (Vox2)|

teT

= sup|xf (x7) — |A]xf (x2) ]
teT

= |y — |Ax2l[. Vxq, %, € S1(X).
Then we complete the proof by Theorem (1.2.10).



Theorem (1.2.17) [1]:

Let X be a Banach space and Y = cy(I'),c(I") or £*(I') (I' is an
infinite index set). Suppose that Z C Y is a linear closed subspace and
{e, 1y €T'} € Z. 1V, is a surjective isometry between S, (X) and S;(Z),

then I/, can be extended to a linear isometry on the whole space.

Proof:
Note that {ie;}: Yy € F} C P(Y™) where

. 1, ify =y
e]’o (e)/) = {0’ if)/ =+ Yo;

for any y € I'. By the similar arguments of Corollary (1.2.15) [1], we
have that ey, €S C*(Z*) for any y € I' . Therefore there exists x, €

S,(X™) such that

e, = x,(V5'2), Vz € $,(2),
by Lemma (1.1.9). We can get that

[Voxs — [AVox2|| = SUIQ|(V0x1)()’) — Al (Vox2) ()|
=

= sup|e; (Voxy) — |Aley (Vox2)|
YEr

= sup|xy (Vox1) — 121y (Vox2) |
YEr

< llxg = [Alx2|l, Vxq, %, € S1(X).
Then we complete the proof by Theorem (1.2.10).

Theorem (1.2.18) [1]:

Let X be a Banach space and Y be an Asplund generated space.
Suppose that 1}, is an isometric mapping from the unit sphere S; (X) into
S1(Y) which satisfies the following condition:

(*) For any x4,x, € §;(X) and 44,4, € R,

121Vox1 + 2Vox2ll = 1 = A4, Voxq + ;,Vox, € Vo[S(X)].
Let Z =span{lVyx : x € S;(X)}. Suppose that P(Z*)NS C(Z*) is
weak*-dense in P(Z™). Then V; can be extended to a linear isometry on
the whole space.



Proof:
We first prove that S;(Z) = V,,[S;(X)]. Note the condition (*) and
the equality

n n—-1
z MVoxy = z Vo Xy
k=1 k=1

By induction, we get that

n
z Vo Xy

k=1

"21 % Vo + AV,
V Xn.

n
=1= z AkVOxk € VO[Sl(X)], ka € Sl(X),Ak
k=1
ER(1<k<n),neN.
Therefore, we have that

5,(Z) = Vo[S:(X)].
Note Proposition (1.2.6) and that Z is a closed subspace of Y. The
conclusion is clear by Theorem (1.2.11) [1].



Chapter 2

Banach Space and a-Large Families

In this chapter we show the notion of a — large families of finite
subsets of an infinite set is defined for every countable ordinal number a,
extending the known notion of large families. The definition of a -large
families is based on the transfinite hierarchy of the Schreier families S,
a < w;. As an application based on those families we construct a
reflexive space. ngo, a < wywith density the continuum, such that every
bounded non-norm convergent sequence {xj}x has subsequence
generating £7° as spreading model.

Section (2.1): a-Large and a Transfinite Sequence of Compact
Hereditary Families:

One of the most significant examples of Banach spaces is Tsirelson
space, presented in the nineteen seventies. The main property of this
space, is that it fails to contain a copy of ¢, or £,, answering in the
negative a problem posed by Banach. It is still an open problem whether
there exist Tsirelson type spaces in the non-separable setting. A version
of this problem has recently been solved in the negative direction in,
namely it was shown that spaces spanned by an uncountable basic
sequence such that their norm satisfies an implicit formula, similar to the
one of Tsirelson space, always contain a copy of ¢, or £,. To be more
precise, if k 1is an uncountable ordinal number, B is a hereditary and
compact family of finite subsets of k, 0 < 8 < 1 is a real number, and
| -[lg 3, is the unique norm defined on cy(k) satisfying the following
implicit formula

n
Ixllg 5 = max{llxlloo, sup {9 IE;x]lg3: {Ei}?zl isB— admissible}}
i=1
then the completion of (coo(x), || - llg,3) contains a copy of ¢4 or ).

As it seems not possible to have a non-separable space, that strongly
resembles Tsirelson space, a natural question is which properties of this
space can be transferred to the non-separable setting. Besides being
reflexive, one of the main properties of Tsirelson space, is that it admits
only ¢, as a spreading model, i.e. every bounded sequence without a
norm convergent subsequence has a subsequence that generates a
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spreading model equivalent to the usual basis of £;. The main purpose is
the construction of a non-separable reflexive Banach space X,x,, with the
aforementioned property[2].

Theorem (2.1.1) [2]:
There exists a reflexive Banach space X,x, generated by an

unconditional basic sequence {eg} £z’ admitting only ¢, as a spreading

model.

The construction of this space is based on the notion of a-large
families, which is defined as follows. If A is an infinite set, B is a
hereditary and compact family of finite subsets of A and « is a countable
ordinal number, we say that B is a-large, if its restriction on every
infinite subset of 4, in a certain sense, contains a copy of S, the Schreier
family of order a. Equivalently, if its restriction on every infinite subset
of A, has Cantor-Bendixson index, greater than or equal to w* + 1. We
prove the existence of such families on the cardinal number 2%, by
constructing for @ < w4, G, an a-large, hereditary and compact family of
finite subsets of {0,1}N. We believe that these families are of
independent interest, as they retain some of the most important properties
of the families S,, @ < w;. They are therefore a generalization of the
Schreier families, defined on the continuum and a study of them is
included here.

We define the notion of a-large families of finite subsets of an infinite
set and a brief study of them is given [2].

We devoted to the construction of the families {G,}4<,,. Initially,
using the Schreier family S; and diagonalization, we recursively define
some auxiliary families G o, @ < w,, which are subsets of [{0,1}N]<® x
{0,1}N. The construction method used, imposes strong Schreier like
properties on the families G,, which are in fact the projection of G ,, on
the component [{0,1}N]<%. Next, properties of these families, which are
crucial for the proof of the main result are included, among others, the
fact that for @ < wq, G, 1s an a-large, compact and hereditary family of
finite subsets of {0,1}".Some additional results concerning the similarity

of the G, to the S, @ < w4, are proven [2].
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We concentrated on the construction of the space X,x,. The first step
is the definition of a sequence of spaces {(X,, ||:|l,.)},,, each one based
on the family §G,. Inparticular, the norm of these spaces is defined on
Co0(2%0) in a similar manner as the norm of Schreier space is defined on

Coo(N) and they all have the unit vector basis {eE}EQNO as an

unconditional Schauder basis. For n € N, the main two properties of the
space X,, are the following. Firstly, every subsequence of the basis admits
only #1 as a spreading model and secondly the space X,, is ¢, saturated.
Next, using the spaces X;,, n € N and Tsirelson space T, a norm is defined
on o (2%0), in the following manner. For x € cqo(2%0), set

oo

1
> lxllen
n=1 T

The completion of cyy(2%0) with this norm is the desired space X,xo,

x|l =

which has the unit vector basis {eg}&zxo as an unconditional

Schauderbasis. The proof of the fact that this space admits only ¢! as a
spreading model, relies on the study of the behavior of the ||-||,, norms on
a normalized weakly null sequence {x;}; in ¥,x,. Moreover, using the
fact that the spaces X,, are ¢, saturated, we prove that every subspace of
X,xo contains a copy of a subspace of T, which yields that the space is
reflexive [2].

We concerns the construction, for a < w; , of reflexive spaces X,x,
having an unconditional Schauderbasis with size 2%, admitting £¢ as a
unique spreading model. The construction method used is a variation of
the one used for the space X,x,.

We introduce the notion of a-large families which concerns the
complexity of a family B of finite subsets of a given infinite set A. This
notion extends the well known concept of large families and it is defined
using the transfinite hierarchy of the Schreier families {Sy}q<q, After
providing the definition of a-large families we also give a useful
characterization linking this notion with the Cantor-Bendixson index of a
compact and hereditary family of finite subsets of a given infinite set.

Let A be a set, B be a family of subsets of A, B be a subset of A
and k be a natural number. We define
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[B]* ={F € B: # F =k}
and
BlB={F € B:F c B}.

If F 1s a family of subsets of the natural numbers, L is an infinite
subset of N and ¢ : N — L is the uniquely defined order preserving
bijection, we define

FIL] = {¢p(F):F € F}.
Definition (2.1.2) [2]:
Let A be an infinite set and B a family of finite subsets of A.

(1) We say that B is large, if for every k € N, and B infinite
subset of A, we have that [B]* N B # ¢.

(i)  Given a countable ordinal number a, we say that B is a-
large, if for every B infinite subset of A, there exists a one
to one map ¢ : N - B, such that ¢(F) € B, for every F €
Sa-

Lemma (2.1.3) [2]:

Let F, G be hereditary and compact families of finite subsets of the
natural numbers, such that for every L infinite subset of the natural
numbers, the Cantor-Bendixson index of F T L, is strictly smaller than the
Cantor-Bendixson index of G [ L. Then for every M infinite subset of the
natural numbers, there exists L a further infinite subset of M, such that
FILCSGTL.

Proposition (2.1.4) [2]:

Let A be an infinite set, B be a hereditary and compact family of
finite subsets of A and a be a countable ordinal number. Then, the
following assertions are equivalent:

(1) Bis a-large.

(11) For every B infinite subset of A, the Cantor-Bendixson
index of B I B is greater than or equal to w® + 1.
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Proof:

Given that (i) holds, (ii) is an immediate consequence of the fact
that the Cantor-Bendixson index of S, is equal to w® + 1 for every
countable ordinal number « .

For the converse, we may clearly assume that B is a hereditary and
compact family of finite subsets of the natural numbers. For a given
countable ordinal a, if (i) holds, we shall prove the following statement.

For every infinite subset of the natural numbers M, there exists L
an infinite subset of M, such that S,[L] c B.

The desired result evidently follows from the above. To prove this
statement, we distinguish three cases.

Case (1):a = 1:

Assume that for every infinite subset of the natural numbers M, the
Cantor-Bendixson index of B [ M is infinite. This means that every such
M contains as subsets elements of B, of unbounded cardinality. Since B
is hereditary, we conclude that it is large and therefore it also is 1-large.

Case (2): a is a limit ordinal number:
Then there is {By}, a strictly increasing sequence of ordinal
numbers with sup S, = «, such that S, = Uk{F € Sp,:minF = k}.
K
Using Lemma (2.1.3) ,choose L; D -+ D Lj, D --- infinite subsets of

M, such that Sp, I L, B, for all k.

Choose L = {#; < -+ < ¥, < -} an infinite subsets of M, with
€ € Ly, for every m > k. It is not hard to check that S, [L] c B.

Case (3): a is a successor ordinal number:
If a = B + 1, then the following holds.

For every M infinite subset of the naturals and n € N, there exists L
a further infinite subset of M, such that (Sﬁ * Jln) I L € B, where
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n
Sﬁ *cfln = {UFL € Sﬁ,l = 1,...,7’1}.
i=1

The above statement follows form Lemma (2.1.3) and the fact that
the Cantor-Bendixson index of Sp * A, is equal to wPn+1 < w®

Therefore, given M an infinite subset of the natural numbers, we
may choose L; D -+ D L, D --- infinite subsets of M such that (Sﬁ *
Ay) 'L, € B.

Choose L = {#; < -+ < ¥, < -} an infinite subsets of M, with
tm € L,, for every m > n. Once more, it 1s not hard to check that
S,IL] c B.

In this section we define a transfinite sequence G,, a < w; of
compact and hereditary families of finite subsets of {0,1}N with each G,,
being a-large for a < w;. We shall first recursively define an auxiliary
transfinite sequence{G 4}y<4, of subsets of [{0,1}N]<® x {0,1}N, which
will then be used to define the G, for @ < w;. We then prove the main
properties of these families and we conclude this section by showing the
G, have some similar properties to the Schreier families S,,.

For 0 = {0(i)}2; and 7 = {z()}2; in {0,1}", we define o AT

and |o A T| as follows:
(i) cAToand [o AT| =00, if 0 =T.
(i) cAT=¢and |[c At| =0,if (1) # 7(1).

(iii) o AT ={0()}j2; and |oAT| =4, if 0 #1,0(1) =1(1)
and? =min{i e N:o(i+ 1) #7(i + 1)}.

Fors = {s({)}}., and t = {t(i)}f=1 finite sequences of 0’s and 1’s,
we say that s is an initial segment of ¢t and write s E t, if k < £ and
s(i) =t(i) fori =1,..,k. We say that s is a proper initial segment of t
andwrite s S t,ifsEt and s # t.
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Definition (2.1.5) [2]:

We define G, to be all pairs (F,0), where F ={r;}%, €
[{0,1}N]<®,d € N and o € {0,1}V, such that the following are satisfied:

1) o#rtfori=1,..,d.

(M) oAty #¢pandifd>1, theno Aty T oAT, S-S TA
Tq-

(i) d < |o A1yl
Define min(F,o0) = |0 A 14| and max(F,0) = |a A 14].

Assume that @ is a countable ordinal number, Gz have been
defined for f < a and that for (F,0) €G g, min(F,s) and max(F,o)
have also been defined.

Definition (2.1.6) [2]:

Let B < a, (F;, o; ?zl,d € N be a finite sequence of elements of
G and o € {0,1}". We say that (F;, o; d _ is a skipped branching of ¢ in
G p, if the following are satisfied:

(1) TheF;,i =1, ...,d are pairwise disjoint.
(i) o#o;fori=1,..,d.
(1) oAo#¢ and if d > 1, then o NGy S ONO, G- SO A
04
(iv) |oAo| <mm(F;,0;)fori=1,..,d—1.
(v) d=<|oAagy].

Definition (2.1.7) [2]:
Let 8 < a,0 € {0,1}N and (F;,0)%,,d € N be a finite sequence of

elements of G g We say that (F;, J)ldzl is an attached branching of ¢ in
G p if the following are satisfied:

1. The F; =1, ...,d are pairwise disjoint.
ii. Ifd > 1, then max(F;,0) < min(F;,,,0), fori=1,..,d —
1.
iii. d < mm(F,o0).
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We are now ready to define G ,, distinguishing two cases.
Definition (2.1.8) [2]:

If « is a successor ordinal number with ¢ =  + 1, we define G ,
to be all pairs (F,c) where F € [{0,1}N]<® and o € {0, 1}V, such that
one of the following is satisfied:

(i) (F,o0) €Gg.
(ii) There is (F;, 0;)%, a skipped branching of ¢ in G p such that
F=UL,F,.
In this case we say that (F,o) is skipped. Moreover set
min(F,o) = |0 Agy| and max(F,o) = |a A gy].
(iii) There is (F;,0)%, an attached branching of ¢ in G g such
that F = UL, F;.

In this case we say that (F,o) is attached. Moreover set
min(F, o) = min(F;, 0) and max(F, o) = max(F,, o).

If @ is a limit ordinal number, fix {8,}, a strictly increasing
sequence of ordinal numbers with sup,, 5, = «.

