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Chapter 1 

Banach Spaces and Isometric Extensions Problems with 
Sharp Corner Points 

In this chapter for any Banach space y. we define collection of 
“sharp corner points” of the unit ball 퐵 (푌∗). Which is empty if Y is 
strictly convex and dim Y≥ 2. Then we prove that any surjective 
isometry  between two unit spheres of banach spaces X and Y has linear 
isometric extension on the whole space if Y is a Gateanux 
differentiability space (in particular. Separable spaces or reflexive spaces) 
and the intersection of “sharp corner points” and wea푘∗ - exposed points 
of 퐵(푌∗)  is weak - dense in the latter .                                                                                

Section (1.1): Some Lemmas: 
The famous Mazur-Ulam theorem stated that any surjective  isometry 

푉 between two real normed spaces with 푉(휃) = 휃 (zero  element) must 
be linear. P. Mankiewicz proved that any  surjective isometry between the 
convex bodies (i.e. open connected  subsets) of two normed spaces can be 
extended to a surjective affine  isometry on the whole space. 

In 1987, D. Tingley proposed the following problem . 

Problem (1.1.1) [1]: 
Let 푋 and 푌 be real normed spaces with unit spheres 푆 (푋) and 푆 (푌), 

respectively. Suppose that 푉:	푆 (푋) → 푆 (푌) is a surjective  isometry. Is 
푉  necessarily the restriction of a linear or affine isometry on  푋? 

We only consider the isometric extension problem in real normed  
spaces, since it is clearly negative in the complex case. This problem is  
interesting and easy to understand. Moreover, it is very important. If this  
problem has a positive answer, then the local geometric property of a  
mapping on the unit sphere will determine the property of the mapping on  
the whole space.  

However, it is very difficult to solve. As Professor E. Odell said ‘‘this 
is a very difficult problem that remains unsolved after 25  years’’. D. 
Tingley only proved that any isometry 푉  between the  unit spheres 
푆 (푋( )) and 푆 (푌( )) necessarily maps the antipodal points  to antipodal 
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points, that is 푉 (−푥) = −푉 (푥) for any 푥 ∈ 푆 (푋( )) (both  푋( ) and 
푌( ) are real finite-dimensional normed spaces).  

For quite a while (about 15 years), there has been no progress at all  
on this problem, until it was solved in Hilbert space and ℓ (훤	) space 
(1 ≤ 푝 ≤ ∞) .In the past decade, the isometric  extension problem was 
considered in various classical Banach spaces and  many good results 
were obtained, through studying the specific form of  norm and a lot of 
special skills .  

By now, the isometric extension problem has been solved  
affirmatively if 푋 is any classical Banach space and 푌 is a general Banach  
space . However, little  progress has been obtained if 푋 and 푌 are both 
general Banach spaces,  even in the two-dimensional case. Recently, the 
isometric extension  problem was considered in somewhere-flat Banach 
spaces and polyhedral  Banach spaces and some impressive results were 
obtained . Moreover, this problem was also considered in the F-spaces . 

We attempt to study the isometric extension problem  in general 
Banach spaces through some geometric properties of the  Banach spaces 
including weak∗-exposed points, Gâteaux differentiability,  and so on.  

Theorem (1.1.2) [1]: 
Let 푋 be a Banach space and 푌 be a Gâteaux differentiability  space. If 

풫(푌∗) is the set of weak∗-exposed points in 퐵 (푌∗) and 풫(푌∗) ∩ S  
풞(푌∗) is weak∗-dense in 풫(푌∗), then any surjective isometry  between 
two unit spheres 푆 (푋) and 푆 (푌) can be extended to a linear  isometry 
on the whole space.  

From this theorem, we deduce a result concerning  the isometric 
extension of isometry between unit spheres 푆 (푋) and  푆 (푌), where 푋 is 
a general Banach space and 푌 is an Asplund generated  space.  

Theorem (1.1.3) [1]:  
Let 푋 be a Banach space and 푌 be an Asplund generated space.  

Suppose that 푉  is an isometric mapping from the unit sphere 푆 (푋) into  
푆 (푌), which satisfies the following condition: 

(∗) For any 푥 , 푥 ∈ 푆 (푋) and 휆 , 휆 ∈ ℝ, 

∥ 휆 푉 푥 + 휆 푉 푥 ∥= 1 ⟹ 휆 푉 푥 + 휆 푉 푥 ∈ 푉 [푆(푋)].  
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Let 푍 = span{푉 푥 ∶ 푥 ∈ 푆 (푋)}. Suppose that 풫(푍∗) ∩ S 풞(푍∗) is 
weak∗-dense in 풫(푍∗). Then 푉  can be extended to a linear isometry on 
the  whole space.  

Consequently, we obtain that if 푌 = (ℓ ), 푐 (훤), 푐(훤), ℓ∞(훤) or  some 
퐶(훺) (for example, the set of ‘‘퐺 -points’’ is dense in 훺), then the  
answer for the isometric extension problem is also affirmative.  

In this section, all normed spaces are over ℝ and Y∗ denote the  dual 
space of a normed space Y. S (Y)(B (Y)) denotes the unit sphere  (unit 
ball) of a normed space Y.  

Let Y be a normed space and y∗ ∈ S (Y∗): 

 퐴(푦∗) ≔ {푦 ∈ 푆 (푌):	푦∗ = 1}; 

 풜(푌∗) ≔ {푦∗ ∈ 푆 (푌∗):	퐴(푌∗) ≠ 휙}; 

푃(푦∗) ≔ {푦 ∈ 푆 (푌):	푦∗(푦) = 1, 푦∗(푦) < 1	for	any	푦∗ ∈
푆 (푌∗)with	푦∗ ≠ 푦∗}; 

풫(푦∗) ≔ {푦∗ ∈ 푆 (푌∗):	푃 ≠ 휙}. 

Remark (1.1.4) [1]: 
Let Y be a normed space and y∗ ∈ S (Y∗). A(y∗) is the set of  ‘‘norm-

attaining points’’ of y∗ . A(Y∗) is the subset of S (Y∗) in which  any y∗ 
norm-attains at some point in S (Y). P(y∗) is the set of ‘‘peak-functions’’ 
J(y) ∈ Y∗∗, which have (only) a peak at y∗  (where J is the  canonical 
mapping from Y to Y∗∗). y∗ ∈ 풫(Y∗) is called the weak∗-exposed point of 
unit ball B (Y∗). It is evident that any y ∈ P(y∗) is a  smooth point of 
S (Y). Conversely, if y  is a smooth point of S (Y),  there exists a unique 
y∗ ∈ 풫(Y∗) with y∗(y ) = 1. 

 

 

 

 

 

 



٤ 
 

Lemma (1.1.5) [1]: 
Let 푋 and 푌 be normed spaces. Suppose that 푉  is a surjective  

isometry between 푆 (푋) and 푆 (푌). Then we have  

‖푥 + 푥 ‖ = 2 ⟺ ‖푉 푥 + 푉 푥 ‖ = 2,			∀푥 , 푥 ∈ 푆 (푋). 

Proof: 
We only need to prove the ‘‘⟹’’ part, because 푉  is also a  

surjective isometry from 푆 (푌) onto 푆 (푋). Suppose that ∥ 푥 + 푥 ∥= 2. 
By the Hahn-Banach theorem, there exists 푥∗ ∈ 푆(푋) such that 푥∗(푥 +
푥 ) =	∥ 푥 + 푥 ∥= 2. Hence 

2 = ‖푥 + 푥 ‖ = |푥∗(푥 + 푥 )| ≤ |푥∗(푥 )| + |푥∗(푥 )| ≤ 2, 
and we have 

																																																				푥∗(푥 ) = 푥∗(푥 ) = 1.																																			(ퟏ) 

Let 푥̅ 1 − 푥 + 푥 	(∀푛 ∈ ℕ). By Equation. (1) , we get a sequence  

{푥̅ } ⊆ 푆 (푋). For each 푛 ∈ ℕ and 푥 ∈ 푆 (푋), suppose that 

																																															‖푥̅ + 푥‖ = 2.																																																						(2) 
By the Hahn-Banach theorem and the similar method, there exists 
푥( , )
∗ ∈ 푆 (푋∗) such that 푥( , )

∗ (푥̅ + 푥) = 2, which implies that 

푥( , )
∗ (푥 ) = 푥( , )

∗ (푥 ) = 푥( , )
∗ (푥) = 1. 

Therefore, we obtain 

																																																								‖푥 + 푥 ‖ = 2.																																												(3) 
since 

2 = 푥( , )
∗ (푥 + 푥) ≤ ‖푥 + 푥‖ ≤ 2. 

Note that 

‖푥̅ − 푉 (−푉 푥̅ )‖ = ‖푉 푥̅ + 푉 푥̅ ‖ = ‖2푉 푥̅ ‖ = 2, ∀푛 ∈ ℕ.								(4) 
By the similar methods we used to deduce (3) from (2), we have that 

																																															‖푥 − 푉 (−푉 푥̅ )‖ = 2.			∀푛 ∈ ℕ																(5) 
by (4) . Note that 푉  is isometric and (5). We can obtain 

‖푉 푥 + 푉 푥̅ ‖ = 2,			∀푛 ∈ ℕ. 
Let 푛 → ∞. We get ∥ 푉 푥 + 푉 푥 ∥= 2 and complete the proof.   

We need to prove the following lemma.  
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Lemma (1.1.6) [1]: 
Let 푋 and 푌 be normed spaces. Suppose that 푉  is a surjective  

isometry between 푆 (푋) and 푆 (푌). If 푦∗ ∈ 	풫(푌∗), then 푉 [퐴(푦∗)] ⊆
푆 (푋) is convex.  

Proof: 
Since 푦∗ ∈ 풫(푌∗), there exists 푦 ∈ 푃(푦∗) (⊆ 퐴(푦∗)). Therefore,  

for any 푥 , 푥 ∈ 푉 [퐴(푦∗)] and 휆 ∈ [0,1], we have 

2 = 푦∗(푦 + 푉 푥 ) ≤ ‖푦 + 푉 푥 ‖ ≤ 2, 
that is ∥ 푦 + 푉 푥 ∥= 2. By Lemma (1.1.5), we have that ∥ 푉 푦 +
푥 ∥= 2, and there exists 푥∗ ∈ 푆 (푋∗) such that 

푥∗(푉 푦 + 푥 ) = 2, 
by the Hahn-Banach theorem. Note that |푥∗(푉 푦 )| ≤ 1 and |푥∗(푥 )| ≤
1. We get that 

푥∗(푉 푦 ) = 푥∗(푥 ) = 1, 
and thus 

2 = 푥∗ 푉 푦 +
푉 푦 + 푥

2
≤ 푉 푦 +

푉 푦 + 푥
2

≤ 2, 

that is 

푉 푦 +
푉 푦 + 푥

2
= 2. 

By Lemma (1.1.5), we obtain 

푦 + 푉
푉 푦 + 푥

2
= 2. 

Therefore, there exists 푦∗ ∈ 푆 (푌∗) such that 

푦∗(푦 ) + 푦∗ 푉
푉 푦 + 푥

2
= 2, 

by the Hahn-Banach theorem. From the similar arguments as above, we  
get that 

																										푦∗(푦 ) = 푦∗ 푉
푉 푦 + 푥

2
= 1.																																	(6) 

Note Equation (6) and 푦 ∈ 푃(푦∗). We have 푦∗ = 푦∗ and 
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																																															푦∗ 푉
푉 푦 + 푥

2
= 1.																															(7) 

Since 푥 ∈ 푉 [퐴(푦∗)], we get that 푦∗ 푉 푥 + 푉 = 2, 

which implies that 푉 푥 + 푉 = 2. By Lemma (1.1.5) , we 
get that 

푥 +
푉 푦 + 푥

2
= 2, 

and there exists 푥∗ ∈ 푆 (푋∗) such that 

푥∗ 푥 +
푉 푦 + 푥

2
= 2, 

by the Hahn-Banach theorem. Note that |푥∗(푥 )|, |푉 푦 |, |푥∗(푥 )| ≤ 1.  
We have 

푥∗(푉 푦 ) = 푥∗(푥 ) = 푥∗(푥 ) = 1, 
and 

푥∗[푉 푦 + (휆푥 + (1 − 휆)푥 )] = 2. 
Therefore, we get that ‖푉 푦 + (휆푥 + (1 − 휆)푥 )‖ = 2, which implies  
that 

																															‖푦 + 푉 (휆푥 + (1 − 휆)푥 )‖ = 2,																																		(8) 
by Lemma (1.1.5) .Then, from (8) and the similar argument we used  to 
deduce (7), we can also obtain 

푦∗[푉 (휆푥 + (1 − 휆)푥 )] = 푦∗(푦 ) = 1, 
that is 휆푥 + (1 − 휆)푥 ∈ 푉 [퐴(푦∗)]. Thus 푉 [퐴(푦∗)] is convex and  
the proof is completed.  
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Lemma (1.1.7) [1]: 
Let 푋 and 푌 be normed spaces. Suppose that 푉  is a surjective  

isometry between 푆 (푋) and 푆 (푌). If 푦∗ ∈ 풫(푌∗), there exists 푥∗ ∈
푆 (푋∗)  such that 

푦∗(푦) = ±⟹ 푥∗(푉 푦) = 푦∗(푦), 

for any 푦 ∈ 푆 (푌).  

Proof: 
If 푦 ∈ 푆 (푌) and 푦∗(푦) = 1, then 푦 ∈ 퐴(푦∗). By Lemma (1.1.6) , 

푉 [퐴(푦∗)] ⊆ 푆 (푋) is convex and does not meet with the interior of  
퐵 (푋). (It is evident that the interior of 퐵 (푋) is not empty). Therefore, 
by the Eidelheit Separation theorem, there exists 푥∗ ∈ 푆 (푋∗) such that 

sup{푥∗(푥̅):	푥̅ ∈ 퐵 (푋)} ≤ inf{푥∗(푥): 푥 ∈ 푉 [퐴(푦∗)]}, 

which implies that 

1 ≤ inf{푥∗(푥): 푥 ∈ 푉 [퐴(푦∗)]} ≤ inf{‖푥∗‖ ⋅ ‖푥‖: 푥 ∈ 푉 [퐴(푦∗)]} = 1 
that is 푥∗(푥) = 1 for any 푥 ∈ 푉 [퐴(푦∗)].  

Furthermore, if y ∈ S (Y) and y∗(y) = −1, then −y ∈ A(y∗).  
Since 푦∗ ∈ 풫(푌∗), there exists 푦 ∈ 푃(푦∗) (⊆ 	퐴(푦∗)), and we have that 

2 ≥ ‖푉 푦 − 푉 푦 ‖ = ‖푦 − 푦 ‖ ≥ |푦∗(푦 − 푦 )| = 2, 
that is ‖푉 푦 + (−푉 푦)‖ = 2. By Lemma (1.1.5) , we have ‖푦 +
푉 (−푉 푦)‖ = 2. Therefore, there exists 푦∗ ∈ 푆 (푌∗) such that 

푦∗ 푦 + 푉 (−푉 푦) = 2, 
by the Hahn-Banach theorem. Then we have 

																																								푦∗(푦 ) = 푦∗ 푉 (−푉 푦) = 1.																														(9) 
Note that Equation (9) and 푦 ∈ 풫(푦∗). We have that 푦∗ = 푦∗ and thus  
푦∗[푉 (−푉 푦)] = 1. By the conclusion in the previous part of this proof,  
we obtain immediately that 푥∗(−푉 푦) = 1, that is 푥∗(푉 푦) = −1.  
Thus the proof is completed.  

We will give the definition of ‘‘sharp corner points’’. These points  
play an important role in our result concerning the isometric extension  
problem in Gâteaux differentiability space (in particular, separable spaces  
or reflexive spaces).  
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Definition (1.1.8) [1]: 
Let 푌 be normed space. Then 푦∗ ∈ 푆 (푌∗) is called a sharp corner  

point of 퐵 (푌∗), if it satisfies the following conditions: 

(i)  For any 푦 ∈ 푆 (푌) with |푦∗(푦)| < 1 and 휀 > 0, there 
exists  푦 ∈ 푆 (푌) such that 

푦∗(푦 ) = 1			and			‖푦 ± 푦‖ ≤ 1 + |푦∗(푦)| + 휀. 

(ii)  For any 푦 ∈ 푆 (푌) with 0 < |푦∗(푦)| < 1 and 휀 > 0, 
there  exists 푦 ∈ 푆 (푌) such that 

푦∗(푦 ) =
푦∗(푦)
|푦∗(푦)|

			and			‖푦 − 푦‖ ≤ 1 − |푦∗(푦)| + 휀. 

These sharp corner points of 퐵 (푌∗) are denoted by S  풞(푌∗). Then  
we will give an important lemma as follows.  

Lemma (1.1.9) [1]: 
Let 푋 and 푌 be normed spaces. Suppose that 푉  is a surjective  

isometry between 푆 (푋) and 푆 (푌). If 푦∗ ∈ 풫(푌∗) ∩ S 풞(푌∗), then we  
have 

푥∗(푉 푦) = 푦∗(푦)			∀푦 ∈ 푆 (푌). 
where 푥∗ ∈ 푆 (푋∗) is the functional obtained in Lemma (1.1.7) .  

Proof: 
We take two steps to complete the proof: 

a. |푦∗(푦)| = |푥∗(푉 푦)| for any 푦 ∈ 푆 (푌).  
Indeed, for any 푦 ∈ 푆 (푌), we can assume that |푦∗(푦)| < 1  

(otherwise we can immediately get (a) by Lemma (1.1.7) [1]). Note 
푦 ∈S 풞(푌∗) and Lemma (1.1.7) . For any 휀 > 0, there exists 푦 ∈ 푆 (푌) 
such that 

푥∗(푉 푦 ) = 푦∗(푦 ) = 1, 
and 

1 ± 푥∗(푉 푦) = |±1 − 푥∗(푉 푦)| = 푥∗ 푉 (±푦 ) − 푥∗(푉 푦)  

																															≤ ‖푉 (±푦 ) − 푉 푦‖ = ‖푦 ± 푦‖ ≤ 1 + |푦∗(푦)| + 휀. 
Since 휀 is arbitrary, we obtain that 

|푥∗(푉 푦)| ≤ |푦∗(푦)|,			∀푦 ∈ 푆 (푌). 
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If |푦∗(푦)| = 0, it is clear that |푥∗(푉 푦)| = 0. Otherwise, note that 푦 ∈S   
풞(푌) and  Lemma (1.1.7) . For any 휀 > 0, there exists 푦 ∈ 푆 (푌) such 
that 

|푥∗(푉 푦 )| = |푦∗(푦 )| = 1, 
and 

1 − |푥∗(푉 푦)| = |푥∗(푉 푦 )| − |푥∗(푉 푦)| 

																											≤ |푥∗(푉 푦 ) − 푥∗(푉 푦)| 

													≤ ‖푉 푦 − 푉 푦‖ 

																																				= ‖푦 − 푦‖ ≤ 1 − |푦∗(푦)| + 휀. 
Therefore, we get that 

|푦∗(푦)| ≤ |푥∗(푉 푦)|,			∀푦 ∈ 푆 (푌) 
and complete the first step. 

b. 푦∗(푦) = 푥∗(푉 푦) for any 푦 ∈ 푆 (푌).  
Indeed, if 푦∗(푦) = 0, then we have 푥∗(푉 푦) = 0 because of (a). 

Otherwise, note that 푦∗ ∈S  풞(푌∗) and Lemma (1.1.7) [1]. For any 휀 > 0,  
there exists 푦 ∈ 푆 (푌) such that 

푥∗(푉 푦 ) = 푦∗(푦 ) =
푦∗(푦)
|푦∗(푦)|

	, 

and 

1 = |푦∗(푦 )| = |푥∗(푉 푦 )| ≤ |푥∗(푉 푦)| + |푥∗(푉 푦 ) − 푥∗(푉 푦)| 

≤ |푦∗(푦)| + |푥∗(푉 푦 − 푉 푦)| ≤ |푦∗(푦)| + ‖푉 푦 − 푉 푦‖ 

= |푦∗(푦)| + ‖푦 − 푦‖ ≤ 1 + 휀.																																																													 
We can get 

0 ≤ |푥∗(푉 푦 ) − 푥∗(푉 푦)| − (|푥∗(푉 푦 )| − |푥∗(푉 푦)|) 
that is 

0 ≤
푦∗(푦)
|푦∗(푦)|

− 푥∗(푉 푦) −
푦∗(푦)
|푦∗(푦)|

− 푥∗(푉 푦) ≤ 휀. 

Since 휀 is arbitrary, we have that 푥∗(푉 푦) and 푦∗(푦) have the same sign  

because 푦∗(푦 ) =
∗( )
∗( )  . The proof is completed.  



١٠ 
 

Proposition (1.1.10) [1]: 
Let 푌 be a strictly convex Banach space and dimY ≥ 2. Then we  

have that S   풞(푌) = 휙.  

Proof: 
It is clear that if 푦∗ ∈ 푆 (푌∗), there exists at most one element 푦∗ ∈

푆 (푌∗) such that 푦∗(푦 ) = 1. Otherwise, if there exists 푦 ∈ 푆 (푌)  such 
that 푦 ≠ 푦  and 푦∗(푦 ) = 1, then for any 휆 ∈ (0,1), we have that 

1 = 푦∗(휆푦 + (1 − 휆)푦 ) ≤ ‖푦∗‖ ⋅ ‖휆푦 + (1 − 휆)푦 ‖ < 1, 
which is impossible. Assume that S  풞(푌∗) ≠ 휙 and 푦 ∈S  풞(푌∗). Note  
that ker 푦 ≠ {휃} since dim 푌 ≥ 2. For any 푦 ∈ 푆 (푌) ∩ ker 푦∗ , 푦 ≠ 휃  
and 휀 > 0, there exists unique 푦 such that 

푦∗(푦) = 1			and			‖푦 ± 푦‖ ≤ 1 + |푦∗(푦)| + 휀 = 1 + 휀. 
Since 휀 is arbitrary, we get that ‖푦 ± 푦‖ ≤ 1 and 

2 = ‖푦 + 푦 + 푦 − 푦‖ ≤ ‖푦 + 푦‖ + ‖푦 − 푦‖ ≤ 2, 
that is 

‖푦 + 푦 + 푦 − 푦‖ = ‖푦 + 푦‖ + ‖푦 − 푦‖. 
Since 푌 is strictly convex, we get that 푦 + 푦 = 푦 − 푦, which is 
impossible.  

Proposition (1.1.11) [1]: 
Let 푌 be a real Banach space. Then any smooth point of 푆 (푌∗) is  not 

a sharp corner point.  

Proof: 
Suppose that 푓  is a smooth point of 푆 (푌∗). There is a unique 푦∗∗ ∈

푆 (푌∗∗) such that 푦∗∗(푓 ) = 1. If there does not exist 푦 ∈ 푆 (푌)  such 
that g(푦 ) = 푦∗∗(g) for any g ∈ 푌∗, that is, 퐴(푓) = 휙, 푓  is clearly  not a 
sharp corner point.  

If 푦 ∈ 푆 (푌) given above exists, we assume that 푓  is also a sharp  
corner point. For any 푦 ∈ 푆 (푌) with 0 < 푓 (푦) < 1 and 휀 > 0, we see  
that ∥ 푦 − 푦 ∥≤ 1 − 푓 (푦) + 휀, that is, 

‖푦 − 푦 ‖ ≤ 1 − 푓 (푦) = 푓 (푦 ) − 푓 (푦). 
Note that 푓 (푦 ) − 푓 (푦) ≤∥ 푦 − 푦 ∥. We have that 
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‖푦 − 푦 ‖ = 푓 (푦 ) − 푓 (푦) = 푓 (푦 − 푦), 
which implies that 

푓
푦 − 푦
‖푦 − 푦 ‖ = 1. 

However, it is impossible since 푓 ∈ 푆 (푌∗) is a smooth point. 

Section (1.2): G퐚teaux differentiability spaces 
In this section, let us recall some results for Gâteaux  

differentiability space, separable space, Asplund generated space, and so  
on . 

Definition (1.2.1) [1]: 
A Banach space 퐸 is said to be a Gâteaux differentiability space   

(weak-Asplund space) if for any continuous convex function 푓 on it,  
there exists a dense (dense 퐺 ) subset 퐸 ⊆ 퐸 such that f is Gâteaux  
differentiable at any 푥 ∈ 퐸 .  

Proposition (1.2.2) [1]: 
A Banach space 퐸 is a Gâteaux differentiability space if and only if  

any weak∗ compact convex subset of 퐸∗ is the weak∗ closed convex hull  
of its weak∗-exposed points .  

Proposition (1.2.3) [1]: 
Let 퐸 and 퐸  be Banach spaces. Suppose that 푇 ∶ 퐸 → 퐸  is linear  

and continuous. If 퐸 is a Gâteaux differentiability space and 푇(퐸) is  
dense in 퐸 , then 퐸  is also a Gâteaux differentiability space. In  
particular, if a Banach space 퐹 is the image of a Gâteaux differentiability  
space by a linear continuous mapping, then 퐹 is also a Gâteaux  
differentiability space.  

Definition (1.2.4) [1]: 
A Banach space 퐸 is called Asplund generated if there exists an  

Asplund space 푋 and a linear continuous operator 푇 ∶ 푋 → 퐸 such that  
푇(푋) is dense in 퐸. 
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Remark (1.2.5) [1]: 
Recall that a Banach space 퐸 is called an Asplund space if for any  

continuous convex function 푓 on it, there exists a dense 퐺  subset 퐸 ⊆ 퐸  
such that 푓 is Fréchet differentiable at any 푥 ∈ 퐸 . Moreover, we have  
the following important facts: 

(i) A Banach space 퐸 is an Asplund space if and only if 퐸∗ has  the 
Radon-Nikodym property.    

