Chapter 1

Operator Valued Besov Spaces and Dyadic Paraproducts
with Hankel Operators

We retrieve Peller’s characterizations of scalar and vector Hankel
operators of Schatten- ven Nuermann class S, for 1 < p < o. We then

emply vector techniques to characterize little Hankel operator of
Schatten- ven Nuermann class.

Furthermore, using a bilinear version of our product formula, we
obtain characterization for boundedness compactness and Schatten class
membership of product of dyadic paraproducts.

Section (1.1): Scalar Dyadic Paraproducts and Besov Spaces

Dyadic paraproducts have been successfully employed in the study
of Hankel operators in various settings, we want to look at Schatten class
membership of scalar, vector and multivariable dyadic paraproducts and
use these to study Schatten class membership of Hankel operators.

Boundedness, compactness and membership of Schatten classes of
their paraproducts have been characterized in terms of oscillatory
properties of their symbols. Dyadic paraproducts on vector valued spaces
(with matrix or more generally operator valued symbols) have also been
studied; it has not thus far been possible to characterize the boundedness
of paraproducts with operator valued symbols in terms of oscillation
properties of the symbol. These difficulties are closely connected with a
breakdown of a form of the John-Nireberg Theorem in the operator-
valued setting. Here, we want to consider a "P-.John-Nirenberg
Theorem’, which generalizes easily to the operator setting.

The purpose of the chapter is threefold. First, we show that a "p-
John--Nirenberg, Theorem" which can be found can be used to give a
comparatively simple. Interpolation free proof of the characterization of
Schatten class paraproducts in terms of oscillatory properties of their
symbols. Our approach is related to Rochberg. And Semmes' method of
nearly weakly orthonormal sequences—indeed, scalar dyadic
paraproducts are in some sense the model case for nearly weakly
orthonormal sequences. but technically simpler. Using an averaging
technique it is possible to retrieve the known characterization of Schatten
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class Hankel operators at least for 1 < p < oo, for a second proof with
different methods, Our approach is again interpolation-free and has the
advantage that one does not need any nontrivial properties of Besov
spaces, for example the atomic decomposition of B/. Secondly, in
contrast to the classical John—Nirenberg theorem, the version of "p-John—
Nirenberg Theorem" we require extends both to the operator-valued and
the multivariable setting, and we thus obtain characterizations for the
membership of Schatten classes for vector paraproducts and paraproducts
in several variables. Again using averaging, we also obtain known results
for vector Hankel operators and new results on "little Hankel" operators.

Finally, using a sesquilinear version of our method, we obtain
necessary and sufficient conditions for boundedness, compactness and
Schatten class- membership of products of dyadic paraproducts. This part
is motivated by the literature about products of Hankel operators, where
characterizations of compactness of products of Hankel operators are
known, but the corresponding questions about boundedness and Schatten
class membership of products of Hankel operators are still open. we give
a "p-John—Nirenberg" proof for the characterisation of dyadic
paraproducts of Schatten class for 1 < P < co. We characterize dyadic
paraproducts of Schatten class with operator-valued symbols for 1 < P <
o . We give an interpolation-free proof of the characterisation of Hankel
operators of Schatten class with operator symbols for 1 < P < oo .We use
the vector results to characterise little Hankel operators of Schatten class
on H?(C*™) and multivariable dyadic paraproducts of Schatten class. We
characterise boundedness, compactness and Schatten class membership of
products of paraproducts.

Let D denote the collection of all dyadic intervals on the real line
R, so

Di={l =L =[2""2"(k+1):nk € Z}.

Let D,, denote the collection of intervals in D of length 27" . For I € D .
let T denote the parent interval of /, let I, and I denote the left and right
halves of I. respectively, D(I) the collection of dyadic intervals contained
in I. D(1)' the collection of dyadic intervals contained properly in I, and
D,,(I) the intersection ofD, and D(I). For J € D'(l), we write



sign(J.I) = 1 for] € D(1,). Sign (J,I) = —1For ] € D(1,) , We let h,;
denote the Haar function corresponding to /, that is

1
hy = W(X” — X))

Where x; denotes the characteristic function of an interval J. It is well
known that {h;: I € D }. Forms an orthonormal basis of the Hilbert space
L?>(R). Throughout the article, let Cpand Kp denote various constants,
depending only on p.

For a Hilbert space H , let ¢ (H) and H (H) denote the collections
of bounded operators and compact operators on H, respectively. Any
operator T € H(H) has a Schmidt decomposition, so there exist

orthonormal bases {e,} and {0,} of H{ and a sequence {A,} with A, >
0 and A,, = 0 such that.

Tf = > nlf.en) o (.
n=0

forall f € H.For 0 < p < o . acompact operator 7' with such a
decomposition belongs to the Schatten-von Neumann p-class, S, (H). if
and only if

1/
1T lls,= (ZreA) ™*
os) (2).
We shall frequently use the following elementary facts: For 0 < P < 2
| T ||§p = inf{z | Te, I”: {€,}nen Orthonormal basis of H; (3)

neN

For2 <P <o,

T IIEP = sup{ Xnen Il Te, IP: {€,}eny Orthonormal basis of 7'} (4)

For locally integrable function f on R and I € D , let m;f denote the
mean value of f on [, 1.e

1
mf = [ £@ e
I
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And f; denote the Haar coefficient of f, i.e.

fi=Af h) = fI f() h(t)de.

For f locally integrable andI € D, we write P;f = x;(f - m;f) =
e by f;- and P/f = Yjepy hyfj-on L>(R), P; and P, are the
orthogonal projections on span{h] : ] € D1} and span{h] 1] €
D’ (1)} respectively.

We shall repeatedly use the following fact: for I,] € D,

1
m;(h;) = |I|1/2 when ] € D(14) (5)

and zero otherwise. For a locally integrable function b, the densely
defined dyadic paraproduct with symbol b, i}, is given by.

o f = Xiep My fbihy .

It is easy to see that the adjoint of 7, on L?(R) is given by

mf = ) b (©).

I1€D

We want to denote this adjoint operator by Ajp.

Necessary and sufficient condition on the symbol b for m, to be
bounded on L?(R) or belong to a Schatten class have been obtained. We
shall say a locally integrable function b belongs to the dyadic BMO space
BMO4(R) if

“b“BMOd = Sup |/|1/2 ”p/b“ < .

Note that
1/2
1 2 V2 1 2
bl = (7 0, 10© —mb ae) =1 Y by

| 1]
JED(!)

We say that b € BMO¢ belongs to the dyadic VMO space VMO%(R) if
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_ 1
Illcllrllwm ||p,n_kb|| =0 foreachn €z 9).

Here the limits in (7) and (8) are meant to be uniform limits as

|[I| = 0 or |I| = oo, respectively. Somewhat loosely, we will write

. 1

|ll|11>rc1>o|I|T/2“p/b“ =0 (10).

if condition (7) — (9) above hold. We understand I — oo as [ converging
to the point oo in the locally compact space D with the discrete topology.

For 0 < P < oo, a locally integrable function b belongs to the dyadic
Besov space BE (R), where the Besov space (named after Oleg
Vladimirovich Besov) Bg,q (R) is a complete quasinormed space which is
a Banach space when 1 < p,q < . It, as well as the similarly defined
Triebel-Lizorkin space, serve to generalize more elementary function

spaces and are effective at measuring (in a sense) smoothness properties
of functions [5].

Let Apf(x) = f(x — h) — f(x)

and define the modulus of continuity by
w2(f,t) = sup||A?

Let n be a non-negative integer and define:s = n+ awith0 < a < 1.
The Besov space Bg,q (R) contains all functions f such that

dt

B0

f e WP(R), f

if

1/p
bl b, \"
1bllgg = T < oo,
€D



We then have

For a locally integrable function ¢, let Q,, be the so-called "dyadic

sweep" or the square of the dyadic square function of ¢, that is.

lp/I?,  tER (11).

We need the following elementary property of 9,
Lemma (1.1.1) [1]: P,Q, = PiQp,¢

Let D, be the operator on L?(R) which is diagonal in the Haar basis and
defined by

1
D,h; = hy 0 z lo,1*> (I €D).
JED(D)'

The following identity relates the paraproducts m, and Ty,
Proposition (1.1.2) [1]:
My, = Tg, + né(p + Dy.
Proof:
It suffices to show that (m,m,h),h;) = ((an) +n§(p + Dq,) hy, hy)
for I,] € D. Note that m,is superdiagonal in the Haar basis in the sense
that m,h; has nontrivial Haar coefficient only for J S and m,is

subdiagonal in the Haar basis in the sense that m,h has nontrivial Haar

coefficient only forJ 2 I .

Furthermore, supp myh; S I and supp(mg,, + né(p + Dy)h; < I for all

I € D, so we only have to consider the cases.
(1) [=]:

* 1 2
((ﬂg(p T 1y, T D(p) hy, hy) = (Dyhy, hy) = mZ]eD(I)’|(p]| =

(tyhy, Tyhy).
() I12]:
(T[(ph]; T[(ph]) = ZkED |(pk|2mkh1 mkh]'

o



_signQ, 1) 5 5
SEEEE z lox|® — z | x|

keD( 1) keD(j7)

_sign(y, 1) )
- |1|1/2 (Q(p) (T[Q(p hy, hy) = ((T[Q<p t M9, + D‘P) hy, hy).
() I € J:
(T[é(phll h]) = (h’I'T[Q(p h]) = (hl,ﬂ(zﬂ(ph]) = (n(zn(phl’ h])

by (ii).
We now need to temporarily introduce a further scale of function spaces.
For 0 <p < o and 1 < q < o, we say that b € L*(R) belongs to the

d .
space By 4 if

1 p\ 1/p
||b||Bg,q=<Z (m—l/qup,buq)> <o (12

€D
Where || || denotes the norm in LI(R). A continuous version of the

following "p-John—Nirenberg Theorem" can be found.

Proposition (1.1.3) [1]: Let 0 < p < co. There exists a constant @, such
that for each nonnegative sequence (a;);ep indexed by the dyadic
intervals,

p
2 : 2 = z<a1)p
] a, < a, )
1€D JED(D) 1€D

Note that the reverse inequality trivially holds, with constant equal to I.
Note also that the p = oo version of the above statement fails, i.e. there
exists no.

Constant C such that
1 a;
RATDICELE AT
Simply take a; = |I| forall I € D.

We include the proof of proposition (1.1.3).



Proof: we shall first suppose that 0 < P < [. Then, for all I € D, we have

p
1 1
— < p
7] e 1P 2, 3
JED(I) JED(I)
and hence
S(iSa) <3k 3 @ e[S oty )
I€D | |]€D IEDlI JED() JED (2 Ul)

as each dyadic interval | is contained in exactly one dyadic interval of size
2k|J|, for K = 0,1, .... summing the infinite geometric series, we see that.

Z %z Y —2P—1z<|]|)

I1€D JED(D)

As required.

We now consider the case 1 < p < co.weseethat] =1, , €D

P P
1 (o)
— a = 2" a
1] Z J Z _ Z J
JED() M= €D (1)
14
= Z (m—n+1)"2(m—n+1)22" ™ Z 2™q,
m=n

JEDM (1)
p

<C, Z (m —n + 1)2p~22p(=m) Z 2Mq,
m= JEDM(I)

For some constant C, by Jensen's inequality since Y.;—,(m —n + 1)~?2

=m2/6 for all m and t » tP is convex Applying Holder's inequality
Where 1/P + 1/q = 1. We see that

P P/q
P
( Z zma,> < Z (2™a,) ( Z 1q> = 2(m-m)(p-1) Z (2ma)’.
JED, (D) JED (D JED, (D) JED, (D)

as | Dy (I k)| = 2™™™, when m = n. consequently, we get



<C, z z (m —n + 1)2p—2pn-m) z (Zma])p

nk€Z m=n JEDm(In k)

m
p
c, z z (m —n +1)?-220-m)(mg, .

m,JEZ n=—oo

Changing the order of summation. But, for allm € Z,

z (m n_|_1)2p 22(71 m)_zﬂp 2= (I+1) —K

n=-—0o

Say. Therefore,

D, ﬁZaJ CK2<|]|)

€D JED(I)
As required.

Corollary (1.1.4) [1]: Let b be a locally integrable function, and let 0 <
P < oco.Thenb € Bg if and only if b € Bg,qforl <q <2

Moreover, ||bl]za 1s equivalent to the expressions in (12).
B q p

Proof: Applying Holder's inequality it is easy to see that B,‘},Z c Bg,q c
B,%i,l. And it also easy to see that B,‘},l c B¢ all of these embedding are

bounded. So it only remains to prove that Bd c B¢ and that the

p2 >
embedding is bounded.

By proposition (1.1.3),

12 p/2
p 1 2

_ 2 — -
Ibllgg, = § (i teot?) ;ED(',WZ > |b1|>

JeD()
P
|b1| P
193 <|1|1/2 = l1bllg
I1€D

Before we can deal with the case g > 2, we need



Proposition (1.1.5) [1]: Let0<p<oand 1 < q < o.Then
2 d
195 ll5g, < 2C5lIblI5a, (b € Bipzq)-

Where C,, is the norm of the dyadic square function on

L?9(R) conversely,
2 2 2
1512, < Coalp (12bl15g, + 1%, ).

Where C,, is the lower bound of the dyadic square function on L*9(R),
and Ip is a constant depending only on P,Ip = 1 forp > 1.

Proof: Note that the projections (P;);ep are uniformly bounded on
each L?>(R), 1 < q < o, with norms bounded by 2, independent of g,
Letb € ng.Zq- Then

) 1/pP ) 1/pP
_ P _ P
||Qb||Bg_q = <z|I|T/q”PIQb”q> = <z|I|T/q”PIQP1b”q>

1€D 1€D
1 1/P
P

<2(Y rielonal

1€D

1 1/P

2 2P — 92 2

< 2C%, <Z)|I|2T/2qllﬂbllzq> = 2C3qlIbll5g, .
Ie

Where the first equality follows from Lemma (1.1.1)

Conversely
1/P 1/P
1 1 p
2P 2
(Z |I|2P/2q ”PIb”ZCI> = CZCI (Z |I|2P/2q ”QPIb”q>
€D 1€D
" 1/P
P
= CZZCI Z |I|2P/2q ”PIQPIb + XImI(QP,b)”q>
1€D

o\ 1/P
) 1 1
=< Ciq ZWTZCI(”PIQb”q +|I|1T/q”QP,b”I) >
I1€D

p\ 1/P
=C; —_(Ip L bl
= Caq| 2 (27 | IQbIIq+|I|1_1/q I1P;blI2

I1€D
2
< ol (112015g + 1BIIZg )




Theorem (1.1.6) [1]: Let 0 < p < oo. Then the spaces Bg,q,

all coincide with the dyadic Besov space Bg. The corresponding norms

1<q < oo,

are equivalent.

In the case p = oo, all the spaces Bg,q coincide with BMO?. as

known from the classical John—Nirenberg Theorem.

We shall present a proof of Theorem (1.1.4) here, which only uses
the dyadic square function, a bootstrap argument and the following
proposition , which covers the case 1 < g < 2.

Proof:

let 2 < P < co. Because of the trivial inclusion Bp 4, S Bp 4 for
1<q, <q, <o, we can assune that ¢ = 2", n > 1. We prove by
induction over n that for alln € N. And all 0 < p < oo there exists a
constant Kp ,, such that

1blls,, < Kpnllblige (b € BY)

By Corollary (1.1.6) this is true for n = 1 suppose that the statement
holds for some n € N. then by proposition (1.1.5), for each b € BE,

2 2 2
<]
||b||BIch'2n+1 < IpConia <||Qb||3g/2'2n + ||b||Bg'2)
<C; ( ; )
< Conalp KP/Z,n”Qb”Bg/Z'l + ||b||BIc;'2

< 2C2ulp (Kp/nllbllZg + 1512 )

< |Ibllga2aBCanlp(Kp/2m + 1).

The theorem follows now with an appropriate choice of K, .41,

Corollary (1.1.7) [1]: Let 0 <p < o and let b € Bf. Then Q), € By, and
there exists a constant C,, > 0 depending only on p such that ||Q, || BY, <
14

Cp lIblIZg
Proof: Corollary (1.1.4) (or Theorem (1.1.6)) and Proposition (1.1.5).

Now we can give our "p-John-Nirenberg" proof of Theorem (1.1.8) (i1).
We will give the full proof only forp > 1.



Theorem (1.1.8) [1]:

(i) b € BMO%ifand only if m, € g(L*(R));
(i) for0 <P < oo, b € BZ ifand only if m, € S,(L*(R));
(iiiy b € VMO ifand only if m, € H (L*(R)).

These results are well known, for the boundedness result and for the
result concerning Schatten classes Sp,1 < p < co.

Before we give a "John-Nirenberg type" proof Theorem (1.1.8) (i1).
Proof: Notice that

Zunbh,up

I1€D

Z a7z lbil” = bl

For 0 < p < o0 by proposition (1.1.3) thus "=" follows immediately for
0 < P < 2 from Eq (3).

To prove "=" for 2 < P < o, note first that for 0 < P < oo.

IDIEZ = Iy, h)IP/% = iyl 1

1€D 1€D
pP/2

2 P
=Y o > bl ] <Kl

I1€D JED' (D

By proposition (1.1.3), and that therefore for 2 < p < 4
I3, = msmslls, . < 2llmo, ll5,  + 1Dblls,,
2 /] 2 2
< 2|lmg 5, , + Krllbllzg < K (I2bll5g, +11BII%g) < Collbll2g

by Corollary (1.1.7) and the first part of the proof. Inductively, we obtain
the result for all p with 2 < p < oo. To obtain the reverse direction, we
define a bounded operator R: L?(R) — L?(R) of norm 1 by Rh; = h; for

€ D , where T denotes the parent interval of /. Recalling that.

> Tew an)l? < ITIE, (13)
n=1

For any orthonormal bases {e,} , (0,),p = 1 and T € S, , we find that.

VY



P
Implls = RIS = ) KRAy, mhhp)|P = (hl, b;)
|4 |4 |1|

I1€D

1 Ib] \" ,
_ZP/Z |1|1/2 2P/2 ” ”

I1€D

for0<p <o

The implication "&" in Theorem (1.1.8) (i1) for 0 < p < 1is more
difficult to deal with and was first shown by Peng .



Section (1.2): Operators of Besov Spaces and Vectors of
Schatten Class with Hankel Operators

Dyadic paraproducts with matrix or operator symbols have been
considered .We first introduce some notation for dyadic paraproducts
acting on a vector valued Hilbert space, with operator valued symbols.

Let 7 denote separable Hilbert space and L*(R,7) the
corresponding vector valued Hilbert space, so

PR30 =1 :R = H gl = [ N9 (O de <ot
R

We may consider L?(R, ) as the Hilbert space tensor product

L>(R) ® H and, for f € L*)(R) and x € H, we let f @ x denote the
element of LA(R.H) defined for almost all t € R by f ® x(t) = f (t)x.

Let B be a locally SOT-integrable operator valued function on R,
so B(t) € g(H) for almost all ¢ € R, and for I € D we may formally
define the operator B; € g (H) given by

(Byx,y) = f hi(6) (B(E)x, y)dt,x,y € H.
1

For the definition of SOT integrability, we then define the (dyadic)
paraproduct ITg , acting on elementary tensors in L2(R,H) by

Ms(f ® %) = ) mufhy @ Byx, f € F(R),x €7 (14)

I1€D

and extending by linearity. One would anticipate that the boundedness of
such an operator would be characterised by an operator bounded mean
oscillation criterion. However, it was shown that the naive generalisation
of the scalar BMO condition to the operator case does not imply
boundedness of the operator paraproducet.

We shall show, however, that Schatten class membership may be
characterised by an operator Besov condition analogous to the scalar
condition. These results can also be obtained using Rochberg and
Semmes' method of nearly weakly orthonormal sequences , although the



vector case does not seem to appear in the literature. We shall first derive
an expression for I1p.

Lemma (1.2.1) [1]: if

X1 % 2

— Q@ B/x,f €eL*(R),x € H.
Extending by linearity, then Ag = IIg

Proof: This can easily be verified by means of elementary tensors.

We shall follow the same approach as in the scalar case, using dyadic
square functions. For an operator valued function B, let Oz be the "square
of the dyadic square function" of B, that is

t
0,(t) = 23,*3,’%,1: ER.

I1€D

Let Dg be the operator on L?(R, H) defined on elementary tensors by
1
Do(f ®@x)= ) i D fili @ BjByx.
I1eD JeD(I)'
The following identity relates the paraproducts ITgand Iy,
Proposition (1.2.2) [1]:
HE HB - HQB + HEB + DB'

Proof: It is sufficient to show that

(TpTp (hl X x), by & }’))
= ((nQB + 1, + DB)(h, R x),h R y) (15).

for all I,] € D and x,y € H . This is shown exactly as in Proposition
(1.1.2). For 0 < p < oo, We shall say that an operator valued function B,
lies in the operator valued dyadic Besov space BE , if

p\ 1/P
iaig = (3 (1205) ) <o
KARVANTIRE |

I1€D




We shall show that Schatten class operator valued dyadic paraproducts
have symbols which belong to corresponding Besov spaces, thus
generalising-the scalar result.

We prove an operator analogue to Corollary (1.1.7). For P > 2, the Besov
norms of B and Q3 are related in the same way as in the scalar case.

Lemma (1.2.3) [1]: if 2<p <coand B € Bf, then Qp € By /5, with

195 IIBg/2 < ap“B“;g for some universal constant a,,.

Proof: Note that |||l , is @ norm. By the definition of Qs and (5), we

see that.

1
@8 =172 z BB - z BB |
J€D) J€DUL)

and so

1 , 1 2
1@ sy, <57z ). BBl , =777 . 1B/,

JeD ()’ JeD(1)!
Which gives
P/2
1

= 2\ 2, 1l :
< — B < apl|lBll,a-
IIQ;_E;IIBg/2 ] | ]”SP plIBll g

I1€D JED()'

by Proposition (1.1.3).

The analogous statement for p =oois false for infinite-
dimensional . For I € D , let U; and V; be the bounded operators given
by

U:H > LP(RH),Ux=x;Qx,x €H,

Vi >(R,H) > H,V,F = f F(t)h;(t)dt, F € L*(R, H).
1
Then B; = V,IIgU;. It follows that, for 0 < p < oo, if Il € S, then B; €
S,.
P



Proposition (1.2.4) [1]: If 0<p<2and B € Bg then Il € S, and
IMTglls, < 11Blgg.
Proof: Again, it will be more convenient to work with adjoints. Let 0 <

P < oo and I € D, Suppose (without. loss of generality, by the discussion
above) that B, has Schmidt decomposition,

Bix = z M (x.el)ol,x € I.

n=0

Where {e}} and {o}} are orthonormal bases for H Therefore,

o0 1/P
187lls, = 1B ls, = (Z(A&)P) .
n=0

It follows that {h; ® el :1 € D,n=0,1,...} is an orthonormal basis for
L*(R, #). It is clear from Lemma (1.2.1) that

X

Iy (hy ® e%) =

Consequently,

N peon e eite — (1Bse
D I3k ® eIl = (T )
n=0

For each I € D and therefore

15115, < > IT5Chy ® eII” = 1B

I1€D n=0
by (3).

The rest of this section will be concerned with showing that the
statement in Proposition (1.2.4) extends to p > 2, and that also the
reverse holds. We shall first use Proposition (1.2.4) and Lemma (1.2.3) to
show that B € Bg implies Ilg € S, for 2 < p < oo.

Proposition (1.2.5) [1]: If 2 < p < w and B € B¢, then

Ilg € S), . Moreover, there exist a constant Cp > 0 depending only on p
such that || g5, < Cp”B”BIch.



Proof: The proof runs along the lines of the proof of Theorem (1.1.8) (ii).
We shall suppose that 2" < P < 2™*1for n =0,1,.. and proceed by
induction. The base case (n = 0) is covered by Proposition (1.2.4) so
suppose that n > 1. We shall first consider the operator Dg. By definition,
Dghas block diagonal form Dg = (E;);ep With respect to the Hilbert
space decomposition L*(R,H) =@ ,cpHgiven by f+— (h))ep .
Here, E; is defined by (E;x.y ) =(llgllg h; @ x,h; ® y) for x,y € H
That is, £ = — % epqy B} By Thus

P/2

P/2 P/2 1 .
ID5115.% = TiepllEillS)2 = Siep || Srepay B Bf”s,,/
2

2 \P/2
< YJeD (ﬁZ]eD(t)’”BJ”sp)

1
< Kp ZIED”'T/Z ||BI||§p = KP”B“Bg-

by Proposition (1.1.5), since ||-||5P/2 is a norm.

Also, by Lemma (1.2.3), Qp € Sp/p and 2" < p/2 < 2™

Hence, by the inductive hypothesis Ily, € Sp/, and “QB“B,C} < CPHB”;d
14
Consequently, by Proposition (1.2.4), we have

15113, = 105005 s, < 2|lTg I+ Dsls,

< ZCP/ZHQB”Bg/z +1Dsllsp,, = CP“BHIZ?g

as required for an appropriate choice of Cp.

Finally, we must show that, for 0 <p < oo , [Iz €5, implies that
B € Bg .We will first deal with the case 1 < P < oo.

Proposition (1.2.6)[1]: If 1 < P < 0. and Il € Sythen B € Bg

moreover ||B|]| pd S CplllTg|s, for some universal constant Cp .

