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Chapter 1 

Operator Valued Besov Spaces and Dyadic Paraproducts 
with Hankel Operators 

We retrieve Peller’s characterizations of scalar and vector Hankel 
operators of Schatten- ven Nuermann class 푆  for 1 < 푝 < ∞. We then 
emply vector techniques to characterize little Hankel operator of 
Schatten- ven Nuermann class. 

Furthermore, using a bilinear version of our product formula, we 
obtain characterization for boundedness compactness and Schatten class 
membership of product of dyadic paraproducts. 

Section (1.1): Scalar Dyadic Paraproducts and Besov Spaces  

Dyadic paraproducts have been successfully employed in the study 
of Hankel operators in various settings, we want to look at Schatten class 
membership of scalar, vector and multivariable dyadic paraproducts and 
use these to study Schatten class membership of Hankel operators. 

Boundedness, compactness and membership of Schatten classes of 
their paraproducts have been characterized in terms of oscillatory 
properties of their symbols. Dyadic paraproducts on vector valued spaces 
(with matrix or more generally operator valued symbols) have also been 
studied; it has not thus far been possible to characterize the boundedness 
of paraproducts with operator valued symbols in terms of oscillation 
properties of the symbol. These difficulties are closely connected with a 
breakdown of a form of the John-Nireberg Theorem in the operator-
valued setting. Here, we want to consider a "P-.John-Nirenberg 
Theorem’, which generalizes easily to the operator setting.  

The purpose of the chapter is threefold. First, we show that a "p-
John--Nirenberg, Theorem" which can be found can be used to give a 
comparatively simple. Interpolation free proof of the characterization of 
Schatten class paraproducts in terms of oscillatory properties of their 
symbols. Our approach is related to Rochberg. And Semmes' method of 
nearly weakly orthonormal sequences—indeed, scalar dyadic 
paraproducts are in some sense the model case for nearly weakly 
orthonormal sequences. but technically simpler. Using an averaging 
technique it is possible to retrieve the known characterization of Schatten 
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class Hankel operators at least for 1 < 푝 < ∞,	for a second proof with 
different methods, Our approach is again interpolation-free and has the 
advantage that one does not need any nontrivial properties of Besov 
spaces, for example the atomic decomposition of	퐵 . Secondly, in 
contrast to the classical John–Nirenberg theorem, the version of "p-John–
Nirenberg Theorem" we require extends both to the operator-valued and 
the multivariable setting, and we thus obtain characterizations for the 
membership of Schatten classes for vector paraproducts and paraproducts 
in several variables. Again using averaging, we also obtain known results 
for vector Hankel operators and new results on "little Hankel" operators. 

Finally, using a sesquilinear version of our method, we obtain 
necessary and sufficient conditions for boundedness, compactness and 
Schatten class- membership of products of dyadic paraproducts. This part 
is motivated by the literature about products of Hankel operators, where 
characterizations of compactness of products of Hankel operators are 
known, but the corresponding questions about boundedness and Schatten 
class membership of products of Hankel operators are still open. we give 
a "p-John–Nirenberg" proof for the characterisation of dyadic 
paraproducts of Schatten class for 1 ≤ 푃 < ∞. We characterize dyadic 
paraproducts of Schatten class with operator-valued symbols for 1 ≤ 푃 <
∞ . We give an interpolation-free proof of the characterisation of Hankel 
operators of Schatten class with operator symbols for 1 < 푃 < ∞	.We use 
the vector results to characterise little Hankel operators of Schatten class 
on 퐻 (₵ )	and multivariable dyadic paraproducts of Schatten class. We 
characterise boundedness, compactness and Schatten class membership of 
products of paraproducts. 

Let 풟	denote the collection of all dyadic intervals on the real line 
ℝ, so  

풟 ≔ 퐼 = 퐼 . ≔ 2 푘, 2 (푘 + 1) : 푛, 푘 ∈ ℤ . 

Let 풟  denote the collection of intervals in 풟 of length 2  . For 퐼 ∈ 풟	. 
let Ȋ denote the parent interval of I, let 퐼  and I- denote the left and right 
halves of 퐼. respectively,	풟(퐼) the collection of dyadic intervals contained 
in 퐼. 풟(1)′ the collection of dyadic intervals contained properly in 퐼, and 
풟 (퐼)	the intersection of	풟 	and 풟(퐼). For 퐽 ∈ 풟 (퐼), we write 
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푠푖푔푛(퐽. 퐼) = 1 for퐽 ∈ 풟(퐼 ). 푆푖푔푛	(퐽, 퐼) = −	1	For 퐽 ∈ 풟(퐼 ) , We let ℎ  
denote the Haar function corresponding to I, that is 

ℎ = 	
1

∣ 퐼 ∣ ⁄
휒혭 − 휒혭 	, 

Where 휒  denotes the characteristic function of an interval 퐽. It is well 
known that {ℎ :	퐼 ∈ 풟	}. Forms an orthonormal basis of the Hilbert space 
퐿 (ℝ). Throughout the article, let 퐶 and	퐾  denote various constants, 
depending only on p.  

For a Hilbert space ℋ , let ℊ(ℋ) and ℋ (ℋ) denote the collections 
of bounded operators and compact operators on ℋ, respectively. Any 
operator	푇 ∈ ℋ(ℋ)	has a Schmidt decomposition, so there exist 
orthonormal bases {en} and {휎 } of ℋ and a sequence {휆 } with	휆 ≥
0	and 휆 → 0	such that. 

푇푓 = 휆 〈푓, 푒 〉	휎 																																																									(1)
∞

. 

for all 푓 ∈ 	ℋ. For 0 < 푝 < ∞	. a compact operator T with such a 
decomposition belongs to the Schatten-von Neumann p-class, Sp (ℋ). if 
and only if   

    ∥ 푇 ∥ = 	 ∑ 휆
⁄
	<

	∞																										(2). 

We shall frequently use the following elementary facts: For 0 < 푃 ≤ 	2  

∥ 푇 ∥ 	
	 = inf ∥ 푇푒 ∥ ∶ {푒 } ∈ℕ	orthonormal	basis	of	ℋ

∈ℕ

		(3) 

For 2 ≤ 푃 < ∞	, 

∥ 푇 ∥ 	
	 = sup{	∑ ∥ 푇푒 ∥ ∶ {푒 } ∈ℕ	orthonormal	basis	of	ℋ	∈ℕ }					(4) 

For locally integrable function 푓	on ℝ and	퐼 ∈ 풟 , let 푚 푓 denote the 
mean value of 푓	on 퐼, i.e  

푚혭푓 = 	
1
∣ 퐼 ∣

	 푓(푡) 	푑푡, 
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And 푓  denote the Haar coefficient of 푓, i.e. 

푓 = 	 〈푓, ℎ 〉 	= 	∫ 푓(푡) ℎ혭(푡)푑푡 . 

For f locally integrable and	퐼 ∈ 풟, we write	푃 푓 = 휒 (푓	–	푚 푓) 	=
	∑ ℎ 푓 .∈풟( )  and 푃′푓 = 	∑ ℎ 푓 .∈풟′( ) 	on 퐿 (ℝ), 푃  and 푃′ are the 
orthogonal projections on 푠푝푎푛 ℎ ∶ 퐽 ∈ 풟(퐼) 	and 푠푝푎푛 ℎ ∶ 퐽 ∈
풟 (1) 	respectively.  

We shall repeatedly use the following fact: for 퐼, 퐽 ∈ 풟, 

푚 (ℎ ) = 	±	
1

|퐼| ⁄ 	푤ℎ푒푛	퐽 ∈ 풟(퐼±)																									(5)	

and zero otherwise. For a locally integrable function 푏, the densely 
defined dyadic paraproduct with symbol 푏, 휋  is given by. 

휋 푓 = 	∑ 푚∈풟	 푓푏 ℎ 	.. 

It is easy to see that the adjoint of 휋  on 퐿 (ℝ) is given by  

휋∗푓 = 	
휒
|퐼|

∈풟	

푓 푏 																																									(6). 

We want to denote this adjoint operator by 훬 . 

Necessary and sufficient condition on the symbol 푏 for 휋  to be 
bounded on 퐿 (ℝ) or belong to a Schatten class have been obtained. We 
shall say a locally integrable function 푏	belongs to the dyadic 퐵푀푂	space   
퐵푀푂 (ℝ) if  

‖푏‖ = 	 푠푢푝
혭∈풟 |혭| ⁄ ‖푝혭푏‖ < 	∞ . 

Note that  

1
|혭| ⁄ ‖푝혭푏‖ = 	

1
∣ 퐼 ∣

	∫ 	|푏(푡) − 푚혭푏| 	푑푡
⁄

=
1
∣ 퐼 ∣

	 |푏 |
∈풟(혭)

⁄

. 

We say that 푏 ∈ 퐵푀푂  belongs to the dyadic 푉푀푂	space 푉푀푂 (ℝ) if 

lim
| |→

1
|퐼| ⁄ ‖푝혭푏‖ = 0																																									(7).	 
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lim
| |→

1
|퐼| ⁄ ‖푝혭푏‖ = 0																																										(8). 

lim
| |→∞

1
|퐼 , | ⁄ 푝 , 푏 = 0	푓표푟	푒푎푐ℎ	푛 ∈ 핫																				(9). 

Here the limits in (7) and (8) are meant to be uniform limits as  

 |퐼| → 0	표푟	|퐼| → ∞, respectively. Somewhat loosely, we will write 

lim
|혭|→ | | ⁄ ‖푝혭푏‖ = 0																																						(10). 

if condition (7) – (9) above hold. We understand 퐼 → ∞	푎푠	퐼 converging 
to the point ∞	in the locally compact space 풟 with the discrete topology. 

For	0 < 푃 < ∞, a locally integrable function b belongs to the dyadic 
Besov space 퐵  (ℝ), where the Besov space (named after Oleg 
Vladimirovich Besov) 퐵 , (ℝ) is a complete quasinormed space which is 
a Banach space when 1 ≤ 	푝, 푞 ≤ ∞. It, as well as the similarly defined 
Triebel–Lizorkin space, serve to generalize more elementary function 
spaces and are effective at measuring (in a sense) smoothness properties 
of functions [5]. 

Let ∆ 푓(푥) = 푓(푥 − ℎ) − 푓(푥)  

and define the modulus of continuity by 

휔 (푓, 푡) = 	 sup
| |

∆ 푓  

Let 푛 be a non-negative integer and define:	푠 = 	푛 + 훼 with 0	 < 	훼	 ≤ 	1. 
The Besov space 퐵 , (ℝ) contains all functions 푓	such that 

푓 ∈ 푊 , (ℝ)	,
휔 푓( ), 푡

푡
푑푡
푡
	< ∞. 

if  

‖푏‖ = 	
|푏 |
|퐼| ⁄

∈풟

⁄

< ∞. 
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 We then have  

For a locally integrable function	휑, let 풬  be the so-called "dyadic 
sweep" or the square of the dyadic square function of 휑, that is. 

풬 (푡) =
휒 (푡)
|퐼|

∈풟

|휑 | , 푡 ∈ ℝ																(11).	 

We need the following elementary property of 풬  

Lemma (1.1.1) [1]: 푃 풬 	= 	푃 풬  

Let 퐷 	be the operator on 퐿 (ℝ) which is diagonal in the Haar basis and 
defined by 

퐷 혩 = 	혩 	
1
|퐼|
	 |휑 |
∈풟( )

		(퐼 ∈ 풟). 

The following identity relates the paraproducts 휋 	푎푛푑	휋풬   

Proposition (1.1.2) [1]: 

휋∗ 휋 	= 	휋풬 	 +	휋풬∗ + 퐷 . 

Proof: 

It suffices to show that 〈휋∗ 휋 ℎ혭, ℎ 〉 	= 〈 휋풬 + 휋풬∗ +	퐷 ℎ , ℎ 〉 

for 퐼, 퐽 ∈ 풟. Note that 휋 is superdiagonal in the Haar basis in the sense 
that 휋 ℎ  has nontrivial Haar coefficient only for 퐽 ⊆ 퐼 and 휋 is 
subdiagonal in the Haar basis in the sense that 휋 ℎ has nontrivial Haar 
coefficient only for	퐽 ⊋ 퐼 .  

Furthermore, 푠푢푝푝	휋 ℎ ⊆ 퐼 and 푠푢푝푝(휋풬 +	휋풬∗ +	퐷 )ℎ ⊆ 퐼 for all 
퐼 ∈ 풟, so we only have to consider the cases. 

(i)  퐼 = 퐽: 

〈 휋풬 + 휋풬∗ + 퐷 ℎ , ℎ 〉 = 〈퐷 ℎ , ℎ 〉 = | |
∑ 휑풟( ) =

〈휋 ℎ , 휋 ℎ 〉. 

(ii)  퐼 ⊋ 퐽 : 

〈휋 ℎ , 휋 혩 〉 = ∑ |휑횔| 푚 ℎ횔∈풟 푚 ℎ .  
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=
푠푖푔푛(횥, 퐼)
|퐼| ⁄ |횥| ⁄ |휑횔|

∈풟(	 )

− |휑횔|
∈풟(	 )

 

=
푠푖푔푛(횥, 퐼)
|퐼| ⁄ 풬 = 〈	휋풬 	ℎ혭 , 혩 〉 = 〈 휋풬 +	휋풬∗ +	퐷 ℎ혭, 혩 〉. 

(iii) 퐼 ⊊ 퐽: 

〈휋풬∗ ℎ , 혩 〉 = 〈ℎ , 휋풬 	혩 〉	 = 〈ℎ , 휋∗ 휋 혩 〉 = 〈휋∗ 휋 ℎ , 혩 〉. 

by (ii).  

We now need to temporarily introduce a further scale of function spaces. 
For 0 < 푝 < ∞ and 1 ≤ 푞 < ∞, we say that 푏 ∈ 퐿 (ℝ) belongs to the 
space 퐵 ,  if  

‖푏‖
,
=

1
|퐼| ⁄ ‖푝 푏‖

∈풟

⁄

< ∞											(12) 

Where ‖ ‖ denotes the norm in 퐿 (ℝ). A continuous version of the 
following "p-John–Nirenberg Theorem" can be found.  

Proposition (1.1.3) [1]: Let 0 < 푝 < ∞. There exists a constant 훼  such 
that for each nonnegative sequence (푎 ) ∈풟 indexed by the dyadic 
intervals,  

1
|퐼|

푎
∈풟( )

	≤ 훼
∈풟

푎
|퐼|

	
∈풟

. 

Note that the reverse inequality trivially holds, with constant equal to I. 
Note also that the 푝 = ∞ version of the above statement fails, i.e. there 
exists no. 

Constant 퐶 such that  

푠푢푝
∈풟

1
|퐼|

푎 	≤ 퐶	푠푢푝
∈풟∈풟( )

푎
|퐼|
	, 

Simply take 푎 = |퐼|	for all	퐼 ∈ 풟.  

We include the proof of proposition (1.1.3). 
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Proof: we shall first suppose that	0 < 푃 ≤ 퐼. Then, for all 퐼 ∈ 풟, we have 

1
|퐼|

푎
∈풟( )

≤
1
|퐼|

푎
∈풟( )

	 

and hence 

1
|퐼|

푎
∈풟

≤
∈풟

1
|퐼|

∈풟

푎
∈풟( )

=
1

(2 |퐽|)
∈풟

푎 . 

as each dyadic interval 퐽	is contained in exactly one dyadic interval of size 
2 |퐽|, for 퐾 = 0,1, ….	summing the infinite geometric series, we see that. 

1
|퐼|

푎
∈풟( )

≤
∈풟

2
2 − 1

푎
|횥|

	
∈풟

. 

As required. 

We now consider the case 1 < 푝 < ∞.	we see that 퐼 = 퐼 , ∈ 풟	

1
|퐼|

푎
∈풟( )

= 2 푎
∈풟 ( )

	

= (푚 − 푛 + 1) (푚 − 푛 + 1) 2 	 2 푎
∈풟 ( )

≤ 퐶 (푚 − 푛 + 1) 2 ( ) 2 푎
∈풟 ( )

. 

For some constant 퐶  by Jensen's inequality since ∑ (푚 − 푛 + 1)  
= 휋 /6 for all m and 푡 ↦ 푡  is convex Applying Holder's inequality 
Where 1 푃⁄ 	+	1 푞⁄ 	= 	1.	We see that  

2 푎
∈풟 ( )

≤ 2 푎 퐼
∈풟 ( )

⁄

∈풟 ( )

= 2( )( ) 2 푎
∈풟 ( )

. 

as 풟 (퐼 , ) = 2 , when m ≥ n. consequently, we get 
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1
|퐼|

푎
∈풟( )∈풟

≤퐶 (푚 − 푛 + 1) 2( ) 2 푎
∈풟 ( , ), ∈ℤ

= 퐶 (푚 − 푛 + 1) 2( ) 2 푎 ,
, ∈ℤ

.	 

Changing the order of summation. But, for all	푚 ∈ 	ℤ, 

(푚 − 푛 + 1) 2( ) = 퐼 2 ( ) = 퐾 . 

Say. Therefore,  

1
|퐼|

푎
∈풟( )∈풟

≤ 퐶 퐾
푎
|퐽|

∈풟

. 

As required. 

Corollary (1.1.4) [1]: Let b be a locally integrable function, and let 0 <
푃 < ∞. Then 푏 ∈ 	퐵 	푖푓	푎푛푑	표푛푙푦	푖푓	푏 ∈ 	퐵 , 	푓표푟	1 ≤ 푞	 ≤ 2. 

Moreover, ∣∣b∣∣  is equivalent to the expressions in (12). 

Proof: Applying Holder's inequality it is easy to see that 퐵 , ⊆ 퐵 , ⊆
퐵 , . And it also easy to see that	퐵 , ⊆ 퐵 	.	all of these embedding are 
bounded. So it only remains to prove that 퐵 ⊆ 퐵 , 	 , and that the 
embedding is bounded. 

By proposition (1.1.3), 

‖푏‖
,
=

1
|퐼|
‖푃 푏‖

⁄

∈풟

=
1

|퐼| ⁄ 푏
∈풟( )

⁄

∈풟

≤ 훼
|푏 |
|퐼| ⁄ =

∈풟

훼 ‖푏‖ . 

Before we can deal with the case 푞 > 2	,	we need  
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Proposition (1.1.5) [1]: Let 0 < p < ∞	푎푛푑	1	 ≤ 푞 < 	∞. 푇ℎ푒푛	 

‖풬 ‖
,
≤ 2퐶 ‖푏‖

,
	 푏 ∈ 퐵 , . 

     Where 퐶  is the norm of the dyadic square function on   
퐿 (ℝ)	conversely,  

‖푏‖
,
≤ 퐶 퐼 ‖풬 ‖

,
+ ‖푏‖

,
.	 

Where 퐶  is the lower bound of the dyadic square function on	퐿 (ℝ), 
and 퐼  is a constant depending only on 푃, 퐼 = 1 for	푝 ≥ 1. 

Proof: Note that the projections (푃 ) ∈풟 are uniformly bounded on 
each	퐿 (ℝ), 1 ≤ 푞 < ∞, with norms bounded by 2, independent of q, 
Let	푏 ∈ 퐵 . . Then  

‖풬 ‖
,
=

1
|퐼| ⁄ ‖푃 풬 ‖

∈풟

⁄

=
1

|퐼| ⁄ 푃 풬
∈풟

⁄

≤ 2
1

|퐼| ⁄ 풬
∈풟

⁄

≤ 2퐶
1

|퐼| ⁄ ‖푃 푏‖
∈풟

⁄

= 2퐶 ‖푏‖
,
. 

Where the first equality follows from Lemma (1.1.1) 

Conversely  

1
|퐼| ⁄ ‖푃 푏‖

∈풟

⁄

≤ 퐶
1

|퐼| ⁄ 풬
∈풟

⁄

= 퐶
1

|퐼| ⁄ 푃 풬 + 휒 푚 풬
∈풟

⁄

≤ 퐶
1

|퐼| ⁄ ‖푃 풬 ‖ +
1

|퐼| ⁄ 풬
∈풟

⁄

= 퐶
1

|퐼| ⁄ ‖푃 풬 ‖ +
1

|퐼| ⁄ ‖푃 푏‖
∈풟

⁄

≤ 퐶 퐼 ‖풬 ‖
,
+ ‖푏‖

,
. 
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Theorem (1.1.6) [1]: Let 0 < 푝 < ∞. Then the spaces	퐵 , , 1 ≤ 푞 < ∞, 
all coincide with the dyadic Besov space	퐵 . The corresponding norms 
are equivalent.  

In the case	푝 = ∞, all the spaces 퐵 ,  coincide with 퐵푀푂 . as 
known from the classical John–Nirenberg Theorem.  

We shall present a proof of Theorem (1.1.4) here, which only uses 
the dyadic square function, a bootstrap argument and the following 
proposition , which covers the case 1 ≤ 푞 ≤ 2. 

Proof: 

let 2 < 푃 < ∞. Because of the trivial inclusion 퐵 , ⊆ 퐵 . for 
1 ≤ 푞 ≤ 푞 < ∞, we can assune that 푞 = 2 , 푛 > 1. We prove by 
induction over n that for all	푛 ∈ ℕ. And all 0 < 푝 < ∞ there exists a 
constant 퐾 , 		such that  

‖푏‖ , ≤ 퐾 , ‖푏‖ 	 푏 ∈ 퐵  

 By Corollary (1.1.6) this is true for 푛 = 1 suppose that the statement 
holds for some 푛 ∈ ℕ. then by proposition (1.1.5), for each 푏 ∈ 퐵 , 

‖푏‖
,

≤ 퐼 퐶 ‖풬 ‖
⁄ ,

+ ‖푏‖
,

≤ 퐶 퐼 퐾 ,⁄ ‖풬 ‖
⁄ ,

+ ‖푏‖
,

≤ 2퐶 퐼 퐾 ,⁄ ‖푏‖
,
+ ‖푏‖

,

≤ ‖푏‖ 2훼 퐶 퐼 퐾 ,⁄ + 1 . 