We define
Ga = U{(F, o) € gp: min(F,o) = n}.
n=1

Remark (2.1.9) [2]:

If « is a limit ordinal number, the sequence {f3,,},, may be chosen
in such a manner that the following are satisfied:

Go = U{(F, o) € gg_:min(F,0) = n}
n=1

and
Sq = U{F € Sp :minF = n}.
n=1

YA



From now on, we shall assume that this is the case.
Remark (2.1.10) [2]:

Translating Definitions (2.1.5) , (2.1.6) , (2.1.7) and (2.1.8) one
obtains the following:

(i) If(F,o0) €G 4, then #F < min(F, o).

(i) If(F,0) € G g,y and (Fj, d | is a skipped branching of &
in Gg such that F = Ugi:lFi then we have that d <
min(F, o).

(iii) If (F,0) € G gyq and (F, J)?zl is an attached branching of
o in Gg such that F = Uld:lFi, then we have that d <
min(F, o).

We now proceed to prove some key properties of the families G g.
Lemma (2.1.11) [2]:
Let o,0’,7 € {0,1}V, not all equal. The following are equivalent:

i) oATGOoAC.
(i) oAT=0 AT

Proof:

Assume that (i) holds. We have that 7(j) = o(j) = ¢'(j), for j =
1, ...,|o A t|. Whereas, for j = |0 AT| + 1, we have that 7(j) # o(j) =
o' (j). Therefore, |6' A t| = |0 A 7|, which means that 6 AT = 6" A T.

The inverse is proved similarly.
Lemma (2.1.12) [2]:

Let a be a countable ordinal number and (F,o) €G ,. Then there
exist 7,,, Ty In F such that the following are satisfied:

(i) mimn(F,o) = |o A og,,| and max(F,o) = | A gy|.
(1) Fort € F wehavethato At,, ToATE g AT1y.

Moreover, if a is a successor ordinal number with & = f + 1 the
following hold:
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(iiiy If (F,0) is skipped and (F;,0;,)%, is a skipped
branching of ¢ in G g such that F = UL, F;, then for
i=1,..,dand Tt € F;, we have that c Ao; = g A T.

(iv) If (F,0) is attached and (F;,0;)%, is an attached
branching of ¢ in G g such that F = UL, F;, then for
1<i<j<d and 7, € F;, 7, € F;, we have that g A

T1 S ONT,.
Proof:

We prove this lemma by transfinite induction. For ¢ =1 the
desired result follows immediately from the definition of G ;. Assume
now that « is a countable ordinal number and that the statement holds for
every (F,0) €G g, for every f < a. If a is a limit ordinal number, then
the result follows trivially from the inductive assumption and the
definition of G . Assume therefore that « = f + 1 and let (F,0) €G ,.

We treat first the case when (F, ) is skipped. Let (F;, 0;)%, be a
skipped branching of o in G g, such that F = Ugi:l F;.

We first prove part (iii), i.e. for T € F;, we have that 6 Ag; = g A
T,i=1,..,d.

By the inductive assumption, there exists t), € F; such that
min(F;, g;) = |T1 /\T,in| and for every T € F;, we have that o; AT}, &
oF} NT.

Since, by definition, |0 A g;| < min(F;, g;) = |01 A T§n| < |o; AT,
it follows that ¢ A ; € 0; A T and by Lemma (2.1.11) 6 Ag; =g A T.

Choosing any 7,, € F; and 1), € F, it is easy to see that (i) and (i1)
are satisfied.

Assume now that (F, o) is attached. Let (F;, J)ldzl be an attached
branching of ¢ in G g, such that F = Ugi:l F;.

By the inductive assumption, there exist Tl,,7i, € F; such that
min(F;, o) = |o A th,|, max(F;, o) = |o Atl| and for every T € F; we

have that o A T}, E 0 A T,



We will show that for 1 < i < j < d, we have that 6 AT}, G o A
7). This proves both (iv) and that 7., = 7}, 7, = & have the desired
properties.

However, this follows immediately from the fact that |0' A T,‘V,| =
max(F;, 0) < rﬁTn(F-,a) = |a A T,]n|

The following result is an immediate consequence of Lemma
(2.1.12) .

Corollary (2.1.13) [2]:

Let a be a countable ordinal number and (F,0) €G ,. Then the
following hold:

i. min(F,o) = min{lo At|:T € F}.
ii. max(F,o) = max{loAt|:T € F}.

Corollary (2.1.14) [2]:

Let @ be a countable ordinal number and (F,o0) €G ,, such that #F >
2. Then

min(F,o) < min{|ty, 7,|: 74,7, € F with 7, # 7,}.
Proof:

Let 74 # 7, be in F. By Lemma (2.1.12), there exists t,, € F, such
that min(F,0) = |c Aty,land o AT, Ed AT, aswellasa AT, Eg A
7,. It follows that o AT,, E T; AT,. We conclude that min (F,0) <
|T1 A T5).

Lemma (2.1.15) [2]:

Let a be a countable ordinal number and (F,o0) €G ,, such that #F >
2. Then there exists o € {0,1}N, such that (F,0') €G , and

min(F,c") < min{|ty,7,|: 71,7, € F with 1, # 7,}.
Proof:

We prove this lemma by transfinite induction on . Assume that a =
1,(F,0) €G 4, such that #F > 2 and F = {r;}%,,d = 2 such that the
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assumptions of Definition (2.1.5) are satisfied. Then ¢ At; & 0 A T, and
by Lemma (2.1.11) we have that 0 At; = 74 AT,. We conclude that
min(F,o) = o A1q| = |t; AT,|. Corollary (2.1.14) yields that
min(F, o) = min{|t; A1,|: 74,7, € F with7; # 7,} and hence, the
desired ¢’ is o itself.

Assume now that a« is a countable ordinal number and that the
conclusion holds for every f < a.

If @ is a limit ordinal number, choose {f,}, a strictly increasing
sequence of ordinal numbers with sup 5,, = a, such that the assumptions

n
of Definition (2.1.8) are satisfied. Let (F,0) €G g with #F < 2. Then
there is n € N such that (F,0) €Gg and min(F,o) =n. Corollary
(2.1.14) yields the following:

min{|t,,7,|: 71,7, € F witht; # 7,} = n. (1)

By the inductive assumption, there exists o' € (F,0') €EGg and
min(F, o) < min{|t,, 7,|: 7,7, € F with 7, # 7,}.. By (2) we have that
min(F,o") €G .

Assume now that a is a successor ordinal number with ¢ = f + 1 and
let
(F,0) €G , with #F = 2. If (F,0) €G g, then the inductive assumption
yields the desired result. If this is not the case, then (F,o) is either
skipped, or attached. Ifit is attached, then there is (F;, 0;)%, an attached
branching of g, such that F = Ugi:l F;. If d = 1, then (F, 01) €G g and by
the inductive assumption we are done. Otherwise, choose 7, € F;, T, €
F,. Lemma (2.1.12) (1i1) yields that c ATy =0 Aoy S 0N0, =0AT,
and by Lemma (2.1.11) we have that 0 A 7; = 74 A 7,. We conclude that
min(F,o) = o Aoyl =|o Atq| = |ty AT,| and therefore, applying
Corollary (2.1.14) we have that o is the desired o'.

If on the other hand (F,o) is attached, using similar reasoning,
Lemma (2.1.12) (iv) and Corollary (2.1.3) , we conclude the desired
result.

Yy



Corollary (2.1.16) [2]:

Let {(Fx,0x)}x be a sequence in Upgey,, Gp with {mIn(F, oy )}k
tending to infinity. Then, if F is an accumulation point of {F},},, we have
that #F < 1.

Proof:

Let F be an accumulation point of {F;},, and assume that there are
T, # T, in F. Then there exists L an infinite subset of the natural
numbers, such that 74,7, € F, for every k € L. Corollary (2.1.4) yields
that |t; A T,| = min(Fy, gy,), for all k € L. We conclude that [t; A T,| =
®.,1.€. T; = T, a contradiction.

The following two lemmas will both be useful in the sequel.

Lemma (2.1.17) [2]:

Let a be a countable ordinal number and (F,o0) €G g- Let also o' €
{0,1}V, suchthat ¢’ A7 = o At forall T € F. Then the following hold:

() (F,0") €G ,,.
(ii) min(F, ¢’) = min(F,o) and max(F,c"') = max(F, o).
Proof:

We prove this lemma by transfinite induction. The case a = 1 follows
easily from the definition of G ;. Assume now that the result holds for
every f < a. The case where a is a limit ordinal number is trivial,
assume therefore that « = f + 1 and let (F,0) €G , € {0,1}" such that
the assumptions of the lemma are satisfied. Notice that it is enough to

show that (1) is true, since part (ii) of the conclusion follows immediately
from (1) and Corollary (2.1.13).

We treat first the case when (F,o) is skipped, i.e. there exists
(F;,0)%, a skipped branching of ¢ in G p, with F = UL, F;. To show
that (F,o') €G,, it suffices to show that (F;, o; ?:1 is a skipped
branching of o',
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Notice that it is enough to show that c Ag; = o' Ag; fori =1,...,d,
which, by Lemma (2.1.11), is equivalent to 0 Ag; S g Adg’ for i =
1,..,d.

Fix 1 <i <d and chose 7 € F;. Lemma (2.1.12) (iii) yields that o A
0, =0 AT =0 AT.Once more, Lemma (2.1.11) [2] yields that o A 0; =
OANTSOoANT .

Assume now that (F, o) is attached, i.e., there exists (Fi,a’)?zl an
attached branching of ¢ in G g, with F = Ugi:l F;. Since, by the inductive
assumption, the conclusion holds for the (F;,0),i=1,..,d,¢" it is
straightforward to check that (F;, J’)?zl an attached branching of ¢’ in
G s and therefore (F,0") €EG, .

Lemma (2.1.18) [2]:

Let (F,0) € Up<y, G pand o' € {0,1}N such that AT & o' AT for
all T € F. Then, if @ = min{f:(F,0) € Gz}, a is not a limit ordinal
number and the following hold:

(1) Ifa=1,then# F = 1.
(i) If @ = B + 1, then there exists o'’ € {0,1}N with (F,¢") €
Gp.

Proof:

The fact that a is not a limit ordinal number follows trivially from
Definition (2.1.8) . The case a = 1 is easy, we shall therefore only prove
the case « = f§ + 1. Since (F, 0) & G g, it is either skipped or attached.

Assume first that there is(F;, 0;)%, a skipped branching of ¢ in G B
with F = UL, F;. If d = 1, then 6" = oy is evidently the desired element
of {0,1}N. We will therefore prove that d = 1. Towards a contradiction,
assume that d > 2 and choose 71 € F;, 7, € F,.

Lemma (2.1.12) (ii1) yields that oAty = Aoy & 0/Ao, = o/At,. By
the assumption, 6At; S ¢'/At; and using Lemma (2.1.11) we conclude
that c At; = 6/A\g’. Similarly, we conclude that A1, = c/Acg’. We have
shown that cAg’ € o/Ac’, which is absurd.
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If (F, o) is attached, then using similar arguments and Lemma (2.1.12)
(1v), one can prove the desired result.

Proposition (2.1.19) [2]:
Let @ be a countable ordinal number, (F,0) €G 4 and G be a non-
empty subset of F. Then (G,0) €G g.

Proof:

We proceed by transfinite induction. For @« =1 the result easily
follows from the definition of G ;. Assume that the statement is true for
every f < a. The case when a is a limit ordinal number is an easy
consequence of the inductive assumption and Corollary (2.1.13) . Assume
therefore that @« = f + 1 and let (F,0) beinG , and G C F.

Consider first the case, when (F,o0) is skipped and (Fi)?zl be a
skipped branching of 6 in G g, such that F = Ugi:l F;.

Set {iy < <ip}={i€{1,..,d}:GNF # ¢} and G; = G N F;, for
j=1,..,p. By the inductive assumption, (Gj,aij) is in Gp for j =
1, ...,p and, evidently, it is enough to show that (Gj, Jij)jzl is a skipped

branching of a. Obviously, assumptions (i), (i1) and (ii1) from Definition
(2.1.6) are satisfied.

Corollary (2.1.13) yields that min (Fij, O'i].) < min (Gj, O'i].) and hence

(iv) is satisfied. Moreover p < d < |6/A\gy| < |cr/\cri1
(v) 1s also satisfied.

, Which means that

If on the other hand (F, o) is attached, using similar reasoning and
Corollary (2.1.13), the desired result can be easily proven.

We are now ready to define the families G,, for @ < w; and prove
their main properties.

Definition (2.1.20) [2]:
For a countable ordinal number a we define
G, = {F c {0,1}N: there exists o € {0,1}N with (F,0 €) G ,} U {¢}.
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Proposition (2.1.21) [2]:

Let a be a countable ordinal number. Then G, is a-large. In
particular, for every B infinite subset of {0,1}N there exists a one to one
map ¢ : N - B with ¢(F) € G, forever F € S,y and a < w;.

Proof:

Let B be an infinite subset of {0,1}N Choose {t}}, pairwise disjoint
elements of B and o € {0,1}N, with lilr(nrk = o, such that oAt &
0/\T4q forall k € N. Define ¢ : N - B, with ¢p(k) = 1.

We shall inductively prove that for every ¢ < w; and F € §,, the
following hold:

@»  (@F)0) €eG,.

(i) mm(¢(F), 0) = |oATminr| and max(¢(F),0) =
|0ATmaxF|-

The case ¢ =1 can be easily derived from the definition of G ;.
Assume now that a is a countable ordinal number and that the statement
is true for every F € Sg and f < a.

We treat first the case when « is a limit ordinal number. Choose {f,,},,

a strictly increasing sequence of ordinal numbers with sup ,, = «, such
n

that

Gy = U{(G,a’) € Gg :mm(G,0") = n}
n=1

as well as

Se = U{F € Sp :minF > n}.
n=1
Then, if F € S, there exists n € N with F € Sp and min F = n. The
inductive assumption yields that (¢(F), o) €G g and min(¢p(F),o) =
|oATpinr| = min F > n. We conclude that (¢(F),0) €G, and, of
coursemin(¢p(F),0) = |6 ATminr|-
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Assume now that ¢ = f+1 and let F €S,. Then there exist
minF < F; < < F;inSp with F = UL, F;.

The inductive assumption yields that (¢(F;),0)%, is an attached
branching of o in G 5 and hence (¢ (F),0) €G .

Moreover, (¢ (F), o) = min(¢(Fy), 0) = |oATming, | =
|0 AT min p|. Similarly, we conclude that max(¢(F),0) = |0 ATmaxrl-

subset of A, such that the Cantor-Bendixson index of G, [ B is equal
to w® + 1 for all @ < w;. Since we do not make use of this fact, we omit

The result concerning the families G,, @ < w; is the following.

Theorem (2.1.22) [2]:

Let a be a countable ordinal number. Then G, is an a-large,
hereditary and compact family of finite subsets of {0,1}V.

Proof:

All we need to prove, is that G, is compact and we do so by transfinite
induction. Let us first treat the case « = 1 and assume F is in the closure

Ofgl.

If F is finite, since G; is hereditary, then F € G;. It is therefore
sufficient to show that F cannot be infinite. Since G; is hereditary, we

may assume that F is countable and let {z;: i € N} be an enumeration of
F.

We conclude, that setting F,, = {r;:i = 1,...,k}, then F, € G; and
#F, = k. Choose {0y}, a sequence in {0,1}" such that (Fy, o)) €G ; for
all k.

