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Chapter 1 

Banach Spaces and Isometric Extensions Problems with 
Sharp Corner Points 

In this chapter for any Banach space y. we define collection of 
“sharp corner points” of the unit ball ܤଵ(ܻ∗). Which is empty if Y is 
strictly convex and dim Y≥ 2. Then we prove that any surjective 
isometry  between two unit spheres of banach spaces X and Y has linear 
isometric extension on the whole space if Y is a Gateanux 
differentiability space (in particular. Separable spaces or reflexive spaces) 
and the intersection of “sharp corner points” and wea݇∗ - exposed points 
of ܤ(ܻ∗)  is weak - dense in the latter .                                                                                

Section (1.1): Some Lemmas: 
The famous Mazur-Ulam theorem stated that any surjective  isometry 

ܸ between two real normed spaces with ܸ(ߠ) =  must (zero  element) ߠ
be linear. P. Mankiewicz proved that any  surjective isometry between the 
convex bodies (i.e. open connected  subsets) of two normed spaces can be 
extended to a surjective affine  isometry on the whole space. 

In 1987, D. Tingley proposed the following problem . 

Problem (1.1.1) [1]: 
Let ܺ and ܻ be real normed spaces with unit spheres ଵܵ(ܺ) and ଵܵ(ܻ), 

respectively. Suppose that ܸ:	 ଵܵ(ܺ) → ଵܵ(ܻ) is a surjective  isometry. Is 
଴ܸ necessarily the restriction of a linear or affine isometry on  ܺ? 

We only consider the isometric extension problem in real normed  
spaces, since it is clearly negative in the complex case. This problem is  
interesting and easy to understand. Moreover, it is very important. If this  
problem has a positive answer, then the local geometric property of a  
mapping on the unit sphere will determine the property of the mapping on  
the whole space.  

However, it is very difficult to solve. As Professor E. Odell said ‘‘this 
is a very difficult problem that remains unsolved after 25  years’’. D. 
Tingley only proved that any isometry ଴ܸ between the  unit spheres 
ଵܵ(ܺ(௡)) and ଵܵ( (ܻ௠)) necessarily maps the antipodal points  to antipodal 
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points, that is ଴ܸ(−ݔ) = − ଴ܸ(ݔ) for any ݔ ∈ ଵܵ(ܺ(௡)) (both  ܺ(௡) and 
(ܻ௠) are real finite-dimensional normed spaces).  

For quite a while (about 15 years), there has been no progress at all  
on this problem, until it was solved in Hilbert space and ℓ௣(߁	) space 
(1 ≤ ݌ ≤ ∞) .In the past decade, the isometric  extension problem was 
considered in various classical Banach spaces and  many good results 
were obtained, through studying the specific form of  norm and a lot of 
special skills .  

By now, the isometric extension problem has been solved  
affirmatively if ܺ is any classical Banach space and ܻ is a general Banach  
space . However, little  progress has been obtained if ܺ and ܻ are both 
general Banach spaces,  even in the two-dimensional case. Recently, the 
isometric extension  problem was considered in somewhere-flat Banach 
spaces and polyhedral  Banach spaces and some impressive results were 
obtained . Moreover, this problem was also considered in the F-spaces . 

We attempt to study the isometric extension problem  in general 
Banach spaces through some geometric properties of the  Banach spaces 
including weak∗-exposed points, Gâteaux differentiability,  and so on.  

Theorem (1.1.2) [1]: 
Let ܺ be a Banach space and ܻ be a Gâteaux differentiability  space. If 

࣪(ܻ∗) is the set of weak∗-exposed points in ܤଵ(ܻ∗) and ࣪(ܻ∗) ∩ S  
ࣝ(ܻ∗) is weak∗-dense in ࣪(ܻ∗), then any surjective isometry  between 
two unit spheres ଵܵ(ܺ) and ଵܵ(ܻ) can be extended to a linear  isometry 
on the whole space.  

From this theorem, we deduce a result concerning  the isometric 
extension of isometry between unit spheres ଵܵ(ܺ) and  ଵܵ(ܻ), where ܺ is 
a general Banach space and ܻ is an Asplund generated  space.  

Theorem (1.1.3) [1]:  
Let ܺ be a Banach space and ܻ be an Asplund generated space.  

Suppose that ଴ܸ is an isometric mapping from the unit sphere ଵܵ(ܺ) into  
ଵܵ(ܻ), which satisfies the following condition: 

(∗) For any ݔଵ, ଶݔ ∈ ଵܵ(ܺ) and ߣଵ, ଶߣ ∈ ℝ, 

∥ ଵߣ ଴ܸݔଵ + ଶߣ ଴ܸݔଶ ∥= 1 ⟹ ଵߣ ଴ܸݔଵ + ଶߣ ଴ܸݔଶ ∈ ଴ܸ[ܵ(ܺ)].  
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Let ܼ = span{ ଴ܸݔ ∶ ݔ ∈ ଵܵ(ܺ)}. Suppose that ࣪(ܼ∗) ∩ S ࣝ(ܼ∗) is 
weak∗-dense in ࣪(ܼ∗). Then ଴ܸ can be extended to a linear isometry on 
the  whole space.  

Consequently, we obtain that if ܻ = (ℓଵ), ܿ଴(߁), ,(߁)ܿ ℓ
 or  some (߁)∞

  then the ,(ߗ ఋ-points’’ is dense inܩ‘‘ for example, the set of) (ߗ)ܥ
answer for the isometric extension problem is also affirmative.  

In this section, all normed spaces are over ℝ and Y∗ denote the  dual 
space of a normed space Y. Sଵ(Y)(Bଵ(Y)) denotes the unit sphere  (unit 
ball) of a normed space Y.  

Let Y be a normed space and y଴∗ ∈ Sଵ(Y∗): 

(∗଴ݕ)ܣ  ≔ ݕ} ∈ ଵܵ(ܻ):	ݕ଴∗ = 1}; 

 ࣛ(ܻ∗) ≔ ∗ݕ} ∈ ଵܵ(ܻ∗):	ܣ(ܻ∗) ≠ ߶}; 

(∗଴ݕ)ܲ ≔ ݕ} ∈ ଵܵ(ܻ):	ݕ଴∗(ݕ) = 1, (ݕ)∗ݕ < 1	for	any	ݕ∗ ∈
ଵܵ(ܻ∗)with	ݕ∗ ≠  ;{∗଴ݕ

(∗ݕ)࣪ ≔ ∗ݕ} ∈ ଵܵ(ܻ∗):	ܲ ≠ ߶}. 

Remark (1.1.4) [1]: 
Let Y be a normed space and y଴∗ ∈ Sଵ(Y∗). A(y଴∗) is the set of  ‘‘norm-

attaining points’’ of y଴∗ . A(Y∗) is the subset of Sଵ(Y∗) in which  any y∗ 
norm-attains at some point in Sଵ(Y). P(y଴∗) is the set of ‘‘peak-functions’’ 
J(y) ∈ Y∗∗, which have (only) a peak at y଴∗  (where J is the  canonical 
mapping from Y to Y∗∗). y଴∗ ∈ ࣪(Y∗) is called the weak∗-exposed point of 
unit ball Bଵ(Y∗). It is evident that any y଴ ∈ P(y଴∗) is a  smooth point of 
Sଵ(Y). Conversely, if y଴ is a smooth point of Sଵ(Y),  there exists a unique 
y଴∗ ∈ ࣪(Y∗) with y଴∗(y଴) = 1. 
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Lemma (1.1.5) [1]: 
Let ܺ and ܻ be normed spaces. Suppose that ଴ܸ is a surjective  

isometry between ଵܵ(ܺ) and ଵܵ(ܻ). Then we have  

ଵݔ‖ + ‖ଶݔ = 2 ⟺ ‖ ଴ܸݔଵ + ଴ܸݔଶ‖ = ,ଵݔ∀			,2 ଶݔ ∈ ଵܵ(ܺ). 

Proof: 
We only need to prove the ‘‘⟹’’ part, because ଴ܸ

ିଵ is also a  
surjective isometry from ଵܵ(ܻ) onto ଵܵ(ܺ). Suppose that ∥ ଵݔ + ଶݔ ∥= 2. 
By the Hahn-Banach theorem, there exists ݔ଴∗ ∈ ܵ(ܺ) such that ݔ଴∗(ݔଵ +
(ଶݔ =	∥ ଵݔ + ଶݔ ∥= 2. Hence 

2 = ଵݔ‖ + ‖ଶݔ = ଵݔ)∗଴ݔ| + |(ଶݔ ≤ |(ଵݔ)∗଴ݔ| + |(ଶݔ)∗଴ݔ| ≤ 2, 
and we have 

(ଵݔ)∗଴ݔ																																																				 = (ଶݔ)∗଴ݔ = 1.																																			(૚) 

Let ̅ݔ௡ ቀ1 −
ଵ
௡
ቁ ଵݔ +

ଵ
௡
݊∀)	ଶݔ ∈ ℕ). By Equation. (1) , we get a sequence  

{௡ݔ̅} ⊆ ଵܵ(ܺ). For each ݊ ∈ ℕ and ݔ ∈ ଵܵ(ܺ), suppose that 

௡ݔ̅‖																																															 + ‖ݔ = 2.																																																						(2) 
By the Hahn-Banach theorem and the similar method, there exists 
(௡,௫)ݔ
∗ ∈ ଵܵ(ܺ∗) such that ݔ(௡,௫)

∗ ௡ݔ̅) + (ݔ = 2, which implies that 

(௡,௫)ݔ
∗ (ଵݔ) = (௡,௫)ݔ

∗ (ଶݔ) = (௡,௫)ݔ
∗ (ݔ) = 1. 

Therefore, we obtain 

ଵݔ‖																																																								 + ‖ଶݔ = 2.																																												(3) 
since 

2 = (௡,௫)ݔ
∗ ଵݔ) + (ݔ ≤ ଵݔ‖ + ‖ݔ ≤ 2. 

Note that 

௡ݔ̅‖ − ଴ܸ
ିଵ(− ଴ܸ̅ݔ௡)‖ = ‖ ଴ܸ̅ݔ௡ + ଴ܸ̅ݔ௡‖ = ‖2 ଴ܸ̅ݔ௡‖ = 2, ∀݊ ∈ ℕ.								(4) 

By the similar methods we used to deduce (3) from (2), we have that 

ଶݔ‖																																															 − ଴ܸ
ିଵ(− ଴ܸ̅ݔ௡)‖ = 2.			∀݊ ∈ ℕ																(5) 

by (4) . Note that ଴ܸ is isometric and (5). We can obtain 

‖ ଴ܸݔଶ + ଴ܸ̅ݔ௡‖ = 2,			∀݊ ∈ ℕ. 
Let ݊ → ∞. We get ∥ ଴ܸݔଵ + ଴ܸݔଶ ∥= 2 and complete the proof.   

We need to prove the following lemma.  
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Lemma (1.1.6) [1]: 
Let ܺ and ܻ be normed spaces. Suppose that ଴ܸ is a surjective  

isometry between ଵܵ(ܺ) and ଵܵ(ܻ). If ݕ଴∗ ∈ 	࣪(ܻ∗), then ଴ܸ
ିଵ[ܣ(ݕ଴∗)] ⊆

ଵܵ(ܺ) is convex.  

Proof: 
Since ݕ଴∗ ∈ ࣪(ܻ∗), there exists ݕ଴ ∈ ⊇) (∗଴ݕ)ܲ   ,Therefore .((∗଴ݕ)ܣ

for any ݔଵ, ଶݔ ∈ ଴ܸ
ିଵ[ܣ(ݕ଴∗)] and ߣ ∈ [0,1], we have 

2 = ଴ݕ)∗଴ݕ + ଴ܸݔଵ) ≤ ଴ݕ‖ + ଴ܸݔଵ‖ ≤ 2, 
that is ∥ ଴ݕ + ଴ܸݔଵ ∥= 2. By Lemma (1.1.5), we have that ∥ ଴ܸ

ିଵݕ଴ +
ଵݔ ∥= 2, and there exists ݔଵ∗ ∈ ଵܵ(ܺ∗) such that 

)∗ଵݔ ଴ܸ
ିଵݕ଴ + (ଵݔ = 2, 

by the Hahn-Banach theorem. Note that |ݔଵ∗( ଴ܸ
ିଵݕ଴)| ≤ 1 and |ݔଵ∗(ݔଵ)| ≤

1. We get that 

)∗ଵݔ ଴ܸ
ିଵݕ଴) = (ଵݔ)∗ଵݔ = 1, 

and thus 

2 = ∗ଵݔ ቆ ଴ܸ
ିଵݕ଴ +

଴ܸ
ିଵݕ଴ + ଵݔ

2
ቇ ≤ ብ ଴ܸ

ିଵݕ଴ +
଴ܸ
ିଵݕ଴ + ଵݔ

2
ብ ≤ 2, 

that is 

ብ ଴ܸ
ିଵݕ଴ +

଴ܸ
ିଵݕ଴ + ଵݔ

2
ብ = 2. 

By Lemma (1.1.5), we obtain 

ብݕ଴ + ଴ܸ ቆ
଴ܸ
ିଵݕ଴ + ଵݔ

2
ቇብ = 2. 

Therefore, there exists ݕଵ∗ ∈ ଵܵ(ܻ∗) such that 

(଴ݕ)∗ଵݕ + ∗ଵݕ ቈ ଴ܸ ቆ
଴ܸ
ିଵݕ଴ + ଵݔ

2
ቇ቉ = 2, 

by the Hahn-Banach theorem. From the similar arguments as above, we  
get that 

(଴ݕ)∗ଵݕ																										 = ∗ଵݕ ቈ ଴ܸ ቆ
଴ܸ
ିଵݕ଴ + ଵݔ

2
ቇ቉ = 1.																																	(6) 

Note Equation (6) and ݕ଴ ∈ ∗ଵݕ We have .(∗଴ݕ)ܲ =  ଴∗ andݕ
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∗଴ݕ																																															 ቈ ଴ܸ ቆ
଴ܸ
ିଵݕ଴ + ଵݔ

2
ቇ቉ = 1.																															(7) 

Since ݔଶ ∈ ଴ܸ
ିଵ[ܣ(ݕ଴∗)], we get that ݕ଴∗ ቂ ଴ܸݔଶ + ଴ܸ ቀ

௏బషభ௬బା௫భ
ଶ

ቁቃ = 2, 

which implies that ቛ ଴ܸݔଶ + ଴ܸ ቀ
௏బషభ௬బା௫భ

ଶ
ቁቛ = 2. By Lemma (1.1.5) , we 

get that 

ብݔଶ +
଴ܸ
ିଵݕ଴ + ଵݔ

2
ብ = 2, 

and there exists ݔଶ∗ ∈ ଵܵ(ܺ∗) such that 

∗ଶݔ ቆݔଶ +
଴ܸ
ିଵݕ଴ + ଵݔ

2
ቇ = 2, 

by the Hahn-Banach theorem. Note that |ݔଶ∗(ݔଶ)|, | ଴ܸ
ିଵݕ଴|, |(ଵݔ)∗ଶݔ| ≤ 1.  

We have 

)∗ଶݔ ଴ܸ
ିଵݕ଴) = (ଵݔ)∗ଶݔ = (ଶݔ)∗ଶݔ = 1, 

and 

]∗ଶݔ ଴ܸ
ିଵݕ଴ + ଵݔߣ) + (1 − [(ଶݔ(ߣ = 2. 

Therefore, we get that ‖ ଴ܸ
ିଵݕ଴ + ଵݔߣ) + (1 − ‖(ଶݔ(ߣ = 2, which implies  

that 

଴ݕ‖																															 + ଴ܸ(ݔߣଵ + (1 − ‖(ଶݔ(ߣ = 2,																																		(8) 
by Lemma (1.1.5) .Then, from (8) and the similar argument we used  to 
deduce (7), we can also obtain 

]∗଴ݕ ଴ܸ(ݔߣଵ + (1 − [(ଶݔ(ߣ = (଴ݕ)∗ଵݕ = 1, 
that is ݔߣଵ + (1 − ଶݔ(ߣ ∈ ଴ܸ

ିଵ[ܣ(ݕ଴∗)]. Thus ଴ܸ
ିଵ[ܣ(ݕ଴∗)] is convex and  

the proof is completed.  
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Lemma (1.1.7) [1]: 
Let ܺ and ܻ be normed spaces. Suppose that ଴ܸ is a surjective  

isometry between ଵܵ(ܺ) and ଵܵ(ܻ). If ݕ଴∗ ∈ ࣪(ܻ∗), there exists ݔ଴∗ ∈
ଵܵ(ܺ∗)  such that 

(ݕ)∗଴ݕ = ±⟹ )∗଴ݔ ଴ܸ
ିଵݕ) =  ,(ݕ)∗଴ݕ

for any ݕ ∈ ଵܵ(ܻ).  

Proof: 
If ݕ ∈ ଵܵ(ܻ) and ݕ଴∗(ݕ) = 1, then ݕ ∈  , By Lemma (1.1.6) .(∗଴ݕ)ܣ

଴ܸ
ିଵ[ܣ(ݕ଴∗)] ⊆ ଵܵ(ܺ) is convex and does not meet with the interior of  

 ,Therefore .(ଵ(ܺ) is not emptyܤ It is evident that the interior of) .(ܺ)ଵܤ
by the Eidelheit Separation theorem, there exists ݔ଴∗ ∈ ଵܵ(ܺ∗) such that 

sup{ݔ଴∗(̅ݔ):	̅ݔ ∈ {(ܺ)ଵܤ ≤ inf{ݔ଴∗(ݔ): ݔ ∈ ଴ܸ
ିଵ[ܣ(ݕ଴∗)]}, 

which implies that 

1 ≤ inf{ݔ଴∗(ݔ): ݔ ∈ ଴ܸ
ିଵ[ܣ(ݕ଴∗)]} ≤ inf{‖ݔ଴∗‖ ⋅ :‖ݔ‖ ݔ ∈ ଴ܸ

ିଵ[ܣ(ݕ଴∗)]} = 1 
that is ݔ଴∗(ݔ) = 1 for any ݔ ∈ ଴ܸ

ିଵ[ܣ(ݕ଴∗)].  

Furthermore, if y෤ ∈ Sଵ(Y) and y଴∗(y෤) = −1, then −y෤ ∈ A(y଴∗).  
Since ݕ଴∗ ∈ ࣪(ܻ∗), there exists ݕ଴ ∈ ⊇) (∗଴ݕ)ܲ  and we have that ,((∗଴ݕ)ܣ	

2 ≥ ‖ ଴ܸ
ିଵݕ෤ − ଴ܸ

ିଵݕ଴‖ = ෤ݕ‖ − ‖଴ݕ ≥ ෤ݕ)∗଴ݕ| − |(଴ݕ = 2, 
that is ‖ ଴ܸ

ିଵݕ଴ + (− ଴ܸ
ିଵݕ෤)‖ = 2. By Lemma (1.1.5) , we have ‖ݕ଴ +

଴ܸ(− ଴ܸ
ିଵݕ෤)‖ = 2. Therefore, there exists ݕଵ∗ ∈ ଵܵ(ܻ∗) such that 

଴ݕଵ∗൫ݕ + ଴ܸ(− ଴ܸ
ିଵݕ෤)൯ = 2, 

by the Hahn-Banach theorem. Then we have 

(଴ݕ)∗ଵݕ																																								 = ଵ∗൫ݕ ଴ܸ(− ଴ܸ
ିଵݕ෤)൯ = 1.																														(9) 

Note that Equation (9) and ݕ଴ ∈ ∗ଵݕ We have that .(∗଴ݕ)࣪ =   ଴∗ and thusݕ
]∗଴ݕ ଴ܸ(− ଴ܸ

ିଵݕ෤)] = 1. By the conclusion in the previous part of this proof,  
we obtain immediately that ݔ଴∗(− ଴ܸ

ିଵݕ෤) = 1, that is ݔ଴∗( ଴ܸ
ିଵݕ෤) = −1.  

Thus the proof is completed.  

We will give the definition of ‘‘sharp corner points’’. These points  
play an important role in our result concerning the isometric extension  
problem in Gâteaux differentiability space (in particular, separable spaces  
or reflexive spaces).  
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Definition (1.1.8) [1]: 
Let ܻ be normed space. Then ݕ଴∗ ∈ ଵܵ(ܻ∗) is called a sharp corner  

point of ܤଵ(ܻ∗), if it satisfies the following conditions: 

(i)  For any ݕ ∈ ଵܵ(ܻ) with |ݕ଴∗(ݕ)| < 1 and ߝ > 0, there 
exists  ݕ෤ఌ ∈ ଵܵ(ܻ) such that 

(෤ఌݕ)∗଴ݕ = 1			and			‖ݕ෤ఌ ± ‖ݕ ≤ 1 + |(ݕ)∗଴ݕ| +  .ߝ

(ii)  For any ݕ ∈ ଵܵ(ܻ) with 0 < |(ݕ)∗଴ݕ| < 1 and ߝ > 0, 
there  exists ݕതఌ ∈ ଵܵ(ܻ) such that 

(തఌݕ)∗଴ݕ =
(ݕ)∗଴ݕ
|(ݕ)∗଴ݕ|

			and			‖ݕ෤ఌ − ‖ݕ ≤ 1 − |(ݕ)∗଴ݕ| +  .ߝ

These sharp corner points of ܤଵ(ܻ∗) are denoted by S  ࣝ(ܻ∗). Then  
we will give an important lemma as follows.  

Lemma (1.1.9) [1]: 
Let ܺ and ܻ be normed spaces. Suppose that ଴ܸ is a surjective  

isometry between ଵܵ(ܺ) and ଵܵ(ܻ). If ݕ଴∗ ∈ ࣪(ܻ∗) ∩ S ࣝ(ܻ∗), then we  
have 

)∗଴ݔ ଴ܸ
ିଵݕ) = ݕ∀			(ݕ)∗଴ݕ ∈ ଵܵ(ܻ). 

where ݔ଴∗ ∈ ଵܵ(ܺ∗) is the functional obtained in Lemma (1.1.7) .  

Proof: 
We take two steps to complete the proof: 

a. |ݕ଴∗(ݕ)| = )∗଴ݔ| ଴ܸ
ିଵݕ)| for any ݕ ∈ ଵܵ(ܻ).  

Indeed, for any ݕ ∈ ଵܵ(ܻ), we can assume that |ݕ଴∗(ݕ)| < 1  
(otherwise we can immediately get (a) by Lemma (1.1.7) [1]). Note 
଴ݕ ∈S ࣝ(ܻ∗) and Lemma (1.1.7) . For any ߝ > 0, there exists ݕ෤ఌ ∈ ଵܵ(ܻ) 
such that 

)∗଴ݔ ଴ܸ
ିଵݕ෤ఌ) = (෤ఌݕ)∗଴ݕ = 1, 

and 

1 ± )∗଴ݔ ଴ܸ
ିଵݕ) = |±1 − )∗଴ݔ ଴ܸ

ିଵݕ)| = หݔ଴∗൫ ଴ܸ
ିଵ(±ݕ෤ఌ)൯ − )∗଴ݔ ଴ܸ

ିଵݕ)ห 

																															≤ ‖ ଴ܸ
ିଵ(±ݕ෤ఌ) − ଴ܸ

ିଵݕ‖ = ෤ఌݕ‖ ± ‖ݕ ≤ 1 + |(ݕ)∗଴ݕ| +  .ߝ
Since ߝ is arbitrary, we obtain that 

)∗଴ݔ| ଴ܸ
ିଵݕ)| ≤ ݕ∀			,|(ݕ)∗଴ݕ| ∈ ଵܵ(ܻ). 
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If |ݕ଴∗(ݕ)| = 0, it is clear that |ݔ଴∗( ଴ܸ
ିଵݕ)| = 0. Otherwise, note that ݕ ∈S   

ࣝ(ܻ) and  Lemma (1.1.7) . For any ߝ > 0, there exists ݕതఌ ∈ ଵܵ(ܻ) such 
that 

)∗଴ݔ| ଴ܸ
ିଵݕതఌ)| = |(തఌݕ)∗଴ݕ| = 1, 

and 

1 − )∗଴ݔ| ଴ܸ
ିଵݕ)| = )∗଴ݔ| ଴ܸ

ିଵݕതఌ)| − )∗଴ݔ| ଴ܸ
ିଵݕ)| 

																											≤ )∗଴ݔ| ଴ܸ
ିଵݕതఌ) − )∗଴ݔ ଴ܸ

ିଵݕ)| 

													≤ ‖ ଴ܸ
ିଵݕതఌ − ଴ܸ

ିଵݕ‖ 

																																				= തఌݕ‖ − ‖ݕ ≤ 1 − |(ݕ)∗଴ݕ| +  .ߝ
Therefore, we get that 

|(ݕ)∗଴ݕ| ≤ )∗଴ݔ| ଴ܸ
ିଵ,|(ݕ			ݕ∀ ∈ ଵܵ(ܻ) 

and complete the first step. 

b. ݕ଴∗(ݕ) = )∗଴ݔ ଴ܸ
ିଵݕ) for any ݕ ∈ ଵܵ(ܻ).  

Indeed, if ݕ଴∗(ݕ) = 0, then we have ݔ଴∗( ଴ܸ
ିଵݕ) = 0 because of (a). 

Otherwise, note that ݕ଴∗ ∈S  ࣝ(ܻ∗) and Lemma (1.1.7) [1]. For any ߝ > 0,  
there exists ݕതఌ ∈ ଵܵ(ܻ) such that 

)∗଴ݔ ଴ܸ
ିଵݕതఌ) = (തఌݕ)∗଴ݕ =

(ݕ)∗଴ݕ
|(ݕ)∗଴ݕ|

	, 

and 

1 = |(തఌݕ)∗଴ݕ| = )∗଴ݔ| ଴ܸ
ିଵݕതఌ)| ≤ )∗଴ݔ| ଴ܸ

ିଵݕ)| + )∗଴ݔ| ଴ܸ
ିଵݕതఌ) − )∗଴ݔ ଴ܸ

ିଵݕ)| 

≤ |(ݕ)∗଴ݕ| + )∗଴ݔ| ଴ܸ
ିଵݕതఌ − ଴ܸ

ିଵݕ)| ≤ |(ݕ)∗଴ݕ| + ‖ ଴ܸ
ିଵݕതఌ − ଴ܸ

ିଵݕ‖ 

= |(ݕ)∗଴ݕ| + തఌݕ‖ − ‖ݕ ≤ 1 +  																																																													.ߝ
We can get 

0 ≤ )∗଴ݔ| ଴ܸ
ିଵݕതఌ) − )∗଴ݔ ଴ܸ

ିଵݕ)| − )∗଴ݔ|) ଴ܸ
ିଵݕതఌ)| − )∗଴ݔ| ଴ܸ

ିଵݕ)|) 
that is 

0 ≤ ቤ
(ݕ)∗଴ݕ
|(ݕ)∗଴ݕ|

− )∗଴ݔ ଴ܸ
ିଵݕ)ቤ − ቆቤ

(ݕ)∗଴ݕ
|(ݕ)∗଴ݕ|

− )∗଴ݔ ଴ܸ
ିଵݕ)ቤቇ ≤  .ߝ

Since ߝ is arbitrary, we have that ݔ଴∗( ଴ܸ
ିଵݕ) and ݕ଴∗(ݕ) have the same sign  

because ݕ଴∗(ݕതఌ) =
௬బ∗(௬)
ห௬బ∗(௬)ห

 . The proof is completed.  
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Proposition (1.1.10) [1]: 
Let ܻ be a strictly convex Banach space and dimY ≥ 2. Then we  

have that S   ࣝ(ܻ) = ߶.  

Proof: 
It is clear that if ݕ଴∗ ∈ ଵܵ(ܻ∗), there exists at most one element ݕ଴∗ ∈

ଵܵ(ܻ∗) such that ݕ଴∗(ݕ଴) = 1. Otherwise, if there exists ݕଵ ∈ ଵܵ(ܻ)  such 
that ݕ଴ ≠ (ଵݕ)∗଴ݕ ଵ andݕ = 1, then for any ߣ ∈ (0,1), we have that 

1 = ଴ݕߣ)∗଴ݕ + (1 − (ଵݕ(ߣ ≤ ‖∗଴ݕ‖ ⋅ ଴ݕߣ‖ + (1 − ‖ଵݕ(ߣ < 1, 
which is impossible. Assume that S  ࣝ(ܻ∗) ≠ ߶ and ݕ ∈S  ࣝ(ܻ∗). Note  
that ker ݕ ≠ since dim {ߠ} ܻ ≥ 2. For any ݕ ∈ ଵܵ(ܻ) ∩ ker ∗଴ݕ , ݕ ≠   ߠ
and ߝ > 0, there exists unique ݕ෤ such that 

(ݕ)∗଴ݕ = 1			and			‖ݕ଴ ± ‖ݕ ≤ 1 + |(ݕ)∗଴ݕ| + ߝ = 1 +  .ߝ
Since ߝ is arbitrary, we get that ‖ݕ଴ ± ‖ݕ ≤ 1 and 

2 = ଴ݕ‖ + ݕ + ଴ݕ − ‖ݕ ≤ ଴ݕ‖ + ‖ݕ + ଴ݕ‖ − ‖ݕ ≤ 2, 
that is 

଴ݕ‖ + ݕ + ଴ݕ − ‖ݕ = ଴ݕ‖ + ‖ݕ + ଴ݕ‖ −  .‖ݕ
Since ܻ is strictly convex, we get that ݕ଴ + ݕ = ଴ݕ −  which is ,ݕ
impossible.  

Proposition (1.1.11) [1]: 
Let ܻ be a real Banach space. Then any smooth point of ଵܵ(ܻ∗) is  not 

a sharp corner point.  

Proof: 
Suppose that ଴݂ is a smooth point of ଵܵ(ܻ∗). There is a unique ݕ଴∗∗ ∈

ଵܵ(ܻ∗∗) such that ݕ଴∗∗( ଴݂) = 1. If there does not exist ݕ଴ ∈ ଵܵ(ܻ)  such 
that g(ݕ଴) = ଴∗∗(g) for any gݕ ∈ ܻ∗, that is, ܣ(݂) = ߶, ଴݂ is clearly  not a 
sharp corner point.  

If ݕ଴ ∈ ଵܵ(ܻ) given above exists, we assume that ଴݂ is also a sharp  
corner point. For any ݕ ∈ ଵܵ(ܻ) with 0 < ଴݂(ݕ) < 1 and ߝ > 0, we see  
that ∥ ݕ − ଴ݕ ∥≤ 1 − ଴݂(ݕ) +  ,that is ,ߝ

ݕ‖ − ‖଴ݕ ≤ 1 − ଴݂(ݕ) = ଴݂(ݕ଴) − ଴݂(ݕ). 
Note that ଴݂(ݕ଴) − ଴݂(ݕ) ≤∥ ݕ − ଴ݕ ∥. We have that 
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ݕ‖ − ‖଴ݕ = ଴݂(ݕ଴) − ଴݂(ݕ) = ଴݂(ݕ଴ −  ,(ݕ
which implies that 

଴݂ ൬
଴ݕ − ݕ
ݕ‖ − ‖଴ݕ

൰ = 1. 

However, it is impossible since ଴݂ ∈ ଵܵ(ܻ∗) is a smooth point. 

Section (1.2): G܉ොteaux differentiability spaces 
In this section, let us recall some results for Gâteaux  

differentiability space, separable space, Asplund generated space, and so  
on . 

Definition (1.2.1) [1]: 
A Banach space ܧ is said to be a Gâteaux differentiability space   

(weak-Asplund space) if for any continuous convex function ݂ on it,  
there exists a dense (dense ܩఋ) subset ܧ଴ ⊆   such that f is Gâteaux ܧ
differentiable at any ݔ଴ ∈   .଴ܧ

Proposition (1.2.2) [1]: 
A Banach space ܧ is a Gâteaux differentiability space if and only if  

any weak∗ compact convex subset of ܧ∗ is the weak∗ closed convex hull  
of its weak∗-exposed points .  

Proposition (1.2.3) [1]: 
Let ܧ and ܧଵ be Banach spaces. Suppose that ܶ ∶ ܧ →   ଵ is linearܧ

and continuous. If ܧ is a Gâteaux differentiability space and ܶ(ܧ) is  
dense in ܧଵ, then ܧଵ is also a Gâteaux differentiability space. In  
particular, if a Banach space ܨ is the image of a Gâteaux differentiability  
space by a linear continuous mapping, then ܨ is also a Gâteaux  
differentiability space.  