 (ii)  All the reflexive spaces [5] that is ( Let 푋 be anormed space and  푋∗∗  
= (푋∗)	∗denote the second dual vector space of 푋. the Canonical map 
푋 → 푋  define by푋(퐹) = 퐹(푋), 퐹 ∈ 푋∗ gives an isometric linear 
isomorphism (embedding) from 푋	into	푋∗∗  the space 푋 is called reflexive 
if this map is surjective ) and 푐 (훤) space (for any index set 훤) are 
Asplund spaces.                                                                              

Proposition (1.2.6) [1]: 
Any weakly compactly generated space is an Asplund generated  

space. Any subspace of an Asplund generated space is a weak-Asplund  
space.  

Proposition (1.2.7) [1]: 
Any separable Banach space is a weak-Asplund space. Moreover,  

if a Banach space 퐸 whose dual space 퐸∗ admits a strictly convex norm,  
then E is also a weak-Asplund space .  

Definition (1.2.8) [1]: 
Let Ω be a compact space. Then 푡 ∈ Ω is called a 퐺 -point if there  

exists a countable collection of open subsets {퐺 ⊆ Ω: 푛 ∈ ℕ} such that  
{푡 } = ⋂ 퐺 . Ω is said to be scattered if any subset of Ω has an  
isolated point.  

Proposition (1.2.9) [1]: 
Let Ω be a compact space. Then 퐶(Ω) is Asplund if and only if Ω is  

scattered .  

Theorem (1.2.10) [1]: 
Let 푋 and 푌 be normed spaces. Suppose that 푉  is an isometry from  

푆 (푋) into 푆 (푌) and 

‖푉 푥 − |휆|푉 푦‖ ≤ ‖푥 − |휆|‖,			∀푥, 푦 ∈ 푆 (푋), 휆 ∈ ℝ. 
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Then 푉  can be extended to an isometry on the whole space. Moreover, if  
푉  is surjective, then 푉  can be linearly extended too.  

Sketch of proof: 
For integrating , we write the main idea of the proof as  follows: 

Let 

푉푥 =
‖푥‖푉

푥
‖푥‖

, 푥 ≠ 휃,

휃,																						 푥 = 휃.
 

Then we have that ‖푉푥 − 푉푦‖ ≤ ‖푥 − 푦‖ for any 푥, 푦 ∈ 푆 (푌) and 
‖푉푥 − 푉푦‖ = ‖푥 − 푦‖ if ∥ 푥 ∥=∥ 푦 ∥, 푥 = 휃 or 푦 = 휃. Indeed, 푉 is an  
isometry. Otherwise, there exist 푥 , 푦 ∈ 푋 with ‖푦 ‖ > ‖푥 ‖ > 0 such  
that ‖푉푥 − 푉푦 ‖ < ‖푥 − 푦‖. We can take 푧 ∈ 푋 such that ‖푧 ‖ =
‖푦 ‖ and 푧 ∈ 푦 푥⃗ (the semi-line with the starting point 푦  and crossing  
푥 ). Then we get the following inequality: 

‖푧 − 푦 ‖ = ‖푧 − 푥 ‖ + ‖푥 − 푦 ‖ > ‖푉푧 − 푉푥 ‖ + ‖푉푥 − 푉푦 ‖ 

≥ ‖푉푧 − 푉푦 ‖,																																																											 
which is impossible. If 푉  is surjective, we can also get a linear isometric  
extension by the Mazur-Ulam theorem.  

We can now show the following.  

Theorem (1.2.11) [1]: 
Let 푋 be a Banach space and 푌 be a Gâteaux differentiability  

space. Suppose that 푉  is a surjective isometry between 푆 (푋) and 푆 (푌).  
If 풫(푌∗) ∩ S  풞(푌∗) is weak∗-dense in 풫(푌∗), then 푉  can be extended 
to  a linear isometry on the whole space.  

Proof: 
For any 푥 , 푥 ∈ 푆 (푋) and 휆 ∈ ℝ, we have that 

‖푉 푥 − |휆|푉 푥 ‖ = sup
∗∈ ( ∗)

|푦∗(푉 푥 − |휆|푉 푥 )|. 

By Proposition (1.2.2), we get that 

‖푉 푥 − |휆|푉 푥 ‖ = sup
∗∈ ( ∗)

|푦∗(푉 푥 − |휆|푉 푥 )| 

																															= sup
∗∈풫( ∗)∩ 		풞( ∗)

|푦∗(푉 푥 − |휆|푉 푥 )|.																		(10) 
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By Lemma (1.1.9) , for any 푦 ∈ 풫 (푌∗), there exists 푥∗ ∈ 푆 (푋∗)  (푥∗ is 
obtained in Lemma (1.1.7) such that 

|푦∗(푉 푥 − |휆|푉 푥 )| = |푦∗(푉 푥 ) − 푦∗(|휆|푉 푥 )|
= |푥∗(푥 ) − 푥∗(|휆|푥 )| 

																																													≤ ‖푥 − |휆|푥 ‖.																																																			(11) 
Note Equations. (10) and (11). We get immediately that 

‖푉 푥 − |휆|푉 푥 ‖ ≤ ‖푥 − |휆|푥 ‖,			∀푥 , 푥 ∈ 푆 (푋),			휆 ∈ ℝ, 
and complete the proof because of Theorem (1.2.10). 

Corollary (1.2.12) [1]: 
Let 푋 be a Banach space and 푌 be a separable Banach space (more  

generally, 푌∗ admits a strictly convex norm).  

Suppose that 푉  is a surjective isometry between 푆 (푋) and 푆 (푌). 
If 풫(푌∗) ∩ S  풞(푌∗) is weak∗-dense in 풫(푌∗), then 푉  can be extended 
to  a linear isometry on the whole space.  

Corollary (1.2.13) [1]: 
Let 푋 be a Banach space and 푌 = (ℓ ). Suppose that 푉  is a  

surjective isometry between 푆 (푋) and 푆 (푌). Then 푉  can be extended  
to a linear isometry on the whole space.  

Proof: 
Note that 푌 is separable and Corollary (1.2.12). We only need  to 

check that 풫(푌∗) ⊆ S  풞(푌∗). It is easy to see that 

풫(푌∗) = {휃 }: {휃 } ∈ (ℓ ), 휃 = ±ퟏ, 푛 ∈ ℕ . 
Let 푦∗ ∈ 풫(푌∗) and 푦 ∈ 푆 (푌) with |푦∗(푦)| < 1. If 푦∗ = {휃 } and 푦 =
{푦(푛)}, we can take 푦 = {푦(푛)} such that 

푦(푛) = 휃 |푦(푛)|,			∀푛 ∈ ℕ. 
Then we have that {푦(푛)} ∈ 푆 (푌), 푦∗(푦) = 1 and 

‖푦 ± 푦‖ = |푦(푛) ± 푦(푛)| = |휃 |푦(푛)| ± 푦(푛)| 

																												= |푦(푛)| ± 휃 푦(푛) = |푦(푛)| ± 휃 푦(푛) 
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= ퟏ ± 푦∗(푦) ≤ ퟏ + |푦∗(푦)|.																	 

Moreover, if 푦∗(푦) ≠ 0, we can also take 푦 =
∗( )
∗( ) ⋅ 푦 and have that 

‖푦 − 푦‖ =
푦∗(푦)
|푦∗(푦)|

⋅ 휃 |푦(푛)| − 푦(푛)

= 푦(푛) −
푦∗(푦)
|푦∗(푦)|

⋅ 휃 푦(푛)  

= |푦(푛)| −
푦∗(푦)
|푦∗(푦)|

휃 푦(푛) = 1 −
푦∗(푦)
|푦∗(푦)|

푦∗(1) = 1 − |푦∗(푦)|. 

Then we complete the proof.  

 

Corollary (1.2.14) [1]: 
Let 푋 be a Banach space and 푌 = (푐 ). Suppose that 푉  is a  surjective 

isometry between 푆 (푋) and 푆 (푌). Then 푉  can be extended  to a linear 
isometry on the whole space.  

Proof: 
Note that 푌 is separable and Corollary (1.2.12) [1]. We only need  to 

check that 풫(푌∗) ⊆S  풞(푌∗). It is easy to see that 

푝(푌∗) = {±푒∗ :	푛 ∈ ℕ}, 
where 푒∗ = (0, … ,0, ퟏ, 0, … ) ∈ (ℓ ) for any 푛 ∈ ℕ. Let 푒∗ ∈ 풫(푌∗) and 
	푦 ∈ 푆 (푌) with |푒∗ (푦)| < 1. We can take 푦 = 푒 ∈ 푆 (푌). Then we  
have that 

‖푦 ± 푦‖ = 푒 (푛) ± 푦(푛) = sup
∈ℕ

푒 (푛) ± 푦(푛)  

≤ ퟏ+ |푦(푛 )| = 1 + 푒∗ (푦) .								 
Moreover, if 푒∗ (푦) ≠ 0, we can take 

푦 = 푦 +
푒∗ (푦)
푒∗ (푦)

− 푒∗ (푦) 푒 ∈ 푆 (푌). 

that is, 푦 = {푦(푛)} with 
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푦(푛) =
푦(푛 )
|푦(푛 )| , if	푛 = 푛 ,

푦(푛), if	푛 ≠ 푛 .
 

We can get that 

‖푦 − 푦‖ = sup|푦(푛) − 푦(푛)| =
푦(푛 )
|푦(푛 )| − 푦(푛 )  

= 1 − |푦(푛 )| = 1 − 푒∗ (푦) . 
Then we complete the proof. 

Corollary (1.2.15) [1]: 
Let 푋 be a Banach space and 푌 = 퐶(퐾) (퐾 is a compact metric 

space). Suppose that 푍 ⊆ 푌 is a linear closed subspace, and there exists a  
dense subset 푇 ⊆ 퐾 such that all the ‘‘peak functions’’ whose peak is 푡 ∈
푇  are in 푍. If 푉  is an isometric mapping from 푆 (푋) onto 푆 (푍),  then 푉  
can be extended to a linear isometry on the whole space.  

Proof: 
Note that 퐶(퐾) is a separable Banach space and 

풫(푌∗) = {±훿∗: 푘 ∈ 퐾}			 훿∗ (푦) = 푦(푘 )	for	every	푦 = 푦(푘) ∈ 푌 . 
It is easy to see that 

{±훿∗: 푡 ∈ 푇} ⊆ 풫(푍∗) 
and {±훿∗: 푡 ∈ 푇} is weak∗-dense in 풫(푍∗). By Corollary (1.2.12), we  
only need to prove that 훿∗ ∈S 풞(푍∗) for any 푡 ∈ 푇 (because it is similar  
to prove that −훿∗ ∈S  풞(푍∗) for any 푡 ∈ 푇 ).  

For any 훿∗ ∈ 풫(푌∗), 푧 ∈ 푆 (푍) with |훿∗ (푧)| = |푧(푡 )| ≤ 1, and  

휀 > 0 (if 푧(푡 ) ≠ 0, we also assume that 휀 < | ( )|), there exists an open  
neighborhood 퐺(푡 ) of 푡  in 퐾 such that 

																																											|푧(푘) − 푧(푡 )| < 휀,			∀푘 ∈ 퐺(푡 ).																					(12) 
By Urysohn’s Lemma [6] that is (A topological space 푋 is normed iff for 
any two nonempty closed disjoint subsets A and B of 푋  there’s 
continuous map 푓: 푋 → [0,1]  such that 퐹(퐴) 	= {0}	푎푛푑	퐹(퐵) = {1} 
afunction 퐹 with this property is called  Urysho nfunction). we can get 
푦(푘) ∈ 퐶(퐾) such that                                                                              
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푦(푡 ) = ퟏ,			푦(푘) ≡ 0			 ∀푘 ∈ 퐾\퐺(푡 )  

and 

0 ≤ 푦(푘) ≤ 1,			∀푘 ∈ 퐾. 
Then we can make a ‘‘peak function’’ p (푘) ∈ 퐶(퐾) (whose peak is 푡   
and p (푡 ) = 1), which is equal to 0 on 퐾\퐺(푡 )  and takes non-
negative value on 퐾. Let 

푧̃ (푘) = min 푦(푘), p (푘) . 
It is easy to see that 푧̃ (푘) is also a ‘‘peak function’’ on 퐾 whose peak is  
푡  and 0 ≤ 푧̃ (푘) ≤ 1, and thus 푧̃ ∈ 푆 (푍) by the hypotheses of 푍. By  
(12), we have that 푧̃ ± 푧 ∈ 푍 and 

‖푧̅ ± 푧‖ = max max
∈ ( )

|푧̃ (푘) ± 푧(푘)|, max
∈ \ ( )

|푧(푘)|  

																															≤ max max
∈ ( )

|푧̃ (푘)| + max
∈ ( )

|푧(푘)| , max
∈ \ ( )

|푧(푘)|  

≤ 1 + (|푧(푡 )| + 휀) = 1 + 훿∗ (푧) + 휀. 
Moreover, if 훿∗ (푧) = 푧(푡 ) ≠ 0, we first change above ‘‘peak function’’  
p (푘) into p (푘) which may be very sharp in above neighborhood  
퐺(푡 ), and let it satisfy the following condition: 

																										p (푘) ≤ 1 −
|푧(푘)| − |푧(푡 )|
1 − |푧(푡 )|

,			∀푘 ∈ 퐺(푡 ).																	(13) 

When we take 

푧̅ = 푧 +
훿∗ (푧)
훿∗ (푧)

− 훿∗ (푧) p , 

by the hypotheses of 푍, we have that 푧̅ ∈ 푍 and 

푧̅ (푘) =

⎩
⎪
⎨

⎪
⎧
푧(푡 )
|푧(푡 )|

,																																																				 if	푘 = 푡 ;																

푧(푘) + (1 − |푧(푡 )|)
푧(푡 )
|푧(푡 )|

p (푘), if	푘 ∈ 퐺(푡 )\{푡 };	

푧(푘),																																																							 if	푘 ∈ 퐾\퐺(푡 ).						

 



١٨ 
 

Note that both 푧(푘) and (1 − |푧(푡 )|) ( )
| ( )|p (푘) have the same sign  

because of (12). By (13), we obtain that 

푧(푘) + (1 − |푧(푡 )|)
푧(푡 )
|푧(푡 )|

p (푘) = |푧(푘)| + (1 − |푧(푡 )|)p (푘)

≤ 1. 
Then we have that 푧̅ ∈ 푆 (푍), 푧̅ − 푧 ∈ 푍 and 

‖푧̅ − 푧‖ =
훿∗ (푧)
훿∗ (푧)

− 훿∗ (푧) p = 1 − 훿∗ (푧) . 

Then we complete the proof by Corollary (1.2.12).  

Theorem (1.2.16) [1]: 
Let 푋 be a Banach space and 푌 = 퐶(Ω) (Ω is a compact Hausdorff  

space). Suppose that there exists a dense subset 푇 ⊆ Ω such that 푇  
contains all the 퐺 -points of Ω. If a linear closed subspace 푍 ⊆ 푌 contains  
all such ‘‘peak functions’’ whose peak is 푡 ∈ 푇 and 푉  is an isometric  
mapping from 푆 (푋) onto 푆 (푍), then 푉  can be extended to a linear  
isometry on the whole space.  

Proof: 
It is the case that {±훿∗: 푡 ∈ 푇} ⊆ 풫(푌∗) and 훿∗ ∈S  풞(푍∗) for any  

푡 ∈ 푇 by the similar arguments of Corollary (1.2.13). There exists  푥∗ ∈
푆 (푋∗) such that 

훿∗ (푧) = 푥∗(푉 푧),			∀푧 ∈ 푆 (푍), 
by Lemma (1.1.9) . Note that 푇 = Ω. We have 

‖푉 푥 − |휆|푉 푥 ‖ = sup
∈
|(푉 푥 )(휔) − |휆|(푉 푥 )(휔)| 

																															= sup
∈
|(푉 푥 )(푡) − |휆|(푉 푥 )(푡)| 

																													= sup
∈
|훿∗(푉 푥 ) − |휆|훿∗(푉 푥 )| 

																						= sup
∈
|푥∗(푥 ) − |휆|푥∗(푥 )| 

																																					= ‖푥 − |휆|푥 ‖.			∀푥 , 푥 ∈ 푆 (푋). 
Then we complete the proof by Theorem (1.2.10).  
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Theorem (1.2.17) [1]: 
Let 푋 be a Banach space and 푌 = 푐 (훤), 푐(훤) or ℓ (훤) (훤 is an  

infinite index set). Suppose that 푍 ⊆ 푌 is a linear closed subspace and 
{푒 ∶ 훾 ∈ 훤} ⊆ 푍. If 푉  is a surjective isometry between 푆 (푋) and 푆 (푍),  
then 푉  can be extended to a linear isometry on the whole space. 

Proof: 
Note that ±푒∗:	훾 ∈ 훤 ⊆ 풫(푌∗) where 

푒∗ 푒 = 1, if	훾 = 훾 ;
0, if	훾 ≠ 훾 ; 

for any 훾 ∈ 훤. By the similar arguments of Corollary (1.2.15) [1], we  
have that 푒∗ ∈S 풞∗(푍∗) for any 훾 ∈ 훤 . Therefore there exists 푥∗ ∈
푆 (푋∗) such that 

푒∗ = 푥∗(푉 푧),			∀푧 ∈ 푆 (푍), 
by Lemma (1.1.9). We can get that 

‖푉 푥 − |휆|푉 푥 ‖ = sup
∈
|(푉 푥 )(훾) − |휆|(푉 푥 )(훾)| 

																													= sup
∈

푒∗(푉 푥 ) − |휆|푒∗(푉 푥 )  

																													= sup
∈

푥∗(푉 푥 ) − |휆|푥∗(푉 푥 )  

																																			≤ ‖푥 − |휆|푥 ‖,			∀푥 , 푥 ∈ 푆 (푋). 
Then we complete the proof by Theorem (1.2.10).  

Theorem (1.2.18) [1]: 
Let 푋 be a Banach space and 푌 be an Asplund generated space.  

Suppose that 푉  is an isometric mapping from the unit sphere 푆 (푋) into  
푆 (푌) which satisfies the following condition: 

(∗) For any 푥 , 푥 ∈ 푆 (푋) and 휆 , 휆 ∈ ℝ,  

‖휆 푉 푥 + 휆 푉 푥 ‖ = 1 ⟹ 휆 푉 푥 + 휆 푉 푥 ∈ 푉 [푆(푋)]. 
Let 푍 = span{푉 푥 ∶ 푥 ∈ 푆 (푋)}. Suppose that 풫(푍∗) ∩S 풞(푍∗) is 
weak∗-dense in 풫(푍∗). Then 푉  can be extended to a linear isometry on 
the  whole space.  
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Proof: 
We first prove that 푆 (푍) = 푉 [푆 (푋)]. Note the condition (∗) and  

the equality 

휆 푉 푥 = 휆 푉 푥
휆

∑ 휆 푉 푥
푉 푥 + 휆 푉 푥 . 

By induction, we get that 

휆 푉 푥 = 1 ⟹ 휆 푉 푥 ∈ 푉 [푆 (푋)];		∀푥 ∈ 푆 (푋), 휆

∈ ℝ(1 ≤ 푘 ≤ 푛), 푛 ∈ ℕ. 
Therefore, we have that 

푆 (푍) = 푉 [푆 (푋)]. 
Note Proposition (1.2.6) and that 푍 is a closed subspace of 푌. The  
conclusion is clear by Theorem (1.2.11) [1].    
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Chapter 2 

Banach Space and 휶-Large Families 
 In this chapter we show the notion of 훼 − large families of finite 

subsets of an infinite set is defined for every countable ordinal number a, 
extending the known notion of large families. The definition of 훼 -large 
families is based on the transfinite hierarchy of the Schreier families 푆 , 
훼 < 휔 . As an application    based on those families we construct a 
reflexive space. 픵 ,	훼 < 휔 with density the continuum, such that every 
bounded non-norm convergent sequence {푥 }  has subsequence 
generating ℓ  as spreading model.                                                                 

Section (2.1): 휶-Large and a Transfinite Sequence of Compact 
Hereditary  Families:  

One  of the most significant examples of Banach spaces is Tsirelson 
space,   presented in the nineteen seventies. The main property of this 
space, is that it fails to contain a copy of 푐   or ℓ , answering in the 
negative a problem posed by Banach. It is still an open problem whether 
there exist Tsirelson type spaces in the non-separable setting. A version 
of this problem has recently been solved in the negative direction in, 
namely it was shown that spaces spanned by an uncountable basic 
sequence such that their norm satisfies an implicit formula, similar to the 
one of Tsirelson space, always contain a copy of 푐  or ℓ . To be more 
precise, if 휅  is an uncountable ordinal number, ℬ is a hereditary and 
compact family of finite subsets of 휅,  0 < 휃 < 1  is a real number, and 
‖	⋅‖ ,ℬ, is the unique norm defined on 푐 (휅)  satisfying the following 
implicit formula 

‖푥‖ ,ℬ = max ‖푥‖ , sup 휃 ‖퐸 푥‖ ,ℬ :	{퐸 } 	푖푠	ℬ − admissible  

then the completion of 푐 (휅), ‖	⋅	‖ ,ℬ  contains a copy of 푐  or ℓ .  

As it seems not possible to have a non-separable space, that strongly 
resembles Tsirelson space, a natural question is which properties of this 
space can be transferred to the non-separable setting. Besides being 
reflexive, one of the main properties of Tsirelson space, is that it admits 
only ℓ  as a spreading model, i.e. every bounded sequence without a 
norm convergent subsequence has a subsequence that generates a 



٢٢ 
 

spreading model equivalent to the usual basis of ℓ . The main purpose is 
the construction of a non-separable reflexive Banach space 픛 ℵ , with the 
aforementioned property[2].  

Theorem (2.1.1) [2]:  
There exists a reflexive Banach space 픛 ℵ  generated by an 

unconditional basic sequence 푒 ℵ , admitting only ℓ  as a spreading 

model.  

The construction of this space is based on the notion of 훼-large 
families, which is defined as follows. If 퐴  is an infinite set,   ℬ is a 
hereditary and compact family of finite subsets of 퐴 and 훼 is a countable 
ordinal number, we say that ℬ is 훼-large, if its restriction on every 
infinite subset of 퐴, in a certain  sense, contains a copy of 푆 , the Schreier 
family of order 훼. Equivalently, if its restriction  on every infinite subset 
of 퐴, has Cantor-Bendixson index, greater than or equal to 휔 + 1. We 
prove the existence of such families on the cardinal number 2ℵ , by 
constructing for 훼 < 휔 , 풢  an 훼-large, hereditary and compact family of 
finite subsets of {0, ퟏ}ℕ. We believe that these families are of 
independent interest, as they retain some of the most important properties 
of the families 푆 , 훼 < 휔 . They are therefore a generalization of the 
Schreier families,  defined on the continuum and a study of them is 
included here.  

We define the notion of 훼-large families of finite subsets of an infinite 
set and a brief study of them is given [2].  

We devoted to the construction of the families  {풢 } . Initially, 
using the Schreier family 푆  and diagonalization, we recursively define 
some auxiliary families G	 , 훼 < 휔 , which are subsets of [{0,1}ℕ] ×
{0,1}ℕ. The construction method used, imposes strong Schreier like 
properties on the families 풢 , which are in fact the projection of G	 , on 
the component [{0,1}ℕ] . Next, properties of these families, which are  
crucial for the proof of the main result are included, among others, the 
fact that for 훼 < 휔 , 풢  is an 훼-large,  compact and hereditary family of 
finite subsets of {0,1}ℕ.Some additional results concerning the similarity 
of the 풢  to the 푆 , 훼 < 휔 , are proven [2].  
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We concentrated on the construction of the space 픛 ℵ . The first step 
is the definition of a sequence of spaces {(푋 , ‖⋅‖ )} ,  each one based 
on the family 풢 . Inparticular, the norm of these spaces is defined on 
푐 (2ℵ ) in a similar manner as the norm of Schreier space is defined on 
푐 (ℕ) and they all have the unit vector basis  푒 ℵ  as an 

unconditional Schauder basis.  For 푛 ∈ ℕ, the main two properties of the 
space 푋  are the following. Firstly, every subsequence of the basis admits 
only ℓ  as a spreading model and secondly the space 푋  is 푐  saturated. 
Next, using the spaces 푋 , 푛 ∈ ℕ and Tsirelson space 푇, a norm is defined 
on 푐 (2ℵ ), in the following manner. For 푥 ∈ 푐 (2ℵ ), set 

‖푥‖ =
1
2
‖푥‖ 푒 . 

The  completion of 푐 (2ℵ )  with this norm is the desired space 픛 ℵ , 
which has the unit vector basis 푒 ℵ  as an unconditional 

Schauderbasis. The proof of the fact that this space admits only ℓ  as a 
spreading model, relies on the study of the behavior of the ‖⋅‖  norms on 
a normalized weakly null sequence {푥 }  in 픛 ℵ . Moreover, using the 
fact that the spaces 푋   are 푐  saturated, we prove that every subspace of 
픛 ℵ  contains a copy of a subspace of 푇, which yields that the space is 
reflexive [2].  

We concerns the construction,  for 훼 < 휔  , of reflexive spaces 픛 ℵ  
having an unconditional Schauderbasis with size 2ℵ , admitting ℓ  as a 
unique spreading model. The construction method used is a variation of 
the one used for the space 픛 ℵ .  

We introduce the notion of 훼-large families which concerns the 
complexity of a family ℬ of finite subsets of a given infinite set 퐴. This 
notion extends the well   known concept of large families and it is defined 
using the transfinite hierarchy of  the Schreier families {푆 }  After 
providing the definition of 훼-large families we also give a useful 
characterization linking this  notion with the Cantor-Bendixson index of a 
compact and hereditary family of  finite subsets of a given infinite set. 