We yield that k < min(Fy, 0,) for all k. On the other hand, by
Corollary (2.1.14) we have that min(Fy, o) < |t1;/A7,|. We conclude that
k < |t;/At,| for all k € N, which is obviously not possible.

Assuming now that a is a countable ordinal number such that Gg is

compact for every f < a, we will show that the same is true for G,,.
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We treat first the case in which « is a limit ordinal number. Fix {8, },

a strictly increasing sequence of ordinal numbers with sup f8,, = a such
n

that

G, = U{(F, o) € Gg :mn(F, o) = n}.
n=1

Let F be in the closure of G,. As previously, if F is finite then it is in
G, and it is therefore enough to show that F cannot be infinite. Once
more, we may assume that F = {7;:i € N}. Setting F}, = {14, ..., T}, We
have that F, € G,, therefore there exists {oy };, with (Fy, g;) €G .

Using Corollary (2.1.14) we have that min(Fy, 03) < |t17T2| = d. In
other words, (F, o) €G By with n, <d for all k. Passing, if
necessary, to a subsequence, we have that (Fy, 0,) €G Bro? for all k. We

conclude that F € gﬁno, in other words gﬁno is not compact, which is

absurd.

Assume now that ¢« = + 1. Let F be in the closure of §G,. As
previously, it is enough to show that F cannot be infinite. Once more, we
may assume that F = {7;:i € N}.

Set F, = {t;:i =1, ..., k}, for all k. Then F;, € G,,, i.e. there exists gy,
such that (Fy, gy) € G . Setting d = |1;/A1,|, Corollary (2.1.15), yields
the following:

riin (Fy, o)
< d forall k. (2)

By Definition (2.1.4), Remark (2.1.10) and (2), for every k € N, there
exist {ﬂk};n:kl pairwise disjoint sets in G, with Fj, = U;.nzkl ij and m;, <
d. Passing to a subsequence, we may assume that m; = m, for all k.

By the compactness of G,, we may pass to a further subsequence and
find Gy, Gy, ..., Gy, € Gp, such that lilzn ij = Gj, forj=1,..,m.

We conclude that F = lilzn F, = lilzn(Uyllejk) = UJL, G;. Since

U'Z1 G; is a finite set, this cannot be the case.
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Although the initial motivation behind the definition of the G, families
was the construction of a nonseparable reflexive space with #; as a
unique spreading model, we believe that they are of independent interest,
as they retain many of the properties of the families S,. They are
therefore a version of these families, defined on the Cantor set {0,1}V.
We present a few more properties the G, have in common with the S,,.

Lemma (2.1.23) [2]:

Let ¢ < B be countable ordinal numbers. Then there exists n € N
such that

{(F,0) € G:In(F,0) = n} c Gg.
Proof:

Fix a a countable ordinal number. We prove this proposition by
means of transfinite induction, starting with § = a + 1. In this case the
result follows from the definition of G g, forn = 1.

Assume now that f is a countable ordinal number with @ < 8, such
that the statement holds for every a <y < f. If f =y + 1, by the
inductive  assumption, there exists n €N, such that
{(F,0) €G ;:iin(F,0) = n} € G,. Evidently, we also have that
{(F,0) €G o:min(F,0) = n} c Gg.

If B is a limit ordinal number, fix {f}; a strictly increasing sequence
of ordinal numbers, such that § = lilzn P and

G, = U{(F, o) € Gg,:thin(F,0) = k}.
K
Choose ko € N with a < B . By the inductive assumption, there

exists m € N, such that {(F,0) € G ,:min(F,0) = m} c Gﬁko' Setting

n = max{k,, m}, we have the desired result.
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Lemma (2.1.24) [2]:

Let a < f be countable ordinal numbers. Then there exists n € N U
{0} suchthat G , © G g4y

Proof:

Fix [ a countable ordinal number. We proceed by transfinite induction
on a. Inthe case @ = 1, it is easily checked that G ; € G g. Assume now
that @ is a countable ordinal with & < 8, such that the statement holds
for every y < a. If @ = y + 1, then by the inductive assumption there
existsn € N U {0} with G,, € G .. We conclude that G , G g (n+1)-
If a is a limit ordinal, fix {a;}; a strictly increasing sequence of ordinal
numbers, such that o = lilzn a and

G, = U{(F, 0) € Gg,:min(F,0) = k}.
K

Lemma (2.1.23) yields that there exists m€EN with
{(F,0) €G ,:mIn(F,0) = m} € Gg. The inductive assumption, yields
that for k = 1,...,m — 1, there exists n, € N U {0} with G 5, © G g1p,.
Setting n = {m, ny, ..., Ny, _1}, it can be easily checked that G , € G gp.

Proposition (2.1.25) [2]:

Let ¢ < B be countable ordinal numbers. Then there exists n € N
such that

{F € Go: # F = 2and min{|t;At,|: 74,7, € F, 7y # 75} 2 n} € Gp.
Proof:

Let ¢ < B be countable ordinal numbers. Choose n € N such that the
conclusion of Lemma (2.1.23) is satisfied. We show that this n is the
desired natural number. LeF €G, with #F =2 and
min{|t;At,|: 71,7, € F, Ty # 7,} = n. Then there exists o € {0,1}N with
(F,0) €G, . Lemma (2.1.15) yields that there exists o’ € {0,1}" such
that (F,0') € G , and min(F,¢") = n. By the choice of n, we have that
(F,0') €Gg,ie. F € G,.



The following proposition is an obvious conclusion of Lemma
(2.1.24) .

Proposition (2.1.26) [2]:

Let a < f be countable ordinal numbers. Then there exists n €
N U {0} suchthat G, © Ggin.
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Section (2.2): The spaceX,x, and Spaces Adimitting Spreading
Model

In this section we define the spaceX,x, and prove that it is reflexive,
has an unconditional Schauder basis of length the continuum and that it
admits only ¢; as a spreading model. In the beginning we define a
sequence of non-separable spaces X,,n € N. Each one is defined using
the family G,, in a similar manner as the Schreier family S; is used to
define the space . Then the construction of X,x, 1s presented, which
combines the spaces X,, and Tsirelson space, using a method appeared
the end the properties of the space X,x, are deduced by directly using the
structure of the families G,,.

Before proceeding to the definition of the spaces X,, and X,x,, let us
first recall the notion of ¢ spreading models.

Definition (2.2.1) [2]:

Let {x;}; be a sequence in a Banach space and a be a countable
ordinal number. We say that {x; }; generates an £ spreading model, if
there exists a constant ¢ > 0 such that for every F € S, and every real
numbers {A; }xer the following holds:

z/lkxk = Czlllkl

keF keF

Let us from now on fix a one to one and onto map t — &, from {0,1}¥
to the cardinal number 2%,

Definition (2.2.2) [2]:
For n € N define a norm on cyy(2%0) in the following manner:

(1) For n €N, we may identify an F € G,, with a linear
functional F : cyo(2%) - R in the following manner.

For x = ZE<2N0 AECE € COO(ZNO)

FOO = ) Z,

TEF
(ii)  For x € cyp(2%0) define
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x|l = sup{|F (X)|: F € Gy}.
Set X,, to be the completion of (cye(2%0), || - |I,,)-
Proposition (2.2.3) [2]:
Let n € N. Then the following hold:

(1) The space X, is ¢ saturated.
(11)  The unit vector basis {eg} £<2%0 is a normalized, suppression

unconditional and weakly null basis of X,,, with the length of
the continuum.

(111)  Any subsequence of the unit vector basis admits only £, as a
spreading model.

By T we denote Tsirelson space as defined and by t{e, },, we denote its
usual basis. We are now ready to define the space X,x, , using the spaces
X,,, Tsirelson space T and a method appeared .

Definition (2.2.4) [2]:

Define the following norm on cg(2%0). F € ¢y (2%0)

o 1
> lxllen
n=1

Set X,x, to be the completion of (cye(2%°), || -|).

x|l =

T

Set A = ||Z%°=12inen||T and for ¢ < ZNO,éE = %e,g. Since {eg}&zxo is

normalized and suppression unconditional in X,, and {e,}, is 1-

unconditional in T, we conclude that {é€}g<zxo 1s a normalized

suppression unconditional basis of X,x,.

For n € N define P,: X,x, = X;, with B,x = Zinx. Evidently P, is well
defined and ||P,|| < 1, foralln € N.
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The main result is the following, which is a combination of
Proposition (2.2.15) and Corollary (2.2.17) , which will be presented in
the sequel.

Theorem (2.2.5) [2]:

The space X,x, 1s a non-separable reflexive space with a suppression
unconditional Schauder basis with the length of the continuum, having
the following property. Every normalized weakly null sequence in X,x,

has a subsequence that generates an £7 spreading model, for every n €
N.

Lemma (2.2.6) [2]:

Let {éfk}k be a subsequence of the basis {é€}g<zxo of X,xo. Then it has
a subsequence that generates an £ spreading model for every n € N.
Proof:

Set B = {1: §, = &, for sme k € N}. By Proposition (2.1.21) [2] there
exists a one to one map ¢ : N - B such that ¢(F) € G,, for every F €
S, andn € N.

Pass to L an infinite subset of the natural numbers such that the map
¢ : L - 2% with ¢(j) = $p(j) is strictly increasing. We will show that

{ég : } admits an £7 spreading model for every n € N.
() jEL

By unconditionality, it is enough to show that there are positive
constants ¢, such that for every n€N, F € S,,F c L and {tj}jEF

positive real numbers, we have that

X EE

JEF JEF

... ~ A
By definition, we have that ||ZjEF tiey ;) || = YjeF tiez, ||n and by
the choice of ¢, we have that ¢(F) € G,,. Hence, ¢ (F) (ZjEF tjeE¢(j)) =

X jer tj which yields that ||Sjer tie, | = Tjert;
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We finally conclude that ||ZjEF tjég¢(j) || > Zinzj'ep t;.
Proposition (2.2.7) [2]:

Let {x;}x be a normalized, disjointly supported block sequence of
{é’f}f<zxo’ such that lim Sl}ip”xk”oo > 0. Then {x;}, has a subsequence

that generates an £ spreading model for every n € N.
Proof:

By unconditionality, it is quite clear, that by passing, if necessary, to a
subsequence of {x;};, there exist € > 0 and {éfk}k a subsequence of

{ég} £z’ such that for any 44, ..., 4,,, real numbers, one has that

m m
z Akxk z Akéfk
k=1 k=1

Lemma (2.2.6) yields the desired result.

> &€

Proposition (2.2.8) [2]:
Let {x.}; be a normalized block sequence in X,x, , such that
lilznlanxnlln = 0, for all n € N. Then {x; }; has a subsequence equivalent

to a block sequence in T. In particular, {x,}, has a subsequence that
generates an €7 spreading model for every n € N.

Proof:

Using a sliding hump argument, it is easy to see, that passing, if
necessary, to a subsequence of {xj},, there exists {I;}, increasing
intervals of the natural  numbers, such that if we set y, =

1 : .
Zne]k on x|l nen, then {x; }x is equivalent to {y; }.
Lemma (2.2.9) [2]:

Let {x;};x be a normalized, disjointly supported block sequence of
{é’f}f<zxo’ such that the following holds. There exist ¢ > 0,ng €

N, (Fg,0k) €EG,, fork € Nand o € {0,1}N satistying the following:
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(l) |Fk(xk)| > c forall k € N.

(111) The Fj are pairwise disjoint.

(iv) o # g forall k € N.

(v) oNop G g/\oyyq forall k € N.
(vi) |oAgy| < min(x;) forall k € N.

Then {x; }; generates an £ spreading model for every n € N.
Proof:

By changing the signs of the x;, we may assume that F, (x;) > c for
alln € N.

Arguing in a similar manner as in the proof of Proposition (2.1.23) [2]
one can inductively prove that for every n € N and G € §,, the following
hold:

(@) (Ukeg Fry 0) €G -

(b) mMi(Ugeg Fx,0) = |0AOming| and max(Ugeg Fx, 0) =
|0A0max6|-

Since {x; }) is unconditional, it is enough find positive constants c,, >
0, such that fixing G € S,, and {A; };ec non-negative reals, we have the

z Akxk > Cn z /1](.

kea kea

following:

Properties (a) and (b), yield that F = Uyeg Fx € Gny4n- This means the

following:
z X || 2 ||Pry+n <z /1ka>
keG keG ny,+n
2
= ng+n z AXk
kEG

ng+n
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2c
> Wz A

kea

Lemma (2.2.10) [2]:

Let {x; }; be a normalized, disjointly supported block sequence of
{é } , such that the following holds. There exist ¢ > 0,ny € N,0 €
¢ E<2N0 0

{1,0}N, a sequence {F.}, in Gn,satisfying the following:

(1) |Fx(xg)| > c forall k € N.
(11)  The set Fj, are pairwise disjoint.
(iii)  (Fk,0x) €G , forall k € N.
(iv) max(F,o0) < min(Fj,q,0) forall k € N.

Then {x; }, generates an £ spreading model for every n € N.
Lemma (2.2.11) [2]:

Let {x; }, be a sequence in ¥,x, and n € N such that lilznlanxklln = 0.

Then for every € > 0 there exists ky € N such that for every k > k the
following holds:

|F(x;)| < € foreveryF € G,.
Proof:
Fix € > 0. Choose k, € N, such that ||P, x|, = 2% I [l < Zine, for
every k = ky. By definition of the norm || - ||,,, this means the following:
|F(x;)| < € foreveryF € G,.

Lemma (2.2.12) [2]:

Let {x;};x be a normalized, disjointly supported block sequence of
{é’f}f<zxo’ such that lil£n||xk||oo = 0 and there exists n € N such that

lim sup||B,xkl,, > 0. Assume moreover, that if ny=
k
min {n: lim sup|| B, xxl,, > O}, there exist ¢ > 0,0 € {0,1}N and {F.}; a
k
sequence in Gy, satisfying the following:

(i) |Fx(x;)| > c forall k € N.

1



(11)  The set F, are pairwise disjoint.
(iii)  (Fk,0x) €G ,, forall k € N.

Then {x;} has a subsequence that generates an £ spreading model for
every n € N.

Proof:

We shall prove that for every k,, m natural numbers, there exist k >
ko and G; € F, such that |Gy (x;)| > 2/c and min(Gy, o) > m.

If the above statement is true, we may clearly choose
{Gi}k in Gy, satisfying the assumptions of Lemma (2.2.10) , which will
complete the proof.

We assume that ny = 2, as the case ny = 1 uses similar arguments
and the fact that lil£n||xk||oo = 0. Fix ky,m € N. By Lemma (2.2.11),

choose k > kg, such that the following holds:
c
|F (x| < v for every F € G, _1. 3)

We distinguish two cases.

Case (1):

. d . . . .
There 1s(Fik, Uik)i=1 a skipped branching of ¢ in G, _; with
UL, Fk.

l

Case (2):

. d . . .
There 1is (Fik,a)izl an attached branching of ¢ in G, _; with

UL, Fk.

l

In either case, by Proposition (2.1.19) we have that if we set G} =
UL .1 FF, then (G, 0) € G p,. Moreover, (3) yields that |Gy (x;)| >
c/2.