Definition (1.2.4) [1]: 
A Banach space ܧ is called Asplund generated if there exists an  

Asplund space ܺ and a linear continuous operator ܶ ∶ ܺ →   such that ܧ
ܶ(ܺ) is dense in ܧ. 
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Remark (1.2.5) [1]: 
Recall that a Banach space ܧ is called an Asplund space if for any  

continuous convex function ݂ on it, there exists a dense ܩఋ subset ܧ଴ ⊆   ܧ
such that ݂ is Fréchet differentiable at any ݔ଴ ∈   ଴. Moreover, we haveܧ
the following important facts: 

(i) A Banach space ܧ is an Asplund space if and only if ܧ∗ has  the 
Radon-Nikodym property.    

 (ii)  All the reflexive spaces [5] that is ( Let ܺ be anormed space and  ܺ∗∗  
= (ܺ∗)	∗denote the second dual vector space of ܺ. the Canonical map 
ܺ → ෠ܺ  define by ෠ܺ(ܨ) = ,(ܺ)ܨ ܨ ∈ ܺ∗ gives an isometric linear 
isomorphism (embedding) from ܺ	into	ܺ∗∗  the space ܺ is called reflexive 
if this map is surjective ) and ܿ଴(߁) space (for any index set ߁) are 
Asplund spaces.                                                                              

Proposition (1.2.6) [1]: 
Any weakly compactly generated space is an Asplund generated  

space. Any subspace of an Asplund generated space is a weak-Asplund  
space.  

Proposition (1.2.7) [1]: 
Any separable Banach space is a weak-Asplund space. Moreover,  

if a Banach space ܧ whose dual space ܧ∗ admits a strictly convex norm,  
then E is also a weak-Asplund space .  

Definition (1.2.8) [1]: 
Let Ω be a compact space. Then ݐ଴ ∈ Ω is called a ܩఋ-point if there  

exists a countable collection of open subsets {ܩ௡ ⊆ Ω: ݊ ∈ ℕ} such that  
{଴ݐ} = ⋂ ௡ஶܩ

௡ୀଵ . Ω is said to be scattered if any subset of Ω has an  
isolated point.  

Proposition (1.2.9) [1]: 
Let Ω be a compact space. Then ܥ(Ω) is Asplund if and only if Ω is  

scattered .  

Theorem (1.2.10) [1]: 
Let ܺ and ܻ be normed spaces. Suppose that ଴ܸ is an isometry from  

ଵܵ(ܺ) into ଵܵ(ܻ) and 

‖ ଴ܸݔ − |ߣ| ଴ܸݕ‖ ≤ ݔ‖ − ,ݔ∀			,‖|ߣ| ݕ ∈ ଵܵ(ܺ), ߣ ∈ ℝ. 
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Then ଴ܸ can be extended to an isometry on the whole space. Moreover, if  
଴ܸ is surjective, then ଴ܸ can be linearly extended too.  

Sketch of proof: 
For integrating , we write the main idea of the proof as  follows: 

Let 

ݔܸ = ൝
‖ݔ‖ ଴ܸ ൬

ݔ
‖ݔ‖

൰ , ݔ ≠ ,ߠ

																						,ߠ ݔ = .ߠ
 

Then we have that ‖ܸݔ − ‖ݕܸ ≤ ݔ‖ − ,ݔ for any ‖ݕ ݕ ∈ ଵܵ(ܻ) and 
ݔܸ‖ − ‖ݕܸ = ݔ‖ − ∥ if ‖ݕ ݔ ∥=∥ ݕ ݔ ,∥ = ݕ or ߠ =   Indeed, ܸ is an .ߠ
isometry. Otherwise, there exist ݔ଴, ଴ݕ ∈ ܺ with ‖ݕ଴‖ > ‖଴ݔ‖ > 0 such  
that ‖ܸݔ଴ − ‖଴ݕܸ < ݔ‖ − ଴ݖ We can take .‖ݕ ∈ ܺ such that ‖ݖ଴‖ =
଴ݖ ଴‖ andݕ‖ ∈ ଴ሬሬሬሬሬሬሬሬሬ⃗ݔ଴ݕ  (the semi-line with the starting point ݕ଴ and crossing  
 :଴). Then we get the following inequalityݔ

଴ݖ‖ − ‖଴ݕ = ଴ݖ‖ − ‖଴ݔ + ଴ݔ‖ − ‖଴ݕ > ଴ݖܸ‖ − ‖଴ݔܸ + ଴ݔܸ‖ −  ‖଴ݕܸ

≥ ଴ݖܸ‖ −  																																																											,‖଴ݕܸ
which is impossible. If ଴ܸ is surjective, we can also get a linear isometric  
extension by the Mazur-Ulam theorem.  

We can now show the following.  

Theorem (1.2.11) [1]: 
Let ܺ be a Banach space and ܻ be a Gâteaux differentiability  

space. Suppose that ଴ܸ is a surjective isometry between ଵܵ(ܺ) and ଵܵ(ܻ).  
If ࣪(ܻ∗) ∩ S  ࣝ(ܻ∗) is weak∗-dense in ࣪(ܻ∗), then ଴ܸ can be extended 
to  a linear isometry on the whole space.  

Proof: 
For any ݔଵ, ଶݔ ∈ ଵܵ(ܺ) and ߣ ∈ ℝ, we have that 

‖ ଴ܸݔଵ − |ߣ| ଴ܸݔଶ‖ = sup
௬∗∈ௌభ(௒∗)

)∗ݕ| ଴ܸݔଵ − |ߣ| ଴ܸݔଶ)|. 

By Proposition (1.2.2), we get that 

‖ ଴ܸݔଵ − |ߣ| ଴ܸݔଶ‖ = sup
௬∗∈ௌభ(௒∗)

)∗଴ݕ| ଴ܸݔଵ − |ߣ| ଴ܸݔଶ)| 

																															= sup
௬బ∗∈࣪(௒∗)∩୅ୗ		ࣝ(௒∗)

)∗଴ݕ| ଴ܸݔଵ − |ߣ| ଴ܸݔଶ)|.																		(10) 
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By Lemma (1.1.9) , for any ݕ଴ ∈ ଴࣪(ܻ∗), there exists ݔ଴∗ ∈ ଵܵ(ܺ∗)  (ݔ଴∗ is 
obtained in Lemma (1.1.7) such that 

)∗଴ݕ| ଴ܸݔଵ − |ߣ| ଴ܸݔଶ)| = )∗଴ݕ| ଴ܸݔଵ) − |ߣ|)∗଴ݕ ଴ܸݔଶ)|
= (ଵݔ)∗଴ݔ| −  |(ଶݔ|ߣ|)∗଴ݔ

																																													≤ ଵݔ‖ −  (11)																																																			ଶ‖.ݔ|ߣ|
Note Equations. (10) and (11). We get immediately that 

‖ ଴ܸݔଵ − |ߣ| ଴ܸݔଶ‖ ≤ ଵݔ‖ − ,ଵݔ∀			,‖ଶݔ|ߣ| ଶݔ ∈ ଵܵ(ܺ),			ߣ ∈ ℝ, 
and complete the proof because of Theorem (1.2.10). 

Corollary (1.2.12) [1]: 
Let ܺ be a Banach space and ܻ be a separable Banach space (more  

generally, ܻ∗ admits a strictly convex norm).  

Suppose that ଴ܸ is a surjective isometry between ଵܵ(ܺ) and ଵܵ(ܻ). 
If ࣪(ܻ∗) ∩ S  ࣝ(ܻ∗) is weak∗-dense in ࣪(ܻ∗), then ଴ܸ can be extended 
to  a linear isometry on the whole space.  

Corollary (1.2.13) [1]: 
Let ܺ be a Banach space and ܻ = (ℓଵ). Suppose that ଴ܸ is a  

surjective isometry between ଵܵ(ܺ) and ଵܵ(ܻ). Then ଴ܸ can be extended  
to a linear isometry on the whole space.  

Proof: 
Note that ܻ is separable and Corollary (1.2.12). We only need  to 

check that ࣪(ܻ∗) ⊆ S  ࣝ(ܻ∗). It is easy to see that 

࣪(ܻ∗) = ൛{ߠ௡}: {௡ߠ} ∈ (ℓஶ), ௡ߠ = ±૚, ݊ ∈ ℕൟ. 
Let ݕ଴∗ ∈ ࣪(ܻ∗) and ݕ ∈ ଵܵ(ܻ) with |ݕ଴∗(ݕ)| < 1. If ݕ଴∗ = ݕ and {௡଴ߠ} =
෤ݕ we can take ,{(݊)ݕ} =  such that {(݊)෤ݕ}

(݊)෤ݕ = ݊∀			,|(݊)ݕ|௡଴ߠ ∈ ℕ. 
Then we have that {ݕ෤(݊)} ∈ ଵܵ(ܻ), (ݕ)∗଴ݕ = 1 and 

෤ݕ‖ ± ‖ݕ = ෍|ݕ෤(݊) ± |(݊)ݕ
ஶ

௡ୀଵ

= ෍|ߠ௡଴|ݕ(݊)| ± |(݊)ݕ
ஶ

௡ୀଵ

 

																												= ෍ห|ݕ(݊)| ± ห(݊)ݕ௡ߠ
ஶ

௡ୀଵ

=෍|ݕ(݊)|
ஶ

௡ୀଵ

±෍ߠ௡ݕ(݊)
ஶ

௡ୀଵ
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= ૚ ± (ݕ)∗଴ݕ ≤ ૚ +  																	.|(ݕ)∗଴ݕ|

Moreover, if ݕ଴∗(ݕ) ≠ 0, we can also take ݕത = ௬బ∗(௬)
ห௬బ∗(௬)ห

⋅  ෤ and have thatݕ

തݕ‖ − ‖ݕ = ෍ ቤ
(ݕ)∗଴ݕ
|(ݕ)∗଴ݕ|

⋅ |(݊)ݕ|௡଴ߠ − ቤ(݊)ݕ
ஶ

௡ୀଵ

= ෍ ቤݕ(݊) −
(ݕ)∗଴ݕ
|(ݕ)∗଴ݕ|

⋅ ቤ(݊)ݕ௡଴ߠ
ஶ

௡ୀଵ

 

= ෍|ݕ(݊)|
ஶ

௡ୀଵ

−
(ݕ)∗଴ݕ
|(ݕ)∗଴ݕ|

෍ (݊)ݕ௡଴ߠ
ஶ

௡ୀଵ

= 1 −
(ݕ)∗଴ݕ
|(ݕ)∗଴ݕ|

଴∗(1)ݕ = 1 −  .|(ݕ)∗଴ݕ|

Then we complete the proof.  

 

Corollary (1.2.14) [1]: 
Let ܺ be a Banach space and ܻ = (ܿ଴). Suppose that ଴ܸ is a  surjective 

isometry between ଵܵ(ܺ) and ଵܵ(ܻ). Then ଴ܸ can be extended  to a linear 
isometry on the whole space.  

Proof: 
Note that ܻ is separable and Corollary (1.2.12) [1]. We only need  to 

check that ࣪(ܻ∗) ⊆S  ࣝ(ܻ∗). It is easy to see that 

(∗ܻ)݌ = {±݁௡∗ :	݊ ∈ ℕ}, 
where ݁௡∗ = (0, … ,0, ૚, 0, … ) ∈ (ℓଵ) for any ݊ ∈ ℕ. Let ݁௡∗ ∈ ࣪(ܻ∗) and 
ݕ	 ∈ ଵܵ(ܻ) with |݁௡బ

∗ |(ݕ) < 1. We can take ݕ෤ = ݁௡బ ∈ ଵܵ(ܻ). Then we  
have that 

෤ݕ‖ ± ‖ݕ = ฮ൛݁௡బ(݊) ± ൟฮ(݊)ݕ = sup
௡∈ℕ

ห݁௡బ(݊) ±  ห(݊)ݕ

≤ ૚+ |(଴݊)ݕ| = 1 + ห݁௡బ
∗  								.ห(ݕ)

Moreover, if ݁௡బ
∗ (ݕ) ≠ 0, we can take 

തݕ = ݕ + ቌ
݁௡బ
∗ (ݕ)

ห݁௡బ
∗ ห(ݕ)

− ݁௡బ
∗ ቍ(ݕ) ݁௡బ ∈ ଵܵ(ܻ). 

that is, ݕ =  with {(݊)തݕ}
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(݊)തݕ = ቐ
(଴݊)ݕ
|(଴݊)ݕ|

, if	݊ = ݊଴,

,(݊)ݕ if	݊ ≠ ݊଴.
 

We can get that 

തݕ‖ − ‖ݕ = sup
௡
(݊)തݕ| − |(݊)ݕ = ቤ

(଴݊)ݕ
|(଴݊)ݕ|

−  ቤ(଴݊)ݕ

= 1 − |(଴݊)ݕ| = 1 − ห݁௡బ
∗  .ห(ݕ)

Then we complete the proof. 

Corollary (1.2.15) [1]: 
Let ܺ be a Banach space and ܻ =  is a compact metric ܭ) (ܭ)ܥ

space). Suppose that ܼ ⊆ ܻ is a linear closed subspace, and there exists a  
dense subset ܶ ⊆ ݐ such that all the ‘‘peak functions’’ whose peak is ܭ ∈
ܶ  are in ܼ. If ଴ܸ is an isometric mapping from ଵܵ(ܺ) onto ଵܵ(ܼ),  then ଴ܸ 
can be extended to a linear isometry on the whole space.  

Proof: 
Note that (ܭ)ܥ is a separable Banach space and 

࣪(ܻ∗) = :∗௞ߜ±} ݇ ∈ ௞బߜ൫			{ܭ
∗ (ݕ) = ݕ	every	for	(଴݇)ݕ = (݇)ݕ ∈ ܻ൯. 

It is easy to see that 

:∗௧ߜ±} ݐ ∈ ܶ} ⊆ ࣪(ܼ∗) 
and {±ߜ௧∗: ݐ ∈ ܶ} is weak∗-dense in ࣪(ܼ∗). By Corollary (1.2.12), we  
only need to prove that ߜ௧బ

∗ ∈S ࣝ(ܼ∗) for any ݐ଴ ∈ ܶ (because it is similar  
to prove that −ߜ௧బ

∗ ∈S  ࣝ(ܼ∗) for any ݐ଴ ∈ ܶ ).  

For any ߜ௧బ
∗ ∈ ࣪(ܻ∗), ݖ ∈ ଵܵ(ܼ) with |ߜ௧బ

∗ |(ݖ) = |(଴ݐ)ݖ| ≤ 1, and  

ߝ > 0 (if ݖ(ݐ଴) ≠ 0, we also assume that ߝ < |௭(௧బ)|
ଶ

), there exists an open  
neighborhood ܩ(ݐ଴) of ݐ଴ in ܭ such that 

(݇)ݖ|																																											 − |(଴ݐ)ݖ < ݇∀			,ߝ ∈  (12)																					.(଴ݐ)ܩ
By Urysohn’s Lemma [6] that is (A topological space ܺ is normed iff for 
any two nonempty closed disjoint subsets A and B of ܺ  there’s 
continuous map ݂: ܺ → [0,1]  such that (ܣ)ܨ 	= (ܤ)ܨ	݀݊ܽ	{0} = {1} 
afunction ܨ with this property is called  Urysho nfunction). we can get 
(݇)ݕ ∈                                                                               such that (ܭ)ܥ
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(଴ݐ)ݕ = ૚,			ݕ(݇) ≡ 0			൫∀݇ ∈  ൯(଴ݐ)ܩ\ܭ

and 

0 ≤ (݇)ݕ ≤ 1,			∀݇ ∈  .ܭ
Then we can make a ‘‘peak function’’ p௧బ(݇) ∈   ଴ݐ whose peak is) (ܭ)ܥ
and p௧బ(ݐ଴) = 1), which is equal to 0 on ܩ\ܭ(ݐ଴)  and takes non-
negative value on ܭ. Let 

(݇)ఌݖ̃ = min ቀݕ(݇), p௧బ(݇)ቁ. 
It is easy to see that ̃ݖఌ(݇) is also a ‘‘peak function’’ on ܭ whose peak is  
଴ and 0ݐ ≤ (݇)ఌݖ̃ ≤ 1, and thus ̃ݖఌ ∈ ଵܵ(ܼ) by the hypotheses of ܼ. By  
(12), we have that ̃ݖఌ ± ݖ ∈ ܼ and 

ఌ̅ݖ‖ ± ‖ݖ = max ൬ max
௞∈ீ(௧బ)

(݇)ఌݖ̃| ± ,|(݇)ݖ max
௞∈௄\ீ(௧బ)

 ൰|(݇)ݖ|

																															≤ max ൬ max
௞∈ீ(௧బ)

|(݇)ఌݖ̃| + max
௞∈ீ(௧బ)

|(݇)ݖ| , max
௞∈௄\ீ(௧బ)

 ൰|(݇)ݖ|

≤ 1 + |(଴ݐ)ݖ|) + (ߝ = 1 + ௧బߜ
∗ (ݖ) +  .ߝ

Moreover, if ߜ௧బ
∗ (ݖ) = (଴ݐ)ݖ ≠ 0, we first change above ‘‘peak function’’  

p௧బ(݇) into p௧బ(݇) which may be very sharp in above neighborhood  
 :and let it satisfy the following condition ,(଴ݐ)ܩ

																										pത௧బ(݇) ≤ 1 −
|(݇)ݖ| − |(଴ݐ)ݖ|
1 − |(଴ݐ)ݖ|

,			∀݇ ∈  (13)																	.(଴ݐ)ܩ

When we take 

ఌ̅ݖ = ݖ + ቌ
௧బߜ
∗ (ݖ)

หߜ௧బ
∗ ห(ݖ)

− ௧బߜ
∗ ቍpത௧బ(ݖ) , 

by the hypotheses of ܼ, we have that ݖఌ̅ ∈ ܼ and 

(݇)ఌ̅ݖ =

⎩
⎪
⎨

⎪
⎧
(଴ݐ)ݖ
|(଴ݐ)ݖ|

,																																																				 if	݇ = 																;଴ݐ

(݇)ݖ + (1 − (|(଴ݐ)ݖ|
(଴ݐ)ݖ
|(଴ݐ)ݖ|

pത௧బ(݇), if	݇ ∈ 	;{଴ݐ}\(଴ݐ)ܩ

																																																							,(݇)ݖ if	݇ ∈ 						.(଴ݐ)ܩ\ܭ
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Note that both ݖ(݇) and (1 − (|(଴ݐ)ݖ|
௭(௧బ)
|௭(௧బ)|

pത௧బ(݇) have the same sign  

because of (12). By (13), we obtain that 

ቤݖ(݇) + (1 − (|(଴ݐ)ݖ|
(଴ݐ)ݖ
|(଴ݐ)ݖ|

pത௧బ(݇)ቤ = |(݇)ݖ| + (1 − (݇)pത௧బ(|(଴ݐ)ݖ|

≤ 1. 
Then we have that ݖఌ̅ ∈ ଵܵ(ܼ), ఌ̅ݖ − ݖ ∈ ܼ and 

ఌ̅ݖ‖ − ‖ݖ = ቯቌ
௧బߜ
∗ (ݖ)

หߜ௧బ
∗ ห(ݖ)

− ௧బߜ
∗ ቍpത௧బቯ(ݖ) = 1 − หߜ௧బ

∗  .ห(ݖ)

Then we complete the proof by Corollary (1.2.12).  

Theorem (1.2.16) [1]: 
Let ܺ be a Banach space and ܻ =   Ω is a compact Hausdorff) (Ω)ܥ

space). Suppose that there exists a dense subset ܶ ⊆ Ω such that ܶ  
contains all the ܩఋ-points of Ω. If a linear closed subspace ܼ ⊆ ܻ contains  
all such ‘‘peak functions’’ whose peak is ݐ ∈ ܶ and ଴ܸ is an isometric  
mapping from ଵܵ(ܺ) onto ଵܵ(ܼ), then ଴ܸ can be extended to a linear  
isometry on the whole space.  

Proof: 
It is the case that {±ߜ௧∗: ݐ ∈ ܶ} ⊆ ࣪(ܻ∗) and ߜ௧∗ ∈S  ࣝ(ܼ∗) for any  

ݐ ∈ ܶ by the similar arguments of Corollary (1.2.13). There exists  ݔ௧∗ ∈
ଵܵ(ܺ∗) such that 

௧బߜ
∗ (ݖ) = )∗௧ݔ ଴ܸ

ିଵ,(ݖ			ݖ∀ ∈ ଵܵ(ܼ), 
by Lemma (1.1.9) . Note that തܶ = Ω. We have 

‖ ଴ܸݔଵ − |ߣ| ଴ܸݔଶ‖ = sup
ఠ∈ஐ

|( ଴ܸݔଵ)(߱) − )|ߣ| ଴ܸݔଶ)(߱)| 

																															= sup
௧∈்

|( ଴ܸݔଵ)(ݐ) − )|ߣ| ଴ܸݔଶ)(ݐ)| 

																													= sup
௧∈்

)∗௧ߜ| ଴ܸݔଵ) − )∗௧ߜ|ߣ| ଴ܸݔଶ)| 

																						= sup
௧∈்

(ଵݔ)∗௧ݔ| −  |(ଶݔ)∗௧ݔ|ߣ|

																																					= ଵݔ‖ − ,ଵݔ∀			.‖ଶݔ|ߣ| ଶݔ ∈ ଵܵ(ܺ). 
Then we complete the proof by Theorem (1.2.10).  
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Theorem (1.2.17) [1]: 
Let ܺ be a Banach space and ܻ = ܿ଴(߁),   is an ߁) (߁)or ℓஶ (߁)ܿ

infinite index set). Suppose that ܼ ⊆ ܻ is a linear closed subspace and 
{݁ఊ ∶ ߛ ∈ {߁ ⊆ ܼ. If ଴ܸ is a surjective isometry between ଵܵ(ܺ) and ଵܵ(ܼ),  
then ଴ܸ can be extended to a linear isometry on the whole space. 

Proof: 
Note that ൛±݁ఊ∗:	ߛ ∈ ൟ߁ ⊆ ࣪(ܻ∗) where 

݁ఊబ
∗ ൫݁ఊ൯ = ൜1, if	ߛ = ;଴ߛ

0, if	ߛ ≠ ;଴ߛ
 

for any ߛ ∈   By the similar arguments of Corollary (1.2.15) [1], we .߁
have that ݁ఊ∗ ∈S ࣝ∗(ܼ∗) for any ߛ ∈ ∗ఊݔ Therefore there exists . ߁ ∈

ଵܵ(ܺ∗) such that 

݁ఊ∗ = )∗ఊݔ ଴ܸ
ିଵ,(ݖ			ݖ∀ ∈ ଵܵ(ܼ), 

by Lemma (1.1.9). We can get that 

‖ ଴ܸݔଵ − |ߣ| ଴ܸݔଶ‖ = sup
ఊ∈௰

|( ଴ܸݔଵ)(ߛ) − )|ߣ| ଴ܸݔଶ)(ߛ)| 

																													= sup
ఊ∈௰

ห݁ఊ∗( ଴ܸݔଵ) − )∗ఊ݁|ߣ| ଴ܸݔଶ)ห 

																													= sup
ఊ∈௰

หݔఊ∗( ଴ܸݔଵ) − )∗ఊݔ|ߣ| ଴ܸݔଶ)ห 

																																			≤ ଵݔ‖ − ,ଵݔ∀			,‖ଶݔ|ߣ| ଶݔ ∈ ଵܵ(ܺ). 
Then we complete the proof by Theorem (1.2.10).  

Theorem (1.2.18) [1]: 
Let ܺ be a Banach space and ܻ be an Asplund generated space.  

Suppose that ଴ܸ is an isometric mapping from the unit sphere ଵܵ(ܺ) into  
ଵܵ(ܻ) which satisfies the following condition: 

(∗) For any ݔଵ, ଶݔ ∈ ଵܵ(ܺ) and ߣଵ, ଶߣ ∈ ℝ,  

ଵߣ‖ ଴ܸݔଵ + ଶߣ ଴ܸݔଶ‖ = 1 ⟹ ଵߣ ଴ܸݔଵ + ଶߣ ଴ܸݔଶ ∈ ଴ܸ[ܵ(ܺ)]. 
Let ܼ = span{ ଴ܸݔ ∶ ݔ ∈ ଵܵ(ܺ)}. Suppose that ࣪(ܼ∗) ∩S ࣝ(ܼ∗) is 
weak∗-dense in ࣪(ܼ∗). Then ଴ܸ can be extended to a linear isometry on 
the  whole space.  
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Proof: 
We first prove that ଵܵ(ܼ) = ଴ܸ[ ଵܵ(ܺ)]. Note the condition (∗) and  

the equality 

෍ߣ௞ ଴ܸݔ௞

௡

௞ୀଵ

= ะ෍ߣ௞ ଴ܸݔ௞

௡ିଵ

௞ୀଵ

ะ෍
௞ߣ

ฮ∑ ௞ߣ ଴ܸݔ௞௡ିଵ
௞ୀଵ ฮ

௡ିଵ

௞ୀଵ
଴ܸݔ௞ + ௡ߣ ଴ܸݔ௡ . 

By induction, we get that 

ะ෍ߣ௞ ଴ܸݔ௞

௡

௞ୀଵ

ะ = 1 ⟹ ෍ߣ௞ ଴ܸݔ௞

௡

௞ୀଵ

∈ ଴ܸ[ ଵܵ(ܺ)];		∀ݔ௞ ∈ ଵܵ(ܺ), ௞ߣ

∈ ℝ(1 ≤ ݇ ≤ ݊), ݊ ∈ ℕ. 
Therefore, we have that 

ଵܵ(ܼ) = ଴ܸ[ ଵܵ(ܺ)]. 
Note Proposition (1.2.6) and that ܼ is a closed subspace of ܻ. The  
conclusion is clear by Theorem (1.2.11) [1].    
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Chapter 2 

Banach Space and ࢻ-Large Families 
 In this chapter we show the notion of ߙ − large families of finite 

subsets of an infinite set is defined for every countable ordinal number a, 
extending the known notion of large families. The definition of ߙ -large 
families is based on the transfinite hierarchy of the Schreier families ܵఈ , 
ߙ < ߱ଵ. As an application    based on those families we construct a 
reflexive space. ५ଶಿబ

ఈ ߙ	, < ߱ଵwith density the continuum, such that every 
bounded non-norm convergent sequence {ݔ௞}௄ has subsequence 
generating ℓଵஶ as spreading model.                                                                 

Section (2.1): ࢻ-Large and a Transfinite Sequence of Compact 
Hereditary  Families:  

One  of the most significant examples of Banach spaces is Tsirelson 
space,   presented in the nineteen seventies. The main property of this 
space, is that it fails to contain a copy of ܿ଴  or ℓ௣, answering in the 
negative a problem posed by Banach. It is still an open problem whether 
there exist Tsirelson type spaces in the non-separable setting. A version 
of this problem has recently been solved in the negative direction in, 
namely it was shown that spaces spanned by an uncountable basic 
sequence such that their norm satisfies an implicit formula, similar to the 
one of Tsirelson space, always contain a copy of ܿ଴ or ℓ௣. To be more 
precise, if ߢ  is an uncountable ordinal number, ℬ is a hereditary and 
compact family of finite subsets of 0  ,ߢ < ߠ < 1  is a real number, and 
‖	⋅‖ఏ,ℬ, is the unique norm defined on ܿ଴଴(ߢ)  satisfying the following 
implicit formula 

ఏ,ℬ‖ݔ‖ = max ൝‖ݔ‖ஶ, sup ൝ߠ෍‖ܧ௜ݔ‖ఏ,ℬ

௡

௜ୀଵ

௜ୀଵௗ{௜ܧ}	: ℬ	ݏ݅	 − admissibleൡൡ 

then the completion of ൫ܿ଴଴(ߢ), ‖	⋅	‖ఏ,ℬ൯ contains a copy of ܿ଴ or ℓ௣.  

As it seems not possible to have a non-separable space, that strongly 
resembles Tsirelson space, a natural question is which properties of this 
space can be transferred to the non-separable setting. Besides being 
reflexive, one of the main properties of Tsirelson space, is that it admits 
only ℓଵ as a spreading model, i.e. every bounded sequence without a 
norm convergent subsequence has a subsequence that generates a 
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spreading model equivalent to the usual basis of ℓଵ. The main purpose is 
the construction of a non-separable reflexive Banach space ॒ଶℵబ , with the 
aforementioned property[2].  

Theorem (2.1.1) [2]:  
There exists a reflexive Banach space ॒ଶℵబ  generated by an 

unconditional basic sequence ൛݁కൟకழଶℵబ , admitting only ℓଵ as a spreading 

model.  

The construction of this space is based on the notion of ߙ-large 
families, which is defined as follows. If ܣ  is an infinite set,   ℬ is a 
hereditary and compact family of finite subsets of ܣ and ߙ is a countable 
ordinal number, we say that ℬ is ߙ-large, if its restriction on every 
infinite subset of ܣ, in a certain  sense, contains a copy of ܵఈ, the Schreier 
family of order ߙ. Equivalently, if its restriction  on every infinite subset 
of ܣ, has Cantor-Bendixson index, greater than or equal to ߱ఈ + 1. We 
prove the existence of such families on the cardinal number 2ℵబ , by 
constructing for ߙ < ߱ଵ, ࣡ఈ an ߙ-large, hereditary and compact family of 
finite subsets of {0, ૚}ℕ. We believe that these families are of 
independent interest, as they retain some of the most important properties 
of the families ܵఈ, ߙ < ߱ଵ. They are therefore a generalization of the 
Schreier families,  defined on the continuum and a study of them is 
included here.  

We define the notion of ߙ-large families of finite subsets of an infinite 
set and a brief study of them is given [2].  

We devoted to the construction of the families  {࣡ఈ}ఈழఠభ. Initially, 
using the Schreier family ଵܵ and diagonalization, we recursively define 
some auxiliary families G	ఈ, ߙ < ߱ଵ, which are subsets of [{0,1}ℕ]ழఠ ×
{0,1}ℕ. The construction method used, imposes strong Schreier like 
properties on the families ࣡ఈ, which are in fact the projection of G	ఈ, on 
the component [{0,1}ℕ]ழఠ. Next, properties of these families, which are  
crucial for the proof of the main result are included, among others, the 
fact that for ߙ < ߱ଵ, ࣡ఈ is an ߙ-large,  compact and hereditary family of 
finite subsets of {0,1}ℕ.Some additional results concerning the similarity 
of the ࣡ఈ to the ܵఈ , ߙ < ߱ଵ, are proven [2].  
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We concentrated on the construction of the space ॒ଶℵబ . The first step 
is the definition of a sequence of spaces {(ܺ௡ , ‖⋅‖௡)}௡,  each one based 
on the family ࣡ఈ. Inparticular, the norm of these spaces is defined on 
ܿ଴଴(2ℵబ) in a similar manner as the norm of Schreier space is defined on 
ܿ଴଴(ℕ) and they all have the unit vector basis  ൛݁కൟకழଶℵబ  as an 

unconditional Schauder basis.  For ݊ ∈ ℕ, the main two properties of the 
space ܺ௡ are the following. Firstly, every subsequence of the basis admits 
only ℓଵ as a spreading model and secondly the space ܺ௡ is ܿ଴ saturated. 
Next, using the spaces ܺ௡ , ݊ ∈ ℕ and Tsirelson space ܶ, a norm is defined 
on ܿ଴଴(2ℵబ), in the following manner. For ݔ ∈ ܿ଴଴(2ℵబ), set 

‖ݔ‖ = ะ෍
1
2௡
௡݁௡‖ݔ‖

ஶ

௡ୀଵ

ะ
்

. 

The  completion of ܿ଴଴(2ℵబ)  with this norm is the desired space ॒ଶℵబ , 
which has the unit vector basis ൛݁కൟకழଶℵబ  as an unconditional 

Schauderbasis. The proof of the fact that this space admits only ℓଵ as a 
spreading model, relies on the study of the behavior of the ‖⋅‖௡ norms on 
a normalized weakly null sequence {ݔ௞}௞ in ॒ଶℵబ . Moreover, using the 
fact that the spaces ܺ௡  are ܿ଴ saturated, we prove that every subspace of 
॒ଶℵబ  contains a copy of a subspace of ܶ, which yields that the space is 
reflexive [2].  

We concerns the construction,  for ߙ < ߱ଵ , of reflexive spaces ॒ଶℵబ  
having an unconditional Schauderbasis with size 2ℵబ, admitting ℓଵఈ as a 
unique spreading model. The construction method used is a variation of 
the one used for the space ॒ଶℵబ .  

We introduce the notion of ߙ-large families which concerns the 
complexity of a family ℬ of finite subsets of a given infinite set ܣ. This 
notion extends the well   known concept of large families and it is defined 
using the transfinite hierarchy of  the Schreier families {ܵఈ}ఈழఠభ  After 
providing the definition of ߙ-large families we also give a useful 
characterization linking this  notion with the Cantor-Bendixson index of a 
compact and hereditary family of  finite subsets of a given infinite set. 