Proof: Let 1<p <o, and let T: L*(R,H) — L*(R,H) be in the
Schatten class Sp. The block diagonal E = (E;);ep of T, taken with
respect to the Hilbert space decomposition L*(R,H) = @;epH , f —
(h;)ep 1s then given by



Eh[ ® e = h[ ®EI€.
For I € D where E;: H — H is defined by (Eje , f) = (Te Q@ h;, f @ h;)
for] € D,e, f € H. We will use the inequality

11, = > NS, < ITIE, (16).

I1€D

Similarly to the proof of Theorem (1.1.8) (i1), one defines a bounded
linear operator R: L>(R,H) » L*(R,H) of norm I by Rh; ® e = h; ®
e

Forl €D e € H.

Suppose now that Iz € S, for eachl € D, let B; have the Schmidt

decomposition

Bix = M <x.el>al, xeH.
1 n n n

n=0

Where {e}} and {c]} are orthonormal bases for .

Applying (16) with T = [IgRand using (13), we obtain

oo
1715, = 1TRIIE, = ) NIElls, = |< Ejop, en >1"
P

IeD 1€D n=1
- ZZK MaRhy @ ohyhy @ eh >I7
IeDn
zz |< hy ® an, ] B,en
I€D n=
1P
z 2P/2 |1|P/2 z |2
1€D
~ oP/2 |1|1/2 T oP/2 | ”Bg
1€D

Finally, we shall consider the case 0 < p < 1. we shall generalize
an argument. Note that, for0 <p < 1.

I Ils, is not a norm. However, if T = R + S, then
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ITIIS, < IIRIIS + NISIIS (17).
14 14 14

We can obtain a partial reverse inequality, in the case that R and S have
orthogonal ranges.

Lemma (1.2.7) [1]: Let 0 <p < oo If R and § are operators with
orthogonal ranges and T = R + S then

1
ITIZ, < ZCIRIE + [|SI2).

Proof: It follows that T*T = R*R + S*S, as R*S = RS™ = 0. Therefore,
R'R <T'T.

By Douglas' Lemma there exists a contraction Z such that R = ZT and so
||R||5p < ||T||sp- similarly, ||S||5p < ||T||5p and the result follows.

For m € Z we define the orthogonal projection A, on L? (R, H) by

An(f® 0= D {fih) by ® x.

IeD

defined here on elementary tensors for f € L(R) and x € H . We also
define, for m,n €Z,

n;™ = A,lligh,

Lemma (1.2.8) [1]: Let B € Bf If m < n then II;™ = 0. If m > nand

0 < P <1 then
1Bl \"
P (n—-m)P/2 2 p
”HB”SP <z <|1|1/2> )

I€D,

Proof: By definition, we see that, for f € L(R) and x € H
Hg’m(f ® x) = z z (f, h])mI (h])h1®31x
J€ED,, I€D,,
Therefore, by (5), if m < n then [1;™ = 0 and if m > n
(f hy) (f )
g™ (f @ x) = Z Z Ul—l/]zh1®31x— Z Z Ul—l/]zh1®31x.

JE€Dn 1€Dm(J+) J€Dyn I1€DM(J-)

Let B; have Schmidt decomposition



B;x = z/lf <x.el >d, (18).

I=0

So we have

(f @ x)

=) 2 z|]|1/2<f®th®ell>hf®"fl

J€Dy 1€D1,(J+) I=

z z z|]|1/2(f®th®€1’)h1®a, (19).

JE€Dp 1€D,(J-) I=0

Thus 15 has been expressed as the difference of two operators with
given Schmidt decompositions, so, by (17),

sy 3 2a) <% 2 2t

]ED IEDm(]+)I ]EDn IEDm(]_) 1=0
P
TEE )
j Dy 1€D() i,

Let B € Bg and N be a positive integer (to be determined later) .

Fork= 0,...N—1, let

(0] (0]
_ § § Nn+k,Nn+k+1 __ § § Nn+k,Nm+k+1

n=—oo m=—0oo m=—oon=—oo

by Lemma (1.2.8) Let

H(O) z HNn+an+k+1 H(1) z z HNn+kNm+k+1

n=-—oo m=—00 n=—0oo

So

Mg, l15y + M55

Lemma (1.2.9) [1]: For 0 < p < 1 and B, N as above

Y



N-I
> e, = cenzn
k=0

Proof: By (18) and (19), we see that,

,h
My NN @ x) = z %(’% ® B.x —h_® B)_x)

]EDNn+k
Z zl]ll/z (f @x 1y ®e[") hy,®0;"
]EDNn+kI
z z|]|1/2(f®x h]®el Yhy_®o;".
J€DN,,,
and so
Mg(f © x)

(0.0)

= Z Z i|]|1/2<f®xh,®e+)h,+®

n——oo JEDNn+k I

Z Z 2|1|1/2<f®xh1®€1_>h1 ®0;,

n=-0 J€Dypik I=

Since (h;,,h; ) =0 for all ,] €D , Hl(;’),z has been expressed as the
difference of two operators with orthogonal ranges and given Schmidt

decompositions.

So, by Lemma (1.2.7),

|l = z z |1|P/2 z ). Z(Gw)

n=-0 J€Dynik I= n=-o0 J€EDypn+k =0

=) e (181, + 18,1

n=—-o ]EDNn+k

=W z z <”B|II|||P>

n=-0 I€DNntk+1

P/2

Consequently,

Yy



P P
||H(O) 1 IBills,\ = 1 1BIIP
2P/2+1 1] ~ 9P/2+1 B’

I1€D

In seeking a converse to Proposition (1.2.4) for 0 < p < 1, we shall first
suppose that B € Bg: a simple density argument will then give the full

result.

Proposition (1.2.10) [1]: Let 0 < p < 1 .There exists a constant Cp such
that if B € BY, then 1Bllgg < Cp I1Tslls,

Proof: Note that

HB,k = < z ANn+k> HB( z ANm+k+1>'

n=—oo m=—o

And so |[lIgklls, = |l1glls, as Ln=-co Ann+k ANA Yim=—oo Anmaic+1

are norm | projections. Consequently,

N—1 N—1 b
NI, > leﬂs,kllﬁ > Z (Im20l; = ImS2ll, )

> CollBIIG, - Z ||H(” (20).

by Lemma (1.2.9). However, for k = 0,...,N — 1, we have by (17) and
Lemma (1.2.8)

H(l) i z ||HNn+kNm+k+1||
Sp

m=—0o0 n=—0oo

oo m—1 .
< z z 2 (Nn-Nm-1)P/2 z <”BI”SP>
= - |1|1/2
m=-eon=-® IEDNm+k+1
= p m-1
= o—(Nm+1)P/2 1B ls, Mo/
a NEE
m==o I€EDNm+k+1 n=—o;
o0 b m— "
= 72— (Nm+1)P/2 ”BI”SP 21nP/2
|1]1/2 2Np/2—1
m=-% IEDNm+k+1 Nn=—o0

P
27F/2 IB;lls,
2Np/2—1 |1|1/2 )

m==®IE€DN, 411y

Yy



Therefore,

- P _
H(l) 27F/? IBills,\ 2772 5
” S oNP/Z-1 1[172 —Wll IIBa,

I1€D

So, by (20), we see that, for all N.

p o1 P P
Iells, = N<Cp - m) 1Bl

-p/2

Npig 0 to obtain the required

Choose N large enough so that Cp —

result.

Corollary (1.2.11) [1]: Let 0 <p < 1. If [Iz €S, then S, € BY. ,

Moreover, there exists a constant C, such that || B|| BY < GllIg|| S,

Proof: For any positive integer N, let

DM i= {1, € D:[n| < NIkl < N} and BV@®) = ) Bihy(0).
1epM

Then BM™ € Bg and so ||B(N)||Bg < Cp”HB(N)”Sp by Proposition (1.2.10).
But,

My (F @) = ) myfhy @ Byx = PMII5(f @ )

1epN)

Where P is the orthogonal projection on L? (R, H") defined by
PM (@ x)=h Q@xif JeDM = 0otherwise (21).
Therefore,
IB®|lpg < CoIPMMTlls, < CollTalls,
for all N. But {||[B™|| Bg} is an increasing sequence and so we see that
1Bllgg = lim [[B®]| 4 < CpliT3lls,

In summary, combining Propositions (1.2.4), (1.2.5), (1.2.11) and
Corollary (1.2.6), we obtain the main result.
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Theorem (1.2.12) [1]: For 0 <p < o, [z € S, if and only if B € B.

Moreover,

CollBllgg < 1slls, < KpllBllpg

Let] <p <o,andlet B:R — g (H) be locally integrable. We say that
B is in the operator Besov space Bp(R), if

o1, = [ [ 120 B, 41 < oo
R R

lx —y|?
Theorem (1.2.13) [1]: Let 1<p <o , and let B:R = g(H) be
antianalytic and locally integrable. Then the following are equivalent:
(i) The vector Hankel operator I'g: L*(R, H) = L*(R, ) is in S).
(i1) B € Bp(R).

We can use our results on vector paraproducts, along with the
averaging procedure to obtain an alternative proof of the sufficiency of
this condition. One would expect B, to be continuously included in B¢,

and we show this here.
Lemma (1.2.14) [1]:Let I < p < oo. Then there exists a constant

Kp > 0 such that if B € Bp(R) then B € Bf and IBllga < Kp lIBlls,.

Proof: It is easily shown that, for any A € Sp and | € D.

Il _
vz = |]|

f” (x) — m]B” dx < fIIB(x)—A”sP dx.

— Ul
J

Letting A = B(y) and then averaging for y € J. we see that

Il _
vz = |]|2

f f 1BG) — B, dxdy.

Supposing that I € D,, for n € Z and using Holder's inequality, we see
that

Yo



151l
P P
Z Pz =2 z U|2ffIIB(x) B)IIf, dxdy

JED(I) JED() J ]

(0.0)

—r Y Y m ]f ]f IBG) — BO)IIE, dxdy

m=n J€D,,(I)
2P
= f f K, ) 1B() — BO)IE, dxdy.
R R

where

(0.0)

KGoy) =) Y 2y @y ).

m=n J€D,,(I)
Clearly, if either x € [ or y € I then Kp (x,y) = 0. Suppose that x,y €
I, with x # y and let ] € D, (I). Then x;(x)x; (y) = 0if
|x — y| > |]| = 2" [|. So,

n+[log,(111/1x-yD]

1]
K (x,y) < z g2(m-n) o 111

m=n

Therefore, for alln € Z,

IBJIIS,, 27 (1BG) —BWIE,
). D TS ” —yr e

1€D,, JED(I)

Letting n — — oo we see that

IBl;, 2’
1By = ) ez < 5 IBI5,.

JED

Fora € Rand r € R, let D*" denote the translated, dilated dyadic grid
given by

D ={la + 127"k, a +r27"(k+ 1):n,k € Z}.

For ] € D%7 let h]a’r denote the corresponding Haar function, normalised
in L?(R). We define the dyadic shift S*” on L*(R) by

A\l



SO (f @ x) = z (f hETY(hET ® x — h™ @ x).

IeD®T

for an elementary tensor .f @ x € L>(R,#). Note that.S%" has norm v2
Let H: L>(R,H) » L? (R, H) denote the vector Hilbert transform on R.

So

f('y—}’) dy | ® x

Hf®x)=|P.v.
/

Then, there exists a function a € L?(R) and a constant ¢, > 0 such that
the operator T: L?(R, H) — L? (R, H) given by

T(f @ x) = coH(f @ x) + (af) @ x (f € L*(R), x € H).
is contained in the WOT-closed convex hull of the set { S*":a € R,r €
R*}.

We begin by showing, that for 1 < p < oo there exists a constant C~p >0
such that

IS, Bllls, < CplIBlls, (B € Bp) (22).

For aeR reR* , let IT5" denote the vector paraproduct with respect to the
dyadic grid D%" given by.

N f® x = z m, fh%" @ B,x.
IeDaT

And /\g’f its adjoint. Let Rg" be the operator defined on elementary

tensors by

RIF®x= ) fihf" ® myBx.

IeD&T

Here, m;f , f; , B; and m;B denote Haar coefficients and averages with
respect to the grid D%".Then it is easily shown that

Mg = Ig" + Ag"+ Rg”,

and

Yv



|IS*"Mp — MBSa’r”SP
< IIS“'THg’T - Hg’rS“'rllsp + ||S*®T /\g"”— /\g’r S“'Tllsp
+|[S*"Rg" — Ry S|
) ) Sp
For F a function (scalar, vector or operator valued) defined on R. let
USTF(t) = r Y2F((t — a) /1), VETE(t) = F((t — a)/7),
Then U%" is a unitary map on L*(R,H). V%" is an isometry on B, and
Uy (UT) ™ = [T yarg (23).
If B € Bp, then
ISer g™ — g7 S* |5, < 21IST 5" Nls, = 2V2|1T yarglls,
= 2\/ECP” Va’rB“BP = 2\/ECP”B“BP-

by (23), Theorem (1.2.12) and Lemma (1.2.14) It is similarly shown that
1% Ag"= Ag" S lls, < 2V2 CpllBllg,.

Finally, it may be seen that

(SETRET — RETS®TY(F @ 1) = > WI™V2fi(hy, — i) @ Byx.

[eD*®T

If B; has Schmidt decomposition B; = Y 1} < ., el > ¢} then

(Sa,TRg:T _ Rg,TSa,T)(f ® X)

I —
= > Zm (f, h><%) ® (x, eh)ok.
IEDYT n=0
Which is an expression in Schmidt form and so
P/Z( I)P
IS RE" - RESTIE, = ) Z i = 2Bl

IEDXT n=

< Kp|Bllg,.

by Lemma (1.2.14), where Bga'r is the dyadic Besov space defined with
respect to D*" This shows (22).

Let B: R — g(H), B € Bp. and suppose that B is locally bounded
with respect to the operator norm on g (#) .Let (S,),er be a net in

YA



conv {S*": a € R,r € R*} which converges to the operator T introduced
above in the weak operator topology. It follows immediately from (22)
that II[S,,, Mg] | s, < C~p||B ||s,- To proceed to the WOT- limit, we require

the following elementary lemma.

Lemma (1.2.15) [1]: Let H be a Hilbert space, let 1 < p < oo, and
suppose that (A, )yer. is a bounded net of operators in Sp & g(H),

Furthermore, suppose that there exists a dense subspace A of H
and a sesquilinear form A X A — C(x,y) — (Ax,y), such that
liérll(Ayx,y) = (Ax,y) for all x,y € A. Then A4 extends to a bounded
Y

linear operator on H', A € Sp and [|4]|s, < Sup”Ay” .
y€er Sp
Proof: From
[(Ax, y)| = lyigrl|(x4yx,Y)| < ?EL?”A)/Hllxllll}’Il < ||x||I|YI|5;LEt2F9||Ay||SP-

For all x,y € Ait follows that 4 extends to a bounded sesquilinear form
on Hx H and therefore defines a bounded linear operator on H, which
we also denote by A. The estimate for the S, norm of 4 is easily obtained
from the identity

N
I ANl = sup {zl(Aen, o )|P: N
n=1

€ N, {e,}, {o, -, orthonormal systems in H .

see (13), and the density of A in H.

We can now finish the proof of the direct implication in the
theorem. Let A = {f € L*(R,H), f has compact support} .Since B
is locally bounded, the commutator [H, Mg] defines a sesquilinear form
on A X A, and one has

1
lim([S,, Mg|x,y) = ([T, Blx,y) = —([H, Blx,y).
)/EF CO

by the WOT convergence of (S )yer to 7. Thus by the previous lemma
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¢
I[H, Mgllls, < C—:HBIIBP (24).

It is not difficult to see that the locally bounded functions are dense in B,

forp > I. For a given B € B, one can for example choose the sequence

given by B,(x) = B(x + %), where B denotes the harmonic extension of

B to the upper half plane. Then each B, is locally bounded, and
(Bn)nen converges to B in B, by the Dominated Convergence Theorem,
subharmonicity and a vector version of Fatou’s Theorem. By density, we
. . 1
obtain (24) for all B € B,,. Using that P ([R.%] [H, Mg]Py2 (R 37 = ) for

antianalytic B finishes the proof.

We note also that a version of Theorem (1.2.13) holds, for 0 <p <
I , using appropriate definitions of the operator Besov spaces, for such p,



Section (1.3): Little Hankel Operators and products of
Dyadic Paraproducts

In this section, we want to use the vector valued results above to
obtain a characterization of Schatten class dyadic paraproducts in several
variables and of Schatten class little Hankel operators on certain product
domains.

As in the case of vector paraproducts, the method of nearly weakly
orthonormal sequences provides an alternative route to obtain the
characterization of the symbols of Schatten class paraproducts, although
this does appear not explicitly in the literature.

Letn € N. We write R =D™ for the collection of dyadic
rectangles in R". ForR=I; X .....xI,. Let hg(ty, ..., t,) =
hy, (t1) ... hy (ty). The collection (hg)gex is then the product Haar basis
of L?(R™).

For a locally integrable function f on R". We denote the Haar
coefficient <f , hp> by fr and the average ulTJR f(ty,...,t,) dt; ... t, by
mgf .

Let b € L*(R™). The densely defined linear mapping on L*(R™). given
by

fr z hrbpmpgf (25).

RER

is the multivariable dyadic paraproduct with symbol b, denoted by m;,.

If we want to make clear that we take the paraproduct in n
variables, we write nlgn). Forl <i <mn,let P; : L>(R") — L?(R™) denote
the Riesz projection in the ith variable and P;* denote I — P; . Then P =
P, ...P,is the orthogonal projection from L*(R™) onto the Hardy space
H?(R™). We identify functions in the Hardy space H 2((]IJ’n) on the n-fold
product of the upper half planes with their boundary values in H?(R™). in
the usual manner, and we write H2(R™) = H2(¢*") Let H2(R") = {f €
I2(R™) : f € H2(RM)}.

The densely defined linear map on H%(R™) — H?(R") given by

)



fr— Py...Pbf (26).

Is the little Hankel operator with symbol b, denoted by y,. Again, we will

write yb(n) if we want to emphasize that the Hankel operator is taken with

respect to n variables. The characterizations of bounded multivariable
dyadic paraproducts and little Hankel operators in terms of their symbols
are by no means a simple extension of the one-dimensional results.

For n = 2, boundedness of dyadic paraproducts was characterized
in terms of an oscillation property of the symbol over all open sets in R”
and this gave rise to a characterization of the dual of the Hardy space
H 1(¢+n) in terms of oscillation properties. Only recently, it was shown

that also the boundedness of little Hankel operators on H 2((]IJ’Z)can be
characterised in terms of an oscillation property over open sets, in the
course of the solution of the long-standing weak factorization problem on

H 1(¢+2). For n = 3, no such characterization is known.

Little Hankel operators on the unit ball in C", or more generally,
on smoothly bounded strictly pseudo convex sets, are much better
understood.

The main point of this section is to show that because of the good
behaviour of Schatten class vector paraproducts and vector Hankel
operators, multivariable paraproducts and little Hankel operators of
Schatten class on certain product domains can be characterized quite
easily in terms of their symbols.

It is shown that for b € H 2(¢+2), the little Hankel operator y; on

H2(¢*") is of trace class, if and only if 3202b is integrable on ¢**, that
is, b is in the Besov space B;(R?). This appears as a special case of a
consideration of tube domains over symmetric cones. It is conjectured
that these results extend at leastto 1 <p < 2.

We will give here a Besov space characterization of the symbols
for 1 <p < oo for little Hankel operators, and for 1 <p < oo for
multivariable dyadic paraproducts.
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Theorem (1.3.1) [1]: Let n€ N, 1 < p < o , and let b € L*(R™). Then
my, € Sp,, if and only if (ZRERW% |br|P)Y/P < oo , and the Sp norm of

Tp, 1S equivalent to this expression.

Proof: We prove this statement by induction over n. For n = 1. This is

just Theorem (1.1.1). Suppose that the statement is true for some n € N.

given b € L*(R™*1), we understand the multivariable paraproduct n(n+ 2

as a vector-valued parproduct in one variable, defining B(t) = nIST(l_JT__l_)t)

fort € R. We write b, for the function on R" given by

(ty ) ty) = f b(ty ..., tn t) hy(D)dL.
1

Then nlgm ) = = B, and it is easy to see that n(n“) L*(R™1) » [2(R"*1)

is unitarily equivalent to
IIg: L*(R, L*(R™)) - L? (R, L*(R™))
via the natural unitary equivalence L?(R™*1) - L#(R, L*(R™))

Applying the induction hypothesis and Theorem (1.2.14), we obtain

=211, = s, = meu BlE, = Y o7z

I€D 1€D ) SP
P
zlllp/z z |R,|p/2|(bI)R | z | |P/2|bR|
IeD R’epn REDN+1

The same method applies for the characterization of the symbols of little
Hankel operators on H?(c*™") of Schatten class Sp 1 < p < oo.

We need the following notation. Fori € {1,...,n},t € Rand f: R® — (,
let Agl) be the finite difference operator in the ith coordinate given by

(Agi)f)(x) = f(xg, e, x; + e, %) — f(x1, 0o, x) x = (Xq, .0, x,) € R™,
For 0 < p < o, we say that b: R™ — ( is in Bp (Rn), if

[ (logsmef

M It ]?

dx; ...dx,dt; ...dt, < oo.

R" R™
We denote the semi norm defined by the pth root of the expression above
by ||l 5, &™)
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Applying the well-known equivalence of the "harmonic analysis"
definition and the "complex analysis" definition of analytic Besov class
functions coordinate wise for a version on the unit disc), one sees easily

that for b analytic in ¢*", the expression on the left is equivalent to

o~

[P

35 0, 82, b ()| dz, ... dzy,

Theorem (1.3.2) [1]: Let I <p < o , and let b € H?> (R™). Then the
following are equivalent:

(i) yp: H*(R™) > H? (R™) is in Sy;
(i) b€ Bp(R"),
and the Bp (R™) norm is equivalent to the Sp norm.

Proof: For n = 1, this is just Pellet’s characterization of Schatten class
Hankel operators in the case 0 < p < o . As before, we use induction
over the dimension n. Suppose that the statement above holds for
somen € N.

Let b € H*(R™1). We define an operator valued function B: R —
g(L*(R")) by B(t) = Vb(?.,)...,.,t) JFor each t€R, b(,...,,t) is an

antianalytic function in n variables, and b(.,...,.,t) € H*(R™). for
almost every t € R. It is easy to verify that the vector Hankel operator I's

is unitarily equivalent to the little Hankel operator y;,via the canonical
unitary L*(R, L?(R™)) - L*(R™*1) . Therefore by Theorem (1.2.13).

P 1B(t) = B(s)Il§

(n+1) _ P _ Sp
”Vb ”Sp = IT5lls, = _I It — 5|2 dtds
R R

P
5P dtds

j IB(s +t) — B(s)l
|t]?

n) (n) P

R R
[
= j j 5P dtds
|t]?
R R

P

)

”Vb(.,...,.,s+t)—b(.,...,.,s)
j j TE °F dtds

j j IBC s +8) = b, s s G, g
|£]2

=
=

+1)
dtdS = ||b ||BP(]Rn+1)

X

=
=

A



The same method applies of course for little Hankel operators on domains
of the form D = ¢*" x 2 S (™™ in the case where we have a Besov
space type characterization of Schatten class little Hankels on H?(12), for
example, if 2 € Cm is a smoothly bounded convex domain of finite type

For such domains, we can define the Hardy class H*(D) = HZ( ¢+n) X
H?(2) € L* (R® x 00) and, for b€ H?(D), define the little Hankel
operator y,on a dense subspace of H2(D).

Theorem (1.3.3) [1]: Let D = ¢*" x 0 < ¢"*™, where (2 is a smoothly
bounded convex domain of finite type in ¢™. Let b € H2(D), and let 1 <
p < oo.

Then the following are equivalent.

P
||AE-1) AE.:)b(xl, eny xnr ot )”

(i) f f — B dx, ... dx,dt, ... dt, < o.
I, 6]

R™ R"

(i) y, : H? (D) » H? (D), is in Sp

(For the definitions of H%() and Bp({2), It would be interesting to see
whether this method is also useful for domains of the form U, ¢+ {Z} X
N, c ¢"*1 where 1, is a "sufficiently nice" domain in ¢™ for each z €
C*. The case of the light cone, which was studied by Bonami and Peloso,
would be an interesting candidate for this approach.

Operator-theoretic properties of the product If'[; of a Hankel
operator and the adjoins of a Hankel operators have been studied for a
long time, partly motivated by the identity I Iy = [Ty, T,) where[Tf, Tj)
denotes the semi-commutator T¢T,; — Tr,0f the Toeplitz operators Ty and
Ty on H % (D), the Hardy space of the unit disc.

One example for this is the Axler-Chang-Sarason-Volberg Theorem,
which characterizes compact products of Hankel operators in terms of
certain Douglas algebras .

The study of such products of Hankel operators is in general much
more difficult than the study of single Hankel operators. There is still no
full characterization of boundedness and Schattcn class membership in
terms of oscillation properties of the symbols.It was shown that the
natural reproducing kernel condition

Yo



tim 10,k || 15l = @.

|z|-1

is equivalent to compactness of the product I I;. Here, {k,},ep, denote

the normalized reproducing kernels on H?(ID). However, it is an open
question whether the reproducing kernel condition

supl[ryk | k|, < (29).