All that remains, is to show that min(Gy, o) > m.
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If we are in case (1), then Min(Gy, o) = |oAd) |- By Definition
(2.1.6) we have that |oAc| < |oAcf,| for i =1,..,m, which of

course yields that |cAgk 1| > m.

If, on the other hand, we are in case (2), then min(Gy, o) =
rﬁTn(F,’le, a). By Definition (2.1.7) we have that rﬁTn(F,’le, J) > m.

Lemma (2.2.13) [2]:

Let {x;}x be a normalized, disjointly supported block sequence of
{éf}g<zxo> such that there exists n € N such that lim Sl;lp”ank”nn > 0.

Then, passing if necessary, to a subsequence, there exist ¢ > 0 and
(Fy, oy) €G ,, satisfying the following:

(1) The set F, are pairwise disjoint.
(i)  |Fi(xg)| > c forall k € N.

Proof:
Pass to a subsequence of {x;}, and choose & > 0, such that the

following holds:

1
| Pyl = om llxkll,, > €, forall k € N.

By the definition of the norm || -||,,, there exist (Fy, o) €G, with
|Fi (x;)| > 2™e, for all k € N. By virtue of Proposition (2.1.19) and the
fact that {x;}, is disjointly supported, we may assume that the F are
pairwise disjoint. Setting ¢ = 2"¢ finishes the proof.

Proposition (2.2.14) [2]:

Let {x;}x be a normalized, disjointly supported block sequence of
{é’f}f<zxo’ such that lil£n||xk||oo = 0 and there exists n € N such that

lim sup||B,xx|l,, > 0. Then {x,}; has a subsequence that generates an €7
k

spreading model for every n € N.

Proof:
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Set ny, = min {n: lim sup|| B xk ||, > O} and as in the proof of Lemma
k

(2.2.12) let us assume that ny = 2. Apply Lemmas (2.2.13) and (2.2.11) ,
pass to a subsequence of {x;} and find ¢ > 0, (Fy, gy) € G 5, such that
the following are satisfied:

(1) The set F;, are pairwise disjoint.
(i)  |Fx(xg)| > c forall k € N.
(iii)  [Fx(xp)| <c/4forallk € Nand F € G, _;.

Passing to a further subsequence, choose o € {0,1}N such that
lilzn o, = a. We distinguish two cases.

Case (1):

li}r(n max{|G(xy)|: G < F with (G,0) €G, } = 0.

Case (2):
lim sup max{|G (x;)|: G c F, with (G,0) €G, } > 0.
K
Let us first treat case (1). Pass once more to a subsequence of {xy},
satisfying the following:

() max{|G(x;)|: G < F, with (G,0) €G, }<c/4 for all
k € N.

(b) o0 # gy, for every k € N.
(c) ooy & g/\oy4q forall k € N.

We shall prove the following. For every k, there exists G, C Fj, such
that the following hold:

(d) |G ()| > /2.
(e) |UAUk| < rﬁTn(Gk, O'k).

Combining (b), (¢), (d) and (e), we conclude that the assumptions of
Lemma (2.2.9) are satisfied, which proves the desired result, in case (1).



Set G, = {t € F: o, AT = 0 At}. Proposition (2.1.19) and Lemma
(2.1.18) yield that (G}, 0%) €G, . Setting F}' = Fi\Gy/, property (a)
yields that |F;' (x,)| > 3c/4.

Set G, = {1t € F;,: 0, AT S 0 At}. Once more, Proposition (2.1.19)

yields that (G, 0x) €G,, , however Lemma (2.1.18) yields Gy € Gy -1
and therefore, by (iii) we have that |Gy (x;)| < c/4.

Set G, = F;\Gy. Then we have that |Gy (x)| > ¢/2, i.e. (d) holds.

We will show that (e) also holds. By Corollary (2.1.13) , there exists
T € Gy, with min(Gy, o) = |ox At|. Since T & G, we have that
low AT| # o Atl.

We will show that |0 A 7| < |0y AT|. Assume that this is not the case,
i.e. |ox At| < |oAt|. In other words, o, AT & o At . This means that
T € G, a contradiction.

We conclude that A7 & o, AT . Lemma (2.1.11) yields that c At =
ox No. Applying Lemma (2.1.11) once more, we conclude that
oAty S o, AT , e |oAt| <|ogy At| = min(Gy,0;), which
completes the proof for case (1).

It only remains to treat case (2). Observe, that in this case, we may
easily pass to a subsequence of {xj},, satisfying the assumptions of
Lemma (2.2.12) . This completes the proof.

Combining Propositions (2.2.7) , (2.2.8) and (2.2.12) , one obtains the
following.

Proposition (2.2.15) [2]:

Let {x;}; be a normalized weakly null sequence in X,x, . Then {x; };
has a subsequence that generates an n € N spreading model for every
n € N.

Proposition (2.2.16) [2]:
The space X,x, 1s saturated with subspaces of Tsirelson space.

Proof:
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It is an immediate consequence of Proposition (2.2.15) that X,x, does
not contain a copy of c¢y. By Proposition (2.2.3), the spaces X,, are ¢
saturated and therefore, the operators P, : X,xo = X,,, are strictly
singular.

We conclude, that in any infinite dimensional subspace Y of X,x, ,
ny € N and € > 0, there exists x € Y with ||[x|| = 1 and ||B,x]|,, < € for
n=1,..,ny. One may easily construct a normalized sequence in Y,
satisfying the assumption of Proposition (2.2.8), which completes the
proof.

In particular, the previous result yields that neither c, nor £; embed
into  X,x,. Using James’ well known theorem for spaces [7] that is(
Abanach Space B is reflexive if and only if every continuous liner
functional on B altains it is Maxmum on the closed unit ball in B)
with an unconditional basis, we conclude the following.

Corollary (2.2.17) [2]:
The space X,x, 1s reflexive.

Definition (2.2.18) [2]:

Let @ be a countable ordinal number. Define || - [[7, to be the unique
norm on cyo(N) that satisfies the following implicit formula, for every
X € Coo(N):

d
1
Iz, = max{uxum,zsupZuEiqua},
i=1

where the supremum is taken over all E; < --- < E; subsets of the natural
numbers with {minE; :i=1,...,d} €S,,.

Define the Tsirelson space of order a, denoted by T,, to be the
completion of cyo(N) with the aforementioned norm.

The space T, is reflexive and the unit vector basis {e,},, forms a 1-
unconditional basis for T,. Moreover, every normalized weakly null
sequence in T,, has a subsequence that generates an ¢ spreading model.
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Given a countable ordinal number a, we shall construct {G5},, un an
increasing sequence of families of finite subsets of [0,1]Y , strongly
related to {G,},. As before, we first define some auxiliary families
Gin e N.

Definition (2.2.19) [2]:

We define G% to be all pairs (F,0), where F={r;}4,€
[{0,1}N]<®,d € N and o € {0, 1}V, such that the following are satisfied:

(1) o+t fori=1,..,d.
(oAt #¢pifd>1,theno At S oAT, & - S oAy
(i) {lo Ayl :i=1,...,d} €S,.

Define min(F,o0) = |o At,| and max(F, o) = |od A1y4].

Assume that n € N, G§ have been defined for k < n and that for
(F,0) € G%, min(F, o) and max(F, o) have also been defined.

Definition (2.2.20) [2]:

Let (F;, 0,)%,,d € N be a finite sequence of elements of G % and ¢ €
[0,1]N.

We say that (F;,0;)%, is a skipped branching of ¢ in G ¢, if the
following are satisfied:

(1) TheF;,i =1, ...,d are pariwise disjoint.
(i) o=+t fori=1,..,d.
(1) oAty #¢pifd>1,theno Aty S oAT, T - S a1y
(iv) |o At <mm(F;,0;) fori=1,..,d.
v) {loAtl:i=1,..,d}E€S,.

Definition (2.2.21) [2]:

Let o € [0,1]N and (F;, J)?zl, d € N be a finite sequence of elements
of G 4.

We say that (F;,0)%,, is an attached branching of ¢ in G & if the
following are satisfied:
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(1) TheF;,i =1, ...,d are pariwise disjoint.
(i) Ifd > 1, then max(F;,0) < min(F;,q,0), fori =1,..,d —
1.
(iii)) {mm(F;,0)i=1,..,d} €S,.

We are now ready to define G &, ;.
Definition (2.2.22) [2]:

We define G %, ; to be all pairs (F, ), where F € [{0,1}N]<® and o €
{0,1}N, such that one of the following is satisfied:

()(F,0) €G .

(i)  There is (F;, 0;)%, a skipped branching of ¢ in G & such
that F = UL, F;.

In this case we say that (F, o) is skipped. Moreover set min(F,o) =
o Aoy| and max(F, o) = |o Aayl.

(iii) There is (F;, 0)%, an attached branching of ¢ in G ¢ such
that = UL, F; .

In this case we say that (F, o) is attached. Moreover set min(F, o) =
min(F;,0) and max(F, o) = max(Fy, g).

Definition (2.2.23) [2]:

For a countable ordinal number a and n € N we define
G % = {F c {0,1}": there exists ¢ € {0,1}" with (F,0) € G%} U {¢}.
Proposition (2.2.24) [2]:

Let a be a countable ordinal number. Then for every B infinite subset
of {0,1}N there exists a one to one map ¢ : N - B with ¢(F) € G& for
every F € S} andn € N.

Theorem (2.1.23)] takes the following form and the proof uses the
compactness of S, and Corollary (2.1.19) .

Theorem (2.2.25) [2]:
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Let @ be a countable ordinal number and n € N. Then G is an a-
large, hereditary and compact family of finite subsets of [0,1]V.

In order to define the desired space fgxo, one takes the same steps as

in the previous section. All proofs are identical.
Definition (2.2.26) [2]:

For a@ a countable ordinal number and n € N define a norm on
Coo(2%0) in the following manner:

(i) For n €N, we may identify an F € G with a linear
functional F: cyo(2%0) — R in the following manner. For

X = ZE<2N0 /1,56,5 € COO(ZNO)

FOO= ) 2,

T
&<2%0

(ii)  For x € cyo(2%0) define
x|l = sup{|F(x)|: F € Gp'}.
Set X% to be the completion of (cyo(2%°), | - |%).
Definition (2.2.27) [2]:

Define the following norm on cqo(2%0). For x € cqq(2%0)

(0.0)

Z e

n=

llxll =

Set X2y, to be the completion of (coo(2%0), | - |9).
Theorem (2.2.28) [2]:

a . . . .
The space X%, is a non-separable reflexive space with a suppression

unconditional Schauder basis with the length of the continuum, having
the following property. Every normalized weakly null sequence in ¥Jx,

has a subsequence that generates an ¢ spreading model.
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Chapter 3

Polynomials on Banach spaces
In this chapter we study Banach spaces of traces of real poly-nominal on
R™ to compact subsets equipped with supremum norms .

Recall that the Banach-Mazur distance between two k-dimensional
real Banach spaces E, F is defined as

dpm (E, F) = inf{lull - =1},

where the infimum is taken over all isomorphisms u: E — F. We say that
E and F are equivalent if they are isometrically isomorphic (i.e.,
dgy(E.F) = 1). Then Indg, determines a metric on the set B; of
equivalence classes of isometrically isomorphic k-dimensional Banach
spaces (called the Banach-Mazur compactum).It is known that B, is
compact of dgp,-“diameter” ~ k.

Let C(K) be the Banach space of real continuous functions on a
compact Hausdorff space K equipped with the supremum norm. Let F C
C(K) be a filtered subalgebra with filtration {0} c F, € F; S---C F4 C--
C F (that is, F = Ugez, Fi and F; - Fj € Fyyy for all i,j € Z,) such that
ng := dim Fy < oo for all d. In what follows we assume that F, contains
constant functions on K.

Theorem (3.1) [3]:
Suppose there are ¢ € R and {p;}4en € N such that

Inng.
% <c foralld €N. (D
d

Then there exist linear injective maps iy : Fy © €5 .5, such that

dBM(Fd'id(Fd)) < ec, d € N.
Proof :

Since dimF; = n;,i € N, and evaluations 6, at points z € K
determine bounded linear functionals on Fj, the Hahn-Banach theorem
implies easily that span {8,},cx = F;". Moreover, ||5,] pp=1forall z€

K and the closed unit ball of F; is the balanced convex hull of the set
{6,}zex- Let {f1,,..., fn,i} © F; be an Auerbach basis with the dual basis
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(80000023 © Ff that is, fi (6, ) = fia(zu) = 6 (the Kronecker-

delta) and || fx;llx = 1 for all k. (Its construction is similar to that of the
fundamental Lagrange interpolation polynomials for F; = P/*\,

Now, we use a “method of E. Landau”.

By the definition, for each g€F, we have g(z)=
Yels fii(2g(zi) , z € K. Hence, |lgllx < nillglly,, ., Applying
the latter inequality to g = fP4,f € F,, containing in F;,i : d - p;, and

using condition (1) we get for A, := {Zli, ...,znii} cK

1 1 1
Ifllx = (lgll)P? < (ng - pd)P? - (lglla, )P < e lIflla,

Thus, restriction Fy +— F;\,, determines the required map iz : Fy ©

&?lod'l?d'

As a corollary we obtain:

Corollary (3.2) [3]:

Suppose {n;}qen grows at most polynomially in d, that is,

3k,é € R, suchthat Vd ny < éd*. (2)
Then for each natural number s > 3 there exist linear injective maps i, g :

Fg o £y 45, wWhere Ny ¢ := lédk -sk - (|In(ed®)| + 1)kJ, such that

1
dBM (Fd'id,S(Fd)) < (esk)g, k € N.

Let F¢j be the family of all possible filtered algebras F on compact
Hausdorff spaces K satisfying condition (2) [3]. By Bgyq, € B, we
denote the closure in Bz, of the set formed by all subspaces Fy of

algebras F € Fj having a fixed dimension n; € N.

Corollary (3.2) allows to estimate the metric entropy of B ,- Recall
that for a compact subset S C B, its e-entropy (¢ > 0) is defined as
H(S,¢) :=In(S,dgy, 1+ ), where N(S,dgy,1+ ¢€) is the smallest
number of open dg,-“balls” of radius 1 + ¢ that cover S.
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Proof :

We set pg :=s - (|In(éd¥)| +1),d € N. Then the condition of the
corollary implies
Inng.p, - In(éd*) + klnpy, - 1 kins _

pd pd §+ S

. C.