Let 퐴 be a set, ℬ be a family of subsets of 퐴, ℬ be a subset of 퐴 
and 푘 be a natural  number. We define 
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[퐵] = {퐹 ⊆ 퐵:	 ⋕ 퐹 = 푘} 

and 

ℬ ↾ 퐵 = {퐹 ∈ ℬ: 퐹 ⊂ 퐵}. 

If ℱ is a family of subsets of the natural numbers, 퐿 is an infinite 
subset of ℕ  and 휙 ∶ ℕ → 퐿 is the uniquely defined order preserving 
bijection, we define 

ℱ[퐿] = {휙(퐹): 퐹 ∈ ℱ}. 

Definition (2.1.2) [2]: 

Let 퐴 be an infinite set and ℬ a family of finite subsets of 퐴. 

(i) We say that 퐵 is large, if for every 푘 ∈ ℕ, and ℬ infinite 
subset of 퐴,  we have that [퐵] ∩ ℬ ≠ 휙. 

(ii) Given a countable ordinal number 훼, we say that ℬ is 훼-
large, if for   every B infinite subset of 퐴, there exists a one 
to one map 휙 ∶ ℕ → 퐵,  such that 휙(퐹) ∈ ℬ, for every 퐹 ∈
푆 .  

Lemma (2.1.3) [2]: 

Let ℱ, 풢 be hereditary and compact families of finite subsets of the 
natural  numbers, such that for every 퐿 infinite subset of the natural 
numbers, the Cantor-Bendixson index of ℱ ↾ 퐿, is strictly smaller than the 
Cantor-Bendixson index of 풢 ↾ 퐿. Then for every 푀 infinite subset of the 
natural numbers, there exists 퐿 a  further infinite subset of 푀, such that 
ℱ ↾ 퐿 ⊆ 풢 ↾ 퐿. 

Proposition (2.1.4) [2]: 

Let 퐴 be an infinite set, ℬ be a hereditary and compact family of 
finite  subsets of 퐴 and 훼 be a countable ordinal number. Then, the 
following assertions  are equivalent: 

(i) ℬ is 훼-large. 

(ii)  For every 퐵 infinite subset of 퐴, the Cantor-Bendixson 
index of ℬ ↾ 퐵  is greater than or equal to 휔 + 1. 
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Proof: 

Given that (i) holds, (ii) is an immediate consequence of the fact 
that the  Cantor-Bendixson index of 푆  is equal to 휔 + 1 for every 
countable ordinal  number 훼 .  

For the converse, we may clearly assume that ℬ is a hereditary and 
compact  family of finite subsets of the natural numbers. For a given 
countable ordinal 훼, if  (ii) holds, we shall prove the following statement.  

For every infinite subset of the natural numbers 푀, there exists 퐿 
an infinite  subset of 푀, such that 푆 [퐿] ⊂ ℬ. 

The desired result evidently follows from the above. To prove this 
statement,  we distinguish three cases.  

Case (1):휶 = ퟏ: 

Assume that for every infinite subset of the natural numbers 푀, the 
Cantor-Bendixson index of ℬ ↾ 푀 is infinite. This means that every such 
푀 contains as  subsets elements of ℬ, of unbounded cardinality. Since ℬ 
is hereditary, we  conclude that it is large and therefore it also is 1-large.  

Case (2): 휶 is a limit ordinal number: 

Then there is {훽 }  a strictly increasing sequence of ordinal 
numbers with  sup 훽 = 훼, such that 푆 = ⋃ 퐹 ∈ 푆 :min 퐹 ≥ 푘 . 

Using Lemma (2.1.3) ,choose 퐿 ⊃ ⋯ ⊃ 퐿 ⊃ ⋯ infinite subsets of 
푀,  such that 푆 ↾ 퐿 ⊂ ℬ, for all 푘.  

Choose 퐿 = {ℓ < ⋯ < ℓ < ⋯ } an infinite subsets of 푀, with 
ℓ ∈ 퐿 ,  for every 푚 ≥ 푘. It is not hard to check that 푆 [퐿] ⊂ ℬ.  

Case (3): α is a successor ordinal number: 

If α = β + 1, then the following holds.  

For every 푀 infinite subset of the naturals and 푛 ∈ ℕ, there exists 퐿 
a further  infinite subset of 푀, such that 푆 ∗ 풜 ↾ 퐿 ⊂ ℬ, where 
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푆 ∗ 풜 = 퐹 ∈ 푆 , 푖 = 1,… , 푛 . 

The above statement follows form Lemma (2.1.3) and the fact that 
the  Cantor-Bendixson index of 푆 ∗ 풜  is equal to 휔 푛 + 1 < 휔 . 

Therefore, given 푀 an infinite subset of the natural numbers, we 
may choose 퐿 ⊃ ⋯ ⊃ 퐿 ⊃ ⋯ infinite subsets of 푀 such that 푆 ∗
풜 ↾ 퐿 ⊂ ℬ.  

Choose 퐿 = {ℓ < ⋯ < ℓ < ⋯ } an infinite subsets of 푀, with 
ℓ ∈ 퐿 ,  for every 푚 ≥ 푛. Once more, it is not hard to check that 
푆 [퐿] ⊂ ℬ. 

In this section we define a transfinite sequence 풢 , 훼 < 휔  of 
compact and  hereditary families of finite subsets of {0,1}ℕ with each 풢  
being 훼-large for 훼 < 휔 . We shall first recursively define an auxiliary 
transfinite sequence{G	 }  of subsets of [{0,1}ℕ] × {0,1}ℕ, which 
will then be used to define the  풢  for 훼 < 휔 . We then prove the main 
properties of these families and we  conclude this section by showing the 
풢  have some similar properties to the  Schreier families 푆 .  

For 휎 = {휎(푖)}  and 휏 = {휏(푖)}   in {0,1}ℕ, we define 휎 ∧ 휏 
and |휎 ∧ 휏| as follows: 

(i)		휎 ∧ 휏 σ and |휎 ∧ 휏| = ∞, if 휎 = 휏. 

(ii)		휎 ∧ 휏 = 휙 and |휎 ∧ 휏| = 0, if 휎(1) ≠ 휏(1). 

(iii)			휎 ∧ 휏 = {휎(푖)}  and |휎 ∧ 휏| = ℓ, if 휎 ≠ 휏, 휎(1) = 휏(1) 
and ℓ = min{푖 ∈ ℕ:	휎(푖 + 1) ≠ 휏(푖 + 1)}. 

For 푠 = {푠(푖)}  and 푡 = {푡(푖)}ℓ  finite sequences of 0’s and 1’s, 
we say  that 푠 is an initial segment of 푡 and write 푠 ⊑ 푡, if 푘 ≤ ℓ and 
푠(푖) = 푡(푖) for 푖 = 1, … , 푘. We say  that s is a proper initial segment of 푡 
and write 푠 ⊊ 푡, if 푠 ⊑ 푡  and 푠 ≠ 푡.  
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Definition (2.1.5) [2]: 

We define G	  to be all pairs (퐹, 휎), where 퐹 = {휏 } ∈
[{0,1}ℕ] , 푑 ∈ ℕ and 휎 ∈ {0,1}ℕ, such that the following are satisfied: 

(i)				휎 ≠ 휏  for 푖 = 1, … , 푑. 

(ii)		휎 ∧ 휏 ≠ 휙 and if 푑 > 1, then 휎 ∧ 휏 ⊊ 휎 ∧ 휏 ⊊ ⋯ ⊊ 휎 ∧
휏 . 

(iii)			푑 ≤ |휎 ∧ 휏 |. 

Define mın(퐹, 휎) = |휎 ∧ 휏 | and max(퐹, 휎) = |휎 ∧ 휏 |. 

Assume that 훼 is a countable ordinal number, G	   have been 
defined for 훽 < 훼 and that for (퐹, 휎) ∈G	 , mın(퐹, 휎) and max(퐹, 휎) 
have also been defined. 

Definition (2.1.6) [2]: 

Let 훽 < 훼, (퐹 , 휎 ) , 푑 ∈ ℕ be a finite sequence of elements of 
G	  and 휎 ∈ {0,1}ℕ. We say that (퐹 , 휎 )  is a skipped branching of 휎 in 
G	 , if the  following are satisfied: 

(i) The 퐹 , 푖 = 1, … , 푑 are pairwise disjoint. 
(ii) 휎 ≠ 휎  for 푖 = 1, … , 푑.	

(iii) 휎 ∧ 휎 ≠ 휙 and if 푑 > 1, then 휎 ∧ 휎 ⊊ 휎 ∧ 휎 ⊊ ⋯ ⊊ 휎 ∧
휎 .	

(iv) |휎 ∧ 휎| < mın(퐹 , 휎 ) for 푖 = 1, … , 푑 − 1. 
(v) 푑 ≤ |휎 ∧ 휎 |. 

Definition (2.1.7) [2]: 

Let 훽 < 훼, 휎 ∈ {0,1}ℕ and (퐹 , 휎) , 푑 ∈ ℕ be a finite sequence of 
elements  of G	 . We say that (퐹 , 휎)  is an attached branching of 휎 in 
G	  if the following  are satisfied: 

i. The 퐹 = 1,… , 푑 are pairwise disjoint. 
ii. If 푑 > 1, then max(퐹 , 휎) < mın(퐹 , 휎), for 푖 = 1, … , 푑 −

1. 
iii. 푑 ≤ mın(퐹 , 휎). 
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We are now ready to define G	 , distinguishing two cases.  

Definition (2.1.8) [2]: 

If 훼 is a successor ordinal number with 훼 = 훽 + 1, we define G	  
to be all  pairs (퐹, 휎) where 퐹 ∈ [{0,1}ℕ]  and 휎 ∈ {0, ퟏ}ℕ, such that 
one of the following  is satisfied: 

(i) (퐹, 휎) ∈G	 . 
(ii) There is (퐹 , 휎 )  a skipped branching of σ in G	  such that 

퐹 = ⋃ 퐹 . 

In this case we say that (퐹, 휎) is skipped. Moreover set 
mın(퐹, 휎) = |휎 ∧ 휎 | and  max(퐹, 휎) = |휎 ∧ 휎 |.  

(iii) There is (퐹 , 휎)  an attached branching of 휎 in G	  such 
that 퐹 = ⋃ 퐹 . 

In this case we say that (퐹, 휎) is attached. Moreover set 
mın(퐹, 휎) = mın(퐹 , 휎) and max(퐹, 휎) = max(퐹 , 휎). 

If 훼 is a limit ordinal number, fix {훽 }  a strictly increasing 
sequence of  ordinal numbers with sup 훽 = 훼.  

We define 

ℊ = (퐹, 휎) ∈ ℊ :	mın(퐹, 휎) ≥ 푛 . 

Remark (2.1.9) [2]: 

If 훼 is a limit ordinal number, the sequence {훽 }  may be chosen 
in such a  manner that the following are satisfied: 

ℊ = (퐹, 휎) ∈ ℊ :mın(퐹, 휎) ≥ n  

and 

푆 = 퐹 ∈ 푆 :min 퐹 ≥ 푛 . 
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From now on, we shall assume that this is the case.  

Remark (2.1.10) [2]: 

Translating Definitions  (2.1.5) , (2.1.6) , (2.1.7) and  (2.1.8) one  
obtains the following: 

(i) If (퐹, 휎) ∈G	 , then #퐹 ≤ mın(퐹, 휎). 
(ii) If (퐹, 휎) ∈ G	  and (퐹 , 휎 )  is a skipped branching of 휎 

in G	  such that 퐹 = ⋃ 퐹 , then we have that 푑 ≤
mın(퐹, 휎). 

(iii) If (퐹, 휎) ∈ G	  and (퐹 , 휎)  is an attached branching  of 
휎 in G	   such that 퐹 = ⋃ 퐹 , then we have that 푑 ≤
mın(퐹, 휎).  

We now proceed to prove some key properties of the families G	 .  

Lemma (2.1.11) [2]: 

Let 휎, 휎 , 휏 ∈ {0,1}ℕ, not all equal. The following are equivalent: 

(i) 휎 ∧ 휏 ⊊ 휎 ∧ 휎 .  
(ii) 		휎 ∧ 휏 = 휎 ∧ 휏.    

Proof: 

Assume that (i) holds. We have that 휏(푗) = 휎(푗) = 휎 (푗), for 푗 =
1, … , |휎 ∧ 휏|. Whereas, for 푗 = |휎 ∧ 휏| + ퟏ, we have that 휏(푗) ≠ 휎(푗) =
휎 (푗).  Therefore, |휎 ∧ 휏| = |휎 ∧ 휏|, which means that 휎 ∧ 휏 = 휎 ∧ 휏.  

The inverse is proved similarly.  

Lemma (2.1.12) [2]: 

Let 훼 be a countable ordinal number and (퐹, 휎) ∈G	 . Then there 
exist 휏 , 휏  in 퐹 such that the following are satisfied: 

(i) mın(퐹, 휎) = |휎 ∧ 휎 | and max(퐹, 휎) = |휎 ∧ 휎 |. 
(ii) For 휏 ∈ 퐹 we have that 휎 ∧ 휏 ⊑ 휎 ∧ 휏 ⊑ 휎 ∧ 휏 . 

Moreover, if 훼 is a successor ordinal number with 훼 = 훽 + 1 the 
following  hold: 
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(iii) If (퐹, 휎) is skipped and (퐹 , 휎 )  is a skipped 
branching of 휎  in G	  such that 퐹 = ⋃ 퐹 , then for 
푖 = 1,… , 푑 and 휏 ∈ 퐹 , we have that 휎 ∧ 휎 = 휎 ∧ 휏. 

(iv) If (퐹, 휎) is attached and (퐹 , 휎 )  is an attached 
branching of  휎 in G	  such that 퐹 = ⋃ 퐹 , then for 
1 ≤ 푖 < 푗 ≤ 푑 and 휏 ∈ 퐹 , 휏 ∈ 퐹 , we have that 휎 ∧
휏 ⊊ 휎 ∧ 휏 .  

Proof: 

We prove this lemma by transfinite induction. For 훼 = 1 the 
desired result  follows immediately from the definition of G	 . Assume 
now that 훼 is a countable  ordinal number and that the statement holds for 
every (퐹, 휎) ∈G	 , for every 훽 < 훼. If 훼 is a limit ordinal number, then 
the result follows trivially from the  inductive assumption and the 
definition of G	 . Assume therefore that 훼 = 훽 + 1  and let (퐹, 휎) ∈G	 . 

We treat first the case when (퐹, 휎) is skipped. Let (퐹 , 휎 )  be a 
skipped  branching of 휎 in G	 , such that 퐹 = ⋃ 퐹 .  

We first prove part (iii), i.e. for 휏 ∈ 퐹 , we have that 휎 ∧ 휎 = 휎 ∧
휏, 푖 = 1, … , 푑.  

By the inductive assumption, there exists 휏 ∈ 퐹  such that 
mın(퐹 , 휎 ) = 휏 ∧ 휏  and for every 휏 ∈ 퐹 ,  we have that 휎 ∧ 휏 ⊑
휎 ∧ 휏. 

Since, by definition, |휎 ∧ 휎 | < mın(퐹 , 휎 ) = 휎 ∧ 휏 ≤ |휎 ∧ 휏|, 
it  follows that 휎 ∧ 휎 ⊊ 휎 ∧ 휏 and by Lemma (2.1.11)  휎 ∧ 휎 = 휎 ∧ 휏.  

Choosing any 휏 ∈ 퐹  and 휏 ∈ 퐹 , it is easy to see that (i) and (ii) 
are  satisfied.  

Assume now that (퐹, 휎) is attached. Let (퐹 , 휎)  be an attached 
branching  of 휎 in G	 , such that 퐹 = ⋃ 퐹 . 

By the inductive assumption, there exist 휏 , 휏 ∈ 퐹  such that 
mın(퐹 , 휎) = 휎 ∧ 휏 ,max(퐹 , 휎) = 휎 ∧ 휏  and for every 휏 ∈ 퐹  we 
have that 휎 ∧ 휏 ⊑ 휎 ∧ 휏 .  
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We will show that for 1 ≤ 푖 < 푗 ≤ 푑, we have that 휎 ∧ 휏 ⊊ 휎 ∧
휏 . This  proves both (iv) and that 휏 = 휏 , 휏 = 휏  have the desired 
properties.  

However, this follows immediately from the fact that 휎 ∧ 휏 =
max(퐹 , 휎) < mın 퐹 , 휎 = 휎 ∧ 휏 . 

The following result is an immediate consequence of Lemma 
(2.1.12) .  

Corollary (2.1.13) [2]: 

Let 훼 be a countable ordinal number and (퐹, 휎) ∈G	 . Then the 
following  hold: 

i. mın(퐹, 휎) = min{|휎 ∧ 휏|:	휏 ∈ 퐹}. 
ii. max(퐹, 휎) = max{|휎 ∧ 휏|:	휏 ∈ 퐹}. 

Corollary (2.1.14) [2]: 

Let 훼 be a countable ordinal number and (퐹, 휎) ∈G	 , such that #퐹 ≥
2.  Then 

mın(퐹, 휎) ≤ min{|휏 , 휏 |:	휏 , 휏 ∈ 퐹	with	휏 ≠ 휏 }. 

Proof: 

Let 휏 ≠ 휏  be in 퐹. By Lemma (2.1.12), there exists 휏 ∈ 퐹, such 
that  mın(퐹, 휎) = |휎 ∧ 휏 | and 휎 ∧ 휏 ⊑ 휎 ∧ 휏  as well as 휎 ∧ 휏 ⊑ 휎 ∧
휏 . It follows  that 휎 ∧ 휏 ⊑ 휏 ∧ 휏 . We conclude that min (퐹, 휎) ≤
|휏 ∧ 휏 |.  

Lemma (2.1.15) [2]: 

Let 훼 be a countable ordinal number and (퐹, 휎) ∈G	 , such that #퐹 ≥
2.  Then there exists 휎 ∈ {0,1}ℕ, such that (퐹, 휎 ) ∈G	   and 

mın(퐹, 휎 ) ≤ min{|휏 , 휏 |:	휏 , 휏 ∈ 퐹	with	휏 ≠ 휏 }. 

Proof: 

We prove this lemma by transfinite induction on 훼. Assume that 훼 =
1, (퐹, 휎) ∈G	 , such that #퐹 ≥ 2 and 퐹 = {휏 } , 푑 ≥ 2 such that the 
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assumptions  of Definition (2.1.5) are satisfied. Then 휎 ∧ 휏 ⊊ 휎 ∧ 휏  and 
by Lemma (2.1.11) we have that 휎 ∧ 휏 = 휏 ∧ 휏 . We conclude that 
mın(퐹, 휎) = |휎 ∧ 휏 | = |휏 ∧ 휏 |. Corollary (2.1.14) yields that 
mın(퐹, 휎) = min{|휏 ∧ 휏 |:	휏 , 휏 ∈ 퐹	with	휏 ≠ 휏 } and hence, the 
desired 휎  is 휎 itself.  

Assume now that 훼 is a countable ordinal number and that the 
conclusion  holds for every 훽 < 훼.  

If 훼 is a limit ordinal number, choose {훽 }  a strictly increasing 
sequence of  ordinal numbers with sup훽 = 훼, such that the assumptions 

of Definition (2.1.8) are satisfied. Let (퐹, 휎) ∈G	  with #퐹 ≤ 2. Then 
there is 푛 ∈ ℕ such that (퐹, 휎) ∈G	  and mın(퐹, 휎) ≥ 푛	. Corollary 
(2.1.14) yields the following: 

																						min{|휏 , 휏 |:	휏 , 휏 ∈ 퐹	with	휏 ≠ 휏 } ≥ 푛.																						(1) 

By the inductive assumption, there exists 휎 ∈ (퐹, 휎 ) ∈G	  and  
mın(퐹, 휎) ≤ min{|휏 , 휏 |:	휏 , 휏 ∈ 퐹	with	휏 ≠ 휏 }.. By (2) we have that 
mın(퐹, 휎 ) ∈G	 . 

Assume now that α is a successor ordinal number with 훼 = 훽 + 1 and 
let   
(퐹, 휎) ∈G	  with #퐹 ≥ 2. If (퐹, 휎) ∈G	 , then the inductive assumption 
yields the  desired result. If this is not  the case, then (퐹, 휎) is either 
skipped, or attached.  If it  is attached, then there is (퐹 , 휎 )  an attached 
branching of 휎, such that 퐹 = ⋃ 퐹 . If 푑 = 1, then (퐹, 휎 ) ∈G	  and by 
the inductive assumption we are done.  Otherwise, choose 휏 ∈ 퐹 , 휏 ∈
퐹 . Lemma (2.1.12) (iii) yields that 휎 ∧ 휏 = 휎 ∧ 휎 ⊊ 휎 ∧ 휎 = 휎 ∧ 휏  
and by Lemma (2.1.11) we have that 휎 ∧ 휏 = 휏 ∧ 휏 . We conclude that 
mın(퐹, 휎) = |휎 ∧ 휎 | = |휎 ∧ 휏 | = |휏 ∧ 휏 | and therefore,  applying 
Corollary (2.1.14) we have that 휎 is the desired 휎 . 

If on the other hand (퐹, 휎) is attached, using similar reasoning, 
Lemma  (2.1.12) (iv) and Corollary (2.1.3) , we conclude the desired 
result. 
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Corollary (2.1.16) [2]: 

Let {(퐹 , 휎 )}  be a sequence in ⋃ 	G	   with  {mın(퐹 , 휎 )}  
tending to  infinity. Then, if 퐹 is an accumulation point of {퐹 } , we have 
that #퐹 ≤ 1.  

Proof: 

Let 퐹 be an accumulation point of {퐹 } , and assume that there are  
휏 ≠ 휏  in 퐹. Then there exists 퐿 an infinite subset of the natural 
numbers, such  that 휏 , 휏 ∈ 퐹 , for every 푘 ∈ 퐿. Corollary (2.1.4) yields 
that |휏 ∧ 휏 | ≥ mın(퐹 , 휎 ), for all 푘 ∈ 퐿. We conclude that |휏 ∧ 휏 | =
∞,i.e. 휏 = 휏 , a contradiction.  

The following two lemmas will both be useful in the sequel.  

Lemma (2.1.17) [2]: 

Let 훼 be a countable ordinal number and (퐹, 휎) ∈G	 . Let also 휎 ∈
{0,1}ℕ,  such that 휎 ∧ 휏 = 휎 ∧ 휏 for all 휏 ∈ 퐹. Then the following hold: 

(i) (퐹, 휎 ) ∈G	 . 

(ii)	mın(퐹, 휎 ;) = mın(퐹, 휎) 	푎푛푑	max(퐹, 휎 ) = max(퐹, 휎). 

Proof: 

We prove this lemma by transfinite induction. The case 훼 = 1 follows 
easily  from the definition of G	 . Assume now that the result holds for 
every 훽 < 훼. The  case where 훼 is a limit ordinal number is trivial, 
assume therefore that 훼 = 훽 + 1  and let (퐹, 휎) ∈G	 ∈ {0,1}ℕ  such that 
the assumptions of the lemma are satisfied.  Notice that it is enough to 
show that (i) is true, since part (ii) of the conclusion  follows immediately 
from (i) and Corollary (2.1.13).  

We treat first the case when (퐹, 휎) is skipped, i.e. there exists 
(퐹 , 휎 )  a  skipped branching of 휎 in G	 , with 퐹 = ⋃ 퐹 . To show 
that (퐹, 휎 ) ∈G	 , it  suffices to show that (퐹 , 휎 )  is a skipped 
branching of 휎 .  
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Notice that it is enough to show that 휎 ∧ 휎 = 휎 ∧ 휎  for 푖 = 1,… , 푑, 
which,  by Lemma (2.1.11), is equivalent to 휎 ∧ 휎 ⊊ 휎 ∧ 휎  for 푖 =
1, … , 푑.  

Fix 1 ≤ 푖 ≤ 푑 and chose 휏 ∈ 퐹 . Lemma (2.1.12) (iii) yields that 휎 ∧
휎 = 휎 ∧ 휏 = 휎 ∧ 휏. Once more, Lemma (2.1.11) [2] yields that 휎 ∧ 휎 =
휎 ∧ 휏 ⊊ 휎 ∧ 휎 . 

Assume now that (퐹, 휎) is attached, i.e., there exists (퐹 , 휎 )  an 
attached branching of 휎 in G	 , with 퐹 = ⋃ 퐹 . Since, by the inductive 
assumption, the conclusion holds for the (퐹 , 휎), 푖 = 1, … , 푑, 휎  it is 
straightforward to check that  (퐹 , 휎 )  an attached branching of 휎  in 
G	 	 and therefore (퐹, 휎 ) ∈ G	  .          

Lemma (2.1.18) [2]: 

Let (퐹, 휎) ∈ ⋃ 	G	 and 휎 ∈ {0,1}ℕ such that 휎⋀휏 ⊊ 휎 ⋀휏 for 
all 휏 ∈ 퐹. Then, if 훼 = min{훽: (퐹, 휎) ∈ G	 }, 훼 is not a limit ordinal 
number and the  following hold: 

(i) If 훼 = 1, then ⋕ 퐹 = 1. 
(ii) If 훼 = 훽 + 1, then there exists 휎 ∈ {0,1}ℕ with (퐹, 휎 ) ∈ 

G	 . 

Proof: 

The fact that 훼 is not a limit ordinal number follows trivially from 
Definition  (2.1.8) . The  case 훼 = 1 is easy, we shall therefore only prove 
the case 훼 = 훽 + 1. Since (퐹, 휎) ∉ G	 , it is either skipped or attached. 