Let ܣ be a set, ℬ be a family of subsets of ܣ, ℬ be a subset of ܣ 
and ݇ be a natural  number. We define 
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௞[ܤ] = ܨ} ⊆ 	:ܤ ⋕ ܨ = ݇} 

and 

ℬ ↾ ܤ = ܨ} ∈ ℬ: ܨ ⊂  .{ܤ

If ℱ is a family of subsets of the natural numbers, ܮ is an infinite 
subset of ℕ  and ߶ ∶ ℕ →  is the uniquely defined order preserving ܮ
bijection, we define 

ℱ[ܮ] = :(ܨ)߶} ܨ ∈ ℱ}. 

Definition (2.1.2) [2]: 

Let ܣ be an infinite set and ℬ a family of finite subsets of ܣ. 

(i) We say that ܤ is large, if for every ݇ ∈ ℕ, and ℬ infinite 
subset of ܣ,  we have that [ܤ]௞ ∩ ℬ ≠ ߶. 

(ii) Given a countable ordinal number ߙ, we say that ℬ is ߙ-
large, if for   every B infinite subset of ܣ, there exists a one 
to one map ߶ ∶ ℕ → (ܨ)߶ such that  ,ܤ ∈ ℬ, for every ܨ ∈
ܵఈ.  

Lemma (2.1.3) [2]: 

Let ℱ, ࣡ be hereditary and compact families of finite subsets of the 
natural  numbers, such that for every ܮ infinite subset of the natural 
numbers, the Cantor-Bendixson index of ℱ ↾  is strictly smaller than the ,ܮ
Cantor-Bendixson index of ࣡ ↾  infinite subset of the ܯ Then for every .ܮ
natural numbers, there exists ܮ a  further infinite subset of ܯ, such that 
ℱ ↾ ܮ ⊆ ࣡ ↾  .ܮ

Proposition (2.1.4) [2]: 

Let ܣ be an infinite set, ℬ be a hereditary and compact family of 
finite  subsets of ܣ and ߙ be a countable ordinal number. Then, the 
following assertions  are equivalent: 

(i) ℬ is ߙ-large. 

(ii)  For every ܤ infinite subset of ܣ, the Cantor-Bendixson 
index of ℬ ↾ is greater than or equal to ߱ఈ  ܤ + 1. 
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Proof: 

Given that (i) holds, (ii) is an immediate consequence of the fact 
that the  Cantor-Bendixson index of ܵఈ is equal to ߱ఈ + 1 for every 
countable ordinal  number ߙ .  

For the converse, we may clearly assume that ℬ is a hereditary and 
compact  family of finite subsets of the natural numbers. For a given 
countable ordinal ߙ, if  (ii) holds, we shall prove the following statement.  

For every infinite subset of the natural numbers ܯ, there exists ܮ 
an infinite  subset of ܯ, such that ܵఈ[ܮ] ⊂ ℬ. 

The desired result evidently follows from the above. To prove this 
statement,  we distinguish three cases.  

Case (1):ࢻ = ૚: 

Assume that for every infinite subset of the natural numbers ܯ, the 
Cantor-Bendixson index of ℬ ↾  is infinite. This means that every such ܯ
 contains as  subsets elements of ℬ, of unbounded cardinality. Since ℬ ܯ
is hereditary, we  conclude that it is large and therefore it also is 1-large.  

Case (2): ࢻ is a limit ordinal number: 

Then there is {ߚ௞}௞ a strictly increasing sequence of ordinal 
numbers with  sup

௞
௞ߚ = such that ܵఈ ,ߙ = ⋃ ൛ܨ ∈ ఉܵೖ: min ܨ ≥ ݇ൟ௞ . 

Using Lemma (2.1.3) ,choose ܮଵ ⊃ ⋯ ⊃ ௞ܮ ⊃ ⋯ infinite subsets of 
such that ఉܵೖ  ,ܯ ↾ ௞ܮ ⊂ ℬ, for all ݇.  

Choose ܮ = {ℓଵ < ⋯ < ℓ௞ < ⋯ } an infinite subsets of ܯ, with 
ℓ௠ ∈ ݉ ௞,  for everyܮ ≥ ݇. It is not hard to check that ܵఈ[ܮ] ⊂ ℬ.  

Case (3): α is a successor ordinal number: 

If α = β + 1, then the following holds.  

For every ܯ infinite subset of the naturals and ݊ ∈ ℕ, there exists ܮ 
a further  infinite subset of ܯ, such that ൫ ఉܵ ∗ ࣛ௡൯ ↾ ܮ ⊂ ℬ, where 
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ఉܵ ∗ ࣛ௡ = ൝ራܨ௜

௡

௜ୀଵ

∈ ఉܵ, ݅ = 1,… , ݊ൡ. 

The above statement follows form Lemma (2.1.3) and the fact that 
the  Cantor-Bendixson index of ఉܵ ∗ ࣛ௡ is equal to ߱ఉ݊ + 1 < ߱ఈ. 

Therefore, given ܯ an infinite subset of the natural numbers, we 
may choose ܮଵ ⊃ ⋯ ⊃ ௡ܮ ⊃ ⋯ infinite subsets of ܯ such that ൫ ఉܵ ∗
ࣛ௡൯ ↾ ௡ܮ ⊂ ℬ.  

Choose ܮ = {ℓଵ < ⋯ < ℓ௡ < ⋯ } an infinite subsets of ܯ, with 
ℓ௠ ∈ ݉ ௡,  for everyܮ ≥ ݊. Once more, it is not hard to check that 
ܵఈ[ܮ] ⊂ ℬ. 

In this section we define a transfinite sequence ࣡ఈ , ߙ < ߱ଵ of 
compact and  hereditary families of finite subsets of {0,1}ℕ with each ࣡ఈ 
being ߙ-large for ߙ < ߱ଵ. We shall first recursively define an auxiliary 
transfinite sequence{G	ఈ}ఈழఠభ of subsets of [{0,1}ℕ]ழఠ × {0,1}ℕ, which 
will then be used to define the  ࣡ఈ for ߙ < ߱ଵ. We then prove the main 
properties of these families and we  conclude this section by showing the 
࣡ఈ have some similar properties to the  Schreier families ܵఈ.  

For ߪ = ௜ୀଵஶ{(݅)ߪ}  and ߬ = {߬(݅)}௜ୀଵஶ   in {0,1}ℕ, we define ߪ ∧ ߬ 
and |ߪ ∧ ߬| as follows: 

(i)		ߪ ∧ ߬ σ and |ߪ ∧ ߬| = ∞, if ߪ = ߬. 

(ii)		ߪ ∧ ߬ = ߶ and |ߪ ∧ ߬| = 0, if (1)ߪ ≠ ߬(1). 

(iii)			ߪ ∧ ߬ = ௜ୀଵஶ{(݅)ߪ}  and |ߪ ∧ ߬| = ℓ, if ߪ ≠ ߬, (1)ߪ = ߬(1) 
and ℓ = min{݅ ∈ ℕ:	ߪ(݅ + 1) ≠ ߬(݅ + 1)}. 

For ݏ = ௜ୀଵ௞{(݅)ݏ}  and ݐ = ௜ୀଵℓ{(݅)ݐ}  finite sequences of 0’s and 1’s, 
we say  that ݏ is an initial segment of ݐ and write ݏ ⊑ ݇ if ,ݐ ≤ ℓ and 
(݅)ݏ = ݅ for (݅)ݐ = 1, … , ݇. We say  that s is a proper initial segment of ݐ 
and write ݏ ⊊ ݏ if ,ݐ ⊑ ݏ and  ݐ ≠   .ݐ
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Definition (2.1.5) [2]: 

We define G	ఈ to be all pairs (ܨ, ܨ where ,(ߪ = {߬௜}௜ୀଵௗ ∈
[{0,1}ℕ]ழఠ, ݀ ∈ ℕ and ߪ ∈ {0,1}ℕ, such that the following are satisfied: 

(i)				ߪ ≠ ߬௜ for ݅ = 1, … , ݀. 

(ii)		ߪ ∧ ߬ଵ ≠ ߶ and if ݀ > 1, then ߪ ∧ ߬ଵ ⊊ ߪ ∧ ߬ଶ ⊊ ⋯ ⊊ ߪ ∧
߬ௗ. 

(iii)			݀ ≤ ߪ| ∧ ߬ଵ|. 

Define mın෦ ,ܨ) (ߪ = ߪ| ∧ ߬ଵ| and max෦ ,ܨ) (ߪ = ߪ| ∧ ߬ௗ|. 

Assume that ߙ is a countable ordinal number, G	ఉ  have been 
defined for ߚ < ,ܨ) and that for ߙ (ߪ ∈G	ఉ, mın෦ ,ܨ) and max෦ (ߪ ,ܨ)  (ߪ
have also been defined. 

Definition (2.1.6) [2]: 

Let ߚ < ,ߙ ௜ܨ) , ௜)௜ୀଵௗߪ , ݀ ∈ ℕ be a finite sequence of elements of 
G	ఉ and ߪ ∈ {0,1}ℕ. We say that (ܨ௜, ௜)௜ୀଵௗߪ  is a skipped branching of ߪ in 
G	ఉ, if the  following are satisfied: 

(i) The ܨ௜ , ݅ = 1, … , ݀ are pairwise disjoint. 
(ii) ߪ ≠ ݅ ௜ forߪ = 1, … , ݀.	

(iii) ߪ ∧ ߪ ≠ ߶ and if ݀ > 1, then ߪ ∧ ଵߪ ⊊ ߪ ∧ ଶߪ ⊊ ⋯ ⊊ ߪ ∧
	.ௗߪ

(iv) |ߪ ∧ |ߪ < mın෦ ௜ܨ) , ݅ ௜) forߪ = 1, … , ݀ − 1. 
(v) ݀ ≤ ߪ| ∧  .|ଵߪ

Definition (2.1.7) [2]: 

Let ߚ < ,ߙ ߪ ∈ {0,1}ℕ and (ܨ௜ , ௜ୀଵௗ(ߪ , ݀ ∈ ℕ be a finite sequence of 
elements  of G	ఉ. We say that (ܨ௜ , ௜ୀଵௗ(ߪ  is an attached branching of ߪ in 
G	ఉ if the following  are satisfied: 

i. The ܨ௜ = 1,… , ݀ are pairwise disjoint. 
ii. If ݀ > 1, then max෦ ௜ܨ) , (ߪ < mın෦ ,௜ାଵܨ) ݅ for ,(ߪ = 1, … , ݀ −

1. 
iii. ݀ ≤ mın෦ ,ଵܨ)  .(ߪ
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We are now ready to define G	ఈ, distinguishing two cases.  

Definition (2.1.8) [2]: 

If ߙ is a successor ordinal number with ߙ = ߚ + 1, we define G	ఈ 
to be all  pairs (ܨ, ܨ where (ߪ ∈ [{0,1}ℕ]ழఠ and ߪ ∈ {0, ૚}ℕ, such that 
one of the following  is satisfied: 

(i) (ܨ, (ߪ ∈G	ఉ. 
(ii) There is (ܨ௜ , ௜)௜ୀଵௗߪ  a skipped branching of σ in G	ఉ such that 

ܨ = ⋃ ௜ௗܨ
௜ୀଵ . 

In this case we say that (ܨ,  is skipped. Moreover set (ߪ
mın෦ ,ܨ) (ߪ = ߪ| ∧ ଵ| and  max෦ߪ ,ܨ) (ߪ = ߪ| ∧   .|ௗߪ

(iii) There is (ܨ௜ , ௜ୀଵௗ(ߪ  an attached branching of ߪ in G	ఉ such 
that ܨ = ⋃ ௜ௗܨ

௜ୀଵ . 

In this case we say that (ܨ,  is attached. Moreover set (ߪ
mın෦ ,ܨ) (ߪ = mın෦ ,ଵܨ) and max෦ (ߪ ,ܨ) (ߪ = max෦ ,ௗܨ)  .(ߪ

If ߙ is a limit ordinal number, fix {ߚ௡}௡ a strictly increasing 
sequence of  ordinal numbers with sup௡ߚ௡ =   .ߙ

We define 

ℊఈ =ራ൛(ܨ, (ߪ ∈ ℊఉ :	mın෦ ,ܨ) (ߪ ≥ ݊ൟ
ஶ

௡ୀଵ

. 

Remark (2.1.9) [2]: 

If ߙ is a limit ordinal number, the sequence {ߚ௡}௡ may be chosen 
in such a  manner that the following are satisfied: 

ℊ஑ =ራ൛(ܨ, (ߪ ∈ ℊஒ౤: mın෦ ,ܨ) (ߪ ≥ nൟ
ஶ

୬ୀଵ

 

and 

ܵఈ =ራ൛ܨ ∈ ఉܵ೙: min ܨ ≥ ݊ൟ
ஶ

௡ୀଵ

. 
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From now on, we shall assume that this is the case.  

Remark (2.1.10) [2]: 

Translating Definitions  (2.1.5) , (2.1.6) , (2.1.7) and  (2.1.8) one  
obtains the following: 

(i) If (ܨ, (ߪ ∈G	ଵ, then #ܨ ≤ mın෦ ,ܨ)  .(ߪ
(ii) If (ܨ, (ߪ ∈ G	ఉାଵ and (ܨ௜, ௜)௜ୀଵௗߪ  is a skipped branching of ߪ 

in G	ఉ such that ܨ = ⋃ ௜ௗܨ
௜ୀଵ , then we have that ݀ ≤

mın෦ ,ܨ)  .(ߪ
(iii) If (ܨ, (ߪ ∈ G	ఉାଵ and (ܨ௜, ௜ୀଵௗ(ߪ  is an attached branching  of 

ܨ ఉ  such that	in G ߪ = ⋃ ௜ௗܨ
௜ୀଵ , then we have that ݀ ≤

mın෦ ,ܨ)   .(ߪ

We now proceed to prove some key properties of the families G	ఉ.  

Lemma (2.1.11) [2]: 

Let ߪ, ,ᇱߪ ߬ ∈ {0,1}ℕ, not all equal. The following are equivalent: 

(i) ߪ ∧ ߬ ⊊ ߪ ∧   .ᇱߪ
(ii) 		ߪ ∧ ߬ = ᇱߪ ∧ ߬.    

Proof: 

Assume that (i) holds. We have that ߬(݆) = (݆)ߪ = ݆ ᇱ(݆), forߪ =
1, … , ߪ| ∧ ߬|. Whereas, for ݆ = ߪ| ∧ ߬| + ૚, we have that ߬(݆) ≠ (݆)ߪ =
ᇱߪ| ,ᇱ(݆).  Thereforeߪ ∧ ߬| = ߪ| ∧ ߬|, which means that ߪ ∧ ߬ = ᇱߪ ∧ ߬.  

The inverse is proved similarly.  

Lemma (2.1.12) [2]: 

Let ߙ be a countable ordinal number and (ܨ, (ߪ ∈G	ఈ. Then there 
exist ߬௠, ߬ெ in ܨ such that the following are satisfied: 

(i) mın෦ ,ܨ) (ߪ = ߪ| ∧ ௠| and max෦ߪ ,ܨ) (ߪ = ߪ| ∧  .|ெߪ
(ii) For ߬ ∈ ߪ we have that ܨ ∧ ߬௠ ⊑ ߪ ∧ ߬ ⊑ ߪ ∧ ߬ெ. 

Moreover, if ߙ is a successor ordinal number with ߙ = ߚ + 1 the 
following  hold: 
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(iii) If (ܨ, ௜ܨ) is skipped and (ߪ , ௜)௜ୀଵௗߪ  is a skipped 
branching of ߪ  in G	ఉ such that ܨ = ⋃ ௜ௗܨ

௜ୀଵ , then for 
݅ = 1,… , ݀ and ߬ ∈ ߪ ௜, we have thatܨ ∧ ௜ߪ = ߪ ∧ ߬. 

(iv) If (ܨ, ௜ܨ) is attached and (ߪ , ௜)௜ୀଵௗߪ  is an attached 
branching of  ߪ in G	ఉ such that ܨ = ⋃ ௜ௗܨ

௜ୀଵ , then for 
1 ≤ ݅ < ݆ ≤ ݀ and ߬ଵ ∈ ,௜ܨ ߬ଶ ∈ ߪ ௝, we have thatܨ ∧
߬ଵ ⊊ ߪ ∧ ߬ଶ.  

Proof: 

We prove this lemma by transfinite induction. For ߙ = 1 the 
desired result  follows immediately from the definition of G	ଵ. Assume 
now that ߙ is a countable  ordinal number and that the statement holds for 
every (ܨ, (ߪ ∈G	ఉ, for every ߚ <  is a limit ordinal number, then ߙ If .ߙ
the result follows trivially from the  inductive assumption and the 
definition of G	ఈ. Assume therefore that ߙ = ߚ + 1  and let (ܨ, (ߪ ∈G	ఈ. 

We treat first the case when (ܨ, ,௜ܨ) is skipped. Let (ߪ ௜)௜ୀଵௗߪ  be a 
skipped  branching of ߪ in G	ఉ, such that ܨ = ⋃ ௜ௗܨ

௜ୀଵ .  

We first prove part (iii), i.e. for ߬ ∈ ߪ ௜, we have thatܨ ∧ ௜ߪ = ߪ ∧
߬, ݅ = 1, … , ݀.  

By the inductive assumption, there exists ߬௠௜ ∈  ௜ such thatܨ
mın෦ ,௜ܨ) (௜ߪ = ห߬ଵ ∧ ߬௠௜ ห and for every ߬ ∈ ௜ߪ ௜,  we have thatܨ ∧ ߬௠௜ ⊑
௜ߪ ∧ ߬. 

Since, by definition, |ߪ ∧ |௜ߪ < mın෦ ௜ܨ) , (௜ߪ = หߪଵ ∧ ߬௠௜ ห ≤ ௜ߪ| ∧ ߬|, 
it  follows that ߪ ∧ ௜ߪ ⊊ ௜ߪ ∧ ߬ and by Lemma (2.1.11)  ߪ ∧ ௜ߪ = ߪ ∧ ߬.  

Choosing any ߬௠ ∈ ଵ and ߬ெܨ ∈  ௗ, it is easy to see that (i) and (ii)ܨ
are  satisfied.  

Assume now that (ܨ, ௜ܨ) is attached. Let (ߪ , ௜ୀଵௗ(ߪ  be an attached 
branching  of ߪ in G	ఉ, such that ܨ = ⋃ ௜ௗܨ

௜ୀଵ . 

By the inductive assumption, there exist ߬௠௜ , ߬ெ௜ ∈  ௜ such thatܨ
mın෦ ,௜ܨ) (ߪ = หߪ ∧ ߬௠௜ ห, max෦ ௜ܨ) , (ߪ = หߪ ∧ ߬ெ௜ ห and for every ߬ ∈  ௜ weܨ
have that ߪ ∧ ߬௠௜ ⊑ ߪ ∧ ߬ெ௜ .  
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We will show that for 1 ≤ ݅ < ݆ ≤ ݀, we have that ߪ ∧ ߬ெ௜ ⊊ ߪ ∧
߬௠
௝ . This  proves both (iv) and that ߬௠ = ߬௠ଵ , ߬ெ = ߬ௌ  have the desired 

properties.  

However, this follows immediately from the fact that หߪ ∧ ߬ெ௜ ห =
max෦ ௜ܨ) , (ߪ < mın෦ ൫ܨ௝ , ൯ߪ = หߪ ∧ ߬௠

௝ ห. 

The following result is an immediate consequence of Lemma 
(2.1.12) .  

Corollary (2.1.13) [2]: 

Let ߙ be a countable ordinal number and (ܨ, (ߪ ∈G	ఈ. Then the 
following  hold: 

i. mın෦ ,ܨ) (ߪ = min{|ߪ ∧ ߬|:	߬ ∈  .{ܨ
ii. max෦ ,ܨ) (ߪ = max{|ߪ ∧ ߬|:	߬ ∈  .{ܨ

Corollary (2.1.14) [2]: 

Let ߙ be a countable ordinal number and (ܨ, (ߪ ∈G	ఈ, such that #ܨ ≥
2.  Then 

mın෦ ,ܨ) (ߪ ≤ min{|߬ଵ, ߬ଶ|:	߬ଵ, ߬ଶ ∈ ߬ଵ	with	ܨ ≠ ߬ଶ}. 

Proof: 

Let ߬ଵ ≠ ߬ଶ be in ܨ. By Lemma (2.1.12), there exists ߬௠ ∈  such ,ܨ
that  mın෦ ,ܨ) (ߪ = ߪ| ∧ ߬௠| and ߪ ∧ ߬௠ ⊑ ߪ ∧ ߬ଵ as well as ߪ ∧ ߬௠ ⊑ ߪ ∧
߬ଶ. It follows  that ߪ ∧ ߬௠ ⊑ ߬ଵ ∧ ߬ଶ. We conclude that min (ܨ, (ߪ ≤
|߬ଵ ∧ ߬ଶ|.  

Lemma (2.1.15) [2]: 

Let ߙ be a countable ordinal number and (ܨ, (ߪ ∈G	ఈ, such that #ܨ ≥
2.  Then there exists ߪଵ ∈ {0,1}ℕ, such that (ܨ, (ᇱߪ ∈G	ఈ  and 

mın෦ ,ܨ) (ᇱߪ ≤ min{|߬ଵ, ߬ଶ|:	߬ଵ, ߬ଶ ∈ ߬ଵ	with	ܨ ≠ ߬ଶ}. 

Proof: 

We prove this lemma by transfinite induction on ߙ. Assume that ߙ =
1, ,ܨ) (ߪ ∈G	ଵ, such that #ܨ ≥ 2 and ܨ = {߬௜}௜ୀଵௗ , ݀ ≥ 2 such that the 
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assumptions  of Definition (2.1.5) are satisfied. Then ߪ ∧ ߬ଵ ⊊ ߪ ∧ ߬ଶ and 
by Lemma (2.1.11) we have that ߪ ∧ ߬ଵ = ߬ଵ ∧ ߬ଶ. We conclude that 
mın෦ ,ܨ) (ߪ = ߪ| ∧ ߬ଵ| = |߬ଵ ∧ ߬ଶ|. Corollary (2.1.14) yields that 
mın෦ ,ܨ) (ߪ = min{|߬ଵ ∧ ߬ଶ|:	߬ଵ, ߬ଶ ∈ ߬ଵ	with	ܨ ≠ ߬ଶ} and hence, the 
desired ߪᇱ is ߪ itself.  

Assume now that ߙ is a countable ordinal number and that the 
conclusion  holds for every ߚ <   .ߙ

If ߙ is a limit ordinal number, choose {ߚ௡}௡ a strictly increasing 
sequence of  ordinal numbers with sup

௡
௡ߚ =  such that the assumptions ,ߙ

of Definition (2.1.8) are satisfied. Let (ܨ, (ߪ ∈G	ఉ with #ܨ ≤ 2. Then 
there is ݊ ∈ ℕ such that (ܨ, (ߪ ∈G	ఉ೙ and mın෦ ,ܨ) (ߪ ≥ ݊	. Corollary 
(2.1.14) yields the following: 

																						min{|߬ଵ, ߬ଶ|:	߬ଵ, ߬ଶ ∈ ߬ଵ	with	ܨ ≠ ߬ଶ} ≥ ݊.																						(1) 

By the inductive assumption, there exists ߪᇱ ∈ ,ܨ) (ᇱߪ ∈G	ఉ೙ and  
mın෦ ,ܨ) (ߪ ≤ min{|߬ଵ, ߬ଶ|:	߬ଵ, ߬ଶ ∈ ߬ଵ	with	ܨ ≠ ߬ଶ}.. By (2) we have that 
mın෦ ,ܨ) (ᇱߪ ∈G	ఈ. 

Assume now that α is a successor ordinal number with ߙ = ߚ + 1 and 
let   
,ܨ) (ߪ ∈G	ఈ with #ܨ ≥ 2. If (ܨ, (ߪ ∈G	ఉ, then the inductive assumption 
yields the  desired result. If this is not  the case, then (ܨ,  is either (ߪ
skipped, or attached.  If it  is attached, then there is (ܨ௜, ௜)௜ୀଵௗߪ  an attached 
branching of ߪ, such that ܨ = ⋃ ௜ௗܨ

௜ୀଵ . If ݀ = 1, then (ܨ, (ଵߪ ∈G	ఉ and by 
the inductive assumption we are done.  Otherwise, choose ߬ଵ ∈ ,ଵܨ ߬ଶ ∈
ߪ ଶ. Lemma (2.1.12) (iii) yields thatܨ ∧ ߬ଵ = ߪ ∧ ଵߪ ⊊ ߪ ∧ ଶߪ = ߪ ∧ ߬ଶ 
and by Lemma (2.1.11) we have that ߪ ∧ ߬ଵ = ߬ଵ ∧ ߬ଶ. We conclude that 
mın෦ ,ܨ) (ߪ = ߪ| ∧ |ଵߪ = ߪ| ∧ ߬ଵ| = |߬ଵ ∧ ߬ଶ| and therefore,  applying 
Corollary (2.1.14) we have that ߪ is the desired ߪᇱ. 

If on the other hand (ܨ,  ,is attached, using similar reasoning (ߪ
Lemma  (2.1.12) (iv) and Corollary (2.1.3) , we conclude the desired 
result. 
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Corollary (2.1.16) [2]: 

Let {(ܨ௞ , ⋃ ௞)}௞ be a sequence inߪ 	ఉழఠభ G	ఉ  with  {mın෦ ௞ܨ) ,  ௞)}௞ߪ
tending to  infinity. Then, if ܨ is an accumulation point of {ܨ௞}௞, we have 
that #ܨ ≤ 1.  

Proof: 

Let ܨ be an accumulation point of {ܨ௞}௞, and assume that there are  
߬ଵ ≠ ߬ଶ in ܨ. Then there exists ܮ an infinite subset of the natural 
numbers, such  that ߬ଵ, ߬ଶ ∈ ݇ ௞, for everyܨ ∈  Corollary (2.1.4) yields .ܮ
that |߬ଵ ∧ ߬ଶ| ≥ mın෦ ௞ܨ) , ݇ ௞), for allߪ ∈ We conclude that |߬ଵ .ܮ ∧ ߬ଶ| =
∞,i.e. ߬ଵ = ߬ଶ, a contradiction.  

The following two lemmas will both be useful in the sequel.  

Lemma (2.1.17) [2]: 

Let ߙ be a countable ordinal number and (ܨ, (ߪ ∈G	ఉ. Let also ߪᇱ ∈
{0,1}ℕ,  such that ߪᇱ ∧ ߬ = ߪ ∧ ߬ for all ߬ ∈  :Then the following hold .ܨ

(i) (ܨ, (ᇱߪ ∈G	ఈ. 

(ii)	mın෦ ,ܨ) ߪ ;) = mın෦ ,ܨ) (ߪ 	ܽ݊݀	max෦ ,ܨ) (ᇱߪ = max෦ ,ܨ)  .(ߪ

Proof: 

We prove this lemma by transfinite induction. The case ߙ = 1 follows 
easily  from the definition of G	ଵ. Assume now that the result holds for 
every ߚ <  ,is a limit ordinal number is trivial ߙ The  case where .ߙ
assume therefore that ߙ = ߚ + 1  and let (ܨ, (ߪ ∈G	ఈ ∈ {0,1}ℕ  such that 
the assumptions of the lemma are satisfied.  Notice that it is enough to 
show that (i) is true, since part (ii) of the conclusion  follows immediately 
from (i) and Corollary (2.1.13).  

We treat first the case when (ܨ,  is skipped, i.e. there exists (ߪ
௜ܨ) , ௜)௜ୀଵௗߪ  a  skipped branching of ߪ in G	ఉ, with ܨ = ⋃ ௜ௗܨ

௜ୀଵ . To show 
that (ܨ, (ᇱߪ ∈G	ఈ, it  suffices to show that (ܨ௜, ௜)௜ୀଵௗߪ  is a skipped 
branching of ߪᇱ.  
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Notice that it is enough to show that ߪ ∧ ௜ߪ = ᇱߪ ∧ ݅ ௜ forߪ = 1,… , ݀, 
which,  by Lemma (2.1.11), is equivalent to ߪ ∧ ௜ߪ ⊊ ߪ ∧ ݅ ᇱ forߪ =
1, … , ݀.  

Fix 1 ≤ ݅ ≤ ݀ and chose ߬ ∈ ߪ ௜. Lemma (2.1.12) (iii) yields thatܨ ∧
௜ߪ = ߪ ∧ ߬ = ᇱߪ ∧ ߬. Once more, Lemma (2.1.11) [2] yields that ߪ ∧ ௜ߪ =
ߪ ∧ ߬ ⊊ ߪ ∧  .ᇱߪ

Assume now that (ܨ, ௜ܨ) is attached, i.e., there exists (ߪ , ᇱ)௜ୀଵௗߪ  an 
attached branching of ߪ in G	ఉ, with ܨ = ⋃ ௜ௗܨ

௜ୀଵ . Since, by the inductive 
assumption, the conclusion holds for the (ܨ௜, ,(ߪ ݅ = 1, … , ݀,  ᇱ it isߪ
straightforward to check that  (ܨ௜, ᇱ)௜ୀଵௗߪ  an attached branching of ߪᇱ in 
G	ఉ	 and therefore (ܨ, (ᇱߪ ∈ G	ఈ .          

Lemma (2.1.18) [2]: 

Let (ܨ, (ߪ ∈ ⋃ 	ఉழఠభ G	ఉand ߪᇱ ∈ {0,1}ℕ such that ߪ⋀߬ ⊊  ᇱ⋀߬ forߪ
all ߬ ∈ ߙ Then, if .ܨ = min{ߚ: ,ܨ) (ߪ ∈ G	ఉ}, ߙ is not a limit ordinal 
number and the  following hold: 

(i) If ߙ = 1, then ⋕ ܨ = 1. 
(ii) If ߙ = ߚ + 1, then there exists ߪᇱᇱ ∈ {0,1}ℕ with (ܨ, (ᇱᇱߪ ∈ 

G	ఉ. 

Proof: 

The fact that ߙ is not a limit ordinal number follows trivially from 
Definition  (2.1.8) . The  case ߙ = 1 is easy, we shall therefore only prove 
the case ߙ = ߚ + 1. Since (ܨ, (ߪ ∉ G	ఉ, it is either skipped or attached. 

Assume first that there is(ܨ௜ , ௜)௜ୀଵௗߪ   a skipped branching of σ in G	ఉ 
with ܨ = ⋃ ௜ௗܨ

௜ୀଵ . If ݀ = 1, then ߪᇱᇱ =  ଵ is evidently the desired elementߪ
of {0,1}ℕ.  We will therefore prove that ݀ = 1. Towards a contradiction, 
assume that ݀ ≥ 2  and choose ߬ଵ ∈ ,ଵܨ ߬ଶ ∈   .ଶܨ

Lemma (2.1.12) (iii) yields that ߪ⋀߬ଵ = ଵߪ⋀ߪ ⊊ ଶߪ⋀ߪ =  ଶ. By߬⋀ߪ
the  assumption, ߪ⋀߬ଵ ⊊  ᇱ⋀߬ଵ and using Lemma (2.1.11) we concludeߪ
that ߪ⋀߬ଵ = ଶ߬⋀ߪ ᇱ. Similarly, we conclude thatߪ⋀ߪ =  ᇱ. We haveߪ⋀ߪ
shown that ߪ⋀ߪᇱ ⊊   .ᇱ, which is absurdߪ⋀ߪ
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If (ܨ,  is attached, then using similar arguments and Lemma (2.1.12) (ߪ
(iv), one can prove the desired result.  

Proposition (2.1.19) [2]: 

Let ߙ be a countable ordinal number, (ܨ, (ߪ ∈G	ఉ and ܩ be a non-
empty  subset of  ܨ. Then (ܩ, (ߪ ∈G	ఉ.  

Proof: 

We proceed by transfinite induction. For ߙ = 1 the result easily 
follows  from the definition of G	ଵ. Assume that the statement is true for 
every ߚ <  is a limit ordinal number is an easy ߙ The  case when .ߙ
consequence of the inductive assumption and Corollary (2.1.13) . Assume 
therefore that ߙ = ߚ + 1 and let  (ܨ, ܩ ఈ and	be in G (ߪ ⊂   .ܨ

Consider first the case, when (ܨ, ௜ୀଵௗ(௜ܨ) is skipped and (ߪ  be a 
skipped  branching of σ in G	ఉ, such that ܨ = ⋃ ௜ௗܨ

௜ୀଵ .  