Thus the result follows from Theorem (3.1)

Corollary (3.3) [3]:

For k > 1 there exists a numerical constant C such that for each € €
1

(01 E]
H(Bf,k,ﬁd' 8)

< (CK - In(k + 1))* - (¢d*)? - (In(ed") + 1)*** - (%)

)"

Let P} be the space of real polynomials on R™ of degree at most d.
For a compact subset K € R™ by P['\x we denote the trace space of
restrictions of polynomials in P} to K equipped with the supremum
norm. Applying Corollary (3.2) to algebra P™\g:= UgsoPi\x We
obtain:

k

A. There exist linear injective maps ig x: Py\x > €5 qn, Where

Ngn=1e*"-(n+2)*"-d™-(2n+ 1+ [nlnd])"], (3)
such that
1
dpm (?Z?\K, id,K(iPJ?\K)) < (e (n+2)»)n+z (< 2.903). (4)
Indeed,

- e-(d+n)\" e-(1+n)\"
Ngn = dimiPZZ\KS(d:;n)<<¥> S(%) -d"

< . gn, (5)

Hence, Corollary (3.2) with ¢ = €™,k := n and s := (n + 2)? implies
the required result.
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If K is P™-determining (i.e., no nonzero polynomial vanish on K), then
Nd,n = (d ;ll_ n) and so for some constant c(n) (depending on n only) we

have

~ ~ ~ n
Nin <Ngn<cm) -Nyn-(1+InNg,) . (6)

Hence, Vgn = igk(Pq\k) is a “large” subspace of £y, . Therefore
from (A) applied to V4 ,(K) we obtain:

B. There is a constant ¢;(n) (depending on n only) such that for each

P"-determining compact set K < R"™ there exists an m-
dimensional subspace F € P}'\g with

1
m:=dimF > c;(n) - (Ny,)? and dgy(F, ) < 3. (7)

1
In turn, if d € N is such that N in < c1(n)- (Nd,n)a then due to
property (A) for each P™-determining compact set K' ¢ R"™ there exists
a e N ,-dimensional subspace Fg.,  C F such that

dpum (F &,n,K"? g \K') <9. (8)

Further, the dual space (Vc}1 (K ))* of VI*(K) is the quotient space of £} i
In particular, the closed ball of (V(K ))* contains at most ¢(n) - Ny, -
(1 + In Nd,n)n extreme points, see (6). Thus the balls of (VC?(K ))* and

Vi (K) are “quite different” as convex bodies. This is also expressed in
the following property (similar to the celebrated John ellipsoid theorem
[8] that is The John ellipsoid E(K) of a convex body K € R” is B If and
only if B € K and there exists an Integer m >n and, for i =1, ..., m, Real
numbe ¢; > 0 and Unitvector u; € S*' N 0K such that

e

Z Cil; = 0
i=1

and, for all x € R”

m
=Y clr-u)u.
i=1
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but with an extra logarithmic factor) which is a consequence of property

(A).

C. There is a constant c,(n) (depending on n only) such that for all
P"-determining compact sets K;, K, € R"

1

dn (PP, (PI\,) ) < c2() - (ﬁd,n (1+1n N’d,n))i_ 9)
A stronger inequality is valid if we replace (iPZi‘\ Kz)* above by ﬁllvd e

Remark (3.4) [3]:
Property (C) has the following geometric interpretation. By definition,

(IPZZ\KZ)* s an Nd,n-dimensional real Banach space generated by

evaluation functionals §, at points x € K, with the closed unit ball being
the balanced convex hull of the set {&y}xek,. Thus K, admits a natural

isometric embedding into the unit sphere of (IPZZ\KZ)*. Moreover, the

Banach space of linear maps (IPZZ\KZ)* — Py \k, equipped with the
operator norm is isometrically isomorphic to the Banach space of real
polynomial maps p: R" — P\, of degree at most d (i.e., f*o p € Py
for all f*€((PF\k,)") with norm |jpll = supllp()llpz\,, . Thus

x€K,
property (C) is equivalent to the following one:

C'. There exists a polynomial map p : R" — P§'\g, of degree at most
d such that the balanced convex hull of p(K,) contains the closed unit

ball of Pj\k,and is contained in the closed ball of radius c,(n) -
1

(Nd,n - (1 + In Nd,n))g of this space (both centered at 0).

Our next property, a consequence of Corollary (3.3) and (5), estimates
the metric entropy of the closure of the set Py, € By ., formed by all

Nd,n-dimensional spaces Pj\x with P"-determining compact subsets

K c R™,

D. There exists a numerical constant ¢ > 0 such that for each € €
1
(O' E])



n

H(cl(Pyn) €) < (en? - In(n+ 1))™ - d*™ - (1 + Ind)™** - G)
1\

- <ln (E)) . (10)
Remark (3.5) [3]:

The above estimate shows that P, ,, with sufficiently large d and n is

much less massive than By, . Indeed, as follows

Ngn—1

1
H(Bﬁd'n,c‘f)"’(g) : as ¢ - 07"

(here the equivalence depends on d and n as well). On the other hand, it
implies that for any € > 0,
InH(Bgy, ., €)

0 < lim inf < lim sup = < oo,
Ngn—o0 Nd,n Ngn—o0 Nd,n

InH(Bg,, €)

It might be of interest to find sharp asymptotics of H (cl(iﬁd,n), 8) as € -
0% and d - o, and to compute (up to a constant depending on n) dgy-
“diameter” of Ilsd,n.

Similar results are valid for K being a compact subset of a real
algebraic variety X € R" of dimension m < n such that if a polynomial
vanishes on K, then it vanishes on X as well. In this case there are
positive constants cX,éX depending on X only such that éXd™ <
dim P} \g < cXd™. For instance, Corollary (3.2) with ¢ = ¢X,k := m
and s := (m + 2)? implies that P}\y is linearly embedded into £§ 4x
where Ngx := leXd™ - (m+ 2)*™ - ([ln(cXd™)] + D™, with
distortion < 2.903. We leave the details.

Lemma (3.6) [3]:
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Let Sz, € By, be the subset formed by all 74-dimensional subspaces
1+¢&ny

oo - 1 —
of £y, . Consider 0 < ¢ < = and let R = =y

. Then S5, admits an R-

. . 2\Na,sd
net T of cardinality at most (1 + E)

Now given € € (0, %] we choose s = |s,| with s, satisfying (esé‘)é =
V1 + ¢ and € such that R = R, = V1 + €. Then according to Corollary
(3.2) and Lemma (3.6) , distgy, (TRSJBé,k,ﬁd) <+1+e¢€. Foreachp € Tg,
we choose g, € Bern, such that dBM(p, qp) <+/1+e. Then the

multiplicative triangle inequality for dg) implies that open dgy-“balls”
of radius 1 + € centered at points q,,,p € Ty, , cover Bsy ;;,. Hence,

Ng g

N(Bf,k,ﬁd' dBM' 1 + 8) S Card TRS S <1 + E) . (11)

1 k-1
Next, the function @(x) =In(ex*)x decreases for x € [eT, 00) and

1

k-1
lim @(x) = 0. Its inverse ¢~ on this interval has domain (O,e_ k ],
X—00

increases and is easily seen (using that ¢ o @~! = id) to satisfy

. 3k 3k k-1
0, (x)S—-ln(—), xE(O,e k].
X X

k-1
Since %ln(l +e)<e k for €€ (O,%], the required s, exists and the

previous inequality implies that

< 12k l 12k 17
S “In(l+e) n(ln(1+e))' (12)

Further, we have

1 1g(1+R)  Ag(V1i+e+1)
§& R-1  YT+e-1
A (¥TFe+ 1) (VITe+1)
€
From (11), (12), (13) invoking the definition of N, ¢ we obtain

(13)
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In N(Bg i, dpms 1+ €)
< figéd*(In(éd")

_ k
+ 1 (21:‘1) (ln(llz-llf £) In (ln(llz-llf e))) '

Using that 1; < ¢d* and the inequality g e<In(l1+¢),c€ (O,%], we

get the required estimate.
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Chapter 4

Countable Infinite Numbers of Complex Structures on the
Banach Spaces

In this chapter we give examples of real Banach spaces with exactly
infinite countably many complex structures and with w;many complex
structures.

Section (4.1): Construction and Complex Structures of The Space
xwl (c):

A real Banach space X is said to admit a complex structure when there
exists a linear operator I on X such that I = —Id. This turns X into a C-
linear space by declaring a new law for the scalar multiplication:

A+iw) - x=2Ax+ul(x) (A u€R).
Equipped with the equivalent norm

lx|| = sup ||[cosBx + sin b Ix||,
0<6<2n

we obtain a complex Banach space which will be denoted by X!. The
space X! is the complex structure of X associated to the operator I, which
is often referred itself as a complex structure for X.

When the space X is already a complex Banach space, the operator
Ix = ix is a complex structure on Xy (i.e., X seen as a real space) which
generates X. Recall that for a complex Banach space X its complex

conjugate X is defined to be the space X equipped with the new scalar
multiplication 1. x = Ax.

Two complex structures I and / on a real Banach space X are
equivalent if there exists a real automorphism T on X such that TI = JT.
This is equivalent to saying that the spaces X! and X’/ are C-linearly
isomorphic. To see this, simply observe that the relation T1 = JT actually
means that the operator T is C-linear as defined from X’ to X/ .

We note that a complex structure I on a real Banach space X is an
automorphism whose inverse is —I, which is itself another complex
structure on X. In fact, the complex space X ! is the complex conjugate
space of X! . Clearly the spaces X' and X! are always R-linearly
isometric. On the other hand, J. Bourgain and N.J. Kalton constructed
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examples of complex Banach spaces not isomorphic to their
corresponding complex conjugates, hence these space admit at least two
different complex structures. The Bourgain example is an £, sum of finite
dimensional spaces whose distance to their conjugates tends to infinity.
The Kalton example is a twisted sum of two Hilbert spaces, i.e., X has a
closed subspace E such that E and X/F are Hilbertian, while X itself is
not isomorphic to a Hilbert space. More recently R. Anisca constructed a
complex weak Hilbert space not isomorphic to its complex conjugate.

Complex structures do not always exist on Banach spaces. The first
example in the literature was the James space, proved by J. Dieudonne' .
Other examples of spaces without complex structures are the uniformly
convex space constructed by S. Szarek and the hereditary
indecomposable space of W. T. Gowers and B. Maurey. W. T. Gowers
and B. Maurey and S.A. Argyros, K. Beanland and T. Raikoftsalis also
constructed a space with unconditional basis but without complex
structures, the second is a weak Hilbert space. In general these spaces
have few operators. For example, every operator on the Gowers-Maurey
space is a strictly singular perturbation of a multiple of the identity and
this forbids complex structures: suppose that T is an operator on this
space such that T2 = —Id and write T = Ald + S with S a strictly
singular operator. It follows that (1% + 1)Id is strictly singular and of
course this is impossible.

More examples of Banach spaces without complex structures were
constructed by P. Koszmider, M. Marti'n and J. Mer1 . In fact, they
introduced the notion of extremely non-complex Banach space: A real
Banach space X is extremely non-complex if every bounded linear
operator T: X — X satisfies the norm equality ||Id + T?|| =1 + ||T||?.
Among their examples of extremely non complex spaces are C(K)
spaces with few operators (e.g. when every bounded linear operator T on
C(K) is of the form T = gld + S where g € C(K) and S is a weakly
compact operator on C(K)), a C(K) space containing a complemented
isomorphic copy of £, (thus having a richer space of operators than the
first one mentioned) and an extremely non complex space not isomorphic
to any C(K) space.
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Going back to the problem of uniqueness of complex structures,
Kalton proved that spaces whose complexification is a primary space
have at most one complex structure (this result may be found in V.
Ferenczi and E. Galego ). In particular, the classical spaces cq, £, (1 <
p <), L,[0,1] (1<p <), and C[0,1] have a unique complex
structure.

We have mentioned before examples of Banach spaces with at least
two different complex structures. In fact, V. Ferenczi constructed a space
X(C) such that the complex structure X(C)’ associated to some operator
J and its conjugate are the only complex structures on X(C) up to
isomorphism. Furthermore, every R-linear operator T on X(C) is of the
form T = Ald + u/ + S, where A, u are reals and S is strictly singular.
Ferenczi also proved that the space X(C)" has exactly n + 1 complex
structures for every positive integer n. Going to the extreme, R. Anisca
gave examples of subspaces of L,(1 < p < 2) which admit continuum

many non-isomorphic complex structures.

The question remains about finding examples of Banach spaces with
exactly infinite countably many different complex structures. A first
natural approach to solve this problem is to construct an infinite sum of
copies of X(C), and in order to control the number of complex structures
to take a regular sum, for instance, £;(X(C)). It follows that every R-
linear bounded operator T on £,(X(C)) is of the form T = A(T) + S,
where A(T) is the scalar part of T, i.e., an infinite matrix of operators on
X(C) of the form A; jId + y; jJ, and S is an infinite matrix of strictly
singular operators on X(C). It is easy to prove that if T is a complex
structure then A(T) is also a complex structure. Recall from that two
complex structures whose difference is strictly singular must be
equivalent. Unfortunately, the operator S in the representation of T is not
necessarily strictly singular, and this makes very difficult to understand
the complex structures on £, (X (C)).

It is necessary to consider a more “rigid” sum of copies of spaces like
X(C). We found this interesting property in the space X,, constructed by
S.A. Argyros, J. Lopez-Abad and S. Todorcevic. Based on that
construction we present a separable reflexive Banach space X2 (C) with
exactly infinite countably many different complex structures which

11



admits an infinite dimensional Schauder decomposition X,2(C) = @, X
for which every R-linear operator T on X2(C) can be written as T =
DT + S, where S is strictly singular, D7\, = A;Idy, (4 € C) and (4;)

1s a convergent sequence.

This construction also shows the existence of continuum many
examples of Banach spaces with the property of having exactly w
complex structures and the existence of a Banach space with exactly w,
complex structures.

We construct a complex Banach space X, (C) with a bimonotone
transfinite Schauder basis (€4)g<w,» such that every complex structure [
on X, (C) is of the form I =D +S, where D is a suitable diagonal

operator and S is strictly singular.

By a bimonotone transfinite Schauder basis we mean that fwl((l) =
span(eq)q<w, and such that for every interval I of w; the naturally

defined map on the linear span of (e,)¢<ew,

z Ao M z Ao

a<w, a€l
extends to a bounded projection Py: X, (C) = X; = span;(eq)qe; With

norm equal to 1.

Basically X, (C) corresponds to the complex version of the space
X, constructed in modifying the construction in a way that its R-linear
operators have similar structural properties to the operators in the
original space X, (i.e. the operators are strictly singular perturbation of
a complex diagonal operator).

Recall that w and w; denotes the least infinite cardinal number and
the least uncountable cardinal number, respectively. Given ordinals y, &
we write ¥ + &,y &, y¢ for the usual arithmetic operations . For an
ordinal y we denote by A(y) the set of limit ordinals < y. Denote by
Coo(w1, C) the vector space of all functions x: w; = C such that the set
supp x = {a < w; : x(a) # 0} is finite and by (eq)a<ew, its canonical
Hamel basis. For a vector x € cyo(wq,C) ran x will denote the minimal
interval containing supp x. Given two subsets E;, E, of w; we say that
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E; <E, if maxE; < minE,. Then for x,y € coo(w1,C)x <y means
that supp x < supp y. For a vector x € cyo(w4, C) and a subset E of w,
we denote by E, (or Pg ) the restriction of x on E or simply the function

xxE. Finally in some cases we shall denote elements of cyo(wq, C) as
f>9,h,... and its canonical Hamel basis as (eq)q<e, meaning that we

refer to these elements as being functionals in the norming set.

The space X, shall be defined as the completion of ¢yo(wq, C)
equipped with a norm given by a norming set x,, (C) < cyo(wq, C). This
means that the norm for every x € cypg(wq,C) is defined as

sup{l(,b(x)l = |Za<w1 qb(a)x(a)|: ¢ € le((l)}. The norm of this space
can also be defined inductively.