Assume first that there is(퐹 , 휎 )   a skipped branching of σ in G	  
with 퐹 = ⋃ 퐹 . If 푑 = 1, then 휎 = 휎  is evidently the desired element 
of {0,1}ℕ.  We will therefore prove that 푑 = 1. Towards a contradiction, 
assume that 푑 ≥ 2  and choose 휏 ∈ 퐹 , 휏 ∈ 퐹 .  

Lemma (2.1.12) (iii) yields that 휎⋀휏 = 휎⋀휎 ⊊ 휎⋀휎 = 휎⋀휏 . By 
the  assumption, 휎⋀휏 ⊊ 휎 ⋀휏  and using Lemma (2.1.11) we conclude 
that 휎⋀휏 = 휎⋀휎 . Similarly, we conclude that 휎⋀휏 = 휎⋀휎 . We have 
shown that 휎⋀휎 ⊊ 휎⋀휎 , which is absurd.  



٣٥ 
 

If (퐹, 휎) is attached, then using similar arguments and Lemma (2.1.12) 
(iv), one can prove the desired result.  

Proposition (2.1.19) [2]: 

Let 훼 be a countable ordinal number, (퐹, 휎) ∈G	  and 퐺 be a non-
empty  subset of  퐹. Then (퐺, 휎) ∈G	 .  

Proof: 

We proceed by transfinite induction. For 훼 = 1 the result easily 
follows  from the definition of G	 . Assume that the statement is true for 
every 훽 < 훼. The  case when 훼 is a limit ordinal number is an easy 
consequence of the inductive assumption and Corollary (2.1.13) . Assume 
therefore that 훼 = 훽 + 1 and let  (퐹, 휎) be in G	  and 퐺 ⊂ 퐹.  

Consider first the case, when (퐹, 휎) is skipped and (퐹 )  be a 
skipped  branching of σ in G	 , such that 퐹 = ⋃ 퐹 .  

Set 푖 < ⋯ < 푖 = {푖 ∈ {1, … , 푑}: 퐺 ∩ 퐹 ≠ 휙} and 퐺 = 퐺 ∩ 퐹  for 

푗 = 1, … , 푝. By the inductive assumption, 퐺 , 휎  is in G	  for 푗 =

1, … , 푝 and,  evidently, it is enough to show that 퐺 , 휎  is a skipped 

branching of 휎.  Obviously, assumptions (i), (ii) and (iii) from Definition 
(2.1.6) are satisfied.  

Corollary (2.1.13) yields that mın 퐹 , 휎 ≤ mın 퐺 , 휎  and hence 

(iv) is  satisfied. Moreover 푝 ≤ 푑 ≤ |휎⋀휎 | ≤ 휎⋀휎 , which means that 
(v) is also satisfied.  

If on the other hand (퐹, 휎) is attached, using similar reasoning and 
Corollary  (2.1.13), the desired result can be easily proven.  

We are now ready to define the families 풢 , for 훼 < 휔  and prove 
their main properties.  

Definition (2.1.20) [2]: 

For a countable ordinal number 훼 we define  

풢 = {퐹 ⊂ {0,1}ℕ: there	exists	휎 ∈ {0,1}ℕ	with	(퐹, 휎 ∈) G	 } ∪ {휙}. 
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Proposition (2.1.21) [2]: 

Let 훼 be a countable ordinal number. Then G	  is 훼-large. In 
particular, for  every 퐵 infinite subset of {0,1}ℕ  there exists a one to one 
map 휙 ∶ ℕ → 퐵 with 휙(퐹) ∈ 풢  for ever	퐹 ∈ 푆 y and 훼 < 휔 .  

Proof: 

Let 퐵 be an infinite subset of {0,1}ℕ Choose {휏 }  pairwise disjoint  
elements of  퐵 and 휎 ∈ {0,1}ℕ, with lim τ = 휎, such that 휎⋀휏 ⊊

휎⋀휏  for all  푘 ∈ ℕ. Define 휙 ∶ ℕ → 퐵, with 휙(푘) = 휏 .  

We shall inductively prove that for every 훼 < 휔  and 퐹 ∈ 푆 , the 
following  hold: 

(i) (휙(퐹), 휎) ∈ G	 . 

(ii)		mın(휙(퐹), 휎) = |휎⋀휏 | and max(휙(퐹), 휎) =
|휎⋀휏 |.    

The case 훼 = 1 can be easily derived from the definition of G	 . 
Assume  now that 훼 is a countable ordinal number and that the statement 
is true for every 퐹 ∈ 푆  and 훽 < 훼. 

We treat first the case when 훼 is a limit ordinal number. Choose {훽 }  
a  strictly increasing sequence of ordinal numbers with sup훽 = 훼, such 

that 

퐺 = (퐺, 휎 ) ∈ 퐺 :mın(퐺, 휎 ) ≥ 푛  

as well as 

푆 = 퐹 ∈ 푆 :min 퐹 ≥ 푛 . 

Then, if 퐹 ∈ 푆 , there exists 푛 ∈ ℕ with 퐹 ∈ 푆  and min 퐹 ≥ 푛. The 
inductive  assumption yields that (휙(퐹), 휎) ∈G	  and  mın(휙(퐹), 휎) =
|휎⋀휏 | ≥ min 퐹 ≥ 푛. We conclude that (휙(퐹), 휎) ∈G	  and, of 
coursemın(휙(퐹), 휎) = |휎⋀휏 |.  
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Assume now that 훼	 = 훽 + 1 and let 퐹 ∈ 푆 . Then there exist 
min 퐹 ≤ 퐹 < ⋯ < 퐹  in 푆  with 퐹 = ⋃ 퐹 .  

The inductive assumption yields that (휙(퐹 ), 휎)  is an attached 
branching  of 휎 in G	  and hence (휙(퐹), 휎) ∈G	 .  

Moreover,	mın(휙(퐹), 휎) = mın(휙(퐹 ), 휎) = 휎⋀휏 =
	|휎⋀휏 |.  Similarly, we conclude that max(휙(퐹), 휎) = |휎⋀휏 |.  

subset of 퐴, such that the Cantor-Bendixson index of 풢 ↾ 	퐵 is equal 
to 휔 + 1 for all 훼 < 휔 . Since we do not  make use of this fact, we omit  

The result concerning the families 풢 , 훼 < 휔  is the following.  

Theorem (2.1.22) [2]: 

Let 훼 be a countable ordinal number. Then 풢  is an 훼-large, 
hereditary and   compact family of finite subsets of {0,1}ℕ.  

Proof: 

All we need to prove, is that 풢  is compact and we do so by transfinite  
induction. Let us first treat the case 훼 = 1 and assume 퐹 is in the closure 
of 풢 .  

If 퐹 is finite, since 풢  is hereditary, then 퐹 ∈ 풢 . It is therefore 
sufficient to  show that 퐹 cannot be infinite. Since 풢  is hereditary, we 
may assume that 퐹 is  countable and let {휏 : 푖 ∈ ℕ} be an enumeration of 
퐹.  

We conclude, that setting 퐹 = {휏 : 푖 = 1, … , 푘}, then 퐹 ∈ 풢  and 
#퐹 = 푘.  Choose {휎 }  a sequence in {0,1}ℕ such that (퐹 , 휎 ) ∈G	  for 
all 푘.  

We yield that 푘 ≤ mın(퐹 , 휎 ) for all 푘. On the other hand,  by 
Corollary (2.1.14) we have that mın(퐹 , 휎 ) ≤ |휏 ⋀휏 |. We conclude that 
푘 ≤ 	 |휏 ⋀휏 | for all 푘 ∈ ℕ, which is obviously not possible.  

Assuming now that α is a countable ordinal number such that 풢  is 
compact  for every 훽 < 훼, we will show that the same is true for 풢 .  
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We treat first the case in which 훼 is a limit ordinal number. Fix {훽 }  
a  strictly increasing sequence of ordinal numbers with sup훽 = 훼 such 

that 

퐺 = (퐹, 휎) ∈ 퐺 :mın(퐹, 휎) ≥ 푛 . 

Let 퐹 be in the closure of  풢 . As previously, if 퐹 is finite then it is in 
풢  and   it is therefore enough to show that 퐹 cannot be infinite. Once 
more, we may assume  that 퐹 = {휏 : 푖 ∈ ℕ}. Setting 퐹 = {휏 ,… , 휏 }, we 
have that 퐹 ∈ 풢 ,  therefore there exists {휎 } , with (퐹 , 휎 ) ∈G	 .  

Using Corollary (2.1.14) we have that mın(퐹 , 휎 ) ≤ |휏 ⋀휏 | = 푑. In  
other words, (퐹 , 휎 ) ∈G	 , with 푛 ≤ 푑  for all 푘. Passing, if 

necessary, to a  subsequence, we have that	(퐹 , 휎 ) ∈G	 , for all 푘. We 
conclude that 퐹 ∈ 풢 ,  in other words 풢  is not compact, which is 
absurd.  

Assume now that 훼 = 훽 + 1. Let 퐹 be in the closure of  풢 . As 
previously,  it is enough to show that 퐹 cannot be infinite. Once more, we 
may assume that 퐹 = {휏 : 푖 ∈ ℕ}.  

Set 퐹 = {휏 : 푖 = 1,… , 푘}, for all 푘. Then 퐹 ∈ 풢 , i.e. there exists 휎  
such  that (퐹 , 휎 ) ∈ G	 . Setting 푑 = |휏 ⋀휏 |, Corollary (2.1.15),  yields 
the following: 

																																																				mın(퐹 , 휎 )
≤ 푑		for	all	푘.																																									(2) 

By Definition (2.1.4), Remark (2.1.10) and (2), for every 푘 ∈ ℕ, there 
exist  퐹  pairwise disjoint sets in 풢 , with 퐹 = ⋃ 퐹  and 푚 ≤

푑. Passing to a subsequence, we may assume that 푚 = 푚, for all 푘.  

By the compactness of 풢 , we may pass to a further subsequence and 
find  퐺 , 퐺 , … , 퐺 ∈ 풢 , such that lim퐹 = 퐺 , for 푗 = 1, … ,푚.  

We conclude that 퐹 = lim퐹 = lim ⋃ 퐹 = ⋃ 퐺 . Since 

⋃ 퐺   is a finite set, this cannot be the case.  
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Although the initial motivation behind the definition of the 풢  families 
was  the construction of a nonseparable reflexive space with ℓ  as a 
unique spreading  model, we believe that they are of independent interest, 
as they retain many of the  properties of the families 푆 . They are 
therefore a version of these families, defined  on the Cantor set {0,1}ℕ. 
We present a few more properties the 풢  have in  common with the 푆 .  

Lemma (2.1.23) [2]:  

Let 훼 < 훽 be countable ordinal numbers. Then there exists 푛 ∈ ℕ 
such that 

{(퐹, 휎) ∈ 퐺 :mın(퐹, 휎) ≥ 푛} ⊂ G	 . 

Proof: 

Fix 훼 a countable ordinal number. We prove this proposition by 
means of  transfinite induction, starting with 훽 = 훼 + 1. In this case the 
result follows from  the definition of G	 , for 푛 = 1.  

Assume now that 훽 is a countable ordinal number with 훼 < 훽, such 
that the  statement holds for every 훼 < 훾 < 훽. If 훽 = 훾	 + 1, by the 
inductive assumption,  there exists 푛 ∈ ℕ, such that 
{(퐹, 휎) ∈G	 : mın(퐹, 휎) ≥ 푛} 	⊂ G	 . Evidently, we  also have that 
{(퐹, 휎) ∈ G	 : mın(퐹, 휎) ≥ 푛} 	⊂ G	 .  

If 훽 is a limit ordinal number, fix {훽 }  a strictly increasing sequence 
of  ordinal numbers, such that 훽 = lim 훽  and 

퐺 = (퐹, 휎) ∈ 퐺 :mın(퐹, 휎) ≥ 푘 . 

Choose 푘 ∈ ℕ with 훼 < 훽 . By the inductive assumption, there 
exists 푚 ∈ ℕ, such that {(퐹, 휎) ∈ G	 : mın(퐹, 휎) ≥ 푚} ⊂ G	 . Setting 
푛 = max{푘 ,푚}, we have the desired result.  
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Lemma (2.1.24) [2]: 

Let 훼 < 훽 be countable ordinal numbers. Then there exists 푛 ∈ ℕ ∪
{0}  such that G	 ⊂ G	 .  

Proof: 

Fix 훽 a countable ordinal number. We proceed by transfinite induction 
on 훼.  In the case 훼 = 1, it is easily checked that G	 ⊂ G	 . Assume now 
that 훼 is a  countable ordinal with 훼 < 훽, such that the statement holds 
for every 훾 < 훼. If 훼 = 	훾 + 1, then by the inductive assumption there 
exists	푛 ∈ ℕ ∪ {0} with G	 ⊂ G	 . We conclude that G	 ⊂G	 ( ). 
If 훼 is a limit ordinal, fix {훼 }  a  strictly increasing sequence of ordinal 
numbers, such that 훼 = lim 훼  and 

퐺 = (퐹, 휎) ∈ 퐺 :mın(퐹, 휎) ≥ 푘 . 

Lemma (2.1.23) yields that there exists 푚 ∈ ℕ with  
{(퐹, 휎) ∈G	 : mın(퐹, 휎) ≥ 푚} ⊂ G	 . The inductive assumption, yields 
that for 푘 = 1, … ,푚 − 1, there exists 푛 ∈ ℕ ∪ {0} with G	 ⊂ G	 . 
Setting 푛 = {푚, 푛 , … , 푛 }, it can be easily checked that G	 ⊂ G	 .   

Proposition (2.1.25) [2]: 

Let 훼 < 훽 be countable ordinal numbers. Then there exists 푛 ∈ ℕ 
such that 

{퐹 ∈ 풢 :	⋕ 퐹 ≥ 2	andmin{|휏 ⋀휏 |:	휏 , 휏 ∈ 퐹, 휏 ≠ 휏 } ≥ 푛} ⊂ 풢 . 

Proof: 

Let 훼 < 훽 be countable ordinal numbers. Choose 푛 ∈ ℕ such that the  
conclusion of  Lemma (2.1.23) is satisfied. We show that this 푛 is the 
desired   natural number. Le	퐹 ∈ 풢  with ⋕ 퐹 ≥ 2 and 
min{|휏 ⋀휏 |:	휏 , 휏 ∈ 퐹, 휏 ≠ 휏 } ≥ 푛. Then there exists 휎 ∈ {0,1}ℕ with 
(퐹, 휎) ∈G	  . Lemma (2.1.15) yields that  there exists 휎 ∈ {0,1}ℕ such 
that (퐹, 휎 ) ∈ G	  and mın(퐹, 휎 ) ≥ 푛.  By the  choice of 푛, we have that 
(퐹, 휎 ) ∈ G	 , i.e. 퐹 ∈ 풢 .  
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The following proposition is an obvious conclusion of  Lemma 
(2.1.24) .  

Proposition (2.1.26) [2]: 

  Let 훼 < 훽 be countable ordinal numbers. Then there exists 푛 ∈
ℕ ∪ {0}  such that 풢 ⊂ 풢 . 
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Section (2.2): The space햃ퟐℵퟎ   and Spaces Adimitting Spreading 
Model 

In this section we define the space픛 ℵ   and prove that it is reflexive, 
has an  unconditional Schauder basis of length the continuum and that it 
admits only ℓ  as  a spreading model. In the beginning we define a 
sequence of non-separable spaces  푋 , 푛 ∈ ℕ. Each one is defined using 
the family 풢  in a similar manner as the  Schreier family 푆  is used to 
define the space . Then the construction of 픛 ℵ   is presented, which 
combines the spaces 푋  and Tsirelson space, using a method  appeared 
the end the properties of the space 픛 ℵ  are deduced by  directly using the 
structure of the families 풢 .  

Before proceeding to the definition of the spaces 푋  and 픛 ℵ , let us 
first  recall the notion of ℓ  spreading models.  

Definition (2.2.1) [2]: 

Let {푥 }  be a sequence in a Banach space and 훼 be a countable 
ordinal  number. We say that {푥 }  generates an ℓ  spreading model, if 
there exists a  constant 푐 > 0 such that for every 퐹 ∈ 푆  and every real 
numbers {휆 } ∈  the  following holds: 

휆 푥
∈

≥ 푐 |휆 |
∈

. 

Let us from now on fix a one to one and onto map 휏 → 휉  from {0,1}ℕ 
to the  cardinal number 2ℵ .  

Definition (2.2.2) [2]: 

For 푛 ∈ ℕ define a norm on 푐 (2ℵ ) in the following manner: 

(i) For 푛 ∈ ℕ, we may identify an 퐹 ∈ 풢  with a linear 
functional 퐹 ∶ 푐 (2ℵ ) → ℝ in the following manner. 
For 푥 = ∑ 휆ℵ ∈ 푐 (2ℵ ) 

퐹(푥) = 휆
∈

. 

(ii) For 푥 ∈ 푐 (2ℵ )  define  
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‖푥‖ = sup{|퐹(푥)|: 퐹 ∈ 풢 }. 

Set 푋  to be the completion of (푐 (2ℵ ), ‖	⋅	‖ ). 

Proposition (2.2.3) [2]:  

Let 푛 ∈ ℕ. Then the following hold: 

(i) The space 푋  is 푐  saturated. 
(ii) The unit vector basis 푒 ℵ  is a normalized, suppression  

unconditional and weakly null basis of 푋 , with the length of 
the  continuum. 

(iii) Any subsequence of the unit vector basis admits only ℓ  as a  
spreading model.  

 

By 푇 we denote Tsirelson space as defined and by t{푒 }  we denote its  
usual basis. We are now ready to define the space 픛 ℵ  , using the spaces 
푋 , Tsirelson space 푇 and a method appeared .  

Definition (2.2.4) [2]: 

Define the following norm on 푐 (2ℵ ). 퐹 ∈ 푐 (2ℵ ) 

‖푥‖ =
1
2
‖푥‖ 푒 . 

Set 픛 ℵ  to be the completion of (푐 (2ℵ ), ‖	⋅‖).  

Set 휆 = ∑ 푒   and for 휉 < 2ℵ , 푒̃ = 푒 . Since 푒 ℵ  is  

normalized and suppression unconditional in 푋 , and {푒 }  is 1-
unconditional in 푇, we conclude that 푒̃ ℵ  is a normalized 

suppression unconditional basis of 픛 ℵ .  

For 푛 ∈ ℕ define 푃 :	픛 ℵ → 푋  with 푃 푥 = 푥. Evidently 푃  is well  
defined and ‖푃 ‖ ≤ 1, for all 푛 ∈ ℕ.  
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The main result is the following, which is a combination of 
Proposition (2.2.15) and Corollary (2.2.17) , which will be presented in 
the sequel.  

Theorem (2.2.5) [2]: 

The space 픛 ℵ  is a non-separable reflexive space with a suppression  
unconditional Schauder basis with the length of the continuum, having 
the  following property. Every normalized weakly null sequence in 픛 ℵ  
has a  subsequence that generates an  ℓ  spreading model, for every 푛 ∈
ℕ.  

Lemma (2.2.6) [2]: 

Let 푒̃  be a subsequence of the basis 푒̃ ℵ  of 픛 ℵ . Then it has 

a  subsequence that generates an ℓ   spreading model for every 푛 ∈ ℕ.  

Proof: 

Set 퐵 = {휏:	휉 = 휉 	for	sme	푘 ∈ ℕ}. By Proposition (2.1.21) [2] there 
exists  a one to one map 휙 ∶ ℕ → 퐵 such that 휙(퐹) ∈ 풢  for every 퐹 ∈
푆  and 푛 ∈ ℕ.  

Pass to 퐿 an infinite subset of the natural numbers such that the map 
휙 ∶ 퐿 → 2ℵ 	with 휙(푗) = 휉 ( ) is strictly increasing. We will show that 

푒̃ ( ) ∈
  admits an ℓ  spreading model for every 푛 ∈ ℕ.  

By unconditionality, it is enough to show that there are positive 
constants 푐   such that for every 푛 ∈ ℕ, 퐹 ∈ 푆 , 퐹 ⊂ 퐿 and 푡

∈
 

positive real numbers, we  have that 

푡 푒̃ ( )

∈

≥ 푐 푡
∈

. 

By definition, we have that ∑ 푡 푒̃ ( )∈ ≥ ∑ 푡 푒 ( )∈  and by 

the  choice of 휙, we have that 휙(퐹) ∈ 풢 . Hence, 휙(퐹) ∑ 푡 푒 ( )∈ =

∑ 푡∈  which yields that ∑ 푡 푒 ( )∈ = ∑ 푡∈ .   
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We finally conclude that ∑ 푡 푒̃ ( )∈ ≥ ∑ 푡∈ .  

Proposition (2.2.7) [2]:  

Let {푥 }  be a normalized, disjointly supported block sequence of 
푒̃ ℵ ,  such that lim	sup‖푥 ‖ > 0. Then {푥 }  has a subsequence 

that generates an ℓ   spreading model for every 푛 ∈ ℕ.  

Proof: 

By unconditionality, it is quite clear, that by passing, if necessary, to a  
subsequence of {푥 } , there exist 휀 > 0 and 푒̃  a subsequence of 

푒̃ ℵ ,  such that for any 휆 ,… , 휆  real numbers, one has that 

휆 푥 > 휀 휆 푒̃ . 

Lemma (2.2.6) yields the desired result.  

Proposition (2.2.8) [2]: 

Let {푥 }  be a normalized block sequence in 픛 ℵ  , such that 
lim‖푃 푥 ‖ = 0, for all 푛 ∈ ℕ. Then {푥 }  has a subsequence equivalent 

to a  block sequence in 푇. In particular, {푥 }  has a subsequence that 
generates an ℓ   spreading model for every 푛 ∈ ℕ. 

Proof: 

Using a sliding hump argument, it is easy to see, that passing, if 
necessary,  to a subsequence of {푥 } , there exists {퐼 }  increasing 
intervals of the natural  numbers, such that if we set 푦 =
∑ ∈ ‖푥 ‖ 푒 , then {푥 }  is equivalent to  {푦 } .  

Lemma (2.2.9) [2]: 

Let {푥 }  be a normalized, disjointly supported block sequence of  
푒̃ ℵ , such that the following holds. There exist 푐 > 0, 푛 ∈

ℕ, (퐹 , 휎 ) ∈ G	  for 푘 ∈ ℕ and 휎 ∈ {0,1}ℕ satisfying the following: 
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(푖)	|퐹 (푥 )| > 푐 for all 푘 ∈ ℕ. 

(iii) The 퐹  are pairwise disjoint. 
(iv) 휎 ≠ 휎  for all 푘 ∈ ℕ. 
(v) 휎⋀휎 ⊊ 휎⋀휎  for all 푘 ∈ ℕ. 
(vi) |휎⋀휎 | < mın(푥 ) for all 푘 ∈ ℕ. 

Then {푥 }  generates an ℓ   spreading model for every 푛 ∈ ℕ.  

Proof: 

By changing the signs of the 푥 , we may assume that 퐹 (푥 ) > 푐 for 
all 푛 ∈ ℕ.  

Arguing in a similar manner as in the proof of Proposition (2.1.23) [2] 
one  can inductively prove that for every 푛 ∈ ℕ and 퐺 ∈ 푆  the following 
hold: 

(a)	(⋃ 퐹 , 휎∈ ) ∈G	 . 

(b)   mın(⋃ 퐹 , 휎∈ ) = |휎⋀휎 | and max(⋃ 퐹 , 휎∈ ) =
|휎⋀휎 |. 

Since {푥 }  is unconditional, it is enough find positive constants 푐 >
0,  such that fixing 퐺 ∈ 푆  and {휆 } ∈  non-negative reals, we have the 
following: 

휆 푥
∈

> 푐 휆
∈

. 

Properties (a) and (b), yield that 퐹 = ⋃ 퐹∈ ∈ 풢 . This means the 
following: 

휆 푥
∈

≥ 푃 휆 푥
∈

 

=
2

2
휆 푥

∈
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>
2푐

2
휆

∈

. 

Lemma (2.2.10) [2]: 

Let {푥 }  be a normalized, disjointly supported block sequence of  
푒̃ ℵ , such that the following holds. There exist 푐 > 0, 푛 ∈ ℕ, 휎 ∈

{1,0}ℕ, a  sequence {퐹 }  in 풢 satisfying the following: 

(i) |퐹 (푥 )| > 푐 for all 푘 ∈ ℕ. 
(ii) The set 퐹  are pairwise disjoint. 

(iii) (퐹 , 휎 ) ∈G	  for all 푘 ∈ ℕ. 
(iv) max(퐹 , 휎) < mın(퐹 , 휎) for all 푘 ∈ ℕ. 

Then {푥 }  generates an ℓ   spreading model for every 푛 ∈ ℕ.  

Lemma (2.2.11) [2]: 

Let {푥 }  be a sequence in 픛 ℵ  and 푛 ∈ ℕ such that lim‖푃 푥 ‖ = 0.  

Then for every 휀 > 0 there exists 푘 ∈ ℕ such that for every 푘 ≥ 푘  the 
following  holds: 

|퐹(푥 )| < 휀			for	every	퐹 ∈ 풢 . 

Proof: 

Fix 휀 > 0. Choose 푘 ∈ ℕ, such that ‖푃 푥 ‖ = ‖푥 ‖ < 휀, for 
every  푘 ≥ 푘 . By definition of the norm ‖	⋅	‖ , this means the following: 

|퐹(푥 )| < 휀			for	every	퐹 ∈ 풢 . 