Set ൛݅ଵ < ⋯ < ݅௣ൟ = {݅ ∈ {1, … , ݀}: ܩ ∩ ௜ܨ ≠ ߶} and ܩ௝ = ܩ ∩  ௜ೕ forܨ

݆ = 1, … , ௝ܩBy the inductive assumption, ቀ .݌ , ݆ ఉ for	௜ೕቁ is in Gߪ =

1, … , ௝ܩand,  evidently, it is enough to show that ቀ ݌ , ௜ೕቁ௝ୀଵߪ
௣

 is a skipped 

branching of ߪ.  Obviously, assumptions (i), (ii) and (iii) from Definition 
(2.1.6) are satisfied.  

Corollary (2.1.13) yields that mın෦ ቀܨ௜ೕ , ௜ೕቁߪ ≤ mın෦ ቀܩ௝,  ௜ೕቁ and henceߪ

(iv) is  satisfied. Moreover ݌ ≤ ݀ ≤ |ଵߪ⋀ߪ| ≤ หߪ⋀ߪ௜భห, which means that 
(v) is also satisfied.  

If on the other hand (ܨ,  is attached, using similar reasoning and (ߪ
Corollary  (2.1.13), the desired result can be easily proven.  

We are now ready to define the families ࣡ఈ, for ߙ < ߱ଵ and prove 
their main properties.  

Definition (2.1.20) [2]: 

For a countable ordinal number ߙ we define  

࣡ఈ = ܨ} ⊂ {0,1}ℕ: there	exists	ߪ ∈ {0,1}ℕ	with	(ܨ, ߪ ∈) G	ఈ} ∪ {߶}. 
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Proposition (2.1.21) [2]: 

Let ߙ be a countable ordinal number. Then G	ఈ is ߙ-large. In 
particular, for  every ܤ infinite subset of {0,1}ℕ  there exists a one to one 
map ߶ ∶ ℕ → (ܨ)߶ with ܤ ∈ ࣡ఈ for ever	ܨ ∈ ܵఈy and ߙ < ߱ଵ.  

Proof: 

Let ܤ be an infinite subset of {0,1}ℕ Choose {߬௞}௞ pairwise disjoint  
elements of  ܤ and ߪ ∈ {0,1}ℕ, with lim

୩
τ୩ = ௞߬⋀ߪ such that ,ߪ ⊊

݇  ௞ାଵ for all߬⋀ߪ ∈ ℕ. Define ߶ ∶ ℕ → (݇)߶ with ,ܤ = ߬௞.  

We shall inductively prove that for every ߙ < ߱ଵ and ܨ ∈ ܵఈ, the 
following  hold: 

(i) (߶(ܨ), (ߪ ∈ G	ఈ. 

(ii)		mın෧(߶(ܨ), (ߪ = ୫୧୬ி| and max෦߬⋀ߪ| ,(ܨ)߶) (ߪ =
    .|୫ୟ୶ி߬⋀ߪ|

The case ߙ = 1 can be easily derived from the definition of G	ଵ. 
Assume  now that ߙ is a countable ordinal number and that the statement 
is true for every ܨ ∈ ఉܵ and ߚ <  .ߙ

We treat first the case when ߙ is a limit ordinal number. Choose {ߚ௡}௡ 
a  strictly increasing sequence of ordinal numbers with sup

௡
௡ߚ =  such ,ߙ

that 

ఈܩ =ራ൛(ܩ, (ᇱߪ ∈ ఉ೙ܩ : mın෦ ,ܩ) (ᇱߪ ≥ ݊ൟ
ஶ

௡ୀଵ

 

as well as 

ܵఈ =ራ൛ܨ ∈ ఉܵ೙: min ܨ ≥ ݊ൟ
ஶ

௡ୀଵ

. 

Then, if ܨ ∈ ܵఈ, there exists ݊ ∈ ℕ with ܨ ∈ ఉܵ೙ and min ܨ ≥ ݊. The 
inductive  assumption yields that (߶(ܨ), (ߪ ∈G	ఉ೙ and  mın෦ ,(ܨ)߶) (ߪ =
|୫୧୬ி߬⋀ߪ| ≥ min ܨ ≥ ݊. We conclude that (߶(ܨ), (ߪ ∈G	ఈ and, of 
coursemın෦ ,(ܨ)߶) (ߪ =   .|୫୧୬ி߬⋀ߪ|
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Assume now that ߙ	 = ߚ + 1 and let ܨ ∈ ܵఈ. Then there exist 
min ܨ ≤ ଵܨ < ⋯ < ܨ ௗ in ఉܵ withܨ = ⋃ ௜ௗܨ

௜ୀଵ .  

The inductive assumption yields that (߶(ܨ௜), ௜ୀଵௗ(ߪ  is an attached 
branching  of ߪ in G	ఉ and hence (߶(ܨ), (ߪ ∈G	ఈ.  

Moreover,	mın෦ ,(ܨ)߶) (ߪ = mın෦ ,(ଵܨ)߶) (ߪ = หߪ⋀߬୫୧୬ிభห =
୫୧୬ி|.  Similarly, we conclude that max෦߬⋀ߪ|	 ,(ܨ)߶) (ߪ =   .|୫ୟ୶ி߬⋀ߪ|

subset of ܣ, such that the Cantor-Bendixson index of ࣡ఈ ↾  is equal ܤ	
to ߱ఈ + 1 for all ߙ < ߱ଵ. Since we do not  make use of this fact, we omit  

The result concerning the families ࣡ఈ, ߙ < ߱ଵ is the following.  

Theorem (2.1.22) [2]: 

Let ߙ be a countable ordinal number. Then ࣡ఈ is an ߙ-large, 
hereditary and   compact family of finite subsets of {0,1}ℕ.  

Proof: 

All we need to prove, is that ࣡ఈ is compact and we do so by transfinite  
induction. Let us first treat the case ߙ = 1 and assume ܨ is in the closure 
of ࣡ଵ.  

If ܨ is finite, since ࣡ଵ is hereditary, then ܨ ∈ ࣡ଵ. It is therefore 
sufficient to  show that ܨ cannot be infinite. Since ࣡ଵ is hereditary, we 
may assume that ܨ is  countable and let {߬௜: ݅ ∈ ℕ} be an enumeration of 
  .ܨ

We conclude, that setting ܨ௞ = {߬௜: ݅ = 1, … , ݇}, then ܨ௞ ∈ ࣡ଵ and 
௞ܨ# = ݇.  Choose {ߪ௞}௞ a sequence in {0,1}ℕ such that (ܨ௞ , (௞ߪ ∈G	ଵ for 
all ݇.  

We yield that ݇ ≤ mın෦ ௞ܨ) ,  ௞) for all ݇. On the other hand,  byߪ
Corollary (2.1.14) we have that mın෦ ௞ܨ) , (௞ߪ ≤ |߬ଵ⋀߬ଶ|. We conclude that 
݇ ≤ 	 |߬ଵ⋀߬ଶ| for all ݇ ∈ ℕ, which is obviously not possible.  

Assuming now that α is a countable ordinal number such that ࣡ఉ is 
compact  for every ߚ <   .we will show that the same is true for ࣡ఈ ,ߙ
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We treat first the case in which ߙ is a limit ordinal number. Fix {ߚ௡}௡ 
a  strictly increasing sequence of ordinal numbers with sup

௡
௡ߚ =  such ߙ

that 

ఈܩ =ራ൛(ܨ, (ߪ ∈ :ఉ೙ܩ mın෦ ,ܨ) (ߪ ≥ ݊ൟ
ஶ

௡ୀଵ

. 

Let ܨ be in the closure of  ࣡ఈ. As previously, if ܨ is finite then it is in 
࣡ఈ and   it is therefore enough to show that ܨ cannot be infinite. Once 
more, we may assume  that ܨ = {߬௜: ݅ ∈ ℕ}. Setting ܨ௞ = {߬ଵ, … , ߬௞}, we 
have that ܨ௞ ∈ ࣡ఈ,  therefore there exists {ߪ௞}௞, with (ܨ௞ , (௞ߪ ∈G	ఈ.  

Using Corollary (2.1.14) we have that mın෦ ௞ܨ) , (௞ߪ ≤ |߬ଵ⋀߬ଶ| = ݀. In  
other words, (ܨ௞ , (௞ߪ ∈G	ఉ೙ೖ , with ݊௞ ≤ ݀  for all ݇. Passing, if 

necessary, to a  subsequence, we have that	(ܨ௞ , (௞ߪ ∈G	ఉ೙బ , for all ݇. We 
conclude that ܨ ∈ ࣡ఉ೙బ ,  in other words ࣡ఉ೙బ  is not compact, which is 
absurd.  

Assume now that ߙ = ߚ + 1. Let ܨ be in the closure of  ࣡ఈ. As 
previously,  it is enough to show that ܨ cannot be infinite. Once more, we 
may assume that ܨ = {߬௜: ݅ ∈ ℕ}.  

Set ܨ௞ = {߬௜: ݅ = 1,… , ݇}, for all ݇. Then ܨ௞ ∈ ࣡ఈ, i.e. there exists ߪ௞ 
such  that (ܨ௞ , (௞ߪ ∈ G	ఈ. Setting ݀ = |߬ଵ⋀߬ଶ|, Corollary (2.1.15),  yields 
the following: 

																																																				mın෦ ௞ܨ) , (௞ߪ
≤ ݀		for	all	݇.																																									(2) 

By Definition (2.1.4), Remark (2.1.10) and (2), for every ݇ ∈ ℕ, there 
exist  ൛ܨ௝௞ൟ௝ୀଵ

௠ೖ  pairwise disjoint sets in ࣡ఈ, with ܨ௞ = ⋃ ௝௞ܨ
௠ೖ
௝ୀଵ  and ݉௞ ≤

݀. Passing to a subsequence, we may assume that ݉௞ = ݉, for all ݇.  

By the compactness of ࣡ఈ, we may pass to a further subsequence and 
find  ܩଵ, ,ଶܩ … , ௠ܩ ∈ ࣡ఉ, such that lim

௞
௝௞ܨ = ݆ ௝, forܩ = 1, … ,݉.  

We conclude that ܨ = lim
௞
௞ܨ = lim

௞
൫⋃ ௝௞௠ܨ

௝ୀଵ ൯ = ⋃ ௝௠ܩ
௝ୀଵ . Since 

⋃ ௝௠ܩ
௝ୀଵ   is a finite set, this cannot be the case.  
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Although the initial motivation behind the definition of the ࣡ఈ families 
was  the construction of a nonseparable reflexive space with ℓଵ as a 
unique spreading  model, we believe that they are of independent interest, 
as they retain many of the  properties of the families ܵఈ. They are 
therefore a version of these families, defined  on the Cantor set {0,1}ℕ. 
We present a few more properties the ࣡ఈ have in  common with the ܵఈ.  

Lemma (2.1.23) [2]:  

Let ߙ < ݊ be countable ordinal numbers. Then there exists ߚ ∈ ℕ 
such that 

,ܨ)} (ߪ ∈ :ఈܩ mın෦ ,ܨ) (ߪ ≥ ݊} ⊂ G	ఉ . 

Proof: 

Fix ߙ a countable ordinal number. We prove this proposition by 
means of  transfinite induction, starting with ߚ = ߙ + 1. In this case the 
result follows from  the definition of G	ఉ, for ݊ = 1.  

Assume now that ߚ is a countable ordinal number with ߙ <  such ,ߚ
that the  statement holds for every ߙ < ߛ < ߚ If .ߚ = 	ߛ + 1, by the 
inductive assumption,  there exists ݊ ∈ ℕ, such that 
,ܨ)} (ߪ ∈G	ఈ: mın෦ ,ܨ) (ߪ ≥ ݊} 	⊂ G	ఊ. Evidently, we  also have that 
,ܨ)} (ߪ ∈ G	ఈ: mın෦ ,ܨ) (ߪ ≥ ݊} 	⊂ G	ఉ.  

If ߚ is a limit ordinal number, fix {ߚ௞}௞ a strictly increasing sequence 
of  ordinal numbers, such that ߚ = lim

௞
 ௞ andߚ

ఈܩ =ራ൛(ܨ, (ߪ ∈ ఉೖܩ : mın෦ ,ܨ) (ߪ ≥ ݇ൟ
௞

. 

Choose ݇଴ ∈ ℕ with ߙ < ௞బߚ . By the inductive assumption, there 
exists ݉ ∈ ℕ, such that {(ܨ, (ߪ ∈ G	ఈ: mın෦ ,ܨ) (ߪ ≥ ݉} ⊂ G	ఉೖబ . Setting 
݊ = max{݇଴, ݉}, we have the desired result.  
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Lemma (2.1.24) [2]: 

Let ߙ < ݊ be countable ordinal numbers. Then there exists ߚ ∈ ℕ ∪
{0}  such that G	ఈ ⊂ G	ఉା௡.  

Proof: 

Fix ߚ a countable ordinal number. We proceed by transfinite induction 
on ߙ.  In the case ߙ = 1, it is easily checked that G	ଵ ⊂ G	ఉ. Assume now 
that ߙ is a  countable ordinal with ߙ <  such that the statement holds ,ߚ
for every ߛ < ߙ If .ߙ = ߛ	 + 1, then by the inductive assumption there 
exists	݊ ∈ ℕ ∪ {0} with G	ఊ ⊂ G	ఉା௡. We conclude that G	ఈ ⊂G	ఉା(௡ାଵ). 
If ߙ is a limit ordinal, fix {ߙ௞}௞ a  strictly increasing sequence of ordinal 
numbers, such that ߙ = lim

௞
 ௞ andߙ

ఈܩ =ራ൛(ܨ, (ߪ ∈ :ఈೖܩ mın෦ ,ܨ) (ߪ ≥ ݇ൟ
௞

. 

Lemma (2.1.23) yields that there exists ݉ ∈ ℕ with  
,ܨ)} (ߪ ∈G	ఈ: mın෦ ,ܨ) (ߪ ≥ ݉} ⊂ G	ఉ. The inductive assumption, yields 
that for ݇ = 1, … ,݉ − 1, there exists ݊௞ ∈ ℕ ∪ {0} with G	ఈೖ ⊂ G	ఉା௡ೖ. 
Setting ݊ = {݉, ݊ଵ, … , ݊௠ିଵ}, it can be easily checked that G	ఈ ⊂ G	ఉା௡.   

Proposition (2.1.25) [2]: 

Let ߙ < ݊ be countable ordinal numbers. Then there exists ߚ ∈ ℕ 
such that 

ܨ} ∈ ࣡ఈ :	 ⋕ ܨ ≥ 2	andmin{|߬ଵ⋀߬ଶ|:	߬ଵ, ߬ଶ ∈ ,ܨ ߬ଵ ≠ ߬ଶ} ≥ ݊} ⊂ ࣡ఉ . 

Proof: 

Let ߙ < ݊ be countable ordinal numbers. Choose ߚ ∈ ℕ such that the  
conclusion of  Lemma (2.1.23) is satisfied. We show that this ݊ is the 
desired   natural number. Le	ܨ ∈ ࣡ఈ with ⋕ ܨ ≥ 2 and 
min{|߬ଵ⋀߬ଶ|:	߬ଵ, ߬ଶ ∈ ,ܨ ߬ଵ ≠ ߬ଶ} ≥ ݊. Then there exists ߪ ∈ {0,1}ℕ with 
,ܨ) (ߪ ∈G	ఈ . Lemma (2.1.15) yields that  there exists ߪᇱ ∈ {0,1}ℕ such 
that (ܨ, (ᇱߪ ∈ G	ఈ and mın෦ ,ܨ) (ᇱߪ ≥ ݊.  By the  choice of ݊, we have that 
,ܨ) (ᇱߪ ∈ G	ఉ, i.e. ܨ ∈ ࣡ఈ.  
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The following proposition is an obvious conclusion of  Lemma 
(2.1.24) .  

Proposition (2.1.26) [2]: 

  Let ߙ < ݊ be countable ordinal numbers. Then there exists ߚ ∈
ℕ ∪ {0}  such that ࣡ఈ ⊂ ࣡ఉା௡. 

  



٤٢ 
 

Section (2.2): The spaceল૛ℵ૙   and Spaces Adimitting Spreading 
Model 

In this section we define the space॒ଶℵబ   and prove that it is reflexive, 
has an  unconditional Schauder basis of length the continuum and that it 
admits only ℓଵ as  a spreading model. In the beginning we define a 
sequence of non-separable spaces  ܺ௡ , ݊ ∈ ℕ. Each one is defined using 
the family ࣡௡ in a similar manner as the  Schreier family ଵܵ is used to 
define the space . Then the construction of ॒ଶℵబ   is presented, which 
combines the spaces ܺ௡ and Tsirelson space, using a method  appeared 
the end the properties of the space ॒ଶℵబ  are deduced by  directly using the 
structure of the families ࣡௡.  

Before proceeding to the definition of the spaces ܺ௡ and ॒ଶℵబ , let us 
first  recall the notion of ℓଵఈ spreading models.  

Definition (2.2.1) [2]: 

Let {ݔ௞}௞ be a sequence in a Banach space and ߙ be a countable 
ordinal  number. We say that {ݔ௞}௞ generates an ℓଵఈ spreading model, if 
there exists a  constant ܿ > 0 such that for every ܨ ∈ ܵఈ and every real 
numbers {ߣ௞}௞∈ி the  following holds: 

ะ෍ߣ௞ݔ௞
௞∈ி

ะ ≥ ܿ෍|ߣ௞|
௞∈ி

. 

Let us from now on fix a one to one and onto map ߬ →  ఛ from {0,1}ℕߦ
to the  cardinal number 2ℵబ .  

Definition (2.2.2) [2]: 

For ݊ ∈ ℕ define a norm on ܿ଴଴(2ℵబ) in the following manner: 

(i) For ݊ ∈ ℕ, we may identify an ܨ ∈ ࣡௡ with a linear 
functional ܨ ∶ ܿ଴଴(2ℵబ) → ℝ in the following manner. 
For ݔ = ∑ క௖కకழଶℵబߣ ∈ ܿ଴଴(2ℵబ) 

(ݔ)ܨ =෍ߣకഓ
ఛ∈ி

. 

(ii) For ݔ ∈ ܿ଴଴(2ℵబ)  define  
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௡‖ݔ‖ = sup{|(ݔ)ܨ|: ܨ ∈ ࣡௡}. 

Set ܺ௡ to be the completion of (ܿ଴଴(2ℵబ), ‖	⋅	‖௡). 

Proposition (2.2.3) [2]:  

Let ݊ ∈ ℕ. Then the following hold: 

(i) The space ܺ௡ is ܿ଴ saturated. 
(ii) The unit vector basis ൛݁కൟకழଶℵబ  is a normalized, suppression  

unconditional and weakly null basis of ܺ௡, with the length of 
the  continuum. 

(iii) Any subsequence of the unit vector basis admits only ℓଵ as a  
spreading model.  

 

By ܶ we denote Tsirelson space as defined and by t{݁௡}௡ we denote its  
usual basis. We are now ready to define the space ॒ଶℵబ  , using the spaces 
ܺ௡, Tsirelson space ܶ and a method appeared .  

Definition (2.2.4) [2]: 

Define the following norm on ܿ଴଴(2ℵబ). ܨ ∈ ܿ଴଴(2ℵబ) 

‖ݔ‖ = ะ෍
1
2௡
௡݁௡‖ݔ‖

ஶ

௡ୀଵ

ะ
்

. 

Set ॒ଶℵబ  to be the completion of (ܿ଴଴(2ℵబ), ‖	⋅‖).  

Set ߣ = ቛ∑ ଵ
ଶ೙
݁௡ஶ

௡ୀଵ ቛ
்

  and for ߦ < 2ℵబ , ݁̃క =
ଵ
ఒ
݁క. Since ൛݁కൟకழଶℵబ  is  

normalized and suppression unconditional in ܺ௡, and {݁௡}௡ is 1-
unconditional in ܶ, we conclude that ൛݁̃కൟకழଶℵబ  is a normalized 

suppression unconditional basis of ॒ଶℵబ .  

For ݊ ∈ ℕ define ௡ܲ:	॒ଶℵబ → ܺ௡  with ௡ܲݔ =
ଵ
ଶ೙
  Evidently ௡ܲ is well .ݔ

defined and ‖ ௡ܲ‖ ≤ 1, for all ݊ ∈ ℕ.  
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The main result is the following, which is a combination of 
Proposition (2.2.15) and Corollary (2.2.17) , which will be presented in 
the sequel.  

Theorem (2.2.5) [2]: 

The space ॒ଶℵబ  is a non-separable reflexive space with a suppression  
unconditional Schauder basis with the length of the continuum, having 
the  following property. Every normalized weakly null sequence in ॒ଶℵబ  
has a  subsequence that generates an  ℓଵ௡ spreading model, for every ݊ ∈
ℕ.  

Lemma (2.2.6) [2]: 

Let ൛݁̃కೖൟ௞ be a subsequence of the basis ൛݁̃కൟకழଶℵబ  of ॒ଶℵబ . Then it has 

a  subsequence that generates an ℓଵ௡  spreading model for every ݊ ∈ ℕ.  

Proof: 

Set ܤ = ఛߦ	:߬} = ݇	sme	for	௞ߦ ∈ ℕ}. By Proposition (2.1.21) [2] there 
exists  a one to one map ߶ ∶ ℕ → (ܨ)߶ such that ܤ ∈ ࣡௡ for every ܨ ∈
ܵ௡ and ݊ ∈ ℕ.  

Pass to ܮ an infinite subset of the natural numbers such that the map 
߶෨ ∶ ܮ → 2ℵబ 	with ߶෨(݆) =  థ(௝) is strictly increasing. We will show thatߦ

ቄ݁̃కഝ(ೕ)ቅ௝∈௅
  admits an ℓଵ௡ spreading model for every ݊ ∈ ℕ.  

By unconditionality, it is enough to show that there are positive 
constants ܿ௡  such that for every ݊ ∈ ℕ, ܨ ∈ ܵ௡, ܨ ⊂  ௝ൟ௝∈ிݐand ൛ ܮ

positive real numbers, we  have that 

ቯ෍ݐ௝݁̃కഝ(ೕ)
௝∈ி

ቯ ≥ ܿ௡෍ݐ௝
௝∈ி

. 

By definition, we have that ቛ∑ ௝݁̃కഝ(ೕ)௝∈ிݐ ቛ ≥ ఒ
ଶ೙
ቛ∑ ௝݁కഝ(ೕ)௝∈ிݐ ቛ

௡
 and by 

the  choice of ߶, we have that ߶(ܨ) ∈ ࣡௡. Hence, ߶(ܨ) ቀ∑ ௝݁కഝ(ೕ)௝∈ிݐ ቁ =

∑ ௝௝∈ிݐ  which yields that ቛ∑ ௝݁కഝ(ೕ)௝∈ிݐ ቛ
௡
= ∑ ௝௝∈ிݐ .   
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We finally conclude that ቛ∑ ௝݁̃కഝ(ೕ)௝∈ிݐ ቛ ≥ ఒ
ଶ೙
∑ ௝௝∈ிݐ .  

Proposition (2.2.7) [2]:  

Let {ݔ௞}௞ be a normalized, disjointly supported block sequence of 
൛݁̃కൟకழଶℵబ ,  such that lim	sup

௞
௞‖ஶݔ‖ > 0. Then {ݔ௞}௞ has a subsequence 

that generates an ℓଵ௡  spreading model for every ݊ ∈ ℕ.  

Proof: 

By unconditionality, it is quite clear, that by passing, if necessary, to a  
subsequence of {ݔ௞}௞, there exist ߝ > 0 and ൛݁̃కೖൟ௞ a subsequence of 

൛݁̃కൟకழଶℵబ ,  such that for any ߣଵ, … ,  ௠ real numbers, one has thatߣ

ะ෍ߣ௞ݔ௞

௠

௞ୀଵ

ะ > ߝ ะ෍ߣ௞݁̃కೖ

௠

௞ୀଵ

ะ. 

Lemma (2.2.6) yields the desired result.  

Proposition (2.2.8) [2]: 

Let {ݔ௞}௞ be a normalized block sequence in ॒ଶℵబ  , such that 
lim
௞
‖ ௡ܲݔ௡‖௡ = 0, for all ݊ ∈ ℕ. Then {ݔ௞}௞ has a subsequence equivalent 

to a  block sequence in ܶ. In particular, {ݔ௞}௞ has a subsequence that 
generates an ℓଵ௡  spreading model for every ݊ ∈ ℕ. 

Proof: 

Using a sliding hump argument, it is easy to see, that passing, if 
necessary,  to a subsequence of {ݔ௞}௞, there exists {ܫ௞}௞  increasing 
intervals of the natural  numbers, such that if we set ݕ௞ =
∑ ଵ

ଶ೙௡∈ூೖ   .௞{௞ݕ}  ௞ is equivalent to{௞ݔ} ௞‖௡݁௡, thenݔ‖

Lemma (2.2.9) [2]: 

Let {ݔ௞}௞ be a normalized, disjointly supported block sequence of  
൛݁̃కൟకழଶℵబ , such that the following holds. There exist ܿ > 0, ݊଴ ∈

ℕ, ௞ܨ) , (௞ߪ ∈ G	௡బ  for ݇ ∈ ℕ and ߪ ∈ {0,1}ℕ satisfying the following: 
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|(௞ݔ)௞ܨ|	(݅) > ܿ for all ݇ ∈ ℕ. 

(iii) The ܨ௞ are pairwise disjoint. 
(iv) ߪ ≠ ݇ ௞ for allߪ ∈ ℕ. 
(v) ߪ⋀ߪ௞ ⊊ ݇ ௞ାଵ for allߪ⋀ߪ ∈ ℕ. 
(vi) |ߪ⋀ߪ௞| < mın෦ ݇ for all (௞ݔ) ∈ ℕ. 

Then {ݔ௞}௞ generates an ℓଵ௡  spreading model for every ݊ ∈ ℕ.  

Proof: 

By changing the signs of the ݔ௞, we may assume that ܨ௞(ݔ௞) > ܿ for 
all ݊ ∈ ℕ.  

Arguing in a similar manner as in the proof of Proposition (2.1.23) [2] 
one  can inductively prove that for every ݊ ∈ ℕ and ܩ ∈ ܵ௡ the following 
hold: 

(a)	(⋃ ௞ܨ , ீ∋௞ߪ ) ∈G	௡బା௡. 

(b)   mın෦ (⋃ ௞ܨ , ீ∋௞ߪ ) = ୫୧୬ீ| and max෦ߪ⋀ߪ| (⋃ ௞ܨ , ீ∋௞ߪ ) =
 .|୫ୟ୶ீߪ⋀ߪ|

Since {ݔ௞}௞ is unconditional, it is enough find positive constants ܿ௡ >
0,  such that fixing ܩ ∈ ܵ௡ and {ߣ௞}௞∈ீ non-negative reals, we have the 
following: 

ะ෍ߣ௞ݔ௞
௞∈ீ

ะ > ܿ௡෍ߣ௞
௞∈ீ

. 

Properties (a) and (b), yield that ܨ = ⋃ ீ∋௞௞ܨ ∈ ࣡୬బା୬. This means the 
following: 

ะ෍ߣ௞ݔ௞
௞∈ீ

ะ ≥ ะ ௡ܲ೚ା௡ ൭෍ߣ௞ݔ௞
௞∈ீ

൱ะ
௡೚ା௡

 

=
2

2௡బା௡
ะ෍ߣ௞ݔ௞
௞∈ீ

ะ
௡బା௡
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>
2ܿ

2௡బା௡
෍ߣ௞
௞∈ீ

. 

Lemma (2.2.10) [2]: 

Let {ݔ௞}௞ be a normalized, disjointly supported block sequence of  
൛݁̃కൟకழଶℵబ , such that the following holds. There exist ܿ > 0, ݊଴ ∈ ℕ, ߪ ∈

{1,0}ℕ, a  sequence {ܨ௞}௞ in ࣡௡బsatisfying the following: 

(i) |ܨ௞(ݔ௞)| > ܿ for all ݇ ∈ ℕ. 
(ii) The set ܨ௞ are pairwise disjoint. 

(iii) (ܨ௞ , (௞ߪ ∈G	௡బ  for all ݇ ∈ ℕ. 
(iv) max෦ ௞ܨ) , (ߪ < mın෦ ,௞ାଵܨ) ݇ for all (ߪ ∈ ℕ. 

Then {ݔ௞}௞ generates an ℓଵ௡  spreading model for every ݊ ∈ ℕ.  

Lemma (2.2.11) [2]: 

Let {ݔ௞}௞ be a sequence in ॒ଶℵబ  and ݊ ∈ ℕ such that lim
௞
‖ ௡ܲݔ௞‖௡ = 0.  

Then for every ߝ > 0 there exists ݇଴ ∈ ℕ such that for every ݇ ≥ ݇଴ the 
following  holds: 

|(௞ݔ)ܨ| < ܨ	every	for			ߝ ∈ ࣡௡ . 

Proof: 

Fix ߝ > 0. Choose ݇଴ ∈ ℕ, such that ‖ ௡ܲݔ௞‖௡ =
ଵ
ଶ೙
௞‖௡ݔ‖ <

ଵ
ଶ೙
 for ,ߝ

every  ݇ ≥ ݇଴. By definition of the norm ‖	⋅	‖௡, this means the following: 

|(௞ݔ)ܨ| < ܨ	every	for			ߝ ∈ ࣡௡ . 

Lemma (2.2.12) [2]: 

Let {ݔ௞}௞ be a normalized, disjointly supported block sequence of  
൛݁̃కൟకழଶℵబ , such that lim

௞
௞‖ஶݔ‖ = 0 and there exists ݊ ∈ ℕ such that 

lim	sup
௞
‖ ௡ܲݔ௞‖௡ > 0. Assume moreover, that if ݊଴ =

min ൜݊: lim	sup
௞
‖ ௡ܲݔ௞‖௡ > 0ൠ, there exist ܿ > 0, ߪ ∈ {0,1}ℕ and {ܨ௞}௞ a  

sequence in ࣡௡బ satisfying the following: 

(i)		|ܨ௞(ݔ௞)| > ܿ for all ݇ ∈ ℕ. 



٤٨ 
 

(ii) The set ܨ௞ are pairwise disjoint. 
(iii) (ܨ௞ , (௞ߪ ∈G	௡బ  for all ݇ ∈ ℕ. 

Then {ݔ௞}௞ has a subsequence that generates an ℓଵ௡  spreading model for 
every ݊ ∈ ℕ.  

Proof: 

We shall prove that for every ݇଴, ݉ natural numbers, there exist ݇ ≥
݇଴ and  ܩ௞ ⊂ |(௞ݔ)௞ܩ| ௞ such thatܨ > 2 ܿ⁄  and mın෦ ௞ܩ) , (ߪ > ݉.  

If the above statement is true, we may clearly choose  
 ௞ in ࣡௡బ  satisfying the assumptions of Lemma (2.2.10) , which will{௞ܩ}
complete the proof.  

We assume that ݊଴ ≥ 2, as the case ݊଴ = 1 uses similar arguments 
and the  fact that lim

௞
௞‖ஶݔ‖ = 0. Fix ݇଴, ݉ ∈ ℕ. By Lemma (2.2.11), 

choose ݇ ≥ ݇଴,  such that the following holds: 

|(௞ݔ)ܨ|																											 <
ܿ
2݉

			for	every	ܨ ∈ ࣡௡బିଵ.																																(3) 

We distinguish two cases. 

Case (1): 

There is൫ܨ௜௞ , ௜௞൯௜ୀଵߪ
ௗ

  a skipped branching of ߪ in G	௡బିଵ with 

⋃ ௜௞ௗܨ
௜ୀଵ .  

Case (2): 

There is ൫ܨ௜௞ , ൯௜ୀଵߪ
ௗ

 an attached branching of σ in G	௡బିଵ with 

⋃ ௜௞ௗܨ
௜ୀଵ . 

In either case, by Proposition (2.1.19) we have that if we set ܩ௞ =
⋃ ௜௞ௗܨ
௜ୀ௠ାଵ , then (ܩ௞ , (ߪ ∈ G	௡బ . Moreover, (3) yields that |ܩ௞(ݔ௞)| >

ܿ 2⁄  .  

All that remains, is to show that mın෦ ௞ܩ) , (ߪ > ݉.  
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If we are in case (1), then	mın෦ ௞ܩ) , (ߪ = หߪ⋀ߪ௠ାଵ
௞ ห. By Definition 

(2.1.6)  we have that หߪ⋀ߪ௜௞ห < หߪ⋀ߪ௜ାଵ௞ ห for ݅ = 1, … ,݉, which of 
course yields that หߪ⋀ߪ௠ାଵ௞ ห > ݉.  

If, on the other hand, we are in case (2), then mın෦ ௞ܩ) , (ߪ =
mın෦ ൫ܨ௠ାଵ௞ , ൯.  By Definition (2.1.7) we have that mın෦ߪ ൫ܨ௠ାଵ

௞ , ൯ߪ > ݉. 