We start by fixing two fast increasing sequences (m;) and (n;) that

are going to be used in the rest of this work. The sequences are defined
recursively as follows:

(i) my=2andmj,, = mf;
(i) n; =4andnj, = (4nj)sj, where s; = logmf‘+1
2
Let k., (C) be the minimal subset of ¢yo (w1, C) such that
(a) It contains every ey, @ < w,. It satisfies that for every ¢ €
K, (C) and for every complex number 6 = A + iy with A
and y rationals and |0 < 1,0¢ € Kk, (C). It is closed under
restriction to intervals of w;.
(b) For every {¢;,: i=1,...,n3;} S K, (C) such that ¢; <

< ¢n2]-> the combination

1 &
=— D ¢ ex. (O
= g 21 € (O

In this case we say that ¢ is the result of an (mz_ ]-1, n, j)-operation.

(c) For every special sequence (qbl, s ¢n2,-+1) the combination

1 Nzj+1
¢ = > 1 € K, (©.
Mmyjt+1 = l “1

TA



In this case we say that ¢ is a special functional and that ¢ is the

result of an (mz_ ]-1+1, n, j+1)-operati0n.

(d) It is rationally convex.
Define a norm on ¢ by setting

Ixll =supd| >’ d@x(@|: € ko, (O,

a<<wiq

The space X, (C) is defined as the completion of (cqq (w1, C), |||

This definition of the norming set k,, (C) is similar to others . We
add the property of being closed under products with rational complex
numbers of the unit ball. This, together with property (b) above,
guarantees the existence of some type of sequences [4] in the same way
they are constructed for X, . It follows that the norm is also defined by

Il = sup{ () = > p(@)x(@): § € K, (€, $() € R.

We also have the following implicit formula for the norm:

( 1 naj

il = max | [1xll, sup sup—— Y [|Eexl, By < By < - < B,
2J i3

J
\

N2j+1
V 1 . Mjt1 . ial E i \
sup ¢i(Ex)|: (¢),2] is nyj41 — special, E interval ;.
Mmajt1 pr

It follows from the definition of the norming set that the canonical
Hamel basis (e4)q<w, is a transfinite bimonotone Schauder basis of

X,,(C). In fact, by Property (b) for every interval I of w, the projection
P; has norm 1:

IPixll = sup |fPx]= sup |Pfx|<|xl

fE€Kw (0 €K1 (©

Moreover, we have that the basis (e4)g<, is boundedly complete
and shrinking, the proof is the obvious modification to the one for X, .

In consequence X,, (C) is reflexive.
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Proposition (4.1.1) [4]:

*

w

Ko, (C) =By, (0

Proof:
Recall that the set Kk, (C) is by definition rational convex. We

w*
notice that K, (C) is actually a convex set. Indeed let f,g €

w*

Ky, (C) andt € (0,1). Suppose that f, 2 f,9n 2 g and t,, — t, where
forGn €Ky, (€) and t, € QN (0,1) for every m€N. then tf +

(1-v)gE€ le((l)w because

w*
thfn + (1 —ty)gn 2 tf + (1 —t)g.
In the same manner we can prove that fz)l((l) 1s balanced 1.e.,

A%, (€) € X, (C) for every |A| < 1. To prove the Proposition suppose

*

w

that there exists f € By 1(@\Kw1((]) . It follows by a standard

separation argument that there exists x € X,, (C) such that

If ()| > sup{lg(x)]: g € Ky, (O}
which is absurd.

Let I € w; be an interval of ordinals, we denote by ¥;(C) the
closed subspace of X,, (C) generated by {e,}qe;. For every ordinal y <
wq we write X, (C) = X{g1)(C). Notice that X;(C) is a 1-complemented
subspace of X,, (C): the restriction to coordinates in I is a projection of

norm 1 onto ¥;(C). We denote this projection by P, and by P! = (Id —
P;) the corresponding projection onto the complement space (Id —
P, )%, (C), which we denote X1(0).

A transfinite sequence (Yq)q<y 18 called a block sequence when
Vo <yp for all a < B <y. Given a block sequence (Yy)q<y @ block
subsequence of (V;)q<y 18 a block sequence (xg)p<¢ in the span of
(Ya)a<y- A real block subsequence of (¥;)q<y 18 @ block subsequence in
the real span of (V;)q<y. A sequence (x,)ney 1s a block sequence of

X, (C) when it is a block subsequence of (e,) g<c, -



Theorem (4.1.2) [4]:

Let T: X, (C) > X, (C) be a complex structure on X, (C), that
is, T is a bounded R-linear operator such that T? = —Id. Then there
exists a bounded diagonal operator Dr: X, (C) - X, (C), which is

another complex structure, such that T — Dy is strictly singular.
. k . .
Moreover D = Z;Ll €j 1P, for some signs (Ej)j=1 and ordinal intervals

I; <I, < - < I, whose extremes are limit ordinals and such that w; =
K

Proof :

LetT: X, (C) — X, (C) be a bounded R-linear operator which is a
complex structure and Dt be the diagonal bounded operator associated to
it. It only remains to prove that T — Dy is strictly singular. And this
follows directly from Proposition (4.1.3) , because by definition lirrln(T —

D)y, for every R.L.S. (yy)y on X, (C).

We come back to the study of the complex structures on X, (C).

Denote by D the family of complex structures Dy on X, (C) as in
K
Theorem (4.1.2) , 1.e., Dy = Z}‘zlejiPIj where (Ej)j=1 are signs and [; <

[, < -+ < Iy are ordinal intervals whose extremes are limit ordinals and

such that w, = U}‘zll . Notice that D has cardinality w;.

j
Recall that two spaces are said to be incomparable if neither of them
embed into the other.

Step (I):

There exists a family J of semi normalized block subsequences of
(e")a<w,» called R.I.S. (Rapidly Increasing Sequences), such that
every normalized block sequence (xp)pen of X, (C) has a real block

subsequence in 3.

Recall that a Banach space X is hereditarily indecomposable (or
H.I) if no (closed) subspace of X can be written as the direct sum of
infinite-dimensional subspaces. Equivalently, for any two subspaces Y, Z
of X and € > 0, there exist y € Y,z € Z such that ||y|]| = ||z|]| = 1 and
ly —zll <e.
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Step (II):
For every normalized block sequence (xp)ney of X, (C), the

subspace span(x,),ey 1S a real H. I. space.
R

Step (IIT):
Let (xp)neny be a R.1.S and T: span(x,)ney = ¥,,(C) be a
C

bounded R-linear operator. Then lim d(Tx,, Cx,) = 0.
n—-oo

The proof of Step (1), (II) and (III) are given [4].

Step (IV):
Let (Xp)neny be a RIS and T: span(x,)pey = ¥,,(C) be a
C

bounded R-linear operator. Then the sequence Ar: N — C defined by
d(Tx,, Cx,) = ||Tx, — Ar(n)x,|| is convergent.

Proof of Step (IV):
First we note that the sequence (KT(n))n is bounded. Then

consider (a,), and (B,), two strictly increasing sequences of positive
integers and suppose that A;(a,) — A, and A;(B,,) — A,, when n —
. Going to a subsequence we can assume that x, <xg <x, for

every n € N.

Fix € > 0. Using the result of the Step (III), we have that

lim ||Txan—/11xan|| = 0.By passing to a subsequence if necessary,

n—oo

assume

€
||Txan - Alxan” < g
for every n € N. Hence, for every w = Y, apx, € span(xan)n with
R

|lw|| < 1 we have
17w = 2awll < ) layl [T, — g, |
n

<€/3,
because (e4)g<g, is @ bimonotone transfinite basis. In the same way, we

can assume that for every WESpan(xﬁm)m with ||w|| < 1, ||Tw —
R
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A,w| < €/3. By Step (II) we have that span(xan)n U (xﬁm)m, is real-
R
H.I. Then there exist unit vectors w; € span(xan)n and w, €
R

€
spRan(xﬁm)m, such that ||w; — w,|| < §|IT||. Therefore,

2wy — w, || < ([Twy — 2wyl + [[Twy = Tw,|| + [[Twy, — 2w, ||
< E€.
By other side

121wy — Aaws || = [[(Ag = 2wy || = 122wy — wy)]
= |41 — 22| = [Az]e.
In consequence, |4, — A,| < (|]A,])e. Since € was arbitrary, it follows
that 1, — 44.

LetT : X, (C) » X, (C) be a bounded R-linear operator. There is
a canonical way to associate a bounded diagonal operator Dy (with

respect to the basis (ey)y<w ) such that T — Dy is strictly singular: Fix
1

a € \(w,) a limit ordinal, and (x;,)nen, (U )nen be two R.1.S. such that
Sup max supp = sup maxsupp =a + w. By a property of J we can mix
n Xn n Yn

the sequences (x,,)y,, (), in order to form a new R.1.S. (z,),en Such
that z,, € {xX,}neny and Zop_1 € {¥}ney for all k € N. Then it follows
from Step (IV) that the sequences defined by the formulas d(T'x,,, Cx,,) =
ITxp — Ar(M)xy || and d(Typ, Cyn) = [Ty, — u(M)yy |l are convergent,
and by the mixing argument, they must have the same limit. Hence for
each @ € A(w,) there exists a unique complex number é;(a) such that

%i_r)rc}o“TWn —&r(@wy|| =0
for every R.1.S. (Wp)pen in X , where we write I, to denote the ordinal

interval [a, @ + w). We proceed to define a diagonal linear operator Dy
on the (linear) decomposition of span(egy)g<w,

span(eq)g<w, = @ span(xﬁ)ﬁaa

a € N(wq)
by setting Dy (eg) = ET(a)eB when € 1,,.

Observe in addition that this sequence ($7(a))gen(w,) I8

convergent. That is, for every strictly increasing sequence (@,)pey in A
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(wq), the corresponding subsequence (ET(an))neN is convergent. In

fact, for every n € N, let (y¥)yeny be aR.1.S. in X, -Then we can take a
R.I.S. (y:”)keN such that ||Ty:" —&r(a, + w)y,ff”” < 1/n. 1t follows
by Step (IV) there exists 4 € C such that li£n||Ty:" — Ay:"” = 0. This
implies that li%n ér(a, + w) = A

In general this operator Dy defines a bounded operator on X, (C).

The proof is the same that uses that certain James like space of a mixed
Tsirelson space is finitely interval representable in every normalized
transfinite block sequence of X,, (C). For the case of complex structures

we have a simpler proof (see Proposition (4.1.1).

Proposition (4.1.3) [4]:
Let A be a subset of ordinals contained in w; and X = span(e,)ge4-
C

Let T: X - X, (C) be a bounded R-linear operator. Then T is strictly
singular if and only if for every R.I.S. (¥y)ney on X, lim Ty, = 0.
n

Proof:
The proposition is trivial when the set A is finite, then we assume that
A is infinite. Suppose that T is strictly singular. Let (y,),en be a R LS.
on X such that lim Ty, # 0, then by Step (IV) there is A # 0 with
n

lim|| Ty, — Ay, || = 0. Take 0 < € < |A|. By passing to a subsequence if
n

necessary, we assume that ||(T — Md)\span (yn)n” < €. This implies that

T\span (v,),, 18 an isomorphism which is a contradiction.

Conversely, suppose that for every R.I.S. (y,), on X, lim Ty, = 0.
n

Assume that T is not strictly singular. Then there is a block sequence
subspace Y = span (y,)peny Of X such that T restricted to Y is an
isomorphism. By Step (I) we can assume that the sequence (y,), is
already a R.L.S. on X. Then irr}fllTynll > 0. And we obtain a

contradiction.

Given Y € X, (C) we denote by (Y the canonical inclusion of Y into
X4, (O©.
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Corollary (4.1.4) [4]:
Let a € A(w;) and T:X; (C) —» X, (C) be a bounded R-linear

operator. Then there exists (unique) ér(a) € C such that T — &7 (a) %, ()

is strictly singular.

Proof:
Let &r(a) be the (unique) complex number such that lim| Ty, —
Er(@ynll = 0 for every R.L.S. (y,)n on X; _(C). Then by the previous

Proposition T — & (a) @ is strictly singular.
0.4

Corollary (4.1.5) [4]:
Let a € A(w;) and R:X; (C) - X¥la(C) be a bounded R-linear

operator. Then R is strictly singular.

Proof:
By the previous result, tgla(c) R = Aqlylaqy +S with S strictly

singular. Then projecting by Pl we obtain R = Pl o lela()R = Plas
which is strictly singular.
Proposition (4.1.6) [4]:

Let T be a complex structure on X, (C). Then the linear operator D

is a bounded complex structure.

Proof:
Let T be a complex structure on X, (C) and Dy the corresponding

diagonal operator defined above. Fix a € A(w;). We shall prove that
Er(a)? = —1. In fact,

T o lxla(c) = PIaT o lxla(c) + PIa o lxla(c)
= PIaT o lxla(c) + Sl

where S is strictly singular. This implies P T o 1z, (¢) = ET(O()Idea(@) +

Sz: X1, (€) » X;_(C) with S, strictly singular. Now computing:



(P Il b2, (C)) ° (P (ACTS (@) =P, TeoP, Ty ©
= P;,T o (Id = P')Ti, ()

= P, T, «© — Pi,TPTix, (o)

= —Idxla(@ + 53
where Sj is strictly singular because the underlined operator is strictly
singular. Hence we have that (Ep(a)? + 1)Id351a is strictly singular.
Which allow us to conclude that & (a)? = —1. The continuity of D is
then guaranteed by the convergence of (ET(O())ae Aoy In deed, we have

that there exist ordinal intervals I; <1, < -+ < Iy with w; = U]k=1 [; and

j
vk e i i
such that Dy = Y, €iPy, for some signs (Ei)j=1'

Corollary (4.1.7) [4]:
The space X, (C) has w; many complex structures up to

isomorphism. Moreover any two non-isomorphic complex structures are
incomparable.

Proof:

Let J be a complex structure on X,, (C). By Theorem (4.1.2) we have
that | — D; is a strictly singular operator and D; € D. Recall that two
complex structures whose difference is strictly singular must be
equivalent. Then J is equivalent to D;.

To complete the proof it is enough to show that given two different
elements of D they define non equivalent complex structures. Moreover,
we prove that one structure does not embed into the other. Fix | # K €
D. Then there exists an ordinal interval I, = [a,a + w) such that,

without loss of generality, ]|£,a=l'1d|3E and I('|£,0(=—i1d|3E :
Iy Iy

Suppose that there exists T:%, (€)/ - %, (O an isomorphic
embedding. Then T is in particular a R-linear operator such that T] =
KT. We write using Corollary (4.1.4) , T\y, = ET(C{)%I @© *+S with §

strictly singular. Then &7 (a)] \x,,—$r (@)K \z, = S1 where Sy is strictly

singular. In particular for each x € X, ,S;x = 2&r(a)ix. It follows from
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the fact that X,  is infinite dimensional that 7(a) = 0. Hence T\x1a= S,

but this a contradiction because T is an isomorphic embedding.

The next corollary offers uncountably many examples of Banach
spaces with exactly countably many complex structures.

Corollary (4.1.8) [4]:
The space X, (C) has w complex structures up to isomorphism for

every limit ordinal w, <y < w;.