Which can be understood as a "combined" oscillation condition and was
shown to be necessary ,implies the boundedness of the product I£'[ .
Slightly stronger sufficient conditions have been found.It is also open for
which symbols g, f € L?(T) the product of Hankel operators I}'Iy is in

the Schatten-von Neumann class S, ,although partial results were found
and estimates for the singular values of such products have been obtained.
In this section, we will again consider dyadic paraproducts as a model
case for Hankel operators and study operator-theoretic properties for
products 77, of dyadic paraproducts. Asesquilinear version of the

dyadic sweep from (II). Given by

olf.g1 = ) Tiihidi (.9 € 2®) (29.

I1€D

allows us to address this dyadic analogue in a very simple fashion.

as before we collect some elementary properties of the sesquilinear
map Q.

Lemma (1.3.4) [1]: (i) [[2[f, g]ll; < lIf1l21lgll2;
(i) P,Q[f,g] = PQ[P[f,Pig]

We first need an analogue of Proposition (1.1.2). For f, g € L*(R), let
Dy 41 be defined on the Haar basis by

1 _
Dirgihi =\ 1y z 118 | -
JEDT()

Lemma (1.3.5) [1]:

Mg = Tolf,g1 + Doir.g] + Dif.g1-
Proof: Exactly as in Proposition (1.1.2).

1



Theorem (1.3.6) [1]: Let f, g € L>(R). Then the following are equivalent:

>i) ;g defines a bounded linear operator on L*(R) — L*(R).
(i)  9Q[f,g] € BMO%, and

1
sup z Tl <o 30
rep I &t
(111)
1 ! !
sup—1Q[P/f, Piglll; < oo.
1ep ||
(iv)

sup||7t57tfh,|| < oo,
€D

Proof: (i) = (iv) obvious.

(iv) = (ii): Remember from (1.3.5) that 7r[f 4 is the superdiagonal part of
TgTs, Agir,g1 18 the subdiagonal part, and Dyf g7 is the diagonal part with
respect to the Haar basis. The uniform boundedness of || mymehy Il :
therefore implies uniform boundedness of ||Df,g h,” = lI< mgmehy, by >l
and thereby (30). Furthermore, note that ﬁz ,ED|(Q [f, gD ]|2 =
||7IQ[f,g]h,||2 = ||P,’7t57tfh,||2 < ||7t57tfh,||2 for all I € D and therefore.
Qlf,g] € BMO“.
(i1)=(ii1):Note the identity

QIP;f,Prgl = xemy QI[P f, P gD + Pi(QIf, 9D

Thus
1 1
riIQIPif. Piglll < ImiQIPf. PigDl + 1 IP.(QIPL, PigDl
1 | o1
=11l 2. Hid|+rinelr.all; (3.
JeD' (1)

v



(111) = (i1): By the uniform boundedness of the projections (P;);ep, on
L'(R), the uniform boundedness of the left-hand side in (31) implies the
uniform boundedness of the right-hand side. Therefore

1

WO[f, 91l gmoe = sup— 1P, Q[f, glll; < o
1ep |1

and also (30) holds.

(i) = (1): By Theorem (1.1.8), mg(r g1 and Ag(s 41 arc bounded, and by
(30),D(f,g7 1s bounded. Thus mgms + Ag(r g1 + Af g is bounded.

Condition (30) looks like a natural sesquilinear analogue to the
BMO4 condition. However, a simple example shows that it is not
sufficient for the boundedness of 47y

Remark (1.3.7) [1]: There exists functions f,g € L*(R) such that (30)
holds, but 747s does not define a bounded linear operator on L*(R).

Proof: Let f, g be defined by the following Haar coefficients. For k > 0.
let I, =[0,27%]Let a>0, 1/2<a* <1, and let fi. = fi, =91, =
ak gi; = a® for each k > 0.

Let all remaining Haar coefficients of f and g be 0. Then g, f € L*(R)
and Y ;epr () f1g; = 0 for each I € D, but

> QL= Y &

Z f19; = Z 19,

1€[0,1] 1<[0,1] JED(I) JED(I7)
2
1 = = k 4k
k=0 k ]ED(I,':) JED(}) k=0

The remark follows now by Theorem (1.2.6) (i1).

A further natural candidate for a "combined" BMO? condition is given by

1

supr > [fylg| (32).
1ep |1 1S

It turns out that this condition leads even to a stronger property. For o €
{—1.1} letT,;, denote the dyadic martingale transforms L?(R) —
L*(R), Y ep hi fi — Xiep o (D, f;. then we have the following result:

YA



Theorem (1.3.8) [1]: Let f, g € L?(R).Then the following are equivalent:

(i)  For each dyadic martingale transform Ty, myTsmy defines a

bounded linear operator on L?(R), and the operators
(g ToT5) ger—1.1)D are uniformly bounded. (ii)

supr >[5l

JeD' (1)

o Tomeh|| < oo,
en iyl 8 <

Proof: (i) = (iii) obvious.
(iii) = (ii): Let I € D Then for each ¢ € {—1,1}.

(myTemehy, hy) = ( z sign(J,1)a(J)h; f;, z sign(J,Dh;g;)

JED' (D) JED' (D)

1
= Z (g f;

JeD' (1)

Choosing an appropriate sequence (o (J));ep € {— 1,1}?, we obtain

1 vz
> lglIfl <VE| D g\ < sup mgTomgh )
JED' (D) JeD' (D) oe{-1,1}?
\/E
ma sup ||7th nfh,”

(ii) = (i): Observe that 7, T,y = mymrn, Foralll € D and all o € {—1,1}7

1 1
o npigll =l Y Zowgs|| < Y lalls

111 , ,
JED' (D) I JED'(D)

(1) Follows now from Theorem (1.3.6) .

Unfortunately, when considering products of operators it is not as easy as
in the situation to pass from results on paraproducts to results on Hankel
operators via averaging. The following remark shows that products of
paraproducts and products of Hankel operators behave quite differently.
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Remark (1.3.9): A seemingly natural dyadic analogue to Zheng's
necessary condition (28) is the following:

supll | g, < o (33).

This condition is easily seen to be sufficient for the uniform boundedness
of all operator products myTs7r, 0€,{-1,1}? , by Theorem (1.3.8) (ii).
However, whenever the sets {I €D : f; # 0}and {I € D : g; # 0} are
disjoint, the product 7, T;7msis 0 for all 0€,{-1,1}. Thus one sees that (33)

1s not necessary.

Finally, we want to characterise Schatten class products of
paraproducts. First, let us look at the compact case.

Theorem (1.3.10) [1]: Let f,g € L?*(R). Then the folowing are
equivalent:

(i)  myTy defines a compact linear operator on. L*(R) — L*(R).
(i)  Q[f,g] € VM0O%, and

fim ;ﬁgl - (34).
(iii)
hmm”Q[PIf PIg]”I = 0.
(iv)

llm”ﬂgﬂth” =0

[—> 0

Here, the limits in (i1)- (iv) are meant in the sense of (10), and
convergence to 0 is meant to be uniform, as [I[| = 0 or |I[| - o
respectively.

Proof: (i) = (iv): For N € N. let P®™) denote the orthogonal projection
defined in (21). (P™)yen. Converges to the identity in the strong
operator topology, so ngan(N ) — TgTy converges to 0 in norm, and we

obtain (iv). For the remainder of the proof, one shows (iv) = (ii) (1) and
(11) <> (111) along the same lines as in the proof for Theorem (1.3.6), using
Theorem (1.1.8) (ii1) and Lemma (1.3.5).



Now we look at the Schatten classes Sp, 1 < P < oo. In this case. it
turns out that if myms € Spthen alsomyT,my € Sp for all o € {(—1,1}2,

with uniformly hounded Spnorm. We get a natural combined dyadic
Besov space condition for the symbols f and g.

Theorem (1.3.11) [1]: Let f, g € L?>(R), the 1 < P < o the following
are equivalent:

(1) ngTymy € Sp For each o € {—1,1}?,and (Mg ToTf) gef—1,132 18
bounded in Sp

(i) mgms € Sp.

(iii)  Q[f,g] € BY, and

>l 2 fof <=

I1€D JED' (D

(iv)

1 P
D il <o

I1€D

(v) foralll <q < co.

1
zlflT/q Q[P f,P{glllg < o0

I1€D

Proof: We will show
(i) = (iv) = (v) = (iil) = (ii) and (iv) = (1) = (ii),
(11) = (iv) : ForI € D, Let

1
Y = W(Xﬁﬁ — Xr+=-)

and

, 1
Y = W(XI'H'_ — X1—+)-

The sequences (Y;)ep and (Y; )rep are not orthonrmal , but it is easy to
see that they are the images of the rothonormal Haar basis under bounded
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linear maps A,B. In the notation, (Y;);ep and(Y; );ep are weakly
orthonormal. Therefore,

> lwgmppnwp” = ) [ mympany, )| < NAIPIBIP |y |

I1€D I1€D

Notice that

g
1 ; ++
—7; UJEITT,
2|1+
1
———— ifJeItT,
[++|1/2
mpp; = 4 A
1 i +++
— 177 UIJE ,
2|I++|
———7 ifJjert T,
2|+
0 otherwise,
and
g
1 . — +
41+ |1/2 ufJ=r,
1 , -
arE
r_ 1 ,
mp; = S 21772 if J=1*+,
1 ,
—7 ifJj=1"",
2|+
—_— if jertt
|1++|1/2 v
1
-— if jei——%
\ |I++|1/2
0 otherwise,
1 . ..
Thus {(m;y;, m;y;) equals e for ] = I and 0 otherwise, giving
P 1 1
* ! _ P
z|(ngnf¢1l¢1)| _4_pz|1++|p |fI_+gI++| '
I€D I€D

Adjusting the definitions of ¥; and ¥; we obtain corresponding
expressions for

P P 1 P
Zﬁlf g+ zﬁ [fi-+gi-+|" and IZ;W [fr=-g1-- |
€

I1€D I1€D

Thus (iv) holds.
(iv) ® (v): Let ¢ = Y,ep hylfig;1*2. Then
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1 1
D iz lQUPif. Pigllly < ) g QLRI I

I1€D I1€D

1
! 2P
< C3f ) e IPIOEE = CENOI,

1€D
1
2P
= szcI;sz,zq ||¢”B§P_2q = szcI;sz,zq z W | 191 7.
1€D

by Theorem (1.1.6) where C,,denotes the norm of the dyadic square
function on L?7 and k, p,2qdenotes the equivalence constant between the
Bg,q and the Bg norms from Theorem (1.1.6).

(v) = (ii1): Suppose that (v) holds for some g, 1 < g < oo. Them by
Holder's inequality, (v) holds in particular for g = 1. Note that the
projections ( P;);ep are uniformly bounded on L!(R). We obtaion

1
D i Pl gl

I1€D
1 l l P P 1 / ! p
= zWHP,Q[P,f,P,g]II, <C W”Q[PIf;PIg]”I'

€D 1€D
And it follows from Theorem (1.1.4) that Q[f, g] € Bg Furthermore,

P

1 1
D5l 2. ha)| = ) etpif pigli.

I1€D JED' (D I1€D
Thus (iii) holds.
(111) = (i1): This follows directly from Lemma (1.3.5).

(iv) = (i) : Note again that m T,y = mymT, f, and that condition (iv) is

invariant under exchanging f with T, f .

Condition (i) now follows by applying the implication (iv) = (ii) proved
above to the symbols T, f and g.

(1) = (i1): This is immediate .

Using Theorem (1.2.12) we also obtain a vector version of this
result:

¢y



Corollary (1.3.12) [1]: Let H be separable Hilbert space , Let F,G: R —
$(H) be weakly locally integrable, and let 1 < p < oo. Then the
following are equivalent:

) Iig Iz € S,
(i1)
1 e
D T IGiFIS, <.
1€D
Proof: The proof (ii) = (iv) = (i) = (ii) in theorem (1.3.11) also works
in the vector case. We omit the details here.

In [VI], it was shown that the condition

1
sup E —|fig:1” < o0 (35).
keN 1]

IEDk

is necessary for the product of Hankel operators I3 'I; to be in Sp.

We have seen above that the stronger condition Theorem (1.3.11)
(iv) holds whenever mym; is in Sp It would be interesting to know

whether Theorem (1.3.11) (iv) holds (at least in some averaze sense)
whenever I3[ is in Sp. Conversely, it would be of great interest to know

whether a translation and dilation invariant version of condition (1.3.11)
(iv) implies that g7y is in Sp. We finish by stating this as a conjecture.

As before, denote by D*"where and a € R r € R* the dyadic grid
obtained by dilating the standard dyadic grid D by r and then translating
it by a.

Conjecture (1.3.13) [1]:Letl < p < oo, and let f, g € H?>(R). Suppose
that

1 P
sup z ngll < oo
ED®T

aeRmeR+I

Then I T € Sp
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Chapter 2

Continuity in Schatten- von Neumann of p- class of Hankel
Operators with Fock Spaces

We investigate Hankel operators Hz: A7, — A7 with anti-
holomorphic symbols f = ¥ b, 2% € I2(C, | z ™), where A2
are general Fock spaces. We will show that H is not continuous
if the corresponding symbol is not a polynomial f = ¥'%_,b, z*.

Namely in case 2k < m the Hankel operators H are in
the Schatten— von Neumann p-class iff p > 2m/(m — 2k); and
in case 2k = m they are not in the Schatten—von Neumann p-
class.

Section (2.1): Hankel operators with anti—-holomorphic
symbols

Hankel operators with the special symbols Z¥ , k € N, have been
considered. Here we try to generalize these investigations in order to
obtain more insight for general anti-holomorphic symbols

f=Yw b zZ¥€*(ClzI™),meN
Where

L, := 1(C, 2™

= {g measurable: || g||3,:

= f lg(2)|2e7 7" dA(z) < oo}.
C

and A2, is the corresponding subspace of entire functions:

A2, = AX(C, 2™

= {g entire: ||gl|%,;: = f lg(2)|2e 1™ dA(z) < 00}.
C
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For convenience we sometimes abbreviate L%(C,|z|™)by L?(|z|™) and
A%(C, |z|™) by A2(|z|™). The subspaces AZ, are weighted Bergman
spaces with weight function exp {|z|™}, norm |[I|l,,, and associated inner
product

(Fr9m = [ DG a2,
C
Where dA denotes the Lebesgue measure in C = R? . the expressions

Com = (2™ 2™")m = f |22~ 12" dA(z) = lz"|2,,n,m € N,
C

are the so-called moments. We denote the spaces, A%, general Fock
spaces, where Fock space is the (Hilbert) direct sum of tensor products of
copies of a single-particle Hilbert space H

0
Fv(H): D SvH®n
n=20

=COHD(S,(HRH)D(S,(HRHRH)) D ...

Here C, a complex scalar, represents the states of no particles, H the state
of one particle, S,,(H @ H) the states of two identical particles etc.

A typical state in F,(H) is given by
|Lp)v = |Lp0)v D |LP1)1, D |Lp2)v D ..
= al0) @ Y1) @ ) ay [ ), @ ..
ij

Where:

|0) is a vector of length 1, called the vacuum state and a, € C is a
complex coefficient,
|¥1) € H is a state in the single particle Hilbert space,

1
Wi 2y, =5 (120 ® [y ) + (-1 [9) ® Ipar))
€ S,(H ® H),

A



and a;; = v aj; € Cis a complex coefficient etc [6].

and A3 is the classical Fock space. Remember that the Hankel operator
with symbol f= Y% b, ¥ € L2(C,| z I™) is given by

Hy(h) = (Id — p)(fh)

Hp = (Id = p)(f): A% — AR,

L
Where P : A% — A2% denotes the Bergman projection, which has the
following integral representation:

P(9)(w) = [g(@DKn(w,2)e” " dA(2),vg € L*(C,| z ™),

Here K,,(w,z)is the reproducing kernel, the so called Bergman kernel,
which is given by

Kn(2,W) = > dm(DPrm),
k=0

Where {¢y. m}r=1 is any complete orthonormal system of A2, .

Most results about Hankel operators only deal with essentially
bounded symbols . In that case it is well known, that the Hankel

operators are bounded with ||H@|| < Y]l oo-

In the last years further (spectral-) properties of Hankel operators,
like compactness, Hilbert-Schmidt or p-Schatten-von Neumann class
where a Hilbert—Schmidt operator, named for David Hilbert and Erhard
Schmidt, is a bounded operator A on a Hilbert space H with finite
Hilbert—Schmidt norm

1liZs = TriAAl= )" |laell?
i€l
where || || is the norm of H and {e;: i € I} an orthonormal basis of
H for an index set I. Note that the index set need not be countable [7].

There has been some work on Hankel operators on weighted
Bergman spaces .For a general introduction in the field of compact
operators and for the p-Schatten-von Neumann class. Later on Hankel
operators with monomial-symbols Z* were studied also on weighted
Bergman spaces, especially on generalized Fock spaces It should be also
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mentioned that there is the following connection between Hankel
operators and the 0-Neumann problem: the canonical solution operator
Sto 0 is a Hankel operator of the form S = (Id - P)Z_ = H;;If S 1s
restricted to Bergman spaces, or more generally to holomorphic
(0,q) —forms.

Let Hf be the Hankel operator with general anti-holomorphic

symbol f,i.e. f is polynomial or more generally a power series

=D bzt €2(zm
k=0

Then the following problem arises: if h € A%(|z|™), then it is not clear
that fh € L?(|z|™). Even the multiplication with z"is only densely
defined as an operator from L?(|z|?) to L?(|z|?) ,V¥n € N.

1

. A calculation
k2k!

Example (2.1.1) 2]: h = ¥, apz* with |a*|* =

shows
1
IRE ~ > =,
k

I7AlE ~ > (n k)I;;(k D Dtk .+ 3),
k k

So, h € L?(|z|?), but z"h & L*>(|z|?),vn € N,n # 0

In this section we investigate continuity of the Hankel
operators Hy. In the following we will show that there are no continuous
Hankel operators with anti-holomorphic symbols if the corresponding

symbol is not a polynomial. Let {e,, = %: n € N} be the natural basis

of A7, and C,,,, the moments corresponding to m. We will suppress the
dependence of €, ,,, on m and will simply write C,, . In the following we
will assume that

fen € Lz(lzlm);
in order to ensure that Hy(e,) can be defined in a suitable way.

Clearly Hf(ey,) = fe, — P (fe,).

The following proposition calculates Hz(e,,) = fe, — P (fe,). directly
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Proposition (2.1.2) [2]: let f = Y, bp2® € L?(|z|™).Then we have

TL

Hren) = o (F2) = F2= ) by 2"
k=n n k
Proof: Note that
_ 1 w ke
P(fen)(z) = _P(Zk=0 byz"z")
1 b
z(Zk o bkz¥z"e;)e; = zzc—z(z"|zl+k)zl
"T=0k=0 !
1 bk 1 C2 _
= C— z ?C%é‘n,l_{_kzl = C—zczn bk Zn k.
M Sn—kk=n—1 ' Mi=n Nk

Now we calculate the norm of Hankel operators in terms of the moments
crand the coefficients by:

n m

o ()
Y bt = "k|f——2bl 2

k=sn l<m
= (F— |f—>+22bkbzcncm<cz |—>
k<nl<m n—k Cm-
- Ben P If = >—Zbkcni If—)
l=sm k=n

For f = Y ¥b,z* and n = m we have

[ G =% Zb b e\
F\— kbicr z k€
f Cn n £ n c, Ci B
Tl
=Y b e 15
ksn n-k ~ n
2|bk|2 ";"+Z|bk|2 i —zZ|bk|2 i
tn k<n n k k<n
2
Z|bk|2["
k=n k>n

So we can conclude the following characterization .
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Proposition (2.1.3) [2]: Let f = Y7 b z* € L?(|z|™), then the Hankel
operator Hy = = A%, — A%l is bounded if only if there exists a constant C

such that

ksn

< C,vn € N.

k>n n

Note that in case of polynomials f = Y% b, z* the formula of the norm
reduces forn > N to

n
e (N - e -
CTl

In this case we have only to investigate a finite sum of a, (k). in

an (k).

the next section we will give explicit, necessary and sufficient conditions
for boundedness and compactness of Hankel operators with polynomial
symbols on generalized Fock spaces.

One result will be the following: if & is large enough, i.e., if 2k >
m, then a,(k) » o forn - . Consequently boundedness is only
possible for polynomial symbols.
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Section (2.2): Hankel Operators with Polynomial Symbols
on Fock Spaces and Schatten-von Neumann P-class

We recall (Eq. (1)) that in case of polynomials f = YV b,z* the
formula of the norm simplifies in case n > N to

e = D[

So we have to investigate the asymptotic behaviour of

n+k Cn ]

2, 2
a, = a,(k) = n2 >— forn — oo,

n n—k

Example (2.2.1) [2]: On the Fock space A%(C,|z|*)the moments are
given by c2~n! and so we have,

(n+k)! n!

n n (n—k)

Consequently for polynomial-symbols f = YN_, b,z* the Hankel
operators Hf are bounded in case N = 0,1 ; but in case N < 2 they are

unbounded. To see this we note that a,,(0) = 0 and a,, (1) = 1, for all
n = 0. Furthermore, for k > 2 the coefficient a, (k) is a polynomial of
degree k — 1 with leading coefficient equal to

There is also a more direct way to see that the operators H .k are not

=

-1

I M
II

bounded on the Fock space for k > 1.If k, denotes the normalized
reproducing kernel on the Fock space

(defined by ky(2) = ko(z,w)/ky(w,w)¥/2 = eWz=W/2)  and ¢,
denoted the translation by w (so T, (z) = z + w), the formula

”kaw ”2 = [[fotw = fFW)Il;

is valid for analytic functions f such that fk,, € L3 , in particular for all
polynomials f . Since the functions k,, have unit norm, a necessary
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condition for boundedness of Hy on the Fock space is that the norms

Ifoty, — f(W)||, are uniformly bounded. If f(z) = z* and n > 2, then
it is easily to see that

Ifotw — W), = f |2+ W)k — wh2e 7P dA - oo,
C

as |w| —» oo ,so that the operator H ;« is unbounded for k > 1.

Let us recall that on generalized Fock spaces the moments are
given by

A2(C, |2™) = | f entire: ||| = f DI expl—|zl™} dAZ) < oot
C

The moments are given by

2k+2)

21
k= = [ 12 exp(-lal™ 2@ = 1 (5

C
Where I' =I'(x) = fooo t*le~tdt,x > 0, is the Gamma function. We
remember Stirling's formula with error term

1 N 1
12x = 288x?

Where 0, := 0(1/n*) are the so-called Landau symbols

F'(x+1) =x¥*e ™™ V2mx <1 + + 03),

The following proposition determines the limiting behavior of the
SeqUence n = Cayk/Cr — Cn/Cryr’

Proposition (2.2.2) [2]:

2 2
c c k
a, = n;k— 2n ~ C(k,m)n%‘l,
Cn Cn—k
Where
k
2\ 2Kk?
C (e,m) = (—) =
m m

Proof: Using Stirling's formula it is easy to verify that

oy



'x+1+P
( )~(x+P)Pasx—>00,

I'(x+1)
Thus
an:F(ZnZ-I—TikZ-I-Z)_ 2(ané-{f)z
+ — 2k +
() =)
2k 2k
2n + 2k + 2 m 2n+ 2 m
~< —1) —( —1) asn — o,
m m

It follows from Eq. (2) thata, > 1asn —> o if2k =manda,, > ©as n -
oo if 2k. also, if 2k < m, then it is easy to show that Eq. (2) implies that

2 2k _q
<2k) (2 )m 2k "
~|— — _—— — 00,
ae~(—) | —n asn
So we can conclude the following theorems.
Theorem (2.2.3) [2]: Let Hf be a Honkel operator with sysmbol f=

Y% o brz® € L2(1zI™), which is not a polynomial. Then the hankel
operator

Hr = (Id — P)f: A*(C, |z|™) - A2(C, |z|™)*.
1S unbounded.

Proof: We recall that for symbols f = ¥ ¥b,z* € L?(IzI™), the Hankel
operator Hp : A% — A% is bounded if and only if there exists a

constant C such that

”
]_ <C )
n

In case that the power series symbol f is not a polynomial we have » with

2 2
C
_ z|bk|2an(k) + Z|bk|2 wk<cvnen
ksn k>n n

2n > m.

Consequently we have & with 2k > m. And with proposition (2.2.2) we
have a, (k) — oo for all k with 2k > m . So clearly Hf is not bounded.

Theorem (2.2.4) [2]: Hr be Hankel operator operator with polynomial
f =3N_obez® . Then in case 2N < m the Hankel operators

o¢



Hr = (Id — P)f: A*(C, |2|™) - A*(C, |z|™)*.
are bounded; and in case 2N > m they are unbounded.

Proof of: We have only to recall that in case n > N we have

n
e - o[-
CTl

and so with Proposition (2.2.2) we get the result.

an (k).

Now we consider compactness conditions of Hankel operators
Hf with symbol f = >N b,z* on generalized Fock spaces A2(C,|z|™).

we will need the following proposition for the further investigations.

Proposition (2.2.5) [2]: Let f = Y5 ,a,z" and n,r € N withn > r.
Then in case n — r > N we get

Hp(z") L Hp (z").