The theorem follows now with an appropriate choice of 퐾 , . 

Corollary (1.1.7) [1]: Let 0 < p < ∞ and let 푏 ∈ 퐵 .	Then 풬 ∈ 퐵 / , and 
there exists a constant 퐶 > 0 depending only on 푝 such that ‖풬 ‖

/
≤

	퐶 	‖푏‖ 	. 

Proof: Corollary (1.1.4) (or Theorem (1.1.6)) and Proposition (1.1.5). 

Now we can give our "p-John-Nirenberg" proof of Theorem (1.1.8) (ii). 
We will give the full proof only for	푝 ≥ 1. 
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Theorem (1.1.8) [1]: 

(i)  푏 ∈ 퐵푀푂  if and only if 휋 ∈ ℊ 퐿 (ℝ) ;  
(ii)  for	0 < 푃 < ∞, 푏 ∈ 퐵  if and only if 휋 ∈ 푆 퐿 (ℝ) ;  
(iii)  푏 ∈ 	푉푀푂  if and only if 휋 ∈ ℋ(퐿 (ℝ)).  

  These results are well known, for the boundedness result and for the 
result concerning Schatten classes 푆  , 1 ≤ 푝 < ∞. 

Before we give a "John-Nirenberg type" proof Theorem (1.1.8) (ii). 

Proof: Notice that  

‖휋∗ℎ ‖ = 푏
휒
|퐼|

=
1

|퐼| ⁄ |푏 | = ‖푏‖
∈풟∈풟∈풟

. 

For 0 < 푝 < ∞ by proposition (1.1.3) thus "⇒" follows immediately for 
0 < 푃 ≤ 2	from Eq (3). 

To prove "⇒" for 2 ≤ 푃 < ∞ , note first that for 0 < 푃 < ∞. 

‖퐷 ‖
⁄

⁄ = |〈휋∗휋 ℎ , ℎ 〉| ⁄ = ‖휋 ℎ ‖
∈풟∈풟

=
1

|퐼| ⁄
∈풟

푏
∈풟 ( )

⁄

≤ 퐾 ‖푏‖  

By proposition (1.1.3), and that therefore for 2 ≤ 푝 ≤ 4 

‖휋 ‖ = ‖휋∗휋 ‖ ⁄ ≤ 2 휋풬
⁄
+ ‖퐷 ‖ ⁄  

≤ 2 휋풬
⁄
+ 퐾 ‖푏‖ ≤ 퐾 ‖풬 ‖

⁄
+ ‖푏‖ ≤ 퐶 ‖푏‖   

by Corollary (1.1.7) and the first part of the proof. Inductively, we obtain 
the result for all p with	2 ≤ 푝 < ∞. To obtain the reverse direction, we 
define a bounded operator 푅:	퐿 (ℝ) 	→ 퐿 (ℝ) of norm 1 by 푅ℎ = 	ℎ  for 
∈ 풟 , where Ȋ	denotes the parent interval of I. Recalling that. 

|〈푇푒 , 휎 〉| ≤ ‖푇‖ 																						(13). 

For any orthonormal bases {푒 } , (휎 ), 푝 ≥ 1	푎푛푑	푇 ∈ 푆  , we find that. 
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‖휋 ‖ ≥ ‖휋 푅‖ ≥ |〈푅ℎ , 휋∗ℎ 〉| =
∈풟

〈ℎ ,
휒
|퐼|
푏 〉

∈풟

 

=
1

2 ⁄
|푏 |
|퐼| ⁄ =

1
2 ⁄ ‖푏‖

∈풟

. 

푓표푟	0 ≤ 푝 < ∞  

The implication "⇐" in Theorem (1.1.8) (ii) for 0 < 푝 < 1	is more 
difficult to deal with and was first shown by Peng . 
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Section (1.2): Operators of Besov Spaces and Vectors of 
Schatten Class with Hankel Operators 

Dyadic paraproducts with matrix or operator symbols have been 
considered .We first introduce some notation for dyadic paraproducts 
acting on a vector valued Hilbert space, with operator valued symbols.  

Let ℋ denote separable Hilbert space and 퐿 (ℝ,ℋ)	the 
corresponding vector valued Hilbert space, so  

퐿 (ℝ,ℋ) ≔ 푔:ℝ → ℋ: ‖푔‖ (ℝ,ℋ) = ‖푔(푡)‖ℋ
ℝ

	푑푡	 < ∞ . 

We may consider 퐿 (ℝ,ℋ)	as the Hilbert space tensor product 

 퐿 (ℝ) ⊗ℋ and, for 푓 ∈ 퐿 (ℝ) and 푥 ∈ ℋ, we let 푓 ⊗ 푥 denote the 
element of L2(ℝ.ℋ) defined for almost all t ∈	ℝ by 푓 ⊗ 푥(푡) = 푓	(푡)푥.  

Let B be a locally SOT-integrable operator valued function on ℝ, 
so 퐵(푡) ∈ ℊ(ℋ)	for almost all 푡 ∈ ℝ, and for 퐼 ∈ 풟	we may formally 
define the operator 퐵 ∈ ℊ	(퐻) given by  

〈퐵 푥, 푦〉 	= ℎ (푡)
	

〈퐵(푡)푥, 푦〉푑푡, 푥, 푦 ∈ 	ℋ. 

 For the definition of SOT integrability, we then define the (dyadic) 
paraproduct 훱 	, acting on elementary tensors in L2(ℝ,ℋ) by  

훱 (푓 ⊗ 푥) = 푚 푓ℎ ⊗ 퐵 푥,
∈풟

	푓 ∈ 퐿 (ℝ), 푥 ∈ ℋ					(14). 

and extending by linearity. One would anticipate that the boundedness of 
such an operator would be characterised by an operator bounded mean 
oscillation criterion. However, it was shown that the naive generalisation 
of the scalar 퐵푀푂 condition to the operator case does not imply 
boundedness of the operator paraproducet. 

We shall show, however, that Schatten class membership may be 
characterised by an operator Besov condition analogous to the scalar 
condition. These results can also be obtained using Rochberg and 
Semmes' method of nearly weakly orthonormal sequences , although the 
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vector case does not seem to appear in the literature. We shall first derive 
an expression for 훱∗ . 

Lemma (1.2.1) [1]: if  

훬 (푓 ⊗ 푥) = 	 푓
∈풟

휒
|퐼|

⊗ 퐵∗푥, 푓 ∈ 퐿 (ℝ), 푥 ∈ ℋ.	

Extending by linearity, then 훬 = 훱∗
  

Proof: This can easily be verified by means of elementary tensors.  

We shall follow the same approach as in the scalar case, using dyadic 
square functions. For an operator valued function 퐵, let QB be the "square 
of the dyadic square function" of	퐵, that is  

풬 (푡) = 퐵∗퐵
휒 (푡)
|퐼|

∈풟

, 푡	 ∈ ℝ.	

Let 퐷 	be the operator on 퐿 (ℝ,ℋ) defined on elementary tensors by  

퐷 (푓 ⊗ 푥) =
1
|퐼|

∈

푓 ℎ ⊗ 퐵∗퐵 푥
∈풟( )

. 

The following identity relates the paraproducts 훱 and 훱풬 	 

Proposition (1.2.2) [1]:   

훱∗ 	훱 = 	훱풬 + 훱풬∗ + 퐷 .	

Proof: It is sufficient to show that 

〈휋∗휋 ℎ ⊗ 푥), ℎ ⊗ 푦 〉
= 〈 휋풬 +훱풬∗ + 퐷 (ℎ ⊗ 푥), ℎ ⊗ 푦〉																										(15). 

for all 퐼, 퐽 ∈ 풟 and 푥, 푦 ∈ ℋ . This is shown exactly as in Proposition 
(1.1.2). For	0 < 푝 < ∞. We shall say that an operator valued function	퐵, 
lies in the operator valued dyadic Besov space 퐵  , if  

‖퐵‖ =
‖퐵 ‖
|퐼| ⁄

∈풟

⁄

< ∞. 
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We shall show that Schatten class operator valued dyadic paraproducts 
have symbols which belong to corresponding Besov spaces, thus 
generalising-the scalar result. 

We prove an operator analogue to Corollary (1.1.7). For	푃 ≥ 2, the Besov 
norms of B and QB are related in the same way as in the scalar case.  

Lemma (1.2.3) [1]: if 2 ≤ 푝 < ∞	and 퐵 ∈ 퐵 , then 풬 ∈ 퐵 / , with 
‖풬 ‖

⁄
≤ 훼 ‖퐵‖  for some universal constant	훼 .  

Proof: Note that ‖·‖ ⁄  is a norm. By the definition of QB and (5), we 
see that. 

(풬 ) =
1

|퐼| ⁄ 퐵∗퐵 − 퐵∗퐵
∈풟( )∈풟( )

. 

and so 

	‖(풬 ) ‖ ⁄ ≤
1

|퐼| ⁄ 퐵∗퐵
⁄
=

1
|퐼| ⁄ 퐵

∈풟( )∈풟( )

, 

Which gives 

	‖풬 ‖
⁄

⁄ ≤
1
|퐼|

퐵
∈풟( )

⁄

≤ 훼 ‖퐵‖
∈풟

. 

by Proposition (1.1.3).  

The analogous statement for 푝 = ∞	is false for infinite-
dimensional ℋ. For 퐼 ∈ 풟 , let U1 and V1 be the bounded operators given 
by  

푈 :ℋ → 퐿 (ℝ,ℋ), 푈 푥 = 푥 ⊗ 푥, 푥 ∈ ℋ, 

푉 : 퐿 (ℝ,ℋ) → ℋ, 푉 퐹 = 퐹(푡)ℎ (푡) 푑푡, 퐹 ∈ 퐿 (ℝ,ℋ). 

Then	퐵 = 푉 훱 푈 . It follows that, for 0 < 푝 < ∞, if	훱 ∈ 	 푆 , then	퐵 ∈
푆 . 
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Proposition (1.2.4) [1]: If 0 < 푝 ≤ 2	and 퐵 ∈ 퐵 	푡ℎ푒푛	훱 ∈ 푆  and 
‖훱 ‖ ≤ 	‖퐵‖ , 

Proof: Again, it will be more convenient to work with adjoints. Let 0	 <
푃 < ∞ and 퐼 ∈ 풟, Suppose (without. loss of generality, by the discussion 
above) that 퐵∗ has Schmidt decomposition,  

퐵∗푥 = 휆 〈푥. 푒 〉휎 , 푥 ∈ ℋ. 

Where {푒 } and {휎 } are orthonormal bases for ℋ Therefore,  

‖퐵∗‖ = ‖퐵 ‖ = (휆 )
⁄

. 

It follows that {ℎ 	⊗ 푒 ∶ 퐼 ∈ 풟, 푛 = 0, 1, . . . } is an orthonormal basis for 
퐿 (ℝ,ℋ). It is clear from Lemma (1.2.1) that 

훱∗ 	(ℎ ⊗ 푒 ) =
휒
|퐼|
휆 ⊗ 휎  

Consequently,  

‖훱∗(ℎ ⊗ 푒 )‖ =
‖퐵 ‖
|퐼| ⁄ . 

For each 퐼 ∈ 풟 and therefore 

‖훱 ‖ ≤ ‖훱∗(ℎ ⊗ 푒 )‖
∈풟

= ‖퐵‖ . 

by (3).  

The rest of this section will be concerned with showing that the 
statement in Proposition (1.2.4) extends to 푝 > 2, and that also the 
reverse holds. We shall first use Proposition (1.2.4) and Lemma (1.2.3) to 
show that 퐵 ∈ 퐵  implies 훱 ∈ 푆 , for 2 < 푝 < ∞.  

Proposition (1.2.5) [1]: If	2 ≤ 푝 < ∞	and	퐵 ∈ 퐵 , then 

훱 ∈ 푆 	.	Moreover, there exist a constant 퐶 > 0 depending only on p 
such that ‖훱 ‖ ≤ 퐶 ‖퐵‖ . 
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Proof: The proof runs along the lines of the proof of Theorem (1.1.8) (ii). 
We shall suppose that 2 < 푃	 ≤ 	2 	for 푛 = 0, 1, .. and proceed by 
induction. The base case (푛 = 0) is covered by Proposition (1.2.4) so 
suppose that	푛 ≥ 1. We shall first consider the operator 퐷 . By definition, 
퐷 has block diagonal form 퐷 = (퐸 ) ∈풟 with respect to the Hilbert 
space decomposition 퐿 (ℝ,ℋ) = ⨁ ∈풟ℋgiven by 푓 ⟼ (ℎ ) ∈풟	. 
Here, 퐸 	is defined by 〈퐸 푥. 푦	〉 = 〈훱∗ 	훱 	ℎ ⊗ 푥, ℎ ⊗ 푦〉	for 푥, 푦 ∈ ℋ 
That is, 퐸 =

ǀ ǀ
	∑ ∈풟( ) 	퐵∗퐵  Thus 

‖퐷 ‖
⁄

⁄ = ∑ ‖퐸 ‖
⁄

⁄
∈풟 = ∑

| |
∑ 퐵∗퐵∈풟( )

⁄

⁄
∈풟   

≤ ∑
| |
∑ 퐵∈풟( )

⁄
∈풟   

≤ 퐾 ∑
| | ⁄ ‖퐵 ‖∈풟 = 퐾 ‖퐵‖ . 

by Proposition (1.1.5), since ‖∙‖ ⁄  is a norm. 

Also, by Lemma (1.2.3), 풬 ∈ 푆 ⁄ 	and 2 < 푝/2	 ≤ 2 .  

Hence, by the inductive hypothesis 훱풬 ∈ 푆 ⁄ 	and ‖풬 ‖ 	≤ 	퐶 ‖퐵‖            

Consequently, by Proposition (1.2.4), we have 

‖훱 ‖ = ‖훱∗훱 ‖ ⁄ ≤ 2 훱풬
⁄
+ ‖퐷 ‖ ⁄

≤ 2퐶 ⁄ ‖풬 ‖
⁄
+ ‖퐷 ‖ ⁄ ≤ 퐶 ‖퐵‖  

as required for an appropriate choice of 퐶 .  

Finally, we must show that, for 0 < 푝 < ∞ , 훱 ∈ 푆  implies that 
퐵 ∈ 퐵  .We will first deal with the case 1 ≤ 푃 < ∞. 

Proposition (1.2.6)[1]: If 1 ≤ 푃 < ∞. and 훱 ∈ 푆 then 	퐵 ∈ 퐵  

moreover ‖퐵‖ ≤ 퐶 ‖훱 ‖  for some universal constant 퐶  . 

Proof: Let 1 ≤ 푝 < ∞, and let 푇:	퐿 (ℝ,ℋ) 	→ 	 퐿 (ℝ,ℋ) be in the 
Schatten class	푆 . The block diagonal 퐸 = (퐸 ) ∈풟 of T, taken with 
respect to the Hilbert space decomposition 퐿 (ℝ,ℋ) = ⨁ ∈풟ℋ	, 푓 ⟼
(ℎ ) ∈풟 is then given by  
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퐸ℎ ⊗ 푒 = ℎ ⊗ 퐸 푒. 

For	퐼 ∈ 풟	where	퐸 :	ℋ → ℋ	is defined by	〈퐸 푒	, 푓〉 = 〈푇푒 ⊗ ℎ , 푓 ⊗ ℎ 〉	 

for 퐼 ∈ 풟, 푒, 푓 ∈ ℋ. We will use the inequality  

‖퐸‖ = ‖퐸 ‖ ≤ ‖푇‖
∈풟

																			(16). 

  Similarly to the proof of Theorem (1.1.8) (ii), one defines a bounded 
linear operator	푅:	퐿 (ℝ,ℋ) → 	퐿 (ℝ,ℋ) of norm	퐼 by	푅ℎ ⊗ 푒 = ℎȊ⊗
푒 

	For 퐼 ∈ 풟 ,푒 ∈ ℋ.	

Suppose now that	훱 ∈ 푆 , for each	퐼 ∈ 풟, let 퐵∗ have the Schmidt 
decomposition  

퐵∗푥 = 휆 < 푥. 푒 > 휎 , 푥 ∈ ℋ. 

Where {푒 } and {휎 } are orthonormal bases for ℋ. 

Applying (16) with 푇 = 훱 푅and using (13), we obtain  

‖훱‖ ≥ ‖훱 푅‖ ≥ ‖퐸 ‖
∈풟

≥ |< 퐸 휎 , 푒 >|
∈풟

= |< 훱 푅ℎ ⊗ 휎 , ℎ ⊗ 푒 >|
∈풟

= < ℎȊ ⊗휎 ,
휒
|퐼|
퐵∗푒 >

∈풟

=
1

2 ⁄
1

|퐼| ⁄ |휆 |
∈풟

=
1

2 ⁄
‖퐵 ‖
|퐼| ⁄ =

∈풟

1
2 ⁄ ‖퐵‖ . 

Finally, we shall consider the case 0 < 푝 < 1. we shall generalize 
an argument. Note that, for	0 < 푝 < 1 . 

‖ ‖  is not a norm. However, if 푇 = 푅 + 푆, then  
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‖T‖ ≤ 	‖R‖ +	‖S‖ 																																(17).  

We can obtain a partial reverse inequality, in the case that 푅 and 푆 have 
orthogonal ranges.  

Lemma (1.2.7) [1]: Let 0 < 푝 < ∞ If R and S are operators with 
orthogonal ranges and 푇 = 푅 + 푆 then  

‖T‖ ≤ 	 	(‖R‖ +	 S‖ . 

Proof: It follows that		푇∗푇 = 푅∗푅 + 푆∗푆, as 푅∗푆 = 푅푆∗ = 0. Therefore, 
푅∗푅 ≤ 푇∗푇. 

By Douglas' Lemma there exists a contraction 푍 such that 푅 = 	푍푇 and so 
‖푅‖ 	 ≤ 	‖푇‖ 	 . similarly, ‖푆‖ 		 ≤ 	‖푇‖ , and the result follows.  

For 푚 ∈ ℤ we define the orthogonal projection ∆  on 퐿 	(ℝ,ℋ) by 

∆ (푓 ⊗ 	푥) = 	 〈푓, ℎ 〉
∈

	ℎ 	⊗ 	푥. 

defined here on elementary tensors for 푓 ∈ 퐿 (ℝ) and 푥 ∈ 	ℋ . We also 
define, for 푚, 푛 ∈ℤ, 

훱 , = 	∆ 훱 ∆  

Lemma (1.2.8) [1]: Let 퐵 ∈ 퐵  If 푚 ≤ 푛 then 훱 , = 0. If 푚 > 푛	and 
0 < 푃 < 1 then 

‖훱 ‖ ≤ 2( ) ⁄
‖퐵 ‖
|퐼| ⁄

∈풟

. 

Proof: By definition, we see that, for 푓 ∈ 퐿 (ℝ) and 푥 ∈ ℋ  

훱 , (푓 ⊗ 푥) = 〈푓, ℎ 〉푚
∈풟∈풟

ℎ ℎ ⨂퐵 푥. 

Therefore, by (5), if 푚 ≤ 푛 then	훱 , = 0 and if 푚 > 푛  

훱 , (푓 ⊗ 푥) =
〈푓, ℎ 〉
|퐽| ⁄

∈풟 ( )∈풟

ℎ ⨂퐵 푥 −
〈푓, ℎ 〉
|퐽| ⁄

∈풟 ( )∈풟

ℎ ⨂퐵 푥. 

Let 퐵 	have Schmidt decomposition  
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퐵 푥 = 휆 < 푥. 푒 > 휎 	,															(18). 

So we have  

훱 , (푓 ⊗ 푥)

=
휆

|퐽| ⁄ 〈푓 ⊗ 푥, ℎ ⊗ 푒 〉
∈풟 ( )∈풟

ℎ ⨂휎

−
휆

|퐽| ⁄ 〈푓 ⊗ 푥, ℎ ⊗ 푒 〉
∈풟 ( )∈풟

ℎ ⨂휎 										(19). 

Thus 훱 , 	has been expressed as the difference of two operators with 
given Schmidt decompositions, so, by (17),  

‖훱 , ‖ ≤
휆

|퐽| ⁄ +
휆

|퐽| ⁄
∈풟 ( )∈풟∈풟 ( )∈풟

=
‖퐵 ‖
|퐽| ⁄

∈풟 ( )∈풟

= 2( ) ⁄ ‖퐵 ‖
|퐼| ⁄

∈풟

. 

Let 퐵 ∈ 퐵  and 푁 be a positive integer (to be determined later) . 

For 푘 = 	0, . . . 푁 − 1	,	let	

훱 , = 훱 , = 훱 ,  

by Lemma (1.2.8) Let  

훱 ,
( ) = 훱 , , 훱 ,

( ) = 훱 ,  

So 

	훱 , 훱 , 	
( ) +	훱 , 	

( )  

 

 

Lemma (1.2.9) [1]: For 0 < 푝 ≤ 1 and 퐵,푁 as above  



٢٢ 
 

훱 ,
( ) ≥ 퐶 ‖퐵‖ . 