Proof:

Let / be a complex structure on X, (C). We extend J to a complex
structure  defined in the whole space X, (C) by setting T = JP; + iP’,
where [ = [0,y). It follows that T = D + S for an strictly singular
operator S and a diagonal operator Dy like in Theorem (4.1.2) . Notice

that Dyx = ix for every x € X!, otherwise there would be a limit ordinal
a such that S\%Ia= Zild\x,a . Hence JP; = DyP; + S. Which implies that

J has the form | = Z;LlejiP,j + §; where S; is strictly singular on
k : L
X,,(0), (Ej)j=1’ are signs and I; < I, < -+ < I, are ordinal intervals

whose extremes are limit ordinals and such that y = U ?:1 I;. Now the rest
of the proof is identical to the proof of the previous corollary. In
particular, all the non-isomorphic complex structures on X, (C) are

incomparable.

We also have, using the same proof of the previous corollary, that for
every increasing sequence of limit ordinals A = (a,,),, the space X, =
EBn%,an (©), where I, = [ay, a, + ), has exactly infinite countably

many different complex structures. Hence there exists a family, with the
cardinality of the continuum, of Banach spaces such that every space in it
has exactly w complex structures.
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Section (4.2): Observations

It is easy to check that subspaces of even codimension of a real
Banach space with complex structure also admit complex structure. An
interesting property of X, (C) is that any of its real hyperplanes (and

thus every real subspace of odd codimension) do not admit complex
structure.

Proposition (4.2.1) [4]:
The real hyperplanes of X, (C) do not admit complex structure.

Proof:
By the results of V. Ferenczi and E. Galego it is sufficient to prove
that the ideal of all R-linear strictly singular operators on X, (C) has the

lifting property, that is, for any R-linear isomorphism on X, (C) such
that T2 + Id is strictly singular, there exists a strictly singular operator S
such that (T — S)? = —Id. The proof now follows.

One open problem in the theory of complex structure is to know if the
existence of more regularity in the space guarantees that it admits unique
complex structure.

The purpose of this section is to give a proof for the results in the Step
(D), (IT) and (III). Several proofs are very similar to the corresponding
ones .

First we clarify the definition of the norming set by defining what
being a special sequence means. All the definitions we present in this
part are the corresponding translation for the complex case.

Recall that [w;]? = {(a, B) € w3 : a < B}.

Definition (4.2.2) [4]:
A function g : [w;]?> — w such that
(De(a,y) < max{e(a,B),e(B,y)} foralla < B <y < w;.

(ii) o(a, B) < max{o(a,y),0(B,y)}foralla < B <y < w;.

(iii) The set {a < B: o(a, B) < n} is finite for all B < w; and n € N
is called a p-function.
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The existence of p-functions is due to Todorcevic. Let us fix a p-function
o0 : [w;]* » w and all the following work relies on that particular choice
of p.

Definition (4.2.3) [4]:
Let F be a finite subset of @1 and p € N, we write

pF = po(F) = O%ae>§9(a,ﬁ)-

F = {a@ < max F :thereis 8 € F suchhata < g and o(a,B) < p}
We denote by Qg(wq,C) the set of finite sequences

(¢1; W1,P1s e q)d; Wg, pd) such that

(i) For all i <d,¢; € cyo(wy,C) and for all @ < w; the real
and the imaginary part of ¢(a) are rationals.
()  (wpL,, (p)%, € N are strictly increasing sequences.
(i) p; = P(UL_, supp ) forevery i < d.
Let Qs (C) be the set of finite sequences

(p1, W1, p1, P2, Wo, P2, -, Oa, Wa, Pq) satisfying properties (1), (i1) above
and for every i <d,d; € cyo(wq,C). Then Q¢ (C) is a countable set

while Qg(w¢,C) has cardinality w;. Fix a one to one function
0: Qs(C) - {2j: jis odd} such that

1
o(¢p1, W1, D1, oo P, Wa, Pg) > max {Pczz» —7»Max supp ¢d}

where € = min{|¢,(e,)|: @ € supp ¢,k =1,..,d}. Given a finite
subset F of w;, we denote by ny : {1,2,...,#F} = F the natural order
preserving map, i.e. mr 1is the increasing numeration of F.

Given ® = (b1, W1, P1, - Pay Wa, Pg) € Qs(C), we set

d
p 14

Gy = U supp ¢;

i=1
Consider the family TG, (P) =

(g (1), Wy, p1, w6 (2), Wa, D2, .., T (D), Wy, Dg) Where

76 ($1)(n) = {¢k (6 ).~ ifn € Go,

0, otherwise.
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Finally o), : Qs(w4, C) = {2j : j odd} is defined by 0,,(®) = o (7 (P)).

Definition (4.2.4) [4]:
A sequence @ = (qbl, oo, ---»¢n2,-+1) of functionals of k, (C) is

called a 2j + 1 special sequence if

(SS.1) supp ¢, < supp ¢, < -+ < supp bn,j,,- For each k <
Nyj+1, @k i of type I, w(dy) = my;, with j; even and m,; >
n§j+1-

(SS.2) There exists a strictly increasing sequence
(p‘lb, pY, ...,p‘2Dj+1_1) of naturals numbers such that forall 1 <i <

Ny, — 1 we have that w(dirq) = O, (®;) where

0; = (1, w(p), 0P, 2 w(), 07, .., d1, w(B), p°)

Special sequences in separable examples with one to one codings are
in general simpler: they are of the form (¢y, w(ey), ..., dr, w(y)).
Their main  feature is that if (¢, w(y), ..., Pr, w(¢y)) and
(Y1, w@p1), ., Yr, w(ihy)) are two of them, there exists iy < min{k, [}

with the property that
(P w(@)) = (W w(py)) foralli < i (1)
wpd:ip<i<kIn{w@)iy<i<l}=¢ (2)

In non-separable spaces, one to one codings are obviously impossible,
and (1), (2) are no longer true. Fortunately, there is a similar feature to
(1), (2) called the tree-like interference of a pair of special sequences Let

o = (q)l, ---;¢n2,-+1) and § = (L|Jl, ...,L|Jn2].+1) be two 2; + 1-special
sequences, then there exist two numbers 0 < Kg y < Ay < Ny, such
that the following conditions hold:

(TP.1) Forall i < Ay, w(¢;) = w(¥;) and p¥ = pzp.

(TP.2) Forall i < kg, d; = ;.

(TP.3) Forall kg < i <Ay

PAgpp—1
supp ¢; N supp Y, U ...U supp /1@#, -1 =¢



and

PApyp—1
supp ¥; N supp ¢, U ..U supp ¢gy — 1 =¢

(TP4) {w(p: oy <i<ny, Jnfw@)ii<n,, }=¢ and

w): Aoy <i<ny, Jofwdisn,, }=¢.

For the proof of Step (I) we shall construct a family of block
sequences on X, (C) commonly called rapidly increasing sequences
(R.1.S.). These sequences are very useful because one has good
estimates of upper bounds on [|f(x)| for f € k,, (C) and x averages of
R.L.S.

For the construction of the family J the only difference from the
general theory is that our interest now is to study bounded R-linear
operators on the complex space X, (C). Hence, all the construction of
R.I.S. in a particular block sequence (x,),cy must be on its real linear
span. We point out here that there are no problems with this, because all
the combinations of the vectors (x,),ey to obtain R.I.S. use rational
scalars.

Definition (4.2.5) [4]:
(R.1.5.). We say that a block sequence (x; ), of X, (C) is a (C, €)-

R.1.S.,C,e > 0, when there exists a strictly increasing sequence of
natural numbers (ji); such that:

@l =G
(i) [suppxy| =m; €
(iii) ~ For all the functionals ¢ of K, (C) of type I, with w(¢) <

c
My || < .

The following remark is immediately consequence of this definition.

Remark (4.2.6) [4]:
Let €' < €. Every (C,€)-R.1.S. has a subsequence which is a (C, €')-
R.1.S.

And for every strictly increasing sequence of ordinals («,,), and every
e >0, (ean)n isa (1,€)-R.1.S.
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Remark (4.2.7) [4]:
Let (x,), and (), be two (C,e)-R.I.S. such that

Sup max supp Xx,, = sup max supp y,,. Then there exists a (C,€)-R.1.S.
n n

such that z,,_; € {x}ken and z,, € {Vitken-

Proof:

Suppose that (t;), and (s), are increasing sequences of positive
integers  satisfying the definition of R.I.S. for (x;), and (yy)x
respectively. We construct (z); as follows. Let z; = x; and j; = t;.Pick
Sk, such that x; < Vs, and t, < sy, . Then we define j, = sp, and z, =

Vsi, Notice that

@® Mzl =6
(i)  |suppz;| < m¢,e < mg,_€ = my €

(iii) ~ For all the functionals ¢ of K, (C) of type I, with w(¢) <

c
m;, |p(z1)] < 0(@)’

Continuing with this process we obtain the desired sequence.

Theorem (4.2.8) [4]:
Let (X )k be a normalized block sequence of X, (C) and € > 0. Then

there exists a normalized block subsequence (yi), in span span{xy}
R
whichis a (3,€)-R.1.S.

For the proof of Theorem (4.2.8) we first construct a simpler type of
sequence.

Definition (4.2.9) [4]:
Let X be a Banach space, C > 1 and k € N. A normalized vector y is

called a C— fX-average of X, when there exist a block sequence
(X1,--.,Xg) such that

@ y=(0(+...+x)/k;

() |lx;l| < C,foralli =1, ..., k.
In the next result we want to emphasize that this special type of
sequence are really constructed on the real structure of the space X, (C).
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Theorem (4.2.10) [4]:
For every normalized block sequence (x,) of X, (C), and every

integer k, there exist z; <:-<z, in span(x,), such that
R
(zy + -+ z,)/k is a 2 — £¥-average.

Proof:
The proof is standard. Suppose that the result is false. Let j and n be
natural numbers with

2" > my;
ny, > k™.

Let N = k" andx=2yzlxi.Foreach1SiS nandevery 1 < j <
k™1 we define,

jk!
x(i,j) = z Xt
t=(j-Dki+1
Hence, x(0,j) = x; and x(n, 1) = x.

It is proved by induction on i that [|x(i, /)| < 27'k¢, for all i,j. In
particular, |[|x| = [|x(n, 1)|| < 27"k™ = 27"N. Then by Property (1). of
definition in the norming set

My
Ny, N
Ixll =2 — ) llxell = —>—
M2 = Ma; My,
Hence,
N
27N > —
m,.
]
my; > 2",

which is a contradiction.

Finally, for the construction of R.I.S. we observe these simple facts
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n,.
() IfyisaC— flzj-average of X, (C) and ¢ € K, (C) has weight

3C
w(®) <my, then |$()] < 7=

(ii) Let (x)y be a block sequence of X,, (C) such that there exists a

strictly increasing sequence of positive integers (j,), and € > 0

satisfying:
(a) Each x; 1sa?2 — f?i *_average;
(b) [supp xi| < em;, .
Then (x; ), is a (3,€)-R.1.S.

To prove Step (II) and (III) we need a crucial result called the basic
inequality which is very important to find good estimations for the norm
of certain combinations of R.1.S. in X,, (C). First we need to introduce

the mixed Tsirelson spaces.

The mixed Tsirelson space T [(m-_l,nj)j] is defined by considering

the completion of cyy(w, C) under the norm ||+||, given by the following
implicit formula

nj

1
Ielly = max 12/l sup sup— > || Bl ¢
. m.
The supremum inside the formula is taken over all the sequences E; <
< Ep, of subsets of w. Notice that in this space the canonical Hamel

basis (e,), < w of cyo(w,C) is 1-subsymmetric and 1-unconditional
basis.

We can give an alternative definition for the norm of

T [(m.—l,nj)j] by defining the following norming set. Let
w [(m.—l,nj)j] C cpo(w, C) the minimal set of cyy(w, C) satisfying the
following properties:
(@) For every a<w,e,€ W[(m-_l,nj)j]. If ¢e€
w [(m-_l,nj)j] and 8 = A+ iu is a complex number with A

and u rationals and |6 < 1,0¢p € W [(m-_l,nj)j];

A€



(b) For every ¢peW [(m-_l,nj)j] and E Cw,E¢pE€
-1 .

w [(m ,le)j],

(c) For every jEN and ¢; <...< ¢y, in W[(m-_l,nj)j],

(1/mj) Z?ilqbi eEW [(m-_l,nj)j];

(d) W[(m-_l,nj)_] is closed wunder convex rationals
J
combinations.

Theorem (4.2.11) [4]: (Basic Inequality for R.1.§)):

Let (xy), be a (C,e) R.I.S. of X, (C) and (by)x € coo(C,N).
Suppose that for some j, € N we have that for every f € K, (C) with
weight w(f) = m; and for every interval E of w;,

f(Z bk> < c<rggg|bk| + e2|bk|>.
KEE kEE
Then for every f € k,, (C) of type I, there exist g4, 8, € co(C, N)

such that
f <z bk) < C(g1t92) <z|bk| ek);

keE k€eE

where g4 = hy or g, = e/ + hy,t € supph, and hy €W [(mj_l,4nj)j]
such that h; € convg {h EW [(m-_l, 4nj)j]} and m; does not appear as a

weight of a node

in the tree analysis of hy, and || g5 || < €.
Proposition (4.2.12) [4]:
Let f € K, (C) or f €W [(mj_l,4nj)j] be of type I. Consider j €

Nand!l € [:l—’], nj]. Then for every set F € cyo(w;, C) of cardinality [,

( 1
oA R

aEF k —_ ifw(f) > m;,

w(f)’

, lfW(f) < mj,




If the tree analysis of f does not contain nodes of weight m;, then

iz

a€EF

2
< —

J

Proposition (4.2.13) [4]:
Let (xx)x be a (C,€)- R.1.S. of X, (C) with € < ni,l € [%,nj] and
j j
let f € K,,,(C) be of type I. Then,

3C
N if < iy
" l wHm ifw(f) <m,
ARIE 2
= — + —, if > m;,
k=1 kW ifw(f) = m;
Consequentely, if (x,),_; is a normahzed (C,€)-R.1.S. with € < ni,l €
2j
—=, N, |, then
ms; j
l
1 1 2C
—< _z Xk < —
My, [ £ My,

Proof:
11
Let (x;), be a (C,e)- R.I.S. and take b = (7, ...,7,0,0, ) €
coo(N, €). It follows from the basic inequality that for every f € K, (C)
of type I, there exist h, €W [(mj_l,4nj)j] with w(h;) = w(f),t €N
and g, € cyo(N, C) with ||g|l < € such that

l l
1 1
‘f <72 xk> <C(ef+h;+9,) <72 ek>.
k=1
" l
92 <Tz ek)

k=1

Moreover,

1
1)

keE

< llglle

1

Now by the estimatives on the auxiliary space T [(mj_l, 4nj)]_]0f the
Proposition (4.2.12) , we have
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() If w(f) < my,

(2

(i) Ifw(f)=m,

C N 2C
~w(f)  n
And notice
3C 2¢ .
(iii) oz, < s if w(f) <my,
. c 2C C c 20 .
s TS = f >m. .
() w(f) + ny, T my, + ma, mzj’l w(f) = my,

We conclude from the fact that k,, (C) is the norming set:

l
/D ) x
k=1

For the proof the second part of the theorem, let (xk)%zl be a normalized

< 2C/m,,.

n,.
(C,e)- R.1.S. with € < ni,l € [m—zj,nzj]. For every k < [, we consider
2]' 2]'

X € Ky, (C), such that x,(xx) =1 and x; Sranx,, then x* =

m—Zkzlxk €k, (C) and x~ (72k=1xk) =—.  Hence,
2]' 2.