Lemma (2.2.12) [2]: 

Let {푥 }  be a normalized, disjointly supported block sequence of  
푒̃ ℵ , such that lim‖푥 ‖ = 0 and there exists 푛 ∈ ℕ such that 

lim	sup‖푃 푥 ‖ > 0. Assume moreover, that if 푛 =

min 푛: lim	sup‖푃 푥 ‖ > 0 , there exist 푐 > 0, 휎 ∈ {0,1}ℕ and {퐹 }  a  

sequence in 풢  satisfying the following: 

(i)		|퐹 (푥 )| > 푐 for all 푘 ∈ ℕ. 
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(ii) The set 퐹  are pairwise disjoint. 
(iii) (퐹 , 휎 ) ∈G	  for all 푘 ∈ ℕ. 

Then {푥 }  has a subsequence that generates an ℓ   spreading model for 
every 푛 ∈ ℕ.  

Proof: 

We shall prove that for every 푘 ,푚 natural numbers, there exist 푘 ≥
푘  and  퐺 ⊂ 퐹  such that |퐺 (푥 )| > 2 푐⁄  and mın(퐺 , 휎) > 푚.  

If the above statement is true, we may clearly choose  
{퐺 }  in 풢   satisfying the assumptions of Lemma (2.2.10) , which will 
complete the proof.  

We assume that 푛 ≥ 2, as the case 푛 = 1 uses similar arguments 
and the  fact that lim‖푥 ‖ = 0. Fix 푘 ,푚 ∈ ℕ. By Lemma (2.2.11), 

choose 푘 ≥ 푘 ,  such that the following holds: 

																											|퐹(푥 )| <
푐
2푚

			for	every	퐹 ∈ 풢 .																																(3) 

We distinguish two cases. 

Case (1): 

There is 퐹 , 휎   a skipped branching of 휎 in G	  with 

⋃ 퐹 .  

Case (2): 

There is 퐹 , 휎  an attached branching of σ in G	  with 

⋃ 퐹 . 

In either case, by Proposition (2.1.19) we have that if we set 퐺 =
⋃ 퐹 , then (퐺 , 휎) ∈ G	 . Moreover, (3) yields that |퐺 (푥 )| >
푐 2⁄  .  

All that remains, is to show that mın(퐺 , 휎) > 푚.  
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If we are in case (1), then	mın(퐺 , 휎) = 휎⋀휎 . By Definition 
(2.1.6)  we have that 휎⋀휎 < 휎⋀휎  for 푖 = 1, … ,푚, which of 
course yields that 휎⋀휎 > 푚.  

If, on the other hand, we are in case (2), then mın(퐺 , 휎) =
mın 퐹 , 휎 .  By Definition (2.1.7) we have that mın 퐹 , 휎 > 푚. 

Lemma (2.2.13) [2]: 

Let {푥 }  be a normalized, disjointly supported block sequence of  
푒̃ ℵ , such that there exists 푛 ∈ ℕ such that lim	sup‖푃 푥 ‖ > 0. 

Then,  passing if necessary, to a subsequence, there exist 푐 > 0 and 
(퐹 , 휎 ) ∈G	   satisfying the following: 

(i) The set 퐹  are pairwise disjoint. 
(ii) |퐹 (푥 )| > 푐 for all 푘 ∈ ℕ. 

Proof: 

Pass to a subsequence of {푥 }  and choose 휀 > 0, such that the 
following  holds: 

‖푃 푥 ‖ =
1
2

‖푥 ‖ > 휀,			for	all	푘 ∈ ℕ. 

By the definition of the norm ‖	⋅‖ , there exist (퐹 , 휎 ) ∈G	  with 
|퐹 (푥 )| > 2 휀,  for all 푘 ∈ ℕ. By virtue of Proposition (2.1.19) and the 
fact that {푥 }  is  disjointly supported, we may assume that the 퐹  are 
pairwise disjoint. Setting 푐 = 2 휀 finishes the proof.  

Proposition (2.2.14) [2]: 

Let {푥 }  be a normalized, disjointly supported block sequence of  
푒̃ ℵ , such that lim‖푥 ‖ = 0 and there exists 푛 ∈ ℕ such that 

lim	sup‖푃 푥 ‖ > 0. Then {푥 }  has a subsequence that generates an ℓ   

spreading model for every 푛 ∈ ℕ.  

Proof: 
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Set 푛 = min 푛: lim	sup‖푃 푥 ‖ > 0  and as in the proof of Lemma 

(2.2.12) let us assume that 푛 ≥ 2. Apply Lemmas (2.2.13) and (2.2.11) , 
pass to a subsequence of {푥 }  and find 푐 > 0, (퐹 , 휎 ) ∈ G	 , such that 
the  following are satisfied: 

(i) The set 퐹  are pairwise disjoint. 
(ii) |퐹 (푥 )| > 푐 for all 푘 ∈ ℕ. 

(iii) |퐹 (푥 )| < 푐 4⁄  for all 푘 ∈ ℕ and 퐹 ∈ 풢 .  

Passing to a further subsequence, choose 휎 ∈ {0,1}ℕ such that 
lim휎 = 휎.  We distinguish two cases.  

Case (1):  

limmax{|G(x )| : G ⊂ F 		with	(G, σ) ∈G	 } = 0.  

Case ( 2):  

 lim	supmax{|퐺(푥 )| : 퐺 ⊂ 퐹 		with	(퐺, 휎) ∈G	 } > 0.  

Let us first treat case (1). Pass once more to a subsequence of {푥 } ,  
satisfying the following: 

(a)max{|퐺(푥 )| : 퐺 ⊂ 퐹 		with	(퐺, 휎) ∈G	 } < 푐 4⁄   for all 
푘 ∈ ℕ. 

(b)	휎 ≠ 휎 , for every 푘 ∈ ℕ. 

(c)	휎⋀휎 ⊊ 휎⋀휎  for all 푘 ∈ ℕ. 

We shall prove the following. For every 푘, there exists 퐺 ⊂ 퐹 , such 
that  the following hold: 

(d)	|퐺 (푥 )| > 푐 2⁄ . 

(e)	|휎⋀휎 | < mın(퐺 , 휎 ). 

Combining (b), (c), (d) and (e), we conclude that the assumptions of  
Lemma (2.2.9) are satisfied, which proves the desired result, in case (1).  
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Set 퐺 = {휏 ∈ 퐹 :	휎 ⋀ 휏 = 휎 ⋀휏}. Proposition (2.1.19) and Lemma 
(2.1.18) yield that (퐺 , 휎 ) ∈G	  . Setting 퐹 = 퐹 \퐺 , property (a) 
yields  that |퐹 (푥 )| > 3푐 4⁄ . 

Set 퐺 = {휏 ∈ 퐹 :	휎 ⋀ 휏 ⊊ 휎 ⋀ 휏}. Once more, Proposition (2.1.19) 
yields that (퐺 , 휎 ) ∈G	  , however Lemma (2.1.18) yields 퐺 ∈ 풢  
and  therefore, by (iii) we have that |퐺 (푥 )| < 푐 4⁄ .  

Set 퐺 = 퐹 \퐺 . Then we have that |퐺 (푥 )| > 푐 2⁄ , i.e. (d) holds.  

We will show that (e) also holds. By Corollary (2.1.13) , there exists 
휏 ∈ 퐺 , with mın(퐺 , 휎 ) = |휎 ⋀ 휏|. Since 휏 ∉ 퐺 , we have that 
|휎 ⋀ 휏| ≠ |휎 ⋀ 휏|.  

We will show that |휎 ⋀ 휏| < |휎 ⋀ 휏|. Assume that this is not the case, 
i.e.  |휎 ⋀ 휏| < |휎 ⋀ 휏|. In other words, 휎 ⋀ 휏 ⊊ 휎⋀ 휏 . This means that 
휏 ∈ 퐺  a  contradiction.  

We conclude that ⋀휏 ⊊ 휎 ⋀휏 . Lemma (2.1.11) yields that 휎 ⋀ 휏 =
휎 ⋀휎. Applying Lemma (2.1.11) once  more, we conclude that  
휎 ⋀ 휏 ⊊ 휎 ⋀ 휏 , i.e. |휎 ⋀ 휏 | < |휎 ⋀ 휏| = mın(퐺 , 휎 ), which 
completes the proof for case  (1).  

It only remains to treat case (2). Observe, that in this case, we may 
easily  pass to a subsequence of {푥 } , satisfying the assumptions of  
Lemma (2.2.12) .  This completes the proof.   

Combining Propositions (2.2.7) , (2.2.8) and (2.2.12) , one obtains  the 
following.  

Proposition (2.2.15) [2]: 

Let {푥 }  be a normalized weakly null sequence in 픛 ℵ  . Then {푥 }  
has a  subsequence that generates an 푛 ∈ ℕ spreading model for every 
푛 ∈ ℕ.  

Proposition (2.2.16) [2]: 

The space 픛 ℵ  is saturated with subspaces of Tsirelson space.  

Proof: 
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It is an immediate consequence of  Proposition (2.2.15) that 픛 ℵ  does  
not contain a copy of 푐 . By Proposition (2.2.3), the spaces 푋  are 푐  
saturated  and therefore, the operators 푃 ∶ 픛 ℵ → 푋 , are strictly 
singular.  

We conclude, that in any infinite dimensional subspace 푌 of 픛 ℵ  , 
푛 ∈ ℕ  and 휀 > 0, there exists 푥 ∈ 푌 with ‖푥‖ = 1 and ‖푃 푥‖ < 휀 for 
푛 = 1,… , 푛 . One  may easily construct a normalized sequence in 푌, 
satisfying the assumption of  Proposition (2.2.8), which completes the 
proof.   

In particular, the previous result yields that neither c  nor ℓ  embed 
into  픛 ℵ . Using James’ well known theorem for spaces [7]  that is( 
Abanach  Space  B is reflexive  if  and  only  if  every  continuous  liner  
functional  on  B  altains  it is  Maxmum  on  the  closed  unit  ball in B) 
with an unconditional basis, we conclude the following.  

 Corollary (2.2.17) [2]: 

The space 픛 ℵ  is reflexive.  

Definition (2.2.18) [2]: 

Let 훼 be a countable ordinal number. Define ‖	⋅	‖  to be the unique 
norm  on 푐 (ℕ) that satisfies the following implicit formula, for every 
푥 ∈ 푐 (ℕ): 

‖푥‖ = max ‖푥‖ ,
1
2
sup ‖퐸 푥‖ , 

where the supremum is taken over all 퐸 < ⋯ < 퐸  subsets of the natural 
numbers  with {min 퐸 ∶ 푖 = 1,… , 푑} ∈ 푆 . 

Define the Tsirelson space of order 훼, denoted by 푇 , to be the 
completion of  푐 (ℕ) with the aforementioned norm. 

The space 푇  is reflexive and the unit vector basis {푒 } , forms a 1-
unconditional basis for 푇 . Moreover, every normalized weakly null 
sequence in  푇 , has a subsequence that generates an ℓ  spreading model.  
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Given a countable ordinal number 훼, we shall construct {풢 }  un an   
increasing sequence of families of finite subsets of [0,1]ℕ , strongly 
related to {풢 } . As before, we first define some auxiliary families 
G	 푛 ∈ ℕ.   

Definition (2.2.19) [2]: 

We define G	  to be all pairs (퐹, 휎), where 퐹 = {휏 } ∈
[{0, ퟏ}ℕ] , 푑 ∈ ℕ and 휎 ∈ {0, ퟏ}ℕ, such that the following are satisfied: 

(i) 휎 ≠ 휏  for 푖 = 1,… , 푑. 

(ii)	휎 ⋀ 휏 ≠ 휙 if 푑 > 1, then 휎 ⋀ 휏 ⊊ 휎⋀휏 ⊊ ⋯ ⊊ 휎⋀휏 . 

(iii)	{|휎 ⋀ 휏 | ∶ 푖 = 1,… , 푑} ∈ 푆 . 

Define mın(퐹, 휎) = |휎 ⋀ 휏 | and max(퐹, 휎) = |휎 ⋀ 휏 |.  

Assume that 푛 ∈ ℕ, G	   have been defined for 푘 ≤ 푛 and that for 
(퐹, 휎) ∈ G	 , mın(퐹, 휎) and max(퐹, 휎) have also been defined.  

Definition (2.2.20) [2]: 

Let (퐹 , 휎 ) , 푑 ∈ ℕ be a finite sequence of elements of G	  and 휎 ∈
[0,1]ℕ.  

We say that (퐹 , 휎 )  is a skipped branching of 휎 in G	 , if the 
following  are satisfied: 

(i) The 퐹 , 푖 = 1, … , 푑 are pariwise disjoint. 
(ii) 휎 ≠ 휏  for 푖 = 1,… , 푑. 

(iii) 휎 ⋀ 휏 ≠ 휙 if 푑 > 1, then 휎 ⋀ 휏 ⊊ 휎⋀휏 ⊊ ⋯ ⊊ 휎⋀휏 . 
(iv) |휎 ⋀ 휏 | 	< mın(퐹 , 휎 ) for 푖 = 1, … , 푑. 
(v) {|휎 ⋀ 휏 |: 푖 = 1, … , 푑} ∈ 푆 .  

Definition (2.2.21) [2]: 

Let 휎 ∈ [0,1]ℕ and (퐹 , 휎) , 푑 ∈ ℕ  be a finite sequence of elements 
of G	 .  

We say that (퐹 , 휎) , is an attached branching of 휎 in G	  if the 
following  are satisfied: 
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(i) The 퐹 , 푖 = 1, … , 푑 are pariwise disjoint. 
(ii) If 푑 > 1, then max(퐹 , 휎) < mın(퐹 , 휎), for 푖 = 1, … , 푑 −

1. 
(iii) {mın(퐹 , 휎) 푖 = 1,… , 푑} ∈ 푆 .  

We are now ready to define G	 .  

Definition (2.2.22) [2]:  

We define G	  to be all pairs (퐹, 휎), where 퐹 ∈ [{0,1}ℕ]   and 휎 ∈
{0,1}ℕ, such that one of the following is satisfied: 

(i)(퐹, 휎) ∈ G	 .  

(ii) There is (퐹 , 휎 )  a skipped branching of 휎 in G	  such 
that 퐹 = ⋃ 퐹 .  

In this case we say that (퐹, 휎) is skipped. Moreover set mın(퐹, 휎) =
|휎 ⋀휎 |  and max(퐹, 휎) = |휎 ⋀휎 |.  

(iii) There is (퐹 , 휎)  an attached branching of 휎 in G	  such 
that = ⋃ 퐹  .  

In this case we say that (퐹, 휎) is attached. Moreover set mın(퐹, 휎) =
mın(퐹 , 휎)  and max(퐹, 휎) = max(퐹 , 휎).  

Definition (2.2.23) [2]:  

For a countable ordinal number α and 푛 ∈ ℕ we define 

G	 = {퐹 ⊂ {0,1}ℕ: there	exists	휎 ∈ {0,1}ℕ	with	(퐹, 휎) ∈ G	 } 	∪ {휙}. 

Proposition (2.2.24) [2]:   

Let 훼 be a countable ordinal number. Then for every 퐵 infinite subset 
of {0,1}ℕ there exists a one to one map 휙 ∶ ℕ → 퐵 with 휙(퐹) ∈ 풢  for 
every 퐹 ∈ 푆   and 푛 ∈ ℕ.  

Theorem (2.1.23)] takes the following form and the proof uses the  
compactness of 푆  and Corollary (2.1.19) . 

Theorem (2.2.25) [2]:  
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Let 훼 be a countable ordinal number and 푛 ∈ ℕ. Then 풢   is an 훼-
large,  hereditary and compact family of finite subsets of [0,1]ℕ.  

In order to define the desired space 픛 ℵ , one takes the same steps as 
in the  previous section. All proofs are identical.  

Definition (2.2.26) [2]: 

For 훼 a countable ordinal number and 푛 ∈ ℕ define a norm on 
푐 (2ℵ ) in  the following manner: 

(i) For 푛 ∈ ℕ, we may identify an 퐹 ∈ 풢  with a linear 
functional 퐹:	푐 (2ℵ ) → ℝ in the following manner. For 
푥 = ∑ 휆 푒ℵ ∈ 푐 (2ℵ ) 

퐹(푥) = 휆
ℵ

. 

(ii) For 푥 ∈ 푐 (2ℵ ) define 

‖푥‖ = sup{|퐹(푥)|: 퐹 ∈ 풢 }. 

Set 푋  to be the completion of (푐 (2ℵ ), |	⋅	| ).  

Definition (2.2.27) [2]: 

Define the following norm on 푐 (2ℵ ). For 푥 ∈ 푐 (2ℵ ) 

‖푥‖ =
1
2
‖푥‖ 푒 . 

Set 픛 ℵ  to be the completion of (c (2ℵ ), |	⋅	| ). 

Theorem (2.2.28) [2]:  

The space 픛 ℵ  is a non-separable reflexive space with a suppression  
unconditional Schauder basis with the length of the continuum, having 
the  following property. Every normalized weakly null sequence in 픛 ℵ  
has a  subsequence that generates an ℓ  spreading model.  
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Chapter 3 

Polynomials on Banach spaces 
In this chapter we study Banach spaces of traces of real poly-nominal on  
ℝ  to compact subsets equipped with supremum norms .                            

Recall that the Banach-Mazur distance between two 푘-dimensional 
real  Banach spaces 퐸, 퐹 is defined as 

푑 (퐸, 퐹) ≔ inf{‖푢‖ ∙ ‖푢 ‖}, 

where the infimum is taken over all isomorphisms 푢: 퐸 → 퐹. We say that 
퐸 and 퐹 are equivalent if they are isometrically isomorphic (i.e., 
푑 (퐸. 퐹) = 1). Then ln 푑  determines a metric on the set ℬ  of 
equivalence classes of isometrically isomorphic 푘-dimensional Banach 
spaces (called the Banach-Mazur compactum).It  is known that ℬ  is 
compact of 푑 -“diameter” ∼ 푘. 

Let C(K) be the Banach space of real continuous functions on a 
compact Hausdorff space K equipped with the supremum norm. Let F ⊂
C(K) be a filtered  subalgebra with filtration {0} ⊂ F ⊆ F ⊆···⊆ F ⊆···
⊆ F (that is, F = ⋃ F∈ℤ   and F ∙ F ⊂ F  for all i, j ∈ ℤ ) such that 
n ∶= dim F < ∞ for all d. In what follows we assume that F  contains 
constant functions on K.  

Theorem (3.1) [3]: 

Suppose there are 푐 ∈ ℝ and {푝 } ∈ℕ ⊂ ℕ such that 

																													
ln 푛 ∙

푝
≤ 푐					for	all	푑 ∈ ℕ.																																															(1) 

Then there exist linear injective maps 푖 ∶ 퐹 ↪ 	ℓ ∙  such that 

푑 퐹 , 푖 (퐹 ) ≤ 푒 ,			푑 ∈ ℕ. 

Proof : 

Since dim퐹 = 	푛 , 푖 ∈ ℕ, and evaluations 훿  at points 푧 ∈ 퐾 
determine  bounded linear functionals on 퐹 , the Hahn-Banach theorem 
implies easily that span {훿 } ∈ = 퐹∗. Moreover, ‖훿 ‖ ∗ = 1 for all 푧 ∈
퐾 and the closed unit ball of  퐹∗ is the balanced convex hull of the set 
{훿 } ∈ . Let {푓 , . . . , 푓 } ⊂ 퐹  be an  Auerbach basis with the dual basis 
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{훿 , . . . , 훿 } ⊂ 퐹∗, that is, 푓 훿 ≔ 푓 (푧 ) = 훿  (the Kronecker-

delta) and ‖푓 ‖ = 1 for all 푘. (Its construction is  similar to that of the 
fundamental Lagrange interpolation polynomials for 퐹 = 풫 \ , 

Now, we use a “method of E. Landau”. 

By the definition, for each 푔 ∈ 퐹  we have 푔(푧) =
∑ 푓 (푧)푔(푧 ) , 푧 ∈ 퐾. Hence, ‖푔‖ ≤ 푛 ‖푔‖ ,…, .   Applying 

the latter inequality to 푔 = 푓 	, 푓 ∈ 퐹 , containing in 퐹 , 푖 ∶ 	푑 · 푝 , and 
using condition (1) we get for 퐴 ∶= 푧 , … , 푧 ⊂ 퐾 

‖푓‖ = (‖푔‖ ) ≤ (푛 ∙ 푝푑) ∙ ‖푔‖ ≤ 푒 ∙ ‖푓‖ . 

Thus, restriction 퐹 ⟼ 퐹 \  determines the required map 푖 ∶ 	 퐹 ↪
ℓ ∙ . 

As a corollary we obtain: 

Corollary (3.2) [3]: 

Suppose {푛 } ∈ℕ grows at most polynomially in 푑, that is, 

													∃푘, 푐̂ ∈ ℝ 					such	that		∀푑			푛 ≤ 푐̂푑 .																												(2) 

Then for each natural number 푠 ≥ 3 there exist linear injective maps 푖 , ∶

퐹 ↪ ℓ , ,  , where 푁 , ∶= 푐̂푑 ∙ 푠 ∙ ln(푐̂푑 ) + 1 , such that 

푑 퐹 , 푖 , (퐹 ) ≤ (푒푠 ) ,					푘 ∈ ℕ. 

Let ℱ ̂,  be the family of all possible filtered algebras 퐹 on compact 
Hausdorff spaces 퐾 satisfying condition (2) [3]. By ℬ ̂, , ⊂ ℬ  we 
denote the closure in ℬ   of the set formed by all subspaces 퐹  of 
algebras 퐹 ∈ ℱ ̂,   having  a fixed dimension 푛 ∈ ℕ. 

Corollary (3.2) allows to estimate the metric entropy of ℬ ̂, , . Recall 
that  for a compact subset 푆 ⊂ ℬ   its 휀-entropy (휀 > 0) is defined as 
퐻(푆, 휀) ∶= ln(푆, 푑 , 1 + 휀), where 푁(푆, 푑 , 1 + 휀) is the smallest 
number of open 푑 -“balls” of radius 1 + 휀 that cover 푆. 
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Proof :  

We set 푝 ∶= 푠 ∙ ln(푐̂푑 ) + 1 , 푑 ∈ ℕ. Then the condition of the 
corollary  implies 

ln 푛 ∙

푝푑
≤
ln(푐̂푑 ) + 푘 ln 푝

푝푑
≤
1
푠
+
푘 ln 푠
푠

= :	푐. 

Thus the result follows from Theorem (3.1) 

Corollary (3.3) [3]: 

For 푘 ≥ 1 there exists a numerical constant 퐶 such that for each 휀 ∈
(0, ] 

퐻 ℬ ̂, , , 휀

≤ (퐶퐾 ∙ ln(푘 + 1)) ∙ (푐̂푑 ) ∙ (ln(푐̂푑 ) + 1) ∙
1
휀

∙ ln
1
휀

 

Let 풫  be the space of real polynomials on ℝ  of degree at most 푑. 
For a  compact subset 퐾 ⊂ ℝ   by 풫 \  we denote the trace space of 
restrictions of  polynomials in 풫  to 퐾 equipped with the supremum 
norm. Applying Corollary  (3.2) to algebra 풫 \ ≔ ⋃ 풫 \  we 
obtain: 

A. There exist linear injective maps 푖 , :	풫 \ ↪ ℓ , , , where 

				푁 , ≔ ⌊푒 ∙ (푛 + 2) ∙ 푑 ∙ (2푛 + 1 + ⌊푛 ln 푑⌋) ⌋,																				(3) 

such that 

	푑 풫 \ , 푖 , (풫 \ ) ≤ (푒 ∙ (푛 + 2) ) 	(< 2.903).																				(4) 

Indeed, 

			푁 , ≔ dim풫 \ ≤ 푑 + 푛
푛 <

푒 ∙ (푑 + 푛)
푛

≤
푒 ∙ (1 + 푛)

푛
∙ 푑

< 푒 ∙ 푑 .																																																																																			(5) 

Hence, Corollary (3.2) with 푐 = 푒 , 푘 ∶= 	푛 and 푠 ∶= (푛 + 2)   implies 
the  required result. 
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If K is 풫 -determining (i.e., no nonzero polynomial vanish on K), then 

N , = d + n
n  and so for some constant c(n) (depending on n only) we 

have 

									푁 , < 푁 , ≤ 푐(푛) ∙ 푁 , ∙ 1 + ln 푁 , .																																			(6) 

Hence, V , ≔ i , (풫 \ ) is a “large” subspace of ℓ
,

 .  Therefore 
from (A) applied to V , (K) we obtain: 

B. There is a constant 푐 (푛) (depending on 푛 only) such that for each 
풫 -determining compact set 퐾 ⊂ ℝ  there exists an m-
dimensional subspace 퐹 ⊂ 풫 \  with 

		푚 ≔ dim퐹 > 푐 (푛) ∙ 푁 , 			푎푛푑			푑 (퐹, ℓ ) ≤ 3.																						(7) 

In turn, if  푑 ∈ ℕ is such that 푁 , ≤ 푐 (푛) ∙ 푁 , , then due to 
property (A)  for each 풫 -determining compact set 퐾′ ⊂ ℝ  there exists 
a e 푁 , -dimensional  subspace 퐹 , , 	⊂ 퐹 such that 

							푑 퐹 , , , 풫 \ < 9.																																																																		(8) 

Further, the dual space 푉 (퐾)
∗
 of 푉 (퐾) is the quotient space of ℓ , . 