Lemma (2.2.13) [2]: 

Let {ݔ௞}௞ be a normalized, disjointly supported block sequence of  
൛݁̃కൟకழଶℵబ , such that there exists ݊ ∈ ℕ such that lim	sup

௞
‖ ௡ܲݔ௞‖௡௡ > 0. 

Then,  passing if necessary, to a subsequence, there exist ܿ > 0 and 
௞ܨ) , (௞ߪ ∈G	௡  satisfying the following: 

(i) The set ܨ௞ are pairwise disjoint. 
(ii) |ܨ௞(ݔ௞)| > ܿ for all ݇ ∈ ℕ. 

Proof: 

Pass to a subsequence of {ݔ௞}௞ and choose ߝ > 0, such that the 
following  holds: 

‖ ௡ܲݔ௞‖௡ =
1
2௡

௞‖௡ݔ‖ > ݇	all	for			,ߝ ∈ ℕ. 

By the definition of the norm ‖	⋅‖௡, there exist (ܨ௞ , (௞ߪ ∈G	௡ with 
|(௞ݔ)௞ܨ| > 2௡ߝ,  for all ݇ ∈ ℕ. By virtue of Proposition (2.1.19) and the 
fact that {ݔ௞}௞ is  disjointly supported, we may assume that the ܨ௞ are 
pairwise disjoint. Setting ܿ = 2௡ߝ finishes the proof.  

Proposition (2.2.14) [2]: 

Let {ݔ௞}௞ be a normalized, disjointly supported block sequence of  
൛݁̃కൟకழଶℵబ , such that lim

௞
௞‖ஶݔ‖ = 0 and there exists ݊ ∈ ℕ such that 

lim	sup
௞
‖ ௡ܲݔ௞‖௡ > 0. Then {ݔ௞}௞ has a subsequence that generates an ℓଵ௡  

spreading model for every ݊ ∈ ℕ.  

Proof: 
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Set ݊଴ = min ൜݊: lim	sup
௞
‖ ௡ܲݔ௞‖௡ > 0ൠ and as in the proof of Lemma 

(2.2.12) let us assume that ݊଴ ≥ 2. Apply Lemmas (2.2.13) and (2.2.11) , 
pass to a subsequence of {ݔ௞}௞ and find ܿ > 0, ௞ܨ) , (௞ߪ ∈ G	௡బ , such that 
the  following are satisfied: 

(i) The set ܨ௞ are pairwise disjoint. 
(ii) |ܨ௞(ݔ௞)| > ܿ for all ݇ ∈ ℕ. 

(iii) |ܨ௞(ݔ௞)| < ܿ 4⁄  for all ݇ ∈ ℕ and ܨ ∈ ࣡௡బିଵ.  

Passing to a further subsequence, choose ߪ ∈ {0,1}ℕ such that 
lim
௞
௞ߪ =   .We distinguish two cases  .ߪ

Case (1):  

lim
୩
max{|G(x୩)| : G ⊂ F୩		with	(G, σ) ∈G	୬బ} = 0.  

Case ( 2):  

 lim	sup
௞
max{|ܩ(ݔ௞)| : ܩ ⊂ ,ܩ)	with		௞ܨ (ߪ ∈G	௡బ} > 0.  

Let us first treat case (1). Pass once more to a subsequence of {ݔ௞}௞,  
satisfying the following: 

(a)max{|ܩ(ݔ௞)| : ܩ ⊂ ,ܩ)	with		௞ܨ (ߪ ∈G	௡బ} < ܿ 4⁄   for all 
݇ ∈ ℕ. 

(b)	ߪ ≠ ݇ ௞, for everyߪ ∈ ℕ. 

(c)	ߪ⋀ߪ௞ ⊊ ݇ ௞ାଵ for allߪ⋀ߪ ∈ ℕ. 

We shall prove the following. For every ݇, there exists ܩ௞ ⊂  ௞, suchܨ
that  the following hold: 

(d)	|ܩ௞(ݔ௞)| > ܿ 2⁄ . 

(e)	|ߪ⋀ߪ௞| < mın෦ ௞ܩ) ,  .(௞ߪ

Combining (b), (c), (d) and (e), we conclude that the assumptions of  
Lemma (2.2.9) are satisfied, which proves the desired result, in case (1).  
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Set ܩ௞ᇱᇱ = {߬ ∈ ௞ߪ	:௞ܨ ⋀߬ = ߪ ⋀߬}. Proposition (2.1.19) and Lemma 
(2.1.18) yield that (ܩ௞ᇱᇱ, (௞ߪ ∈G	௡బ  . Setting ܨ௞ᇱᇱ =  ௞ᇱᇱ, property (a)ܩ\௞ܨ
yields  that |ܨ௞ᇱᇱ(ݔ௞)| > 3ܿ 4⁄ . 

Set ܩ௞ᇱ = {߬ ∈ ௞ᇱܨ ௞ߪ	: ⋀ ߬ ⊊ ⋀ߪ ߬}. Once more, Proposition (2.1.19) 
yields that (ܩ௞ᇱ , (௞ߪ ∈G	௡బ  , however Lemma (2.1.18) yields ܩ௞ᇱ ∈ ࣡௡బିଵ 
and  therefore, by (iii) we have that |ܩ௞ᇱ |(௞ݔ) < ܿ 4⁄ .  

Set ܩ௞ = ௞ᇱܩ\௞ᇱܨ . Then we have that |ܩ௞(ݔ௞)| > ܿ 2⁄ , i.e. (d) holds.  

We will show that (e) also holds. By Corollary (2.1.13) , there exists 
߬ ∈ ௞, with mın෦ܩ ,௞ܩ) (௞ߪ = ௞ߪ| ⋀߬|. Since ߬ ∉  ௞ᇱᇱ, we have thatܩ
௞ߪ| ⋀ ߬| ≠ ߪ| ⋀ ߬|.  

We will show that |ߪ ⋀ ߬| < ௞ߪ| ⋀߬|. Assume that this is not the case, 
i.e.  |ߪ௞ ⋀߬| < ߪ| ⋀ ߬|. In other words, ߪ௞ ⋀߬ ⊊ ⋀ߪ ߬ . This means that 
߬ ∈ ௞ᇱܩ  a  contradiction.  

We conclude that ⋀߬ ⊊ ௞ߪ ⋀߬ . Lemma (2.1.11) yields that ߪ ⋀ ߬ =
௞ߪ   Applying Lemma (2.1.11) once  more, we conclude that .ߪ⋀
ߪ ⋀ ߬௞ ⊊ ௞ߪ ⋀ ߬ , i.e. |ߪ ⋀ ߬௞| < ௞ߪ| ⋀߬| = mın෦ ௞ܩ) ,  ௞), whichߪ
completes the proof for case  (1).  

It only remains to treat case (2). Observe, that in this case, we may 
easily  pass to a subsequence of {ݔ௞}௞, satisfying the assumptions of  
Lemma (2.2.12) .  This completes the proof.   

Combining Propositions (2.2.7) , (2.2.8) and (2.2.12) , one obtains  the 
following.  

Proposition (2.2.15) [2]: 

Let {ݔ௞}௞ be a normalized weakly null sequence in ॒ଶℵబ  . Then {ݔ௞}௞ 
has a  subsequence that generates an ݊ ∈ ℕ spreading model for every 
݊ ∈ ℕ.  

Proposition (2.2.16) [2]: 

The space ॒ଶℵబ  is saturated with subspaces of Tsirelson space.  

Proof: 
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It is an immediate consequence of  Proposition (2.2.15) that ॒ଶℵబ  does  
not contain a copy of ܿ଴. By Proposition (2.2.3), the spaces ܺ௡ are ܿ଴ 
saturated  and therefore, the operators ௡ܲ ∶ ॒ଶℵబ → ܺ௡ , are strictly 
singular.  

We conclude, that in any infinite dimensional subspace ܻ of ॒ଶℵబ  , 
݊଴ ∈ ℕ  and ߝ > 0, there exists ݔ ∈ ܻ with ‖ݔ‖ = 1 and ‖ ௡ܲݔ‖௡ <  for ߝ
݊ = 1,… , ݊଴. One  may easily construct a normalized sequence in ܻ, 
satisfying the assumption of  Proposition (2.2.8), which completes the 
proof.   

In particular, the previous result yields that neither c଴ nor ℓଵ embed 
into  ॒ଶℵబ . Using James’ well known theorem for spaces [7]  that is( 
Abanach  Space  B is reflexive  if  and  only  if  every  continuous  liner  
functional  on  B  altains  it is  Maxmum  on  the  closed  unit  ball in B) 
with an unconditional basis, we conclude the following.  

 Corollary (2.2.17) [2]: 

The space ॒ଶℵబ  is reflexive.  

Definition (2.2.18) [2]: 

Let ߙ be a countable ordinal number. Define ‖	⋅	‖்ഀ  to be the unique 
norm  on ܿ଴଴(ℕ) that satisfies the following implicit formula, for every 
ݔ ∈ ܿ଴଴(ℕ): 

ഀ்‖ݔ‖ = max ൝‖ݔ‖ஶ,
1
2
sup෍‖ܧ௜ݔ‖்ഀ

ௗ

௜ୀଵ

ൡ, 

where the supremum is taken over all ܧଵ < ⋯ <  ௗ subsets of the naturalܧ
numbers  with {min ௜ܧ ∶ ݅ = 1,… , ݀} ∈ ܵఈ. 

Define the Tsirelson space of order ߙ, denoted by ఈܶ, to be the 
completion of  ܿ଴଴(ℕ) with the aforementioned norm. 

The space ఈܶ is reflexive and the unit vector basis {݁௡}௡, forms a 1-
unconditional basis for ఈܶ. Moreover, every normalized weakly null 
sequence in  ఈܶ, has a subsequence that generates an ℓଵఈ spreading model.  
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Given a countable ordinal number ߙ, we shall construct {࣡௡ఈ}௡ un an   
increasing sequence of families of finite subsets of [0,1]ℕ , strongly 
related to {࣡௡}௡. As before, we first define some auxiliary families 
G	௡ఈ݊ ∈ ℕ.   

Definition (2.2.19) [2]: 

We define G	௡ఈ to be all pairs (ܨ, ܨ where ,(ߪ = {߬௜}௜ୀଵௗ ∈
[{0, ૚}ℕ]ழఠ, ݀ ∈ ℕ and ߪ ∈ {0, ૚}ℕ, such that the following are satisfied: 

(i) ߪ ≠ ߬௜ for ݅ = 1,… , ݀. 

(ii)	ߪ ⋀ ߬ଵ ≠ ߶ if ݀ > 1, then ߪ ⋀ ߬ଵ ⊊ ଶ߬⋀ߪ ⊊ ⋯ ⊊  .ௗ߬⋀ߪ

(iii)	{|ߪ ⋀ ߬௜| ∶ ݅ = 1,… , ݀} ∈ ܵఈ. 

Define mın෦ ,ܨ) (ߪ = ߪ| ⋀ ߬ଵ| and max෦ ,ܨ) (ߪ = ߪ| ⋀ ߬ௗ|.  

Assume that ݊ ∈ ℕ, G	௞ఈ  have been defined for ݇ ≤ ݊ and that for 
,ܨ) (ߪ ∈ G	௡ఈ, mın෦ ,ܨ) and max෦ (ߪ ,ܨ)   .have also been defined (ߪ

Definition (2.2.20) [2]: 

Let (ܨ௜, ௜)௜ୀଵௗߪ , ݀ ∈ ℕ be a finite sequence of elements of G	௡ఈ and ߪ ∈
[0,1]ℕ.  

We say that (ܨ௜ , ௜)௜ୀଵௗߪ  is a skipped branching of ߪ in G	௡ఈ, if the 
following  are satisfied: 

(i) The ܨ௜ , ݅ = 1, … , ݀ are pariwise disjoint. 
(ii) ߪ ≠ ߬௜ for ݅ = 1,… , ݀. 

(iii) ߪ ⋀ ߬ଵ ≠ ߶ if ݀ > 1, then ߪ ⋀ ߬ଵ ⊊ ଶ߬⋀ߪ ⊊ ⋯ ⊊  .ௗ߬⋀ߪ
(iv) |ߪ ⋀ ߬௜| 	< mın෦ ௜ܨ) , ݅ ௜) forߪ = 1, … , ݀. 
(v) {|ߪ ⋀ ߬௜|: ݅ = 1, … , ݀} ∈ ܵఈ.  

Definition (2.2.21) [2]: 

Let ߪ ∈ [0,1]ℕ and (ܨ௜ , ௜ୀଵௗ(ߪ , ݀ ∈ ℕ  be a finite sequence of elements 
of G	௡ఈ.  

We say that (ܨ௜ , ௜ୀଵௗ(ߪ , is an attached branching of ߪ in G	௡ఈ if the 
following  are satisfied: 
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(i) The ܨ௜ , ݅ = 1, … , ݀ are pariwise disjoint. 
(ii) If ݀ > 1, then max෦ ௜ܨ) , (ߪ < mın෦ ,௜ାଵܨ) ݅ for ,(ߪ = 1, … , ݀ −

1. 
(iii) {mın෦ ௜ܨ) , (ߪ ݅ = 1,… , ݀} ∈ ܵఈ.  

We are now ready to define G	௡ାଵఈ .  

Definition (2.2.22) [2]:  

We define G	௡ାଵఈ  to be all pairs (ܨ, ܨ where ,(ߪ ∈ [{0,1}ℕ]ழఠ  and ߪ ∈
{0,1}ℕ, such that one of the following is satisfied: 

(i)(ܨ, (ߪ ∈ G	௡ఈ.  

(ii) There is (ܨ௜ , ௜)௜ୀଵௗߪ  a skipped branching of ߪ in G	௡ఈ such 
that ܨ = ⋃ ௜ௗܨ

௜ୀଵ .  

In this case we say that (ܨ, is skipped. Moreover set mın෦ (ߪ ,ܨ) (ߪ =
ߪ| ଵ|  and max෦ߪ⋀ ,ܨ) (ߪ = ߪ|   .|ௗߪ⋀

(iii) There is (ܨ௜ , ௜ୀଵௗ(ߪ  an attached branching of ߪ in G	௡ఈ such 
that = ⋃ ௜ௗܨ

௜ୀଵ  .  

In this case we say that (ܨ, is attached. Moreover set mın෦ (ߪ ,ܨ) (ߪ =
mın෦ ,ଵܨ) and max෦  (ߪ ,ܨ) (ߪ = max෦ ,ௗܨ)   .(ߪ

Definition (2.2.23) [2]:  

For a countable ordinal number α and ݊ ∈ ℕ we define 

G	௡ఈ = ܨ} ⊂ {0,1}ℕ: there	exists	ߪ ∈ {0,1}ℕ	with	(ܨ, (ߪ ∈ G	௡ఈ} 	∪ {߶}. 

Proposition (2.2.24) [2]:   

Let ߙ be a countable ordinal number. Then for every ܤ infinite subset 
of {0,1}ℕ there exists a one to one map ߶ ∶ ℕ → (ܨ)߶ with ܤ ∈ ࣡௡ఈ for 
every ܨ ∈ ܵఈ௡  and ݊ ∈ ℕ.  

Theorem (2.1.23)] takes the following form and the proof uses the  
compactness of ܵఈ and Corollary (2.1.19) . 

Theorem (2.2.25) [2]:  
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Let ߙ be a countable ordinal number and ݊ ∈ ℕ. Then ࣡௡ఈ  is an ߙ-
large,  hereditary and compact family of finite subsets of [0,1]ℕ.  

In order to define the desired space ॒ଶℵబ
ఈ , one takes the same steps as 

in the  previous section. All proofs are identical.  

Definition (2.2.26) [2]: 

For ߙ a countable ordinal number and ݊ ∈ ℕ define a norm on 
ܿ଴଴(2ℵబ) in  the following manner: 

(i) For ݊ ∈ ℕ, we may identify an ܨ ∈ ࣡௡ఈ with a linear 
functional ܨ:	ܿ଴଴(2ℵబ) → ℝ in the following manner. For 
ݔ = ∑ క݁కకழଶℵబߣ ∈ ܿ଴଴(2ℵబ) 

(ݔ)ܨ = ෍ కഓߣ
కழଶℵబ

. 

(ii) For ݔ ∈ ܿ଴଴(2ℵబ) define 

௡ఈ‖ݔ‖ = sup{|(ݔ)ܨ|: ܨ ∈ ࣡௡ఈ}. 

Set ܺ௡ఈ to be the completion of (ܿ଴଴(2ℵబ), |	⋅	|௡ఈ).  

Definition (2.2.27) [2]: 

Define the following norm on ܿ଴଴(2ℵబ). For ݔ ∈ ܿ଴଴(2ℵబ) 

‖ݔ‖ = ะ෍
1
2௡
௡ఈ݁௡‖ݔ‖

ஶ

௡ୀଵ

ะ
்ഀ

. 

Set ॒ଶℵబ
஑  to be the completion of (c଴଴(2ℵబ), |	⋅	|୬஑). 

Theorem (2.2.28) [2]:  

The space ॒ଶℵబ
ఈ  is a non-separable reflexive space with a suppression  

unconditional Schauder basis with the length of the continuum, having 
the  following property. Every normalized weakly null sequence in ॒ଶℵబ

ఈ  
has a  subsequence that generates an ℓଵఈ spreading model.  
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Chapter 3 

Polynomials on Banach spaces 
In this chapter we study Banach spaces of traces of real poly-nominal on  
ℝ௡ to compact subsets equipped with supremum norms .                            

Recall that the Banach-Mazur distance between two ݇-dimensional 
real  Banach spaces ܧ,  is defined as ܨ

݀஻ெ(ܧ, (ܨ ≔ inf{‖ݑ‖ ∙  ,{‖ଵିݑ‖

where the infimum is taken over all isomorphisms ݑ: ܧ →  We say that .ܨ
 ,.are equivalent if they are isometrically isomorphic (i.e ܨ and ܧ
݀஻ெ(ܧ. (ܨ = 1). Then ln ݀஻ெ determines a metric on the set ℬ௞ of 
equivalence classes of isometrically isomorphic ݇-dimensional Banach 
spaces (called the Banach-Mazur compactum).It  is known that ℬ௞ is 
compact of ݀஻ெ-“diameter” ∼ ݇. 

Let C(K) be the Banach space of real continuous functions on a 
compact Hausdorff space K equipped with the supremum norm. Let F ⊂
C(K) be a filtered  subalgebra with filtration {0} ⊂ F଴ ⊆ Fଵ ⊆···⊆ Fୢ ⊆···
⊆ F (that is, F = ⋃ F୧ୢ∈ℤశ   and F୧ ∙ F୨ ⊂ F୧ା୨ for all i, j ∈ ℤା) such that 
nୢ ∶= dim Fୢ < ∞ for all d. In what follows we assume that F଴ contains 
constant functions on K.  

Theorem (3.1) [3]: 

Suppose there are ܿ ∈ ℝ and {݌ௗ}ௗ∈ℕ ⊂ ℕ such that 

																													
ln ݊ௗ∙௣೏
ௗ݌

≤ ܿ					for	all	݀ ∈ ℕ.																																															(1) 

Then there exist linear injective maps ݅ௗ ∶ ௗܨ ↪	ℓ௡೏∙௣೏
ஶ  such that 

݀஻ெ൫ܨௗ , ݅ௗ(ܨௗ)൯ ≤ ݁௖ ,			݀ ∈ ℕ. 

Proof : 

Since dimܨ௜ = 	݊௜, ݅ ∈ ℕ, and evaluations ߜ௭ at points ݖ ∈  ܭ
determine  bounded linear functionals on ܨ௜, the Hahn-Banach theorem 
implies easily that span {ߜ௭}௭∈௄ = ∗௭‖ி೔ߜ‖ ,௜∗. Moreoverܨ = 1 for all ݖ ∈
 ௜∗ is the balanced convex hull of the setܨ  and the closed unit ball of ܭ
} ௭∈௄. Let{௭ߜ} ଵ݂೔ , . . . , ௡݂೔௜} ⊂  ௜ be an  Auerbach basis with the dual basisܨ
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௭భ೔ߜ} , . . . , {௭೙೔೔ߜ ⊂ ௜∗, that is, ௞݂௜ܨ ቀߜ௭భ೔ቁ ≔ ௞݂௜(ݖ௟௜) = -௞ (the Kroneckerߜ

delta) and ‖ ௞݂௜‖௄ = 1 for all ݇. (Its construction is  similar to that of the 
fundamental Lagrange interpolation polynomials for ܨ௜ = ௜࣪

௡\௄, 

Now, we use a “method of E. Landau”. 

By the definition, for each ݃ ∈ (ݖ)݃ ௜ we haveܨ =
∑ ௞݂௜(ݖ)݃(ݖ௞௜)
௡೔
௞ୀଵ , ݖ ∈ Hence, ‖݃‖௄ .ܭ ≤ ݊௜‖݃‖ቄ௭భ೔ ,…,௭೙೔௜ቅ

.   Applying 

the latter inequality to ݃ = ݂௣೏ 	, ݂ ∈ ௜ܨ ௗ, containing inܨ , ݅ ∶ 	݀ ·  ௗ, and݌
using condition (1) we get for ܣௗ ∶= ൛ݖଵ೔ , … , ௡೔௜ൟݖ ⊂  ܭ

‖݂‖௄ = (‖݃‖௄)
ଵ
௣ௗ ≤ (݊ௗ ∙ (݀݌

ଵ
௣ௗ ∙ ൫‖݃‖஺೏൯

ଵ
௣ௗ ≤ ݁௖ ∙ ‖݂‖஺೏. 

Thus, restriction ܨௗ ⟼ ௗ\஺೏ determines the required map ݅ௗܨ ∶ 	 ௗܨ ↪
ℓ௡೏∙௣೏
ஶ . 

As a corollary we obtain: 

Corollary (3.2) [3]: 

Suppose {݊ௗ}ௗ∈ℕ grows at most polynomially in ݀, that is, 

													∃݇, ܿ̂ ∈ ℝା					such	that		∀݀			݊ௗ ≤ ܿ̂݀௞.																												(2) 

Then for each natural number ݏ ≥ 3 there exist linear injective maps ݅ௗ,௦ ∶

ௗܨ ↪ ℓே,ௗ,௦ஶ  , where ௗܰ,௦ ∶= ቔܿ̂݀௞ ∙ ௞ݏ ∙ ൫උln(ܿ̂݀௞)ඏ + 1൯
௞
ቕ, such that 

݀஻ெ ቀܨௗ , ݅ௗ,௦(ܨௗ)ቁ ≤ (௞ݏ݁)
ଵ
௦ ,					݇ ∈ ℕ. 

Let ℱ௖̂,௞ be the family of all possible filtered algebras ܨ on compact 
Hausdorff spaces ܭ satisfying condition (2) [3]. By ℬ௖̂,௞,௡ത೏ ⊂ ℬ௡ത೏  we 
denote the closure in ℬ௡ത೏   of the set formed by all subspaces ܨௗ of 
algebras ܨ ∈ ℱ௖̂,௞  having  a fixed dimension ത݊ௗ ∈ ℕ. 

Corollary (3.2) allows to estimate the metric entropy of ℬ௖̂,௞,௡ത೏ . Recall 
that  for a compact subset ܵ ⊂ ℬ௡ത೏  its ߝ-entropy (ߝ > 0) is defined as 
,ܵ)ܪ (ߝ ∶= ln(ܵ, ݀஻ெ, 1 + ,ܵ)ܰ where ,(ߝ ݀஻ெ , 1 +  is the smallest (ߝ
number of open ݀஻ெ-“balls” of radius 1 +  .ܵ that cover ߝ
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Proof :  

We set ݌ௗ ∶= ݏ ∙ ൫උln(ܿ̂݀௞)ඏ + 1൯, ݀ ∈ ℕ. Then the condition of the 
corollary  implies 

ln ݊ௗ∙௣೏
݀݌

≤
ln(ܿ̂݀௞) + ݇ ln ௗ݌

݀݌
≤
1
ݏ
+
݇ ln ݏ
ݏ

= :	ܿ. 

Thus the result follows from Theorem (3.1) 

Corollary (3.3) [3]: 

For ݇ ≥ 1 there exists a numerical constant ܥ such that for each ߝ ∈
(0, ଵ

ଶ
] 

,൫ℬ௖̂,௞,௡ത೏ܪ ൯ߝ

≤ ܭܥ) ∙ ln(݇ + 1))௞ ∙ (ܿ̂݀௞)ଶ ∙ (ln(ܿ̂݀௞) + 1)௞ାଵ ∙ ൬
1
ߝ
൰
௞

∙ ൬ln ൬
1
ߝ
൰൰

௞ାଵ

 

Let ௗ࣪
௡ be the space of real polynomials on ℝ௡ of degree at most ݀. 

For a  compact subset ܭ ⊂ ℝ௡  by ௗ࣪
௡\௄ we denote the trace space of 

restrictions of  polynomials in ௗ࣪
௡ to ܭ equipped with the supremum 

norm. Applying Corollary  (3.2) to algebra ࣪௡\௄≔ ⋃ ௗ࣪
௡\௄ௗஹ଴  we 

obtain: 

A. There exist linear injective maps ݅ௗ,௄:	 ௗ࣪
௡\௄↪ ℓே,ௗ,௡ஶ , where 

				 ௗܰ,௡ ≔ ⌊݁ଶ௡ ∙ (݊ + 2)ଶ௡ ∙ ݀௠ ∙ (2݊ + 1 + ⌊݊ ln ݀⌋)௡⌋,																				(3) 

such that 

	݀஻ெ ቀ ௗ࣪
௡\௄ , ݅ௗ,௄( ௗ࣪

௡\௄)ቁ ≤ (݁ ∙ (݊ + 2)ଶ)
ଵ

௡ାଶ	(< 2.903).																				(4) 

Indeed, 

			 ෩ܰௗ,௡ ≔ dim ௗ࣪
௡\௄ ≤ ቀ݀ + ݊

݊ ቁ < ቆ
݁ ∙ (݀ + ݊)

݊
ቇ
௡

≤ ቆ
݁ ∙ (1 + ݊)

݊
ቇ
௡

∙ ݀௡

< ݁ଶ௡ ∙ ݀௡.																																																																																			(5) 

Hence, Corollary (3.2) with ܿ = ݁ଶ௡, ݇ ∶= 	݊ and ݏ ∶= (݊ + 2)ଶ  implies 
the  required result. 
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If K is ࣪୬-determining (i.e., no nonzero polynomial vanish on K), then 

N෩ୢ,୬ = ቀd + n
n ቁ and so for some constant c(n) (depending on n only) we 

have 

									 ෩ܰௗ,௡ < ௗܰ,௡ ≤ ܿ(݊) ∙ ෩ܰௗ,௡ ∙ ൫1 + ln ෩ܰௗ,௡൯
௡
.																																			(6) 

Hence, Vୢ,୬ ≔ iୢ,୏( ୢ࣪
୬\୏) is a “large” subspace of ℓ୒ౚ,౤

ஶ  .  Therefore 
from (A) applied to Vୢ,୬(K) we obtain: 

B. There is a constant ܿଵ(݊) (depending on ݊ only) such that for each 
࣪௡-determining compact set ܭ ⊂ ℝ௡ there exists an m-
dimensional subspace ܨ ⊂ ௗ࣪

௡\௄ with 

		݉ ≔ dimܨ > ܿଵ(݊) ∙ ൫ ෩ܰௗ,௡൯
ଵ
ଶ			ܽ݊݀			݀஻ெ(ܨ, ℓ௠ஶ) ≤ 3.																						(7) 

In turn, if  መ݀ ∈ ℕ is such that ܰௗ෠,௡ ≤ ܿଵ(݊) ∙ ൫ ෩ܰௗ,௡൯
భ
మ, then due to 

property (A)  for each ࣪௡-determining compact set ܭ′ ⊂ ℝ௡ there exists 
a e ෩ܰௗ෠,௡-dimensional  subspace ܨௗ෠,௡,௄ᇲ 	⊂  such that ܨ

							݀஻ெ൫ܨௗ෠,௡,௄ᇲ , ௗ࣪෠
௡\௄ᇲ൯ < 9.																																																																		(8) 

Further, the dual space ൫ ௗܸ
௡(ܭ)൯

∗
 of ௗܸ

௡(ܭ) is the quotient space of ℓே೏,೙
ଵ . 

In  particular, the closed ball of ൫ ௗܸ
௡(ܭ)൯

∗
  contains at most ܿ(݊) · ෩ܰௗ,௡ ∙

൫1 + ln ෩ܰௗ,௡൯
௡

 extreme points, see (6). Thus the balls of ൫ ௗܸ
௡(ܭ)൯

∗
 and 

ௗܸ
௡(ܭ) are  “quite different” as convex bodies. This is also expressed in 

the following property (similar to the celebrated John ellipsoid theorem 
[8] that is The John ellipsoid E(K) of a convex body K ⊂ Rn is B If and 
only if  B ⊆ K and there exists an Integer  m ≥ n and, for i = 1, ..., m, Real 
numbe ci > 0 and Unit vector ui ∈ Sn−1 ∩ ∂K such that                

 

and, for all x ∈ Rn 
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but with an extra logarithmic  factor) which is a consequence of property 
(A) . 

C. There is a constant ܿଶ(݊) (depending on n only) such that for all 
࣪௡-determining compact sets ܭଵ, ଶܭ ⊂ ℝ௡ 

				݀஻ெ൫ ௗ࣪
௡\௄భ , ൫ ௗ࣪

௡\௄మ൯
∗
൯ ≤ ܿଶ(݊) ∙ ቀ ෩ܰௗ,௡ ∙ ൫1 + ln ෩ܰௗ,௡൯ቁ

ଵ
ଶ .																	(9) 

A stronger inequality is valid if we replace ൫ ௗ࣪
௡\௄మ൯

∗
 above by ℓே෩೏,೙

ଵ ,  

Remark (3.4) [3]: 

Property (C) has the following geometric interpretation. By definition, 
൫ ௗ࣪

௡\௄మ൯
∗
 is an ෩ܰௗ,௡-dimensional real Banach space generated by 

evaluation  functionals ߜ௫ at points ݔ ∈  ଶ with the closed unit ball beingܭ
the balanced convex hull of the set {ߜ௫}௫∈௄మ . Thus ܭଶ admits a natural 

isometric embedding into the  unit sphere of ൫ ௗ࣪
௡\௄మ൯

∗
.  Moreover, the 

Banach space of linear maps ൫ ௗ࣪
௡\௄మ൯

∗
→ ௗ࣪

௡\௄భ  equipped with the 
operator norm is isometrically isomorphic to the Banach  space of real 
polynomial maps ݌:	ℝ௡ → ௗ࣪

௡\௄భ  of degree at most d (i.e., ݂∗ ∘ ݌	 ∈ ௗ࣪
௡ 

for all ݂∗ ∈ ൫൫ ௗ࣪
௡\௄భ൯

∗
൯ with norm ‖݌‖ ≔ sup

௫∈௄మ
‖(ݔ)݌‖

೏࣪
೙\಼భ

. Thus 

property (C) is equivalent to the following one: 

C′. There exists a polynomial map p ∶ ℝ୬ →	 ୢ࣪
୬\୏భ  of degree at most 

d  such that the balanced convex hull of ݌(ܭଶ) contains the closed unit 
ball of  ௗ࣪

௡\௄భand is contained in the closed ball of radius ܿଶ(݊) ∙

ቀ ෩ܰௗ,௡ ∙ ൫1 + ln ෩ܰௗ,௡൯ቁ
భ
మ  of this space (both centered at 0). 

Our next property, a consequence of Corollary (3.3) and (5), estimates 
the  metric entropy of the closure of the set ෨࣪ௗ,௡ ⊂ ℬே෩೏,೙  formed by all 
෩ܰௗ,௡-dimensional spaces ௗ࣪

௡\௄ with ࣪௡-determining compact subsets 
ܭ ⊂ ℝ௡. 

D. There exists a numerical constant ܿ > 0 such that for each ߝ ∈
(0, ଵ

ଶ
], 
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൫cl൫ܪ ෨࣪ௗ,௡൯, ൯ߝ ≤ (ܿ݊ଶ ∙ ln(݊ + 1))௡ ∙ ݀ଶ௡ ∙ (1 + ln ݀)௡ାଵ ∙ ൬
1
ߝ
൰
௡

 

∙ ൬ln ൬
1
ߝ
൰൰

௡ାଵ

.																																																																															(10) 

Remark (3.5) [3]: 

The above estimate shows that ෨࣪ௗ,௡ with sufficiently large ݀ and ݊ is 
much less massive than ℬே෩೏,೙. Indeed, as follows  

൫ℬே෩೏,೙ܪ , ~൯ߝ ൬
1
ߝ
൰

ே෩೏,೙ିଵ
ଶ

				as			ߝ → 0ା 

(here the equivalence depends on ݀ and ݊ as well). On the other hand, it 
implies that for any ߝ > 0, 

0 < lim	inf
ே෩೏,೙→ஶ

	
lnܪ൫ℬே෩೏,೙ , ൯ߝ

෩ܰௗ,௡
≤ lim	sup

ே෩೏,೙→ஶ

lnܪ൫ℬே෩೏,೙ , ൯ߝ
෩ܰௗ,௡

< ∞. 