Proof: By (18) and (19), we see that,  

훱 , (푓 ⊗ 푥) =
〈푓, ℎ 〉
|퐽| ⁄

∈풟

ℎ ⊗ 퐵 푥 − ℎ ⊗ 퐵 푥

=
휆
|퐽| ⁄ 〈푓 ⊗ 푥, ℎ ⊗ 푒 〉

∈풟

ℎ ⨂휎

−
휆
|퐽| ⁄ 〈푓 ⊗ 푥, ℎ ⊗ 푒 〉

∈풟

ℎ ⨂휎 . 

and so 

훱 ,
( )(푓 ⊗ 푥)

= 	
휆
|퐽| ⁄ 〈푓 ⊗ 푥, ℎ ⊗ 푒 〉ℎ ⊗ 휎

∈풟

−
휆
|퐽| ⁄ 〈푓 ⊗ 푥, ℎ ⊗ 푒 〉

∈풟

ℎ ⨂휎 , 

Since 〈ℎ , ℎ 〉 = 0 for all , 퐽 ∈ 풟 , 훱 , 	
( )  has been expressed as the 

difference of two operators with orthogonal ranges and given Schmidt 
decompositions. 

So, by Lemma (1.2.7),  

훱 ,
( ) ≥

1
2

휆
|퐽| ⁄

∈풟

+
휆
|퐽| ⁄

∈풟

				

=
1
2

1
|퐽| ⁄

∈풟

퐵 + 퐵

=
1

2 ⁄
‖퐵 ‖
|퐼|

⁄

∈풟

 

Consequently,  
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훱 ,
( ) ≤

1
2 ⁄

‖퐵 ‖
|퐼|

=
1

2 ⁄ ‖퐵‖
∈풟

, 

In seeking a converse to Proposition (1.2.4) for 0 < 푝 < 1, we shall first 
suppose that 퐵 ∈ 퐵 : a simple density argument will then give the full 
result.  

Proposition (1.2.10) [1]: Let 0 < 푝 < 1 .There exists a constant 퐶 	such 
that if 퐵 ∈ 퐵 , then ‖퐵‖ 	≤ 	퐶 	‖훱 ‖  

Proof: Note that  

훱 , = ∆ 훱 ∆ , 

And so ‖훱 , ‖ ≤ 	‖훱 ‖ 	푎푠	 ∑ ∆ 	푎푛푑	∑ ∆  
are norm 1 projections. Consequently,  

푁‖훱 ‖ ≥ 훱 , ≥ 훱 ,
( ) − 훱 ,

( )

≥ 퐶 ‖퐵‖ − 훱 ,
( ) 	 																																														(20). 

by Lemma (1.2.9). However, for 푘 = 0, . . . , 푁	 − 	1, we have by (17) and 
Lemma (1.2.8) 

훱 ,
( ) ≤ 훱 , 	

≤ 2( ) ⁄ ‖퐵 ‖
|퐼| ⁄

∈풟

	

= 2 ( ) ⁄ ‖퐵 ‖
|퐼| ⁄

∈풟

2 / 	

= 2 ( ) ⁄ 	
‖퐵 ‖
|퐼| ⁄

∈풟

2 /

2 ⁄
	

=
2 ⁄

2 ⁄

‖퐵 ‖
|퐼| ⁄

∈풟

.			 
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Therefore,  

훱 ,
( ) ≤

2 ⁄

2 ⁄
‖퐵 ‖
|퐼| ⁄ =

2 ⁄

2 ⁄ ‖퐵‖
∈풟

, 

So, by (20), we see that, for all 푁.	 

‖훱 ‖ ≥
1
푁

C 	−	
2 /

2 / − 1
	 ‖퐵‖ . 

Choose 푁 large enough so that 퐶 −
/

/ 	> 0 to obtain the required 
result. 

Corollary (1.2.11) [1]: Let 0 < 푝	 ≤ 	1. If 훱 ∈ 푆  then 푆 ∈ 	퐵 . , 
Moreover, there exists a constant Cp such that	‖퐵‖ ≤ 	퐶 ‖훱 ‖ .  

Proof: For any positive integer 푁, let  

풟( ) ≔ 퐼 , ∈ 풟: |푛| ≤ 푁, |푘| ≤ 푁 	푎푛푑	퐵( )(푡) = 퐵 ℎ (푡)
∈풟( )

. 

Then 퐵( ) ∈ 퐵  and so ‖퐵( )‖ ≤ 	퐶 ‖훱 ( )‖  by Proposition (1.2.10). 

But,  

훱 ( )(푓 ⊗ 푥) = 푚 푓ℎ ⊗ 퐵 푥 = 푃( )훱 (푓 ⊗ 푥)
∈풟( )

. 

Where 푃( ) is the orthogonal projection on 퐿 (ℝ,ℋ) defined by  

푃( )	 ℎ ⊗ 	푥	 = 	 ℎ ⊗ 푥	푖푓	퐽 ∈ 풟( ) 	= 	0	표푡ℎ푒푟푤푖푠푒					(21). 

Therefore,  

‖퐵( )‖ ≤ 	퐶 ‖푃( )훱 ‖ 		 ≤ 퐶 ‖훱 ‖  

for all 푁. But {‖퐵( )‖ } is an increasing sequence and so we see that  

‖퐵‖ = lim
→

퐵( ) ≤ 퐶 ‖훱 ‖  

In summary, combining Propositions (1.2.4), (1.2.5), (1.2.11) and 
Corollary (1.2.6), we obtain the main result.  
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Theorem (1.2.12) [1]: For  0 < 푝 < ∞ , 훱 ∈ 푆  if and only if 퐵 ∈ 퐵 . 
Moreover,  

퐶 ‖퐵‖ ≤ 	‖훱 ‖ 		 ≤ 퐾 ‖퐵‖  

Let 퐼 < 푝 < ∞	, and let 퐵:	ℝ	 → ℊ	(ℋ)	be locally integrable. We say that 
퐵 is in the operator Besov space 퐵 (ℝ), if  

‖퐵‖ ≔
‖퐵(푥) − 퐵(푦)‖

|푥 − 푦|
ℝℝ

	푑푥푑푦	 < ∞. 

Theorem (1.2.13) [1]: Let 1 < 푝 < ∞ , and let 퐵:	ℝ	 → ℊ(ℋ) be 
antianalytic and locally integrable. Then the following are equivalent:   

(i) The vector Hankel operator Γ :	퐿 (ℝ,ℋ) → 퐿 (ℝ,ℋ) is in Sp.  

(ii) 퐵 ∈ 퐵 (ℝ).  

We can use our results on vector paraproducts, along with the 
averaging procedure to obtain an alternative proof of the sufficiency of 
this condition. One would expect Bp to be continuously included in 퐵 , 
and we show this here. 

Lemma (1.2.14) [1]:Let 퐼 < 푝 < ∞. Then there exists a constant 

 퐾 > 0	such that if 퐵 ∈ 퐵 (ℝ) then 퐵 ∈ 퐵  and ‖퐵‖ 	≤ 	퐾 	‖퐵‖ . 

Proof: It is easily shown that, for any 퐴 ∈ 푆  and 퐽 ∈ 풟.  

퐵

|퐽| ⁄ ≤
1
|퐽|

퐵(푥) − 푚 퐵 푑푥 ≤
2
|퐽|

‖퐵(푥) − 퐴‖ 푑푥. 

Letting 퐴 = 퐵(푦) and then averaging for 푦 ∈ 퐽. we see that 

퐵

|퐽| ⁄ ≤
2
|퐽|

‖퐵(푥) − 퐵(푦)‖ 푑푥푑푦. 

Supposing that 퐼 ∈ 풟  for 푛 ∈ ℤ and using Holder's inequality, we see 
that  
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퐵

|퐽| ⁄
∈풟( )

≤ 2
1
|퐽|

‖퐵(푥) − 퐵(푦)‖ 푑푥푑푦
∈풟( )

= 2
1

(2 |퐼|)
‖퐵(푥) − 퐵(푦)‖ 푑푥푑푦

∈풟 ( )

=
2
|퐼|

퐾 (푥, 푦)
ℝℝ

‖퐵(푥) − 퐵(푦)‖ 푑푥푑푦. 

	where  

퐾 (푥, 푦) = 2 ( )휒 (푥)휒 (푦)
∈풟 ( )

. 

Clearly, if either 푥 ∉ 퐼 or 푦 ∉ 퐼 then 	퐾 	(푥, 푦) = 	0. Suppose that 푥, 푦 ∈
퐼, with 푥 ≠ 푦 and let	퐽 ∈ 풟 (퐼). Then 휒 (푥)휒 	(푦) = 0	if	 

│푥	 − 	푦│ > │퐽│ = 2 |퐼|. So,  

퐾 (푥, 푦) ≤ 2 ( )

[ (| | | |⁄ )]

≤
|퐼|

3|푥 − 푦|
. 

Therefore, for all	푛 ∈ ℤ,  

퐵

|퐽| ⁄
∈풟( )∈풟

≤
2
3

‖퐵(푥) − 퐵(푦)‖
|푥 − 푦|

ℝℝ

푑푥푑푦. 

Letting 푛	 → −	∞ we see that  

‖퐵‖ =
퐵

|퐽| ⁄
∈풟

≤
2
3
‖퐵‖ . 

For 훼 ∈ 	ℝ and 푟 ∈ 	ℝ+, let	풟 ,  denote the translated, dilated dyadic grid 
given by  

풟 , = {[훼 + 푟2 푘, 훼 + 푟2 (푘 + 1): 푛, 푘 ∈ ℤ}. 

For 퐽 ∈ 풟 ,  let ℎ ,  denote the corresponding Haar function, normalised 
in 퐿 (ℝ). We define the dyadic shift	푆 ,  on 퐿 (ℝ) by  
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푆 , (푓 ⊗ 푥) = 〈푓, ℎ , 〉 ℎ , ⊗ 푥 − ℎ , ⊗ 푥
∈풟 ,

. 

for an elementary tensor .푓 ⊗ 푥 ∈ 퐿 (ℝ,ℋ). Note that.푆 ,  has norm √2 
Let 퐻:	퐿 (푅, 퐻) → 	퐿 	(ℝ,ℋ)	denote the vector Hilbert transform on ℝ. 

So 

퐻(푓 ⊗ 푥) = 푃. 푣.
푓(· −푦)

푦
ℝ

푑푦 ⊗ 푥. 

 Then, there exists a function 푎 ∈ 퐿 (푅) and a constant 푐 > 0	such that 
the operator 푇:	퐿 (ℝ,ℋ) → 퐿 	(ℝ,ℋ) given by  

푇(푓 ⊗ 푥) = 푐 퐻(푓 ⊗ 푥) + (푎푓) ⊗ 푥		(푓 ∈ 퐿 (ℝ), 푥 ∈ ℋ). 

is contained in the WOT-closed convex hull of the set {	푆 , : 훼 ∈ ℝ, 푟 ∈
ℝ }.  

We begin by showing, that for 1 < 	푝 < ∞	there exists a constant 퐶 > 0 
such that  

‖[푆 , , 퐵]‖ ≤ 퐶 ‖퐵‖ 	(퐵 ∈ 퐵 )																							(22). 

For 훼휖ℝ 푟휖ℝ 	, 푙푒푡	훱 , 	denote the vector paraproduct with respect to the 
dyadic grid 	풟 ,  given by. 

훱 , 푓 ⊗ 	푥 = 푚 푓ℎ ,

∈풟 ,

⊗퐵 푥. 

And ∧ ,  its adjoint. Let 푅 ,  be the operator defined on elementary 
tensors by 

푅 , 푓 ⊗ 푥 = 	 	푓 ℎ ,

∈ ,

	⊗ 	푚 퐵푥. 

Here, 푚 푓	, 푓  , 퐵  and 푚 퐵 denote Haar coefficients and averages with 
respect to the grid 풟 , .Then it is easily shown that 

푀 = 훱 , +	∧ , + 푅 ,
, , 

and  
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‖푆 , 푀 −푀 푆 , ‖
≤ ‖푆 , 훱 , −훱 , 푆 , ‖ + ‖푆 , 	 ∧ , −	∧ , 푆 , ‖
+ 푆 , 푅 ,

, − 푅 ,
, 푆 , . 

For 퐹	a function (scalar, vector or operator valued) defined on 푅.	let  

푈 , 퐹(푡) = 푟 ⁄ 퐹((푡 − 훼) 푟⁄ ), 	푉 , 퐹(푡) = 퐹((푡 − 훼) 푟⁄ ), 

Then 푈 ,  is a unitary map on 퐿 (푅,ℋ). 	푉 , 	is an isometry on Bp and  

	푈 , 훱 , (푈 , ) = 훱	 , 																																										(23). 

If 퐵 ∈ 퐵 , then  

‖푆 , 훱 , −훱 , 푆 , ‖ ≤ 2‖푆 , ‖‖훱 , ‖ = 2√2‖훱	 , ‖ 	

≤ 2√2퐶 ‖	푉 , 퐵‖ = 2√2퐶 ‖퐵‖ . 

by (23), Theorem (1.2.12) and Lemma (1.2.14) It is similarly shown that 
‖푆 , 	∧ , −	∧ , 푆 , ‖ ≤ 2	√2	퐶 ‖퐵‖ .	

Finally, it may be seen that  

푆 , 푅 ,
, − 푅 ,

, 푆 , (푓 ⊗ 푥) = |퐼| ⁄ 푓 ℎ − ℎ ⊗ 퐵 푥
∈풟 ,

. 

If 퐵 	has Schmidt decomposition 퐵 	 = 	∑ 휆 <	. , 푒 > 휎 	then  

푆 , 푅 ,
, − 푅 , 푆 , (푓 ⊗ 푥)

=
√2휆
|퐼| ⁄ 〈푓, ℎ 〉

ℎ − ℎ
√2

⊗ 〈푥, 푒 〉휎
∈풟 ,

. 

Which is an expression in Schmidt form and so  

‖푆 , 푅 , − 푅 , 푆 , ‖ =
2 ⁄ (λ )
|I| ⁄

∈풟 ,

= 2 ⁄ ‖B‖ ,

≤ K ‖B‖ . 

by Lemma (1.2.14), where 퐵 ,  is the dyadic Besov space defined with 
respect to 풟 , 	This shows (22).  

Let	퐵:	ℝ	 → ℊ(ℋ), 퐵 ∈ 퐵 . and suppose that B is locally bounded 
with respect to the operator norm on ℊ	(ℋ) .Let (푆 ) ∈  be a net in 
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푐표푛푣	{푆 , :	훼 ∈ ℝ, 푟 ∈ ℝ } which converges to the operator T introduced 
above in the weak operator topology. It follows immediately from (22) 
that ∥[푆 ,푀 ] ∥ 	≤ 	퐶 ‖퐵‖ . To proceed to the WOT- limit, we require 
the following elementary lemma. 

Lemma (1.2.15) [1]: Let ℋ be a Hilbert space, let 1 ≤ 푝 < ∞, and 
suppose that (퐴 ) ∈ . is a bounded net of operators in 푆 ⊆ ℊ(ℋ),  

 Furthermore, suppose that there exists a dense subspace 풜 of ℋ 
and a sesquilinear form 풜	 × 	풜 → 	₵	(푥, 푦) ⟼	 〈퐴	푥, 푦〉	, such that 
lim
∈
〈퐴 푥, 푦〉 = 〈퐴푥, 푦〉	for all 푥, 푦	 ∈ 풜. Then A extends to a bounded 

linear operator on ℋ	, 퐴	 ∈ 푆  and ‖퐴‖ ≤ sup
∈

퐴 . 

Proof: From  

|〈퐴푥, 푦〉| = lim
∈
〈퐴 푥, 푦〉 ≤ 푠푢푝

∈
퐴 ‖푥‖‖푦‖ ≤ ‖푥‖‖푦‖푠푢푝

∈
퐴 . 

For all 푥, 푦 ∈ 풜it follows that A extends to a bounded sesquilinear form 
on ℋ× ℋ and therefore defines a bounded linear operator on ℋ, which 
we also denote by A. The estimate for the Sp norm of A is easily obtained 
from the identity 

∥ 퐴 ∥ = sup |〈퐴푒 , 휎 〉| : 푁

∈ ℕ, {푒 }, {휎 } 	표푟푡ℎ표푛표푟푚푎푙	푠푦푠푡푒푚푠	푖푛	ℋ . 

see (13), and the density of 풜 in ℋ. 

We can now finish the proof of the direct implication in the 
theorem. Let     풜 = {푓 ∈ 퐿 (ℝ,ℋ), 푓	ℎ푎푠	푐표푚푝푎푐푡	푠푢푝푝표푟푡}	.Since 퐵 
is locally bounded, the commutator [H, MB] defines a sesquilinear form 
on	풜 × 풜, and one has  

lim
∈
〈 푆 ,푀 푥, 푦〉 = 〈[푇, 퐵]푥, 푦〉 =

1
푐
〈[퐻, 퐵]푥, 푦〉. 

by the WOT convergence of (푆 ) ∈  to T. Thus by the previous lemma 
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‖[퐻,푀 ]‖ ≤ ‖퐵‖ 						(24).  

It is not difficult to see that the locally bounded functions are dense in 퐵  
for	푝 > 퐼. For a given	퐵 ∈ 	퐵 , one can for example choose the sequence 

given by 퐵 (푥) = 퐵(푥 + 	 	), where 퐵 denotes the harmonic extension of 
퐵 to the upper half plane. Then each 퐵  is locally bounded, and 
(퐵 ) ∈ℕ	converges to B in 퐵  by the Dominated Convergence Theorem, 
subharmonicity and a vector version of Fatou’s Theorem. By density, we 
obtain (24) for all 퐵 ∈ 퐵 . Using that 푃 ([ℝ,ℋ][퐻,푀 ]푃 ([ℝ,ℋ]) = Γ  for 
antianalytic B finishes the proof. 

We note also that a version of Theorem (1.2.13) holds, for 0 < 푝 ≤
퐼 , using appropriate definitions of the operator Besov spaces, for such p,  
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Section (1.3): Little Hankel Operators and products of 
Dyadic Paraproducts 
 

In this section, we want to use the vector valued results above to 
obtain a characterization of Schatten class dyadic paraproducts in several 
variables and of Schatten class little Hankel operators on certain product 
domains. 

 As in the case of vector paraproducts, the method of nearly weakly 
orthonormal sequences provides an alternative route to obtain the 
characterization of the symbols of Schatten class paraproducts, although 
this does appear not explicitly in the literature. 

 Let	푛 ∈ ℕ. We write ℛ = 풟  for the collection of dyadic 
rectangles in ℝ . For	푅 = 	 퐼 × … . . .× 퐼 . Let ℎ (푡 ,… . , 푡 ) =
ℎ (푡 )…ℎ (푡 ). The collection (ℎ ) ∈ℛ is then the product Haar basis 
of 퐿 (ℝ ). 

 For a locally integrable function f on	ℝ . We denote the Haar 

coefficient ‹푓	, ℎ › by 푓  and the average ∣ ∣∫ 	푓(푡 , . . . , 푡 )	 푑푡 …	푡  by 
푚 푓	. 

 Let 푏 ∈ 퐿 (ℝ ). The densely defined linear mapping on 퐿 (ℝ ). given 
by  

푓 ↦ ℎ 푏 푚 푓
∈ℛ

																														(25). 

is the multivariable dyadic paraproduct with symbol b, denoted by 휋 . 

 If we want to make clear that we take the paraproduct in n 
variables, we write 휋( ).	For	1 ≤ 푖 ≤ 푛, let 푃 ∶ 퐿 (ℝ ) → 퐿 (ℝ )	denote 
the Riesz projection in the ith variable and 푃  denote 퐼 − 푃  . Then 푃 =
푃 	…푃 is the orthogonal projection from 퐿 (ℝ )	onto the Hardy space 
퐻 (ℝ ). We identify functions in the Hardy space 퐻 (₵ ) on the n-fold 
product of the upper half planes with their boundary values in 퐻 (ℝ ). in 
the usual manner, and we write 퐻 (ℝ ) = 퐻 (₵ ) Let 퐻 (ℝ ) = {푓 ∈
퐿 (ℝ ) ∶ 푓̅ ∈ 퐻 (ℝ )}.	

The densely defined linear map on 퐻 (ℝ ) ⟶ 퐻 (ℝ ) given by  
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푓 ⟼ 푃 … . 푃 푏푓																										(26). 

Is the little Hankel operator with symbol b, denoted by 훾 . Again, we will 
write 훾( ) if we want to emphasize that the Hankel operator is taken with 
respect to n variables. The characterizations of bounded multivariable 
dyadic paraproducts and little Hankel operators in terms of their symbols 
are by no means a simple extension of the one-dimensional results. 

  For 푛 = 2, boundedness of dyadic paraproducts was characterized 
in terms of an oscillation property of the symbol over all open sets in	ℝ  
and this gave rise to a characterization of the dual of the Hardy space 
퐻 (₵ ) in terms of oscillation properties. Only recently, it was shown 
that also the boundedness of little Hankel operators on 퐻 (₵ )can be 
characterised in terms of an oscillation property over open sets, in the 
course of the solution of the long-standing weak factorization problem on 
퐻 ₵ .	For 푛	 ≥ 3, no such characterization is known. 

 Little Hankel operators on the unit ball in ₵ , or more generally, 
on smoothly bounded strictly pseudo convex sets, are much better 
understood. 

  The main point of this section is to show that because of the good 
behaviour of Schatten class vector paraproducts and vector Hankel 
operators, multivariable paraproducts and little Hankel operators of 
Schatten class on certain product domains can be characterized quite 
easily in terms of their symbols.  