In  particular, the closed ball of 푉 (퐾)
∗
  contains at most 푐(푛) · 푁 , ∙

1 + ln푁 ,  extreme points, see (6). Thus the balls of 푉 (퐾)
∗
 and 

푉 (퐾) are  “quite different” as convex bodies. This is also expressed in 
the following property (similar to the celebrated John ellipsoid theorem 
[8] that is The John ellipsoid E(K) of a convex body K ⊂ Rn is B If and 
only if  B ⊆ K and there exists an Integer  m ≥ n and, for i = 1, ..., m, Real 
numbe ci > 0 and Unit vector ui ∈ Sn−1 ∩ ∂K such that                

 

and, for all x ∈ Rn 
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but with an extra logarithmic  factor) which is a consequence of property 
(A) . 

C. There is a constant 푐 (푛) (depending on n only) such that for all 
풫 -determining compact sets 퐾 , 퐾 ⊂ ℝ  

				푑 풫 \ , 풫 \
∗
≤ 푐 (푛) ∙ 푁 , ∙ 1 + ln푁 , .																	(9) 

A stronger inequality is valid if we replace 풫 \
∗
 above by ℓ

,
,  

Remark (3.4) [3]: 

Property (C) has the following geometric interpretation. By definition, 
풫 \

∗
 is an 푁 , -dimensional real Banach space generated by 

evaluation  functionals 훿  at points 푥 ∈ 퐾  with the closed unit ball being 
the balanced convex hull of the set {훿 } ∈ . Thus 퐾  admits a natural 

isometric embedding into the  unit sphere of 풫 \
∗
.  Moreover, the 

Banach space of linear maps 풫 \
∗
→ 풫 \  equipped with the 

operator norm is isometrically isomorphic to the Banach  space of real 
polynomial maps 푝:	ℝ → 풫 \  of degree at most d (i.e., 푓∗ ∘ 	푝 ∈ 풫  

for all 푓∗ ∈ 풫 \
∗

 with norm ‖푝‖ ≔ sup
∈

‖푝(푥)‖풫 \ . Thus 

property (C) is equivalent to the following one: 

C′. There exists a polynomial map p ∶ ℝ → 	풫 \  of degree at most 
d  such that the balanced convex hull of 푝(퐾 ) contains the closed unit 
ball of  풫 \ and is contained in the closed ball of radius 푐 (푛) ∙

푁 , ∙ 1 + ln푁 ,   of this space (both centered at 0). 

Our next property, a consequence of Corollary (3.3) and (5), estimates 
the  metric entropy of the closure of the set 풫 , ⊂ ℬ ,  formed by all 
푁 , -dimensional spaces 풫 \  with 풫 -determining compact subsets 
퐾 ⊂ ℝ . 

D. There exists a numerical constant 푐 > 0 such that for each 휀 ∈
(0, ], 
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퐻 cl 풫 , , 휀 ≤ (푐푛 ∙ ln(푛 + 1)) ∙ 푑 ∙ (1 + ln 푑) ∙
1
휀

 

∙ ln
1
휀

.																																																																															(10) 

Remark (3.5) [3]: 

The above estimate shows that 풫 ,  with sufficiently large 푑 and 푛 is 
much less massive than ℬ , . Indeed, as follows  

퐻 ℬ , , 휀 ~
1
휀

,

				as			휀 → 0  

(here the equivalence depends on 푑 and 푛 as well). On the other hand, it 
implies that for any 휀 > 0, 

0 < lim	inf
, →

	
ln퐻 ℬ , , 휀

푁 ,
≤ lim	sup

, →

ln퐻 ℬ , , 휀
푁 ,

< ∞. 

It might be of interest to find sharp asymptotics of 퐻 cl 풫 , , 휀  as 휀 →
0  and 푑 → ∞, and to compute (up to a constant depending on 푛) 푑 -
“diameter” of 풫 , .   

Similar results are valid for 퐾 being a compact subset of a real 
algebraic variety 푋 ⊂ ℝ  of dimension 푚 < 푛 such that if a polynomial 
vanishes on 퐾, then  it vanishes on 푋 as well. In this case there are 
positive constants 푐푋, 푐̃푋  depending  on 푋 only such that 푐̃푋푑 ≤
dim풫 \ ≤ 푐푋푑 . For instance, Corollary (3.2) with 푐 = 	푐푋, 푘 ∶= 	푚 
and 푠 ∶= (푚 + 2)  implies that 풫 \  is linearly embedded  into ℓ , , 
where 푁 , ∶= ⌊푐푋푑 ∙ (푚 + 2) ∙ (⌊ln(푐푋푑 )⌋ + 1) ⌋, with  
distortion < 2.903. We leave the details. 

 

 

 

Lemma (3.6) [3]: 
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Let 푆 ⊂ ℬ  be the subset formed by all 푛 -dimensional subspaces 

of ℓ , . Consider 0 < 휉	 <  and let 푅 = . Then 푆  admits an 푅-

net 푇  of  cardinality at most 1 +
, ∙

.  

Now given 휀 ∈ (0, ] we choose 푠 = ⌊푠 ⌋ with 푠  satisfying (푒푠 ) =

√1 + 휀 and 휉 such that 푅 = 푅 = √1 + 휀. Then according to Corollary 
(3.2) and Lemma (3.6) , dist 푇 , ℬ ̂, , < √1 + 휀. For each 푝 ∈ 푇  
we choose 푞 ∈ 	ℬ ̂, ,   such that 푑 푝, 푞 < √1 + 휀. Then the 
multiplicative triangle  inequality for 푑  implies that open 푑 -“balls” 
of radius 1 + 휀 centered at points 푞 , 푝 ∈ 푇  , cover ℬ ̂, , .  Hence, 

푁 ℬ ̂, , , 푑 , 1 + 휀 ≤ card	푇 ≤ 1 +
2
휉

, ∙

.																													(11) 

Next, the function 휑(푥) = ln(푒푥 )  decreases for 푥 ∈ 푒 ,∞  and 

lim
→

휑(푥) = 0. Its inverse 휑  on this interval has domain 0, 푒 , 

increases and is easily seen (using that 휑	 ∘ 	휑 = id) to satisfy 

휑 (푥) ≤
3푘
푥
∙ ln

3푘
푥

,			푥 ∈ 0, 푒 . 

Since ln(1 + 휀) < 푒  for 휀 ∈ 0, , the required 푠  exists and the 
previous  inequality implies that 

																		푠 ≤
12푘

ln(1 + 휀)
∙ ln

12푘
ln(1 + 휀)

.																																																(12) 

Further, we have 

			
1
휉
=
푛 (1 + 푅 )
푅 − 1

=
푛 √1 + 휀 + 1
√1 + 휀 − 1

=
푛 √1 + 휀 + 1 ∙ √1 + 휀 + 1

휀
.																																	(13) 

From (11), (12), (13) invoking the definition of 푁 ,  we obtain 
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ln 푁 ℬ ̂, , , 푑 , 1 + 휀
≤ 푛 푐̂푑 (ln(푐̂푑 )

+ 1) ln
21푛
휀

12푘
ln(1 + 휀)

ln
12푘

ln(1 + 휀)
. 

Using that 푛 ≤ 푐̂푑  and the inequality ∙ 휀 ≤ ln(1 + 휀) , 휀 ∈ 0, , we 
get the  required estimate. 
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Chapter 4 

Countable Infinite Numbers of Complex Structures on the 
Banach Spaces 

In this chapter we give examples of real Banach spaces with exactly 
infinite countably many complex structures and with 휔 many complex 
structures.                                                                                               

Section (4.1): Construction and Complex Structures of The Space 
햃흎ퟏ

(풄): 
A real Banach space 푋 is said to admit a complex structure when there 

exists  a linear operator 퐼 on 푋 such that 퐼 = −퐼푑. This turns 푋 into a ℂ-
linear space by  declaring a new law for the scalar multiplication: 

(휆 + 푖휇) ∙ 푥 = 휆푥 + 휇퐼(푥)					(휆, 휇 ∈ ℝ). 
Equipped with the equivalent norm 

‖푥‖ = sup ‖cos 휃푥 + sin 휃 퐼푥‖, 

we obtain a complex Banach space which will be denoted by 푋 . The 
space 푋  is  the complex structure of 푋 associated to the operator 퐼, which 
is often referred  itself as a complex structure for 푋. 

When the space 푋 is already a complex Banach space, the operator 
퐼푥 = 푖푥  is a complex structure on 푋ℝ (i.e., 푋 seen as a real space) which 
generates 푋.  Recall that for a complex Banach space 푋 its complex 
conjugate 푋 is defined to be  the space 푋 equipped with the  new scalar 
multiplication 휆. 푥 = 휆̅푥. 

Two complex structures 퐼 and 퐽 on a real Banach space 푋 are 
equivalent if  there exists a real automorphism 푇 on 푋 such that 푇퐼 = 퐽푇. 
This is equivalent to  saying that the spaces 푋  and 푋  are ℂ-linearly 
isomorphic. To see this, simply  observe that the relation 푇퐼 = 퐽푇 actually 
means that the operator 푇 is ℂ-linear as  defined from 푋  to 푋  . 

We note that a complex structure 퐼 on a real Banach space 푋 is an  
automorphism whose inverse is −퐼, which is itself another complex 
structure on 푋.  In fact, the complex space 푋  is the complex conjugate 
space of 푋  . Clearly the  spaces 푋  and 푋  are always ℝ-linearly 
isometric. On the other hand, J. Bourgain  and N.J. Kalton constructed 
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examples of complex Banach spaces not isomorphic to their 
corresponding complex conjugates, hence these space admit at least two 
different complex structures. The Bourgain example is an ℓ  sum of finite 
dimensional spaces whose distance to their conjugates tends to infinity. 
The Kalton example is a twisted sum of two Hilbert spaces, i.e., 푋 has a 
closed subspace 퐸 such that 퐸 and 푋 퐸⁄  are Hilbertian, while 푋 itself is 
not isomorphic to a Hilbert space. More recently 푅. Anisca constructed a 
complex weak Hilbert space not isomorphic to its complex conjugate. 

Complex structures do not always exist on Banach spaces. The first 
example  in the literature was the James space, proved by J. Dieudonne' . 
Other examples  of spaces without complex structures are the uniformly 
convex space constructed  by S. Szarek and the hereditary 
indecomposable space of W. T. Gowers and  B. Maurey. W. T. Gowers 
and B. Maurey  and S.A. Argyros, K. Beanland and T. Raikoftsalis also 
constructed a space with unconditional basis  but without complex 
structures, the second is a weak Hilbert space. In general  these spaces 
have few operators. For example, every operator on the Gowers-Maurey 
space is a strictly singular perturbation of a multiple of the identity and 
this forbids complex structures: suppose that 푇 is an operator on this 
space such  that 푇 = −퐼푑  and write 푇 = 휆퐼푑 + 푆 with 푆 a strictly 
singular operator. It  follows that (휆 + 1)퐼푑 is strictly singular and of 
course this is impossible. 

More examples of Banach spaces without complex structures were  
constructed by P. Koszmider, M. Martı'n and J. Mer´ı . In fact, they  
introduced the notion of extremely non-complex Banach space: A real 
Banach  space 푋 is extremely non-complex if every bounded linear 
operator 푇: 푋 → 푋  satisfies the norm equality ‖퐼푑 + 푇 ‖ = 1 + ‖푇‖ . 
Among their examples of  extremely non complex spaces are 퐶(퐾) 
spaces with few operators (e.g. when  every bounded linear operator 푇 on 
퐶(퐾) is of the form 푇 = 푔퐼푑 + 푆 where 푔 ∈ 	퐶(퐾) and 푆 is a weakly 
compact operator on 퐶(퐾)), a 퐶(퐾) space containing  a complemented 
isomorphic copy of ℓ  (thus having a richer space of operators  than the 
first one mentioned) and an extremely non complex space not isomorphic  
to any 퐶(퐾) space. 
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Going back to the problem of uniqueness of complex structures, 
Kalton  proved that spaces whose complexification is a primary space 
have at most one complex structure (this result may be found in V. 
Ferenczi and E. Galego  ). In  particular, the classical spaces 푐 , ℓ 	(1 ≤
푝 ≤ ∞), 퐿 [0, 1]		(1 ≤ 푝 ≤ ∞), and  퐶[0,1] have a unique complex 
structure. 

We have mentioned before examples of Banach spaces with at least 
two  different complex structures. In fact, V. Ferenczi constructed a space 
푋(ℂ) such  that the complex structure 푋(ℂ)  associated to some operator 
퐽 and its conjugate  are the only complex structures on 푋(ℂ) up to 
isomorphism. Furthermore, every ℝ-linear operator 푇 on 푋(ℂ) is of the 
form 푇 = 휆퐼푑 + 휇 + 푆, where 휆, 휇 are reals  and 푆 is strictly singular. 
Ferenczi also proved that the space 푋(ℂ)  has exactly 푛 + 1 complex 
structures for every positive integer 푛. Going to the extreme, R.  Anisca 
gave examples of subspaces of 퐿 (1 ≤ 	푝 < 	2) which admit continuum  
many non-isomorphic complex structures. 

The question remains about finding examples of Banach spaces with 
exactly  infinite countably many different complex structures. A first 
natural approach to  solve this problem is to construct an infinite sum of 
copies of 푋(ℂ), and in order to  control the number of complex structures 
to take a regular sum, for instance, ℓ (푋(ℂ)).  It follows that every ℝ-
linear bounded operator 푇 on ℓ (푋(ℂ)) is of the  form 푇 = 휆(푇) + 푆, 
where 휆(푇) is the scalar part of 푇, i.e., an infinite matrix of  operators on 
푋(ℂ) of the form 휆 , 퐼푑 + 휇 , 퐽, and 푆 is an infinite matrix of strictly  
singular operators on 푋(ℂ). It is easy to prove that if 푇 is a complex 
structure then  휆(푇) is also a complex structure. Recall from that two 
complex structures  whose difference is strictly singular must be 
equivalent. Unfortunately, the  operator 푆 in the representation of 푇 is not 
necessarily strictly singular, and this  makes very difficult to understand 
the complex structures on ℓ (푋(ℂ)).  

It is necessary to consider a more “rigid” sum of copies of spaces like 
푋(ℂ).  We found this interesting property in the space 픛  constructed by 
S.A. Argyros, J. Lopez-Abad and 푆. Todorcevic. Based on that 
construction we present a  separable reflexive Banach space 픛 (ℂ) with 
exactly infinite countably many  different complex structures which 
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admits an infinite dimensional Schauder  decomposition 픛 (ℂ) = ⨁ 픛   
for which every ℝ-linear operator 푇 on 픛 (ℂ)  can be written as 푇 =
퐷푇 + 푆, where 푆 is strictly singular, 퐷 \픛 = 휆 퐼푑픛 	(휆 ∈ ℂ) and (휆 )   
is a convergent sequence. 

This construction also shows the existence of continuum many 
examples of Banach spaces with the property of having exactly 휔 
complex structures and the  existence of a Banach space with exactly 휔  
complex structures. 

We construct a complex Banach space 픛 (ℂ) with a bimonotone 
transfinite  Schauder basis (푒 ) , such that every complex structure 퐼 
on 픛 (ℂ) is of the  form 퐼 = 퐷 + 푆, where 퐷 is a suitable diagonal 
operator and 푆 is strictly singular. 

By a bimonotone transfinite Schauder basis we mean that 픛 (ℂ) =
span(푒 )  and such that for every interval 퐼 of 휔  the naturally 
defined map  on the linear span of (푒 )  

휆 푒 ⟼ 휆 푒
∈

 

extends to a bounded projection 푃 : 픛 (ℂ) → 픛 = spanℂ(푒 ) ∈  with 
norm  equal to 1. 

Basically 픛 (ℂ) corresponds to the complex version of the space 
픛   constructed in modifying the construction in a way that its ℝ-linear 
operators  have similar structural properties to the operators in the 
original space 픛  (i.e. the  operators are strictly singular perturbation of 
a complex diagonal operator). 

Recall that 휔 and 휔  denotes the least infinite cardinal number and 
the least  uncountable cardinal number, respectively. Given ordinals 훾, 휉  
we write 훾 + 휉, 훾 ∙ 휉, 훾  for the usual arithmetic operations . For an 
ordinal 훾 we denote by Λ(훾) the set of limit ordinals < 훾. Denote by 
푐 (휔 , ℂ) the vector space of all  functions 푥:	휔 → ℂ such that the set 
supp	푥 = {훼 < 휔 ∶ 	푥(훼) 	≠ 0} is finite and  by  (푒 )  its canonical 
Hamel basis. For a vector 푥 ∈ 푐 (휔 , ℂ) ran 푥 will  denote the minimal 
interval containing supp	푥. Given two subsets 퐸 , 퐸  of 휔   we  say that 
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퐸 < 퐸  if max 퐸 < min 퐸 . Then for 푥, 푦 ∈ 푐 (휔 , ℂ)푥 < 푦  means 
that  supp	푥 < supp	푦. For a vector 푥 ∈ 푐 (휔 , ℂ)  and a subset 퐸 of 휔  
we denote by  퐸 (or	푃 ) the restriction of 푥 on 퐸 or simply the function 
푥휒퐸. Finally in some cases we shall denote elements of 푐 (휔 , ℂ) as 
푓, 푔, ℎ, . .. and its canonical Hamel  basis as (푒∗)  meaning that we 
refer to these elements as being functionals in  the norming set. 

The space 픛  shall be defined as the completion of 푐 (휔 , ℂ) 
equipped with a norm given by a norming set 휅 (ℂ) 	⊆ 푐 (휔 , ℂ). This 
means that the  norm for every 푥 ∈ 푐 (휔 , ℂ) is defined as 
sup |휙(푥)| = ∑ 휙(훼)푥(훼) : 휙 ∈ 휅 (ℂ) . The norm of this space 
can also be defined inductively. 

We start by fixing two fast increasing sequences (푚 ) and (푛 ) that 
are  going to be used in the rest of this work. The sequences are defined 
recursively as  follows: 

(i) 푚 = 2 and 푚 = 푚 ; 

(ii) 푛 = 4 and 푛 = 4푛 , where 푠 = log푚 . 

Let 휅 (ℂ) be the minimal subset of 푐 (휔 , ℂ) such that 

(a)  It contains every 푒∗ , 훼 < 휔 . It satisfies that for every 휙 ∈
휅 (ℂ) and for every complex number 휃 = 휆 + 푖휇 with 휆 
and 휇 rationals and  |휃| ≤ 1, 휃휙 ∈ 휅 (ℂ). It is closed under 
restriction to intervals of 휔 . 

(b)  For every {휙 , ∶ 푖 = 1, . . . , 푛 } ⊆ 휅 (ℂ) such that 휙 <
⋯ < 휙 ,  the combination 

휙 =
1
푚

휙 ∈ 휅 (ℂ). 

In this case we say that 휙 is the result of an  푚 ,푛 -operation. 

(c)  For every special sequence 휙 ,… , 휙  the combination 

휙 =
1

푚
휙 ∈ 휅 (ℂ). 



٦٩ 
 

In this case we say that 휙 is a special functional and that 휙 is the 
result of an 푚 , 푛 -operation.  

(d)  It is rationally convex. 
Define a norm on 푐  by setting 

‖푥‖ = sup 휙(훼)푥(훼) :	휙 ∈ 휅 (ℂ) . 

The space 픛 (ℂ)  is defined as the completion of (푐 (휔 , ℂ), ‖∙‖). 

This definition of the norming set 휅 (ℂ) is similar to others . We 
add  the property of being closed under products with rational complex 
numbers of the  unit ball. This, together with property (b) above, 
guarantees the existence of some  type of sequences [4] in the same way  
they are constructed for 픛 . It follows that the norm is also defined by 

‖푥‖ = sup 휙(푥) = 휙(훼)푥(훼) : 휙 ∈ 휅 (ℂ), 휙(푥) ∈ ℝ . 

We also have the following implicit formula for the norm: 

‖푥‖ = max ‖푥‖ , sup sup
1
푚

‖퐸 푥‖ , 퐸 < 퐸 < ⋯ < 퐸  

⋁ sup
1

푚
휙 (퐸푥) :	(휙 ) 	is	푛 − special, 퐸	interval . 

It follows from the definition of the norming set that the canonical 
Hamel  basis (푒 )  is a transfinite bimonotone Schauder basis of 
픛 (ℂ). In fact, by  Property (b) for every interval 퐼 of 휔  the projection 
푃  has norm 1: 

‖푃 푥‖ = sup
∈ (ℂ)

|푓푃 푥| = sup
∈ (ℂ)

|푃 푓푥| ≤ ‖푥‖ 

Moreover, we have that the basis (푒 )  is boundedly complete 
and  shrinking, the proof is the obvious modification to the one for 픛 . 
In consequence 픛 (ℂ)  is reflexive. 



٧٠ 
 

Proposition (4.1.1) [4]:  

 휅 (ℂ)
∗

= 퐵픛∗ (ℂ). 

Proof: 
Recall that the set 휅 (ℂ)  is by definition rational convex. We 

notice that   휅 (ℂ)
∗

 is actually a convex set. Indeed let 푓, 푔 ∈

휅 (ℂ)
∗

 and 푡 ∈ (0,1).  Suppose that 푓
∗

푓, 푔
∗

푔 and 푡 → 푡, where 
푓 , 푔 ∈ 휅 (ℂ) and 푡 ∈ ℚ ∩ (0,1) for every 푛 ∈ ℕ. then 푡푓 +

(1 − 푡)푔 ∈ 휅 (ℂ)
∗

 because 

푡 푓 + (1 − 푡 )푔
∗

푡푓 + (1 − 푡)푔. 
In the same manner we can prove that 픛∗ (ℂ) is balanced i.e., 
휆픛∗ (ℂ) ⊆ 픛∗ (ℂ) for every |휆| ≤ 1. To prove the Proposition suppose 

that there exists 푓 ∈ 퐵픛∗ (ℂ)\휅 (ℂ)
∗

. It follows by a standard 
separation argument that there exists 푥 ∈ 픛 (ℂ)  such that 

|푓(푥)| > sup |푔(푥)|: 푔 ∈ 휅 (ℂ)  
which is absurd. 

Let 퐼 ⊆ 휔  be an interval of ordinals, we denote by 픛 (ℂ) the 
closed  subspace of 픛 (ℂ) generated by {푒 } ∈ . For every ordinal 훾 <
휔  we write  픛 (ℂ) = 픛[ , )(ℂ). Notice that 픛 (ℂ) is a 1-complemented 
subspace of 픛 (ℂ):  the restriction to coordinates in 퐼 is a projection of 
norm 1 onto 픛 (ℂ). We denote  this projection by 푃  and by 푃 = (퐼푑 −
푃 ) the corresponding projection onto the  complement space (퐼푑 −
푃 	)픛 (ℂ), which we denote 픛 (ℂ). 

A transfinite sequence (푦 )   is called a block sequence when 
푦 < 푦  for  all 훼 < 훽 < 훾. Given a block sequence (푦 )  a block 
subsequence of (푦 )  is  a block sequence (푥 )  in the span of 
(푦 ) . A real block subsequence of (푦 )  is a block subsequence in 
the real span of (푦 ) . A sequence (푥 ) ∈ℕ  is a block sequence of 
픛 (ℂ) when it is a block subsequence of (푒 ) . 
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Theorem (4.1.2) [4]: 
Let 푇:	픛 (ℂ) → 픛 (ℂ) be a complex structure on 픛 (ℂ), that 

is, 푇 is a  bounded ℝ-linear operator such that 푇 = −퐼푑. Then there 
exists a bounded  diagonal operator 퐷 :	픛 (ℂ) → 픛 (ℂ), which is 
another complex structure, such that 푇 − 퐷   is strictly singular. 

Moreover 퐷 = ∑ 휖 푖푃 , for some signs 휖  and ordinal intervals 

퐼 < 퐼 < ⋯ < 퐼  whose extremes are limit ordinals  and such that 휔 =
⋃ 퐼 .  

Proof : 
Let T ∶ 	픛 (ℂ) 	→ 픛 (ℂ) be a bounded ℝ-linear operator which is a  

complex structure and D   be the diagonal bounded operator associated to 
it. It  only remains to prove that T − D  is strictly singular. And this 
follows directly  from Proposition (4.1.3) , because by definition lim(T −

D )  for every R. I. S. (y )  on 픛 (ℂ). 

We come back to the study of the complex structures on 픛 (ℂ). 
Denote by  픇 the family of complex structures D  on 픛 (ℂ) as in 

Theorem (4.1.2) , i.e.,  D = ∑ ϵ iP  where ϵ  are signs and I <

I < ⋯ < I  are ordinal  intervals whose extremes are limit ordinals and 
such that ω = ⋃ I  . Notice  that 픇 has cardinality ω . 

Recall that two spaces are said to be incomparable if neither of them 
embed  into the other. 

Step (I): 
There exists a family 픍 of semi normalized block subsequences of 

(푒 ) ,  called  푅. 퐼. 푆. (Rapidly Increasing Sequences), such that 
every  normalized block sequence (푥 ) ∈ℕ of 픛 (ℂ) has a real block 
subsequence in 픍. 

Recall that a Banach space 푋 is hereditarily indecomposable (or 
H. I) if no  (closed) subspace of 푋 can be written as the direct sum of 
infinite-dimensional  subspaces. Equivalently, for any two subspaces 푌, 푍 
of 푋 and 휖 > 0, there exist 푦 ∈ 푌, 푧 ∈ 푍 such that ‖푦‖ = ‖푧‖ = 1 and 
‖푦 − 푧‖ < 휖. 
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Step (II): 
For every normalized block sequence (푥 ) ∈ℕ  of  픛 (ℂ), the 

subspace  span
ℝ

(푥 ) ∈ℕ  is a real H. I. space. 

Step (III):  
Let (푥 ) ∈ℕ be a 푅. 퐼. 푆 and  푇:	 span

ℂ
(푥 ) ∈ℕ → 픛 (ℂ)  be a 

bounded ℝ-linear operator. Then lim
→

푑(푇푥 , ℂ푥 ) = 0. 