It might be of interest to find sharp asymptotics of ܪ൫cl൫ ෨࣪ௗ,௡൯, ߝ ൯ asߝ →
0ା and ݀ → ∞, and to compute (up to a constant depending on ݊) ݀஻ெ-
“diameter” of ෨࣪ௗ,௡.   

Similar results are valid for ܭ being a compact subset of a real 
algebraic variety ܺ ⊂ ℝ௡ of dimension ݉ < ݊ such that if a polynomial 
vanishes on ܭ, then  it vanishes on ܺ as well. In this case there are 
positive constants ܿܺ, ܿ̃ܺ  depending  on ܺ only such that ܿ̃ܺ݀௠ ≤
dim ௗ࣪

௡\௄ ≤ ܿܺ݀௠. For instance, Corollary (3.2) with ܿ = 	ܿܺ, ݇ ∶= 	݉ 
and ݏ ∶= (݉ + 2)ଶ implies that ௗ࣪

௡\௄ is linearly embedded  into ℓே೏,೉
ஶ , 

where ௗܰ,௑ ∶= ⌊ܿܺ݀௠ ∙ (݉ + 2)ଶ௠ ∙ (⌊ln(ܿܺ݀௠)⌋ + 1)௠⌋, with  
distortion < 2.903. We leave the details. 

 

 

 

Lemma (3.6) [3]: 
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Let ܵ௡ത೏ ⊂ ℬ௡ത೏ be the subset formed by all ത݊ௗ-dimensional subspaces 

of ℓே೏,ೞ
ஶ . Consider 0 < 	ߦ < ଵ

௡ത೏
 and let ܴ = ଵାక௡ത೏

ଵିక௡ത೏
. Then ܵ௡ത೏  admits an ܴ-

net ோܶ of  cardinality at most ቀ1 + ଶ
క
ቁ
ே೏,ೞ∙௡ത೏

.  

Now given ߝ ∈ (0, ଵ
ଶ
] we choose ݏ = (ఌ௞ݏ݁) ఌ satisfyingݏ with ⌊ఌݏ⌋

భ
ೞഄ =

√1 + రߝ  and ߦ such that ܴ = ܴఌ = √1 + రߝ . Then according to Corollary 
(3.2) and Lemma (3.6) , dist஻ெ൫ ோܶഄ , ℬ௖̂,௞,௡ത೏൯ < √1 + ݌ For each .ߝ ∈ ோܶഄ 
we choose ݍ௣ ∈ 	ℬ௖̂,௞,௡ത೏  such that ݀஻ெ൫݌, ௣൯ݍ < √1 +  Then the .ߝ
multiplicative triangle  inequality for ݀஻ெ implies that open ݀஻ெ-“balls” 
of radius 1 + ௣ݍ centered at points ߝ , ݌ ∈ ோܶഄ , cover ℬ௖̂,௞,௡ത೏.  Hence, 

ܰ൫ℬ௖̂,௞,௡ത೏ , ݀஻ெ , 1 + ൯ߝ ≤ card	 ோܶഄ ≤ ൬1 +
2
ߦ
൰
ே೏,ೞ∙௡ത೏

.																													(11) 

Next, the function ߮(ݔ) = ln(݁ݔ௞)
భ
ೣ decreases for ݔ ∈ ൤݁

ೖషభ
ೖ ,∞൰ and 

lim
௫→ஶ

(ݔ)߮ = 0. Its inverse ߮ିଵ on this interval has domain ൬0, ݁ି
ೖషభ
ೖ ൨, 

increases and is easily seen (using that ߮	 ∘ 	߮ିଵ = id) to satisfy 

߮ିଵ(ݔ) ≤
3݇
ݔ
∙ ln ൬

3݇
ݔ
൰ ݔ			, ∈ ൬0, ݁ି

௞ିଵ
௞ ൨. 

Since ଵ
ସ
ln(1 + (ߝ < ݁ି

ೖషభ
ೖ  for ߝ ∈ ቀ0, ଵ

ଶ
ቃ, the required ݏఌ exists and the 

previous  inequality implies that 

ఌݏ																		 ≤
12݇

ln(1 + (ߝ
∙ ln ൬

12݇
ln(1 + (ߝ

൰.																																																(12) 

Further, we have 

			
1
ߦ
=
ത݊ௗ(1 + ܴఌ)
ܴఌ − 1

=
ത݊ௗ൫√1 + రߝ + 1൯
√1 + రߝ − 1

=
ത݊ௗ൫√1 + రߝ + 1൯

ଶ
∙ ൫√1 + రߝ + 1൯

ߝ
.																																	(13) 

From (11), (12), (13) invoking the definition of ௗܰ,௦ we obtain 
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ln ܰ൫ℬ௖̂,௞,௡ത೏, ݀஻ெ, 1 + ൯ߝ
≤ ത݊ௗܿ̂݀௞(ln(ܿ̂݀௞)

+ 1)௞ ln ൬
21 ത݊ௗ
ߝ

൰ ൬
12݇

ln(1 + (ߝ
ln ൬

12݇
ln(1 + (ߝ

൰൰
௞

. 

Using that ത݊ௗ ≤ ܿ̂݀௞ and the inequality ଶ
ଷ
∙ ߝ ≤ ln(1 + (ߝ , ߝ ∈ ቀ0, ଵ

ଶ
ቃ, we 

get the  required estimate. 
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Chapter 4 

Countable Infinite Numbers of Complex Structures on the 
Banach Spaces 

In this chapter we give examples of real Banach spaces with exactly 
infinite countably many complex structures and with ߱ଵmany complex 
structures.                                                                                               

Section (4.1): Construction and Complex Structures of The Space 
ল࣓૚

 :(ࢉ)
A real Banach space ܺ is said to admit a complex structure when there 

exists  a linear operator ܫ on ܺ such that ܫଶ = -This turns ܺ into a ℂ .݀ܫ−
linear space by  declaring a new law for the scalar multiplication: 

ߣ) + (ߤ݅ ∙ ݔ = ݔߣ + ,ߣ)					(ݔ)ܫߤ ߤ ∈ ℝ). 
Equipped with the equivalent norm 

‖ݔ‖ = sup
଴ஸఏஸଶ௡

‖cos ݔߠ + sin ߠ  ,‖ݔܫ

we obtain a complex Banach space which will be denoted by ܺூ . The 
space ܺூ is  the complex structure of ܺ associated to the operator ܫ, which 
is often referred  itself as a complex structure for ܺ. 

When the space ܺ is already a complex Banach space, the operator 
ݔܫ =  is a complex structure on ܺℝ (i.e., ܺ seen as a real space) which  ݔ݅
generates ܺ.  Recall that for a complex Banach space ܺ its complex 
conjugate ܺ is defined to be  the space ܺ equipped with the  new scalar 
multiplication ߣ. ݔ =  .ݔߣ̅

Two complex structures ܫ and ܬ on a real Banach space ܺ are 
equivalent if  there exists a real automorphism ܶ on ܺ such that ܶܫ =  .ܶܬ
This is equivalent to  saying that the spaces ܺூ and ܺ௃ are ℂ-linearly 
isomorphic. To see this, simply  observe that the relation ܶܫ =  actually ܶܬ
means that the operator ܶ is ℂ-linear as  defined from ܺூ  to ܺ௃ . 

We note that a complex structure ܫ on a real Banach space ܺ is an  
automorphism whose inverse is −ܫ, which is itself another complex 
structure on ܺ.  In fact, the complex space ܺିூ is the complex conjugate 
space of ܺூ . Clearly the  spaces ܺூ  and ܺିூ are always ℝ-linearly 
isometric. On the other hand, J. Bourgain  and N.J. Kalton constructed 
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examples of complex Banach spaces not isomorphic to their 
corresponding complex conjugates, hence these space admit at least two 
different complex structures. The Bourgain example is an ℓଶ sum of finite 
dimensional spaces whose distance to their conjugates tends to infinity. 
The Kalton example is a twisted sum of two Hilbert spaces, i.e., ܺ has a 
closed subspace ܧ such that ܧ and ܺ ⁄ܧ  are Hilbertian, while ܺ itself is 
not isomorphic to a Hilbert space. More recently ܴ. Anisca constructed a 
complex weak Hilbert space not isomorphic to its complex conjugate. 

Complex structures do not always exist on Banach spaces. The first 
example  in the literature was the James space, proved by J. Dieudonne' . 
Other examples  of spaces without complex structures are the uniformly 
convex space constructed  by S. Szarek and the hereditary 
indecomposable space of W. T. Gowers and  B. Maurey. W. T. Gowers 
and B. Maurey  and S.A. Argyros, K. Beanland and T. Raikoftsalis also 
constructed a space with unconditional basis  but without complex 
structures, the second is a weak Hilbert space. In general  these spaces 
have few operators. For example, every operator on the Gowers-Maurey 
space is a strictly singular perturbation of a multiple of the identity and 
this forbids complex structures: suppose that ܶ is an operator on this 
space such  that ܶଶ = ܶ and write  ݀ܫ− = ݀ܫߣ + ܵ with ܵ a strictly 
singular operator. It  follows that (ߣଶ +  is strictly singular and of ݀ܫ(1
course this is impossible. 

More examples of Banach spaces without complex structures were  
constructed by P. Koszmider, M. Martı'n and J. Mer´ı . In fact, they  
introduced the notion of extremely non-complex Banach space: A real 
Banach  space ܺ is extremely non-complex if every bounded linear 
operator ܶ: ܺ → ܺ  satisfies the norm equality ‖݀ܫ + ܶଶ‖ = 1 + ‖ܶ‖ଶ. 
Among their examples of  extremely non complex spaces are (ܭ)ܥ 
spaces with few operators (e.g. when  every bounded linear operator ܶ on 
ܶ is of the form (ܭ)ܥ = ݀ܫ݃ + ܵ where ݃ ∈  and ܵ is a weakly (ܭ)ܥ	
compact operator on (ܭ)ܥ), a (ܭ)ܥ space containing  a complemented 
isomorphic copy of ℓஶ (thus having a richer space of operators  than the 
first one mentioned) and an extremely non complex space not isomorphic  
to any (ܭ)ܥ space. 
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Going back to the problem of uniqueness of complex structures, 
Kalton  proved that spaces whose complexification is a primary space 
have at most one complex structure (this result may be found in V. 
Ferenczi and E. Galego  ). In  particular, the classical spaces ܿ଴, ℓ௣	(1 ≤
݌ ≤ ∞), ,௣[0ܮ 1]		(1 ≤ ݌ ≤ ∞), and  [0,1]ܥ have a unique complex 
structure. 

We have mentioned before examples of Banach spaces with at least 
two  different complex structures. In fact, V. Ferenczi constructed a space 
ܺ(ℂ) such  that the complex structure ܺ(ℂ)௃ associated to some operator 
 and its conjugate  are the only complex structures on ܺ(ℂ) up to ܬ
isomorphism. Furthermore, every ℝ-linear operator ܶ on ܺ(ℂ) is of the 
form ܶ = ݀ܫߣ + ߤ ௃ + ܵ, where ߣ,  .are reals  and ܵ is strictly singular ߤ
Ferenczi also proved that the space ܺ(ℂ)௡ has exactly ݊ + 1 complex 
structures for every positive integer ݊. Going to the extreme, R.  Anisca 
gave examples of subspaces of ܮ௣(1 ≤ ݌	 < 	2) which admit continuum  
many non-isomorphic complex structures. 

The question remains about finding examples of Banach spaces with 
exactly  infinite countably many different complex structures. A first 
natural approach to  solve this problem is to construct an infinite sum of 
copies of ܺ(ℂ), and in order to  control the number of complex structures 
to take a regular sum, for instance, ℓଵ(ܺ(ℂ)).  It follows that every ℝ-
linear bounded operator ܶ on ℓଵ(ܺ(ℂ)) is of the  form ܶ = (ܶ)ߣ + ܵ, 
where ߣ(ܶ) is the scalar part of ܶ, i.e., an infinite matrix of  operators on 
ܺ(ℂ) of the form ߣ௜,௝݀ܫ +   and ܵ is an infinite matrix of strictly ,ܬ௜,௝ߤ
singular operators on ܺ(ℂ). It is easy to prove that if ܶ is a complex 
structure then  ߣ(ܶ) is also a complex structure. Recall from that two 
complex structures  whose difference is strictly singular must be 
equivalent. Unfortunately, the  operator ܵ in the representation of ܶ is not 
necessarily strictly singular, and this  makes very difficult to understand 
the complex structures on ℓଵ(ܺ(ℂ)).  

It is necessary to consider a more “rigid” sum of copies of spaces like 
ܺ(ℂ).  We found this interesting property in the space ॒ఠభ  constructed by 
S.A. Argyros, J. Lopez-Abad and ܵ. Todorcevic. Based on that 
construction we present a  separable reflexive Banach space ॒ఠమ(ℂ) with 
exactly infinite countably many  different complex structures which 
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admits an infinite dimensional Schauder  decomposition ॒ఠమ(ℂ) = ⨁௞॒௞  
for which every ℝ-linear operator ܶ on ॒ఠమ(ℂ)  can be written as ܶ =
ܶܦ + ܵ, where ܵ is strictly singular, ்ܦ\॒ೖ= ௞ߣ)	ೖ॒݀ܫ௞ߣ ∈ ℂ) and (ߣ௞)௞  
is a convergent sequence. 

This construction also shows the existence of continuum many 
examples of Banach spaces with the property of having exactly ߱ 
complex structures and the  existence of a Banach space with exactly ߱ଵ 
complex structures. 

We construct a complex Banach space ॒ఠభ
(ℂ) with a bimonotone 

transfinite  Schauder basis (݁ఈ)ఈழఠభ , such that every complex structure ܫ 
on ॒ఠభ

(ℂ) is of the  form ܫ = ܦ + ܵ, where ܦ is a suitable diagonal 
operator and ܵ is strictly singular. 

By a bimonotone transfinite Schauder basis we mean that ॒ఠభ
(ℂ) =

span(݁ఈ)ఈழఠభ and such that for every interval ܫ of ߱ଵ the naturally 
defined map  on the linear span of (݁ఈ)ఈழఠభ  

෍ ఈ݁ఈߣ
ఈழఠభ

⟼෍ߣఈ݁ఈ
ఈ∈ூ

 

extends to a bounded projection ଵܲ: ॒ఠభ
(ℂ) → ॒ூ = spanℂ(݁ఈ)ఈ∈ூ with 

norm  equal to 1. 

Basically ॒ఠభ
(ℂ) corresponds to the complex version of the space 

॒ఠభ   constructed in modifying the construction in a way that its ℝ-linear 
operators  have similar structural properties to the operators in the 
original space ॒ఠభ  (i.e. the  operators are strictly singular perturbation of 
a complex diagonal operator). 

Recall that ߱ and ߱ଵ denotes the least infinite cardinal number and 
the least  uncountable cardinal number, respectively. Given ordinals ߛ,   ߦ
we write ߛ + ,ߦ ߛ ∙ ,ߦ  క for the usual arithmetic operations . For anߛ
ordinal ߛ we denote by Λ(ߛ) the set of limit ordinals <  Denote by .ߛ
ܿ଴଴(߱ଵ, ℂ) the vector space of all  functions ݔ:	߱ଵ → ℂ such that the set 
supp	ݔ = ߙ} < ߱ଵ ∶ (ߙ)ݔ	 	≠ 0} is finite and  by  (݁ఈ)ఈழఠభ  its canonical 
Hamel basis. For a vector ݔ ∈ ܿ଴଴(߱ଵ, ℂ) ran ݔ will  denote the minimal 
interval containing supp	ݔ. Given two subsets ܧଵ,  ଶ of ߱ଵ  we  say thatܧ
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ଵܧ < ଶ if maxܧ ଵܧ < min ,ݔ ଶ. Then forܧ ݕ ∈ ܿ଴଴(߱ଵ, ℂ)ݔ <  means  ݕ
that  supp	ݔ < supp	ݕ. For a vector ݔ ∈ ܿ଴଴(߱ଵ, ℂ)  and a subset ܧ of ߱ଵ 
we denote by  ܧ௫(or	 ாܲೣ) the restriction of ݔ on ܧ or simply the function 
,Finally in some cases we shall denote elements of ܿ଴଴(߱ଵ .ܧ߯ݔ ℂ) as 
݂, ݃, ℎ, . .. and its canonical Hamel  basis as (݁ఈ∗)ఈழఠభ  meaning that we 
refer to these elements as being functionals in  the norming set. 

The space ॒ఠభ  shall be defined as the completion of ܿ଴଴(߱ଵ, ℂ) 
equipped with a norm given by a norming set ߢఠభ(ℂ) 	⊆ ܿ଴଴(߱ଵ, ℂ). This 
means that the  norm for every ݔ ∈ ܿ଴଴(߱ଵ, ℂ) is defined as 
sup൛|߶(ݔ)| = ห∑ ఈழఠభ(ߙ)ݔ(ߙ)߶ ห: ߶ ∈  ఠభ(ℂ)ൟ. The norm of this spaceߢ
can also be defined inductively. 

We start by fixing two fast increasing sequences ( ௝݉) and ( ௝݊) that 
are  going to be used in the rest of this work. The sequences are defined 
recursively as  follows: 

(i) ݉ଵ = 2 and ௝݉ାଵ = ௝݉
ସ; 

(ii) ݊ଵ = 4 and ௝݊ାଵ = ൫4 ௝݊൯
௦ೕ , where ݏ௝ = log

ଶ
௝݉ାଵ
ଷ . 

Let ߢఠభ(ℂ) be the minimal subset of ܿ଴଴(߱ଵ, ℂ) such that 

(a)  It contains every ݁ఈ∗ , ߙ < ߱ଵ. It satisfies that for every ߶ ∈
ߠ ఠభ(ℂ) and for every complex numberߢ = ߣ +  ߣ with ߤ݅
and ߤ rationals and  |ߠ| ≤ 1, ߶ߠ ∈  ఠభ(ℂ). It is closed underߢ
restriction to intervals of ߱ଵ. 

(b)  For every {߶௜, ∶ ݅ = 1, . . . , ݊ଶ௝} ⊆ ఠభ(ℂ) such that ߶ଵߢ <
⋯ < ߶௡మೕ,  the combination 

߶ =
1
݉ଶ௝

෍߶௜

௡మೕ

௜ୀଵ

∈ ఠభߢ
(ℂ). 

In this case we say that ߶ is the result of an  ൫݉ଶ௝
ିଵ, ݊ଶ௝൯-operation. 

(c)  For every special sequence ቀ߶ଵ, … , ߶௡మೕశభቁ the combination 

߶ =
1

݉ଶ௝ାଵ
෍ ߶௜

௡మೕశభ

௜ୀଵ

∈ ఠభߢ
(ℂ). 
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In this case we say that ߶ is a special functional and that ߶ is the 
result of an ൫݉ଶ௝ାଵ

ିଵ , ݊ଶ௝ାଵ൯-operation.  

(d)  It is rationally convex. 
Define a norm on ܿ  by setting 

‖ݔ‖ = sup ቐቮ ෍ (ߙ)ݔ(ߙ)߶
ఈழఠభ

ቮ :	߶ ∈ ఠభߢ
(ℂ)ቑ. 

The space ॒ఠభ
(ℂ)  is defined as the completion of (ܿ଴଴(߱ଵ, ℂ), ‖∙‖). 

This definition of the norming set ߢఠభ
(ℂ) is similar to others . We 

add  the property of being closed under products with rational complex 
numbers of the  unit ball. This, together with property (b) above, 
guarantees the existence of some  type of sequences [4] in the same way  
they are constructed for ॒ఠభ . It follows that the norm is also defined by 

‖ݔ‖ = sup ቐ߶(ݔ) = ෍ (ߙ)ݔ(ߙ)߶
ఈழఠభ

: ߶ ∈ ఠభߢ
(ℂ), (ݔ)߶ ∈ ℝቑ. 

We also have the following implicit formula for the norm: 

‖ݔ‖ = max ቐ‖ݔ‖ஶ, sup sup
௝

1
݉ଶ௝

෍‖ܧ௜ݔ‖

௡మೕ

௜ୀଵ

, ଵܧ < ଶܧ < ⋯ <  ௡మೕቑܧ

⋁ supቐ
1

݉ଶ௝ାଵ
ቮ ෍ ߶௜(ݔܧ)

௡మೕశభ

௜ୀଵ

ቮ:	(߶௜)௜ୀଵ
௡ೕశభ 	is	݊ଶ௝ାଵ − special,  .intervalቑ	ܧ

It follows from the definition of the norming set that the canonical 
Hamel  basis (݁ఈ)ఈழఠభ  is a transfinite bimonotone Schauder basis of 
॒ఠభ

(ℂ). In fact, by  Property (b) for every interval ܫ of ߱ଵ the projection 

ூܲ has norm 1: 

‖ ூܲݔ‖ = sup
௙∈఑ഘభ(ℂ)

|݂ ூܲݔ| = sup
௙∈఑ഘభ(ℂ)

| ூ݂ܲݔ| ≤  ‖ݔ‖

Moreover, we have that the basis (݁ఈ)ఈழఠభ  is boundedly complete 
and  shrinking, the proof is the obvious modification to the one for ॒ఠభ . 
In consequence ॒ఠభ

(ℂ)  is reflexive. 
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Proposition (4.1.1) [4]:  

ఠభߢ 
(ℂ)

ఠ∗

= ∗ഘభ॒ܤ (ℂ). 

Proof: 
Recall that the set ߢఠభ

(ℂ)  is by definition rational convex. We 

notice that   ߢఠభ
(ℂ)

ఠ∗

 is actually a convex set. Indeed let ݂, ݃ ∈

ఠభߢ
(ℂ)

ఠ∗

 and ݐ ∈ (0,1).  Suppose that ௡݂
ఠ∗

ሱሮ ݂, ݃௡
ఠ∗

ሱሮ ݃ and ݐ௡ →  where ,ݐ

௡݂ , ݃௡ ∈ ఠభߢ
(ℂ) and ݐ௡ ∈ ℚ ∩ (0,1) for every ݊ ∈ ℕ. then ݂ݐ +

(1 − ݃(ݐ ∈ ఠభߢ
(ℂ)

ఠ∗

 because 

௡ݐ ௡݂ + (1 − ௡)݃௡ݐ
ఠ∗

ሱሮ ݂ݐ + (1 −  .݃(ݐ
In the same manner we can prove that ॒ఠభ

∗ (ℂ) is balanced i.e., 
ఠభ॒ߣ

∗ (ℂ) ⊆ ॒ఠభ
∗ (ℂ) for every |ߣ| ≤ 1. To prove the Proposition suppose 

that there exists ݂ ∈ ∗ഘభ॒ܤ (ℂ)\ߢఠభ
(ℂ)

ఠ∗

. It follows by a standard 
separation argument that there exists ݔ ∈ ॒ఠభ

(ℂ)  such that 

|(ݔ)݂| > sup൛|݃(ݔ)|: ݃ ∈ ఠభߢ
(ℂ)ൟ 

which is absurd. 

Let ܫ ⊆ ߱ଵ be an interval of ordinals, we denote by ॒ூ(ℂ) the 
closed  subspace of ॒ఠభ

(ℂ) generated by {݁ఈ}ఈ∈ூ . For every ordinal ߛ <
߱ଵ we write  ॒ఊ(ℂ) = ॒[଴,ଵ)(ℂ). Notice that ॒ூ(ℂ) is a 1-complemented 
subspace of ॒ఠభ

(ℂ):  the restriction to coordinates in ܫ is a projection of 
norm 1 onto ॒ூ(ℂ). We denote  this projection by ூܲ and by ܲூ = ݀ܫ) −
ூܲ) the corresponding projection onto the  complement space (݀ܫ −
ூܲ	)॒ఠభ

(ℂ), which we denote ॒ூ(ℂ). 

A transfinite sequence (ݕఈ)ఈழఊ  is called a block sequence when 
ఈݕ < ߙ ఉ for  allݕ < ߚ <  ఈழఊ a block(ఈݕ) Given a block sequence .ߛ
subsequence of (ݕఈ)ఈழఊ is  a block sequence (ݔఉ)ఉழక in the span of 
 ఈழఊ is a block subsequence in(ఈݕ) ఈழఊ. A real block subsequence of(ఈݕ)
the real span of (ݕఈ)ఈழఊ. A sequence (ݔ௡)௡∈ℕ  is a block sequence of 
॒ఠభ

(ℂ) when it is a block subsequence of (݁ఈ)ఈழఠభ . 
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Theorem (4.1.2) [4]: 
Let ܶ:	॒ఠభ

(ℂ) → ॒ఠభ
(ℂ) be a complex structure on ॒ఠభ

(ℂ), that 
is, ܶ is a  bounded ℝ-linear operator such that ܶଶ =  Then there .݀ܫ−
exists a bounded  diagonal operator ்ܦ:	॒ఠభ

(ℂ) → ॒ఠభ
(ℂ), which is 

another complex structure, such that ܶ −  .is strictly singular  ்ܦ

Moreover ்ܦ = ∑ ௝߳
௞
௝ୀଵ ݅ ூܲ, for some signs ൫ ௝߳൯௝ୀଵ

௞
 and ordinal intervals 

ଵܫ < ଶܫ < ⋯ < ௞ whose extremes are limit ordinals  and such that ߱ଵܫ =
⋃ ௝௞ܫ
௝ୀଵ .  

Proof : 
Let T ∶ 	॒னభ

(ℂ) 	→ ॒னభ
(ℂ) be a bounded ℝ-linear operator which is a  

complex structure and D୘  be the diagonal bounded operator associated to 
it. It  only remains to prove that T − D୘ is strictly singular. And this 
follows directly  from Proposition (4.1.3) , because by definition lim

୬
(T −

D୘)୷౤  for every R. I. S. (y୬)୬ on ॒னభ
(ℂ). 

We come back to the study of the complex structures on ॒னభ
(ℂ). 

Denote by  ु the family of complex structures D୘ on ॒னభ
(ℂ) as in 

Theorem (4.1.2) , i.e.,  D୘ = ∑ ϵ୨iP୍ ౠ
୩
୨ୀଵ  where ൫ϵ୨൯୨ୀଵ

୩
 are signs and Iଵ <

Iଶ < ⋯ < I୩ are ordinal  intervals whose extremes are limit ordinals and 
such that ωଵ = ⋃ I୨୩

୨ୀଵ  . Notice  that ु has cardinality ωଵ. 

Recall that two spaces are said to be incomparable if neither of them 
embed  into the other. 

Step (I): 
There exists a family ॅ of semi normalized block subsequences of 

(݁ఈ)ఈழఠభ,  called  ܴ. .ܫ ܵ. (Rapidly Increasing Sequences), such that 
every  normalized block sequence (ݔ௡)௡∈ℕ of ॒ఠభ

(ℂ) has a real block 
subsequence in ॅ. 

Recall that a Banach space ܺ is hereditarily indecomposable (or 
H. I) if no  (closed) subspace of ܺ can be written as the direct sum of 
infinite-dimensional  subspaces. Equivalently, for any two subspaces ܻ, ܼ 
of ܺ and ߳ > 0, there exist ݕ ∈ ܻ, ݖ ∈ ܼ such that ‖ݕ‖ = ‖ݖ‖ = 1 and 
ݕ‖ − ‖ݖ < ߳. 
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Step (II): 
For every normalized block sequence (ݔ௡)௡∈ℕ  of  ॒ఠభ

(ℂ), the 
subspace  span

ℝ
.௡∈ℕ  is a real H(௡ݔ) I. space. 

Step (III):  
Let (ݔ௡)௡∈ℕ be a ܴ. .ܫ ܵ and  ܶ:	 span

ℂ
௡∈ℕ(௡ݔ) → ॒ఠభ

(ℂ)  be a 

bounded ℝ-linear operator. Then lim
௡→ஶ

௡ݔܶ)݀ , ℂݔ௡) = 0. 

The proof of Step (I), (II) and (III) are given [4]. 

Step (IV): 
Let (x୬)୬∈ℕ be a R. I. S and T:	 span

ℂ
(x୬)୬∈ℕ → ॒னభ

(ℂ) be a 

bounded ℝ-linear operator. Then the sequence λ୘:	ℕ → ℂ defined by 
d(Tx୬, ℂx୬) = ‖Tx୬ − λ୘(n)x୬‖  is convergent. 

Proof of Step (IV): 
First we note that the sequence ൫λ୘(n)൯୬ is bounded. Then 

consider (α୬)୬  and  (β୬)୬  two strictly increasing sequences of positive 
integers and suppose that ்ߣ(ߙ௡) ⟶ (௡ߚ)்ߣ ଵ andߣ ⟶ ݊ ଶ, whenߣ ⟶
∞. Going to a subsequence we can  assume that ݔఈ೙ < ఉ೙ݔ < ఈ೙శభݔ  for 
every ݊ ∈ ℕ. 

Fix ߳ > 0. Using the result of the Step (III), we have that 
lim
௡→ஶ

ฮܶݔఈ೙ − ఈ೙ฮݔଵߣ = 0.By passing to a subsequence if necessary, 

assume 

ฮܶݔఈ೙ − ఈ೙ฮݔଵߣ ≤
߳
2௡6

, 

for every ݊ ∈ ℕ. Hence, for every ݓ = ∑ ܽ௡ݔఈ೙௡ ∈ span
ℝ

൫ݔఈ೙൯௡ with 

‖ݓ‖ ≤ 1 we have 

ݓܶ‖ − ‖ݓଵߣ ≤෍|ܽ௡|ฮܶݔఈ೙ − ఈ೙ฮݔଵߣ
௡

 

≤ ߳ 3⁄ , 
because (݁ఈ)ఈழఠభ  is a bimonotone transfinite basis. In the same way, we 
can assume that for every ݓ ∈ span

ℝ
൫ݔఉ೘൯௠ with ‖ݓ‖ ≤ 1, ݓܶ‖ −
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‖ݓଶߣ ≤ ߳ 3⁄ . By  Step (II) we have that span
ℝ

൫ݔఈ೙൯௡ ∪ ൫ݔఉ೘൯௠, is real-

H. I. Then there exist unit vectors ݓଵ ∈ span
ℝ

൫ݔఈ೙൯௡  and ݓଶ ∈

span
ℝ

൫ݔఉ೘൯௠,  such that ‖ݓଵ ‖ଶݓ− ≤
ఢ
ଷ
‖ܶ‖. Therefore, 

ଵݓଵߣ‖ − ‖ଶݓଶߣ ≤ ଵݓܶ‖ − ‖ଵݓଵߣ + ଵݓܶ‖ − ‖ଶݓܶ + ଶݓܶ‖ − ‖ଶݓଶߣ
≤ ߳. 