Proof: We have

o ()

T

))
T—l

= (7= |f—>+ZZbkblcncr T c,% )
gn—k 7

k<n l<r
- (= )= ) been (G IF )

l=sr ksn

Clearly-N < k,l[,k-1 < N <n-rand SO by  using
On—rk-1,0n—r—1 and 8,_,. ,we get Hz(z") L Hz(z").

So we can conclude the following.

Corollary (2.2.6) [2]: Let f = ¥¥_, axz®. Then for all n,r € N with
n-r > N,r > N we get

1HzCen) = Heenl” = [He||” + [[HrCe]’
N 2 2 N 2 2
:Zlbklz [Cn+k_ Cn ]"‘Zlbklz [Cr+k_ Cr ]
. 2 i, . c2 ¢ty
N

= > Ibellan (0 - a, ().
k

00



Theorem (2.2.7) [2]: Let f = Y¥byz®. Then in case 2N <m the
Hankel operators.

Hf = (Id = P)f: A*(C, |2|™) — A*(C, |2|™)*.
are compact and in case 2N =m the Hankel operator Hy fail to be

compact.

Proof: Let 2N = m. With Corollary (2.2.6) we get

N
lHpCen) = el = D e lPlan o) = a, (O],
k

and with Proposition (2.2.2) we have for 2k =m = 2r that
an(k), a,(k) - const (k, m). Consequently the Hankel operator Hf can

not be compact.

Compactness is shown for Hf:Afn - A%lin case 2k <m. so

clearly Hr = ¥ by H i is compact in case 2N < m.

In this section we will give for the symbol z¥, k € N and for
allp > 0 a complete characterization of the Schatten-von Neumann p-
class membership in terms of &, m and p. Let us start with some
definitions.

First we recall that a bounded linear Hilbert space operator T: H; —
H, is called positive, if

(t x,x) =0,Vx € H,.
In fact this is equivalentto T = T*and o(T) S [0, x).

Definition (2.2.8) [2]: Let H;, H, be Hilbert spaces with a complete
orthonormal system {e, },,ey Oof H;. A positive operator T : H; —» H, is
in the trace class if

tr(T) = z(Ten, e,) < oo,

The definition is independent of the choice of the orthonormal system.
Clearly a bounded linear Hilbert space operator 7 is Hilbert-Schmidt, i.e.

o1



1Tl = D ITenll? = ) (Ten, Teg) < o,
n n

if and only if the operator T*T is in the trace class. In that case clearly we
have

ITNs = tr(T"T).

This can be generalized to the definition of the Schatten-von Neumann p-
class (or the Schatten ideal ST):

Definition (2.2.9) [2]: Let p > 0 and H,, H, be Hilbert spaces with a
complete orthonormal system {e,},ey of H;. A bounded linear operator
T: H, » H,is in the Schatten-von Neumann p-class if (T*T)P/2 is in
the trace class, 1.e.,

r((T°T)P2) = ) (1) ey, e0) < o0,

In that case we define ||T||5: = tr((T*T)P/Z). so by definition the
Schatten-von Neumann 2-class (or the Schatten ideal S?) is the ideal of
Hilbert-Schmidt operators. Now let us turn to our Hankel operators with
symbol ¥, k € N and let us repeat some facts. As above we abbreviate

Com= Cp .

Lemma (2.2.10) [2]: Let kK € N withn = k and e, (2) = z"/c,, . then

2 2
C C
* n+k n
(HZ_kHz—ken, en) = 2 o2
n n—-k

Theorem (2.2.11) [2]: Let p > 0 and 2k < m. Then the Hankel operator
H,k: A2, > AZ' is in the Schatten-von Neumann p-class if and only if

had 2 2
c
z n+k Cn < oo,
o S
Proof: In case 2k < m with Theorem (2.2.7) the Hankel operator H« 1s

compact and so the operator Hsz H ;x has the form

oy



H;k Hz—k(g) = z An,k (g; en) €n-

Consequently
(H;k Hk ey, en) = An,k-

and with Lemma (2.2.10),

N| "o

2 2
—_z Cn+k_ Cn
;i)

2
n

In case of the Fock space (m = 2) for all k > 1 the sequence

a, (k) = Chik _ _Ch _ (m+k) _ ml
n c2 c2_ n! (n—-k)!

Does not even tend to 0. So we can conclude the following.

Corollary (2.2.12) [2]: Let p > 0. On the Fock space the Hankel
operators

H: A*(C,|z]%) - L*(C, |z]?).
are not in the Shatten p-class for all k > 1.
Theorem (2.2.13) [2]: Let p > 0. In case 2k < m the Hankel operators
= (Id — P)z*:A%(C, |z|™) — A%(C, |z|™)*.
are in the Schatten p-class, iff p > —2 In case 2k = m the Hankel
operators are not in the Schatten p-class.

Proof: Use Eq. (3) to note that
2

NCS Y

nzk n

P2 <®

()

if and only if (1 — 2 )p/2>1 that1sp>2/(1——
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Chapter 3
Stieltjes Moment Problem and Hankel Operators

We prove that there are nontrivial Hilbert—Schmidt Hankel
operators with anti-holomorphic symbols if and only if s is exponentially
bounded. In this case, the space of symbols of such operators is shown to
be the classical Dirichlet space. We mention that the classical weighted
Bergman spaces, the Hardy space and Fock type spaces fall in this
setting.

Section (3.1): operators of Hilbert space 42(s)

We consider Hankel operators and the d-canonical solution
operator in a Hilbert space of analytic functions related to a Stieltjes
moment sequence. We recall that a sequence S = (§;),d € Ny, is.said to
be a Stieltjes moment sequence if it has the form

+ oo

S4q =f t4du(t),

0

Where u is a non-negative measure on [0, + o), called a representing
measure for s. These sequences have been characterized by Sticltjes in
terms of some positive definiteness conditions. We denote by S the set of
such sequences. It follows from the above integral representation that
each s € § is either non-vanishing, that is, S; > 0 for all d, or else s; =
8pq for all d. We denote by S the set of all non-vanishing elements of S.
Fix an element s = (s;) € §*. By Cauchy-Schwarz inequality we see that

S . .
the sequence.% is non-decreasing and hence converges as d — +0o to
d

the radius of convergence of the entire series

+00 d
W)= ) ———,2¢€C
dene1 d+1-n
Set R : = dliErn Scsi—;l = \/dliErn sadt .The sequences s for which the

radius R; is finite are called exponentially bounded.
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Denote by ()¢ the ball in C" centered at the origin with radius Ry with the
understanding that Q. = C" when R, = + o0. We denote by A?(s) the
Hilbert space of those holomorphic functions f(2) = Ygenn aq 2% on Qg

that satisfy

C{!S|a|
Laeny (la| +n — 1!

lag|? < +oo

equipped with the natural inner product

C{!S|a| —
(f;g) = ZaEN{} (lal +n— 1)| aaba-

if f(2) =Xaenn @qz% and g(z) = Ypenr aq z%are two elements of
A?(s) .

Now let ¢ = g,, be the rotation invariant probability measure on the unit
sphere S,, in C"and let u, be a representing measure of s. We denote by

Uy, the image measure in C" of u @ a,, under the map (t,§) - \/E from
[0,+ o) X S, ontoC™. We consider the Hilbert space L?(u,,) of square
integrable complex-valued functions in C"with respect to the measure p,,.
Our first result is the following:

The classical weighted Bergman spaces, weighted Fock spaces and
Hardy spaces, where Hardy spaces (or Hardy classes) HP are certain
spaces of holomorphic functions on the unit disk or upper half plane.
They were introduced by Frigyes Riesz, who named them after G. H.
Hardy. In real analysis Hardy spaces are certain spaces of distributions on
the real line, which are (in the sense of distributions) boundary values of
the holomorphic functions of the complex Hardy spaces, and are related
to the LPspaces of functional analysis. For 1 < p < oo these real Hardy
spaces HP are certain subsets of LP, while for p < 1 the LP spaces have
some undesirable properties, and the Hardy spaces are much better
behaved [8], are of the form , A%(s) ; each of these space is associated to
an appropriate choice of the sequence s.

To state further results we consider the orthogonal projection £,
associated to A% (u,,). It is given for all g € L*(u,,) by

(Pg)(z) = fﬁSKs(Z; w)gw)du,(w),z € Q.



This integral operator can be extended in a natural way to functions g
that satisfy K,(z,")g € L'(u,) for all z€ Q. This extension allows us to
define Hankel operators. To do so, denote by T'(s) the class of all f €
AZ?(s) such that fpK.(z,) € L*(u,)) for all holomorphic polynomials ¢
and z € (l;and the function

Hi @)@ = [ Kw) @[ = Fon)]dinw) 7 € 0,

CTL
is the restriction to Qcof a function in L?(u,,). This is a densely defined
operator from A?(s)into L?(u,) which will be called the Hankel
operator Hr with symbol f it can be written in the form
Hi (o) = (I = P)(fo).
for all holomorphic polynomials ¢.

It is not hard to see that the class 7'(s) contains all holomorphic
polynomials. Finally, if f € T (s), we denote by Spec (f ) the set of all

multi-indices k € N{ such that Z% (0) = 0.
Our second result is the following :
Theorem (3.1.1) [3]: Suppose that f is a holomorphic polynomial Then
(i) Hf is bounded if and only if
sup <Sd+2|k| _ Sasll T 1 Sd+|k|> < 4o, o
deNy \ Sd+|k| Sd d Sd

For all k € Spec(f).

(i) Hf is compact if and only if

lim
d—+oo

<Sd+2|k| _ Sa+lk| N n-— 1Sd+|k|> —0 @

Sd+|k| Sa d Sa
For all k € Spec(f).

(111) If p > 0, then Hf is in the Schatten class SP(A?%(s), L*(uy)
if and only if

1)



P

S S 2 P /s =
z d"‘1< dtalkl _ d+|k'> +(n-1) d"‘1‘5< d*'k')z < oo,

S S S
deN d+|k| d d

for all k € Spec(f).

o

We point out that if the sequence s is exponentially bounded then
(1) and (2) hold. The last assertion of Theorem (3.1.2) shows that if n >
2, and the Schatten classST (A% (s), L?(u,) concerns nontrivial Hankel
operators with anti-holomorphic symbols, then p > 2n. The converse to
this statement is not true as shown. In particular, in higher dimensions
there are no nontrivial Hilbert-Schmidt Hankel operators with anti-
holomorphic symbols. The situation in the one-dimensional case is
completely different. More precisely.

The first equality shows the characterization in the latter theorem

depends only on the limit lim_, 4, dcsi;“l . The above result has been proved

by separate methods in the two simple partieular cases of Hardy and
Bergman spaces.

Now we shall characterize the boundedness, the compactness and
the membership in a Schatten class of S the canonical solution operator of
the 0 on the space HOD(Q,) consisting of (0,1) — forms with
holomorphic coefficients in L?(u,,) defined by 9(Sf) = f and Sf is
orthogonal to holomorphic elements of L?(u,,). The spectral properties of
this operator were studied by Haslinger, Haslinger and Helfer and Lovera
and Youssfi.

Corollary (3.1.2) [3]: Consider the canonical solution operator S to the 8
from H D (Qy) to L?(uy,). Then the following are equivalent:

(i) S is bounded on H @D (Q,) .

(1) For allj =1, ....n, the Hankel operator Hz, is bounded from
AZ?(s) into L?(u,,).

(111) There 1s j =1,.. n, such that the Hankel operator Hz, . is

bounded from A2 (s) into L*(u,,).
(iv)  There is a positive constant C > 0 such that

< Sd+n Sd+n—1)_+7l_'1 Sd+n

Sd+n-1  Sd+n-2 d Sd+n-1

Ty



for all positive integers d.

Corollary (3.1.3) [3]: Consider the canonical solution operator S to the 9
from H (D (Qy) to L?(u,) .Then the following are equivalent:

(i) S is compact on 7 OV(Q,).

(1) For all j =1,....,n, the Hankel operator Hz, is compact from
AZ?(s) into L (u,,).

(111) There is j=1,...,n such that the Hankel operator Hz, is

compact A% (s) into L? (uy,).
(iv) We have

lim
d—-+o

< Sd+n Sd+n-1 +_n'_'1» Sd+n ) -0
Sd+n-1  Sd+n-2 d Sd+n-1
In each of the two preceding corollaries, the equivalence between

the two assertions (1) and (iv) was established in Lovera and Youssfi and
later by Haslinger and Lame!.

Corollary (3.1.4) [3]: Consider the canonical solution operator S to the

d from HOD(Q,) to L?(u,) and let p > 0. Then the following are
equivalent:

(i)  Sis in the Schatten class Sp(H @D (Qy), L2 (1))
(1) For all j =1,...,n, the Hankel operator Hz, is in the Schatten

class Sp(H OV (Q,), L (1)),
(111) There isj = 1,....,n, such that the Hankel operator Hz, is in

the Schatten class Sp (A2 (), L? ().
(iv)  There is a positive constant C such that

P P

z dn—1< Sa+n Sd+n—1)7+ (n—1) dn—1—§< Sd+n )5 <C

S _ S _ S _
den d+n—-1 d+n-2 d+n—-1

for all positive integers d.

In the latter corollary, the equivalence between the two assertions
(1) and (iv) was established in Lovera and Youssfi in the case p = 2 and
later by Haslinger and Lamel in the general case.

ay



To state another result, we let M'(s) be the subspace of T(s)
consisting of those functions f. for which the Hankel operator Hf is

bounded on A?(s) .We equip M (s) with norm
f laccsy = lIHzll + 1£ O

The subspace of M (s)consisting of functions f such that Hy is a

compact operator will be denoted by M, (s). Then it is not hard to see
that M, (s)is a closed subspace of M (s).

If p > 0, we denote by Mp(s) the subspace of those functions f €
M (s) such that the Hankel operator Hy is the Schatten class Sp(A%(s),

L?(u,)) We equip Mp(s) with quasi-norm
1fllaecs) = [I1H7ll, + 1F 1.

Then we have the following *

Theorem (3.1.5) [3]: Let X € {M(s), M (s), Mp(s)} and let U be a
rotation in C". Then the following assertions hold.

(i) Iff €eX then foU € Xand |[foUllx = |lf|lx-
(ii) Iff € X, then z* € X for all k € Spec( f).
(111) Ifthe sequence s is either exponentially bounded or satisfies

1
: Sa+1\%
dl_1>r1100< 52 ) =0 forallle N, (3).
then the spaces M'(s), M (s), and Mp(s),p = 1, are Banach spaces and
the space Mp(s),0 < p < 1, is a quasi-Banach space.

We point out that there are examples of Stieltjes moment
sequences that do not satisfy (3) as shown by Boas type sequences. There
is a sequence of positive real numbers S satisfying Sy = 1 and

Sn+1 = (nS;)n41- It 1s not hard to see by Theorem (3.1.5) that the
spaces M (s), M(s) and Mp(s) corresponding to such sequences are
trivial, namely, they consist only of constant functions.

Another type of Stieltjes moment sequences for which Theorem
(3.1.1) applies to show that the corresponding spaces M (s), M (s),and
M (s) are trivial are the Stieltjes sequences s that satisfy S, = 1 and

¢



2
Sa = 65d+15d—1

foralld =1 (4)

for some 0 < § < 1. Arbitrary sequences satisfying (4) were studied by

Bisgaard and Sasviri and Bisgaard. They were shown to be Stieltjes

1

d2
moment sequences as long as };5-16% < .

Let N§ denote the set of all n-tuples with components in the set Ny,
of all non-negative integers. If a = (ay,..,a,) € N}, We let ||a||:=
a, + -+ + a, denote the length of a. If B = (B; ... B,) € Ny satisfies
a; = B; forallj =1, ...,n, then we write @ = . Otherwise, set & 8 .

Finally, if Aand B are two quantities, we use the symbol A =
B whenever A < (C;Band B < (C,A, where C;jand C, are positive
constants independent of the varying parameters.

Theorem (3.1.6) [3]: The measure ,, is supported by the closure of the
domain Q,.In addition, for each set compact K c (), there exists

C = C(K) > 0 Such that

suplf (@] < Cllfll2(,,)-
z€k

for all holomorphic polynomials f in C". Furthermore, the space A% (s)
coincides with the clo-sure of the holomorphic polynomials in L?(u,,) and
its reproducing kernel is given by

LR CEEY
KS(Z, W) == m% ((Z, W)),Z,W € QS'

Proof: We first observe that if a positive real number 7 satisfies

u ([r,+)) =0, then for all non-neutive integers d, we have s, <
1

r%u ([0, +0)) and hence lim sup Sg <r
d

This shows that the radius of converence of the series F; is smaller
that or equal to the infimum of all such real numbers 7.
Conversely, suppose that r > 0 satisfies u([r, +0)) > 0 then
riu(lr, +o0)) < s4

For all non-negative integers d. Therefore,
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1

1
r < limg infs] < limg sups]

Since

sup{r: u([r, +o)) > 0} = inf{r: u ([r, +)) = 0}
1
we see that RZ2 = limy_,o S . Therefore, the measure pu,is supported the

closure Qg since both series F; and Fs(n D have the same radius of
convergence it follows that for cach z € (), the series

z(d+n—1)'(z W w e O,

K,(z,w) = _1)'

Converges on ;. Moreover, by Fatou's lemma and orthognality of the
holomorphic monomials with respect to u,, we have

f 1Ky(z, )2 dit (W)
Q

2
2

N
= ((n—11)!) l}vri‘i?ofﬁ ;%<Z,w>d ity (W)
1 ’ 2 (d+n-—1)! ?
B ((n— 1)!) l}vri‘i?ofﬁ dz_od!—%<z'w)d dp,, (W) =
= K,(z,z) :

Hence for any fixed z € Q, the series K;(z,w) converges in L*(u,,). In
addition , a little computing shows that for any a € N}, we have

[ W Kaw) dity )

Qg

1 @Hn-1)!
o — 1)1 I
(Tl 1).d=0 d.Sd

[ we Gw) dpn)
‘Q‘S

B 1 (Jal+n-1)!
N (n— 1)! |C{|!S|a|

f w? (z,w)!¥ dp, (w) = 2.

N

11



This shows that the kernel K (z,w) reproduces holomorphic
polynomials. Morcover it satisfies

sup|f(2)| < sup v Ks(z, 2 f | 2 (y,,)-

zeK zeK

For all holomorphic polynomials and each set compact K < Q. The
remaining part of the proof follows by standard arguments.

We point out that R, is always strictly positive.

Lemma (3.1.7) [3]: Suppose that k and [ are in N§ then the domain
Dom(H_,) of H ; contains all polynomials in w and w. Moreover, if f is

a holomorphic homogeneous polynomial of degree d, then

Sa+y T+d+ |1 — kDo
Sd+]1|-|k| 'n+d+ |l|) dzk (z f)
sqa Td+n—|k|) o
Sd—|k| r'd+n) z aZkf

H;kHz—kf ==

In particular, Hsz H,x f is a holomorphic homogeneous polynomial of

degree d + |l| — |k|. In particular, for each a in Ni} the monomial z% is an
eigenvector for the operator Hsz H,rx and the corresponding eigenvalue

A 1S given by
_ Sjag+iel T+ lal)  (a+k)!

1 =
* Slgl T+ |al + |k]) a!
__Sla| I'(lal +n—1k|) «a!
Slal-lk]  T(lal+n)  (a—k)!
ifa = k and
_Slaj+ikl T +lal)  (a+k)!
Ao =

Slegf T(n+ |a| + |k]) «a!
Otherwise.
For simplicity reasons, we introduce some notations. We set

Filty, o) = —|k|2tk+2kj2?,te R™ (5)
j=1 7

With that understanding that KJZ';—k = Oas longas k; = 0
]

1y



k.
t.) ki_

And L = tj’ " fork; = 1. we also let
]

1+ aq 1+a,
t = ) e , € N,
(@) <|a| +n || +n) ¢ 0
Lemma (3.1.8) [3]: The function f, given by (5) Satisfies
fn(ty,....,ty) = 0 for all non-negative real numbers ty,....,t, that

satisfy t; + -+ + t,, = 1. In particular, f,, (t(a)) = 0 for all @ € N

Proof: Setting 7; . the lemma follows from the inequality

-kr
>rat.
t
j=1

Which holds for all t4,.., t,, ...., € [0, +00) that satisfy :

Ikl’

~.

ti+ ottty =r ot =1,
This inequality, in turn, can be proved by induction on n.

Lemma (3.1.9) [3]: Suppose that a and k are in Nij. If n = 1, setyy j, :=
Oand ifn > 1, set

1 < I'n+|a]) (a@+k)! T(al+n-—|k]) a )

Yok = Tn+lal+lk]) a = T(a|l+n) (a@-k)!)

Then y, , = 0, for all @ € N that satisfy @ > k. In addition, if n > 2, then

1

Vak = 17T+ <fn(t(a)) +0 (1)>

for all k, @ € NJ, satisfying @ = k, where d: = |«a].

Proof: We consider the particular case of the constant Stieltjes
moment sequence s; = 1,d € N represented by the Dirac measure
u=26; . if a €Ny , then (n—1),,,, is the eigenvalue of H_ i H«
corresponding to the eigenvector z%. Applying the previous lemma we
sec that (n — 1), = 0 and hence the first part of the lemma follows.

Next, we prove the second part of lemma. From the property of the
Gamma function.

TA



I'(x+y) ., y-—2)y+z-1) 1

where y and z are real numbers, we get

r'({d +n) ~ lk|(Jk] — 1) 1
F(d+n+|k|): (d+n) |k|<1_ 2(d +n) +0(ﬁ)> asd = +o,

F(d+n_|k|):(d+n)—|k|<1+w+0(i)> asd — +oo,

I'(d +n) 2(d +n) d?
By the proof of a Lemma, we have when a > k,

(a * k) ﬁ(l t+a )k’ + z a (k D (1+ ,)k’ 1—[(1 + a)k

j= l#j

h()—g@®) q(a)
Hale = (d+")|k| [tk d+n (d+n)|k|]'

Where

, o K2tk Sk th
t) = , g(t) = :
©=) G 00=)
Using a similar argument, we also have

n

! kilk: —1 _
(a f'k)l 1—[(1+ o) - Z—J( L )(1+aj)k’ 11—[(1+a1)kl

j=1 j=1 l#j

h(t) + g(t) r(a)
+7(a) == (d + m)!¥! [tk— d+n (d+n)|k|]

Where g and r are polynomials of degree at most |k| — 2.
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rd+n) (a+k) Td+n-—-1k]) a!

rd+n+lk]) a! B I'd+n) (a—k)
iy @+ K)! |k[(lk] — 1) 1
= (d + Tl) Ikl 7l (1 — m + 0 (ﬁ))

a! [k|(lk] + 1) 1
—(d+n) |k|( _k)'<1+m+0(ﬁ)>
[k|(Ik] = 1) I\\[.,  h(@®—g®
(1= o ) [+ o ()
[k|(Ik] + 1) I\\[., h@®+g® '
(1B o (@) e M o ()

1 1
_ 2.k
=T < |k|“t +2h(t)+0(d2)>
The lemma now follows since f,,(t) = —|k|?t* + 2h(t).

Lemma (3.1.10) [3]: If @ € N, then the eigenvalue A, of the operator
Hsz H ;k satisfies

o = (2228 - o) (e(@)* + 0 (3)) + 122 (1 (e@) + 0 (3)).

Ifa =k and

S|al+|k| <1)
A, = o(=),
a SIaI d

Otherwise.

Proof: By Lemma (3.1.7) and the definition of y,, , we have

1 = <S|a|+|k| B S|al ) 'd+n) (a+ k)' S|al

+ -1y
S|al S|a|-|k| F(d +n+ |k|) a! nkS|a| k|

By the estimates in the proof of Lemma (3.1.10) we deduce that

rd+n) (a+k)! @ 1
rd+ntlk) al ‘<tt +0<d)>'

The latter equation, combined with Lemma (3.1.9), completes the
proof of the first part of the lemma. To prove the remaining part of the
lemma, suppose that for some j, = 1....,n we have that k; = 1 and

@j, < kj,.-Then by Lemma (3.1.7) we have



1 = S|al+|k| F(d + Tl) (Of + k)!
* Slgg Td+n+1k]) a

Set
I — . . ! o . .
a = (aq, .. 0,0, e Oy and k' = (k4, ..., k]o—1’ 0, k](m, v k)

Arguing like in a Lemma we get

(a + k)' = k:
——< (k)| || +a)”
j=1i%jo
= ki(kj—1)
+ Z %(1 + aj)kj_l 1_[ (1 + aj)kj + q(a’).
j=Tj%jo i#],jo

Where q(a") is a polynomial of degree at most |k'| — 2 this inequality,
combined with the estimate

I'(d +n) B 1
I(d+n+lk|]) Qd+mw)

gives the second part of the lemma.