It is shown that for 푏 ∈ 퐻 ₵ , the little Hankel operator 훾  on 
퐻 (₵ ) is of trace class, if and only if 휕 휕 푏 is integrable on ₵ , that 
is, b is in the Besov space 퐵 (ℝ ). This appears as a special case of a 
consideration of tube domains over symmetric cones. It is conjectured 
that these results extend at least to 1 < 푝 ≤ 2 . 

  We will give here a Besov space characterization of the symbols 
for 1 < 푝 < ∞ for little Hankel operators, and for 1 < 푝 < ∞ for 
multivariable dyadic paraproducts.  
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Theorem (1.3.1) [1]: Let 푛 ∈ ℕ, 1 < 푝 < ∞ , and let 푏 ∈ 퐿 (ℝ ). Then 
휋 ∈ 푆 ,, if and only if (∑

∣ ∣ / 	|푏 | ) /
∈ℛ < ∞ , and the 푆  norm of 

휋b, is equivalent to this expression.  

Proof: We prove this statement by induction over n. For n = 1. This is 
just Theorem (1.1.1). Suppose that the statement is true for some 푛 ∈ ℕ. 
given 푏 ∈ 퐿 (ℝ ), we understand the multivariable paraproduct 휋( ) 
as a vector-valued parproduct in one variable, defining 퐵(푡) = 	휋 (.,…,., )

( )  
for푡 ∈ ℝ. We write 푏 for the function on ℝ  given by 

(푡 … , 푡 ) → 푏(푡 … , 푡 , 푡) ℎ (푡)푑푡.	

 Then	휋( ) = 퐵  and it is easy to see that 	휋( ):	퐿 (ℝ ) → 	퐿 (ℝ ) 

is unitarily equivalent to 

훱 :	퐿 (ℝ, 퐿 (ℝ )) → 퐿 	(ℝ, 퐿 (ℝ ))	 

via the natural unitary equivalence 퐿 (ℝ ) → 퐿 (ℝ, 퐿 (ℝ )) 

Applying the induction hypothesis and Theorem (1.2.14), we obtain  

휋( ) = ‖훱 ‖ ≍
1

|퐼| ⁄ ‖퐵 ‖ =
1

|퐼| ⁄ 휋( )

∈풟∈풟

≍
1

|I| ⁄
1

|R | ⁄
∈풟∈풟

|(b ) | =
1

|푅| ⁄ |푏 |
∈풟

. 

The same method applies for the characterization of the symbols of little 
Hankel operators on 퐻 (c+n) of Schatten class 푆  1 < 푝 < ∞. 

We need the following notation. For	푖 ∈ {1, . . . , 푛},푡 ∈ ℝ and 푓:	ℝ ⟶ 	₵, 
let ∆( ) be the finite difference operator in the ith coordinate given by  

∆( )푓 (푥) = 푓(푥 ,… , 푥 + 푡,… , 푥 ) − 푓(푥 ,… , 푥 )	푥 = (푥 ,… , 푥 ) ∈ ℝ . 

For 0 < 푝 < ∞ , we say that 푏:	ℝ → ₵ is in 퐵 (ℝ푛), if  

Δ( )…Δ( )푏 (푥)

Π |푡 |
ℝℝ

푑푥 …푑푥 푑푡 …푑푡 < ∞. 

We denote the semi norm defined by the pth root of the expression above 
by ‖푏‖ (ℝ ). 
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Applying the well-known equivalence of the "harmonic analysis" 
definition and the "complex analysis" definition of analytic Besov class 
functions coordinate wise for a version on the unit disc), one sees easily 
that for b analytic in ₵ , the expression on the left is equivalent to  

∫Ȼ ℑ … ℑ 휕 …휕 푏(푧) 푑푧 …푑푧 .	 

Theorem (1.3.2) [1]: Let 퐼 < 푝 < ∞ , and let 푏 ∈ 퐻 	(ℝ ). Then the 
.following are equivalent:  

(i) 훾 ∶ 	퐻 	(ℝ ) 	→ 	퐻 	(ℝ ) is in Sp; 
(ii) 푏 ∈ 퐵 (ℝ ), 

and the 퐵 (ℝ ) norm is equivalent to the 푆  norm.  

Proof: For n = I, this is just Pellet’s characterization of Schatten class 
Hankel operators in the case 0 < 푝 < ∞ . As before, we use induction 
over the dimension n. Suppose that the statement above holds for 
some	푛 ∈ ℕ.  

Let 푏 ∈ 퐻 (ℝ ). We define an operator valued function 퐵:	ℝ →
ℊ(퐿 (ℝ )) by 퐵(푡) 	= 	 훾 (.,…,., )

( )  .For each 푡 ∈ ℝ, b(.,…,.,t) is an 
antianalytic function in 푛 variables, and 푏(. , … , . , 푡) ∈ 퐻 (ℝ ). for 
almost every 푡 ∈ ℝ. It is easy to verify that the vector Hankel operator 훤B 
is unitarily equivalent to the little Hankel operator 훾 via the canonical 
unitary 퐿 (ℝ, 퐿 (ℝ )) → 퐿 (ℝ ) . Therefore by Theorem (1.2.13).  

훾( ) = ‖Γ ‖ ≍
‖퐵(푡) − 퐵(푠)‖

|푡 − 푠|
ℝℝ

푑푡푑푠

=
‖퐵(푠 + 푡) − 퐵(푠)‖

|푡|
ℝℝ

푑푡푑푠

=
훾 (.,…,., )
( ) − 훾 (.,…,., )

( )

|푡|
ℝℝ

푑푡푑푠

=
훾 (.,…,., ) (.,…,., )
( )

|푡|
ℝℝ

푑푡푑푠	

≍
‖푏(. , … , . , 푠 + 푡) − 푏(. , … , . , 푠)‖ (ℝ )

|푡|
ℝℝ

푑푡푑푠 = ‖푏‖ (ℝ ) 
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The same method applies of course for little Hankel operators on domains 
of the form 퐷 = 	₵ × 	훺 ⊆ ₵  in the case where we have a Besov 
space type characterization of Schatten class little Hankels on 퐻 (훺), for 
example, if 	훺 ⊆ ₵푚 is a smoothly bounded convex domain of finite type 
For such domains, we can define the Hardy class 퐻 (퐷) = 퐻 	₵ ⊗
	퐻 (훺) ⊆ 	퐿 	(ℝ 	× 	휕훺)	and, for b∈ 퐻 (D), define the little Hankel 
operator 훾 on a dense subspace of 퐻 (퐷). 

Theorem (1.3.3) [1]: Let	퐷	 = 	₵ × 	훺 ⊂ ₵ , where 훺 is a smoothly 
bounded convex domain of finite type in ₵ . Let 푏 ∈ 퐻 (퐷), and let 1 <
푝 < ∞.  

Then the following are equivalent.  

(푖)
Δ( )…Δ( )푏(푥 ,… , 푥 , . , … , . )

( )

Π |푡 |
ℝℝ

푑푥 …푑푥 푑푡 …푑푡 < ∞. 

 (ii) 훾 ∶ 	퐻 	(퐷) → 퐻 	(퐷), is in 푆   

(For the definitions of 퐻 (훺)	and 퐵 (훺), It would be interesting to see 
whether this method is also useful for domains of the form 푈 ∈₵ 	{푍} 	×
	훺 ⊂ ₵  , where 	훺  is a "sufficiently nice" domain in ₵  for each 푧 ∈
₵ . The case of the light cone, which was studied by Bonami and Peloso, 
would be an interesting candidate for this approach.  

Operator-theoretic properties of the product 훤∗훤  of a Hankel 
operator and the adjoins of a Hankel operators have been studied for a 
long time, partly motivated by the identity 훤∗훤 = [푇 , 푇 ) where[푇 , 푇 ) 
denotes the semi-commutator 푇 푇 − 푇 of the Toeplitz operators	푇  and 
푇  on 퐻 (픻), the Hardy space of the unit disc. 

One example for this is the Axler-Chang-Sarason-Volberg Theorem, 
which characterizes compact products of Hankel operators in terms of 
certain Douglas algebras . 

The study of such products of Hankel operators is in general much 
more difficult than the study of single Hankel operators. There is still no 
full characterization of boundedness and Schattcn class membership in 
terms of oscillation properties of the symbols.It was shown that the 
natural reproducing kernel condition  
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lim
| |→

Γ 푘 Γ 푘 = 0																														(27). 

is equivalent to compactness of the product 훤∗훤 . Here, {푘 } ∈픻, denote 
the normalized reproducing kernels on 퐻 (픻). However, it is an open 
question whether the reproducing kernel condition  

sup
∈픻

Γ 푘 Γ 푘 < ∞																													(28). 

Which can be understood as a "combined" oscillation condition and was 
shown to be necessary ,implies the boundedness of the product 훤∗훤 	. 
Slightly stronger sufficient conditions have been found.It is also open for 
which symbols 푔, 푓 ∈ 퐿 (핋) the product of Hankel operators 훤∗훤 	is in 
the Schatten-von Neumann class Sp ,although partial results were found 
and estimates for the singular values of such products have been obtained. 
In this section, we will again consider dyadic paraproducts as a model 
case for Hankel operators and study operator-theoretic properties for 
products 휋∗휋  of dyadic paraproducts. Asesquilinear version of the 
dyadic sweep from (II). Given by  

풬[푓, 푔] =
휒
|퐼|
푓 푔

∈풟

		 푓, 푔 ∈ 퐿 (ℝ) 																											(29). 

 allows us to address this dyadic analogue in a very simple fashion.  

as before we collect some elementary properties of the sesquilinear 
map	풬.  

Lemma (1.3.4) [1]: (i) ‖풬[푓, 푔]‖ ≤ ‖푓‖ ‖푔‖ ; 

(ii) 푃 풬[푓, 푔] 	= 푃 풬[푃 푓, 푃 푔]  

We first need an analogue of Proposition (1.1.2). For	푓, 푔 ∈ 퐿 (ℝ), let 
퐷[ , ] be defined on the Haar basis by  

퐷[ , ]ℎ =
1
|퐼|

푓 푔
∈풟 ( )

ℎ . 

Lemma (1.3.5) [1]: 

휋∗휋 = 휋풬[ , ] + Δ풬[ , ] + 퐷[ , ]. 

Proof: Exactly as in Proposition (1.1.2). 
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Theorem (1.3.6) [1]: Let	푓, 푔 ∈ 퐿 (ℝ). Then the following are equivalent: 

(i)  휋∗휋 	defines a bounded linear operator on L2(ℝ) → L2(ℝ). 
(ii)  풬[푓, 푔] ∈ 퐵푀푂 	, and  

sup
∈풟

1
|퐼|

푓 푔
∈풟 ( )

< ∞						(30). 

(iii)   

sup
∈풟

1
|퐼|
‖풬[푃 푓, 푃 푔]‖ < ∞	. 

(iv)  

sup
∈풟

휋∗휋 ℎ < ∞. 

Proof: (i)  (iv) obvious.  

(iv)  (ii): Remember from (1.3.5) that 휋[ , ]	is the superdiagonal part of 
휋∗휋 , ∆풬[ , ] is the subdiagonal part, and 퐷[ , ] is the diagonal part with 
respect to the Haar basis. The uniform boundedness of ∥ 휋∗휋 ℎ ∥ : 
therefore implies uniform boundedness of 퐷 , 	ℎ  = ∥< 휋∗휋 ℎ , ℎ >∥ 

and thereby (30). Furthermore, note that | |
∑ (풬[푓, 푔]) =∈풟

휋풬[ , ]ℎ = 푃 휋∗휋 ℎ ≤ 휋∗휋 ℎ  for all	퐼 ∈ 풟 and therefore. 

풬[푓, 푔] ∈ 퐵푀푂 . 

 (ii)(iii):Note the identity 

풬[푃 푓, 푃 푔] = 휒 푚 (풬[푃 푓, 푃 푔]) +	푃 (풬[푓, 푔]) 

Thus  

1
|퐼|
‖풬[푃 푓, 푃 푔]‖ ≤ |푚 (풬[푃 푓, 푃 푔])| +

1
|퐼|
‖푃 (풬[푃 푓, 푃 푔])‖

=
1
|퐼|

푓 푔̅
∈풟 ( )

+
1
|퐼|
‖푃 풬[푓, 푔]‖ 																									(31). 
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(iii)  (ii): By the uniform boundedness of the projections (푃 ) ∈풟, on 
퐿 (ℝ	), the uniform boundedness of the left-hand side in (31) implies the 
uniform boundedness of the right-hand side. Therefore  

‖풬[푓, 푔]‖ 	= sup
∈풟

1
|퐼|
‖푃 풬[푓, 푔]‖ < ∞ 

and also (30) holds. 

 (ii)  (i): By Theorem (1.1.8), 휋풬[ , ] and ∆풬[ , ] arc bounded, and by 
(30),퐷[ , ] is bounded. Thus 휋∗휋  + ∆풬[ , ] + ∆ ,  is bounded.  

Condition (30) looks like a natural sesquilinear analogue to the 
퐵푀푂 	condition. However, a simple example shows that it is not 
sufficient for the boundedness of 휋∗휋 .  

Remark (1.3.7) [1]: There exists functions 푓, 푔 ∈ 퐿 (ℝ) such that (30) 
holds, but 휋∗휋  does not define a bounded linear operator on 퐿 (ℝ).  

Proof: Let 푓, 푔 be defined by the following Haar coefficients. For 푘 ≥ 0. 
let 퐼 = [0, 2 ]	Let 푎 > 0, 1/2 < 푎 < 1 , and let 푓 = 푓 = 푔 =
푎 	푔 = 푎  for each 푘 ≥ 0. 

 Let all remaining Haar coefficients of 푓 and g be 0. Then 푔, 푓 ∈ 퐿 (ℝ) 
and ∑ 푓 푔̅∈풟 ( ) = 0	for each 퐼 ∈ 풟, but  

|(풬[푓, 푔]) | =
1
|퐼|

⊆[ , ]⊆[ , ]

푓 푔̅
∈풟( )

− 푓 푔̅
∈풟( )

=
1
|퐼 |

푓 푔̅
∈풟( )

− 푓 푔̅
∈풟( )

= 2 4푎 = +∞. 

The remark follows now by Theorem (1.2.6) (ii).  

A further natural candidate for a "combined" 퐵푀푂  condition is given by  

sup
∈풟

1
|I|

f g
∈풟 ( )

																																		(32). 

It turns out that this condition leads even to a stronger property. For 휎 ∈
{−퐼. 퐼} let	푇 , denote the dyadic martingale transforms 퐿 (ℝ) →
	퐿 (ℝ), ∑ ℎ 푓∈풟 ⟼ ∑ 휎(퐼)ℎ 푓∈풟 . then we have the following result:  



٣٩ 
 

Theorem (1.3.8) [1]: Let	푓, 푔 ∈ 퐿 (ℝ).Then the following are equivalent:  

(i) For each dyadic martingale transform	푇 ,	휋∗푇 휋  defines a 
bounded linear operator on 퐿 (ℝ), and the operators 
(휋∗푇 휋 ) ∈{ . }풟 are uniformly bounded. (ii)  

sup
∈풟

1
|퐼|

푓 푔
∈풟 ( )

 

sup
∈풟, ∈{ , }풟

휋∗푇 휋 ℎ < ∞, 

Proof: (i)  (iii) obvious.  

(iii)  (ii): Let 퐼 ∈ 풟 Then for each 휎 ∈ 	 {−1,1}풟.  

〈휋∗푇 휋 ℎ , ℎ 〉 =
1
|퐼|
〈 푠푖푔푛(퐽, 퐼)휎(퐽)ℎ 푓 , 푠푖푔푛(퐽, 퐼)ℎ 푔

∈풟 ( )∈풟 ( )

〉

=
1
|퐼|

휎(퐽)푔̅ 푓
∈풟 ( )

. 

Choosing an appropriate sequence (휎(퐽)) ∈풟 ∈ {−1,1}풟,	we obtain  

1
|퐼|

푔 푓 ≤ √2
∈풟 ( )

휎(퐽)푔̅ 푓
∈풟 ( )

≤
√2
|퐼|

sup
∈{ , }풟

〈휋∗푇 휋 ℎ , ℎ 〉

≤
√2
|퐼|

sup
∈{ , }풟

휋∗푇 휋 ℎ . 

(ii)  (i): Observe that 휋∗푇 휋 = 	휋∗휋 휋  For all 퐼 ∈ 풟 and all 휎 ∈ {−1,1}풟 

1
|퐼|
‖풬[푃 (푇 푓), 푃 푔]‖ =

1
|퐼|

휒
|퐽|
휎(퐽)푔̅ 푓

∈풟 ( )

≤
1
|퐼|

푔 푓
∈풟 ( )

. 

(1) Follows now from Theorem (1.3.6) . 

Unfortunately, when considering products of operators it is not as easy as 
in the situation to pass from results on paraproducts to results on Hankel 
operators via averaging. The following remark shows that products of 
paraproducts and products of Hankel operators behave quite differently.  
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Remark (1.3.9): A seemingly natural dyadic analogue to Zheng's 
necessary condition (28) is the following: 

sup
∈풟

휋 ℎ 휋 ℎ < ∞																										(33). 

This condition is easily seen to be sufficient for the uniform boundedness 
of all operator products	휋∗푇 휋 , 휎∈,{-1,1}퓓 , by Theorem (1.3.8) (ii). 
However, whenever the sets {퐼 ∈ 풟 ∶ 	 푓 ≠ 0}	푎푛푑	{퐼 ∈ 퐷 ∶ 푔 	≠ 	0} are 
disjoint, the product 휋∗푇 휋 is 0 for all 휎∈,{-1,1}. Thus one sees that (33) 
is not necessary. 

Finally, we want to characterise Schatten class products of 
paraproducts. First, let us look at the compact case.  

Theorem (1.3.10) [1]: Let 푓, 푔 ∈ 퐿 (ℝ). Then the folowing are 
equivalent: 

(i)  휋∗푇  defines a compact linear operator on. 퐿 (ℝ) → 퐿 (ℝ).  
(ii)  풬[푓, 푔] ∈ 푉푀푂 ,	and  

lim
→

1
|퐼|

푓 푔̅
⊊

= 0																															(34). 

(iii)  

lim
→

1
|퐼|
‖풬[푃 푓, 푃 푔]‖ = 0. 

(iv)  
lim
→

휋∗휋 ℎ = 0 

Here, the limits in (ii)- (iv) are meant in the sense of (10), and 
convergence to 0 is meant to be uniform, as |퐼| → 0 or |퐼| → ∞ 
respectively.  

Proof: (i)  (iv): For 푁 ∈ ℕ. let 푃( ) denote the orthogonal projection 
defined in (21). (푃( )) ∈ℕ. Converges to the identity in the strong 
operator topology, so 휋∗휋 푃( ) − 휋∗휋 	converges to 0 in norm, and we 
obtain (iv). For the remainder of the proof, one shows (iv)  (ii) (i) and 
(ii)  (iii) along the same lines as in the proof for Theorem (1.3.6), using 
Theorem (1.1.8) (iii) and Lemma (1.3.5).  



٤١ 
 

Now we look at the Schatten classes 푆 , 1 ≤ 푃 < ∞. In this case. it 
turns out that if 휋∗휋 ∈ 푆 then also휋∗푇 휋 ∈ 푆  for all 휎 ∈ {−1,1}풟, 
with uniformly hounded 푆 	norm. We get a natural combined dyadic 
Besov space condition for the symbols 푓 and 푔. 

Theorem (1.3.11) [1]: Let 푓, 푔 ∈ 퐿 (ℝ), the 1 ≤ 푃 < ∞ the following 
are equivalent:  

(i)  휋∗푇 휋 ∈ 푆  For each 휎 ∈ {−1,1}풟,and (휋∗푇 휋 ) ∈{ , }풟  is 
bounded in 푆   

(ii)  휋∗휋 ∈ 푆 . 
(iii)  풬[푓, 푔] ∈ 퐵 , and  

1
|퐼|

푓 푔̅
∈풟 ( )

< ∞
∈풟

 

(iv)   

1
|퐼|

|푓 푔 | < ∞
∈풟

 

(v)  for all 1 ≤ 푞 < ∞. 

1
|퐼| ⁄ ‖풬[푃 푓, 푃 푔]‖ < ∞

∈풟

 

Proof: We will show 

(ii)  (iv)  (v)  (iii)  (ii) and (iv)  (i)  (ii), 

(ii)  (iv) : For 퐼 ∈ 풟 , Let 

휓 =
1

|퐼 | ⁄ (휒 − 휒 )	 

and  

휓 =
1

|퐼 | ⁄ (휒 − 휒 ). 

The sequences (휓 )I∈D and (휓  )I∈D are not orthonrmal , but it is easy to 
see that they are the images of the rothonormal Haar basis under bounded 
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linear maps A,B. In the notation, (	휓 ) ∈풟	and(휓 	) ∈풟	are weakly 
orthonormal. Therefore, 

〈휋∗휋 휓 , 휓 〉 =
∈풟

〈퐵∗휋∗휋 퐴ℎ , ℎ 〉 ≤ ‖퐴‖ ‖퐵‖ 휋∗휋
∈풟

. 

Notice that  

푚 휓 =

⎩
⎪⎪
⎨

⎪⎪
⎧ ⁄ 						 	 ⊆ 	,

⁄ 						 	 ⊆ ,

⁄ 						 	 ⊆ ,

⁄ 								 	 ⊆ ,

													 	,

  

and  

푚 휓 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

| | ⁄ 										 	 	,

| | ⁄ 										 	 ,

| | ⁄ 												 	 ,

⁄ 													 	 ,

⁄ 														 	 ⊆ 				

⁄ 													 	 ⊆

													 	,

 

Thus 〈푚 휓 ,푚 휓 〉 equals 
∣ ∣

	for	퐽 = 퐼  and 0 otherwise, giving  

〈휋∗휋 휓 , 휓 〉 =
1
4

∈풟

1
|퐼 |

|푓 푔 |
∈풟

. 