The proof of Step (I), (II) and (III) are given [4]. 

Step (IV): 
Let (x ) ∈ℕ be a R. I. S and T:	 span

ℂ
(x ) ∈ℕ → 픛 (ℂ) be a 

bounded ℝ-linear operator. Then the sequence λ :	ℕ → ℂ defined by 
d(Tx , ℂx ) = ‖Tx − λ (n)x ‖  is convergent. 

Proof of Step (IV): 
First we note that the sequence λ (n)  is bounded. Then 

consider (α )   and  (β )   two strictly increasing sequences of positive 
integers and suppose that 휆 (훼 ) ⟶ 휆  and 휆 (훽 ) ⟶ 휆 , when 푛 ⟶
∞. Going to a subsequence we can  assume that 푥 < 푥 < 푥  for 
every 푛 ∈ ℕ. 

Fix 휖 > 0. Using the result of the Step (III), we have that 
lim
→

푇푥 − 휆 푥 = 0.By passing to a subsequence if necessary, 

assume 

푇푥 − 휆 푥 ≤
휖
2 6

, 

for every 푛 ∈ ℕ. Hence, for every 푤 = ∑ 푎 푥 ∈ span
ℝ

푥  with 

‖푤‖ ≤ 1 we have 

‖푇푤 − 휆 푤‖ ≤ |푎 | 푇푥 − 휆 푥  

≤ 휖 3⁄ , 
because (푒 )  is a bimonotone transfinite basis. In the same way, we 
can assume that for every 푤 ∈ span

ℝ
푥  with ‖푤‖ ≤ 1, ‖푇푤 −
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휆 푤‖ ≤ 휖 3⁄ . By  Step (II) we have that span
ℝ

푥 ∪ 푥 , is real-

H. I. Then there exist unit vectors 푤 ∈ span
ℝ

푥   and 푤 ∈

span
ℝ

푥 ,  such that ‖푤 − 푤 ‖ ≤ ‖푇‖. Therefore, 

‖휆 푤 − 휆 푤 ‖ ≤ ‖푇푤 − 휆 푤 ‖ + ‖푇푤 − 푇푤 ‖ + ‖푇푤 − 휆 푤 ‖
≤ 휖. 

By other side 

‖휆 푤 − 휆 푤 ‖ ≥ ‖(휆 − 휆 )푤 ‖ − ‖휆 (푤 − 푤 )‖
= |휆 − 휆 | − |휆 |휖. 

In consequence, |휆 − 휆 | ≤ (|휆 |)휖. Since 휖 was arbitrary, it follows 
that 휆 − 휆 . 

Let 푇 ∶ 픛 (ℂ) → 픛 (ℂ) be a bounded ℝ-linear operator. There is 
a canonical way to associate a bounded diagonal operator 퐷  (with 
respect to the  basis 푒 ) such that 푇 − 퐷  is strictly singular: Fix 

훼 ∈ ⋀(휔 ) a limit ordinal, and (푥 ) ∈ℕ, (푦 ) ∈ℕ be two 푅. 퐼. 푆. such that 
supmax supp = supmax supp =훼 + 휔. By a property of 픍 we can mix  

the sequences (푥 ) , (푦 )   in order to form a new 푅. 퐼. 푆. (푧 ) ∈ℕ  such 
that 푧 ∈ {푥 } ∈ℕ and 푧 ∈ {푦 } ∈ℕ for all 푘 ∈ ℕ. Then it follows 
from Step (IV) that the sequences defined by the formulas 푑(푇푥 , ℂ푥 ) =
‖푇푥 − 휆 (푛)푥 ‖ and 푑(푇푦 , ℂ푦 ) = ‖푇푦 − 휇(푛)푦 ‖ are convergent, 
and by the  mixing argument, they must have the same limit. Hence for 
each 훼 ∈ ⋀(휔 ) there  exists a unique complex number 휉 (훼) such that 

lim
→

‖푇푤 − 휉 (훼)푤 ‖ = 0 

for every 푅. 퐼. 푆.  (푤 ) ∈ℕ  in 픛 , where we write 퐼  to denote the ordinal 
interval [훼, 훼 + 휔). We proceed to define a diagonal linear operator 퐷  
on the (linear) decomposition of span(푒 )  

span(푒 ) = 	

훼 ∈ ⋀(휔 )
span 푥

∈
				 

by setting 퐷 (푒 ) = 휉 (훼)  when 훽 ∈ 퐼 . 

Observe in addition that this sequence (휉 (훼)) ∈∧( )  is 
convergent. That is, for every strictly increasing sequence (훼 ) ∈ℕ  in  ∧
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(휔 ), the corresponding  subsequence 휉 (훼 )
∈ℕ is convergent. In 

fact, for every 푛 ∈ ℕ, let (푦 ) ∈ℕ be a 푅. 퐼. 푆. in 픛 .Then we can take a 

푅. 퐼. 푆.  푦 ∈ℕ such that 푇푦 − 휉 (훼 + 휔)푦 < 1 푛⁄ . It  follows 

by Step (IV) there exists 휆 ∈ ℂ such that lim 푇푦 − 휆푦 = 0. This 

implies that lim 휉 (훼 + 휔) = 휆. 

In general this operator 퐷  defines a bounded operator on 픛 (ℂ). 
The proof  is the same that  uses that certain James like space of a  mixed 
Tsirelson space is finitely interval representable in every normalized 
transfinite block sequence of 픛 (ℂ). For the case of complex structures 
we have a  simpler proof (see Proposition (4.1.1). 

Proposition (4.1.3) [4]:  
Let 퐴 be a subset of ordinals contained in 휔  and 푋 = span

ℂ
(푒 ) ∈ . 

Let  푇 ∶ 	푋	 → 픛 (ℂ) be a bounded ℝ-linear operator. Then 푇 is strictly 
singular if  and only if for every 푅. 퐼. 푆.  (푦 ) ∈ℕ on 푋, lim푇푦 = 0. 

Proof: 
The proposition is trivial when the set A is finite, then we assume that 

A is  infinite. Suppose that T is strictly singular. Let (y ) ∈ℕ be a R. I. S. 
on X such that  limTy ≠ 0, then by Step (IV) there is λ ≠ 0 with 

lim‖Ty − λy ‖ = 0. Take 0 < 휖 < |λ|. By passing to a subsequence if 

necessary, we assume that (T − λId)\ 	( ) < 휖. This implies that 
T\ 	( )  is an isomorphism which is a  contradiction. 

Conversely, suppose that for every R. I. S. (y )  on X, limTy = 0.  

Assume that T is not strictly singular. Then there is a block sequence 
subspace Y = span	(y ) ∈ℕ of X such that T restricted to Y is an 
isomorphism. By Step (I)  we can assume that the sequence (y )  is 
already a R. I. S. on X. Then  inf‖Ty ‖ > 0. And we obtain a 

contradiction. 

Given Y ⊆ 픛 (ℂ) we denote by ιY the canonical inclusion of Y into  
픛 (ℂ). 
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Corollary (4.1.4) [4]: 
Let 훼 ∈ ⋀(ω ) and 푇: 픛 (ℂ) → 픛 (ℂ) be a bounded ℝ-linear 

operator. Then there exists (unique) 휉 (훼) ∈ ℂ such that 푇 − 휉 (훼) 픛 (ℂ) 
is strictly singular.  

Proof: 
Let ξ (α) be the (unique) complex number such that lim‖Ty −

ξ (α)y ‖ = 0  for every R. I. S. (y )  on 픛 (ℂ). Then by the previous  
Proposition T − ξ 	(α) 픛 (ℂ) is strictly singular. 

Corollary (4.1.5) [4]: 
Let 훼 ∈ ⋀(ω ) and 푅:	픛 (ℂ) → 픛 (ℂ) be a bounded ℝ-linear 

operator. Then 푅 is strictly singular. 

Proof: 
By the previous result, ι픛 (ℂ)	R = λ ι픛 (ℂ) + S with S strictly 

singular.  Then projecting by P  we obtain R = P ∘ ι픛 (ℂ)R = P S 
which is strictly singular. 

Proposition (4.1.6) [4]: 
Let T be a complex structure on 픛 (ℂ). Then the linear operator D  

is a bounded complex structure. 

Proof: 
Let T be a complex structure on 픛 (ℂ) and D  the corresponding 

diagonal  operator defined above. Fix α ∈ ⋀(ω ). We shall prove that 
ξ (α) = −1. In fact, 

푇 ∘ 휄픛 (ℂ) = 푃 푇 ∘ 휄픛 (ℂ) + 푃 ∘ 휄픛 (ℂ) 

= 푃 푇 ∘ 휄픛 (ℂ) + 푆  
where S  is strictly singular. This implies P T ∘ ι픛 (ℂ) = ξ (α)Id픛 (ℂ) +
S :	픛 (ℂ) → 픛 (ℂ) with S  strictly singular. Now computing: 
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푃 푇휄픛 (ℂ) ∘ 푃 푇휄픛 (ℂ) = 푃 푇 ∘ 푃 푇휄픛 (ℂ) 

= 푃 푇 ∘ (퐼푑 − 푃 )푇휄픛 (ℂ) 

= 푃 푇 휄픛 (ℂ) − 푃 푇푃 푇휄픛 (ℂ) 

= −퐼푑픛 (ℂ) + 푆  
where S  is strictly singular because the underlined operator is strictly 
singular.  Hence we have that (ξ (α) + 1)Id픛  is strictly singular. 
Which allow us to  conclude that ξ (α) = −1. The continuity of D  is 
then guaranteed by the convergence of ξ (α) ∈⋀ . In deed, we have 

that there exist ordinal intervals I < I < ⋯ < I  with ω = ⋃ I  and 

such that D = ∑ ϵ iP , for some  signs ϵ .    

Corollary (4.1.7) [4]: 
The space 픛 (ℂ) has 휔  many complex structures up to 

isomorphism.  Moreover any two non-isomorphic complex structures are 
incomparable. 

Proof: 
Let 퐽 be a complex structure on 픛 (ℂ). By Theorem (4.1.2) we have  

that 퐽 − 퐷  is a strictly singular operator and 퐷 ∈ 픇. Recall that two 
complex structures whose difference is strictly singular must be 
equivalent. Then 퐽 is equivalent to 퐷 . 

To complete the proof it is enough to show that given two different 
elements of 픇 they define non equivalent complex structures. Moreover, 
we prove that one  structure does not embed into the other. Fix 퐽 ≠ 퐾 ∈
픇. Then there exists an  ordinal interval 퐼 = [훼, 훼 + 휔) such that, 
without loss of generality, 퐽 픛 = 푖퐼푑

픛
 and 퐾 픛 = −푖퐼푑

픛
. 

Suppose that there exists 푇:	픛 (ℂ) → 픛 (ℂ)   an isomorphic 
embedding. Then 푇 is in particular a ℝ-linear operator such that 푇퐽 =
퐾푇. We write using Corollary (4.1.4) , 푇\픛 = 휉 (훼) 픛 (ℂ) + 푆 with 푆 

strictly singular. Then 휉 (훼)퐽\픛 − 휉 (훼)퐾\픛 = 푆  where 푆  is strictly 
singular. In particular for each 푥 ∈ 픛 , 푆 푥 = 2휉 (훼)푖푥. It follows from 
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the fact that 픛  is infinite dimensional that 휉 (훼) = 0.  Hence 푇\픛 = 푆,  
but this a contradiction because 푇 is an isomorphic embedding.  

The next corollary offers uncountably many examples of Banach 
spaces  with exactly countably many complex structures. 

 

Corollary (4.1.8) [4]: 
The space 픛 (ℂ) has 휔 complex structures up to isomorphism for 

every  limit ordinal 휔 ≤ 훾 < 휔 . 

Proof: 
  Let 퐽 be a complex structure on 픛 (ℂ). We extend 퐽 to a complex 

structure  defined in the whole space 픛 (ℂ) by setting 푇 = 퐽푃 + 	푖푃 , 
where 퐼 = [0, 훾). It  follows that 푇 = 퐷 + 푆 for an strictly singular 
operator 푆 and a diagonal operator  퐷  like in Theorem (4.1.2) . Notice 
that 퐷 푥 = 푖푥 for every 푥 ∈ 픛 , otherwise  there would be a limit ordinal 
훼 such that 푆\픛 = 2푖퐼푑\픛  . Hence 퐽푃 = 퐷 푃 + 푆. Which implies that 

퐽 has the form 퐽 = ∑ 휖 푖푃 + 푆  where 푆  is strictly  singular on 

픛 (ℂ), 휖 , are signs and 퐼 < 퐼 < ⋯ < 퐼  are ordinal intervals  

whose extremes are limit ordinals and such that 훾 = ⋃ 퐼 . Now the rest 
of the  proof is identical to the proof of the previous corollary. In 
particular, all the non-isomorphic complex structures on 픛 (ℂ) are 
incomparable. 

We also have, using the same proof of the previous corollary, that for 
every  increasing sequence of limit ordinals 퐴 = (훼 ) , the space 픛 =
⨁ 픛 (ℂ), where 퐼 = [훼 , 훼 + 휔),  has exactly infinite countably 
many different complex  structures. Hence there exists a family, with the 
cardinality of the continuum, of  Banach spaces such that every space in it 
has exactly 휔 complex structures. 
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Section (4.2): Observations 
It is easy to check that subspaces of even codimension of a real 

Banach  space with complex structure also admit complex structure. An 
interesting property  of 픛 (ℂ) is that any of its real hyperplanes (and 
thus every real subspace of odd  codimension) do not admit complex 
structure. 

Proposition (4.2.1) [4]: 
The real hyperplanes of 픛 (ℂ) do not admit complex structure. 

Proof: 
By the results of V. Ferenczi and E. Galego it is  sufficient to prove 

that the ideal of all ℝ-linear strictly singular operators on  픛 (ℂ) has the 
lifting property, that is, for any ℝ-linear isomorphism on 픛 (ℂ)  such 
that 푇 + 퐼푑 is strictly singular, there exists a strictly singular operator 푆 
such  that (푇 − 푆) = 	−퐼푑. The proof now follows.  

One open problem in the theory of complex structure is to know if the  
existence of more regularity in the space guarantees that it admits unique 
complex  structure. 

The purpose of this section is to give a proof for the results in the Step 
(I), (II) and (III). Several proofs are very similar to the corresponding 
ones . 

First we clarify the definition of the norming set by defining what 
being a  special sequence means. All the definitions we present in this 
part are the  corresponding translation for the complex case. 

Recall that [ω ] = {(α, β) ∈ ω ∶ 	α < 훽}. 

Definition (4.2.2) [4]: 
A function 휚 ∶ [휔 ] 	→ 휔 such that 

(푖)휚(훼, 훾) ≤ max{휚(훼, 훽), 휚(훽, 훾)} for all 훼 < 훽 < 훾 < 휔 . 

(푖i)	휚(훼, 훽) ≤ max{휚(훼, 훾), 휚(훽, 훾)} for all 훼 < 훽 < 훾 < 휔 . 

(iii) The set {훼 < 훽:	휚(훼, 훽) ≤ 푛} is finite for all 훽 < 휔  and 푛 ∈ ℕ 
is called a 휚-function. 
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The existence of 휚-functions is due to Todorcevic. Let us fix a 휚-function 
휚 ∶ [휔 ] → 휔 and all the following work relies on that particular choice 
of 휚. 

Definition (4.2.3) [4]: 
Let F be a finite subset of ω1 and p ∈ ℕ , we write 

휌퐹 = 휌휚(퐹) = max
, ∈

휚(훼, 훽). 

퐹 = {훼 ≤ max 퐹 : there	is	훽 ∈ 퐹	such	hat	훼 ≤ 훽	and	휚(훼, 훽) ≤ 푝} 
We denote by ℚ (ω , ℂ) the set of finite sequences 

(ϕ ,w , p , … , ϕ ,w , p ) such that 

(i) For all 푖 ≤ 푑,휙 ∈ 푐 (휔 , ℂ) and for all 훼 < 휔  the real 
and the  imaginary part of 휙(훼) are rationals. 

(ii) (푤 ) , (푝 ) ∈ ℕ  are strictly increasing sequences. 
(iii) 푝 ≥ 휌 ⋃  for every 푖 ≤ 푑. 

Let ℚ (ℂ) be the set of finite sequences 
(ϕ ,w , p , ϕ , w , p ,… ,ϕ , w , p )  satisfying properties (i), (ii) above 
and for  every i ≤ d,ϕ ∈ c (ω , ℂ). Then ℚ (ℂ) is a countable set 
while ℚ (ω , ℂ) has  cardinality ω . Fix a one to one function 
σ:	ℚ (ℂ) → {2j:	j	is	odd} such that 

휎(휙 ,푤 , 푝 , … ,휙 ,푤 , 푝 ) > max 푝 ,
1
휖
,max supp 휙  

where 휖 = min{|휙 (푒 )|:	훼 ∈ supp 휙 , 푘 = 1, … , 푑}. Given a finite 
subset 퐹 of  휔 , we denote by 휋 ∶ {1, 2, . . . , #퐹} → 퐹 the natural order 
preserving map, i.e. 휋   is the increasing numeration of 퐹.  

Given Φ = (ϕ ,w , p , … , ϕ ,w , p ) ∈ ℚ (ℂ), we set 

퐺 = supp휙 . 

Consider the family 휋 (Φ) =
(휋 (휙 ),푤 , 푝 , 휋 (휙 ), 푤 , 푝 , … , 휋 (휙 ), 푤 , 푝 ) where 

휋 (휙 )(푛) = 휙 휋 (푛) , if	푛 ∈ 퐺 ,
0,																				 otherwise.
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Finally 휎 ∶ ℚ (휔 , ℂ) → {2푗 ∶ 푗	odd} is defined by 휎 (훷) = 휎(휋 (훷)). 

Definition (4.2.4) [4]: 

A sequence 훷 = 휙 , 휙 , … , 휙  of functionals of 휅 (ℂ)  is 

called a 2푗 + 1 special sequence if 

(SS.1) supp 휙 < supp휙 < ⋯ < supp휙 . For each 푘 ≤
푛 ,휙  is  of type 퐼, 푤(휙 ) = 푚  with 푗  even and 푚 >
푛 . 

(SS.2) There  exists a strictly increasing sequence 

p , p , … , p  of  naturals numbers such that for all 1 ≤ i ≤

	n − 1 we have that w(ϕ ) = σ (Φ ) where 

훷 = 휙 ,푤(휙 ), 푝 , 휙 , 푤(휙 ), 푝 ,… , 휙 , 푤(휙 ), 푝  
Special sequences in separable examples with one to one codings are 

in  general simpler: they are of the form 휙 ,푤(휙 ),… , 휙 , 푤(휙 ) . 
Their main  feature is that if 휙 ,푤(휙 ), … , 휙 , 푤(휙 )  and 
휓 ,푤(휓 ),… , 휓 , 푤(휓 )  are two of them, there exists 푖 ≤ min{푘, 푙} 

with the property that 

										 휙 , 푤(휙 ) = 휓 ,푤(휓 ) 					for	all	푖 ≤ 푖 																																						(1) 

									{푤(휙 ):	푖 ≤ 푖 ≤ 푘} ∩ {푤(휓 ):	푖 ≤ 푖 ≤ 푙} = 휙																														(2) 
In non-separable spaces, one to one codings are obviously impossible, 

and (1),  (2)  are no longer true. Fortunately, there is a similar feature to 
(1), (2) called the tree-like interference of a pair of special sequences Let 

Φ = ϕ ,… , ϕ  and ψ = ψ ,… , ψ  be two 2 + 1-special 

sequences, then  there exist two numbers 0 ≤ k , ≤ λ , ≤ n  such 
that the following  conditions hold: 

 (TP.1) For all 푖 ≤ 휆 , , 푤(휙 ) = 푤(휓 ) and 푝 = 푝 . 

 (TP.2) For all 푖 < 푘 , , 휙 = 휓 . 

 (TP.3) For all 푘 , < 푖 < 휆 ,  

supp 휙 ∩ supp휓 ∪ …∪ supp 휆 , − 1 , = 휙 
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and 

supp휓 ∩ supp휙 ∪ …∪ supp휙 , − 1 , = 휙 

(TP.4) 푤(휙 ):	휆 , < 푖 ≤ 푛 ∩ 푤(휓 ): 푖 ≤ 푛 = 휙 and 

푤(휓 ):		휆 , < 푖 ≤ 푛 ∩ 푤(휙 ):	푖 ≤ 푛 = 휙. 
For the proof of Step (I) we shall construct a family of block 

sequences on  픛 (ℂ) commonly called rapidly increasing sequences 
(R. I. S. ). These sequences  are very useful because one has good 
estimates of upper bounds on |f(x)| for f ∈ κ (ℂ) and x averages of 
R. I. S. 

For the construction of the family 픍 the only difference from the 
general  theory is that our interest now is to study bounded ℝ-linear 
operators on the  complex space 픛 (ℂ). Hence, all the construction of 
푅. 퐼. 푆. in a particular block  sequence (푥 ) ∈ℕ must be on its real linear 
span. We point out here that there are  no problems with this, because all 
the combinations of the vectors (푥 ) ∈ℕ to  obtain 푅. 퐼. 푆. use rational 
scalars. 

Definition (4.2.5) [4]: 
(푅. 퐼. 푆. ). We say that a block sequence (푥 )  of 픛 (ℂ) is a (퐶, 휖)-

푅. 퐼. 푆. , 퐶, 휖 > 0, when there exists a strictly increasing sequence of 
natural  numbers (푗 )  such that: 

(i) ‖푥 ‖ ≤ 퐶; 
(ii) |supp 푥 | ≤ 푚 휖; 

(iii) For all the functionals 휙 of 휅 (ℂ) of type 퐼, with 휔(휙) <

푚 , |휙(푥 )| ≤ ( ).  

The following remark is immediately consequence of this definition. 

Remark (4.2.6) [4]:  
Let 휖 < 휖. Every (퐶, 휖)-푅. 퐼. 푆. has a subsequence which is a (퐶, 휖 )-

푅. 퐼. 푆. 

And for every strictly increasing sequence of ordinals (훼 )  and every 
휖 > 0, 푒   is a (1, 휖)-푅. 퐼. 푆. 
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Remark (4.2.7) [4]: 
Let (푥 )  and (푦 )  be two (퐶, 휖)-푅. 퐼. 푆. such that 

supmax	supp 푥 = supmax	supp 푦 . Then there exists a (퐶, 휖)-푅. 퐼. 푆. 

such that 푧 ∈ {푥 } ∈ℕ  and 푧 ∈ {푦 } ∈ℕ. 

Proof: 
Suppose that (푡 )  and (푠 )  are increasing sequences of positive 

integers  satisfying the definition of 푅. 퐼. 푆. for (푥 )  and (푦 )  
respectively. We construct (푧 )  as follows. Let 푧 = 푥  and 푗 = 푡 .Pick 
푠  such that 푥 < 푦  and 푡 < 푠 . Then we define 푗 = 푠  and 푧 =
푦 . Notice that 

(i) ‖푧 ‖ ≤ 퐶; 
(ii) |supp 푧 | ≤ 푚 휖 ≤ 푚 휖 = 푚 휖; 

(iii) For all the functionals 휙 of 휅 (ℂ) of type 퐼, with 휔(휙) <

푚 , |휙(푧 )| ≤ ( ).  

Continuing with this process we obtain the desired sequence. 

Theorem (4.2.8) [4]: 
Let (x )  be a normalized block sequence of 픛 (ℂ) and ϵ > 0. Then 

there exists a normalized block subsequence (푦 )  in span span
ℝ

{푥 } 

which is a (3, 휖)-푅. 퐼. 푆. 

For the proof of Theorem (4.2.8) we first construct a simpler type of  
sequence. 

Definition (4.2.9) [4]: 
Let X be a Banach space, C ≥ 1 and k ∈ ℕ. A normalized vector y is 

called  a C − ℓ -average of X, when there exist a block sequence 
(x , . . . , x ) such that  

(a)			푦 = (푥 +	. . . +	푥 ) 푘⁄ ; 

(b)	‖푥 ‖ ≤ 퐶, for	all	푖 = 1, … , 푘. 
In the next result we want to emphasize that this special type of 

sequence are  really constructed on the real structure of the space 픛 (ℂ). 
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Theorem (4.2.10) [4]:  
For every normalized block sequence (푥 ) of 픛 (ℂ), and every 

integer 푘, there exist 푧 < ⋯ < 푧  in span
ℝ

(푥 ), such that 

(푧 + ⋯+ 푧 ) 푘⁄  is a 2 − ℓ -average. 

Proof: 
The proof is standard. Suppose that the result is false. Let 푗 and 푛 be 

natural  numbers with 

2 > 푚  

푛 > 푘 . 

Let N = k  and x = ∑ x  . For each 1 ≤ i ≤ 	n and every 1 ≤ 	j ≤
	k ,  we define, 

푥(푖, 푗) = 푥
( )

. 

Hence, x(0, j) = x  and x(n, 1) = 	x. 

It is proved by induction on 푖 that ‖푥(푖, 푗)‖ ≤ 2 푘 , for all 푖, 푗. In 
particular,  ‖푥‖ = ‖푥(푛, 1)‖ ≤ 2 푘 = 2 푁. Then by Property (1). of 
definition in the  norming set 

‖푥‖ ≥
1
푚

‖푥 ‖ =
푛
푚

>
푁
푚

. 

Hence, 

2 푁 >
푁
푚

 

푚 > 2 , 
which is a contradiction. 