1¢i

1
—<
m,.

2j
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Proof of step (II):

Now we introduce another type of sequences in order to construct the
conditional frame in %wl((]). In fact, this space has no unconditional
basic sequence.

Definition (4.2.14) [4]:
A pair (x,¢) with x € X, (C) and ¢ € k,, (C), is called a (C,j)-
exact pair when:

(@) lIx]l < €, w(¢p) = m; and p(x) = 1.
(b) For each ¢ € K, (C) of type I and w(x) = m;,i # j, we have

(2 i<
, I A ],
MOES o
ylsye
km’ 1fl>].
]

Proposition (4.2.15) [4]:
Let (x,), be a normalized block sequence of X, (C). Then for every
j €N, there exist (x, ¢) such that x € span(x,), ¢ € k,, (C) and (x, p)
R

is a (6,2))-exact pair.
Proof:

Fix (xn)n, a normalized block sequence of X, (C) and a positive

integer j. By the Proposition (4.2.8) there exists (y,), a normalized
(3,1/nz)-R.1.S. in span(x,). For every 1 < i < ny, and € >0, we
R

take ¢; € Kk, (C) such that ¢;(y;) > 1—¢€, and ¢; < ¢p;4q. Let x =
n,. ny. .

(mzj/nzj) Y1y and ¢ = (1/n2].) Y1 ®i € K, (C). By perturbating

x by a rational coefficient on the support of some y; we may assume that

then ¢p(x) = 1 and using Proposition (4.2.9) we conclude that (x,¢) is a
(6,2))-exact pair.

Definition (4.2.16) [4]:
Let j € N. A sequence (X1, q,--., X241, ¢n2j+1) is called a (1,))-

dependent sequence when:
(DS.1) supp x; U supp ¢p; < -+ < supp Xn,jeq Y SUPP q5n2j+1.
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(DS.2) The sequence @ = (qbl, ---»¢n2,-+1) is a 2j + 1-special

sequence.

(DS.3) (x;, ¢;) is a (6,2))-exact pair. # supp x; < mzjﬂ/n%j+1 for

every | <1 < N2j41-

(DS.4) For every (2j + 1)-special sequence i = (1,01, ...,l/)nzj+1)

we have that
U supp x; N U suppy; = ¢,

kd),‘l’<i<l¢'lp kd),‘l’<i<l¢'lp

where kg y, Ag  are numbers introduced in Definition (4.2.4) [4].

Proposition (4.2.17) [4]:
For every normalized block sequence (y,), of X, (C), and every
natural number j there exists a (1,j)-dependent sequence

(x1, 91, ...,xn2j+1,® ) such that x; is in the R-span of (y,), for

N2j+1

every i =1, e Mojgq.

Proof:
Let () be a normalized block sequence of X, (C) and j € N. We

construct the sequence (xq, @4, ... S 0] ) inductively. First using

N2j+1

Proposition (4.2.15) we choose a (6,2j;)-exact pair (x;,?;) such that j;

is even, myj >mn,; and x € span(y,),. Assume that we have
R

constructed (xq, @4, ...,X;_1, @;—1) such that there exists (pq,...,P;—1)
satisfying

(1) supp x5 U supp ¢p; < +-- < supp x;_1 U supp ¢p;_1, where

x; € span(yy, ), and (x;, @;) is a (6,2j;)-exact pair.

R

(i) Forl<i<l—-1,w(®;) =

O-Q (®1; W(@l), pl; ey Qi—li W(Qi—l); pi—l)-

(iii) For 1<i<l-1, p; = max{p,_,,pF;}, where F; =

Uj=15upp ¢ U supp xy.
To complete the inductive construction choose

Pi-1 = max{p;_,, pF;_,#supp x;_1}
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and 2j; = UQ(®1;W(®1)»P1» vy @1-1,Ww(@;_1),p1—1). Hence take a

(6,2j;)-exact pair (x;,@;) such that x; € span(y,),, and suppx;_; U
R

supp ¢;—1 < - < supp x; U supp ¢;. Notice that properties (DS.1),

(DS.2) and (DS.3) are clear by definition of the sequence and (DS.4)
follows from (iii) and .

Modifying a little the previous argument we obtain the following:

Proposition (4.2.18) [4]:
For every two normalized block sequences (y,,), and (z,), of

X,,(C), and every j €N there exists a (1,j)-dependent sequence

(X1, D1, wes Xy Pnyyp,)  such that xzz_lespRan(yn) and x,_; €

span(z,) forevery l = 1,...,n5j44.
R

Another consequence of the basic inequality is the following
proposition.

Proposition (4.2.19) [4]:

Let (x4, @4, ... ) be a (1, j)-dependent sequence. Then:

xn2]+1’ N2j+1

. 1 n2j+1 ” 1
D) ||[—),. Al =
( ) Nyjpq T L=1 l Myjyr’
(11) 1 Zn2]+1( 1)l+1 > 13
2j+1 2j

Proposition (4.2.20) [4]:
Let (y,), be a normalized block sequence of X, (C). Then the

closure of the real span of (y,),, is H.1.

Proof:
Let (y,)n be a normalized block sequence of X,, (C). Fix € > 0

and two block subsequences (z,), and (w,), in span(y,). Take an
R

integer j such that my;,,€ > 1. By Proposition (4.2.18) there exist a

(1, j)-dependent sequence (xq, @y, ... ) such that x,;_4 €

xn2]+1’ N2j+1
N2j+1

span(zn) and x,; € span(Wn) We define z = (1/n3j41) X, 1(0da) i

and w = (1/nzj41) le’lzven) x;. Notice that z € span(z,) and w €
R



span(wy). Then by Proposition (4.2.1) we get ||z +w|l = (1/myj41)
R
and ||z — w|| = 1/m§j+1. Hence ||z — w|| < €llz + w]].

Definition (4.2.21) [4]:

A sequence (z, (Dl,...,zn2j+1,® ) is called a (0,j)-dependent

"
sequence when it satisfies the followi;];czonditions:

(1) (0DS.1) The @ = ¢y, ..., Py, -special sequence and ¢;(z;) =0
forevery 1 < i,k <nyjyq.

(i) (0DS.2) There exists {1y, ..., P, ,, } € K, (C) such that w(y;) =
w(¢;), # supp z; < W(¢i+1)/n§j+1 and (z;,y;) is a (6,2j;)-exact
pair forevery 1 <i < nyj,;.

(i) (0DS3) If H = (hy, ..., hy, ) is an asbitrary 2;,;-special

sequence, then

< U supp Zi> N < U supp hi> = ¢.
k,®,H<i<AD,H k,®,H<i<A®d,H

Proposition (4.2.22) [4]:
For every (0,j)-dependent sequence (xl,(bl,...,xn2j+1,®n2j+1) we
have that

N2j+1

> =
Xl = 2 .
N2j+1 =1 myjsq

Proposition (4.2.23) [4]:
Let (3,), be a (C,€)-R.1.S., Y = span(y,), and T:Y — X, (C) on
C

R-linear bounded operator. Then lim d(Ty,Cy,) = 0.
n—-oo

Proof:
Suppose that lim d(Ty,, Cy,) # 0. Then there exists an infinite
n—-oo

subset B € N such that irelg d(Ty, Cy,) > 0. We shall show that for every
n

€ >0 there exists y €Y such that ||y|]| <e€||Ty|| and this is a
contradiction.

Claim (1):
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There exists a limit ordinal y,;, A € N infinite and § > 0 such that

inf d(PyoTyn, Cyp) > 6
neA

To prove this claim we observe that

Yo = min {y < wq:34 € [N]* %relfxd(PyTy"’ Cy,) > O}
is a limit ordinal. In fact, by the assumption the set on the right side is not
empty. And if y, is not limit, then we have y, = f + 1. The sequence
(V)n is weakly null (because (e,),, is shrinking) and then
lim eg Ty, =0

n—oo

And for large n and every A € C

1PsTyn = 2| = [|Pp+a Ty — Ayn| — | eE+1T3’n”
> 6 — |eg1Tyn| =2 6/2,
which is a contradiction.
Claim (2):
Fix yo and A € N as in Claim (1). Then there exist a sequence
n, <nz <-- in A, a sequence of functionals f5, f3,... in k, (C) and a

sequence of ordinals y; <y, < -+ < ¥, such that

() d(P[yk,yk+1]Tynk+1» (Cynk) >6/2;

(1i1) fiTyn, = 6/2;

(iv) fe i) = 0;

(v)ran fi S ranTyy, ;

(vi) supp fx N supp y, = ¢ whenm # k.

To prove this claim, let ¢ = sup maxsuppy,. We analyze the three
possibilities for ¢:

Case (a):¢ < yy:
Let n = min A and choose ¢ < y; < ¥, such that

||PYoTyn1 - P)/lTynlu < 6/2;
hence, d(P,, Ty, Cy,,) > 6/2. By minimality of y, we have

inf d(P,, Tyn, Cy,) = 0,

nea
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then we can choose n, > n; in A such that d(B, Ty, , Cy,,) < 6/2 and
this implies that

d (B, = P )Ty o, ) > 8/2.
Approximating the vector (P)/o — P),l)Tyn2 choose Yy > ¥, > ¥, such that
||(Py0 — P)/1) X Tyn, || is so small in order to guarantee that

d(Pry,y T Vn, Con,) = 6/2.
Using the complex Hahn-Banach theorem, there exists g, € By;, (¢) such

that

(A) gZ(P[VLVz]Tynz) > 6/2;

(B) gz(Ynz) =0,
and by Proposition (4.2.1) we can choose h, € K, (C) such that
h, ((P[h.yz]Tynz)) > §/2 and h, (ynz) is arbitrarily small. Replacing h,
by ah, + Bk, where |a| + |B]| =1, kz(ynz) is close enough to 1, and
k, € Kk, (C) we may assume that hz(}’nz) = 0.

Let f, = hoPpy, y]nranTy,, € Ko, (C). Again by minimality of y,,
there exists ng > n, in A such that d(P,,Ty,,, Cy,,) < §/2 and we can
choose yy > y3 > y, satisfying

(Piy, 7 Tn, Com,) > 8/2.
Again by Hahn-Banach and by Proposition (4.1.1) there exists a

functional h3 € K, (C) such that

(C) h’3(P[V2,V3]Tyn3) > 6/2;

(D) h3(yn3) = 0)
then we define f3 = h3Ppy, 1. 1aranTy,, € Ko, (€). The previous argument

gives us the way to construct the sequences of Claim (2). Properties (1)-
(5) are easy to check, in particular property (5) is true because
min supp f > § > max supp yy, for every positive integers k, L.

Case (b):§ > yy:
In this case we start by picking n; € A such that min supp y,, > o.

ay



Then we repeat exactly the same argument that in Case (a).

Case (¢): & = yo:
We basically repeat the same argument of the Case (a) with the
additional care of maintaining property (vi) true. That is, each time we

choose the ordinal y,,q (With Yy > yx+1 > ¥i) We take it such that

Yk+1 > Maxsupp yp, ..
Claim (3):
There exists a (0, j)- dependent sequence (zq, dq, ..., Zn2j+1) such that
(BE) z; € X forevery 1 <i<mnyj,q;

(F) ran¢;, € ranTyy, and ¢, (Tz,) > 6/2.
Let j with myj,4 > 24/€6. Choose j; even such that m,; > n§j+1
(see definition of special sequence) and F; & A with #F; = n,; such
that (ynk)kEF1 is a (3, 1/n§j+1)-R. 1.S. Then define

_ 1 C d _m2j1
¢1_E fi € k4, (€) an 7 =— Yk

lier 2J1 kEF,
1
observe that w(¢,) =my; ,¢p1(Tz) = EZiEFlfi (Xker, Tyx) > 6/2
1

1
and ¢,(z;) = — 2ier, fi (Zkea ) = 0. Select
1

p1 > max{pQ (supp z; U supp Tz, U supp ¢,), n§j+1# supp 7, },
denote 2, = g,(¢p1, m;j,,p1). Then take F, & A with #F, = n,; and

F, > F; such that (yy) e, is (3, 1/n§j2)-R.I.S. and define

1 m2j2
¢2=_zfi€’€w1(@) and z, = z%c
mzj i

n
2 (€F, 2J2 kEF,

So we have ¢; < by, P,(Tz,) > 6 and P,(z1) = P,(z,) = 0. Pick

P2 = max{pl,pg (supp z; U supp z, U supp Tz, U supp Tz, U supp ¢
U supp ¢), 13,1 # supp z,}

and set 2j; = 0,(¢1, M), P1, P2, Myj,,p2). Continuing with this

procedure we form a sequence (z4, ¢4, ..., Znyien ¢n2j+1). Now we check

that this is a (0, j)-dependent sequence.

q¢



Property (0DS.1) is clear, because of the construction of the
functionals their weights satisfies w(¢;4q1) =m%(<1>i) where @; =

(b1, W(P1), 1, es @i W(D1), Pi)-

Property (0DS.2) We proceed to the construction of the sequence
{Y,, ...,l/)nzj+1} in K, (C) such that (z;,v;) is a (6,2j;)-exact pair and
w@;)) =w(¢p;) for every 1<i< N2y The other condition
#supp z; < w(g;1)/ns j+11s already obtained by the construction of the
weights. For each z; there exists a subset F; € A with #F; = N24es such
that z; = (iji/nZJ'i) Yiker,; Yn, Where (ynk)keFi is a (3, 1/n§j+1) R.I.S.
Now we follow the same arguments as in Proposition (4.2.15). For every
k € F; we take f, € K, (C) such that fnk(ynk) =1 and f,, < fo,,,-
Then ¢; = (1/m2ji) YkeF,; fn, € Ko, (C) and (z;, ¢;) is a (6,2);)-exact
pair.

Property (0DS.3) Let H = (hl,...,hn2j+1) be an arbitrary 2j + 1-

special sequence. We consider two cases: (a) Suppose that
max supp z; < maxsupp ¢, for every 1 < k < ny;,,. Then supp z;, <

A -
supp ¢,1¢H_1p SH for every k,®,H < k < Ag y. Then for the second
part of (TP.3) we obtain the desired result. (b) Suppose that
max supp ¢, < maxsuppz, for every 1<k <mny,. Then

supp ¢, S supp Z%H_ll?'%,y-l for every k®,H <k <Apy, and the
result follows from the first part of (TP3).

Fix a (0, j)-dependent sequence as obtained in the previous claim,
and define

Nzj+1 N2j+1

z=(1/nzj41) z z and ¢ = (1/myji4) z Pk
k=1 k=1

.

Then G(T2) = (1/nyjer) Ty oy (T2) = 8/myjpy and 2l <
12/m§j+1. Hence, ||Tz|| = 6/myj4q |2]|/12 > €l|z]|, and this completes
the proof.

q0
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