Adjusting the definitions of 휓I and 휓  we obtain corresponding 
expressions for 

∣ ∣ 푓
∈풟

	 , ∣ ∣ 	 푓
∈풟

	푎푛푑	
1

∣ 퐼 ∣
∈풟

	 푓 	  

Thus (iv) holds. 

(iv)  (v): Let	휙	 = 	∑ ℎ |푓 푔 | ⁄
∈풟 . Then  
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1
|퐼| ⁄ ‖풬[푃 푓, 푃 푔]‖ ≤

∈풟

1
|퐼| ⁄ ‖풬[푃 ϕ]‖

∈풟

≤ 퐶
1

|퐼| ⁄ ‖푃 ϕ‖
∈풟

= 퐶 ‖휙‖
,

≤ 퐶 퐾 , ‖휙‖
,
= 퐶 퐾 ,

1
|퐼|

|푓 푔 |
∈풟

. 

by Theorem (1.1.6) where 퐶 denotes the norm of the dyadic square 
function on 퐿  and 푘 , denotes the equivalence constant between the 
퐵 ,  and the 퐵  norms from Theorem (1.1.6). 

(v)  (iii): Suppose that (v) holds for some	푞, 1 ≤ 푞 < ∞. Them by 
Holder's inequality, (v) holds in particular for 푞 = 1. Note that the 
projections (	푃 ) ∈풟	are uniformly bounded on 퐿 (ℝ). We obtaion  

1
|퐼|

‖푃 풬[푓, 푔]‖
∈풟

=
1
|퐼|

‖푃 풬[푃 푓, 푃 푔]‖ ≤
∈풟

퐶
1
|퐼|

‖풬[푃 푓, 푃 푔]‖
∈풟

. 

And it follows from Theorem (1.1.4) that 풬[푓, 푔] ∈ 퐵  Furthermore,  

1
|퐼|

푓 푔̅
∈풟 ( )∈풟

≤
1
|퐼|
‖풬[푃 푓, 푃 푔]‖

∈풟

. 

Thus (iii) holds. 

(iii)  (ii): This follows directly from Lemma (1.3.5). 

(iv)  (i) : Note again that 휋∗푇 휋 = 	휋∗휋푇 푓, and that condition (iv) is 
invariant under exchanging f with 푇 푓 . 

Condition (i) now follows by applying the implication (iv) (ii) proved 
above to the symbols 푇 푓 and g.  

(i)  (ii): This is immediate . 

Using Theorem (1.2.12) we also obtain a vector version of this 
result: 
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Corollary (1.3.12) [1]: Let ℋ be separable Hilbert space , Let 퐹, 퐺:	ℝ	 →
	℘(퐻) be weakly locally integrable, and let 1 ≤ 푝 < ∞. Then the 
following are equivalent: 

(i)  훱∗ 	훱 ∈ 푆  
(ii)  

1
|퐼|

‖퐺∗퐹 ‖ < ∞
∈풟

. 

Proof: The proof (ii)  (iv)  (i)  (ii) in theorem (1.3.11) also works 
in the vector case. We omit the details here. 

In [VI], it was shown that the condition           

sup
∈ℕ

1
|퐼|

|푓 푔 | < ∞
∈풟

																																	(35). 

is necessary for the product of Hankel operators 훤∗훤  to be in	푆 .  

We have seen above that the stronger condition Theorem (1.3.11) 
(iv) holds whenever 휋∗휋  is in 푆  It would be interesting to know 
whether Theorem (1.3.11) (iv) holds (at least in some averaze sense) 
whenever 훤∗훤  is in 푆 . Conversely, it would be of great interest to know 
whether a translation and dilation invariant version of condition (1.3.11) 
(iv) implies that 휋∗휋  is in 푆 . We finish by stating this as a conjecture. 

As before, denote by 풟 , where and 훼 ∈ ℝ 푟 ∈ ℝ  the dyadic grid 
obtained by dilating the standard dyadic grid	풟 by 푟	and then translating 
it by	훼.  

Conjecture (1.3.13) [1]:Let1 ≤ 푝 < ∞, and let	푓, 푔 ∈ 퐻 (ℝ). Suppose 
that  

sup
∈ℝ, ∈ℝ

1
|퐼|

|푓 푔 | < ∞
∈풟 ,

. 

Then 훤∗훤 ∈ 푆   
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Chapter 2 

Continuity in Schatten- von Neumann of 풑- class of Hankel 
Operators with Fock Spaces   

 

We investigate Hankel operators 퐻 ̅:	퐴 → 퐴 	with anti-
holomorphic symbols 푓̅ = ∑ 푏 	푧̅ ∈ 퐿 ( ℂ, ∣ 푧 ∣ ), where 퐴  
are general Fock spaces. We will show that 퐻 ̅ is not continuous 
if the corresponding symbol is not a polynomial 푓̅ = ∑ 푏 	푧̅ . 

Namely in case 2푘 < 푚 the Hankel operators 퐻푧̅푘 are in 
the Schatten– von Neumann 푝-class iff 푝 > 2푚/(푚 − 2푘); and 
in case 2푘 ≥ 푚 they are not in the Schatten–von Neumann 푝-
class. 
Section (2.1): Hankel operators with anti–holomorphic 
symbols  

Hankel operators with the special symbols	푧̅ 	,	푘	 ∈ 	ℕ, have been 
considered. Here we try to generalize these investigations in order to 
obtain more insight for general anti-holomorphic symbols 

푓̅ = ∑ 푏 	푧̅ ∈ 퐿 (ℂ, ∣ 푧 ∣ )	, 푚 ∈ ℕ 

Where 

퐿 ∶= 퐿 (ℂ, |푧| )

= 푔	푚푒푎푠푢푟푎푏푙푒:	‖푔‖ :

= 	|푔(푧)| 푒 | | 	푑휆(푧) < 	∞
	

ℂ

.	

and 퐴  is the corresponding subspace of entire functions: 

	퐴 ∶= 퐴 (ℂ, |푧| )

= 푔	푒푛푡푖푟푒:	‖푔‖ := 	|푔(푧)| 푒 | | 	푑휆(푧) < 	∞
	

ℂ

.	
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For convenience we sometimes abbreviate 퐿 (ℂ, |푧| )by 퐿 (|푧| ) and 
퐴 (ℂ, |푧| )	by 퐴 (|푧| ). The subspaces 퐴  are weighted Bergman 
spaces with weight function 푒푥푝	{|푧| }, norm ∥·∥  and associated inner 
product  

〈푓, 푔〉 ≔ 푓(푧)푔̅(푧)푒 | | 	푑휆(푧)
	

ℂ

, 

 Where 푑휆	denotes the Lebesgue measure in ℂ ≅ 	ℝ 	. the expressions  

퐶 , = 〈푧 , 푧 〉 = 	|푧 | 푒 | | 	푑휆(푧)
	

ℂ

= ‖푧 ‖ , 푛,푚 ∈ ℕ, 

are the so-called moments. We denote the spaces, 퐴  general Fock 
spaces, where Fock space is the (Hilbert) direct sum of tensor products of 
copies of a single-particle Hilbert space 퐻 

퐹 (퐻) = 	
∞
⊕

푛 = 0
푆 퐻⊗

= ℂ⊕퐻⊕ 푆 (퐻 ⊗퐻) ⊕ 푆 (퐻 ⊗퐻⊗퐻) ⊕… .. 

Here ℂ, a complex scalar, represents the states of no particles, 퐻 the state 
of one particle, 푆 (퐻 ⊗ 퐻) the states of two identical particles etc. 

A typical state in 퐹 (퐻) is given by 

|Ψ〉 = |Ψ 〉 ⊕ |Ψ 〉 ⊕ |Ψ 〉 ⊕ …

= 푎 |0〉	⊕ |휓 〉	 ⊕ 푎
	

휓 	, 휓 	〉 ⊕ … 

Where:  

|0〉	is a vector of length 1, called the vacuum state and 푎 ∈ ℂ is a 
complex coefficient, 
|휓 〉 ∈ 퐻 is a state in the single particle Hilbert space, 

휓 	, 휓 	〉 =
1
2
|휓 〉 ⊗	 휓 	〉 + (−1) 휓 〉 ⊗

	
|휓 	〉 	

∈ 푆 (퐻 ⊗ 퐻), 
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and 푎 = 	푣	푎 ∈ ℂ is a complex coefficient etc [6]. 
 and 퐴  is the classical Fock space. Remember that the Hankel operator 
with symbol 푓̅= ∑ 푏 	푧̅ ∈ 	 퐿 ( ℂ, ∣ 푧 ∣ ) is given by 

퐻 ̅(ℎ) = (퐼푑 − 푝) 푓̅ℎ   

퐻 ̅ = (퐼푑 − 푝) 푓̅ : 퐴 	→ 	퐴 , 

Where 푃 ∶ 	퐴 	→ 	퐴  denotes the Bergman projection, which has the 
following integral representation:  

푃(푔)(푤) = ∫ℂ푔(푧)퐾 (푤, 푧)푒 | | 	푑휆(푧), ∀푔 ∈ 퐿 ( ℂ, ∣ 푧 ∣ ), 

Here 퐾 (푤, 푧)is the reproducing kernel, the so called Bergman kernel, 
which is given by  

퐾 (푧, 푤) = 휙 , (푧)휙 , (푤), 

Where {휙 , }  is any complete orthonormal system of 퐴  . 

Most results about Hankel operators only deal with essentially 
bounded symbols 휓. In that case it is well known, that the Hankel 
operators are bounded with	 퐻 	≤ ‖휓‖ . 

In the last years further (spectral-) properties of Hankel operators, 
like compactness, Hilbert-Schmidt or p-Schatten-von Neumann class 
where a Hilbert–Schmidt operator, named for David Hilbert and Erhard 
Schmidt, is a bounded operator 퐴 on a Hilbert space 퐻 with finite 
Hilbert–Schmidt norm 

‖퐴‖ = 푇푟|퐴∗퐴| ≔	 ‖퐴	푒 ‖
	

∈
 

where ‖ ‖ is the norm of 퐻 and {푒 : 푖 ∈ 퐼}	an orthonormal basis of 
퐻 for an index set 퐼. Note that the index set need not be countable [7].  

There has been some work on Hankel operators on weighted 
Bergman spaces .For a general introduction in the field of compact 
operators and for the p-Schatten-von Neumann class. Later on Hankel 
operators with monomial-symbols 푧̅  were studied also on weighted 
Bergman spaces, especially on generalized Fock spaces It should be also 
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mentioned that there is the following connection between Hankel 
operators and the 휕̅-Neumann problem: the canonical solution operator 
푆	to 휕̅ is a Hankel operator of the form 푆 = 	 퐼푑	– 	푃 푧̅ 	= 	퐻 ̅ 	;	If 푆 is 
restricted to Bergman spaces, or more generally to holomorphic 
(0, 푞) −forms.  

Let 퐻 ̅ be the Hankel operator with general anti-holomorphic 
symbol		푓, i.e. 푓̅ is polynomial or more generally a power series  

푓̅ = 푏 푧̅ 	 ∈ 퐿 (|푧| ) 

Then the following problem arises: if ℎ ∈ 퐴 (|푧| ), then it is not clear 
that 푓ℎ ∈ 퐿 (|푧| ). Even the multiplication with 푧̅ 	is only densely 
defined as an operator from 퐿 (|푧| ) to 퐿 (|푧| )	, ∀푛 ∈ ℕ. 

Example (2.1.1) [2]:	ℎ	 = 	∑ 	푎 푧̅ 	푤푖푡ℎ 푎 = 	
!
. A calculation 

shows  

‖ℎ‖ ∼
1
푘
, 

‖푧̅ ℎ‖ ∼
(푛 + 푘)… (푘 + 1)

푘
> (푛 + 푘)… (푘 + 3), 

So,	ℎ ∈ 퐿 (|푧| ),	but 푧̅ ℎ ∉ 퐿 (|푧| ), ∀푛 ∈ ℕ, 푛 ≠ 0 

In this section we investigate continuity of the Hankel 
operators	퐻 ̅. In the following we will show that there are no continuous 
Hankel operators with anti-holomorphic symbols if the corresponding 
symbol is not a polynomial. Let {푒 = 	

,
:	푛 ∈ ℕ}	be the natural basis 

of 퐴  and 퐶 ,  the moments corresponding to m. We will suppress the 
dependence of 퐶 , 	on m and will simply write 퐶 ,. In the following we 
will assume that  

푓̅푒 ∈ 퐿 (|푧| ),	 

in order to ensure that 퐻 ̅(en) can be defined in a suitable way. 
Clearly	퐻 ̅(푒 ) = 	푓̅푒 − 푃	(푓̅푒 ).  

The following proposition calculates	퐻 ̅(푒 ) = 	푓̅푒 − 푃	(푓̅푒 ). directly  
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Proposition (2.1.2) [2]: let 푓̅ = 	∑ 	푏 푧̅ 	 ∈ 퐿 (|푧| ).Then we have 

퐻 ̅(푒 ) = 푓̅
푧
푐
− 푃 푓̅

푧
푐

= 푓̅
푧
푐
− 푏

푐
푐

푧 . 

Proof: Note that 

푃 푓̅푒 (푧) =
1
푐
푃(∑ 	푏 푧̅ 푧 )

=
1
푐

〈∑ 	푏 푧̅ 푧 |푒 〉푒 =
1
푐

푏
푐
〈푧 |푧 〉푧

=
1
푐

푏
푐
푐 훿 , 푧 =

1
푐

푐
푐

푏 푧 . 

Now we calculate the norm of Hankel operators in terms of the moments 
푐 and the coefficients	푏 : 

〈퐻 ̅
푧
푐

|퐻 ̅
푧
푐

〉 	

= 〈푓̅
푧
푐
− 푏

푐
푐

푧 |푓̅
푧
푐

− 푏
푐
푐

푧 〉

= 〈푓̅
푧
푐
|푓̅
푧
푐
〉 + 푏 푏 푐 푐 〈

푧
푐

|
푧
푐

〉

− 푏 푐 〈푓̅
푧
푐
|푓̅
푧
푐

〉 − 푏 푐 〈
푧
푐

|푓̅
푧
푐
〉. 

For 푓̅ = ∑ 	푏 푧̅  and n = m we have  

퐻 ̅
푧
푐

= 푓̅
푧
푐

+ 푏 푏 푐
푧
푐

− 푏 푐 〈푓̅
푧
푐
|
푧
푐

〉

− 푏 푐 〈
푧
푐

|푓̅
푧
푐
〉

= |푏 |
푐
푐

+ |푏 |
푐
푐

− 2 |푏 |
푐
푐

= |푏 |
푐
푐

−
푐
푐

+ |푏 |
푐
푐

. 

So we can conclude the following characterization . 
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Proposition (2.1.3) [2]: Let 	푓 = ∑ 	푏 푧̅ ∈ 퐿 (|푧| ), then the Hankel 
operator 퐻 ̅ ≔	A → A  is bounded if only if there exists a constant C 
such that  

|푏 |
푐
푐

−
푐
푐

+ |푏 |
푐
푐

< 퐶, ∀푛 ∈ ℕ. 

Note that in case of polynomials 푓 = ∑ 	푏 푧  the formula of the norm 
reduces for 푛 > 푁 to  

퐻 ̅
푧
푐

= |푏 |
푐
푐

−
푐
푐

=: |푏 | 푎 (푘). 

In this case we have only to investigate a finite sum of 푎 (푘). in 
the next section we will give explicit, necessary and sufficient conditions 
for boundedness and compactness of Hankel operators with polynomial 
symbols on generalized Fock spaces.  

One result will be the following: if k is large enough, i.e., if	2푘 >
푚, then 푎 (푘) → ∞ for	푛 → ∞. Consequently boundedness is only 
possible for polynomial symbols.  
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Section (2.2): Hankel Operators with Polynomial Symbols 
on Fock Spaces and Schatten-von Neumann P-class  
 

We recall (Eq. (1)) that in case of polynomials 	푓 = ∑ 	푏 푧̅  the 
formula of the norm simplifies in case 푛 > 푁 to 

퐻 ̅
푧
푐

= |푏 |
푐
푐

−
푐
푐

. 

So we have to investigate the asymptotic behaviour of  

푎 = 푎 (푘) ≔
푐
푐

−
푐
푐

	푓표푟	푛 → ∞, 

Example (2.2.1) [2]: On the Fock space 퐴 (ℂ, |푧| )the moments are 
given by 푐 ~푛! and so we have,  

푎 =
(푛 + 푘)!

푛!
−

푛!
(푛 − 푘)!

	, 

Consequently for polynomial-symbols 푓 = ∑ 	푏 푧 	the Hankel 
operators 퐻 ̅ are bounded in case 푁 = 0,1	; but in case 푁 ≤ 2 they are 
unbounded. To see this we note that 푎 (0) = 0 and 푎 (1) = 1, for all 
푛 ≥ 0. Furthermore, for 푘 ≥ 2	the coefficient 푎 (푘) is a polynomial of 
degree 푘 − 1 with leading coefficient equal to  

푗 + 푗 = 푘 , 

There is also a more direct way to see that the operators 퐻 ̅  are not 
bounded on the Fock space for 푘 > 1	.If 푘 	denotes the normalized 
reproducing kernel on the Fock space 

 (defined by 푘 (푧) 	= 	푘 (푧,푤)/푘 (푤,푤) ⁄ = 	푒 ∣ ∣ / ), and τ  
denoted the translation by w (so τw (z) = z + w), the formula  

퐻 ̅푘 	 = ‖푓휊τ − 푓(푤)‖  

is valid for analytic functions f such that 푓̅푘 ∈ 퐿  , in particular for all 
polynomials f . Since the functions 푘  have unit norm, a necessary 
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condition for boundedness of 퐻 ̅	 on the Fock space is that the norms 
‖푓휊τ − 푓(푤)‖  are uniformly bounded. If 푓(푧) 	= 	 푧  and 푛 ≥ 2, then 
it is easily to see that  

‖푓휊τ − 푓(푤)‖ = (푧 + 푤) − 푤
ℂ

푒 | | 푑휆 → ∞	, 

as	|푤| → 	∞ ,so that the operator 퐻 ̅  is unbounded for 푘 > 1.  

Let us recall that on generalized Fock spaces the moments are 
given by  

퐴 (ℂ, |푧| ) ≔ 푓	푒푛푡푖푟푒:	‖푓‖ := 	|푓(푧)| exp{−|푧| }
ℂ

	푑휆(푧) < ∞ . 

The moments are given by 

푐 = 푐 , = 	|푧| exp{−|푧| }
ℂ

푑휆(푧) =
2휋
푚
Γ
2푘 + 2
푚

	, 

Where 훤 = 훤(푥) = ∫ 	 	푡 푒 	푑푡	, 푥 > 0, is the Gamma function. We 
remember  Stirling's formula with error term  

Γ(푥 + 1) = 푥 푒 √2휋푥 1 +
1
12푥

+
1

288푥
+ 풪 , 

Where 풪 ∶= 풪(1/푛 ) are the so-called Landau symbols  

The following proposition determines the limiting behavior of the 
sequence 푎 = 푐 /푐 −	푐 /푐  '  

Proposition (2.2.2) [2]:  

푎 = 	
푐
푐

−	
푐
푐

	≈ 퐶(푘,푚)푛 	 , 

Where  

퐶	(푘,푚) = 	
2
푚

2푘
푚
	, 

Proof: Using Stirling's formula it is easy to verify that  
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Γ(푥 + 1 + 푃)
Γ(푥 + 1)

∼ (푥 + P) 	as	푥 → ∞, 

Thus  

푎 =
Γ 2푛 + 2푘 + 2

푚
Γ 2n + 2

m
−

Γ 2푛 + 2
푚

Γ 2n − 2k + 2
m

∼
2푛 + 2푘 + 2

푚
− 1 −

2푛 + 2
푚

− 1 	as	푛 → ∞. 

It follows from Eq. (2) that 푎 → 	1 as 푛 → ∞ if 2푘 = 푚 and 푎 → 	∞ as   푛 →
∞	if 2k. also, if 2푘 < 푚, then it is easy to show that Eq. (2) implies that 

푎 ~
2푘
푚

2
푚

	 2푘
푛

− 1	푎푠	푛	 → ∞. 

So we can conclude the following theorems. 

Theorem (2.2.3) [2]: Let 퐻 ̅ be a Honkel operator with sysmbol 푓̅	= 
∑ 	푏 푧̅ ∈ 퐿 (∣z∣m), which is not a polynomial. Then the hankel 
operator  

퐻 ̅ = (퐼푑 − 푃)푓̅: 퐴 (ℂ, |푧| ) → 퐴 (ℂ, |푧| ) . 

is unbounded. 

Proof: We recall that for symbols 푓̅ = ∑ 	푏 푧̅ 	 ∈ 퐿 (∣ɀ∣m), the Hankel 
operator 퐻 ̅ ∶ 	 퐴 	→ 	퐴  is bounded if and only if there exists a 
constant C such that 

퐻 ̅
푧
푐

= |푏 | 푎 (푘) + |푏 |
푐
푐

< 퐶, ∀푛 ∈ ℕ 

In case that the power series symbol 푓̅ is not a polynomial we have n with 
2푛 > 푚. 

Consequently we have k with 2푘 > 푚. And with proposition (2.2.2) we 
have  푎 (푘) → ∞ for all k with 2푘 > 푚 . So clearly 퐻 ̅ is not bounded.  