Theorem (3.1.11) [3]: Fix k € N} and consider the Hankel operator
Hx from the dense subspace of A%(s) consisting of holomorphic

polynomials into L*(i,,). Then:
(1) H ;k 1s bounded if and only if

S S n—1s
sup < arzlkl _ S+l d+|k|> < +oo ©)
deNg \ Sd+|k| Sd d sq
(11)  Hzx Compact if and only if
S S n—1s
- < arzlil _ S+l d+|k|> _ o 7
d—+o0 Sd+|k| Sd d Sd

Proof: We consider the sequence (4,), of eigenvalues of the Hsz H k.
Let 3 be the simplex consisting of those t = (ty, ..., t,) € R™ such that

ti=0andt; + -+ t, = 1. Since the set

\A



U{<a1+1 an+1)| l_d}
d+n’ "7 d+n =

deN,

is dense in ) , it follows that

~ sup fp(t)
tey,

Sup fn

<a1 +1 a, + 1)
la|=d

d+n’7d+n
and

sup t(a)*® =~ sup t*.
la|=d ted,

As d tends to +oo, these estimates, combined with Lemma (3.1.10),
implies that (1,),,is bounded if and only if (6) holds and | lim A, =

al-+o0

0 if and only if (7) holds. The theorem now follows since H;« 1s bounded
if and only if Hsz Hk 1s bounded and compactness of H ;kis equivalent to
that of H ;. Hx .

Next, let p > 0. we shall study the membership of the operator
Hr n a Schatten class Sp.

Recall that Hk is in Spif and only if H_, H« is in Sp, that is to say the

p
. £
series };A? is convergent.

Let d be an integer. We shall estimate the sumSy = Y4=q A2 When d —
+ oo. The calculations above lead to study the cases ¢ =k and its
opposite separately. Let B;:= {a € N{,|a| = d }. We partition B, =
B,y UB,, where B; = {a € By ,a = k} and B; = B, \ B, .Thus S; can
be written in the form Sq = Sg + Sg where S5 = Yoep) g and S§ =

Yaes!! A& We shall use the following lemmas .

Lemma (3.1.12) [3]: If n = 2, then we have the estimates

#By ~ #B) ~ %and #B] ~ d"*asd - + o.

Lemma (3.1.13) [3]: Suppose that n > 2 and g is a continuous on R *~1,
Consider the open set D:= {(tq,....,tn_1) € Rﬁ_l,Z}‘:—f tj <1}. For a
multi-index f = (By, ..., Bn_1) in NI 71, set

\Al



Co <ﬁ1 +1  Bpat 1)
B,d = d d ,

Ja = ﬁEN’&‘ll—[[ﬁ’ ﬁ’“] D

. 1
The lim F ZﬁEDd g(cﬁd) = fD g(t) dt.

d—+oo

The above results enable us to estimate S; when d = |a| = + oo.

Lemma (3.1.14) [3]: If p > 0, then

P P
S S S
S, ~ d"—1< atlk] __~d ) +(n— 1)dn1-P <—d> .

Sa Sa-Ikl Sd— |kl

r A and Sy
Y acB!! AL First we shall estimate S; By Lemma (3.1.10), we know

Proof: Recall that S; =S, + S/ where S; =Y wes,

that this sum has the following expansion when d = |a| - +o

(- 2] 3 (1)t +o(3))

a€B)

(B S (@) o (3)

a€B)

Q

Sa

Using the properties of the function x — x” and Lemma (3.1.14) we see
that there exists a constant M > 0, such that

> (@) +o(3))

a€B)
Pk,
n 1 P
O f e th <1 - Z t,-) dt Z <fn(t(a)) +0 (E))
D j=1 a€B)
P
n
zdn—lf le <t1,....,tn1,1_zt]‘> dt
D j=1
Therefore,

Al



asd — + oo.
To estimate S/ we observe that if n = 1, then
r
Scli, S Slkl

On the other hand, if n > 2, by Lemma (3.1.10) we see that for a € B,
we have

2 =(n-1) (Sd;"")P 0(d~P).
d

Since #B] ~ d" % we see that S = 0(%) the lemma follows from
the relation Sy = S; + S
We then characterize the Schatten class membership of H .

Theorem (3.1.15) [3]: Let k € Nj. Then the Hankel operator H .k, is in
the Schattn S (A%(s), L*(uy,)) if and only if

P P

gn-t (Sar2 _ Sar )2 (n—1)d""z (S‘”"")E < 4o (7)
Sda+|kl Sa Sa '

Proof: We use that the operator H,x is in the Schatten class

P
SP(A*(s), L?(uy)) if and only if H, Hyk is in $2(A(s)). Therefore,
the theorem follows from Lemma (3.1.15).
Lemma (3.1.16) [3]: If U is a unitary transformation in C", the operator

Uf:= fOUis a unitary isometry, form L?*(u,) onto itself and from
AZ?(s) onto itself. Moreover the following assertions hold.

(i) It f € M(s), then Uf € M(s) and 1Uf llaes) = IIf lnecs)
(1) If f € M (s), then Uf € M (s).
(111) If f € Mp(s), then Uf € Mp(s) and

WUfIaepisy = 1 laep(s)
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Proof: Let U be a unitary transformation in C" and denote U™ its adjoint,
which is also its inverse. It is clear that the operator Uis a unitary
isometry from L?(u,)onto itself and from A%(s)onto itself. Let f be in
M (s). If g is a holomorphic polynomial, then by a change of variable we
see that

Ho7(9) (@) = f KUz, w)g (U w)[TF(2) — Fw)]dim(w)

CTL

- f K, Uz, w)(U*g) W) (U2) — Fw)]|ditm(w)
Cn
= H;(U*g)(Uz) = (UH;U*)(9) (2).

Therefore,
o =UHfU * (8)
and thus ||Hﬁ]—c|| = || Hf”, showing that

WUfIaepisy = 1 laep(s)
This proves part (i) of the lemma. The proof of parts (ii) and (ii1) of the
lemma are similar.

Let T":={(=({,...{n) €EC™|{;|=1,j=1,...n} and for
{=0(G1,..,{p) ET™ let U; be the unitary linear transformation in
C" defined by U;(2) = ({121, ... nzy).forallz = (24, ... z,) € C".

We have the following.

Lemma (3.1.17) [3]: If f € T(s) and g € A%(s), the mappings { —
Urgand C— H Uof (g) are continuous from T™ to L?(u,,).

Proof: Let g € A”(u,) and write g(2) = Ygennarz® If {,n € T", then

2 2
”(Uf - Un)g”,}(“n) = ||g0Uf - gOUU”LZ(“n)

2
= el U2)" = (02)" I,

n
Q€N

= Z |aa|2Ca|€a - 77“|2-

n
Q€N



Where

C, = f |z%|? du,,(z), a € N.
CTL

Since
z la,|*C, < +00 and |E¥ —n%|? < 4,
a€eNG

The dominated convergence theorem leads to

lim (Vs ~ U)gll 1, , = 0.

Showing that the mapping { — Ugg is continuous from T™ to L% (uy).
this, combined with the fact that U, is unitary and the equalities

Hygs = Hop = UgHUg = Uy HpUy
= UgHfUz — UgHpUyz + UgHpUy — Uy Hf Uy
= UpHp(Ug = Ug) + (Ug — Uy )H Uy,
shows that the mapping ¢ — Hyr (g) is also continuous from T" to
L? ().
Lemma (3.1.18) [3]: Assume that f € T(s).
(i)  monomial z¥is in M (s).
(11) if f € My(s), then for any multi-index k € Spec(f), the
monomial z¥is in M, (s).

(1) ifp>0 and f € Mp(s), then for any multi-index k €
Spec(f), the monomial z¥is in M (5).

Proof: To prove (i), suppose that f € M(s) and write f(z)=
Y keND a,z". By the Cauchy formula we have

wrk = [ F(Ugz)E* dma(©)
']I‘TL

where dm,,(§) is the normalized Lebesgue measure on T." if g is a
holomorphic polynomial and h € L?(u,), an application of Fubini's
theorem leads to

A



| gz (@),h) £ dma©) = CHg ), 9
']I‘TL

By Lemmas (3.1.18), (3.1.19) we see that

|| Hakzk (g)

L2

T f | 7@ || dmae) (10)
in

Since | Hgr (9) < Il Hf Il g ll;2(y,,) for all  in T7, it follows that Ha:?

k
is bounded and a,z"* is M (s).Therefore, zX € M (s) as long as aa—f (0) #
Zk

0. This proves part (i) of the lemma. Suppose now that f € M, (s). And
let (g4) be a sequence in AZ?(s).which converges weakly to 0.

=0, forallé € T",

lim ||HU—€f(gq) 2w

q—+o

so that by (10) and the dominated convergence theorem we see that

= 0.
L2 (4n)

lim ||Ha;?(gq)

q—+o

k
and hence z¥ € M, (s). whenever aa—f (0) # 0. Therefore part (ii) of the
Zk

lemma holds. To establish dzk the remaining part of the lemma, we recall
that if T is a compact operator from A2(s) to L?(u,) then its singular
numbers V, (T), q € Ny, are given by

Vo(T) = inf |IT - All,
AER,

where R, is the space of all operators from A?(s) to L?*(u,,) with finite
rank at most q. Assume that f € Mp(s) .Then the sequence V,(Hf), is
in IP. Moreover, there are an orthonormal system (Uug)q in A?(s) and an

orthonormal system (V,;), in L?(u,,) such that

400
Hy = zvq(Hf)("qu :
q=0

Where the series converges in the operator norm. If g is a positive integer,
consider the operator with rank at most g given by.

A%



-1

Ag = ) Vi(Hp)( we)Vj
=0

<

Where for each integer j = 0,... ,q — 1 and z € C" the functions uy; and
vy are defined by

e (2) = f (U )(@)E* dmp(€) and Vi (2) = f (Ushy) (@) & dmo (£)
™ Tn

The dominated convergence theorem, combined with (9) and (8), yields

+ 00
(Hagr = Aq) @1y = | D Wy (Hp KUz, 1) VU dmn ().
T" j=q
Due to the facts that the sequence (V] (H f)) 1s non-increasing and the
J
systems (u;); and (v;) jare orthonormal it follows that

400
> Vu(H) g, u) VU < Vo (HA)lgll sz Al 2o,
j=q

forall{ € T", g € A?(s) and h € L?(u,,). Hence

||H Aq” <V, (H;).

akzk o

This implies that

V, (Hoge) < Vo(Hp).

Showing that a,z* € Mp(s), consequently, z* € Mp(s) if and only if
okr

(0), the proof of the lemma is now complete.

Z

Lemma (3.1.19) [3]: Suppose that R, = + oo and the sequence s satisfies
(3). Then the function w — g(w) Ks(z,w) is in L?(u,) for all
holomorphic polynomials g and z € C™,

Proof: We first observe that

YA



Ks(z,w) _( —1)12(d+nsd_ 1)|(Z w)d, z e C",w e C",

Therefore, for any a € Njj and z € C™.

f |WaKs(Zr W)lzdmn(w)
(Cn

- ((n —1 1)!)2§ <W> flw“(z Wl dimn (w)
0 Sd
< ((n _1 1)!)220: <%> |Z|2db[ tlai+d qu(t)

+
8

N ((n —1 1)!)2 ZO: <(d+dr!l—5d_1)!>2 Slal+d|z|24

Now assumption (3) ensures that the latter series converges for all z € C™.

Lemma (3.1.20) [3]: Assume that s satisfies (2). Then the spaces M (s)
and M'?(s), p = 1 are Banach spaces and M (s), 0 < p < 1, i.s a quasi-
Banach space.

Proof: We prove the lemma for M(s). Let (f;)qen, be a Cauchy

sequence in M (s). without loss of generality we may assume that

fq(0) = 0 For all n. the sequence (qu )qen, 1s a Cauchy sequence of
bounded operators on A?(s).Therefore, there is an operator T in A2 (s)
such that (H 7 )qen, converges to T in the norm operator. Let f:= T(1)

be the conjugate of the image T(1) of the constant function 1 under T
since H 7 (1) = fq , it follows that

”fq - f”LZ(ﬂn) = ”f—;l o T(l)”Lz(yn) - ||qu L2 (up) =
||qu — T|| ||1||L2(un)
Showing that
=l = an

Thus f € A°(s), we shall show that the Hankel operator H7 with symbol
f is bounded. We shall prove that f € 7(s) and H 7 coincides with T' on

vAa



holomorphic polynomials. Let g be a holomorphic polynomial. We first
observe by Lemma (3.1.19) that for all z € C™. we have :

P((F=1)9) @ < fo = Fll 2 19K @iz

So that (11) we see that limq_>+oops((f — fq)(g) (z) = 0. Since again by
(11) we have that limq_>+oo((f — fq)(g) (z) = 0 .it follows that

lim (Hg — Hf)(g)(2) = 0.

q—+o

This proves that Tg = Hr(g) and hence f €T (s) and T = Hf.
Therefore M (s) is a Banach space. The proof of that M (s) is a Banach
space for p = 1, and a quasi-Banach space for 0 < p < 1 is similar.

Theorem (3.1.21) [3]: Suppose thatn=1and fis a non constant
holomorphic function in f € J'(s). Then Hy is in. the Hilbert-Schmidt class

SP(A?(s), L*(u,)if and only if s is exponentially bounded and f is in the
classical Dirichlet space D({). In addition, the trace Tr(HzHf ) of HzHf is

given by
1
Tr(HiHy) = = j ORI j If (@) = F W21, (2, w) [2dA(2) dAw).
Qs Qs

Where dA(z) is the Lebesgue measure in C.

Proof: Suppose that n =1 and f is as in the hypothesis of Theorem
(3.1.21). A straight-forward calculation appealing to Lemma (3.1.7)
shows that for all non-negative integers j, k we have :

Tr(Hka H;j)=0aslongasj #k

and

=

-1

+co
Sd+2k  Sd+k Sd+k
Tr(HHy) = - + = kR2.
z¢z S S S $
= \Sd+|k| d 1 Sd

Q
Il

Writing f = Ypen axz" yields

1
Tr(H;Hg) = RE Y Klal? = [ If ) dA @)
Qs

keN



This proves the first equality of the theorem. Next we prove the second
equality. WritingK(z, w) Y oro fie (2) fiy (W), where (f}) is an orthonormal
basis of A%(s), we observe by a standard argument that for any positive
operator T on A%(s).we have

TH() = Y (Tfifi) A2G) = [ (TR, KeCom)pece dAG.
k=0 Qg

Applying this equality to T = H]? Hf and using the reproducing property
of the kernel K, implies that

Tr(H;Hy) = [ 1F@) = FONPIKGw)P dAE)
Qs

and hence completes the proof of the theorem.
Chapter 4

Membership of Hankel Operators in a Class of Lorentz
Ideals

We will show that the Lorentz ideal Cy 1s the collection of
p-1

operators A satisfying thecondition [[A||; = 27;1 j _Tsj(A) < 0o, Now
we consider Hankel operators Hg: H 2(8) - L2(S,do) @ H3(S), where
H?(S) is the Hardy space on the unit sphere S in C™. Hence we
characterize the membership Hr € C,,2n <p < co.

Section (4.1): Symmetric Guge Functions with Decomposition
and Modified Kernel

The study of Hankel operators has a long and rich history. We are
particularly interested in one kind of Hankel operators: those on the
Hardy space of the unit sphere. Let us begin by describing our basic
setting.

Let S be the unit sphere{z:|z| = 1} in C™. In this chapter, the
complex dimension n is always assumed to be greater than or equal to 2.
Let do be the standard spherical measure on S.

A



That is, do is the positive, regular Borel measure on S with o(S) = 1 that
is invariant under the orthogonal group O(2n), i.e., the group of
isometries on ("= R?", which fix 0.

Recall that the Hardy space H?(s) is the norm closure in
L? (S,do) of the collection of polynomials in the complex
variables z4, ....,Z,. As usual, we let P denote the orthogonal
projection from L?(S, do) onto H?(s) . The main object of study is, the
Hankel operator Hy : H 2(8) —> L% (S,do) © H?(s), is defined by the
formula

Hy = (1 —P)M; |H*(S).

We consider symbol functions f € L? (S,do). Recall that the
problems of boundedness and compactness of Hy were settled .Later, we
characterized the membership of Hy in the Schatten class €, 2n <p < 1.
Moreover, it was shown that the membership Hy € C;,, implies Hy = 0.
More recently, we characterized the membership of Hy in the ideal
Cy.2n<p<1.

We turn our attention to the membership of Hy in the Lorentz ideal €}, .
Before going any further, it is necessary to recall the definition of these
operator ideals.

Given an operator A, we write s;(4), ...,s;(4) ... for its s-numbers For

each 1 < p < oo, the formula

(0.0)

BRI
1417 = ) =57

i=1
defines a symmetric norm for operators .On any separable Hilbert space

H, the set C; = {A € p(H):1IAll, < 00} is a norm ideal .

Closely associated with the Lorentz ideals €, are the ideals C, ,

which are defined as follows: each 1 < p < oo, the formula
l4lly = sup 1-1/p + 2-1/p —1/p
iz1 +27P 4 it
also defines a symmetric norm for operators .On any separable Hilbert

space H', we have the norm ideal
C = {4 € BE):IAll} < oo}
As we mentioned, the C;’ 's were the ideals of interest. These ideals will
play an important supporting role.
Compared with the more familiar Schatten class

AY



C, ={A € B(H): [|Allp < o0},
Where

IAll, = {er((ara)™?))
forall 1 < p < oo we have the relation cg, Ccy, CcyC c; .
with all the inclusions being proper. This explains the + and — in the
notation: C, is slightly smaller than C,, whereas Cy, is slightly larger
than C,.

Since the membership problem Hy € Cy ,2n < p < o, was settled,

the obvious next step is to determine the membership Hy € €, 2n <p <
o, But this next step,however natural it is, turns out to be quite a
challenge. We have a sizable collection of techniques from previous
investigations but these techniques alone are not sufficient for the
membership problem Hf € C, . The reason for that is that the norm ||. ||,
is much harder to work with than ||. ]| .
But, with considerable effort, we have finally developed the necessary
additional techniques. Combining these additional techniques with
techniques from previous investigations, we are able to characterize the
membership Hy € €, 2n < p < oo.

It is well known that, if p,q € (1, 0) are such that p™1 + g1 =
1, then Cj is the dual of C,; .This duality was quite useful, sometimes
even crucial, in the investigations of many problems in the past. Instead,
we must exploit a diferent kind of relation between the families

{€;:2 < p < o}and{Cf:2 < p < oo}

To state the result, it is necessary to recall the notion of symmetric

gauge functions. Let ¢ be the linear space of sequences{aj}jeN, where

a; e R and for every sequence the set{jeN: a; # 0}is finite. A
symmetric gauge function (also called symmetric norming function) is a
map @: ¢ — [0, o) that has the following properties:

(a) ® is a norm on €.

(b) ®({1,0,...,0,...}) = 1.

(c) ®({a;}jen) = q)({|a”(j)|}jeN) for every bijection m: N — N.

Each symmetric gauge function ® gives rise to the symmetric norm
1Alle = sup @({s;1(4), ., 8;(4),0,...,0, ... h

j=1
for operators. On any separable Hilbert space H, the set of operators

AY



Co = {A € B(H):||Al|lp < o0} . is a norm ideal .
If X is an unbounded operator, then its s-numbers are not
defined. But it will be convenient to adopt the convention that || X||, = 1
whenever X 1s an unbounded operator.

In particular, associated with the ideal C,is the symmetric gauge
function @, ,
{af}jew € C, define

which is defined as follows. Let 1 < p < oo. For each

_ V()]
Py ({aj}jeN) - z jp=1/p
j=1
where m: N — N is any bijection such that |a,(j)| = |a,( + 1)| for
every j € N, which exists because a; = 0 for all but afinite number of j's.
Then we have C, = C% Similarly, for each 1 > p < oo we define the

symmetric gauge function

_ |an(1)| + |an(2)| + et |an(])|
ch ({aj}jEN) a S]g? 1-1/p 4+ 2-1/p 4 ... _|_j—1/p ’{aj}jeN €c

A

Where, again, T : N — N is any bijection such that|a,(j)| = |a,(j + 1)|
for every j € N.

Then C; = C@{;- Theorem we state the following if ®is a
symmetric gauge function and if 0< ||[Hf| o <1 for some f €
L*(S,do), then Cp D C, .we need to extend the domains of definition of
symmetric gauge functions beyond the space ¢. Let @ be any symmetric

gauge function. Suppose that {bf}jew is an arbitrary sequence of real

numbers, i.e. suppose that the set {j €EN,b; # O} is not necessarily finite.

Then we define
@Q@Lw)=g?¢qm,”@m“”amp (1.
j=

Thus for every bounded operator A we can simply write

lAlle = @ ({s1(A), ..., 5;(A), .. }).
We also need to deal with sequences indexed by sets other than N.
If W is a countable,infinite set, then we define

q)({ba}aew) = ({bn(j)}jeN)-
where m: N - W is any bijection . From the definition of symmetric

gauge functions we see that the value of ®({b,},en) is independent of
the choice of the bijection .
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For a finite index set F = {x, ..., x,}, we define
®({by}xer) = P({by,, ) bx,,0,...,0,...})
Let us write B for the open unit ball {z : |z| < 1}in C™.
Let f be the Bergman metric on B. That is,
1 1+, (w)l
B(Z,a)) = E logm Z,WERB

where ¢, 1s the Mobius transform of B .For each z € B. and each a >
O,we define the corresponding -ball D(z,a) = {w € B: B(z, w) <
a} z,w € B.

(1)  Let a be a positive number.
A subset T'of B is said to be a-separated if D(z,a) N D(w,a) = 0 for all
distinct elements 3, w in T'.

(11) Let0<a<b < oo. Asubset ' of B is said to be an a, b-lattice

if it is a-separated and has the property U,er D (3, b) = B.

Recall that the normalized reproducing kernel for the Hardy space
H?(S) is given by the formula
(1 - |z|?)"?
1—(w,z)"
For f € L?(S,do) and z € B, we define

Var(f; z) = II(f — (fkz k. Dk|I?

We think of Var(f;z) as the "variance" of f with respect to the
probability measure |k,|*do on S.

K,(w) =

Nzl <1 |wl <1

We know from previous investigations that the scalar quantity
Var(f;z) plays an extremely important role in the study of Hankel
operators.

One can formulate a rather broad conjecture about the membership of
Hankel operators Hy in a norm ideal Cy.

Suppose that ® is a symmetric gauge function satisfying the condition
Ce D C, which is necessary for Cg to contain any Hy # 0.Then the
general conjecture is that a Hankel operator Hy belongs to Cy if and only
if

(o) <{Var%(f — Pf; Z)} r) < 00,

for some a; b-lattice I' in B with b > 2a. But the challenge is to prove
this conjectured result for specific symmetric gauge functions, where
success depends in no small measure on the “user-friendliness” of the ®
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in question, the solution of this problem for the symmetric gauge
functions @5, 2n < p < oo, represented the limit of what could be done
with the techniques available then. Now, newly developed techniques
allow us to finally solve this problem for the symmetric gauge functions
G,,2n<p <o

Theorem (4.1.2) [4]: Let 2n < p < o0 be given. Let 0 <a < b <
be positive numbers such that b > 2a. Then there exist constants 0 <
¢ < C < o which depend only on the given p,a, b and the complex
dimension n such that the inequality

cd; <{Var%(f — Pf; z)} F) < Imell,

VS

< cd, <{Var%(f — Pf; Z)} F).

holds for every f € L?>(S,do) and every a; b-lattice I in B.

Next let us explain some of the dificulties involved in the proof of
Theorem (4.1.2). Recall that, an extremely important role was played by
the inequality

T T
c (CDJ({ak}keN)) <@ ({“% }keN) =c (CDJ({ak}keN)) (2).

where 1 <7 < o0, 1 < p < o0 and p = pr. For the lack of a better term,
one might call (2) the power-transformation property of the family of
symmetric gauge functions @5 1 < p < oo,

This power-transformation property is needed because, e.g., at
certain point in our estimates, what we can prove are inequalities of the
form

o ({147 _) = @ ([ ap,0 v, ) < Claals 3

but what we need to prove are inequalities of the form

@ ({lavcll},.,) < CliAllo )
The power-transformation property is precisely what allows us to deduce
(4) from (3).
But, the first stumbling block is that there is no analogue of this power
transformation property for the family of symmetric gauge functions @, ,
1 <p < o0o.Thus our only hope is to somehow “make (2) work for
the @, -problem” so to speak.

Thanks to a rather complicated relation between @, and
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@, oF,1<r' <p<r<om,

this idea actually works.
Another major difficulty is the proof of a “reverse Holder's inequality” of
the form

(e (g k. N per) < C(U (g5 kD pper) (5)
Here t > 1 and J; “has the exponent t inside the integral”, making (5) a
reverse Holder 's inequality. The proof of this inequality in the case
of @ again depended on the power-transformation property. But for the
proof of this inequality in the case of @, , even the above-mentioned
relation between @, and GD:D , @7 does not help. Instead, we must take an
entirely new approach. We exploit a property of @, called (DQK).
Condition (DQK) was introduced for a completely different purpose, but
it turns out to be exactly what is needed to prove (5). We are able to show
that (5) actually holds for every symmetric gauge function that satisfies
condition (DQK).

We begin by establishing the all too important relation between
®, and CD;’,,CD,T . The proof of Theorem (4.1.2) depends on a crucial
relation between the symmetric gauge functions @, and CD:D, ®F where
1 <r’ <p <r < oo. Our task in this section is to establish this relation.
Let us introduce the following notation. For every sequence of non-
negative numbers a = {al, ey Ay s } and every s >0, we denote
N(a;s) = card{j €N:a; > s}.