By other side 

ଵݓଵߣ‖ − ‖ଶݓଶߣ ≥ ଵߣ)‖ − ‖ଵݓ(ଶߣ − ଵݓ)ଶߣ‖ ‖(ଶݓ−
= ଵߣ| − |ଶߣ −  .߳|ଶߣ|

In consequence, |ߣଵ − |ଶߣ ≤  Since ߳ was arbitrary, it follows .߳(|ଶߣ|)
that ߣଶ −  .ଵߣ

Let ܶ ∶ ॒ఠభ
(ℂ) → ॒ఠభ

(ℂ) be a bounded ℝ-linear operator. There is 
a canonical way to associate a bounded diagonal operator ்ܦ (with 
respect to the  basis ൫݁ఊ൯ఊழఠభ

) such that ܶ −  is strictly singular: Fix ்ܦ

ߙ ∈ ⋀(߱ଵ) a limit ordinal, and (ݔ௡)௡∈ℕ, .ܴ ௡∈ℕ be two(௡ݕ) .ܫ ܵ. such that 
sup
௡
max supp

௫೙
=sup

௡
max supp

௬೙
ߙ= + ߱. By a property of ॅ we can mix  

the sequences (ݔ௡)௡, .ܴ ௡  in order to form a new(௡ݕ) .ܫ  ௡∈ℕ  such(௡ݖ) .ܵ
that ݖଶ௞ ∈ ଶ௞ିଵݖ ௡∈ℕ and{௡ݔ} ∈ ݇ ௡∈ℕ for all{௡ݕ} ∈ ℕ. Then it follows 
from Step (IV) that the sequences defined by the formulas ݀(ܶݔ௡ , ℂݔ௡) =
௡ݔܶ‖ − ௡ݕܶ)݀ ௡‖ andݔ(݊)்ߣ , ℂݕ௡) = ௡ݕܶ‖ −  ,௡‖ are convergentݕ(݊)ߤ
and by the  mixing argument, they must have the same limit. Hence for 
each ߙ ∈ ⋀(߱ଵ) there  exists a unique complex number (ߙ)்ߦ such that 

lim
௡→ஶ

௡ݓܶ‖ − ‖௡ݓ(ߙ)்ߦ = 0 

for every ܴ. .ܫ ௡∈ℕ  in ॒ூഀ(௡ݓ)  .ܵ , where we write ܫఈ to denote the ordinal 
interval [ߙ, ߙ + ߱). We proceed to define a diagonal linear operator ்ܦ 
on the (linear) decomposition of span(݁ఈ)ఈழఠభ 

span(݁ఈ)ఈழఠభ =
ໄ	

ߙ ∈ ⋀(߱ଵ)
span൫ݔఉ൯ఉ∈ூഀ

				 

by setting ்ܦ( ఉ݁) = ௘ഁ(ߙ)்ߦ  when ߚ ∈  .ఈܫ

Observe in addition that this sequence ((ߙ)்ߦ)ఈ∈∧(ఠభ)  is 
convergent. That is, for every strictly increasing sequence (ߙ௡)௡∈ℕ  in  ∧
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(߱ଵ), the corresponding  subsequence ൫்ߦ(ߙ௡)൯௡∈ℕ is convergent. In 

fact, for every ݊ ∈ ℕ, let (ݕ௡௞)௞∈ℕ be a ܴ. .ܫ ܵ. in ॒ூഀ೙ .Then we can take a 

ܴ. .ܫ ܵ.  ൫ݕ௡
௞೙൯௞∈ℕ such that ฮܶݕ௡

௞೙ − ௡ߙ)்ߦ ௡ݕ(߱+
௞೙ฮ < 1 ݊⁄ . It  follows 

by Step (IV) there exists ߣ ∈ ℂ such that lim
௡
ฮܶݕ௡

௞೙ − ௡ݕߣ
௞೙ฮ = 0. This 

implies that lim
௡
௡ߙ)்ߦ +߱) =  .ߣ

In general this operator ்ܦ defines a bounded operator on ॒ఠభ
(ℂ). 

The proof  is the same that  uses that certain James like space of a  mixed 
Tsirelson space is finitely interval representable in every normalized 
transfinite block sequence of ॒ఠభ

(ℂ). For the case of complex structures 
we have a  simpler proof (see Proposition (4.1.1). 

Proposition (4.1.3) [4]:  
Let ܣ be a subset of ordinals contained in ߱ଵ and ܺ = span

ℂ
(݁ఈ)ఈ∈஺. 

Let  ܶ ∶ 	ܺ	 → ॒ఠభ
(ℂ) be a bounded ℝ-linear operator. Then ܶ is strictly 

singular if  and only if for every ܴ. .ܫ ௡∈ℕ on ܺ, lim(௡ݕ)  .ܵ
௡
௡ݕܶ = 0. 

Proof: 
The proposition is trivial when the set A is finite, then we assume that 

A is  infinite. Suppose that T is strictly singular. Let (y୬)୬∈ℕ be a R. I. S. 
on X such that  lim

୬
Ty୬ ≠ 0, then by Step (IV) there is λ ≠ 0 with 

lim
୬
‖Ty୬ − λy୬‖ = 0. Take 0 < ߳ < |λ|. By passing to a subsequence if 

necessary, we assume that ฮ(T − λId)\ୱ୮ୟ୬	(୷౤)౤ฮ < ߳. This implies that 
T\ୱ୮ୟ୬	(୷౤)౤  is an isomorphism which is a  contradiction. 

Conversely, suppose that for every R. I. S. (y୬)୬ on X, lim
୬
Ty୬ = 0.  

Assume that T is not strictly singular. Then there is a block sequence 
subspace Y = span	(y୬)୬∈ℕ of X such that T restricted to Y is an 
isomorphism. By Step (I)  we can assume that the sequence (y୬)୬ is 
already a R. I. S. on X. Then  inf

୬
‖Ty୬‖ > 0. And we obtain a 

contradiction. 

Given Y ⊆ ॒னభ
(ℂ) we denote by ιY the canonical inclusion of Y into  

॒னభ
(ℂ). 
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Corollary (4.1.4) [4]: 
Let ߙ ∈ ⋀(ωଵ) and ܶ: ॒ூഀ(ℂ) → ॒ఠభ

(ℂ) be a bounded ℝ-linear 
operator. Then there exists (unique) (ߙ)்ߦ ∈ ℂ such that ܶ −  ఐ॒಺ഀ(ℂ)(ߙ)்ߦ
is strictly singular.  

Proof: 
Let ξ୘(α) be the (unique) complex number such that lim‖Ty୬ −

ξ୘(α)y୬‖ = 0  for every R. I. S. (y୬)୬ on ୍॒ಉ(ℂ). Then by the previous  
Proposition T − ξ୘	(α)ங॒౅ಉ(ℂ) is strictly singular. 

Corollary (4.1.5) [4]: 
Let ߙ ∈ ⋀(ωଵ) and ܴ:	॒ூഀ(ℂ) → ॒ூഀ(ℂ) be a bounded ℝ-linear 

operator. Then ܴ is strictly singular. 

Proof: 
By the previous result, ι॒౅ಉ(ℂ)	R = λ஑ι॒౅ಉ(ℂ) + S with S strictly 

singular.  Then projecting by P୍ಉ we obtain R = P୍ಉ ∘ ι॒౅ಉ(ℂ)R = P୍ಉS 
which is strictly singular. 

Proposition (4.1.6) [4]: 
Let T be a complex structure on ॒னభ

(ℂ). Then the linear operator D୘ 
is a bounded complex structure. 

Proof: 
Let T be a complex structure on ॒னభ

(ℂ) and D୘ the corresponding 
diagonal  operator defined above. Fix α ∈ ⋀(ωଵ). We shall prove that 
ξ୘(α)ଶ = −1. In fact, 

ܶ ∘ ಺ഀ(ℂ)॒ߡ = ூܲഀܶ ∘ ಺ഀ(ℂ)॒ߡ + ܲூഀ ∘  ಺ഀ(ℂ)॒ߡ

= ூܲഀܶ ∘ ಺ഀ(ℂ)॒ߡ + ଵܵ 
where Sଵ is strictly singular. This implies P୍ಉT ∘ ι॒౅ಉ(ℂ) = ξ୘(α)Id॒౅ಉ(ℂ) +
Sଶ:	୍॒ಉ(ℂ) → ୍॒ಉ(ℂ) with Sଶ strictly singular. Now computing: 
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ቀ ூܲഀ॒ܶߡ಺ഀ(ℂ)ቁ ∘ ቀ ூܲഀ॒ܶߡ಺ഀ(ℂ)ቁ = ூܲഀܶ ∘ ூܲഀ॒ܶߡ಺ഀ(ℂ) 

= ூܲഀܶ ∘ ݀ܫ) − ܲூഀ)॒ܶߡ಺ഀ(ℂ) 

= ூܲഀܶ
ଶ॒ߡ಺ഀ(ℂ) − ூܲഀܶܲ

ூഀ॒ܶߡ಺ഀ(ℂ) 

= ಺ഀ(ℂ)॒݀ܫ− + ܵଷ 
where Sଷ is strictly singular because the underlined operator is strictly 
singular.  Hence we have that (ξ୘(α)ଶ + 1)Id॒౅ಉ  is strictly singular. 
Which allow us to  conclude that ξ୘(α)ଶ = −1. The continuity of D୘ is 
then guaranteed by the convergence of ൫ξ୘(α)൯஑∈⋀னభ

. In deed, we have 

that there exist ordinal intervals Iଵ < Iଶ < ⋯ < I୩ with ωଵ = ⋃ I୨୩
୨ୀଵ  and 

such that D୘ = ∑ ϵ୨iP୍ ౠ
୩
୨ୀଵ , for some  signs ൫ϵ୨൯୨ୀଵ

୬
.    

Corollary (4.1.7) [4]: 
The space ॒ఠభ

(ℂ) has ߱ଵ many complex structures up to 
isomorphism.  Moreover any two non-isomorphic complex structures are 
incomparable. 

Proof: 
Let ܬ be a complex structure on ॒ఠభ

(ℂ). By Theorem (4.1.2) we have  
that ܬ − ௃ܦ ௃ is a strictly singular operator andܦ ∈ ु. Recall that two 
complex structures whose difference is strictly singular must be 
equivalent. Then ܬ is equivalent to ܦ௝. 

To complete the proof it is enough to show that given two different 
elements of ु they define non equivalent complex structures. Moreover, 
we prove that one  structure does not embed into the other. Fix ܬ ≠ ܭ ∈
ु. Then there exists an  ordinal interval ܫఈ = ,ߙ] ߙ + ߱) such that, 
without loss of generality, ܬห॒ூഀ = ห݀ܫ݅

॒಺ഀ
 and ܭห॒ூഀ = ห݀ܫ݅−

॒಺ഀ
. 

Suppose that there exists ܶ:	॒ఠభ
(ℂ)௃ → ॒ఠభ

(ℂ)௄  an isomorphic 
embedding. Then ܶ is in particular a ℝ-linear operator such that ܶܬ =
=We write using Corollary (4.1.4) , ܶ\॒಺ഀ .ܶܭ ఐ॒಺ഀ(ߙ)்ߦ (ℂ) + ܵ with ܵ 

strictly singular. Then ܬ(ߙ)்ߦ\॒಺ഀ− =಺ഀ॒\ܭ(ߙ)்ߦ ଵܵ where ଵܵ is strictly 
singular. In particular for each ݔ ∈ ॒ூഀ , ଵܵݔ =  It follows from .ݔ݅(ߙ)்ߦ2
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the fact that ॒ூഀ  is infinite dimensional that (ߙ)்ߦ = 0.  Hence ܶ\॒಺ഀ= ܵ,  
but this a contradiction because ܶ is an isomorphic embedding.  

The next corollary offers uncountably many examples of Banach 
spaces  with exactly countably many complex structures. 

 

Corollary (4.1.8) [4]: 
The space ॒ఊ(ℂ) has ߱ complex structures up to isomorphism for 

every  limit ordinal ߱ଶ ≤ ߛ < ߱ଵ. 

Proof: 
  Let ܬ be a complex structure on ॒ఊ(ℂ). We extend ܬ to a complex 

structure  defined in the whole space ॒ఠభ
(ℂ) by setting ܶ = ܬ ଵܲ + 	݅ܲூ , 

where ܫ = [0, ܶ It  follows that .(ߛ = ்ܦ + ܵ for an strictly singular 
operator ܵ and a diagonal operator  ்ܦ like in Theorem (4.1.2) . Notice 
that ݔ்ܦ = ݔ for every ݔ݅ ∈ ॒ூ, otherwise  there would be a limit ordinal 
=such that ܵ\॒಺ഀ ߙ ಺ഀ॒\݀ܫ2݅  . Hence ܬ ூܲ = ்ܦ ூܲ + ܵ. Which implies that 

ܬ has the form ܬ = ∑ ௝߳݅ ூܲೕ
௞
௝ୀଵ + ଵܵ where ଵܵ is strictly  singular on 

॒ఠభ
(ℂ), ൫ ௝߳൯௝ୀଵ

௞
, are signs and ܫଵ < ଶܫ < ⋯ <   ௞ are ordinal intervalsܫ

whose extremes are limit ordinals and such that ߛ = ⋃ ௝௞ܫ
௝ୀଵ . Now the rest 

of the  proof is identical to the proof of the previous corollary. In 
particular, all the non-isomorphic complex structures on ॒ఊ(ℂ) are 
incomparable. 

We also have, using the same proof of the previous corollary, that for 
every  increasing sequence of limit ordinals ܣ = ௡, the space ॒஺(௡ߙ) =
⨁௡॒ூഀ೙(ℂ), where ܫఈ೙ = ,௡ߙ] ௡ߙ + ߱),  has exactly infinite countably 
many different complex  structures. Hence there exists a family, with the 
cardinality of the continuum, of  Banach spaces such that every space in it 
has exactly ߱ complex structures. 
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Section (4.2): Observations 
It is easy to check that subspaces of even codimension of a real 

Banach  space with complex structure also admit complex structure. An 
interesting property  of ॒ఠభ

(ℂ) is that any of its real hyperplanes (and 
thus every real subspace of odd  codimension) do not admit complex 
structure. 

Proposition (4.2.1) [4]: 
The real hyperplanes of ॒ఠభ

(ℂ) do not admit complex structure. 

Proof: 
By the results of V. Ferenczi and E. Galego it is  sufficient to prove 

that the ideal of all ℝ-linear strictly singular operators on  ॒ఠభ
(ℂ) has the 

lifting property, that is, for any ℝ-linear isomorphism on ॒ఠభ
(ℂ)  such 

that ܶଶ +  ܵ is strictly singular, there exists a strictly singular operator ݀ܫ
such  that (ܶ − ܵ)ଶ =   .The proof now follows .݀ܫ−	

One open problem in the theory of complex structure is to know if the  
existence of more regularity in the space guarantees that it admits unique 
complex  structure. 

The purpose of this section is to give a proof for the results in the Step 
(I), (II) and (III). Several proofs are very similar to the corresponding 
ones . 

First we clarify the definition of the norming set by defining what 
being a  special sequence means. All the definitions we present in this 
part are the  corresponding translation for the complex case. 

Recall that [ωଵ]ଶ = {(α, β) ∈ ωଵ
ଶ ∶ 	α <  .{ߚ

Definition (4.2.2) [4]: 
A function ߷ ∶ [߱ଵ]ଶ 	→ ߱ such that 

,ߙ)߷(݅) (ߛ ≤ max{߷(ߙ, ,(ߚ ,ߚ)߷ ߙ for all {(ߛ < ߚ < ߛ < ߱ଵ. 

(݅i)	߷(ߙ, (ߚ ≤ max{߷(ߙ, ,(ߛ ,ߚ)߷ ߙ for all {(ߛ < ߚ < ߛ < ߱ଵ. 

(iii) The set {ߙ < ,ߙ)߷	:ߚ (ߚ ≤ ݊} is finite for all ߚ < ߱ଵ and ݊ ∈ ℕ 
is called a ߷-function. 
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The existence of ߷-functions is due to Todorcevic. Let us fix a ߷-function 
߷ ∶ [߱ଵ]ଶ → ߱ and all the following work relies on that particular choice 
of ߷. 

Definition (4.2.3) [4]: 
Let F be a finite subset of ω1 and p ∈ ℕ , we write 

ܨߩ = (ܨ)߷ߩ = max
ఈ,ఉ∈ி

,ߙ)߷  .(ߚ

ܨ
௣
= ߙ} ≤ max ܨ : there	is	ߚ ∈ ߙ	hat	such	ܨ ≤ ,ߙ)߷	and	ߚ (ߚ ≤  {݌

We denote by ℚୱ(ωଵ, ℂ) the set of finite sequences 
(ϕଵ, wଵ, pଵ, … , ϕୢ, wୢ, pୢ) such that 

(i) For all ݅ ≤ ݀,߶௜ ∈ ܿ଴଴(߱ଵ, ℂ) and for all ߙ < ߱ଵ the real 
and the  imaginary part of ߶(ߙ) are rationals. 

(ii) (ݓ௜)௜ୀଵௗ , ௜ୀଵௗ(௜݌) ∈ ℕௗ are strictly increasing sequences. 
(iii) ݌௜ ≥ ൫⋃ೖసభ೔ߩ ୱ୳୮୮థೖ൯

 for every ݅ ≤ ݀. 

Let ℚୱ(ℂ) be the set of finite sequences 
(ϕଵ, wଵ, pଵ, ϕଶ, wଶ, pଶ, … ,ϕୢ, wୢ, pୢ)  satisfying properties (i), (ii) above 
and for  every i ≤ d,ϕ୧ ∈ c଴଴(ωଵ, ℂ). Then ℚୱ(ℂ) is a countable set 
while ℚୱ(ωଵ, ℂ) has  cardinality ωଵ. Fix a one to one function 
σ:	ℚୱ(ℂ) → {2j:	j	is	odd} such that 

,ଵ߶)ߪ ,ଵݓ ,ଵ݌ … , ߶ௗ , ௗݓ , (ௗ݌ > max ൜݌ௗଶ,
1
߳ଶ
, max supp ߶ௗൠ 

where ߳ = min{|߶௞(݁ఈ)|:	ߙ ∈ supp ߶ௗ , ݇ = 1, … , ݀}. Given a finite 
subset ܨ of  ߱ଵ, we denote by ߨி ∶ {1, 2, . . . , {ܨ# →  the natural order ܨ
preserving map, i.e. ߨி   is the increasing numeration of ܨ.  

Given Φ = (ϕଵ, wଵ, pଵ, … , ϕୢ, wୢ, pୢ) ∈ ℚୱ(ℂ), we set 

஍ܩ =ራsupp߶௜

ௗ

௜ୀଵ

௣ௗ

. 

Consider the family ீߨಅ(Φ) =
,ଵݓ,(ଵ߶)ீߨ) ,ଵ݌ ,(ଶ߶)ீߨ ,ଶݓ ,ଶ݌ … , ,(ௗ߶)ீߨ ,ௗݓ  ௗ) where݌

(݊)(ଵ߶)ீߨ = ቊ߶௞ ቀீߨಅ(݊)ቁ , if	݊ ∈ ,஍ܩ
0,																				 otherwise.
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Finally ߪ௣ ∶ ℚ௦(߱ଵ, ℂ) → {2݆ ∶ ݆	odd} is defined by ߪ௣(ߔ) =  .((ߔ)ீߨ)ߪ

Definition (4.2.4) [4]: 

A sequence ߔ = ቀ߶ଵ, ߶ଶ, … , ߶௡మೕశభቁ of functionals of ߢఠభ(ℂ)  is 

called a 2݆ + 1 special sequence if 

(SS.1) supp ߶ଵ < supp߶ଶ < ⋯ < supp߶௡మೕశభ . For each ݇ ≤
݊ଶ௝ାଵ, ߶௞ is  of type ݓ ,ܫ(߶௞) = ݉ଶ௝ೖ  with ݆ଵ even and ݉ଶ௝భ >
݊ଶ௝ାଵଶ . 

(SS.2) There  exists a strictly increasing sequence 

ቀpଵ஍, pଶ஍, … , pଶౠశభିଵ
஍ ቁ of  naturals numbers such that for all 1 ≤ i ≤

	nଶౠశభ − 1 we have that w(ϕ୧ାଵ) = σ஢ಧ(Φ୧) where 

௜ߔ = ൫߶ଵ, ,(ଵ߶)ݓ ,ଵః݌ ߶ଶ, ,(ଶ߶)ݓ ,ଶః݌ … , ߶௜, ,(௜߶)ݓ  ௜ః൯݌
Special sequences in separable examples with one to one codings are 

in  general simpler: they are of the form ൫߶ଵ, …,(ଵ߶)ݓ , ߶௞,  .൯(௞߶)ݓ
Their main  feature is that if ൫߶ଵ, ,(ଵ߶)ݓ … , ߶௞ ,  ൯ and(௞߶)ݓ
൫߰ଵ, …,(ଵ߰)ݓ , ߰௞, ൯ are two of them, there exists ݅଴(௞߰)ݓ ≤ min{݇, ݈} 
with the property that 

										൫߶௜, ൯(௜߶)ݓ = ൫߰௜, ݅	all	for					൯(௜߰)ݓ ≤ ݅଴																																						(1) 

଴݅	:(௜߶)ݓ}									 ≤ ݅ ≤ ݇} ∩ ଴݅	:(௜߰)ݓ} ≤ ݅ ≤ ݈} = ߶																														(2) 
In non-separable spaces, one to one codings are obviously impossible, 

and (1),  (2)  are no longer true. Fortunately, there is a similar feature to 
(1), (2) called the tree-like interference of a pair of special sequences Let 

Φ = ቀϕଵ, … , ϕ୬మౠశభቁ and ψ = ቀψଵ, … , ψ୬మౠశభቁ be two 2୨ + 1-special 

sequences, then  there exist two numbers 0 ≤ k஍,ந ≤ λ஍,ந ≤ nଶౠశభ  such 
that the following  conditions hold: 

 (TP.1) For all ݅ ≤ ,ః,టߣ (௜߶)ݓ = ௜ః݌ and (௜߰)ݓ = ௜݌
ట. 

 (TP.2) For all ݅ < ݇ః,ట, ߶௜ = ߰௜. 

 (TP.3) For all ݇ః,ట < ݅ <  ః,టߣ

supp ߶௜ ∩ supp߰ଵ ∪ …∪ supp ః,టߣ − 1
௣ఒ೻,ഗିଵ = ߶ 
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and 

supp߰௜ ∩ supp߶ଵ ∪ …∪ supp߶ః,ట − 1
௣ఒ೻,ഗିଵ = ߶ 

(TP.4) ቄݓ(߶௜):	ߣః,ట < ݅ ≤ ݊ଶೕశభቅ ∩ ቄݓ(߰௜): ݅ ≤ ݊ଶೕశభቅ = ߶ and 

ቄݓ(߰௜):		ߣః,ట < ݅ ≤ ݊ଶೕశభቅ ∩ ቄݓ(߶௜):	݅ ≤ ݊ଶೕశభቅ = ߶. 
For the proof of Step (I) we shall construct a family of block 

sequences on  ॒னభ
(ℂ) commonly called rapidly increasing sequences 

(R. I. S. ). These sequences  are very useful because one has good 
estimates of upper bounds on |f(x)| for f ∈ κனభ

(ℂ) and x averages of 
R. I. S. 

For the construction of the family ॅ the only difference from the 
general  theory is that our interest now is to study bounded ℝ-linear 
operators on the  complex space ॒ఠభ

(ℂ). Hence, all the construction of 
ܴ. .ܫ ܵ. in a particular block  sequence (ݔ௡)௡∈ℕ must be on its real linear 
span. We point out here that there are  no problems with this, because all 
the combinations of the vectors (ݔ௡)௡∈ℕ to  obtain ܴ. .ܫ ܵ. use rational 
scalars. 

Definition (4.2.5) [4]: 
(ܴ. .ܫ ܵ. ). We say that a block sequence (ݔ௞)௞ of ॒ఠభ

(ℂ) is a (ܥ, ߳)-
ܴ. .ܫ ܵ. , ,ܥ ߳ > 0, when there exists a strictly increasing sequence of 
natural  numbers (݆௞)௞ such that: 

(i) ‖ݔ௞‖ ≤  ;ܥ
(ii) |supp |௞ݔ ≤ ௝݉ೖశభ߳; 

(iii) For all the functionals ߶ of ߢఠభ
(ℂ) of type ܫ, with ߱(߶) <

௝݉ೖ , |(௞ݔ)߶| ≤
஼

ఠ(థ)
.  

The following remark is immediately consequence of this definition. 

Remark (4.2.6) [4]:  
Let ߳ᇱ < ߳. Every (ܥ, ߳)-ܴ. .ܫ ܵ. has a subsequence which is a (ܥ, ߳ᇱ)-

ܴ. .ܫ ܵ. 

And for every strictly increasing sequence of ordinals (ߙ௡)௡ and every 
߳ > 0, ൫݁ఈ೙൯௡  is a (1, ߳)-ܴ. .ܫ ܵ. 



٨٢ 
 

Remark (4.2.7) [4]: 
Let (ݔ௡)௡ and (ݕ௡)௡ be two (ܥ, ߳)-ܴ. .ܫ ܵ. such that 

sup
௡
max	supp ௡ݔ = sup

௡
max	supp ,ܥ) ௡. Then there exists aݕ ߳)-ܴ. .ܫ ܵ. 

such that ݖଶ௡ିଵ ∈ ଶ௡ݖ ௞∈ℕ  and{௞ݔ} ∈  .௞∈ℕ{௞ݕ}

Proof: 
Suppose that (ݐ௞)௞ and (ݏ௞)௞ are increasing sequences of positive 

integers  satisfying the definition of ܴ. .ܫ ܵ. for (ݔ௞)௞ and (ݕ௞)௞ 
respectively. We construct (ݖ௞)௞ as follows. Let ݖଵ = ଵ and ݆ଵݔ =  ଵ.Pickݐ
௞భݏ  such that ݔଵ < ௦ೖభݕ  and ݐଶ < ௞భ. Then we define ݆ଶݏ = ௞భݏ  and ݖଶ =
௦ೖభݕ . Notice that 

(i) ‖ݖଵ‖ ≤  ;ܥ
(ii) |supp |ଵݖ ≤ ݉௧మ߳ ≤ ݉௦ೖభ߳ = ௝݉మ߳; 

(iii) For all the functionals ߶ of ߢఠభ
(ℂ) of type ܫ, with ߱(߶) <

௝݉భ , |(ଵݖ)߶| ≤
஼

ఠ(థ)
.  

Continuing with this process we obtain the desired sequence. 

Theorem (4.2.8) [4]: 
Let (x୩)୩ be a normalized block sequence of ॒னభ

(ℂ) and ϵ > 0. Then 
there exists a normalized block subsequence (ݕ௞)௞ in span span

ℝ
 {௞ݔ}

which is a (3, ߳)-ܴ. .ܫ ܵ. 

For the proof of Theorem (4.2.8) we first construct a simpler type of  
sequence. 

Definition (4.2.9) [4]: 
Let X be a Banach space, C ≥ 1 and k ∈ ℕ. A normalized vector y is 

called  a C − ℓଵ୩-average of X, when there exist a block sequence 
(xଵ, . . . , x୩) such that  

(a)			ݕ = .	+ଵݔ) . . (௞ݔ	+ ݇⁄ ; 

(b)	‖ݔ௜‖ ≤ ,ܥ for	all	݅ = 1, … , ݇. 
In the next result we want to emphasize that this special type of 

sequence are  really constructed on the real structure of the space ॒ఠభ
(ℂ). 
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Theorem (4.2.10) [4]:  
For every normalized block sequence (ݔ௡) of ॒ఠభ

(ℂ), and every 
integer ݇, there exist ݖଵ < ⋯ < ௞ in spanݖ

ℝ
 such that ,(௡ݔ)

ଵݖ) +⋯+ (௞ݖ ݇⁄  is a 2 − ℓଵ௞-average. 

Proof: 
The proof is standard. Suppose that the result is false. Let ݆ and ݊ be 

natural  numbers with 

2௡ > ݉ଶೕ 

݊ଶೕ > ݇௡. 

Let N = k୬ and x = ∑ x୧୒
୧ୀଵ  . For each 1 ≤ i ≤ 	n and every 1 ≤ 	j ≤

	k୬ି୧,  we define, 

,݅)ݔ ݆) = ෍ ௧ݔ

௝௞೔

௧ୀ(௝ିଵ)௞೔ାଵ

. 

Hence, x(0, j) = x୨ and x(n, 1) = 	x. 

It is proved by induction on ݅ that ‖ݔ(݅, ݆)‖ ≤ 2ି௜݇௜, for all ݅, ݆. In 
particular,  ‖ݔ‖ = ,݊)ݔ‖ 1)‖ ≤ 2ି௡݇௡ = 2ି௡ܰ. Then by Property (1). of 
definition in the  norming set 

‖ݔ‖ ≥
1
݉ଶೕ

෍‖ݔ௧‖

௡మೕ

௧ୀଵ

=
݊ଶೕ
݉ଶೕ

>
ܰ
݉ଶೕ

. 

Hence, 

2ି௡ܰ >
ܰ
݉ଶೕ

 

݉ଶೕ > 2௡, 
which is a contradiction. 

Finally, for the construction of ܴ. .ܫ ܵ. we observe these simple facts  
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(i) If ݕ is a ܥ − ℓଵ
௡మೕ -average of ॒ఠభ

(ℂ) and ߶ ∈ ఠభߢ
(ℂ) has weight 

߱(߶) < ௝݉, then |߶(ݕ)| ≤ ଷ஼
ଶఠ(థ)

; 

(ii)  Let (ݔ௞)௞ be a block sequence of ॒ఠభ
(ℂ) such that there exists a 

strictly  increasing sequence of positive integers (݆௞)௞ and ߳ > 0 
satisfying: 

(a)  Each ݔ௞ is a 2 − ℓଵ
௡ೕೖ-average; 

(b)	|supp |௞ݔ < ߳ ௝݉ೖశభ . 
Then (ݔ௞)௞ is a (3, ߳)-ܴ. .ܫ ܵ. 

To prove Step (II) and (III) we need a crucial result called the basic  
inequality which is very important to find good estimations for the norm 
of certain combinations of ܴ. .ܫ ܵ. in ॒ఠభ

(ℂ). First we need to introduce 
the mixed Tsirelson  spaces. 

The mixed Tsirelson space ܶ ቂ൫ ௝݉
ିଵ, ௝݊൯௝ቃ is defined by considering 

the  completion of ܿ଴଴(߱, ℂ) under the norm ‖∙‖଴ given by the following 
implicit  formula 

଴‖ݔ‖ = max ቐ‖ݔ‖ஶ, sup
௝
sup

1
௝݉
෍ฮܧ௝ݔฮ଴

௡ೕ

௜ୀଵ

ቑ. 

The supremum inside the formula is taken over all the sequences ܧଵ <
	. . . < ௡ೕܧ  of subsets of ߱. Notice that in this space the canonical Hamel 
basis (݁௡)௡ < ߱ of  ܿ଴଴(߱, ℂ) is 1-subsymmetric and 1-unconditional 
basis. 

We can give an alternative definition for the norm of 

ܶ ቂ൫ ௝݉
ିଵ, ௝݊൯௝ቃ by  defining the following norming set. Let 

ܹ ቂ൫ ௝݉
ିଵ, ௝݊൯௝ቃ ⊆ 	 ܿ଴଴(߱, ℂ) the minimal  set of ܿ଴଴(߱, ℂ) satisfying the 

following properties: 

(a) For every ߙ < ߱, ݁ఈ∗ ∈ ܹ ቂ൫ ௝݉
ିଵ, ௝݊൯௝ቃ. If ߶ ∈

ܹ ቂ൫ ௝݉
ିଵ, ௝݊൯௝ቃ and ߠ = ߣ +  ߣ is a complex number with ߤ݅

and ߤ rationals and |ߠ| ≤ 1, ߶ߠ ∈ ܹ ቂ൫ ௝݉
ିଵ, ௝݊൯௝ቃ; 
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(b) For every ߶ ∈ ܹ ቂ൫ ௝݉
ିଵ, ௝݊൯௝ቃ and ܧ ⊆ ߱, ߶ܧ ∈

ܹ ቂ൫ ௝݉
ିଵ, ௝݊൯௝ቃ; 

(ܿ) For every ݆ ∈ ℕ and ߶ଵ <	. . . < ߶௡ೕ in ܹ ቂ൫ ௝݉
ିଵ, ௝݊൯௝ቃ, 

൫1 ௝݉⁄ ൯∑ ߶௜
௡ೕ
௜ୀଵ ∈ ܹ ቂ൫ ௝݉

ିଵ, ௝݊൯௝ቃ; 

(d)		ܹ ቂ൫ ௝݉
ିଵ, ௝݊൯௝ቃ is closed under convex rationals 

combinations. 

Theorem (4.2.11) [4]: (Basic Inequality for ࡾ. .ࡵ  :(.ࡿ
Let (ݔ௡)௡ be a (ܥ, ߳)  ܴ. .ܫ ܵ. of ॒ఠభ

(ℂ) and (ܾ௞)௞ ∈ ܿ଴଴(ℂ,ℕ). 
Suppose that  for some ݆଴ ∈ ℕ we have that for every ݂ ∈ ఠభߢ

(ℂ) with 
weight ݓ(݂) = ௝݉బ  and  for every interval ܧ of ߱ଵ, 

อ݂ ൭෍ܾ௞
௞∈ா

൱อ ≤ ܥ ൭max
௞∈ா

|ܾ௞| + ߳෍|ܾ௞|
௞∈ா

൱. 

Then for every f ∈ κனభ
(ℂ) of type I, there exist gଵ, gଶ ∈ c଴଴(ℂ, ℕ) 

such that 

อ݂ ൭෍ܾ௞
௞∈ா

൱อ ≤ ଵ݃)ܥ + ݃ଶ) ൭෍|ܾ௞|
௞∈ா

݁௞൱, 

where ݃ଵ = ℎଵ or ݃ଵ = ݁௧∗ + ℎଵ, ݐ ∉ supp ℎଵ and ℎଵ ∈ ܹ ቂ൫ ௝݉
ିଵ, 4 ௝݊൯௝ቃ 

such that ℎଵ ∈ convℚ ቄℎ ∈ ܹ ቂ൫ ௝݉
ିଵ, 4 ௝݊൯௝ቃቅ and ௝݉ does not appear as a 

weight of a node  

in the tree analysis of ℎଵ, and ‖݃ଶ‖ஶ ≤ ߳. 