Theorem (2.2.4) [2]: 퐻 ̅ be Hankel operator operator with polynomial 
푓̅ = ∑ 	푏 푧̅  . Then in case 2푁 ≤ 푚 the Hankel operators 
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퐻 ̅ = (퐼푑 − 푃)푓̅: 퐴 (ℂ, |푧| ) → 퐴 (ℂ, |푧| ) . 

are bounded; and in case 2푁 > 푚 they are unbounded.  

Proof of: We have only to recall that in case 푛 > 푁 we have  

퐻 ̅
푧
푐

= |푏 |
푐
푐

−
푐
푐

= |푏 | 푎 (푘). 

and so with Proposition (2.2.2) we get the result.  

Now we consider compactness conditions of Hankel operators 
퐻 ̅ 	with symbol 푓 = ∑ 	푏 푧 	 on generalized Fock spaces 퐴 (ℂ, |푧| ). 
we will need the following proposition for the further investigations.  

Proposition (2.2.5) [2]: Let 	푓 = ∑ 	푎 푧 	 and 푛, 푟 ∈ ℕ with	푛 > 푟. 
Then in case	푛 − 푟 > 푁	we get  

퐻 ̅(푧 ) ⊥ 퐻 ̅(푧 ). 

Proof: We have  

〈퐻 ̅
푧
푐

|퐻 ̅
푧
푐

〉

= 〈푓̅
푧
푐
|푓̅
푧
푐
〉 + 푏 푏 푐 푐 〈

푧
푐

|
푧
푐

〉

− 푏 푐 〈푓̅
푧
푐
|
푧
푐

〉 − 푏 푐 〈
푧
푐

|푓̅
푧
푐
〉. 

Clearly	–푁 ≤ 푘, 푙, 푘– 퐼 ≤ 푁 < 푛–푟	and so by using 
훿 , ,훿 , 	and	훿 , 푤푒	푔푒푡 퐻 ̅(푧 ) ⊥ 퐻 ̅(푧 ). 

So we can conclude the following. 

Corollary (2.2.6) [2]: Let	푓 = ∑ 	푎 푧 	. Then for all 푛, 푟 ∈ ℕ with 
푛– 푟 > 푁, 푟 > 푁 we get 

퐻 ̅(푒 ) − 퐻 ̅(푒 ) = 퐻 ̅(푒 ) + 퐻 ̅(푒 )

= |푏 |
푐
푐

−
푐
푐

+ |푏 |
푐
푐

−
푐
푐

= |푏 | [푎 (푘) − 푎 (푘)]. 
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Theorem (2.2.7) [2]: Let 푓 = ∑ 	푏 푧 	. Then in case 2푁 < 푚 the 
Hankel operators. 

퐻 ̅ = (퐼푑 − 푃)푓̅: 퐴 (ℂ, |푧| ) → 퐴 (ℂ, |푧| ) . 

are compact and in case 2푁 = 푚 the Hankel operator 퐻 ̅ fail to be 
compact. 

Proof: Let 2푁 = 푚. With Corollary (2.2.6) we get  

퐻 ̅(푒 ) − 퐻 ̅(푒 ) = |푏 | [푎 (푘) − 푎 (푘)]. 

and with Proposition (2.2.2) we have for 2푘 = 푚 = 2푟 that 
푎 (푘), 푎 (푘) → 	푐표푛푠푡	(푘,푚).	Consequently the Hankel operator 퐻 ̅ can 
not be compact.  

Compactness is shown for 퐻 ̅: 퐴 	 →	퐴 	in case 2푘 < 푚. so 
clearly 퐻 ̅ = ∑ 	푏 퐻 ̅ 	is compact in case 2푁 < 푚. 

In this section we will give for the symbol	푧̅ 	, 푘 ∈ ℕ and for 
all	푝 > 0 a complete characterization of the Schatten-von Neumann p-
class membership in terms of k, m and p. Let us start with some 
definitions. 

First we recall that a bounded linear Hilbert space operator 푇:	퐻 →
퐻  is called positive, if 

〈푡	푥, 푥〉 ≥ 0	, ∀푥 ∈ 퐻 . 

In fact this is equivalent to 푇	 = 	푇∗	and 휎(푇) ⊆ 	 [0, 푥). 

Definition (2.2.8) [2]: Let 퐻 ,퐻  be Hilbert spaces with a complete 
orthonormal system {푒 } ∈ℕ of 퐻 . A positive operator 푇 ∶ 	퐻 → 	퐻  is 
in the trace class if  

푡푟(푇) ≔ 〈푇푒 , 푒 〉 < ∞. 

The definition is independent of the choice of the orthonormal system. 
Clearly a bounded linear Hilbert space operator T is Hilbert-Schmidt, i.e.  
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‖푇‖ ≔ ‖푇푒 ‖ = 〈푇푒 , 푇푒 〉 < ∞, 

if and only if the operator 푇∗푇 is in the trace class. In that case clearly we 
have  

‖푇‖ = 푡푟(푇∗푇). 

This can be generalized to the definition of the Schatten-von Neumann  p-
class (or the Schatten ideal 푆 ):  

Definition (2.2.9) [2]: Let 푝 > 0 and 퐻 ,퐻 	be Hilbert spaces with a 
complete orthonormal system {푒 } ∈ℕ	of	퐻 . A bounded linear operator  
푇 ∶ 	퐻 → 	퐻 	is in the Schatten-von Neumann p-class if (푇∗푇) ⁄  is in 
the trace class, i.e.,  

푡푟 (푇∗푇) ⁄ ≔ 〈(푇∗푇) ⁄ 푒 , 푒 〉 < ∞, 

In that case we define ‖푇‖ := 푡푟 (푇∗푇) ⁄ . so by definition the 
Schatten-von Neumann 2-class (or the Schatten ideal	푆 ) is the ideal of 
Hilbert-Schmidt operators. Now let us turn to our Hankel operators with 
symbol	푧̅ 	, 푘 ∈ ℕ and let us repeat some facts. As above we abbreviate 
퐶 , = 	퐶  .  

Lemma (2.2.10) [2]: Let 푘 ∈ ℕ with 푛 ≥ 푘	and 푒 (푧) = 푧 /푐  . then 

〈퐻 ̅
∗ 퐻 ̅ 푒 , 푒 〉 =

푐
푐

−
푐
푐

. 

Theorem (2.2.11) [2]: Let 푝 > 0 and	2푘 < 	푚. Then the Hankel operator 
퐻 ̅ : 퐴 → 	퐴  is in the Schatten-von Neumann p-class if and only if  

푐
푐

−
푐
푐

< ∞, 

Proof: In case 2푘 < 푚 with Theorem (2.2.7) the Hankel operator 퐻 ̅  is 
compact and so the operator 퐻 ̅ 	

∗ 퐻 ̅  has the form  
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퐻 ̅ 	
∗ 퐻 ̅ (푔) = 	 휆 , 〈푔, 푒 〉	푒 . 

Consequently 

〈퐻 ̅ 	
∗ 퐻 ̅ 	푒 , 푒 〉 = 	 휆 , . 

and with Lemma (2.2.10),  

휆 . = 〈퐻 ̅ 	
∗ 퐻 ̅ 	푒 , 푒 〉 =

푐
푐

−
푐
푐

. 

In case of the Fock space (m = 2) for all 푘 ≥ 1 the sequence  

푎 (푘) = 	 − =	 ( )!
!
−	 !

( )!
. 

Does not even tend to	0. So we can conclude the following. 

Corollary (2.2.12) [2]: Let 푝 > 0. On the Fock space the Hankel 
operators  

퐻 ̅ 	: 퐴 (ℂ, |푧| ) → 퐿 (ℂ, |푧| ). 

are not in the Shatten p-class for all 푘 ≥ 1.  

Theorem (2.2.13) [2]: Let 푝 > 0. In case	2푘 < 푚	the Hankel operators  

퐻 ̅ 	 = 	 (퐼푑	 − 	푃)푧̅ 	: 퐴 (ℂ, |푧| ) → 퐴 (ℂ, |푧| ) . 

are in the Schatten p-class, iff 푝 >  . In case 2푘 ≥ 푚	the Hankel 
operators are not in the Schatten p-class.  

Proof: Use Eq. (3) to note that  

푐
푐

−
푐
푐

≈
1

푛
⁄ < ∞ 

if and only if (1 −	 )	푝/2 > 1 , that is 푝 > 2/(1 −	 ) . 
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Chapter 3 

Stieltjes Moment Problem and Hankel Operators 
 

We prove that there are nontrivial Hilbert–Schmidt Hankel 
operators with anti-holomorphic symbols if and only if s is exponentially 
bounded. In this case, the space of symbols of such operators is shown to 
be the classical Dirichlet space. We mention that the classical weighted 
Bergman spaces, the Hardy space and Fock type spaces fall in this 
setting. 

Section (3.1): operators of Hilbert space A2(s)  

We consider Hankel operators and the 휕̅-canonical solution 
operator in a Hilbert space of analytic functions related to a Stieltjes 
moment sequence. We recall that a sequence	푆 = (푆 ), 푑 ∈ ℕ , is.said to 
be a Stieltjes moment sequence if it has the form  

푠 = 푡 푑휇(푡), 

Where 휇 is a non-negative measure on [0,+	∞), called a representing 
measure for s. These sequences have been characterized by Sticltjes in 
terms of some positive definiteness conditions. We denote by 풮 the set of 
such sequences. It follows from the above integral representation that 
each 푠 ∈ 풮 is either non-vanishing, that is, 푆 > 0 for all d, or else 푠 =
	훿 	for all d. We denote by 푆∗ the set of all non-vanishing elements of S. 
Fix an element 푠 = (푠 ) ∈ 풮∗. By Cauchy-Schwarz inequality we see that 
the sequence.  is non-decreasing and hence converges as 푑 → +∞	to 

the radius of convergence of the entire series  

퐹 (휆) ≔
휆

푠
, 휆 ∈ ℂ, 

Set 푅 ∶	= 	 lim
→ 	

=		 lim
→ 	

푠 푑 	.The sequences s for which the 

radius 푅  is finite are called exponentially bounded.  
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Denote by Ω  the ball in ℂ 	centered at the origin with radius 푅  with the 
understanding that Ω = ℂ 	푤ℎ푒푛	푅 = +	∞. We denote by 풜 (푠) the 
Hilbert space of those holomorphic functions 푓(푧) = ∑ ∈ℕ 	푎 	푧  on Ω  
that satisfy  

∑ ∈ℕ 	
훼! 푆| |

(|훼| + 푛 − 1)!
|푎 | < +∞ 

equipped with the natural inner product  

〈푓, 푔〉 ≔ ∑ ∈ℕ 	
훼! 푆| |

(|훼| + 푛 − 1)!
푎 푏 . 

if 푓(푧) = ∑ ∈ℕ 	푎 	푧  and g(푧) = ∑ ∈ℕ 	푎 	푧 are two elements of 
풜 (푠) .  

Now let 휎 = 휎  be the rotation invariant probability measure on the unit 
sphere 핊  in ℂ and let 휇, be a representing measure of 푠. We denote by 
휇 , the image measure in ℂ  of 휇 ⊗ 휎  under the map	(푡, 휉) → 푡휉 from 
[0,+	∞) 	× 	핊 	ontoℂ . We consider the Hilbert space 퐿 (휇 ) of square 
integrable complex-valued functions in ℂ with respect to the measure 휇 . 
Our first result is the following: 

The classical weighted Bergman spaces, weighted Fock spaces and 
Hardy spaces, where Hardy spaces (or Hardy classes) 퐻  are certain 
spaces of holomorphic functions on the unit disk or upper half plane. 
They were introduced by Frigyes Riesz, who named them after G. H. 
Hardy. In real analysis Hardy spaces are certain spaces of distributions on 
the real line, which are (in the sense of distributions) boundary values of 
the holomorphic functions of the complex Hardy spaces, and are related 
to the 퐿 spaces of functional analysis. For 1 ≤ 푝 ≤ ∞ these real Hardy 
spaces 퐻 	are certain subsets of 퐿 , while for 푝 < 1 the 퐿  spaces have 
some undesirable properties, and the Hardy spaces are much better 
behaved [8], are of the form , 풜 (푠) ; each of these space is associated to 
an appropriate choice of the sequence 푠.  

To state further results we consider the orthogonal projection 푃 , 
associated to 풜 (휇 ). It is given for all 푔 ∈ 퐿 (휇 ) by  

(푃 푔)(푧) = ∫Ω 퐾 (푧,푤)푔(푤)푑휇 (푤), 푧 ∈ Ω . 
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This integral operator can be extended in a natural way to functions g 
that satisfy 퐾 (푧	,·)푔 ∈ 퐿 (휇 ) for all z∈ Ω . This extension allows us to 
define Hankel operators. To do so, denote by 풯(푠) the class of all 푓 ∈
풜 (푠)	such that	푓휑퐾 (푧	,·) ∈ 퐿 (휇 ) for all holomorphic polynomials 휑 
and 푧 ∈ Ω and the function  

퐻 ̅(휑)(푧) ≔ 퐾 (푧,푤)
ℂ

휑(푤) 푓̅(푧) − 푓̅(푤) 푑휇 (푤)	푧 ∈ Ω , 

is the restriction to Ω of a function in 퐿 (휇 ). This is a densely defined 
operator from 풜 (푠)	into 퐿 (휇 ) which will be called the Hankel 
operator 퐻 ̅ with symbol 푓̅ it can be written in the form  

퐻 ̅(휑) = (퐼 −	푃 ) 푓̅휑 . 

for all holomorphic polynomials 휑. 

It is not hard to see that the class 풯(푠) contains all holomorphic 
polynomials. Finally, if 푓 ∈ 풯(푠), we denote by 푆푝푒푐	(푓	) the set of all 

multi-indices 푘 ∈ ℕ 	such that	 (0) 	≠ 	0. 

 Our second result is the following : 

Theorem (3.1.1) [3]: Suppose that 푓 is a holomorphic polynomial Then  

(i)  퐻 ̅ is bounded if and only if  

sup
∈ℕ

푠 | |

푠 | |
−
푠 | |

푠
+
푛 − 1
푑

−
푠 | |

푠
< +∞,											(1) 

For all 푘 ∈ 푆푝푒푐(푓).  

(ii)  퐻 ̅ is compact if and only if  

lim
→

푠 | |

푠 | |
−
푠 | |

푠
+
푛 − 1
푑

푠 | |

푠
= 0,																(2) 

For all 푘 ∈ 푆푝푒푐(푓).  

(iii) If	푝 > 0, then 퐻 ̅ is in the Schatten class 푆 (풜 (푠), 퐿 (휇 ) 
if and only if  
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푑
푠 | |

푠 | |
−
푠 | |

푠
+ (푛 − 1)

∈ℕ

푑
푠 | |

푠
< +∞, 

for all 푘 ∈ 푆푝푒푐(푓).  

We point out that if the sequence s is exponentially bounded then 
(1) and (2) hold. The last assertion of Theorem (3.1.2) shows that if 푛 ≥
2, and the Schatten class푆 (풜 (푠), 퐿 (휇 ) concerns nontrivial Hankel 
operators with anti-holomorphic symbols, then 푝 > 2푛. The converse to 
this statement is not true as shown. In particular, in higher dimensions 
there are no nontrivial Hilbert-Schmidt Hankel operators with anti-
holomorphic symbols. The situation in the one-dimensional case is 
completely different. More precisely. 

The first equality shows the characterization in the latter theorem 
depends only on the limit lim → 	  . The above result has been proved 

by separate methods in the two simple partieular cases of Hardy and 
Bergman spaces. 

 Now we shall characterize the boundedness, the compactness and 
the membership in a Schatten class of 푆 the canonical solution operator of 
the 휕̅ on the space ℋ( , )(Ω ) consisting of (0,1) − forms with 
holomorphic coefficients in 퐿 (휇 ) defined by 휕̅(푆푓) = 푓 and 푆푓 is 
orthogonal to holomorphic elements of 퐿 (휇 ). The spectral properties of 
this operator were studied by Haslinger, Haslinger and Helfer and Lovera 
and Youssfi.  

Corollary (3.1.2) [3]: Consider the canonical solution operator S to the 휕̅ 
from ℋ( , )(Ω ) to 퐿 (휇 ). Then the following are equivalent:  

(i) 푆 is bounded on ℋ( , )(Ω ) . 
(ii) For all	푗 = 1, … . 푛, the Hankel operator 퐻 ̅ 	is bounded from 

풜 (푠) into	퐿 (휇 ). 
(iii) There is 푗 = 1, … 	푛, such that the Hankel operator	퐻 ̅ 	. is 

bounded from 풜 (푠) into 퐿 (휇 ). 
(iv) There is a positive constant 퐶 > 0 such that  

푠
푠

−
푠
푠

+
푛 − 1
푑

푠
푠

≤ 퐶 
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for all positive integers 푑.  

Corollary (3.1.3) [3]: Consider the canonical solution operator 푆 to the ∂ 
from ℋ( , )(Ω ) to 퐿 (휇 ) .Then the following are equivalent:  

(i) 푆 is compact on ℋ( , )(Ω ) . 
(ii) For all 푗 = 1,… . , 푛, the Hankel operator H 	is compact from 

풜 (푠) into 퐿 (휇 ). 
(iii) There is 푗 = 1, … . , 푛 such that the Hankel operator H 	is 

compact 풜 (푠)	into 퐿 (휇 ). 
(iv) We have  

lim
→

푠
푠

−
푠
푠

+
푛 − 1
푑

푠
푠

= 0. 

In each of the two preceding corollaries, the equivalence between 
the two assertions (i) and (iv) was established in Lovera and Youssfi and 
later by Haslinger and Lame!.  

Corollary (3.1.4) [3]: Consider the canonical solution operator S to the 
휕̅	from ℋ( , )(Ω ) to 퐿 (휇 ) and let 푝 > 0. Then the following are 
equivalent:  

(i) 푆	is in the Schatten class	풮 (ℋ( , )(Ω ), 퐿 (휇 )). 
(ii) For all 푗 = 1, . . . , 푛, the Hankel operator 퐻 ̅ 	is in the Schatten 

class	풮 (ℋ( , )(Ω ), 퐿 (휇 )). 
(iii) There is	푗 = 1, . . . . , 푛, such that the Hankel operator 퐻 ̅ 	  is in 

the Schatten class 풮 (풜 (푠), 퐿 (휇 ). 
(iv) There is a positive constant 퐶 such that  

푑
푠
푠

−
푠
푠

+ (푛 − 1)
∈ℕ

푑
푠
푠

≤ 퐶 

for all positive integers 푑.  

In the latter corollary, the equivalence between the two assertions 
(i) and (iv) was established in Lovera and Youssfi in the case 푝 ≥ 2 and 
later by Haslinger and Lamel in the general case.  
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To state another result, we let ℳ(푠)	be the subspace of 풯(푠) 
consisting of those functions	푓. for which the Hankel operator 퐻 ̅ is 
bounded on 풜 (푠) .We equip	ℳ(푠)	with norm  

‖푓‖ℳ( )	 ≔ 퐻 ̅ + |푓(0)|. 

The subspace of ℳ(푠)consisting of functions 푓 such that 퐻 ̅	  is a 
compact operator will be denoted by ℳ (푠).	Then it is not hard to see 
that ℳ (푠)is a closed subspace of ℳ(푠). 

If 푝 > 0, we denote by ℳ (푠) the subspace of those functions 푓 ∈
ℳ(푠) such that the Hankel operator 퐻 ̅	  is the Schatten class 풮 (풜 (푠), 
퐿 (휇 )) We equip ℳ (푠) with quasi-norm  

‖푓‖ℳ( )	 ≔ 퐻 ̅ 풮
+ |푓(0)|. 

Then we have the following “ 

Theorem (3.1.5) [3]: Let 핏 ∈ {ℳ(푠),ℳ (푠),ℳ (푠)} and let 푈 be a 
rotation in ℂ . Then the following assertions hold.  

(i) If 푓 ∈ 핏, then 푓휊푈 ∈ 핏 and ‖푓휊푈‖핏	 = ‖푓‖핏	.	
(ii) If 푓 ∈ 핏, then 푧 ∈ 핏 for all 푘 ∈ 푆푝푒푐(	푓	).	
(iii) If the sequence s is either exponentially bounded or satisfies  

lim
→

푠
푠

= 0	푓표푟	푎푙푙	푙 ∈ ℕ 				(3). 

then the spaces ℳ(푠),ℳ (푠), and ℳ (푠), 푝 ≥ 1, are Banach spaces and 
the space ℳ (푠), 0 < 푝 < 1, is a quasi-Banach space.  

We point out that there are examples of Stieltjes moment 
sequences that do not satisfy (3) as shown by Boas type sequences. There 
is a sequence of positive real numbers 푆 satisfying 푆 ≥ 1 and 

	푆 ≥ 	 (푛푆 ) . It is not hard to see by Theorem (3.1.5) that the 
spaces ℳ(푠),	M∞(s) and ℳ (푠)	corresponding to such sequences are 
trivial, namely, they consist only of constant functions.  

Another type of Stieltjes moment sequences for which Theorem 
(3.1.1) applies to show that the corresponding spaces ℳ(푠),ℳ (푠),and 
ℳ (푠)	are trivial are the Stieltjes sequences s that satisfy 푆 ≥ 1 and  
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푠 ≤ 훿 	푓표푟	푎푙푙	푑 ≥ 1																												(4)  

for some 0 < 훿 < 1. Arbitrary sequences satisfying (4) were studied by 
Bisgaard and Sasviri and Bisgaard. They were shown to be Stieltjes 
moment sequences as long as ∑ 훿 ≤ 	 . 