Lemma (4.1.3) [4]: Let 1 < p < oo. Then for every sequence of non-

negative numbers a = {al, ey Ay s } we have

f V(@ )P < p(a) <P f @ (6)
0 0
Proof: Givenany 1 < p < oo. it is trivial that

k

1 1
1/pP - - 1/P
kYP < g e S 1 +fx(P_1)/P dx < Pk (7)
j=1 1

for every k € N. For the given p, define the measure up, on N by the
formula

1
HP(E) ZEW’E CcCN.

JEE
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By the monotone convergence theorem and (1), it suffices to consider the
case where the sequence a = {al, ey Ay s } has only a finite number of
nonzero terms. For such a sequence, rearranging the terms if necessary,

we may assume that it is non-increasing, i.., 4y = @y =+ = @; ..... For

suchana = {al, ey Ay s } we have

a.
CD;(a)=2W=f,u;((]EN:aj>s))ds (8)
j=1 0
Where the second = follows from Fubini's theorem. Suppose that a; > 0,
for otherwise (6) holds trivially. Since the sequence a = {al, ey Ay s } 1S
non-increasing, for each 0 <s < ay, we have a; > s if 1 <j < N(a;s)
and @; < sifj > N(a;s). Thus for every 0 < s < a; we have

N(a;s)

1
Up ((] €N:a; > s)) =up{1,...,N(a;s)}) = z W.

Jj=1
Combining this with (7), we obtain

{N(a; )}V?P < up ((] €N:a; > s)) < P{N(a; s)}*/? (9)
for 0 < s < a4. On the other hand, it is obvious that if s > a4, then

ur ((EN:q;>5)) = (@) = 0= NP (10)
Obviously, (6) follows from the combination of (8), (9) and (10).
Proposition (4.1.4) [4]: For every sequence of non-negative numbers

a= {al, s @y e } and every s> 0, define the sequence a'(s) =
{ay(s), ..., aj(s), ... }. where
0
aj'(s) = {aj if 4 <s
Then given any 1 <p <r < oo, there exists a constant 0 < €y, < ©
such that

°° 1 T/p
f <§ (D;r(av(s))> ds < C;,Pp(a) (11)
0

for every sequence of non-negative numbers a = {al, ey Ay s }

Proof: Let 1 <p <r < oo be given. By the monotone convergence
theorem and (1), it suffices to consider the case where a =
{al, ey Ay o } has only a finite number of nonzero terms. For each i € Z,

define
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v(i) = card{j € N:27" < q; < 271} (12)
Suppose that 27! < s < 271 for some i € Z. For such an s, by the
definition of ®; | there is a subset &(s) of N with card(s(s)) = k(s) €
N such that

Yieeis) 4 (5) - Yjee(s) 4 (5)
17Yr 4t k()Y k()7
Define j € £(s): 27" < a/(s) = Ym=o 2jeEsy aj (s).

If j, i and m are such that a/(s) > 27"™ then a(s) = a;.

Therefore

P (a’(s) =

Card (Es ) < {v(i + m), k(s)}
Hence for each m > 0 we have
z V(s) Card (ES m)
(k(S))l (1/7) - 21+m (k(S))l (1/r) - 21+m

JEEsm
Combining this with the above, we conclude that if 27l < s < 27
then

- 1
CD+((1V(S)) = W Z Z a‘-’ (S) <2 Z Si+m {U(i + m)}l/r
m=0

m= OJEESM

w( +m)yr.

Consequently, we have

1 1 o

ECD,T(aV(S)) <2 Z Z—m{v(i + M)}V for every s € (27%,271+1] (13)
m=0

Sincer/p > 1, we have r/p=((1+¢€)/(1—€) for some 0<e <1.

That is, (r/p)/(1 —€) =1 + €. Factoring 2™™ in the form 27™ =

27€m 2-(1=6m 3 gimple application of Holder's inequality to (13) gives

us

r/p ©
< CD+(aV(s))> <C z Sarom (w(i + m)}/*?

for s € (27%,274*1]. Therefore
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2—l+1

f<s¢+(av(s))> ds = z f < CD+(aV(s))>r/pds
0

i=—o00 2- i

NlH

31 s Y+ Oy
m=

0
1

1
= ) oy (14)
By (12), we have 5(=I;)oog N(a; s) for every s € (2_"_1 27k]. Thus
z ) =2 Z L o<z Y f (N(@;5)}/7ds

k=—00 5—k-1

= f{N(a; $)}/Pds < @5 (a) (15)

where the last < is an application of Lemma (4.1.3). Obviously, the
proposition follows from the combination of (14) and (15).
Proposition (4.1.5) [4]:For every sequence of non-negative numbers

a= {al, s Q) } and every s> 0, define the sequence a’(s) =
{a(s), ..., ai(s), ... },where
a ifai>s
Ay — §9 j ;
af(s)_{o ifay<s ' €N
Then given any 1 < r’ < p < oo, there exists a constant 0 <
C, 3 < oo such that

(00] 1 ,rI/P
f <§ CI):f,(a’\(s))> ds < C,3Pp(a)
0
for every sequence of non-negative numbers a = {al, ey Ay s }

Proof: Let 1<r'<p< o be given. Again, by the monotone
convergence theorem and (1), it suffices to consider the case where a =
{al, ey Ay o }, has only afinite number of nonzero terms. For each i € Z,

let v(i) be given by (12). Suppose that 27¢ < s < 271 for some i € Z.



By the definition of CI):D, there is a subset F(s) of N with card(F(s)) =

k'(s) € N such that
A
o (a(s)) = Y jer(s) @ (s) - Yjer(s) 4 (s)
r 1—1/1’" + ot (k/(s))_l/rl —= (k/(s))_l/rl
Define Fy,, = {j € F(s): 27 < alM(s) < 27™*1}. for each m € Z,.
By definition, if a]'(s) > 0, then a}'(s) > s. Since s > 27", we have

z a’(s) = i z ai(s)

JEF(s) m=0 jEFs ;,
We have card (F ,,,) < sup{v(i —m), k’(s)} for every m > 0. Therefore

[00]

1 + (A 1 A N —i+m ;o 1/r’
Eq)rr(a (S))SWZ Z aj (s) SZTZOZ {v(i —m)}Y

m=0 jE€Fsm
Consequently,

%CD:D(a"(s)) <2 ZO 2M{p(i —m)}"’

Since 0 < r'/P < 1, it follows that

r'/p ©
<% @j;(a"(s))) <2 ZO 2mr' /P Ly (i — m)}/P

for 270 < s < 271 Thus

2—i+1

[(Corwon) =3 [ (Loswen) as
0

i=—o0 2- i

i z 2mr' /P (i — )} /P

<2
= Z z (1 (r’/p))m 2i- m{v(l m)}l/P
1

k:—OO m—O

Recalling (15), the proof is now complete.

Although Theorem (4.1.2) is about membership in the ideal Cp, the
fact that we need Propositions (4.1.4) and (4.1.5) clearly indicates that
symmetric gauge functions ®7 , 1 < p < oo, will be an important part of
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our analysis. We end this section with some facts about these symmetric
gauge functions, which will be needed later on.

Lemma (4.1.6)[4]: Suppose that 1 < p < o. Let a = {aq, ..., a, .... } be
a non-increasing sequence of non-negative numbers. Define

Fp(a) = sup kP a;
k21
Then
P—-1
— Fr@) < @5 (a) < Fp(a)
Lemma (4.1.7)[4]: Let 1 <r <o, 1 <p <. and p = pr. Then for

every sequence @ = {a;, ..., @, .... } of non-negative numbers we have

T
p— 1 r P
T(q);({ak}kEN)) < O {aplken) < <m q’fg({ak}kew)> :
If ®p denotes the symmetric gauge function for the Schatten class Cp,

1 < p < oo, then, of course, for every sequence of non-negative numbers

a ={ay,...,a, ..} we have the following well-known inequality of
weak-type:
P
dr(a
N(a;s) s( PS( )> (16).

for s > 0. But for the purpose of this section, (16) is not good enough; we
need an improved version of it. More specifically, we need to replace the
®p(a) above by @ (a).
Lemma (4.1.8)[4]: Suppose that 1 < p < oo. Then for every sequence of
non-negative numbers a = {a,, ...., ay, ... } and every s > 0 we have
PN\

N(a; S) < <m) <ECDP (a)) (17)
Proof: Given an s > 0, set M = {j € N:a; > s}. If card(M) = oo, then
@7 (a) = ,and therefore (17) holds in this case. Obviously, (17) also
holds in the case M = 0, Suppose that card(M) = m € N. Then there is
a bijection m: {1, ..., m} = M such that

Ar(1) = *** 2 Arem)

Since anemy > S, by Lemma (4.1.6) we have

smYP < apommP < sup anpemk’*
1<k=m

P P
< m@ﬁ({an(l), e an(m)}) < mq);(a).

Solving for m(= N(a; s)), we find that m < {P/(P — D)}’ (@} (a)/s)F
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Although (17) is only a slight improvement of (16), we will see that this
improvement makes quite a difference. In fact, (16) is the reason why
Propositions (4.1.4) and (4.1.5) are useful for our purpose.

It is well known that the formula

A3, =112 08 €s (18)
defines a metric on S .Throughout, we denote
B, 1) ={x€S:|1—({,OIY? <r}
for { € S and r > 0. There is a constant 27" < A, < oo such that
272" < 6(B((, 1)) < Agr®" (19)
for all { € S and 0 < r < /2 . Note that the upper bound actually holds
when r > V2 .

Next we need to recall the spherical decomposition. For each
integer k > 0, let {uk,j, ...,uk,m(k)}be a subset of S which is maximal
with respect to the property

B(ug;, 27 ) n By, 27% 1) =0 forall1<j<j <m(k) (20)
The maximality of {uk,l, s uk,m(k)}implies that
m(k)
U B(uy;,27%) =S (21)
j=1
For each pair of k > 0 and 1 < j < m(k), define
T; ={ru1—-272k <r?2 <1 -2720*D y € By ;,27%)} (22)
We define the index set
I={(k,j):k=>01<j<m(k)}
Recall that for each pair of 0 < t < o and z € B, we define
(1 _ |Z|2)(n/2)+t
lpz,t(() = (1—(, z)n*t

|¢| < 1. In terms of the normalized reproducing kernel k, and the Schur

multiplier
1-|z|

m,({) = 1-.2)

(23)

We have the relation
lpz,t = (1 + |Z|)tmgkz .
We think of z,t as a modified kernel function, i.e., a modified
version of k.
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Definition (4.1.9) [4]: (a) A partial sampling set is afinite subset F of the
open unit ball B with the property that card(F N Ty ;) <1 for every

(k,j) €l
(b) For any partial sampling set F and any t > 0, denote

RO = 1,0,

Z€eF
The next proposition shows the benefit of modifying k,:

Proposition (4.1.10)[4]: For eacht > 0, there is a constant C5,(t) such
that the inequality

® ({((Bvse o)), o) < Ca2(OlIBlly

holds for every partial sampling set F, every symmetric gauge function
®, and every non-negative self-adjoint operator B on the Hardy space
H?(S).

Proof: Let @ be any symmetric gauge function. Then it has the following
property: For non-negative numbers aq; = --->a, = 0and by = -+ =
b, = 0 in descending order, if a; + -+ a; < by + -+ b; forevery 1 <
j<v.

then

»{ay,..,a,0,..,0...} ) <o®{by,..,b,,0,..,0...})
Let t > 0 be given,there is a constant C5,(t) such that
||R1(Wt)|| < C32(t)

for every partial sampling set F.

Let B be a non-negative self-adjoint operator, and suppose that F is
a partial sampling set with card(F) = m. Then we can enumerate the
elements in F as z4, ..., Z,,, in such a way that

(Blpzl,t' lpzl,t) = 2 (BlpzM,t' lpzM,t)

For each 1 < k < m, define the subset F;, = {z,, ..., z;} of F. Then each
F, i1s also a partial sampling set, and we have ||Rg3|| < ||R§t)|| <
C5,(t) for every 1 < k < m. In terms of s-numbers, this implies that

5 (BRY) < C32(t)s;(B).

for every j =1 .Write ||||; for the norm of the trace class. Since

rank(R g()) < k , we have
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<Bl/)21,tr l/}zl,t) + et (Blpzk,tr lpzk,t) = tr(BRgc)) = ”BRS;?”l
= 51(BRy)) + - + sk (BRY)) < C3,(0){s1(B) + - + 5(B)}

Since this holds for every 1 < k <m .by the property of & that we
mentioned in the previous paragraph, we have

O ({(Bwze Y200} er) < G220 ({5iB)), ) = Ca2OBllo
proving the proposition.
Proposition (4.1.11) [4]: Given any pair of t > 0 and 2 < p < oo, there
exists a constant C5 5(t, p) such that the inequality

F ({(14w2ell} ) < Cs3EPIANS

holds for every bounded operator A: H*(S) — L?(S, do) and every partial
sampling set F.

Proof: Lett > 0 and 2 < p < o be given. Set p = p/2. Then p > 1 and
p=2p. Let C={p/(p—1}2 Let A:H?(S) - L2(S,do) be any
bounded operator and let F be any partial sampling set. Applying Lemma
(4.1.7) with r = 2, we have

, 1/2
@5 ({lawsell),e,) < € (@E ({aw| LJ)

1/2
= ¢ (@7 ([ 4w, v.0),.,)) (24)
On the other hand, Proposition (4.1.10) gives us
o5 ({(A" A W00}, ) < Coa@®NAAILY (25)

Again applying Lemma (4.1.7) with r = 2, we have

AN+ — « N2/2|F p e /21 _ [P +°
lavally = @ a2 < S llaa?| ) ={5alz) @26
Thus if we set Css(t,p) = C{C3,(t,p)}/%{(P/(P — 1)}, then the
proposition follows from the combination of (24), (25) and (26).

Proposition (4.1.12)[4]: Given any pair of t > 0 and 2 < p < oo, there
exists a constant C5 4(t, p) such that the inequality

o5 ({l4vc ]}, ) < Caalt. DAL @7)

holds for every bounded operator A: H*(S) — L?(S, do) and every partial
sampling set F.

Proof: Let t > 0 and 2 < p < o be given. We pick an r’ such that 2 <
r’ < p. To prove (27), we only need to consider compact A: H%(S) —
L*(S,do), for otherwise the inequality holds for the trivial reason that its
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right-hand side is infinity. But for a compactA, we have the
representation

A= z a]x]®y]
j=1

where {xj: j € N} and {yj: j € N} are orthonormal sets in L2(S,do) and
H?(S) respectively, and a; = 0 for every j € N. For every s > 0, define
the operators
A = z a;x;j®y; and B; = z a;x;Qy;
aj>s ajSS

It follows from Proposition (4.1.5) that

° r'/p

1
[ (Gnastiy)  ds < cosllat; 28)
0

On the other hand, it is obvious that ||Bg|| < s. Since ||1,bz,t|| < 2t we
have

|Bsoe|| < 2%s (29)
forallz € Band s > 0.

Let a partial sampling set F be given. With somewhat abuse of notation,
let us write

N(F;3) = card{z € F: ”sz,t” > J}
for 2 > 0. By Lemma (4.1.3), we have

(00)

7 ({l4v2ell},ef) < P f (N(F; DY da

0
(1+2HpP f (N(F; (1 +2Hs)}/P ds (30)
0

where the last step is the substitution A = (1 + 2)s Define
N(s) = card{z € F: ||A51,Dz,t|| > S}
for s > 0. Since A = Ag + B, we have ||A1,Dz,t|| < ||A51,Dz,t|| foralls > 0
and z € F. Therefore (29) implies that for every s > 0,
N(F; (1 +2%s) < N(s)
Applying Lemma (4.1.8) and Proposition (4.1.11), we have
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! !

! T

"
v < () (Gonliamd,.,)

T

/ r'
r 1 +
< (r, _ 1) (S Caallacliy) -

Thus if we set € = {r'Cs5(t, ")/ (' — 1)}"/P then

r'/p
(VGF; (L + 29977 < NI < (S Il
for every s > 0. Substituting this in (30) and recalling (28), we obtain
o 1 r'/P
05 ((lAwell), ) < L+ 299PC [ (ZlADE)  ds
0
< (1+29PCCy3llAllp
This completes the proof of the proposition.
Definition (4.1.13) [4]: A partial sampling map is a map ¢ from a set X
into B which has the property that card{x EX:p(x) € Tk,j} <1 for
every (k,j) €1
Lemma (4.1.14) [4]:There exists a natural number M5, determined by
the complex dimension n such that the following is true: Let L be a subset
of I and suppose that z:L — B map satisfying the condition z(k,j) €
Ty jfor every (k,j) € L Then there is a partition L = E; U ....UE)y, .
such that for every 1 < v < M5 ¢, the map z: E;,, — B is a partial sampling
map.
Proof: By (22), we have Ty ; N Ty ; =0 ; forall k # k" in Z, and 1 <
j<m(k),1<j<m(k"), By (19), (20) and (22), there is an M €
N determined by the complex dimension n such that the inequality
card{i:1 <j <m(k),TyjNTy; #0} <M (31)
holds for every (k,j) € I. Let us show that M5, = M? suffices for our
purpose.
Let L < I, and suppose that z: L — B is a map such that z(k, j) € Ty ; for
every(k,j) € L. Then by (31), for every (k,j) € I we have
Z card{ € {1, .., m(k)}:z(k, ) € T} < M2 = Myg  (32)
Ty, jNTk,i#0
We pick a subset E; of L that is maximal with respect to the
condition that the restricted map z: E; = B be a partial sampling map.
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Suppose that m > 1 and that we have defined pairwise disjoint subsets
Ei, ..,E, of L.

We then define E,,,,; to be a subset of L\ (E; U ... U E,;,) that is maximal
with respect to the condition that the restricted map z: E,,,; — B be a
partial sampling map. Then the proof will be complete once we show that
= 0 Assume the contrary, i.e., assume that there were some

M3 641

(k%)) € En, ., ,- We will show that this leads to a contradiction.
First of all, we have

2(Kk*, %) € Ty (33)
By the maximality of the sets Ey, ..., Ep, , for each 1 < v < M3, the
map z fails to satisfy Definition (4.1.13) on the set E,, U {(k*,j™)}. Since
Z is partial sampling on E,, this means that for each 1 < v < M3 ¢ there is
a (k,,?,) € E, such that

{z(ky, €,),2(k",j")} Tk,’,,iv-

for some (k;,i,) €I1. By (33), this implies k, =k* =k, and
T+, N Ty j= # 0 ;5 for every 1l < v < M3, . Thus z maps the set

{(k*,j), (k*,2), ..., (K", €y, )} into Uty oy 20 Tieni

Since the set {(k*,j*), (k*,41), ..., (k*,€M3_6)} contains M5+ 1 =M, +
1 elements, this contradicts (32). This completes the proof of the lemma.
In addition to the index set I, let us also define I,,, = {(k,j) € I: k < m}
for each m € Z,. The following is the main goal of this section:
Proposition (4.1.15) [4]: Let 2<p < o0 and 0 <t < 1 Suppose that
wy,j € Ty, j for every (k,j) € I. Then the inequality

5 ({[4nnsel} ey ) = CosePIMs AL 39)

holds for every bounded operator A: H2(S) — L*(S,do) and every
m > 1, where C;,(t,p)and M5, are the constants provided by
Proposition (4.1.12) and Lemma (4.1.14) respectively.
Proof: First of all, a symmetric gauge function @ has the following
obvious property: If X is any countable set and if X = X; U ...U Xy, then
for every map ¢: X — [0, 00) we have
P({p () }rex) < CD({QD(X)}xEXJ + -t ¢({§0(x)}xeXN) (35)

Let m = 1 be given and consider the map (k, j) - wy ; from [, into B.

Since wy ; € Ty ; for every (k,j), by Lemma (4.1.14) there is a
partition I, = E; U ..U Ey, .
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such that for every 1 < i < Mg, the map (k, j) — wy jis partial sampling
on E;. By Definition (4.1.13), this means that the map (k,j) — wy jis
injective on E; and {Wk, ji(k,j) € Ei} is a partial sampling set as defined
in Definition (4.1.9). Hence Proposition (4.1.12) gives us

&5 ({[4twsell), o, ) < Gt PIIAIS

for every bounded operator A: H%(S) - L?(S,do) and every 1 <i <

M; ¢. By (35), we also have
M3 6

Pp <{||A¢Wk.f't||}(k.j)61m) = z ®r <{||A¢W"'f’t||}(k,j)€Ei)

i=1
Obviously, the proposition follows from the above two inequalities.

1q



Section (4.2): Radial Contractions and Local Inequality with
Lower Bound and Small Factor

For each £ € N we define the radial contraction

) — {(1 - 12) G/ i A <1 gy
0 if41-1z1»)=1
Z € B. One can better understand these pfin terms of the following
relations: we have
pt(2)/|pt(2)| = z/|z| and
{ AN (37)
1— |pL@)I? = 4(1 — |21
if 4°(1 — |z|?) < 1. Recall that the Schur multiplier m,, is given by (23).
A key ingredient in the proof of the lower bound in Theorem (4.1.2) is
the following local inequality for Hankel operators:
Theorem (4.2.1) [4]: Given any 0 < § < 1/2, there exists a constant
0 < C(6) <1 which depends only on § and the complex dimension n
such that the inequality

- 1
1/2 . _
Var'/2(f — Pf;z) < C(6) E 57 | M Hr oo
£=1

holds for all f € L?(S,do),and z € B.
Next we again turn to the symmetric gauge function @, .
Lemma (4.2.2)[4]: Let 1 <p < oo. Let X,Y be countable sets and let
N €EN.
Suppose that T: X — Y is a map that is at most N-to-1. That is,
card{x € X:T(x) = y} < N forevery y € Y . Then for every set of real

numbers {ay}yey we have

®p ({aT(X)}xEX) < max{P, 2} NP d; ({ay}yey)

We will now bring the radial contractions pf defined by (36) into our
estimates. Recall that the index set I was defined in Section 3 and that for
eachm € Z,, we write I, = {(k; j) € I: k < m}.

Lemma (4.2.3) [4]: There exists a constant C, ; which depends only on
the complex dimension n such that the following holds true: Let h: B —
[0,00) be a map such that sup h(w) < oo for every (k,j) € I. For each

WETk_j
(k,j) € I, let wy ; € Ty ; be such that



1
h(wy ;) = 5 sup h(w) (38)

WETk_j

Suppose that z; ; € Ty ; for every (k,j) € I. Then the inequality

®r ({h ('D{)(Zk'j))}(k JEl ) < max{P, 2} C4'322n{)/PCD’_’ ({h(wk'j)}(k,j)am)
holds forallm,# € N and 1 < p < oo.

Proof: First of all, by (20) and (19), there exists a natural number C; such

that for all integers 0 < k' < kand 1 < i < m(k'), we have

card{j € {1, ..,m()}: B(wy;, 27%) N B(w ;27F) # 0} < ¢, 220D (39)
Let h,wy ; and zy ;, (k,j) € I, be as in the statement of the lemma.

Let £ € N. By (37) and (22), we have

m(k) m(k—¥)
Y; UT,(J- c U Toop: if k> 1 (40)
=1 i=1

Consider any 1 < p < oo and m € N. First let us consider the case where
m > l. Then I,, =1, U I;, , where
ILpe=1{(k,j) €EL: ¥ <k <mj}

By (40), for each (k,j) € Iy p, there is an n(k,j) € {1, ..., m(k — €)}such
that pf(zk,j) € Ti—enk,jH- We now define a map @: I, p = Iy, by the
formula

U )= (k=2tnk,))), (k)€ Ly,
This map ensures that pf(zk, j) € Ty(k,j) (k. j) € Ipe By (38), we have

h (pﬁ(zk,j)) < Zh(w(p(k,j))for every (k,j) € I
Consequently,
@ (ot @) e ,) < 25 ({h(wgo(k,n)}(k,j)e,m_) (41)
By (36), if (k,j) € I, then
pe(zrs) _ Zx,

pe(zic )l |zl
Since zy ; € Ty jand p€(zx ;) € Tyk,j) = Tk—enk,j)» by (22), the above

identity implies

B(ug;,27) N B(up—pyajy 277 # 0
Combining this with (39), we see that for each i € {1, ..., m(k — £)}
card{j € {1,..,m(k)}:n(k,j) = i} < €,2*™.



In other words, the map ¢: I, , = I, is at most C,2?™to-1. By Lemma
(4.2.2), this means

o5 <{h(W<p(kJ))}(k,j)€Im.f)

< max{P, 2} Cll/PZZM/PCDI_J ({h(wk,f)}(k,j)elm)

Since C11 /P < C; , if we combine the above with (41), we obtain

(0 .

< max{P, 2} 2€,22"*/" @, ({n(w)} (42)

Next we consider the set I,.
Note that by (20) and (19), there 1s a natural number C, such that

m(k) < C,2%™ for every k >0 (43)
By (36), we have
m(k) m(0)
j=1 i=1

Therefore there is a map ¢: I, — I, such that
pf(zk,j) € Ty, ) for every (k,j) €1,

Combining this relation with (38), we have

5 ({1 (20} ) =29 (000N )

By (43), card(ly) < C, Yt_,2%™ < 2(,22™ Therefore the map
Y:1, - I, is at most 2C,2%™-to-1. Applying Lemma (4.2.2) again, we
obtain

Dp ({h(Ww(k.j))}(k,j)E,f) < max{P, 2} 2CZZZM)/PCI)I_J ({h(wk'j)}(k,j)elo)

Therefore

@ ((h(0t@ )y, per,)
< max(P,2) 26,2205 (kWi )}y ) 49

Combining this with (42), we see that in the case m > [ we have



®p ({h(pg(zk'j))}(k,j)elm)

= P <{h(p {)(Z"'f))}w,j)em,e)

+ ®p ({h(pg(zk'j))}(k,j)elg)

< max{P, 2} (2C; + 4C2)22n{)/PCD13 ({h(WkJ)}
On the other hand, if m < £ then (44) gives us
o5 ({h(Pf(Zk,j))}(k,j)am) < ®p ({h(pg(zk'f))}(k.j)ew)

< max{P, 2} 4C,2%"/P @y, ({h(wk,f)}(k,j)ao)

< max{P, 2} 4C,2%"/P o3, ({h(wk,f)}(k,j)elm)

This completes the proof of the lemma.