Proposition (4.2.12) [4]: 
Let ݂ ∈ ఠభߢ

(ℂ) or ݂ ∈ ܹ ቂ൫ ௝݉
ିଵ, 4 ௝݊൯௝ቃ be of type ܫ. Consider ݆ ∈

ℕ and ݈ ∈ ൤
௡ೕ
௠ೕ
, ௝݊൨. Then for every set ܨ ⊆ ܿ଴଴(߱ଵ, ℂ) of cardinality ݈, 

อ݂ ൭
1
݈
෍ ݁ఈ
ఈ∈ி

൱อ ≤

⎩
⎪
⎨

⎪
⎧ 1
(݂)ݓ ௝݉

, if	ݓ(݂) < ௝݉,

2
(݂)ݓ

, if	ݓ(݂) ≥ ௝݉,
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If the tree analysis of f does not contain nodes of weight ௝݉, then 

อ݂ ൭
1
݈
෍ ݁ఈ
ఈ∈ி

൱อ ≤
2

௝݉
ଷ 

Proposition (4.2.13) [4]: 

Let (ݔ௞)௞ be a (ܥ, ߳)- ܴ. .ܫ ܵ. of ॒ఠభ
(ℂ) with ߳ ≤ ଵ

௡ೕ
, ݈ ∈ ൤

௡ೕ
௠ೕ
, ௝݊൨ and 

let ݂ ∈ ఠభߢ
(ℂ) be of type ܫ. Then, 

อ݂ ൭
1
݈
෍ݔ௞

௟

௞ୀଵ

൱อ ≤

⎩
⎪
⎨

⎪
⎧ ܥ3

(݂)ݓ ௝݉
, if	ݓ(݂) < ௝݉,

ܥ
(݂)ݓ

+
ܥ2
௝݊
, if	ݓ(݂) ≥ ௝݉,

 

Consequentely, if (ݔ௞)௞ୀଵ௟  is a normalized (ܥ, ߳)-ܴ. .ܫ ܵ. with ߳ ≤ ଵ
௡మೕ

, ݈ ∈

ቈ
௡మೕ
௠మೕ

, ݊ଶೕ቉, then 

1
݉ଶೕ

≤ ะ
1
݈
෍ݔ௞

௟

௞ୀଵ

ะ ≤
ܥ2
݉ଶೕ

. 

Proof: 

Let (ݔ௞)௞ be a (ܥ, ߳)- ܴ. .ܫ ܵ. and take ܾ = ቀଵ
௟
, … , ଵ

௟
, 0,0,… ቁ ∈

ܿ଴଴(ℕ, ℂ). It follows from the basic inequality that for every ݂ ∈ ఠభߢ
(ℂ) 

of type ܫ, there exist  ℎଵ ∈ ܹ ቂ൫ ௝݉
ିଵ, 4 ௝݊൯௝ቃ with ߱(ℎଵ) = ߱(݂), ݐ ∈ ℕ 

and ݃ଶ ∈ ܿ଴଴(ℕ, ℂ) with ‖݃‖ஶ ≤ ߳ such that 

อ݂ ൭
1
݈
෍ݔ௞

௟

௞ୀଵ

൱อ ≤ ∗௧݁)ܥ + ℎଵ + ݃ଶ) ൭
1
݈
෍ ݁௞

௟

௞ୀଵ

൱. 

Moreover, 

อ݃ଶ ൭
1
݈
෍ ݁௞

௟

௞ୀଵ

൱อ ≤ ‖݃‖ஶ ะ
1
݈
෍݁௞
௞∈ா

ะ
ଵ

≤ ߳ ≤
1
௝݊
. 

Now by the estimatives on the auxiliary space ܶ ቂ൫ ௝݉
ିଵ, 4 ௝݊൯௝ቃof the  

Proposition (4.2.12) , we have 
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(i) If ߱(݂) < ௝݉, 

อ݂ ൭
1
݈
෍ݔ௞

௟

௞ୀଵ

൱อ ≤ ܥ ቆ
1
݈
+

2
߱(݂) ௝݉

+
1
௝݊
ቇ 

																																	≤ ܥ ቆ ௝݉

௝݊
+

2
߱(݂) ௝݉

+
1
௝݊
ቇ 

					≤
ܥ3

߱(݂) ௝݉
 

(ii) If ߱(݂) ≥ ௝݉, 

อ݂ ൭
1
݈
෍ݔ௞

௟

௞ୀଵ

൱อ ≤ ܥ ቆ
1
݈
+

ܥ
߱(݂)

+
1
௝݊
ቇ 

														≤
ܥ

߱(݂)
+
ܥ2
௝݊

 

And notice 

(iii) ଷ஼
ఠ(௙)௠మೕ

≤ ଶ஼
௠మೕ

, if ߱(݂) < ݉ଶೕ, 

(iv) ஼
ఠ(௙)

+ ଶ஼
௡మೕ

≤ ஼
௠మೕ

+ ஼
௠మೕ

= ଶ஼
௠మೕ

, if ߱(݂) ≥ ݉ଶೕ.  

We conclude from the fact that ߢఠభ
(ℂ) is the norming set: 

ะ(1 ݈⁄ )෍ݔ௞

௟

௞ୀଵ

ะ ≤ ܥ2 ݉ଶೕൗ . 

For the proof the second part of the theorem, let (ݔ௞)௞ୀଵ௟  be a normalized 

,ܥ) ߳)- ܴ. .ܫ ܵ. with ߳ ≤ ଵ
௡మೕ

, ݈ ∈ ቈ
௡మೕ
௠మೕ

, ݊ଶೕ቉. For every ݇ ≤ ݈, we consider 

∗௞ݔ ∈ ఠభߢ
(ℂ), such that ݔ௞∗(ݔ௞) = 1 and ݔ௞∗ ⊆ ran ௞ݔ ,  then ݔ∗ =

ଵ
௠మೕ

∑ ௞∗௟ݔ
௞ୀଵ ∈ ఠభߢ

(ℂ) and ݔ∗ ቀଵ
௟
∑ ௞௟ݔ
௞ୀଵ ቁ = ଵ

௠మೕ
. Hence, ଵ

௠మೕ
≤

ቛଵ
௟
∑ ௞௟ݔ
௞ୀଵ ቛ. 
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Proof of step (II):    

Now we introduce another type of sequences in order to construct the  
conditional frame in ॒ఠభ

(ℂ). In fact, this space has no unconditional 
basic  sequence. 

Definition (4.2.14) [4]: 
A pair (ݔ, ߶) with ݔ ∈ ॒ఠభ

(ℂ)  and ߶ ∈ ఠభߢ
(ℂ), is called a (ܥ, ݆)- 

exact pair  when: 

(a)	‖ݔ‖ ≤ (߶)߱,ܥ = ௝݉ and ߶(ݔ) = 1. 

(b)  For each ߰ ∈ ఠభߢ
(ℂ) of type ܫ and ߱(ݔ) = ݉௜ , ݅ ≠ ݆, we have 

|(ݔ)߰| ≤

⎩
⎪
⎨

⎪
ܥ2⎧
݉௜

, if	݅ < ݆,

ܥ

௝݉
ଶ , if	݅ > ݆.

 

Proposition (4.2.15) [4]:  
Let (ݔ௡)௡ be a normalized block sequence of ॒ఠభ

(ℂ). Then for every 
݆ ∈ ℕ,  there exist (ݔ, ߶) such that ݔ ∈ span

ℝ
(௡ݔ) , ߶ ∈ ఠభߢ

(ℂ) and (ݔ, ߶) 

is a (6,2݆)-exact pair. 

Proof: 
Fix (ݔ௡)௡ a normalized block sequence of ॒ఠభ

(ℂ) and a positive 
integer ݆.  By the Proposition (4.2.8) there exists (ݕ௡)௡ a normalized 
(3, 1/݊ଶೕ)-ܴ. .ܫ ܵ. in  span

ℝ
For every 1 .(௡ݔ) ≤ 	݅ ≤ ݊ଶೕ  and ߳ > 0, we 

take ߶௜ ∈ ఠభߢ
(ℂ) such that  ߶௜(ݕ௜) > 1 − ߳, and ߶௜ < ߶௜ାଵ. Let ݔ =

ቀ݉ଶೕ ݊ଶೕ⁄ ቁ∑ ௜ݕ
௡మೕ
௜ୀଵ  and ߶ = ቀ1 ݊ଶೕൗ ቁ∑ ߶௜

௡మೕ
௜ୀଵ ∈ ఠభߢ

(ℂ). By perturbating 

 ௜ we may assume thatݕ by a rational coefficient on the  support of some ݔ
then ߶(ݔ) = 1 and using Proposition (4.2.9) we conclude that (ݔ, ߶) is a 
(6,2݆)-exact pair. 

Definition (4.2.16) [4]: 
Let ݆ ∈ ℕ. A sequence (ݔଵ, ߶ଵ, . . . , ,ଶ௝ାଵݔ ߶௡మೕశభ) is called a (1, ݆)-

dependent sequence when: 

(DS.1) supp ଵݔ ∪ supp߶ଵ < ⋯ < supp ௡మೕశభݔ ∪ supp߶௡మೕశభ . 
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(DS.2) The sequence ߔ = ቀ߶ଵ, … , ߶௡మೕశభቁ is a 2݆ + 1-special 
sequence. 

(DS.3) (ݔ௜ , ߶௜) is a (6,2݆)-exact pair. # supp ௜ݔ ≤ ݉ଶೕశభ ݊ଶೕశభ
ଶ⁄  for 

every  ݅ ≤ ݅ ≤ ݊ଶೕశభ . 

(DS.4) For every (2݆ + 1)-special sequence ߰ = ቀ߰ଵ, … , ߰௡మೕశభቁ 
we have that 

ራ supp ௜ݔ
௞೻,೽ಬ೔ಬഊ೻,೽

∩	 ራ supp߰௜
௞೻,೽ಬ೔ಬഊ೻,೽

= ߶, 

where ݇ః,అ,   .ః,అ are numbers introduced in Definition (4.2.4) [4]ߣ

Proposition (4.2.17) [4]: 
For every normalized block sequence (ݕ௡)௡ of ॒ఠభ

(ℂ), and every 
natural  number ݆ there exists a (1, ݆)-dependent sequence 
,ଵݔ) ∅ଵ, … , ௡మೕశభݔ , ∅௡మೕశభ) such   that ݔ௜ is in the ℝ-span of (ݕ௡)௡ for 
every ݅ = 1,… , ݊ଶ௝ାଵ. 

Proof: 
Let (ݕ௡)௡ be a normalized block sequence of ॒ఠభ

(ℂ) and ݆ ∈ ℕ. We  
construct the sequence (ݔଵ, ∅ଵ, …	 , ௡మೕశభݔ , ∅௡మೕశభ) inductively. First using  
Proposition (4.2.15) we choose a (6,2݆ଵ)-exact pair (ݔଵ, ∅ଵ) such that ݆ଵ 
is  even, ݉ଶ௝భ > ݊ଶ௝భ and ݔ ∈ span

ℝ
 ௡.  Assume that we have(௡ݕ)

constructed (ݔଵ, ∅ଵ, … , ,௟ିଵݔ ∅௟ିଵ) such that there exists (݌ଵ, …	 ,  (௟ିଵ݌
satisfying 

(i) supp ଵݔ ∪ supp߶ଵ < ⋯ < supp ௟ିଵݔ ∪ supp߶௟ିଵ, where 
௜ݔ ∈ span

ℝ
௜ݔ) ௡ and(௡ݕ) , ∅௜) is a (6,2݆ଵ)-exact pair. 

(ii)	1ݎ݋ܨ < ݅ ≤ ݈ − 1, (௜∅)ݓ =
,ద(∅ଵߪ ,(ଵ∅)ݓ ,ଵ݌ … , ∅௜ିଵ, ,(௜ିଵ∅)ݓ                        .(௜ିଵ݌

(iii) For 1 < ݅ ≤ ݈ − ௜݌ ,1 ≥ max{݌௜ିଵ, ௜ܨ ௜}, whereܨ݌ =
⋃ supp߶௞௜
௞ୀଵ ∪ supp  .௞ݔ

To complete the inductive construction choose 

௟ିଵ݌ ≥ max{݌௟ିଶ, ௜ିଵ#suppܨ݌  {௟ିଵݔ
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and 2݆௟ = ,ద(∅ଵߪ ,(ଵ∅)ݓ ,ଵ݌ … , ∅௟ିଵ, ,(௟ିଵ∅)ݓ  ௟ିଵ). Hence take a݌
(6,2݆ଵ)-exact  pair (ݔ௟ , ∅௟) such that ݔ௟ ∈ span

ℝ
௡ and supp(௡ݕ) ௟ିଵݔ ∪

supp߶௟ିଵ < ⋯ < supp ௟ݔ ∪ supp߶௟. Notice that properties (DS.1), 
(DS.2) and (DS.3) are clear by  definition of the sequence and (DS.4) 
follows from (iii) and . 

Modifying a little the previous argument we obtain the following: 

Proposition (4.2.18) [4]: 
For every two normalized block sequences (ݕ௡)௡ and (ݖ௡)௡ of 

॒ఠభ
(ℂ), and every ݆ ∈ ℕ there exists a (1, ݆)-dependent sequence 

,ଵݔ) ∅ଵ, … , ௡మೕశభݔ , ∅௡మೕశభ)  such that ݔଶ௟ିଵ ∈ span
ℝ

ଶ௟ିଵݔ and (௡ݕ) ∈

span
ℝ

݈ for every (௡ݖ) = 1,… , ݊ଶ௝ାଵ. 

Another consequence of the basic inequality is the following 
proposition.  

Proposition (4.2.19) [4]: 
Let (ݔଵ, ∅ଵ, … , ௡మೕశభݔ , ∅௡మೕశభ) be a (1, ݆)-dependent sequence. Then: 

(݅) ฯ ଵ
௡మೕశభ

∑ ௜ݔ
௡మೕశభ
௜ୀଵ ฯ ≥ ଵ

௠మೕశభ
; 

(ii)		ฯ ଵ
௡మೕశభ

∑ (−1)௜ାଵݔ௜
௡మೕశభ
௜ୀଵ ฯ ≥ ଵ

௠మೕ
య . 

Proposition (4.2.20) [4]: 
Let (ݕ௡)௡ be a normalized block sequence of ॒ఠభ

(ℂ). Then the 
closure of  the real span of (ݕ௡)௡ is ܪ.   .ܫ

Proof: 
  Let (ݕ௡)௡ be a normalized block sequence of ॒ఠభ

(ℂ). Fix ߳ > 0 
and two   block subsequences (ݖ௡)௡ and (ݓ௡)௡ in span

ℝ
 Take an .(௡ݕ)

integer ݆ such that  ݉ଶ௝ାଵ߳ > 1. By Proposition (4.2.18) there exist a 
(1, ݆)-dependent sequence  (ݔଵ, ∅ଵ, … , ௡మೕశభݔ , ∅௡మೕశభ) such that ݔଶ௜ିଵ ∈

span
ℝ

ଶ௜ݔ and (௡ݖ) ∈ span
ℝ

ݖ We  define .(௡ݓ) = (1 ݊ଶ௝ାଵ⁄ )∑ ௜ݔ
௡మೕశభ
௜ୀଵ(௢ௗௗ)  

and ݓ = (1 ݊ଶ௝ାଵ⁄ )∑ ௜ݔ
௡మೕశభ
௜ୀଵ(௘௩௘௡) . Notice that ݖ ∈ span

ℝ
ݓ and  (௡ݖ) ∈
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span
ℝ

ݖ‖ Then by Proposition (4.2.1) we get .(௡ݓ) + ‖ݓ ≥ (1 ݉ଶ௝ାଵ⁄ ) 

and ‖ݖ − ‖ݓ ≥ 1 ݉ଶ௝ାଵ
ଶ⁄ . Hence ‖ݖ − ‖ݓ ≤ ݖ‖߳ +  .‖ݓ

Definition (4.2.21) [4]: 
A sequence (ݖଵ, ∅ଵ, … , ௡మೕశభݖ , ∅௡మೕశభ) is called a (0, ݆)-dependent 

sequence  when it satisfies the following conditions: 

(i) (0DS.1) The ߔ = ߶ଵ, … , ߶௡మೕశభ-special sequence and ߶௜(ݖ௞) = 0 
for every 1 ≤ ݅, ݇ ≤ ݊ଶ௝ାଵ. 

(ii) (0DS.2) There exists ቄ߰ଵ, … , ߰௡మೕశభቅ ⊆ ఠభߢ
(ℂ) such that ݓ(߰௜) =

,(௜߶)ݓ # supp ௜ݖ ≤ (௜ାଵ߶)ݓ ݊ଶ௝ାଵଶ⁄  and (ݖ௜, ߰௜) is a (6,2݆ଵ)-exact 
pair for every 1 ≤ ݅ ≤ ݊ଶ௝ାଵ. 

(iii) (0DS.3) If ܪ = ቀℎଵ, … , ℎ௡మೕశభቁ is an arbitrary 2௝ାଵ-special 
sequence, then 

൭ ራ supp ௜ݖ
௞,ః,ுழ௜ழఒః,ு

൱ ∩ ൭ ራ supp ℎ௜
௞,ః,ுழ௜ழఒః,ு

൱ = ߶. 

Proposition (4.2.22) [4]: 
For every (0, ݆)-dependent sequence (ݔଵ, ∅ଵ, … , ௡మೕశభݔ , ∅௡మೕశభ) we 

have that 

ቯ
1

݊ଶ௝ାଵ
෍ ௞ݔ

௡మೕశభ

௞ୀଵ

ቯ ≤
1

݉ଶ௝ାଵ
ଶ . 

Proposition (4.2.23) [4]: 
Let (ݕ௡)௡ be a (ܥ, ߳)-ܴ. .ܫ ܵ., ܻ = span

ℂ
:ܶ and ,(௡ݕ) ܻ ⟶ ॒ఠభ

(ℂ) on 

ℝ-linear bounded operator. Then lim
௡→ஶ

(௡ݕ௡ℂݕܶ)݀ = 0. 

Proof: 
Suppose that lim

௡→ஶ
௡ݕܶ)݀ , ℂݕ௡) ≠ 0. Then there exists an infinite 

subset ܤ ⊆ ℕ such that inf
௡∈஻

(௡ݕ௡ℂݕܶ)݀ > 0. We shall show that for every 

߳ > 0 there  exists ݕ ∈ ܻ such that ‖ݕ‖ <  and this is a ‖ݕܶ‖߳
contradiction.  

Claim (1): 
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There exists a limit ordinal ߛ଴, ܣ ⊆ ℕ infinite and ߜ > 0 such that 

inf
௡∈஺

௡ݕ଴ܶߛܲ)݀ , ℂݕ௡) >  ߜ

 To prove this claim we observe that 

଴ߛ = min ቄߛ < ߱ଵ:	∃ܣ ∈ [ℕ]ஶ inf
௡∈஺

݀൫ ఊܲܶݕ௡ , ℂݕ௡൯ > 0ቅ 

is a limit ordinal. In fact, by the assumption the set on the right side is not 
empty.  And if ߛ଴ is not limit, then we have ߛ଴ = ߚ + 1. The sequence 
 ௡ is weakly  null (because (݁ఈ)ఈ is shrinking) and then(௡ݕ)

lim
௡→ஶ ఉ݁ାଵ

∗ ௡ݕܶ = 0 

And for large n and every ߣ ∈ ℂ 

ฮ ఉܲܶݕ௡ − ௡ฮݕߣ ≥ ฮ ఉܲାଵܶݕ௡ − ௡ฮݕߣ − ฮ ఉ݁ାଵ
∗  ௡ฮݕܶ

≥ ߜ − ห ఉ݁ାଵ
∗ ௡หݕܶ ≥ ߜ 2⁄ , 

which is a contradiction. 

Claim (2): 
Fix ߛ଴ and ܣ ⊆ ℕ as in Claim (1). Then there exist a sequence 

݊ଶ < ݊ଷ < ⋯ in ܣ, a sequence of functionals ଶ݂, ଷ݂, … in ߢఠభ
(ℂ) and a 

sequence of ordinals ߛଵ < ଶߛ < ⋯ <  ଴ such thatߛ

(݅)  								݀൫ܲ[ఊ௞,ఊ௞ାଵ]ܶݕ௡௞ାଵ, ℂݕ௡௞൯ ≥ ߜ 2⁄ ; 

(iii) 		 ௞݂ ௬ܶ௡ೖ ≥ ߜ 2⁄ ; 
(iv) ௞݂(ݕ௡௞) = 0; 
(v) ran ௞݂ ⊆ ran  ;௡ೖݕܶ
(vi) supp ௞݂ ∩ supp ௡೘ݕ = ߶ when ݉ ≠ ݇. 

To prove this claim, let ߦ = supmax supp  ௡. We analyze the threeݕ
possibilities for ߦ: 

Case (a):ࣈ <  :૙ࢽ
Let ݊ = min ߦ and choose ܣ < ଵߛ <  ଴ such thatߛ

ฮ ఊܲబܶݕ௡భ − ఊܲభܶݕ௡భฮ < ߜ 2⁄ , 
hence, ݀( ఊܲభܶݕ௡భ , ℂݕ௡భ) > ߜ 2⁄ . By minimality of ߛ଴ we have 

inf
௡∈஺

݀൫ ఊܲభܶݕ௡ , ℂݕ௡൯ = 0, 
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then we can choose ݊ଶ > ݊ଵ in ܣ such that ݀( ఊܲభܶݕ௡మ , ℂݕ௡మ) < ߜ 2⁄  and 
this  implies that 

݀ ቀ൫ ఊܲబ − ఊܲభ൯ܶݕ௡మ , ℂݕ௡మቁ > ߜ 2⁄ . 

Approximating the vector ൫ ఊܲబ − ఊܲభ൯ܶݕ௡మ  choose ߛ଴ > ଶߛ >  ଵ such thatߛ
ฮ൫ ఊܲబ − ఊܲభ൯ ×  ௡మฮ is so small in order to guarantee thatݕܶ

݀൫ܲ[ఊభ,ఊమ]ܶݕ௡మ , ℂݕ௡మ൯ ≥ ߜ 2⁄ . 
Using the complex Hahn-Banach theorem, there exists ݃ଶ ∈ ∗ഘభ॒ܤ (ℂ) such 
that 

௡మ൯ݕܶଶ൫ܲ[ఊభ,ఊమ]݃		(ܣ) > ߜ 2⁄ ; 

௡మ൯ݕଶ൫݃		(ܤ) = 0,  
and by Proposition (4.2.1) we can choose ℎଶ ∈ ఠభߢ

(ℂ) such that 

ℎଶ ቀ൫ܲ[ఊభ,ఊమ]ܶݕ௡మ൯ቁ > ߜ 2⁄   and ℎଶ൫ݕ௡మ൯ is arbitrarily small. Replacing ℎଶ 

by ߙℎଶ + |ߙ| ଶ where݇ߚ + |ߚ| = 1, ݇ଶ൫ݕ௡మ൯ is close enough to 1, and 
݇ଶ ∈ ఠభߢ

(ℂ)  we may assume that ℎଶ൫ݕ௡మ൯ = 0. 

Let ଶ݂ = ℎଶܲ[ఊభ,ఊమ]∩୰ୟ୬்௬೙మ ∈ ఠభߢ
(ℂ). Again by minimality of ߛ଴, 

there  exists ݊ଷ > ݊ଶ in ܣ such that ݀( ఊܲమܶݕ௡య , ℂݕ௡య) < ߜ 2⁄   and we can 
choose ߛ଴ > ଷߛ >  ଶ satisfyingߛ

൫ܲ[ఊమ,ఊయ]ܶݕ௡య , ℂݕ௡య൯ > ߜ 2⁄ . 
Again by Hahn-Banach and by Proposition (4.1.1) there exists a 
functional ℎଷ ∈ ఠభߢ

(ℂ)  such that 

௡య൯ݕܶℎଷ൫ܲ[ఊమ,ఊయ]		(ܥ) > ߜ 2⁄ ; 

௡య൯ݕℎଷ൫		(ܦ) = 0, 
then we define ଷ݂ = ℎଷ [ܲఊమ,ఊయ]∩୰ୟ୬்௬೙య ∈ ఠభߢ

(ℂ). The previous argument 
gives us the  way to construct the sequences of Claim (2). Properties (1)-
(5) are easy to check,  in particular property (5) is true because 
min supp ௞݂ > ߦ > max supp ௡೗ݕ  for  every positive integers ݇, ݈. 

Case (b):ࣈ >  :૙ࢽ
In this case we start by picking ݊ଵ ∈ ௡భݕ such that min supp ܣ >   .଴ߛ
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Then we repeat exactly the same argument that in Case (a). 

Case (c): ࣈ =   :૙ࢽ
We basically repeat the same argument of the Case (a) with the 

additional  care of maintaining property (vi) true. That is, each time we 
choose the ordinal ߛ௞ାଵ  (with ߛ଴ > ௞ାଵߛ >  ௞) we take it such thatߛ
௞ାଵߛ > max supp ௡ೖశభݕ . 

Claim (3): 
There exists a (0, j)- dependent sequence (zଵ, ϕଵ	, … , z୬మౠశభ) such that 

(E)		ݖ௜ ∈ ܺ for every 1 ≤ ݅ ≤ ݊ଶ௝ାଵ; 

(F)		ran ߶௞ ⊆	 ran ௞ݕܶ  and ߶௞(ܶݖ௞) > ߜ 2⁄ . 
Let ݆ with ݉ଶ௝ାଵ > 	24 ⁄ߜ߳ . Choose ݆ଵ even such that ݉ଶ௝భ > ݊ଶ௝ାଵଶ  

(see  definition of special sequence) and ܨଵ ⊆ ଵܨ# with ܣ = ݊ଶ௝భ  such 
that ൫ݕ௡ೖ൯௞∈ிభ

 is  a ൫3, 1 ݊ଶ௝ାଵଶ⁄ ൯-ܴ. .ܫ ܵ. Then define 

߶ଵ =
1

݉ଶ௝భ
෍ ௜݂
௜∈ிభ

∈ ఠభߢ
(ℂ)			and				ݖଵ =

݉ଶ௝భ
݊ଶ௝భ

෍ ௞ݕ
௞∈ிభ

 

observe that ݓ(߶ଵ) = ݉ଶ௝భ , ߶ଵ(ܶݖଵ) =
ଵ

௡మೕభ
∑ ௜݂௜∈ிభ ൫∑ ௞௞∈ிభݕܶ ൯ > ߜ 2⁄  

and ߶ଵ(ݖଵ) =
ଵ

௡మೕభ
∑ ௜݂௜∈ிభ ൫∑ 	௞∈ிభ ൯ = 0. Select 

ଵ݌ ≥ max൛݌ద(supp ଵݖ ∪ supp ଵݖܶ ∪ supp߶ଵ), ݊ଶ௝ାଵଶ # supp  ,ଵൟݖ
denote 2௝ଶ = ,ద(߶ଵߪ ݉ଶ௝భ , ଶܨ ଵ). Then take݌ ⊆ ଶܨ# with ܣ = ݊ଶ௝మ  and 
ଶܨ > ௞∈ிమ(௞ݕ) ଵ  such thatܨ  is ൫3, 1 ݊ଶ௝మ

ଶ⁄ ൯-ܴ. .ܫ ܵ. and define 

߶ଶ =
1

݉ଶ௝మ
෍ ௜݂
௜∈ிమ

∈ ఠభߢ
(ℂ)			and			ݖଶ =

݉ଶ௝మ
݊ଶ௝మ

෍ ௞ݕ
௞∈ிమ

 

So we have ϕଵ < ϕଶ, ϕଶ(Tzଶ) > and ϕଶ(zଵ) ߜ = ϕଶ(zଶ) = 0.  Pick 

ଶ݌ ≥ max൛݌ଵ, ద(supp݌ ଵݖ ∪ supp ଶݖ ∪ supp ଵݖܶ ∪ supp ଶݖܶ ∪ supp߶ଵ
∪ supp߶ଶ), ݊ଶ௝ାଵଶ # supp  ଶൟݖ

and set 2݆ଷ = ,ద(߶ଵߪ ݉ଶ௝భ , ,ଵ݌ ߶ଶ, ݉ଶ௝మ ,  ଶ). Continuing with this݌
procedure we  form a sequence (ݖଵ, ߶ଵ, … , ௡మೕశభݖ , ߶௡మೕశభ). Now we check 
that this is a (0, ݆)-dependent sequence. 
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Property (0DS.1) is clear, because of the construction of the 
functionals their  weights satisfies ݓ(߶௜ାଵ) = ݉ఙഞ(ߔ௜) where ߔ௜ =
(߶ଵ, ,(ଵ߶)ݓ ,ଵ݌ … , ߶௜, ,(௜߶)ݓ  .(௜݌

Property (0DS.2) We proceed to the construction of the sequence 
{߰ଵ, … , ߰௡మೕశభ} in ߢఠభ

(ℂ) such that (ݖ௜, ߰௜) is a (6, 2݆௜)-exact pair and 
(௜߰)ݓ = for every 1 (௜߶)ݓ ≤ ݅ ≤ ݊ଶೕశభ . The other condition 
# supp ௜ݖ ≤ (௜ାଵ߶)ݓ ݊ଶ௝ାଵଶ⁄ is already obtained by the construction of the 
weights. For each ݖ௜ there exists a  subset ܨ௜ ⊆ ௜ܨ# with ܣ = ݊ଶೕశభ , such 

that ݖ௜ = ൫݉ଶ௝೔ ݊ଶ௝೔⁄ ൯∑ ௡ೖ௞∈ி೔ݕ  where ൫ݕ௡ೖ൯௞∈ி೔
 is a ൫3, 1 ݊ଶ௝ାଵଶ⁄ ൯	ܴ. .ܫ ܵ. 

Now we follow the same arguments as in  Proposition (4.2.15). For every 
݇ ∈ ௜ we take ௡݂ೖܨ ∈ ఠభߢ

(ℂ) such that ௡݂ೖ൫ݕ௡ೖ൯ = 1 and ௡݂ೖ < ௡݂ೖశభ. 
Then ߰௜ = ൫1 ݉ଶ௝೔⁄ ൯∑ ௡݂ೖ௞∈ி೔ ∈ ఠభߢ

(ℂ) and (ݖ௜ , ߶௜) is a (6,2݆௜)-exact 
pair. 

Property (0DS.3) Let ܪ = (ℎଵ, … , ℎ௡మೕశభ) be an arbitrary 2݆ + 1-
special  sequence. We consider two cases: (a) Suppose that 
max supp ௞ݖ ≤ max supp ߶௞  for every 1 ≤ ݇ ≤ ݊ଶ௝ାଵ. Then supp ௞ݖ ⊆

supp߶ఒ೻,ಹషభ
௣ఒ೻,ಹషభ   for every ߢ, ,ߔ ܪ < ݇ <  ః,ு. Then for the secondߣ

part of (TP.3) we obtain the desired  result. (b) Suppose that 
max supp ߶௞ ≤ max supp  for every 1	௞ݖ ≤ ݇ ≤ ݊ଶ௝ାଵ.  Then 

supp ߶௞ ⊆ supp ఒ೻,ಹషభݖ
௣ఒ೻,ಹషభ  for every ܪ,ߔߢ < ݇ <  ః,ு, and theߣ

result  follows from the first part of (TP3).  

Fix a (0, ݆)-dependent sequence as obtained in the previous claim, 
and  define 

ݖ = ൫1 ݊ଶ௝ାଵ⁄ ൯ ෍ ௞ݖ

௡మೕశభ

௞ୀଵ

			ܽ݊݀				߶ = ൫1 ݉ଶ௝ାଵ⁄ ൯ ෍ ߶௞

௡మೕశభ

௞ୀଵ

. 

Then ߶(ܶݖ) = ൫1 ݊ଶ௝ାଵ⁄ ൯∑ ߶௞
௡మೕశభ
௞ୀଵ (ݖܶ) ≥ ߜ ݉ଶ௝ାଵ⁄  and ‖ݖ‖ ≤

12 ݉ଶ௝ାଵ
ଶ⁄ . Hence, ‖ܶݖ‖ ≥ ߜ ݉ଶ௝ାଵ⁄ ‖ݖ‖ 12⁄ >  and this completes ,‖ݖ‖߳

the proof. 
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