Let ℕ  denote the set of all n-tuples with components in the set ℕ  
of all non-negative integers. If 훼 = (훼 , . . , 훼 ) ∈ ℕ , We let ‖훼‖:=
훼 + ⋯	+ 훼 	denote the length of 훼. If 훽 = (훽 …훽 ) ∈ ℕ 	satisfies 
훼 ≥ 훽  for all	푗 = 1, … , 푛	,	then we write 훼 ≥ 훽. Otherwise, set ≱ 훽 . 

Finally, if 퐴	and 퐵 are two quantities, we use the symbol 퐴 ≈
퐵	whenever 퐴 ≤ 퐶 퐵	and 퐵 ≤ 퐶 퐴,	where	퐶 and	퐶  are positive 
constants independent of the varying parameters. 

Theorem (3.1.6) [3]: The measure 휇 	is supported by the closure of the 
domain Ω .In addition, for each set compact 퐾 ⊂ Ω  there exists 

 퐶 = 퐶(퐾) > 0 Such that  

sup
∈
|푓(푧)| ≤ 퐶‖푓‖ ( ). 

for all holomorphic polynomials f in ℂ . Furthermore, the space 풜 (푠) 
coincides with the clo-sure of the holomorphic polynomials in 퐿 (휇 ) and 
its reproducing kernel is given by  

퐾 (푧,푤) =
1

(푛 − 1)!
퐹( )(〈푧, 푤〉), 푧, 푤 ∈ Ω . 

Proof: We first observe that if a positive real number 푟	satisfies 
휇	([푟, +∞)) = 0, then for all non-neutive integers	푑, we have	푠 ≤

푟 휇	([0, +∞)) and hence lim sup 푠 ≤ 푟. 

This shows that the radius of converence of the series 퐹  is smaller 
that or equal to the infimum of all such real numbers 푟. 

Conversely, suppose that 푟 > 0 satisfies 휇([푟, +∞)) > 0 then  

푟 휇([푟, +∞)) ≤ 	푠  

For all non-negative integers 푑. Therefore,  
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푟 ≤ 푙푖푚 inf 푠 ≤ 	 푙푖푚 	sup 푠  

Since  

푠푢푝{푟:	휇([푟,+∞)) 	> 	0} = 푖푛푓{푟:	휇	([푟, +∞)) = 0}	

we see that 푅 	 =	 푙푖푚 → 	푠 	. Therefore, the measure 휇 is supported the 

closure Ω  since both series 퐹 	and 퐹( ) have the same radius of 
convergence it follows that for cach 푧 ∈ Ω  , the series 

퐾 (푧, 푤) =
1

(푛 − 1)!
(푑 + 푛 − 1)!

푑! 푠
〈푧, 푤〉 , 푤 ∈ Ω , 

Converges on Ω . Moreover, by Fatou's lemma and orthognality of the 
holomorphic monomials with respect to 휇  we have 

|퐾 (푧, 푤)|
Ω

푑휇 (푤) 	

≤
1

(푛 − 1)!
lim inf
→

(푑 + 푛 − 1)!
푑! 푠

〈푧, 푤〉
Ω

푑휇 (푤)

=
1

(푛 − 1)!
lim inf
→

(푑 + 푛 − 1)!
푑! 푠

〈푧, 푤〉
Ω

푑휇 (푤) =

= 퐾 (푧, 푧) 

Hence for any fixed 푧 ∈ Ω , the series 퐾 (푧, 푤) converges in 퐿 (휇 ). In 
addition , a little computing shows that for any 훼 ∈ ℕ , we have  

푤 	퐾 (푧, 푤)
Ω

푑휇 (푤)

=
1

(푛 − 1)!
(푑 + 푛 − 1)!

푑! 푠
푤 	(푧, 푤)

Ω

푑휇 (푤)

=
1

(푛 − 1)!
(|훼| + 푛 − 1)!

|훼|! 푠| |
푤 	(푧, 푤)| |

Ω

푑휇 (푤) = 푧 . 
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This shows that the kernel 퐾 (푧, 푤) reproduces holomorphic 
polynomials. Morcover it satisfies  

sup
∈
|푓(푧)| ≤ sup

∈
퐾 (푧, 푧)‖푓‖ ( ). 

For all holomorphic polynomials and each set compact	퐾 ⊂ Ω. The 
remaining part of the proof follows by standard arguments. 

We point out that 푅  is always strictly positive. 

Lemma (3.1.7) [3]: Suppose that 푘 and 푙 are in ℕ  then the domain 
풟표푚(퐻 ̅

∗ ) of 퐻 ̅ 	
∗ 	contains all polynomials in 푤	and 푤. Moreover, if 푓 is 

a holomorphic homogeneous polynomial of degree	푑, then 

퐻 ̅ 	
∗ 퐻 ̅ 푓 =

푠 | |

푠 | | | |

Γ(푛 + 푑 + |푙| − |푘|)
Γ(푛 + 푑 + |푙|)

휕| |

휕푧
(푧 푓)

−
푠

푠 | |

Γ(푑 + 푛 − |푘|)
Γ(푑 + 푛)

푧
휕| |

휕푧
푓 

In particular, 퐻 ̅ 	
∗ 퐻 ̅  푓 is a holomorphic homogeneous polynomial of 

degree 푑 + |푙| − |푘|. In particular, for each a in ℕ  the monomial	푧  is an 
eigenvector for the operator 퐻 ̅ 	

∗ 퐻 ̅  and the corresponding eigenvalue 
휆 is given by  

휆 =
푠| | | |

푠| |

Γ(푛 + |훼|)
Γ(푛 + |훼| + |푘|)

(훼 + 푘)!
훼!

−
푠| |

푠| | | |

Γ(|훼| + 푛 − |푘|)
Γ(|훼| + 푛)

훼!
(훼 − 푘)!

 

if	훼 ≥ 푘 and 

휆 =
푠| | | |

푠| |

Γ(푛 + |훼|)
Γ(푛 + |훼| + |푘|)

(훼 + 푘)!
훼!

 

Otherwise.  

For simplicity reasons, we introduce some notations. We set 

푓 (푡 ,… , 푡 ) ≔ −|푘| 푡 + 푘
푡
푡
, 푡 ∈ ℝ 																									(5) 

With that understanding that	퐾 = 0as long as	푘 = 0	 



٦٨ 
 

And = 	 푡 	푓표푟	푘 	≥ 1.	we also let  

푡(훼) ≔
1 + 훼
|훼| + 푛

, … ,
1 + 훼
|훼| + 푛

, 훼 ∈ ℕ . 

Lemma (3.1.8) [3]: The function 푓 	given by (5) Satisfies 
푓 (푡 ,… . , 푡 ) ≥ 0 for all non-negative real numbers 푡 , … . , 푡 	that 
satisfy 푡 + ⋯+ 푡 = 1. In particular , 푓 (푡(훼)) ≥ 0	푓표푟	푎푙푙	훼 ∈ ℕ  

 Proof: Setting 푟 = ∣ ∣, the lemma follows from the inequality  

푟
푡
≥ 1	, 

Which holds for all 푡 , . . , 푡 , … . , ∈ [0, +∞) that satisfy : 

푡 + ⋯+ 푡 = 	 푟 + ⋯+ 푟 = 1	,	

This inequality, in turn, can be proved by induction on 푛.  

Lemma (3.1.9) [3]: Suppose that 훼	and 푘	are in ℕ . If 푛 = 1, set 훾 , ∶=
0 and if 푛 > 1, set 

훾 , ≔
1

푛 − 1
Γ(푛 + |훼|)

Γ(푛 + |훼| + |푘|)
(훼 + 푘)!

훼!
−
Γ(|훼| + 푛 − |푘|)
Γ(|훼| + 푛)

훼!
(훼 − 푘)!

, 

Then 훾 , ≥ 0, for all 훼 ∈ ℕ  that satisfy 훼 ≥ 푘. In addition, if 푛 ≥ 2,		then  

훾 , =
1

푛 − 1
1

푑 + 푛
푓 푡(훼) + 훰

1
푑

	, 

for all 푘, 훼 ∈ ℕ , satisfying 훼 ≥ 푘, where 푑:= |훼|.  

Proof: We consider the particular case of the constant Stieltjes 
moment sequence 푠 = 1, 푑 ∈ ℕ 	represented by the Dirac measure 
휇 = 훿  . if 훼 ∈ ℕ  , then (푛 − 1) , , is the eigenvalue of 퐻 ̅ 	

∗ 퐻 ̅  
corresponding to the eigenvector 푧 . Applying the previous lemma we 
sec that (푛 − 1) , ≥ 0	and hence the first part of the lemma follows. 
Next, we prove the second part of lemma. From the property of the 
Gamma function. 
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Γ(푥 + 푦)
Γ(푥 + 푧)

= 푥 1 +
(푦 − 푧)(푦 + 푧 − 1)

2푥
+ 훰

1
푥

	푎푠	푥 → +∞	, 

where 푦	and	푧 are real numbers, we get  

Γ(푑 + 푛)
Γ(푑 + 푛 + |푘|)

= (푑 + 푛) | | 1 −
|푘|(|푘| − 1)
2(푑 + 푛)

+ 훰
1
푑

	푎푠	푑 → +∞, 

Γ(푑 + 푛 − |푘|)
Γ(푑 + 푛)

= (푑 + 푛) | | 1 +
|푘|(|푘| + 1)
2(푑 + 푛)

+ 훰
1
푑

	푎푠	푑 → +∞, 

By the proof of a Lemma, we have, when 훼 ≥ 푘,  
(훼 + 푘)!

훼!
= 1 + 훼 +

푘 푘 − 1
2

1 + 훼 (1 + 훼 )

+ 푞(훼) = (푑 + 푛)| | 푡 +
ℎ(푡) − 푔(푡)
푑 + 푛

+
푞(훼)

(푑 + 푛)| |
. 

Where  

ℎ(푡) ≔
푘 푡
2푡

,			푔(푡) ≔
푘 푡
2푡

	. 

Using a similar argument, we also have  

훼!
(훼 − 푘)!

= 1 + 훼 −
푘 푘 − 1

2
1 + 훼 (1 + 훼 )

+ 푟(훼) == (푑 + 푛)| | 푡 −
ℎ(푡) + 푔(푡)
푑 + 푛

+
푟(훼)

(푑 + 푛)| |
 

Where 푞 and 푟 are polynomials of degree at most |푘| − 	2.  
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Γ(푑 + 푛)
Γ(푑 + 푛 + |푘|)

(훼 + 푘)!
훼!

−
Γ(푑 + 푛 − |푘|)
Γ(푑 + 푛)

훼!
(훼 − 푘)!

= (푑 + 푛) | | (훼 + 푘)!
훼!

1 −
|푘|(|푘| − 1)
2(푑 + 푛)

+ 훰
1
푑

− (푑 + 푛) | | 훼!
(훼 − 푘)!

1 +
|푘|(|푘| + 1)
2(푑 + 푛)

+ 훰
1
푑

= 1 −
|푘|(|푘| − 1)
2(푑 + 푛)

+ 훰
1
푑

푡 +
ℎ(푡) − 푔(푡)
푑 + 푛

+ 훰
1
푑

− 1 +
|푘|(|푘| + 1)
2(푑 + 푛)

+ 훰
1
푑

푡 −
ℎ(푡) + 푔(푡)
푑 + 푛

+ 훰
1
푑

=
1

푑 + 푛
−|푘| 푡 + 2ℎ(푡) + 훰

1
푑

 

The lemma now follows since	푓 (푡) = −|푘| 푡 + 	2ℎ(푡). 

Lemma (3.1.10) [3]: If 훼 ∈ 	ℕ , then the eigenvalue 휆  of the operator 
퐻 ̅ 	
∗ 퐻 ̅  satisfies  

휆 = | | | |

| |
− | |

| | | |
푡(훼) + 훰 + | |

| | | |
푓 푡(훼) + 훰  . 

If 훼	 ≥ 푘	푎푛푑	 

휆 =
푠| | | |

푠| |
훰

1
푑
	, 

Otherwise. 

Proof: By Lemma (3.1.7) and the definition of 훾 , ,	we have  

휆 =
푠| | | |

푠| |
−

푠| |

푠| | | |

Γ(푑 + 푛)
Γ(푑 + 푛 + |푘|)

(훼 + 푘)!
훼!

+ (푛 − 1)훾 ,
푠| |

푠| | | |
 

By the estimates in the proof of Lemma (3.1.10) we deduce that  

Γ(푑 + 푛)
Γ(푑 + 푛 + |푘|)

(훼 + 푘)!
훼!

= 푡 ( ) + 훰
1
푑

. 

The latter equation, combined with Lemma (3.1.9), completes the 
proof of the first part of the lemma. To prove the remaining part of the 
lemma, suppose that for some 푗 = 1… . , 푛 we have that 푘 ≥ 1	and 
훼 < 푘 .Then by Lemma (3.1.7) we have 
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휆 =
푠| | | |

푠| |

Γ(푑 + 푛)
Γ(푑 + 푛 + |푘|)

(훼 + 푘)!
훼!

 

Set 

훼 = (훼 , … 훼 , 0, 훼 ,… . . , 훼 	푎푛푑	푘′ = (푘 , … , 푘 , 0, 푘 , … , 푘 ) 

Arguing like in a Lemma we get  

(훼 + 푘)!
훼!

≤ 2푘 ! 1 + 훼
,

+
푘 푘 − 1

2
,

1 + 훼 1 + 훼
,

+ 푞(훼 ). 

Where 푞(훼′) is a polynomial of degree at most |푘′| − 2 this inequality, 
combined with the estimate  

Γ(푑 + 푛)
Γ(푑 + 푛 + |푘|)

= 훰
1

(푑 + 푛)| |
. 

gives the second part of the lemma. 

Theorem (3.1.11) [3]: Fix 푘 ∈ 	ℕ  and consider the Hankel operator 
퐻 ̅ 	from the dense subspace of 풜 (푠) consisting of holomorphic 
polynomials into 퐿 (휇 ). Then:  

(i)  퐻 ̅  is bounded if and only if  

sup
∈ℕ

푠 | |

푠 | |
−
푠 | |

푠
+
푛 − 1
푑

푠 | |

푠
< +∞																		(6) 

(ii) 퐻 ̅  Compact if and only if    

lim
→

푠 | |

푠 | |
−
푠 | |

푠
+
푛 − 1
푑

푠 | |

푠
= 0																			(7) 

Proof: We consider the sequence (휆 )  of eigenvalues of the 퐻 ̅ 	
∗ 퐻 ̅ . 

Let ∑n be the simplex consisting of those 푡 = (푡 , … , 푡 ) ∈ ℝ  such that  

푡 ≥ 0 and 푡 + ⋯+ 푡 = 1. Since the set  
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훼 + 1
푑 + 푛

,… . . ,
훼 + 1
푑 + 푛

, |훼| = 푑
∈ℕ

 

is dense in ∑n, it follows that  

sup
| |

푓
훼 + 1
푑 + 푛

,… . . ,
훼 + 1
푑 + 푛

≈ sup
∈∑

푓 (푡) 

and  

sup
| |

푡(훼) ≈ 푠푢푝
∈∑

푡 . 

As 푑 tends to	+∞, these estimates, combined with Lemma (3.1.10), 
implies that (휆 ) ,is bounded if and only if (6) holds and lim

| |→
휆 =

0	if and only if (7) holds. The theorem now follows since 퐻 ̅  is bounded 
if and only if 퐻 ̅ 	

∗ 퐻 ̅ 	is bounded and compactness of 퐻 ̅ is equivalent to 
that of 퐻 ̅ 	

∗ 퐻 ̅  . 

Next, let 푝 > 0. we shall study the membership of the operator 
퐻 ̅ 	in a Schatten class	풮 .  

Recall that 퐻 ̅  is in 풮 if and only if 퐻 ̅ 	
∗ 퐻 ̅ 	is in 풮 , that is to say the 

series ∑휆  is convergent.  

Let 푑 be an integer. We shall estimate the sum푆 = ∑∣ ∣ 	휆  when 푑 →
+	∞. The calculations above lead to study the cases 훼	 ≥ 푘 and its 
opposite separately. Let ℬ := {	훼 ∈ 	ℕ , |푎| = 푑	}. We partition ℬ =
ℬ ∪ ℬ , where ℬ = {훼 ∈ ℬ 	, 훼 ≥ 푘} and ℬ = ℬ 	\	ℬ 	.Thus 푆 	can 
be written in the form 푆 = 푆 +	푆 	where 푆 = ∑ ∈ℬ 	휆 	and 푆 =
∑ ∈ℬ 	휆 . We shall use the following lemmas . 

Lemma (3.1.12) [3]: If 푛 ≥ 2, then we have the estimates 

#ℬ ≈ 	#ℬ ≈ 	 ( )! 푎푛푑	#ℬ 	≈ 	푑 	푎푠	푑 → +	∞. 

Lemma (3.1.13) [3]: Suppose that 푛 ≥ 2 and g is a continuous on ℝ	 . 
Consider the open set 퐷:= {(푡 ,… . , 푡 ) ∈ ℝ , ∑ 푡 < 1}. For a 
multi-index 훽 = (훽 , … . , 훽 ) in ℕ , set  
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퐶 , ≔
훽 + 1
푑

… . .
훽 + 1

푑
, 

핁 ≔ 훽 ∈ ℕ :
훽
푑
,
훽 + 1
푑

⊂ 퐷 . 

The lim
→

	∑ ∈핁 	푔(푐 . ) = 	∫ 푔(푡) 	푑푡.	

 The above results enable us to estimate 푆 	when 푑	 = |푎| → +	∞. 

Lemma (3.1.14) [3]: If 푝 > 0, then  

푆 ≈ 푑
푠 | |

푠
−

푠
푠 | |

+ (푛 − 1)푑
푠

푠 | |
. 

Proof: Recall that 푆 = 푆 +	푆 	where 푆 = ∑ ∈ℬ 	휆 	and 푆 =
∑ ∈ℬ 	휆 .	First we shall estimate 푆  By Lemma (3.1.10), we know 

that this sum has the following expansion when 푑 = |푎| → +∞	

푆 ≈
푠 | |

푠
−

푠
푠 | |

푡(훼) + 훰
1
푑

∈ℬ

+
푛 − 1
푑 + 푛

푠
푠 | |

푓 푡(훼) + 훰
1
푑

∈ℬ

. 

Using the properties of the function 푥 → 푥  and Lemma (3.1.14) we see 
that there exists a constant 푀 > 0, such that 

푡(훼) + 훰
1
푑

∈ℬ

≈ 푑 푡 … 푡 1 − 푡 푑푡 푓 푡(훼) + 훰
1
푑

∈ℬ

≈푑 푓 푡 ,… . , 푡 , 1 − 푡 푑푡 

Therefore,  
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푆 ≈ 푑
푠 | |

푠| |
−

푠
푠 | |

+ 푑
푛 − 1
푑 + 푛

푠
푠 | |

≈ 푑
푠 | |

푠| |
−

푠
푠 | |

+ (푛 − 1)푑
푠

푠 | |
. 

as	푑 → +	∞. 

To estimate 푆 	we observe that if 푛	 = 	1, then  

푆 	≤ 	 푆| |	

On the other hand, if 푛 ≥ 2, by Lemma (3.1.10) we see that for 훼 ∈ ℬ  
we have  

휆 = (푛 − 1)
푠 | |

푠
훰(푑 )	. 

Since #ℬ 	≈ 	푑 	we see that	푆 = 훰 ∣ ∣  the lemma follows from 

the relation	푆 = 푆 +	푆 . 

We then characterize the Schatten class membership of 퐻 ̅ . 

Theorem (3.1.15) [3]: Let 푘 ∈ ℕ . Then the Hankel operator 퐻 ̅ , is in 
the Schattn 풮 (풜 (푠), 퐿 (휇 )) if and only if  

푑
푠 | |

푠 | |
−
푠 | |

푠
+ (푛 − 1)푑

푠 | |

푠
< +∞,														(7) 

Proof: We use that the operator 퐻 ̅  is in the Schatten class 

풮 (풜 (푠), 퐿 (휇 )) if and only if 퐻 ̅ 	
∗ 퐻 ̅ 	is in 풮 (풜 (푠)). Therefore, 

the theorem follows from Lemma (3.1.15).  

Lemma (3.1.16) [3]: If 푈	is a unitary transformation in ℂ , the operator 
푈	푓 ∶= 	푓	훰	푈	is a unitary isometry, form 퐿 (휇 )	onto itself and from 
풜 (푠)	onto itself. Moreover the following assertions hold.  

(i)  If 푓 ∈ ℳ(푠), then 푈푓 ∈ ℳ(푠) and	‖푈푓‖ℳ( ) = ‖푓‖ℳ( ). 
(ii)  If 푓 ∈ ℳ (푠), then 푈푓 ∈ ℳ (푠). 
(iii) If 푓 ∈ ℳ (푠), then 푈푓 ∈ ℳ (푠) and 

‖푈푓‖ℳ ( ) = ‖푓‖ℳ ( ) 
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Proof: Let 푈	be a unitary transformation in ℂ 	and denote 푈∗ its adjoint, 
which is also its inverse. It is clear that the operator 푈	is a unitary 
isometry from 퐿 (휇 )onto itself and from 풜 (푠)onto itself. Let 푓	be in 
ℳ(푠). If 푔	is a holomorphic polynomial, then by a change of variable we 
see that  

퐻 (푔)(푧) = 퐾 (푈푧,푤)푔(푈∗푤) 푈푓(푧) − 푓̅(푤) 푑휇 (푤)
ℂ

= 퐾 (푈푧, 푤)(푈∗푔)(푤) 푓̅(푈푧) − 푓̅(푤) 푑휇 (푤)
ℂ

= 퐻 ̅(푈∗푔)(푈푧) = 푈퐻 ̅푈∗ (푔)(푧). 