(k,j)elm)'

Proposition (4.2.4) [4]: Given any 2n < p < oo, there exists a constant
C4 4(p) which depends only on p and the complex dimension n such that
the following estimate holds: Let f € L2(S, do). For each (k,j) € I, let
Wy j € Ty jbe such that

1
[ e | 25,50 [, ik (45)
Let zy ; € Ty, (k,j) € 1. Then for every m € N we have

Dp ({Varl/z(f - Pf; Zk’j)}(k,j)EIm)

< C,.(P)D; <{ [ Min,,, Hrkw,, [ }(k’j)a) (46)

Proof: Since p > 2n, thereisa 0 < § < 1/2, such that if we set
e=1—-8—-(2n/P).

then € > 0. Let f € L?(S, do)and let wy,; and z, ;be as in the statement
of the proposition. By Theorem (4.2.1), we have

-1
Var*/2(f — Pf;z,;) < C(8) zm ”Mmpt’(zz(,j)kapf(sz)”
=1

for every(k, j) € I. Since @, is a norm on ¢, it follows that

Dp ({Varl/z(f - Pf; Zk’j)}(k,j)EIm)

< C(6) Eoo 1o Moy koo |} (47)
2(1=8)¢ pL(z,j) kP G et
=1 somm

for every m € N. Next, we define



h(w) = ||Mp, Heky ||, w € B
Then (45) tells us that this map h: B — [0, 00) and the points wy j,

(k,j) € 1, satisfy condition (48). This allows us to apply Lemma (4.2.3)
to obtain

=1
; 2 (1-8)¢ Pp <{ ” Mmpe(zk_j)kaPf’(Zk.f) || }(k’j)e,m>

Zn{’/P

= PC432 Sa-5)7 PP ({h(wk])}(kj)a )

= PC, 5 ;ﬁq); <{||mek'ijka'j||}(k,j)EIm>

Combining this with (47), we see that the proposition holds for the
constant C, 4 = PC(8)Cy3 Y52, 2.

Propositions (4.1.15) and (4.2.4) represent the two main steps in
the proof of the lower bound in Theorem (4.1.2). The remaining step in
the proof of the lower bound is to bridge the gap between the right-hand
side of (46) and the left-hand side of (34), which only involves existing
ideas. Nonetheless, we repeat all the necessary details here for
completeness.

Lemma (4.2.5) [4]: There is a constant 0 < C5; < oo such that
Mo, He o || < ||Hphll + CsaVar?(f — Pf;2)
forall f € L?>(S,do),z€ Band 0 <t < 1.
Proposition (4.2.6) [4]: Given any 2n < p < oo, there is a constant
Cs,(p) such that the following holds true: Let f € L?(S,do). For each
(k,j), let z ; € Ty ; satisty the condition
Var/?(f — Pf; ) >% sup Var?(f — Pf; z) (48)

z€T k.j

Then

O (Var'/2(f = Pfizij)}, o) < Cs2PH,
Proof: Let f € L?(S,do)be given. For each (k,j) € I we pick a wy ; €
Ty j. such that

||Mka,ijka1|| >1 squ '”mekaW”
k,j

Then by Proposition (4.2.4) we have



O ((Vart/ (f = Pz} e )

< C, . (P)Dp <{||mek'ijka.j||}(k,j)elm>.

for every m € N. Applying Lemma (4.2.5) to each ||Mka Hek
']

we; |[» for

0 <t<1wehave
O ((Var/ (f = Pz} ey, )
< Cyu4(P)DPp <{||wawk.f.t }(k,j)elm)

+ C4.4(P)Cs51tPp ({Varl/P(f — Pf; Wk'f)}(k,j)elm)'
Since wy ; € Ty ;. it follows from (48) that Var(f — Pfiwy j) <
2Var(f — Pf; Zk,j). Hence

Dp ({Varl/P(f — Pf; Zk'j)}(k.f)EIm)
< Cua(P)Pp <{||Hfl’bwk.f.t }(k,j)elm)

+ 2644 (P)Cs.1t®p ((Var/”(f = Pfizi )}, i, )
Now, for the given 2n <p <oo, we pick 0<t <1 such that

2C4 4(P)Cs 4t < 1/2. This fixes the value of t in terms of p, and from the
above inequality we obtain

Dp ({Varl/P(f — Pf; Zk'j)}(k.f)EIm)
< Ca4(P)Dp <{||wawk.f.t }(k,j)elm)
+ (1/2)®p ({Varl/P(f — Pf; Zk'j)}(k.j)EIm).

Since I, is a finite set, the quantity @, ({Var VP(f - Pf; Zk,j)}(k el )

is finite. Therefore after the obvious cancellation the above inequality
becomes

Dp ({Varl/z(f - Pf; Zk’j)}(k,j)EIm)

< 2C,4(P)Pp <{||Hf¢Wk.f.t }(k,j)elm)

Assuming ||Hf||; < oo, an application of Proposition (4.1.15) to the right-

hand side gives us

o5 ({Varl/z(f — Pf; Zk,j)}(k,j)elm) < 2044(P)C34(8, P)M3.6||Hf||;

YO



Since this holds for every m € N, by (1) we have

@5 ((Var'/2(f = Pfizij)} o) < 2C4a(PYCs.a(t, PYMs o1 Hy |
Thus the proposition holds for the constant Cs,(p) =
2C44(P)C34(t, P)M; ¢
Lemma (4.2.7) [4]: Given any 0 < a < oo, there exists a natural number
K which depends only on a and the complex dimension n such that the
following holds true: Suppose that I' is an a-separated subset of B. Then
there exist pairwise disjoint subsets I}, ..., T}, of T such that UF,T; =T
and such that card(I; N Ty ;) < 1foralli € {1,..,K}and (k,j) € I.
With the above preparation, we now have proof of the lower bound
in Theorem (4.1.2) Let 2n < p < 1 and a > 0 be given. We need to find
a 0 < C; < oo that depends only on p, a and n such that the inequality

o5 (varV?(f - Pf; 2} ) < Gl |l (49)
holds for every f € L?>(S,do)and every a-separated I' set in B.
Let an a-separated set I' in B be given. Then Lemma (4.2.7) provides the
partition
=T U..UI} (50)
where K depends only on a and n, such that
card(T;NTy;) <1foralli€{l,..,K}and (k,j)) €l (51)
Let f € L?(S,do). For each (k,j) €I pick z,;j € Ty; such that (48)
holds. Combining (48) with (51), we see that

03 (Var 7 - 1,2, ) £ 205 (Var (1 - 320} )
for every i € {1, ..., K}. Proposition (4.2.6) tells us that
@5 ((Var?(f = Pfize )} er) < Co2PIHAN,
Therefore
o5 ({var'/?(f - Pf; Z)}zel“i) < 2052 (P)||Hf |,
i €{1,..,K}.. By (50) and (35) we have

k
o (var?(f P2} ) < ) @5 ((var/P(F = P2} )
i=1

By the above two inequalities, (49) holds for the constant C; =
2K (s (P).

We now turn to the upper bound in Theorem (4.1.2). One of the
main ingredients in the proof of the upper bound is a reverse HOlder's

A



inequality. But whereas for the symmetric gauge function ®% | here the

inequality must cover @, which makes its proof a much more difficult
task. We will see that the key to the proof of the reverse Holder's
inequality is a certain cancellation, and what enables this cancellation to
take place is a certain “small factor". Here we must take an approach that
is to obtain the requisite “small factor".

For any a = {aj}jeN and N € N, define the sequence alVl =
{aJI-V }jeN by the formula
a =a;if ( —1DN+1<j<iN,i€eN (52)
In other words, al™! is obtained from a by repeating each term N times.
Alternately, we can think of aMas a@® ... @a, the “direct sum" of
N copies of a.
Definition (4.2.8) [4]: A symmetric gauge function @ is said to satisfy
condition (DQK) if there exist constants 0 < § < 1 and 0 < a < o such
that

®(aM) > aN?®(a)

for every a € ¢ and every N € N.
The relevance of Definition (4.2.8) to what we do in this chapter is the
following:
Lemma (4.2.9) [4]: For each 1 < p < oo, the symmetric gauge function
@5 satisfies condition (DQK). More precisely, we have ®p (alM) >
NYPd5 (a) foralla € éand N € N.
Proof: Let 1 <p < oo. It suffices to consider a = {aj}jeN where the

terms are nonnegative and in descending order, i.e.,
G =20, =20 ="

Then by (52) and the definition of CI);, for every N € N we have
- aiN

®p (al) = z z((l DN + )(P—l)/PZizl(iN)(T)/P

= Nl/Pch (a)

as promised.

The proof of the reverse Holder's inequality for ®,will be based on
condition (DQK).

But for the proof itself it will be more convenient to work with (DQK),
rather than with the specific @ .



Recall that for each k > 0, we introduced {uk,l, ....uk,m(k)}, which is a
subset of S that is maximal with respect to (20). For each (k,j) € I, we
now define

Ayj = B(ukj, 27%*1), By ; = B(uy;,27%%2) (53)
and

Crj = B(uyj, 27%*3).
Definition (4.2.10) [4]: For eachi € Z,and each (k,j) €1, we set
Ei(k,j)) ={(k +1i,j") € I: Agy;j N By j # 0}.
Definition (4.2.11) [4]: Suppose that g € L(S, do).
(a) Foreach 1 <t < oo and each(k,j) € I, define

1
Je(g; k. j) = ( f |9 — 9By j| do) /¢
k,j

a(By,;) ey

(b) For each k € Z,, define the function Rkg on S by the formula

(Rig)(Q) = f gdo, (€S

1
o(B(¢,27%2))
B((,27k=2)
(c)For1 <t< w,i€ Z,and (k,j) € I, define
(el ) — (L _ . 1/t
Gt,l(gr k;]) - (G(Bk,j) ka'jlg Rk+zg| dO‘)

and
; 1 1/t
Hi(g: k) = (= | |Rk+i9 — 9B | do)
o(Br;)
k.j

(d)For each (k,j) € I, define

Jgkp) === [ lg - 9Cusld
o(Crs) :
k.j

Lemma (4.2.12) [4]: There is a constant C¢ 5 such that

0(Bicrij)
(k+i,j)EE;(k.) 7(Br)
forallg € L?(S,do), 1 <t < oo,i € Z,and (k,j) € I.
Proof: By (19) and (53), there is a constant C; such that
0(Bieij) <.
a(B(¢,27k1=2)) = ¥

GLi(g; k) <21 Cs s Ji(g; k +v,j")




for all k; i € Z,,j' €{1,..,m(k + i)} and { €S. Let g € L*(S,do),
1<t<oo,1,i€Z,and (k,j) € I. Then by Definition (4.2.10) and (21)
we have

f|g — Ry4igltdo < z f g — Re+i9|t do

By Ueti,jNEE ) Ay gy, i

< 2071 z f |9 — 9Bisiyr| do

(k+i,j")EE;(k,j) Biyij!

+2t71 z f |9B+i
(k+l,]’)EEl(k,j) Ak+i,j,
t
— Ryvig| do (54)
For each { € Ay, j» we have B({, 27k=1=2y By 4y,j'- Therefore

|9Brsv,j’ — Rk+ig(()|t < f |9Betv,j’ — g|tda

oB({,27k"1"%)
B((,Z_k_i_z)

< CJi(gik +v,j")
for every { € Ay, j7. Hence

f |9Brv,j’ — Rk+ig|td0 < C10(Agsv,))ECG Kk +v,)").
Ay,

Substituting this in (54), we see that if we set Cg5 = 1 + C;, then the
lemma holds.

Lemma (4.2.13) [4]: Suppose that X and Y are countable sets and that N
is a natural number. Suppose that T: X — Y is a map that is at most N-to-
That is, for every y €Y , card{x € X:T(x) = y} < N. Then for every
set of real numbers {by}yey,and every symmetric gauge function ®, we

have

® ({bre)ey) < N ({0)),,)

The next lemma is the most crucial step in the proof of our reverse
Holder's inequality: extraction of the requisite “small factor”.
Lemma (4.2.14) [4]: Let ® be a symmetric gauge function satisfying
condition (DQK). Let 1 <t <ooand € > 0 also be given. Then there



exists a natural number v € N which depends only on @, t, € and the
complex dimension n such that

o (0 55+ 51060 ) =00 DN )
for all g € L?(S,do).and m € N.
Proof: We begin by fixing a number of necessary constants. First of all,
by (20) and (19), there is a natural number M; € N such that
card{j' € {1,....,m(k)}: C.jy N C; # 0} < M, (55)
for every (k,j) € 1. Let m € N. By a standard maximality argument,
there is a partition
Ly =1U..Uly (56)
of the truncated index set I,,, such that for each pair of g € {1, ...., M,}
and k € Z, if
(k,j); (k,j') € Igand j # j' (57)
then Cy ; N Cy j» = 0.
Again by (20) and (19), there are constants 0 < ¢; < €; < oo such that
-1l
< o(BG,27)) < ¢ 27 (58)
a(B(, 1))

holds for all {,{ €S5,0<r < 8 and i € Z,. In particular, we have
o(By,j) < CZJ(Ak,j)and 0(Cyj) < Cza(Bk,j) for every (k,j) € I, where
C, = (2°™/c;). Note that for every i € Z,, if (k +1i,j") € E;(k, j), then
Apyijr € C j. Combining these facts with (55), we see that if we set

C3 = M,C%, then

c, 2—2m

U(Bk+v,j’)

—=<C 59
U(Bk,j) 3 ( )

(k+v,j)EE (k. ))

foralli € Z,,and (k,j) € I.
Suppose that & is a symmetric gauge function satisfying condition
(DQK). Then Definition (4.2.8) implies that there exist constants 0 <
0 <1and 0 < C, < o such that

®(a) < C,N90(a™) foralla € éand N € N (60)
Let 1 <t < oo be given. We write Cs = 2871C. s, where Cgc is the
constant provided by Lemma (4.2.12) Let € > 0 also be given. We pick
an Ny € N such that

(4cy)Vte,N~? < (61)

2M,c"
Finally, with No so chosen, we pick a v € N such that

\RKC



(4NyC,Cs272) VM, < ¢/2 (62)
What remains is to show that the lemma holds for this v.
Let g € L?(S,do) be given. It suffice to consider the case where
Ji:(g; k,j) < oo for every (k,j) € Iyy, For each(k,j) € I,, Lemma
(4.2.12) gives us

. O-(Bk l.,) «f
Gtt,v(g; k,j) < Csg ) ],f(g;k +v,j")
O'(B )
(k+v,j)EE, (k,)) k.Jj
olB ./
= (s (Brso, )]E(g; k+v,j") (63)

3 (e+v,)EE (k. ) 7(Brs)
Where E,(k,j) = {(k +v,j") € E,(k,j):JE(g; k + v,j") > 0}. Now, for
every (k,j) € I, we have the decomposition

B = | %tk
£=—o0

where X,(k,j), is the collection of (k + v,j) € E,(k,j), satisfying the
condition

2071 < Ji(gs k+v,j) < 2¢ (64)
£ € Z.Foreach (k,j) € I,,,, define the sets

ZD(k, ) ={te z:1<card(X,(k,j)) < No}
and
ZPD(k,j) = {¢ € Z:card(X,(k, ) < Ny}

It follows from (63) that

GEo(gi k) < Cs{TD (k. ) + TP (k, D} (65)
Where, fori = 1,2,

U(Bk+v,j’)

ez (k,j) (k+v,j)eX, (K, )) J(Bk'f )
Let us first consider T™M(k, ). Suppose that (k,j) € I,is such that
z®W(k,j) # 0.

Since E,(k,j) is afinite set, the set z(W(k,)is also finite and,
consequently, has a largest element u(k,j). Thus there is an n(k,j) €
{1,..,m(k + v)} such that (k +v,u(k,j)) € X, j)(k,j). By (64), we
have

TO(k,j) = JE(g: k +v,j")

200D < 218 (g; k + v,m(k, )
By (58), 0(Bysv,j/ 0(By;) < C127*™. Since card(X,(k,j)) < N, for
every € € zW (k, j)and since u(k,j) is the largest element in z(P (k, j),
we have



(k. f)
T®(k,j) < z NoCy2722f = 2¢,272mvuk))

f=—o00

< 4NoC, 27" (g5 k + v, (k, )))
If (k,j) €L, is such that z((k,j) = 0then TM(k,j) = 0. Thus we
conclude that for every (k,j) € I,,,, there is an n(k, j) € {1, ..., m(k + v)}
such that (k + v, u(k,j)) € E,(k,j) and such that
T®(k, ) < 4NoC:27*"JE(gs k + v, (k. ) (66)
Now define the map ¢: I, = I,,,4,- by the formula ¢@(k,j) =

(k +v,n(k, ).

(k,jel,. If keZ,and j;,j, €{1,..,m(k)}are such that
n(k,j;) = n(k,j,), then, by the definition of n we have E, (k,j;) N
E,(k,j2) #0 By (53), if Ayy;jr N Byj # Othen Ay, € Gy .
Hence the condition E,(k,j;) NE,(k,j;) #0 , implies Cy; N
Cyj, # 0. By (55), the map ¢: I,;, = L;,,,1s at most M;-to-1. Thus
Lemma (4.2.13) gives us

(e (gik+ v}, ) = @ (Ueloi 0 ) e, )
< M@ ({J,(g: k)
By (66), we have
(T®, )" < NG 27™) (g3 ke + w1, )
for every (k,j) € I,,The combination of these two inequalities gives us
@ ({(Tu) (k, j))l/t}(k, j)e,m)

< (4NoC; 272V, ({95 b Dk pyet,,,) (67)
It follows from (65) that

. ~\1/ ~\1/
Gewlgi k) < C/H{(T Wk )" + TPk, )Y

(k'j)61m+v )

Hence
(0)] ({Gt,u(g; k'j)}(k,j)elm)
<c/'o ({(T(” )"

\1/
+C/to <{(T(2) (k) t}ac,f)ﬂm)

. 1/t
< (€/DO(Uelg kDt pemer) + C @ ((TO )™ )
where the second <follows from (67) and (62). Thus the proof of the
lemma is reduced to the proof of the inequality

(kJ)EIm)

ARA



Cy/to ({(T(Z)(k;j))l/t} (k,j)am) < (e/2)0(Ue(g; k. D cyetn)

By (56) and (35), this inequality will follow if we can show that

/t
o ({(T®w%, )" )
({( kD)"Y e
E 3
< Wq)({]t(g; kD ety ) (68)
5

for every q € {1, ..., M;}.
To prove (68), consider any q € {1, ..., M;} and define fq = {(k,j) €
I,:2® (k,j) # 0}. Again, each z¥ (k, j).is a finite set because
card(E,(k,j)) < . Thus for each (k,j) € I,, z@ (k,j). has a largest
element 2(k, j) That is,

card(Xyx,jy(k,j) > Ny (69)
and ¢ & zP(k,j) if € > (k,j). For each (k,j) € I,, pick an h(k,)) €
{1, ...,m(k + v)} such that (k + v, h(k, j)) < Xy j)(k, ).

Since Xy jy is the largest element in z@ (k, ), by (64) we have
JE(g; k+v,j) < 2Jf(g; k + v, (k,))) for every (k +v,j")
e |J xwp
e z(2) (k,j)
Combining this with the definition of T® (k, j) and with (59), we obtain
T@(k,j) < 2C3J{(g; k + v, (k, ).
1/t -

Thus (T(Z)(k,j)) < 2C)YY, (g;k + v, (k,))) for every (k,j) €I, .

Consequently,

¢ <{(T(2) (k;f))l/t} (k,j)61q> - ® <{(T(2)(k’j ))m} (k.f)efq>

< (2C) Yt ({]t (g; k +v,h(k,j))} (k,j)eiq) (70)
Recall that the condition Ay, N By j # 0, implies Ayy;i» € Cy ;.
Combining this fact with (57), we have E,(kq,j;) N E,(k,,j,) = 0 ; for
all (kq,j1) # (ky,j) in I, Therefore
Xty i) k1, J1) N Xy ey i) (k2ij2) = 0 for all (kq,j;)

* (kz,j2) (71)
in [.
Note that (64) also gives us

YYY



Je (g k +v, (k) <2V, (gik+v,j") (72)
for every (k +v,j") € X3, jy(k, ).

If (k,j) € fq, then, of course, Xy j)(k,j) € Iy Thus, if we re-

enumerate the numbers {J; (g;k + v,h(k,j))}(k el in the form b =
, q

{by, ..., b;}, then it follows from the combination of (72), (71) and (69)
that @ (b!Nol) < 25 @({J, (g5 K, Dtk petnan):
Applying (60), we now have

@ (e (gik+v,h06 Dy, g ) = PB) < CNGOD(b)

< 21/tC4N0_6cD(Ut(9; k;j)}(k,j)e1m+,,)
Combining this with (70) and (61), we have

N1/ _ |
? <{(T(2)(k'] "} (k,j)EIq> < (4C)VECuNG P @ (U (g5 kD kjretmsn)

E .
< W‘D({h(y; kD) jer,)- (73)

This proves (68) and completes the proof of the lemma.
Lemma (4.2.15) [4]: There exists a constant Cg g which depends only on
the complex dimension n such that the inequality

Hy (g5 k) < Ces22™](g; k. ).
holds for all g € L*>(S,do) ,(k,j) €El.i € Z,and 1 < t < oo.
Proof: Let g € L?(S,do) and (k,j) €. If{ € By jand i € Z, then
B(,27%7"%) c C,; , and consequently

1
(Reris)@) = 96l < gy, | 19— 9kl do

B((,Z_k_i_z)

0 (Cri) 1 f
< ——. —gCun.:ld
SBQ2 ) oG ) 19790kl
0(Ck+i

< (2'"/C)2%™ (g5 k, )).
where the third < follows from (58). On the other hand,
1 () 1
19Creri — 93k+i|0(3—k+i) j |gCyvi — gldo < 5Brrd) 7(Cerd) j |9Civi — gl do

Bi+i Cr+i

< (2%/C)22"(g; k, )).
where the last < again follows from (58). Write Czg = (219%/C,) +
(22™/C,). Then the above two inequalities together give us

AREA



|(Ric4:9)(§) = gCrsil < Co52°™(g; K, J).
for every ¢ € By ; . Recalling Definition (4.2.11) (¢), the lemma follows.