Finally, for the construction of 푅. 퐼. 푆. we observe these simple facts  
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(i) If 푦 is a 퐶 − ℓ -average of 픛 (ℂ) and 휙 ∈ 휅 (ℂ) has weight 

휔(휙) < 푚 , then |휙(푦)| ≤ ( ); 

(ii)  Let (푥 )  be a block sequence of 픛 (ℂ) such that there exists a 
strictly  increasing sequence of positive integers (푗 )  and 휖 > 0 
satisfying: 

(a)  Each 푥  is a 2 − ℓ -average; 

(b)	|supp 푥 | < 휖푚 . 
Then (푥 )  is a (3, 휖)-푅. 퐼. 푆. 

To prove Step (II) and (III) we need a crucial result called the basic  
inequality which is very important to find good estimations for the norm 
of certain combinations of 푅. 퐼. 푆. in 픛 (ℂ). First we need to introduce 
the mixed Tsirelson  spaces. 

The mixed Tsirelson space 푇 푚 , 푛  is defined by considering 

the  completion of 푐 (휔, ℂ) under the norm ‖∙‖  given by the following 
implicit  formula 

‖푥‖ = max ‖푥‖ , sup sup
1
푚

퐸 푥 . 

The supremum inside the formula is taken over all the sequences 퐸 <
	. . . < 퐸  of subsets of 휔. Notice that in this space the canonical Hamel 
basis (푒 ) < 휔 of  푐 (휔, ℂ) is 1-subsymmetric and 1-unconditional 
basis. 

We can give an alternative definition for the norm of 

푇 푚 , 푛  by  defining the following norming set. Let 

푊 푚 ,푛 ⊆ 	 푐 (휔, ℂ) the minimal  set of 푐 (휔, ℂ) satisfying the 

following properties: 

(a) For every 훼 < 휔, 푒∗ ∈ 푊 푚 ,푛 . If 휙 ∈

푊 푚 ,푛  and 휃 = 휆 + 푖휇 is a complex number with 휆 

and 휇 rationals and |휃| ≤ 1, 휃휙 ∈ 푊 푚 , 푛 ; 
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(b) For every 휙 ∈ 푊 푚 , 푛  and 퐸 ⊆ 휔, 퐸휙 ∈

푊 푚 ,푛 ; 

(푐) For every 푗 ∈ ℕ and 휙 <	. . . < 휙  in 푊 푚 , 푛 , 

1 푚⁄ ∑ 휙 ∈ 푊 푚 , 푛 ; 

(d)		푊 푚 , 푛  is closed under convex rationals 

combinations. 

Theorem (4.2.11) [4]: (Basic Inequality for 푹. 푰. 푺.): 
Let (푥 )  be a (퐶, 휖)  푅. 퐼. 푆. of 픛 (ℂ) and (푏 ) ∈ 푐 (ℂ,ℕ). 

Suppose that  for some 푗 ∈ ℕ we have that for every 푓 ∈ 휅 (ℂ) with 
weight 푤(푓) = 푚  and  for every interval 퐸 of 휔 , 

푓 푏
∈

≤ 퐶 max
∈
|푏 | + 휖 |푏 |

∈

. 

Then for every f ∈ κ (ℂ) of type I, there exist g , g ∈ c (ℂ, ℕ) 
such that 

푓 푏
∈

≤ 퐶(푔 + 푔 ) |푏 |
∈

푒 , 

where 푔 = ℎ  or 푔 = 푒∗ + ℎ , 푡 ∉ supp ℎ  and ℎ ∈ 푊 푚 ,4푛  

such that ℎ ∈ convℚ ℎ ∈ 푊 푚 , 4푛  and 푚  does not appear as a 

weight of a node  

in the tree analysis of ℎ , and ‖푔 ‖ ≤ 휖. 

Proposition (4.2.12) [4]: 
Let 푓 ∈ 휅 (ℂ) or 푓 ∈ 푊 푚 ,4푛  be of type 퐼. Consider 푗 ∈

ℕ and 푙 ∈ , 푛 . Then for every set 퐹 ⊆ 푐 (휔 , ℂ) of cardinality 푙, 

푓
1
푙

푒
∈

≤

⎩
⎪
⎨

⎪
⎧ 1
푤(푓)푚

, if	푤(푓) < 푚 ,

2
푤(푓)

, if	푤(푓) ≥ 푚 ,
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If the tree analysis of f does not contain nodes of weight 푚 , then 

푓
1
푙

푒
∈

≤
2
푚

 

Proposition (4.2.13) [4]: 

Let (푥 )  be a (퐶, 휖)- 푅. 퐼. 푆. of 픛 (ℂ) with 휖 ≤ , 푙 ∈ , 푛  and 

let 푓 ∈ 휅 (ℂ) be of type 퐼. Then, 

푓
1
푙

푥 ≤

⎩
⎪
⎨

⎪
⎧ 3퐶

푤(푓)푚
, if	푤(푓) < 푚 ,

퐶
푤(푓)

+
2퐶
푛
, if	푤(푓) ≥ 푚 ,

 

Consequentely, if (푥 )  is a normalized (퐶, 휖)-푅. 퐼. 푆. with 휖 ≤ , 푙 ∈

, 푛 , then 

1
푚

≤
1
푙

푥 ≤
2퐶
푚

. 

Proof: 

Let (푥 )  be a (퐶, 휖)- 푅. 퐼. 푆. and take 푏 = ,… , , 0,0,… ∈

푐 (ℕ, ℂ). It follows from the basic inequality that for every 푓 ∈ 휅 (ℂ) 

of type 퐼, there exist  ℎ ∈ 푊 푚 ,4푛  with 휔(ℎ ) = 휔(푓), 푡 ∈ ℕ 

and 푔 ∈ 푐 (ℕ, ℂ) with ‖푔‖ ≤ 휖 such that 

푓
1
푙

푥 ≤ 퐶(푒∗ + ℎ + 푔 )
1
푙

푒 . 

Moreover, 

푔
1
푙

푒 ≤ ‖푔‖
1
푙

푒
∈

≤ 휖 ≤
1
푛
. 

Now by the estimatives on the auxiliary space 푇 푚 , 4푛 of the  

Proposition (4.2.12) , we have 
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(i) If 휔(푓) < 푚 , 

푓
1
푙

푥 ≤ 퐶
1
푙
+

2
휔(푓)푚

+
1
푛

 

																																	≤ 퐶
푚
푛
+

2
휔(푓)푚

+
1
푛

 

					≤
3퐶

휔(푓)푚
 

(ii) If 휔(푓) ≥ 푚 , 

푓
1
푙

푥 ≤ 퐶
1
푙
+

퐶
휔(푓)

+
1
푛

 

														≤
퐶

휔(푓)
+
2퐶
푛

 

And notice 

(iii) ( ) ≤ , if 휔(푓) < 푚 , 

(iv) ( )+ ≤ + = , if 휔(푓) ≥ 푚 .  

We conclude from the fact that 휅 (ℂ) is the norming set: 

(1 푙⁄ ) 푥 ≤ 2퐶 푚 . 

For the proof the second part of the theorem, let (푥 )  be a normalized 

(퐶, 휖)- 푅. 퐼. 푆. with 휖 ≤ , 푙 ∈ , 푛 . For every 푘 ≤ 푙, we consider 

푥∗ ∈ 휅 (ℂ), such that 푥∗(푥 ) = 1 and 푥∗ ⊆ ran 푥 ,  then 푥∗ =

∑ 푥∗ ∈ 휅 (ℂ) and 푥∗ ∑ 푥 = . Hence, ≤

∑ 푥 . 
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Proof of step (II):    

Now we introduce another type of sequences in order to construct the  
conditional frame in 픛 (ℂ). In fact, this space has no unconditional 
basic  sequence. 

Definition (4.2.14) [4]: 
A pair (푥, 휙) with 푥 ∈ 픛 (ℂ)  and 휙 ∈ 휅 (ℂ), is called a (퐶, 푗)- 

exact pair  when: 

(a)	‖푥‖ ≤ 퐶,휔(휙) = 푚  and 휙(푥) = 1. 

(b)  For each 휓 ∈ 휅 (ℂ) of type 퐼 and 휔(푥) = 푚 , 푖 ≠ 푗, we have 

|휓(푥)| ≤

⎩
⎪
⎨

⎪
⎧2퐶
푚

, if	푖 < 푗,

퐶
푚

, if	푖 > 푗.
 

Proposition (4.2.15) [4]:  
Let (푥 )  be a normalized block sequence of 픛 (ℂ). Then for every 

푗 ∈ ℕ,  there exist (푥, 휙) such that 푥 ∈ span
ℝ

(푥 ) , 휙 ∈ 휅 (ℂ) and (푥, 휙) 

is a (6,2푗)-exact pair. 

Proof: 
Fix (푥 )  a normalized block sequence of 픛 (ℂ) and a positive 

integer 푗.  By the Proposition (4.2.8) there exists (푦 )  a normalized 
(3, 1/푛 )-푅. 퐼. 푆. in  span

ℝ
(푥 ). For every 1 ≤ 	푖 ≤ 푛  and 휖 > 0, we 

take 휙 ∈ 휅 (ℂ) such that  휙 (푦 ) > 1 − 휖, and 휙 < 휙 . Let 푥 =

푚 푛⁄ ∑ 푦  and 휙 = 1 푛 ∑ 휙 ∈ 휅 (ℂ). By perturbating 

푥 by a rational coefficient on the  support of some 푦  we may assume that 
then 휙(푥) = 1 and using Proposition (4.2.9) we conclude that (푥, 휙) is a 
(6,2푗)-exact pair. 

Definition (4.2.16) [4]: 
Let 푗 ∈ ℕ. A sequence (푥 , 휙 , . . . , 푥 , 휙 ) is called a (1, 푗)-

dependent sequence when: 

(DS.1) supp 푥 ∪ supp 휙 < ⋯ < supp 푥 ∪ supp 휙 . 
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(DS.2) The sequence 훷 = 휙 ,… ,휙  is a 2푗 + 1-special 
sequence. 

(DS.3) (푥 , 휙 ) is a (6,2푗)-exact pair. # supp 푥 ≤ 푚 푛⁄  for 
every  푖 ≤ 푖 ≤ 푛 . 

(DS.4) For every (2푗 + 1)-special sequence 휓 = 휓 ,… , 휓  
we have that 

supp 푥
, ,

∩	 supp휓
, ,

= 휙, 

where 푘 , , 휆 ,  are numbers introduced in Definition (4.2.4) [4].  

Proposition (4.2.17) [4]: 
For every normalized block sequence (푦 )  of 픛 (ℂ), and every 

natural  number 푗 there exists a (1, 푗)-dependent sequence 
(푥 , ∅ , … , 푥 , ∅ ) such   that 푥  is in the ℝ-span of (푦 )  for 
every 푖 = 1,… , 푛 . 

Proof: 
Let (푦 )  be a normalized block sequence of 픛 (ℂ) and 푗 ∈ ℕ. We  

construct the sequence (푥 , ∅ , …	 , 푥 , ∅ ) inductively. First using  
Proposition (4.2.15) we choose a (6,2푗 )-exact pair (푥 , ∅ ) such that 푗  
is  even, 푚 > 푛  and 푥 ∈ span

ℝ
(푦 ) .  Assume that we have 

constructed (푥 , ∅ , … , 푥 , ∅ ) such that there exists (푝 ,…	 , 푝 ) 
satisfying 

(i) supp 푥 ∪ supp휙 < ⋯ < supp 푥 ∪ supp 휙 , where 
푥 ∈ span

ℝ
(푦 )  and (푥 , ∅ ) is a (6,2푗 )-exact pair. 

(ii)	퐹표푟1 < 푖 ≤ 푙 − 1, 푤(∅ ) =
휎 (∅ , 푤(∅ ), 푝 ,… , ∅ , 푤(∅ ), 푝 ).                       

(iii) For 1 < 푖 ≤ 푙 − 1, 푝 ≥ max{푝 , 푝퐹 }, where 퐹 =
⋃ supp휙 ∪ supp 푥 . 

To complete the inductive construction choose 

푝 ≥ max{푝 , 푝퐹 # supp 푥 } 
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and 2푗 = 휎 (∅ , 푤(∅ ), 푝 , … , ∅ ,푤(∅ ), 푝 ). Hence take a 
(6,2푗 )-exact  pair (푥 , ∅ ) such that 푥 ∈ span

ℝ
(푦 )  and supp 푥 ∪

supp 휙 < ⋯ < supp 푥 ∪ supp 휙 . Notice that properties (DS.1), 
(DS.2) and (DS.3) are clear by  definition of the sequence and (DS.4) 
follows from (iii) and . 

Modifying a little the previous argument we obtain the following: 

Proposition (4.2.18) [4]: 
For every two normalized block sequences (푦 )  and (푧 )  of 

픛 (ℂ), and every 푗 ∈ ℕ there exists a (1, 푗)-dependent sequence 
(푥 , ∅ , … , 푥 , ∅ )  such that 푥 ∈ span

ℝ
(푦 ) and 푥 ∈

span
ℝ

(푧 ) for every 푙 = 1,… , 푛 . 

Another consequence of the basic inequality is the following 
proposition.  

Proposition (4.2.19) [4]: 
Let (푥 , ∅ ,… , 푥 , ∅ ) be a (1, 푗)-dependent sequence. Then: 

(푖) ∑ 푥 ≥ ; 

(ii)		 ∑ (−1) 푥 ≥ . 

Proposition (4.2.20) [4]: 
Let (푦 )  be a normalized block sequence of 픛 (ℂ). Then the 

closure of  the real span of (푦 )  is 퐻. 퐼.  

Proof: 
  Let (푦 )  be a normalized block sequence of 픛 (ℂ). Fix 휖 > 0 

and two   block subsequences (푧 )  and (푤 )  in span
ℝ

(푦 ). Take an 

integer 푗 such that  푚 휖 > 1. By Proposition (4.2.18) there exist a 
(1, 푗)-dependent sequence  (푥 , ∅ , … , 푥 , ∅ ) such that 푥 ∈

span
ℝ

(푧 ) and 푥 ∈ span
ℝ

(푤 ). We  define 푧 = (1 푛⁄ )∑ 푥( )  

and 푤 = (1 푛⁄ )∑ 푥( ) . Notice that 푧 ∈ span
ℝ

(푧 )  and 푤 ∈
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span
ℝ

(푤 ). Then by Proposition (4.2.1) we get ‖푧 + 푤‖ ≥ (1 푚⁄ ) 

and ‖푧 − 푤‖ ≥ 1 푚⁄ . Hence ‖푧 − 푤‖ ≤ 휖‖푧 + 푤‖. 

Definition (4.2.21) [4]: 
A sequence (푧 , ∅ ,… , 푧 , ∅ ) is called a (0, 푗)-dependent 

sequence  when it satisfies the following conditions: 

(i) (0DS.1) The 훷 = 휙 ,… , 휙 -special sequence and 휙 (푧 ) = 0 
for every 1 ≤ 푖, 푘 ≤ 푛 . 

(ii) (0DS.2) There exists 휓 ,… , 휓 ⊆ 휅 (ℂ) such that 푤(휓 ) =

푤(휙 ), # supp 푧 ≤ 푤(휙 ) 푛⁄  and (푧 , 휓 ) is a (6,2푗 )-exact 
pair for every 1 ≤ 푖 ≤ 푛 . 

(iii) (0DS.3) If 퐻 = ℎ ,… , ℎ  is an arbitrary 2 -special 
sequence, then 

supp 푧
, , ,

∩ supp ℎ
, , ,

= 휙. 

Proposition (4.2.22) [4]: 
For every (0, 푗)-dependent sequence (푥 , ∅ ,… , 푥 , ∅ ) we 

have that 

1
푛

푥 ≤
1

푚
. 

Proposition (4.2.23) [4]: 
Let (푦 )  be a (퐶, 휖)-푅. 퐼. 푆., 푌 = span

ℂ
(푦 ), and 푇: 푌 ⟶ 픛 (ℂ) on 

ℝ-linear bounded operator. Then lim
→

푑(푇푦 ℂ푦 ) = 0. 

Proof: 
Suppose that lim

→
푑(푇푦 , ℂ푦 ) ≠ 0. Then there exists an infinite 

subset 퐵 ⊆ ℕ such that inf
∈
푑(푇푦 ℂ푦 ) > 0. We shall show that for every 

휖 > 0 there  exists 푦 ∈ 푌 such that ‖푦‖ < 휖‖푇푦‖ and this is a 
contradiction.  

Claim (1): 
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There exists a limit ordinal 훾 , 퐴 ⊆ ℕ infinite and 훿 > 0 such that 

inf
∈
푑(푃훾 푇푦 , ℂ푦 ) > 훿 

 To prove this claim we observe that 

훾 = min 훾 < 휔 :	∃퐴 ∈ [ℕ] inf
∈
푑 푃 푇푦 , ℂ푦 > 0  

is a limit ordinal. In fact, by the assumption the set on the right side is not 
empty.  And if 훾  is not limit, then we have 훾 = 훽 + 1. The sequence 
(푦 )  is weakly  null (because (푒 )  is shrinking) and then 

lim
→

푒∗ 푇푦 = 0 

And for large n and every 휆 ∈ ℂ 

푃 푇푦 − 휆푦 ≥ 푃 푇푦 − 휆푦 − 푒∗ 푇푦  

≥ 훿 − 푒∗ 푇푦 ≥ 훿 2⁄ , 
which is a contradiction. 

Claim (2): 
Fix 훾  and 퐴 ⊆ ℕ as in Claim (1). Then there exist a sequence 

푛 < 푛 < ⋯ in 퐴, a sequence of functionals 푓 , 푓 ,… in 휅 (ℂ) and a 
sequence of ordinals 훾 < 훾 < ⋯ < 훾  such that 

(푖)  								푑 푃[ , ]푇푦 , ℂ푦 ≥ 훿 2⁄ ; 

(iii) 		푓 푇 ≥ 훿 2⁄ ; 
(iv) 푓 (푦 ) = 0; 
(v) ran 푓 ⊆ ran 푇푦 ; 
(vi) supp 푓 ∩ supp 푦 = 휙 when 푚 ≠ 푘. 

To prove this claim, let 휉 = supmax supp 푦 . We analyze the three 
possibilities for 휉: 

Case (a):흃 < 휸ퟎ: 
Let 푛 = min 퐴 and choose 휉 < 훾 < 훾  such that 

푃 푇푦 − 푃 푇푦 < 훿 2⁄ , 
hence, 푑(푃 푇푦 , ℂ푦 ) > 훿 2⁄ . By minimality of 훾  we have 

inf
∈
푑 푃 푇푦 , ℂ푦 = 0, 
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then we can choose 푛 > 푛  in 퐴 such that 푑(푃 푇푦 , ℂ푦 ) < 훿 2⁄  and 
this  implies that 

푑 푃 − 푃 푇푦 , ℂ푦 > 훿 2⁄ . 

Approximating the vector 푃 − 푃 푇푦  choose 훾 > 훾 > 훾  such that 
푃 − 푃 × 푇푦  is so small in order to guarantee that 

푑 푃[ , ]푇푦 , ℂ푦 ≥ 훿 2⁄ . 
Using the complex Hahn-Banach theorem, there exists 푔 ∈ 퐵픛∗ (ℂ) such 
that 

(퐴)		푔 푃[ , ]푇푦 > 훿 2⁄ ; 

(퐵)		푔 푦 = 0,  
and by Proposition (4.2.1) we can choose ℎ ∈ 휅 (ℂ) such that 

ℎ 푃[ , ]푇푦 > 훿 2⁄   and ℎ 푦  is arbitrarily small. Replacing ℎ  

by 훼ℎ + 훽푘  where |훼| + |훽| = 1, 푘 푦  is close enough to 1, and 
푘 ∈ 휅 (ℂ)  we may assume that ℎ 푦 = 0. 

Let 푓 = ℎ 푃[ , ]∩ ∈ 휅 (ℂ). Again by minimality of 훾 , 
there  exists 푛 > 푛  in 퐴 such that 푑(푃 푇푦 , ℂ푦 ) < 훿 2⁄   and we can 
choose 훾 > 훾 > 훾  satisfying 

푃[ , ]푇푦 , ℂ푦 > 훿 2⁄ . 
Again by Hahn-Banach and by Proposition (4.1.1) there exists a 
functional ℎ ∈ 휅 (ℂ)  such that 

(퐶)		ℎ 푃[ , ]푇푦 > 훿 2⁄ ; 

(퐷)		ℎ 푦 = 0, 
then we define 푓 = ℎ 푃[ , ]∩ ∈ 휅 (ℂ). The previous argument 
gives us the  way to construct the sequences of Claim (2). Properties (1)-
(5) are easy to check,  in particular property (5) is true because 
min supp 푓 > 휉 > max supp 푦  for  every positive integers 푘, 푙. 

Case (b):흃 > 휸ퟎ: 
In this case we start by picking 푛 ∈ 퐴 such that min supp 푦 > 훾 .  
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Then we repeat exactly the same argument that in Case (a). 

Case (c): 흃 = 휸ퟎ:  
We basically repeat the same argument of the Case (a) with the 

additional  care of maintaining property (vi) true. That is, each time we 
choose the ordinal 훾   (with 훾 > 훾 > 훾 ) we take it such that 
훾 > max supp 푦 . 

Claim (3): 
There exists a (0, j)- dependent sequence (z , ϕ 	, … , z ) such that 

(E)		푧 ∈ 푋 for every 1 ≤ 푖 ≤ 푛 ; 

(F)		ran 휙 ⊆	 ran 푇푦  and 휙 (푇푧 ) > 훿 2⁄ . 
Let 푗 with 푚 >	24 휖훿⁄ . Choose 푗  even such that 푚 > 푛  

(see  definition of special sequence) and 퐹 ⊆ 퐴 with #퐹 = 푛  such 
that 푦

∈
 is  a 3, 1 푛⁄ -푅. 퐼. 푆. Then define 

휙 =
1

푚
푓

∈

∈ 휅 (ℂ)			and				푧 =
푚
푛

푦
∈

 

observe that 푤(휙 ) = 푚 , 휙 (푇푧 ) = ∑ 푓∈ ∑ 푇푦∈ > 훿 2⁄  

and 휙 (푧 ) = ∑ 푓∈ ∑ 	∈ = 0. Select 

푝 ≥ max 푝 (supp 푧 ∪ supp 푇푧 ∪ supp 휙 ), 푛 # supp 푧 , 
denote 2 = 휎 (휙 ,푚 , 푝 ). Then take 퐹 ⊆ 퐴 with #퐹 = 푛  and 
퐹 > 퐹   such that (푦 ) ∈  is 3, 1 푛⁄ -푅. 퐼. 푆. and define 

휙 =
1

푚
푓

∈

∈ 휅 (ℂ)			and			푧 =
푚
푛

푦
∈

 

So we have ϕ < ϕ ,ϕ (Tz ) > 훿 and ϕ (z ) = ϕ (z ) = 0.  Pick 

푝 ≥ max 푝 , 푝 (supp 푧 ∪ supp 푧 ∪ supp 푇푧 ∪ supp 푇푧 ∪ supp 휙
∪ supp휙 ), 푛 # supp 푧  

and set 2푗 = 휎 (휙 ,푚 , 푝 , 휙 ,푚 , 푝 ). Continuing with this 
procedure we  form a sequence (푧 , 휙 ,… , 푧 , 휙 ). Now we check 
that this is a (0, 푗)-dependent sequence. 
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Property (0DS.1) is clear, because of the construction of the 
functionals their  weights satisfies 푤(휙 ) = 푚 (훷 ) where 훷 =
(휙 , 푤(휙 ), 푝 ,… , 휙 , 푤(휙 ), 푝 ). 

Property (0DS.2) We proceed to the construction of the sequence 
{휓 , … , 휓 } in 휅 (ℂ) such that (푧 , 휓 ) is a (6, 2푗 )-exact pair and 
푤(휓 ) = 푤(휙 ) for every 1 ≤ 푖 ≤ 푛 . The other condition 
# supp 푧 ≤ 푤(휙 ) 푛⁄ is already obtained by the construction of the 
weights. For each 푧  there exists a  subset 퐹 ⊆ 퐴 with #퐹 = 푛 , such 

that 푧 = 푚 푛⁄ ∑ 푦∈  where 푦
∈

 is a 3, 1 푛⁄ 	푅. 퐼. 푆. 

Now we follow the same arguments as in  Proposition (4.2.15). For every 
푘 ∈ 퐹  we take 푓 ∈ 휅 (ℂ) such that 푓 푦 = 1 and 푓 < 푓 . 
Then 휓 = 1 푚⁄ ∑ 푓∈ ∈ 휅 (ℂ) and (푧 , 휙 ) is a (6,2푗 )-exact 
pair. 

Property (0DS.3) Let 퐻 = (ℎ ,… , ℎ ) be an arbitrary 2푗 + 1-
special  sequence. We consider two cases: (a) Suppose that 
max supp 푧 ≤ max supp 휙   for every 1 ≤ 푘 ≤ 푛 . Then supp 푧 ⊆

supp 휙
,

,   for every 휅, 훷, 퐻 < 푘 < 휆 , . Then for the second 
part of (TP.3) we obtain the desired  result. (b) Suppose that 
max supp 휙 ≤ max supp 푧 	 for every 1 ≤ 푘 ≤ 푛 .  Then 

supp 휙 ⊆ supp 푧
,

,  for every 휅훷,퐻 < 푘 < 휆 , , and the 
result  follows from the first part of (TP3).  

Fix a (0, 푗)-dependent sequence as obtained in the previous claim, 
and  define 

푧 = 1 푛⁄ 푧 			푎푛푑				휙 = 1 푚⁄ 휙 . 

Then 휙(푇푧) = 1 푛⁄ ∑ 휙 (푇푧) ≥ 훿 푚⁄  and ‖푧‖ ≤
12 푚⁄ . Hence, ‖푇푧‖ ≥ 훿 푚⁄ ‖푧‖ 12⁄ > 휖‖푧‖, and this completes 
the proof. 
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