Definition (4.2.16) [4]:
(a)  For each (k,j) €1, we set E(k,j)={(k',j")) ek’ <
k,d(ur jr,ug;) <2755} and  G(k,j) = {(K',j) € Lk’ <
k,Ay' j' 0 Byy; # 0}.
(b) For g € L?(S,do)and (k,j)€1. we set M(g;k,j)
sup{/(g; k',j): (k',j') € E(k, )}
Proposition (4.2.17) [4]: Let 1 < t < oo. Then there exists a constant
Co.10 = Cg.10(t, n) such that the inequality
Je(g; k, j) < Co10M(g; k; J).
holds for all g € L?>(S,do) and (k,j) € I,
Obviously, Proposition (4.2.17) follows from a more structured

version of the well-known John-Nirenberg theorem, a version that
incorporates our particular decomposition scheme (20), (21) and (53). As
such, the proof of Proposition (4.2.17) is relegated to the Appendix [4].
Proposition (4.2.18) [4]: Let 1 < t < oo. There exists a constant Cg 14 =
Ce11(t,n) such that if & is any symmetric gauge function, g €
L?>(S,do)and £ € Z, then

D <Ut(g;& i)}ﬁ(f) ) < C6.11¢(U(9; k»j)}(k,j)EI)-

Proof: By (20) and (19), there is a natural number L such that the
inequality

card{j’ € {1, ... m(k)}: d (w j7, up ;) < 27¥*€} < L (74)
holds for every (k,j) < 1.Let 1 <t < 1 be given Let g € L?(S,do) and
symmetric gauge function @ also be given To prove (73), it suffices to
consider the case where ®({/(g; k,j)}(k,j)a) < oo. Note that this implies

sup J(g;k,j) < oo.
(ko)sl

Let £ € Z,. Then for eachi € {1,...,m(k)} there is an h(i) €
E(#,1) such that

1
J(g; h(D) = EM(g; 2,1).

Applying Proposition (4.2.17), we have

Je(g; 4, 0) < Co10M(g; £,1) < 2Cq 10/ (g; h(1)).
i € {1,..,m(k)}. Consequently,



(g DL ) < 20020® (U@ RONEY ) (79)
If i,i'€{1,..,m(k)} are such that h(i) = h(i'), then E(£,i)N
E(¢,i") # 0 which means that there is some (kg,j,) such that
dup; Upyj,) <271 and d(upyr , Uy, ;) < 2705,

Hence if h(i) = h(i"), then d(uy; , up;r) < 2746 Thus, by (74),
the map h: {1, ..., m(£)} — I. is at most L-to-1. Therefore it follows from
Lemma (4.2.13) that

@ (Ug RN ) < Lo(Ugi kDI per)

Combining this with (75), we see that the proposition holds for the
constant Cg 11 = 2LC¢ 1-
After the extensive preparation above, here is our reverse HOlder's
inequality:
Proposition (4.2.19) [4]: Let ® be a symmetric gauge function satisfying
condition (DQK), and let 1 <t < oo. Then there exists a constant Cg 15
which depends only on @ ,t and the complex dimension n such that

q)({]t(g; k»j)}(k,j)EI) < C6.12¢(U(9; k»j)}(k,j)EI) (76)
for every g € L?(S,do)
Proof: Given ®and t as in the statement of the proposition, Lemma
(4.2.14) provides a v € N such that

. 1 .
O ((6en (@i kD) e ) < 5P koD petss) (77)
forall g € L*(S,do) and m € N. By Lemma (4.2.15), we also have
@ ({Heolg: K j )}(k,j)elm) < Cog22™0(U (g; k DYk ey ) (78)

for all g € L*(S,do)and m € To prove (76), we only need to consider
g € L*(S, do) satisfying the condition ®({J(g; k,j)}(k,j)a) < 0. By
Proposition (4.2.17), this implies J;(g; k, j) < oo for every (k,j) € I.
Since L4, = Ly U {145, \Im}, by (35) we have
O(Ue(g; k. Dk jpet,,,)
< (Y9 k. N pper,) + P(Ue(gs ko DYk ety oo\i)

m+v
: ~Nym (e
< (U (g k Daper) + ) @ (Uelgi 1Y),
f=m+1
Applying Proposition (4.2.18), we obtain



o({J.(g; k;j)}(k,j)elm_,_v)
< q)({]t(g; k»j)}(k,j)EIm) + UC6.11CD(U(9; k;j)}(k,j)el)
Substituting this in (77), we have

@ ({Gt,v(g; k,j)}(k, j)elm)

1
< ECD(Ut(g; k»j)}(k,j)EIm) + UC6.11CD(U(9; k;j)}(k,j)el)-

By Definition (4.2.11), J:(g; k,j) < G¢(g;k,j) + He,,(g; k,j). Thus,
combining the above inequality with (78), we find that

(U (g ko D3k jpet,,)
< @ ({Gew(@i D}y e ) + @ ({Hewlgi kDY er )

1 .
< Eq)({]t(g; k, N}k jet,)
+ (WCe11 + C6.822nv)q)({](g; k»j)}(k,j)EIm)

Thus the obvious cancellation in the above leads to
q)({]t(g; k»j)}(k,j)EIm) < 2(WCeqy + C6.822nv)q)({](g; k»j)}(k,j)EIm)
Since m € N is arbitrary, recalling (1), we conclude that the proposition

holds for the constant Cg 1, = 2(vC¢ 11 + C¢g2°™).



Section (4.3): Upper Bound

We now turn to the estimate of ||P,Mg||; . As it happens, this
estimate involves a new and quite elaborate interpolation scheme. In
other words, this is not the standard kind of interpolation [3]. Our
estimate of ||P,Mg||;will be realized through an interpolation between

the norms ||-||:f, and ||-||;r where r' < p < r. What complicates the

matter is that estimates of ||-||:f, and ||-||;r are themselves obtained
through interpolation between Schatten classes. Thus the estimate of
|| [P, Mg] ||;is really a two-stage interpolation.
For each operator A we introduce the distribution function

Ny(s) = card{j € N:s;(4) > s},
s >0, where s1(A4),5,(4),...,5;(4),...are the s-numbers of A. Also
recall that we have the inequality

Na+p(s) = Np(s/2) + Np(s/2)
We define the measure

do(x)do(y)

11— (x, ¥)*"
on § X S. For each 1 < p < oo, let Lsym(S X S,du) be the collection of

functions F on S X S which are L” with respect to du and which satisfy

du(x,y) =

the condition

|F(x,y)| = [F(y,x)I, (x,y) € S XS.
For each F € L’;ym(S X S,du), define Tr to be the integral operator on

L?(S, do)with the kernel function
F(x,y)

b)) = GGy

For these operators we have the following weak-type inequality:

Proposition (4.3.1) [4]: Given any 2 < p < oo, there is a constant C;; =
C; 1(p,n) such that

F P
Nrp(t) < ””|1' - y)'lznd (x)do ().

Forall F € LY, (S x S,dp) and t > O.

Definition (4.3.3) [4]:
(a) A subset Y of § X S is said to be symmetric if for every (x,y) €
S X S, we have (x,y) € Y ifand only if (x,y) €Y.

VYA



(b) SxS,weletC(g,Y)
denote the integral operator on L?(S, do)with the kernel function
9(y) —g(x)

WD) =T
Definition (4.3.4) [4]: (a) For each k € Z_,let E, = {(x,y) € SXS:
27% < d(x,y) < 27¥*1}. (b) For each (k,j) € I, we set D ; = By ; X
By ;j , where By ;is defined in (53).
(c) For each (k,j) € I, we set Ry ; = Dy ;\ Ej.

We are now ready to carry out the out two-stage interpolation for

J

||P, M, ||; The first interpolation is a more refined version:

Proposition (4.3.4) [4]: Let 2 < p <t < oo. Then there is a constant
Cr4 = Cra(p, t,n).

Such that the following estimate holds: Suppose that G is a subset
of I and that Y is a measurable, symmetric subset of S X S satisfying the
condition

Y C U Ry
(k. j)EG

1j.

Then

IC(g N < Cru @E(Ue(g; k. DYk jyec) for every g € (S, da)
Proof: Let 2 <p <t <oo. By (19), it is elementary that there is a
constant C such that

2 [ [lgt) - g)Ido ot < ik )
Dy

for all g € L?>(S,do) and (k,j) € I. Let G and Y be as in the statement of
the proposition.

To prove the proposition, it suffices to consider g € L(S,do).
satisfying the condition C; 4 ®F({J:(g; k. N}k jyec) <

Let us estimate N¢(g4,y)(S),s > 0. For this, we will decompose the
integral operator C(g;Y)in the form C(g;Y) = A;+ By and take
advantage of the inequality

Ne(gin(s) < Nay(s/2) + Ny, (s/2)

We will then estimate N, (s/2)by Proposition (4.3.2) and estimate
Npg (s/2) by using the Hilbert-Schmidt norm || Bs||,. But first we need to

define Ag and Bs. Let us write



P
R = 21/PP— OF (U9 ko D3k jpec) (79)

Set N = N in the case card(G) = o and set N = {1, ..., m} in the case
card(G) = m < oo. By Lemma (4.1.6), there is a bijection m: N = G
such that

R
J:(g; (i) < G foreveryi € (80)
LetG(s) ={m(i):1<i< (R/S)P}. We define

W(s) = U (YNRy;) and F(s) = Y\W(s).
(k,EG(S)
Now we let A, and B, be the integral operators on L2(S,do) with the

kernel functions
gy) —g(x) gy) —glx)
XF(s)(x,y) A=y and yW (s)(x, y) d— "

respectively. We first estimate N, _(s/2).

Since Y € U jyeg Rk,j by assumption, we have F(s) C

Uk, j)ec\6(s) Rk,j Hence

lg) — g
/ =G 0
lg) — g
S(k,z | | Feaym dotdow
J)EG\G(s) k.j

< > 2| [190) - g@lide@dow)

(k.J)EG\G(s) Dy
<C Z Ji(g; k) =C Z Ji(g; (D))
(k. )EG\G(S) i(R/s)P
P(1-(t/P))
<cC Z (R/iV/P)" (by(80)) < R.C (max{l 2})
i=(R/s)P

P—t

- .2

where the last < is the reason why we must require ¢t > p. Since the set
F (s) is symmetric, we can apply Proposition (4.3.2) to obtain



lg() — g
=G )

NAS (g) =< C7.1(5/2)tf

R P-t
SC7.1(S/2)t-ClRt(max{l,E}) < 2'C1C4RPs™P (81)

where the last < also uses the assumption t > p.To estimate N (s/2),
note that

, lg(y) — g()|*
13,1 = | e

do(x)do(y)

<

_ t
(S

())EGES) " R,

< > 2 [ [190) - 9@ detde)

(k))EG(s) D,
<c, ) Jgkp.
(k,j)EG(s)

where the last follows from (19) and HOlder's inequality. Recalling (80),
we have

IBIE<C, Y F@r@ysc Y (R
(i)EG(S) 1<i<(R/s)P
< C3R2. (R/S)P(l—(t/P)) — Cngs—P+2
Therefore
Np,(s/2) < (2/5)%|IBsll5 < 4C3R"s™F.
Combining this with (81) and recalling (79), we have
Nc(gy) (8) < {2°C,C71 + 4C33RPs™F

. P _

= C4{q)f3'({]t(g; k;])}(k,j)EG)} s~F.
If v € N and a,, > 0 are such that Nr(a,) < v, then s,(T) < a,,. Hence it
follows from the above inequality that the s-numbers of C(g;Y) satisfy
the condition

sv(C(g: 1)) < 2CHVP@E(Ue(gi k. DY pec)v ™"

for every v € N. Therefore

IC(g:NIIE < @CHYP@E(Ue(g; kD pec)

This completes the proof of the proposition.



The second stage of our interpolation requires the estimates
obtained.
Proposition (4.3.5) [4]: Let 2 < p < o. Then there is a constant C; 5 =
C,.5(p,n) such that ||P, Mg”; < G55 ({(g; k,j)}(k,j)a) for every g €
L*(S, do).
Proof. Given 2 <p < o, we pick a t such that p <t < co. Lemma
(4.2.8) tells us that the symmetric gauge function @ satisfies condition
(DQK). Thus, by Proposition (4.2.19),

q);({]t(g; k»j)}(k,j)EI) < C6.1ZCDI:(U (g; k»j)}(k,j)EI)

for every g € L*(S,do). Hence it suffices to show that there is a constant

C such that
1P Mgl < C@5(Ue(gs k. DYk jyer) (82)
for every g € L?(S, do).
To prove (82), we pick r and r’ such that 2 <r' <p<r<
t.Given g € L2(S,do),let us estimate N[P;Mg](s),s > 0. The idea is to

decompose [P; Mg] in the form C(g; Xs) + C(g;Ys) and take advantage
of the inequality

N[P;Mg](s) < N¢(gix,) (s/2) + N¢ggyy, (s/2) (83)
The sets X and Y; are chosen as follows. Let A denote the diagonal
{(x; x):x € S} in S X S. Then, of course, (¢ X ¢)(A) = 0. For each s >
0 wesetE(s) ={(k; j) €I:]/(g;k,j) < s}.

We then define Xg = Uk jyep(s) Ri,j and Y5 = (§ X S)H\(X;UA).
Since 2 < r < t, it follows from Proposition (4.3.4) that
||C(9;Xs)||;r < Cy4(r, t)q);r({]t(g; k»j)}(k,j)EE(s))

By Lemma (4.2.8), we have

r N\ /2 N
Newi(5/2) < (=) (S 6@ X011
Setting C; = {2C, 4(r, t)r/(r — 1)}", from the above two inequalities we

T

obtain

1 T
Negix(s/2) < ¢4 <§ o (Jelg; k;j}(k,j)EE(s))> (84)

By (21) and (53), we have U;.nz(f)

obvious that Up_,Ex = (s X s)\A. Consequently, U jyer Ry = (s X

S)\A.

Dy j € Ej for every k € Z,.. Also, it is
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Therefore YS (@ U(k,j)EI\E(S) Rk,j .
Since 2 < r' < t, it follows from Proposition (4.3.5) that

IC(g; Ys)“+’ < Cr4(, t)q):',({]t(g; k»j)}(k,j)EE(s))
Then another application of Lemma (4.2.8) gives us

1 v
NC(g;YS)(S/Z) <C, <§ q):’({]t(g; k;j)}(k,j)EE(S))> (85)

where C, = {2C, (', )7’ /(r' — 1)}"". Note that (a + b)/P < a'/P +
b'/P forall a,b € [0, 0).Thus if we write C3 = (max{Cy, C,})*/?, then it
follows from (83), (84) and (85) that

(v [P.Mg1<5>}1/P

" r/P
< Cs <§ oF ({:(g; k'j)}(k.j)eE(S))>
I/P

1 T
+ C3 <§ o (U (g; k;j)}(k,j)eE(s))> (86)

Since 2 < p < r, it follows from Proposition (4.1.4) that

oo /p
1 r
f <§ oF (Ut(g; k»j)}(k,j)eE(s))> ds <Cp,®p (Ut(g; k»j)}(k,j)EI)

0
Similarly, since 2 < r' < P, Proposition (4.1.5) tells us that

(0] I/P
1 r ,
f <§ ‘D:D(Ut(g;k;j)}(k,j)a\E(s))> ds < Co3%5 (Ue(9: k. DYk jyer)

0
Combining the above two inequalities with (86), we obtain

(0.0)

/
f {N[P,Mg](s)}l ’ ds <C3(Cyz + C3)Pp (Ut(g; k'j)}(k.j)EI)

0
Now an application of Lemma (4.1.3) gives us

(0.0)

_ 1/P

1P M, < P [ (Nppa ) s

0

<PC3(Cy; + C3)Pp (Ut(g; k»j)}(k,j)EI)

That is, (82) holds for the constant C = PC3(C,, + C,3) This completes
the proof.
Proposition (4.3.5) is the essential part of the proof of the upper bound in
Theorem (4.1.2).
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What remains in the proof of the upper bound is to bring
Var'/?(g; z) and Bergman lattice into the picture. But this last step has
been taken care of previously:

Proposition (4.3.6) [4]: Given any positive number 0 < b < oo there is a
constant C; ¢ which depends only on b and n such that if I is a countable
subset of B with the property that U,cr D (z,b) = B, then

CD(U (g; k»j)}(k,j)EI) < C76® ({Varl/z(g; Z)}zer)
for every g € L?(S, do) and every symmetric gauge function ®.
Proof of the upper bound in Theorem (4.1.2) Given an f €
L*(S,do), write g = f — Pf.
Then Hy = Hy. Let 2 <p < coand b > 0. Let I be a countable subset of
B such that U,er D (z,b) = B. Applying Propositions (4.3.5) and (4.3.6),
we have

1HA N, = 1Hgll, < 1P, Mg, < Cr.6®7(U (g3 b D}k per)
< (75C76Pp ({Varl/z(g; Z)}zel")

= C75C76®5 ({Var'/2(f - Pf; )} _):
This completes the proof of Theorem (4.1.2).
Lemma (4.3.7) [4]: There exists a constant Cg ; such that (M, 3f)(x) <
Co1(Mf)(x) forall f € L1(S,do),x € S,and k € Z,.
Proof: By (58), there is a constant Cg ;such that

O'(Ak,i)
U(Bk+3,i)

for all keZ,, je{l,..,m(k)} and j€{1,..,m(k+3)}. Let f €
L1(S,do),x €S, and k € Z,. be given. By (21), there is a j*€
{1, ..., m(k)} such that x € B(uy -, 27%).

By (53), we have Ay ;D Brys;. Again by (53), if i€
{1,...,m(k + 3)}.is such that x € B3, then B(x, 2785 o By +3,;- Thus
Apj D Byig; for every i€{l,..,m(k+3)} such that x€
By +3,;Therefore if x € By, 3; then

; U(Ak,j*)
O'(Bk+3,i) Bk£ 'Iflda = O'(Bk+3’i) U(Ak’j*)Akaﬂda < Cg1 (M. f)(x)

Combining this with the definition of (M 3f)(x), the lemma follows.

=< Cg1




Lemma (4.3.8) [4]: There exist constants Cg,and Cgs such that the
following estimates hold:
Suppose f € L}(S,do), (k,j) € I and r > 0 satisfy the condition

(C f|f|da <r 87)
k,i

Then there exists a subset G of G (k,j) such that

(@ IfI<Coxr foro—aexeB] | | Bu
(k,i)eG

M,
®» Y o)< (Il
(k,D)eG Cri
where M; is the natural number in (55);
(c) for every(k,i) € G. we have

|fldo < Cg,r.
(Bkl B—[

Proof: By (19), there is a constant 0 < Cg, < oo such that
g (B((,27°)
( ).

a(B(,279))
forall ,& € S and k € Z,Suppose that (87) holds. Then define

B = {x € By ;:lim sup(M, f)(x) > CS_Zr}.

k—oo

It follows from (19) that if x is a Lebesgue point for |f|then
lim (M f)(0) = If GOl

Hence |f(x)| < Cgyr for 0 —a.e.x € By ;\B Consequently it

suffices to find a subset G of G (k, j) such that
U By B, (88)
(k)EG

and such that estimates (b) and (c) hold. To find such a G, we first recall
that if k = k and if Ay ; N By ; # 0 thenAy ; € Cy ;.

Let x € By ;. Forany 1 <v < 3,if i € {1,..,m(k + v)}is such
that x € A4y, then




o (Cr,j)
(Ak+vl f Iflda (Ak+vz) U(Ck]) f|f|d0'<C82r

k+v1

This shows that (Mp,,f)(x) < Cgyr for all X € By jand v =

1,2,3. Thus for each x € B, there is a natural number k(x) >k + 3
such that

(Mo f)(x) < Cgrand (My(x)-3f ) (x) < Cgor.
Set Cg3 = Cg1Cg,. By Lemma (4.3.7), the second inequality above
implies
(Mﬁ(x)f)(x) < Cg3r (89)
For each x € B, there is an i(x) € {1, ..., m(k + v)} such that
X € Ak(x),i(x) and

————— [ o= (M@ <G OO
o(Ake i)
k(x),i(x)
LetG = {(k(x), i(x)):x € B}.
Then, of course, G < G (k,j) and U g,iyeg Ak,i 2 B. Our desired set
G will be a subset of G, defined as follows. Recall that k(x) > k + 4 for
every x € B. We define
Crya = {(k(x),i(x)):x € Band k(x) = k + 4}.
Inductively, suppose that £ = 4 and that we have defined Gy, for
every 4 < q < 4. Then we define

Crerrrr =4 (k(x),i(x)):x € B, k(x)

¢
=k+ £+ 1and Ag)io N U U Ai=0
q=4 (k,i)€Gy1q
This defines Cyp forevery £ = 4. Let G = UpLy Crpp-

Let us verify that G has the desired properties. First of all, by the
above inductive process, if x € B is such that (k(x),i(x)) ¢ G, then
there is a (k,i) € G with k < k(x) such that Ay(y)ix) N Ak, # 0. Since
k < k(x), this implies Ag(x)ix) € By ;- Hence (88) holds.

To verify (b), for each £ > 4,we define



Ap= Aktpi
(k+2,0)EGk ¢
It follows from (55) that

XAk+ei = MixA,
(k+£,0)EGk ¢
for every £ = 4. By (90), we have

1
CS.ZU(AkH,i) < » f |fldo
Aktei
for every (k +¢,i) € Gy4p; . Combining the above two inequalities, we
have

> Guolawed <3y [iftde <=t [ifias
Ay

(k+4,0)EGk 4 ¢ (k+€,1)EGk+p Apyp
Since CS.ZU(Ak+€,i) > O'(Bk_{_{),i) for every (k+%,i) € GyypiWe
obtain

0(Bissi) < % f |f|do

(k+£€,0)EGk4¢ A,

>4 1f (k+4,i) € Ggypy, then Apyp; NB # 0. Hence A, C Gy p for
every £ = 4 The definition of the G, ;’Sensures thatA, N A, = 0 for all
4 < ¢ < {'. Therefore

C M; M
Y o)<y Y o)==ty [Iflde <=t [Ifldo
(kD)EG 0=4 (k+4,0)EG 10 t=4 A, Cij
proving (b). Finally, (c¢) follows simply from (89). Indeed for each x € B,
we have

1 ~
B in) Ifldo < (Mg f)(x) < Cgzr
U(Bk(x),i(x)) f f (Mo f) 8.3

Ble(ax),i(x)
This completes the proof.
Proposition (4.3.9) [4]: There exists a constant Cg, such that if g €
L*(S,do) and (k,j) € I satisfy the condition 0 < M(g; k,j) < o and if
s > 0, then
o({x € Byj:|g(x) — gByx;| > s}) < 2ox ( —s )
o (By,) = P \CeaM(gik, )

(91)



Proof: By (19), there is a constant C; such that O'(Ck,i) <( (Bk,i).

for every (k,i) € I. It is easy to see that |<ka,i — (ka,i| < CJ(p; k,i),
for all @ € L?>(S,do)and (k,i) € I. By the homogeneity of (91), it
suffices to consider the case where g € L*(S,do) and (k,i) € I .satisfy
the condition M (¢; k,i) = 1. Note that

i|do +|gChi — 9B

J(Ckl flg 9By, do <
<1+
Now we apply Lemma (4.3.8) to the pair of f = |g — gBk,i| and (k, ),

and to the number

r =2C;M;(1 + Cy) (92)
where M is the natural number that appears in (55). By Lemma (4.3.8),
there is a subset G (Pof G (k,j) such that

|9(x) — gByi| < Cgor foro—a.e.x € By j\ {U _ Bk,i}'
(k,i)eG®
M M
0(Be) <=2 [1o - gBuildo < =201 + Co(Cy)
(k,i)EG(l) Cr,i
1
EO'(BR l)

And

f|g gBkL| do < Cg,r for every (k,i) € ¢
O'(Bkl)

This last 1nequa11ty implies that
|9Bk; — 9By ;| < Cgyr for every (k,i) € GW
Also, since GV < G(k,j), for every (k,i) € GV we have k >
k + 1and d(uy;ug ) < 2.27%2 =271 27k
Inductively, suppose that £ < 1 and that we have a subset G ) of
{(k,i) € I: k = k + ¢}. such that
lg(x) — gByi| < Cgor + (£ + DCgsr foro—a.e.x

€ Bk,j\{U(k,i)e(;(i’)Bk,i} (93)

1
d(Byi) < gf’(Bk,i) (94)
(k)G



and
|9Bk; — 9By ;| < Cgpr andd (uy;, uy ;)

< (27144278 27k (95)
for every (k,i) € G®. This last condition means G® c E(k,j) (see

Defnition (4.2.16), which together with the condition M(g; k,j) =1
implies

— 9Brildo = ——— — gCri|do + |gCii — gBri| < 1+C
G(Ck,i) Ck_lg g k'll O'(Ck,i) Ck-lg g k'll |‘g ki— 9 k,ll 1

for every (k,i) € G®. Thus the above argument can be repeated. That is,
we apply Lemma (4.3.8) to each triple of (k,i) € G({)),fk,i = |g — 9Bl

and the same r given by (92).This gives us a subset G,E,{)iﬂ) of G(k,1i) for
each (k,i) € G,
We set
(+1) _ )
G = U G
(k,)EG®
By Lemma (4.3.8) (a) and (95):
|9(x) = gByi| < Cgor + £Cq3r

For

o—a.exe {U(k,i)EG(g)Bk,i\U(k,i)EG(“'l)Bk,i}'
Combining this with (93), we have
|g(x) — gBk,i| < Cgor +Cg3r for o —a.e.x

€ {U(k,i)e(;(i’)Bk,i\U(k,i)e(;(i’ﬂ)Bk,i}-

Also,
1 1
oBi) < ) 50(Bus) < 5770 (Bus),
(k,i))eGU+D) (k,)eG®
And
|9Bri — 9By j| < (€ + 1)Cq3r for every (k,i) € GEFY.

Furthermore, if (k,i) € G¥+Vthen there is a (k',i') € 6@ .such
that (k,i) € G(k',i").Since k' = k + £ this implies d(uk,i,uk,d-,) <
271.27k'+4 < p—¢-1 p-k+4 By the triangle inequality,
d(uk,i,uk,j) < (2_1 + e F 2t + 2—?—1). 2 —k+4 fOT' every (k, i) € G(€+1).

This completes the inductive selection of the sets G, 6@, ...,6®, ....



To complete the proof of the proposition, let us write C =
max{Cg,, Cg 3}r, where, as we recall, r is fixed in (92). Suppose that s >
C. Then there is an £ € N such that

C<s<(¥+1)C.
By (93) and (94), we have

o({x € Byj:|g(x) — gBy;| > s}) < i{) — 9p—(t+1)log2
o(Bx.) 2

log 2
SZexp(— C s)

On the other hand, if 0 < s < C, then
log 2 log 2
2exp (— S) > 2exp (— C C) =1

- a({x € By ;: |g(x) — gBk,j| > s})
- o(Bx,;) |
Hence the proposition holds for the constant Cg, = C/log 2,
Proof of Proposition (4.2.17). For any 1 <t < o,g € L*(S,do). and
(k,j) € 1,, we have

]g(g:k;]): - f|g—g3k,j|tda
U(Bk,j)Bkj

(0.0)

. f (-1 0% € Biejilg () — gBiy| > )
] o(Bx.)
Applying Proposition (4.3.9) to the fraction in the last integral and

S.

making the obvious substitution, we obtain

JE(g; k,j) < 2t(C8_4M(g;k,j))tf ut~le %qu.
0

Thus Proposition (4.2.17) holds for the constant

(0.0)

Co10 = (Zt)l/tCSA- f ut~te "du
0

1/t

This completes the proof.
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symbol page
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L? Hilbert Space 3
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