 

Therefore,  

퐻 = 푈	퐻 ̅	푈∗																												(8) 

and thus 퐻 = 	퐻 ̅ , showing that 

‖푈푓‖ℳ ( ) = ‖푓‖ℳ ( ) 

This proves part (i) of the lemma. The proof of parts (ii) and (iii) of the 
lemma are similar.  

Let 핋 ∶= {휁 = (	휁 , … , 휁푛) ∈ ℂ :	 휁 = 1, 푗 = 1, . . . 푛} and for 
휁 = (	휁 ,… , 휁푛) ∈ 핋  let 푈  be the unitary linear transformation in 
ℂ 	defined by 푈 (푧) = (휁 푧 , … . 휁 푧 ),for all z	= (푧 	, …	푧 ) ∈ ℂ .	 

We have the following. 

Lemma (3.1.17) [3]: If 푓 ∈ 풯(푠) and 푔 ∈ 풜 (푠), the mappings 휁	 →
	푈 푔	and ζ ↦ 퐻 (푔) are continuous from 핋 	to 퐿 (휇 ).  

Proof: Let 푔 ∈ 풜 (휇 ) and write	푔(푧) = ∑ ∈ℕ 푎 푧  If 휁, 휂 ∈ 핋 , then  

푈 − 푈 푔
( )

= 푔휊푈 − 푔휊푈
( )

= |푎 |
∈ℕ

푈 푧 − 푈 푧
( )

= |푎 | 퐶 |휉 − 휂 |
∈ℕ

. 
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Where  

퐶 = |푧 |
ℂ

푑휇 (푧), 훼 ∈ ℕ . 

Since  

|푎 | 퐶 < +∞	
	 ∈ℕ

	푎푛푑	|휉 − 휂 | ≤ 4	, 

The dominated convergence theorem leads to  

lim
→

푈 − 푈 푔
( )

= 0, 

Showing that the mapping 휁	 → 	푈 푔 is continuous from 핋 	to 퐿 (휇 ). 
this, combined with the fact that 푈  is unitary and the equalities  

퐻 −퐻 = 푈 퐻 ̅푈 − 푈 퐻 ̅푈
= 푈 퐻 ̅푈 − 푈 퐻 ̅푈 + 푈 퐻 ̅푈 − 푈 퐻 ̅푈
= 푈 퐻 ̅ 푈 − 푈 + 푈 − 푈 퐻 ̅푈 	, 

shows that the mapping 휁 ⟼	퐻 	(푔)	is also continuous from 핋  to 
퐿 (휇 ).  

Lemma (3.1.18) [3]: Assume that 푓 ∈ 풯(푠).  

(i) monomial	푧 is in ℳ(푠). 
(ii) if 푓 ∈ ℳ (푠), then for any multi-index 푘 ∈ 푆푝푒푐(푓), the 

monomial 푧 is in ℳ (푠).  
(iii) if 푝 > 0 and 푓	 ∈ ℳ (푠), then for any multi-index 푘 ∈

푆푝푒푐(푓), the monomial 푧 is in ℳ (푠). 

Proof: To prove (i), suppose that 푓 ∈ ℳ(푠) and write 푓(푧) =
∑ ∈ℕ 푎 푧 .	By the Cauchy formula we have 

푎 푧 = 푓 푈 푧 휉̅
핋

푑푚 (휉), 

where 푑푚 (휉) is the normalized Lebesgue measure on 핋.  if 푔 is a 
holomorphic polynomial and ℎ ∈ 퐿 (휇 ), an application of Fubini's 
theorem leads to     
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〈퐻 (푔), ℎ〉 휉̅
핋

푑푚 (휉) = 〈퐻 (푔), ℎ〉																										(9) 

By Lemmas (3.1.18), (3.1.19) we see that  

퐻 (푔)
( )

≤ 퐻 (푔)
핋

푑푚 (휉)																	(10) 

Since ∥ 퐻 	(푔) ≤	∥ 퐻 ̅ ∥∥ 푔 ∥ ( ) for all 휁 in 핋n, it follows that 퐻 ɀ  

is bounded and 푎 푧 	is ℳ(푠).Therefore, 푧 ∈ ℳ(푠) as long as 
ɀ
(0) ≠

0. This proves part (i) of the lemma. Suppose now that 푓 ∈ ℳ (푠).		And 
let (푔 )	be a sequence in 풜 (푠).which converges weakly to	0.  

lim
→

퐻 푔
( )

= 0, 	푓표푟	푎푙푙	휉 ∈ 핋 	, 

so that by (10) and the dominated convergence theorem we see that  

lim
→

퐻 푔
( )

= 0. 

and hence 푧 ∈ ℳ (푠).	whenever 
ɀ
	(0) ≠ 0. Therefore part (ii) of the 

lemma holds. To establish dzk the remaining part of the lemma, we recall 
that if 푇	is a compact operator from 풜 (푠) to 퐿 (휇 ) then its singular 
numbers 풱 (푇), 푞 ∈ ℕ , are given by 

풱 (푇) ≔ 푖푛푓
∈ℛ

‖푇 − 퐴‖ , 

where 푅  is the space of all operators from 풜 (푠) to 퐿 (휇 )	with finite 
rank at most 푞. Assume that 푓 ∈ ℳ (푠) .Then the sequence 풱 (퐻 ̅)  is 
in 푙 . Moreover, there are an orthonormal system (푢 )  in 풜 (푠) and an 
orthonormal system (풱 ) 	in 퐿 (휇 ) such that  

퐻 ̅ = 풱 퐻 ̅ 〈·, 푢 〉풱 	, 

Where the series converges in the operator norm. If q is a positive integer, 
consider the operator with rank at most 푞 given by. 
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퐴 ≔ 풱 퐻 ̅ 〈·, 푢 〉풱 	, 

Where for each integer 푗 = 0, …	 , 푞 − 1 and 푧 ∈ ℂ  the functions 푢 	and 
푣 	are defined by  

푢 (푧) ≔ 푈 푢 (푧)휉̅
핋

푑푚 (휉)	푎푛푑	풱 (푧) ≔ 	 푈 ℎ (푧)휉̅
핋

푑푚 (휉) 

The dominated convergence theorem, combined with (9) and (8), yields  

〈 퐻 − 퐴 (푔), ℎ〉 = 풱 퐻 ̅ 〈푈 푔, 푢 〉〈풱 푈 ℎ〉휉̅
핋

푑푚 (휉)	. 

Due to the facts that the sequence 풱 퐻 ̅  is non-increasing and the 

systems (푢 )  and (푣 ) are orthonormal it follows that 

풱 퐻 ̅ 〈푈 푔, 푢 〉〈풱 푈 ℎ〉 ≤ 풱 퐻 ̅ ‖푔‖풜 ( )‖ℎ‖ ( ) 

for all 휁 ∈ 핋  , 푔 ∈ 풜 (푠) and ℎ ∈ 퐿 (휇 ). Hence  

퐻 − 퐴 ≤ 풱 퐻 ̅ 	. 

This implies that  

풱 퐻 ≤ 풱 퐻 ̅ . 

Showing that 푎 푧 ∈ ℳ (푠), consequently, 푧 ∈ ℳ (푠) if and only if 

(0), the proof of the lemma is now complete.  

Lemma (3.1.19) [3]: Suppose that 푅 = +	∞ and the sequence 푠 satisfies 
(3). Then the function 푤	 → 	푔(푤)	퐾 (푧, 푤) is in 퐿 (휇 ) for all 
holomorphic polynomials g and	푧 ∈ ℂ .  

Proof: We first observe that  
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퐾 (푧, 푤) =
1

(푛 − 1)!
(푑 + 푛 − 1)!

푑!
〈푧, 푤〉 , 푧 ∈ ℂ , 푤 ∈ ℂ 	, 

Therefore, for any 훼 ∈ ℕ  and	푧 ∈ ℂ . 

|푤 퐾 (푧, 푤)| 푑푚 (푤)
ℂ

=
1

(푛 − 1)!
(푑 + 푛 − 1)!

푑!
|푤 〈푧, 푤〉 | 푑푚 (푤)

ℂ

≤
1

(푛 − 1)!
(푑 + 푛 − 1)!

푑!
|푧| 푡| | 푑휇(푡)

=
1

(푛 − 1)!
(푑 + 푛 − 1)!

푑!
푠| | | |  

Now assumption (3) ensures that the latter series converges for all 푧 ∈ ℂ .  

Lemma (3.1.20) [3]: Assume that s satisfies (2). Then the spaces ℳ(푠) 
and	ℳ (푠), p ≥ 1 are Banach spaces and	ℳ 	(푠), 0 < 푝 < 1, i.s a quasi-
Banach space.  

Proof: We prove the lemma for	ℳ(푠). Let (푓 ) ∈ℕ  be a Cauchy 
sequence in ℳ(푠). without loss of generality we may assume that 

 푓 (0) = 0 For all 푛. the sequence (퐻 ̅ ) ∈ℕ  is a Cauchy sequence of 
bounded operators on 풜 (푠).Therefore, there is an operator 푇 in 풜 (푠) 
such that (퐻 ̅ ) ∈ℕ  converges to 푇 in the norm operator. Let 푓:= 	푇(1) 
be the conjugate of the image 푇(1)	of the constant function 1 under 푇 
since 퐻 ̅ (1) = 푓̅ 	, it follows that  

푓 − 푓
( )

= 푓̅ − 푇(1)
( )

	= 퐻 ̅ (1) − 푇(1)
( )

≤

퐻 ̅ − 푇 ‖1‖ ( )  

Showing that  

lim
→

푓 − 푓 ( ) = 0														 																	(11) 

Thus	푓 ∈ 풜 (푠), we shall show that the Hankel operator 퐻 ̅ with symbol 
푓̅ is bounded. We shall prove that 푓 ∈ 풯(푠)	and 퐻 ̅ coincides with 푇 on 
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holomorphic polynomials. Let g be a holomorphic polynomial. We first 
observe by Lemma (3.1.19) that for all 푧 ∈ ℂ . we have : 

푃 푓̅ − 푓 푔 (푧) ≤ 푓 − 푓
( )

‖푔퐾 (푧,·)‖ ( ) 

So that (11) we see that lim → 푝 ( 푓̅ − 	푓̅ (푔)(푧) = 0. Since again by 
(11) we have that lim → ( 푓̅ − 	푓̅ (푔)(푧) = 0 .it follows that 

lim
→

(퐻 −	퐻 ̅)(푔)(푧) = 0. 

This proves that 푇푔 = 퐻 ̅(푔) and hence 푓 ∈ 풯	(푠) and 푇 = 퐻 ̅. 
Therefore ℳ(푠) is a Banach space. The proof of that ℳ (푠) is a Banach 
space for 푝 ≥ 1, and a quasi-Banach space for 0 < 푝 < 1 is similar.  

Theorem (3.1.21) [3]: Suppose that	푛 = 1	and 푓	is a non constant 
holomorphic function in 푓 ∈ 풯(푠). Then 퐻 ̅ is in. the Hilbert-Schmidt class 
푆 (풜 (푠), 퐿 (휇 )if and only if s is exponentially bounded and 푓 is in the 
classical Dirichlet space 풟(Ω ). In addition, the trace 푇푟(퐻 ̅

∗퐻 ̅	) of 퐻 ̅
∗퐻 ̅	 is 

given by  

푇푟 퐻 ̅
∗퐻 ̅	 =

1
π

|푓 (푧)| 푑퐴(푧)
Ω 	

= |푓(푧) − 푓(푤)| |퐾 (푧,푤)| 푑퐴(푧)푑퐴(푤)
Ω

. 

Where dA(z) is the Lebesgue measure in ℂ.  

Proof: Suppose that 푛 = 1 and	푓	is as in the hypothesis of Theorem 
(3.1.21). A straight-forward calculation appealing to Lemma (3.1.7) 
shows that for all non-negative integers 푗, 푘 we have : 

푇푟 퐻 ̅
∗ 	퐻 ̅ = 0	푎푠	푙표푛푔	푎푠 푗 ≠ 푘 

and  

푇푟 퐻 ̅
∗ 퐻 ̅ =

푠
푠 | |

−
푠
푠

+
푠
푠

	= 푘푅 . 

Writing 푓 = ∑ ∈ℕ	푎 푧  yields 

푇푟 퐻 ̅
∗퐻 ̅ = 푅 푘|푎 |

∈ℕ

=
1
휋

|푓 (푧)| 푑퐴(푧). 
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This proves the first equality of the theorem. Next we prove the second 
equality. Writing퐾 (푧, 푤)∑ 푓 (푧)푓̅ (푤), where (푓 ) is an orthonormal 
basis of 풜 (푠), we observe by a standard argument that for any positive 
operator 푇 on 	풜 (푠).we have  

푇푟(푇) = 〈푇푓 , 푓 〉풜 (푠) = 〈TK (·, z), K (·, z)〉풜 ( ) 푑퐴(푧). 

Applying this equality to 푇 = 퐻 ̅
∗	퐻 ̅ and using the reproducing property 

of the kernel 퐾  implies that  

푇푟 퐻 ̅
∗퐻 ̅ = |푓(푧) − 푓(푤)| |퐾(푧, 푤)| 푑퐴(푧) 

and hence completes the proof of the theorem. 

Chapter 4 

Membership of Hankel Operators in a Class of Lorentz 
Ideals 

We will show that the Lorentz ideal 퐶  is the collection of 

operators 퐴 satisfying thecondition ‖퐴‖ = ∑ 푗 푠 (퐴) < ∞. Now 
we consider Hankel operators 퐻 :퐻 (푆) → 퐿 (푆, 푑휎) ⊕ 퐻 (푆), where 
퐻 (푆) is the Hardy space on the unit sphere 푆 in ℂ . Hence we 
characterize the membership 퐻 ∈ 퐶 , 2푛 < 푝 < ∞. 

Section (4.1): Symmetric Guge Functions with Decomposition 
and Modified Kernel 

The study of  Hankel operators has a long and rich history. We are 
particularly interested in one kind of Hankel operators: those on the 
Hardy space of the unit sphere. Let us begin by describing our basic 
setting. 

Let S be the unit sphere{푧: |푧| = 1} in 퐶 . In this chapter, the 
complex dimension n is always assumed to be greater than or equal to 2. 
Let 푑휎 be the standard spherical measure on 푆.  
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That is, 푑휎 is the positive, regular Borel measure on S with 휎(S) = 1 that 
is invariant under the orthogonal group 푂(2푛), i.e., the group of 
isometries on ∁ ≅ 푅 , which fix 0. 

Recall that the Hardy space 퐻 (푠) is the norm closure in 
퐿 	(푆, 푑휎) of the collection of polynomials in the complex 
variables	푧 , … . , 푧 . As usual, we let 푃 denote the orthogonal 
projection from 퐿 (푆, 푑휎) onto	퐻 (푠) . The main object of study is, the 
Hankel operator 퐻 ∶ 	퐻 (푆) ⟶ 퐿 	(푆, 푑휎) ⊖ 	퐻 (푠), is defined by the 
formula 

퐻 	= 	 (1 − 푃)푀 	|퐻 (푆).	
We consider symbol functions 푓 ∈ 퐿 	(푆, 푑휎). Recall that the 

problems of boundedness and compactness of 퐻  were settled .Later, we 
characterized the membership of 퐻  in the Schatten class 퐶 ,	2푛 < 푝 < 1. 
Moreover, it was shown that the membership 퐻 ∈ 퐶  implies	퐻 = 0. 
More recently, we characterized the membership of 퐻  in the ideal 
퐶 ,2n < 푝 < 1 . 
We turn our attention to the membership of	퐻  in the Lorentz ideal 퐶 . 
Before going any further, it is necessary to recall the definition of these 
operator ideals. 
Given an operator 퐴, we write 푠 (퐴), … , 푠 (퐴)… for its s-numbers For 
each 1 < 푝 < ∞, the formula  

‖퐴‖ =
푠 (퐴)
푗( )/ 	

defines a symmetric norm for operators .On any separable Hilbert space 
ℋ, the set 퐶 = 	 퐴 ∈ 훽(ℋ): ‖퐴‖ 	 < ∞ 	is a norm ideal . 

Closely associated with the Lorentz ideals 퐶  are the ideals 퐶  , 
which are defined as follows: each 1 ≤ 	푝	 < 	∞, the formula  

‖퐴‖ = sup
푠 (퐴) + 푆 (퐴) + ⋯+ 푆 (퐴)
1 / + 2 / +⋯+ 푗 /  

also defines a symmetric norm for operators .On any separable Hilbert 
space ℋ, we have the norm ideal 

퐶 = 	 퐴 ∈ 훽(ℋ): ‖퐴‖ 	 < ∞ 	 
As we mentioned, the C  's were the ideals of interest. These ideals will 
play an important supporting role. 

Compared with the more familiar Schatten class  
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퐶 = {퐴 ∈ 훽(ℋ): ‖퐴‖ < ∞}	, 
Where 

‖퐴‖ = 푡푟 (퐴∗퐴) / /
 

 for all 1	 < 푝 < ∞ we have the relation 푐 ⊂ 푐 ⊂ 푐 ⊂ 푐 . 
with all the inclusions being proper. This explains the + and − in the 
notation: 퐶  is slightly smaller than 퐶 , whereas 퐶 , is slightly larger 
than 퐶 . 

Since the membership problem	퐻 ∈ 퐶  , 2푛 < 푝 < ∞, was settled, 
the obvious next step is to determine the membership 퐻 ∈ 퐶 , 2푛 < 푝 <
∞, But this next step,however natural it is, turns out to be quite a 
challenge. We have a sizable collection of techniques from previous 
investigations but these techniques alone are not sufficient for the 
membership problem 퐻 ∈ 퐶  . The reason for that is that the norm ‖. ‖  
is much harder to work with than	‖. ‖  .  
But, with considerable effort, we have finally developed the necessary 
additional techniques. Combining these additional techniques with 
techniques from previous investigations, we are able to characterize the 
membership 퐻 ∈ 퐶 , 2푛 < 푝 < ∞. 

It is well known that, if 푝, 푞	 ∈ 	 (1,∞) are such that 푝 +	푞 =
1, then 퐶 	is the dual of 퐶  .This duality was quite useful, sometimes 
even crucial, in the	investigations of many problems in the past. Instead, 
we must exploit a diferent	kind of relation between the families 

퐶 :	2	 < 	푝	 < 	∞ 	푎푛푑	 퐶 :	2	 < 	푝	 < 	∞ 	
To state the result, it is necessary to recall the notion of symmetric 

gauge functions. Let 푐̂ be the linear space of sequences 푎
∈

, where 

푎 	휖	푅 and for every sequence the set	{푗	휖	푁 ∶ 	 푎 ≠ 	0}	is finite. A 
symmetric gauge function (also called symmetric norming function) is a 
map 훷:	푐̂ → [0,∞) that has the following properties: 

(a) Φ is a norm on 푐̂. 
(b) Φ({1,0,… ,0, … }) = 1. 
(c) Φ({푎 } ∈ ) = 	Φ( 푎 ( ) ∈

) for every bijection 휋:푁 → 푁. 

 Each symmetric gauge function Φ gives rise to the symmetric norm 
‖퐴‖ = sup훷( 푠 (퐴),… , 푠 (퐴), 0, … ,0, … ) 

for operators. On any separable Hilbert space H, the set of operators 
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퐶 = 	 {퐴	 ∈ 	훽(ℋ): ‖퐴‖ < ∞}	. is a norm ideal . 
If 푋 is an unbounded operator, then its s-numbers are not 
defined. But it will be convenient to adopt the convention that ‖푋‖ = 1 
whenever 푋 is an unbounded operator. 

In particular, associated with the ideal 퐶 is the symmetric gauge 
function 훷  , which is defined as follows. Let 1 < p < ∞. For each 
푎

∈
∈ 푐̂, define  

훷 푎
∈

=
|푎 (푗)|
푗 / 	, 

where 휋 ∶ 	푁 → 푁 is any bijection such that |푎 (푗)| ≥ |푎 (푗 + 1)| for 
every 푗 ∈ 푁, which exists because 푎  = 0 for all but afinite number of j's. 
Then we have 퐶  =	퐶  Similarly, for each 1 ≥ 푝 < ∞ we define the 
symmetric gauge function 

훷 푎
∈

= sup
|푎 (1)| + |푎 (2)| + ⋯+ |푎 (푗)|
1 / + 2 / +⋯+ 푗 / 	 , 푎

∈
∈ 푐̂ 

Where, again,	휋 ∶ 	푁 → 푁 is any bijection such that|푎 (푗)| ≥ |푎 (푗 + 1)| 
for every 푗 ∈ 푁. 

Then 퐶 = 	퐶 . Theorem we state the following if Φ	is a 
symmetric gauge function and if 0 < 	‖퐻 	‖	 < 1 for some 푓 ∈
퐿 (푆, 푑휎), then 퐶 ⊃ 퐶  .we need to extend the domains of definition of 
symmetric gauge functions beyond the space 푐̂. Let Φ be any symmetric 
gauge function. Suppose that 푏

∈
 is an arbitrary sequence of real 

numbers, i.e. suppose that the set 푗 ∈ Ν	, 푏 ≠ 0  is not necessarily finite. 
Then we define  

Φ 푏
∈

= 푠푢푝Φ 푏 ,… , 푏 , 표,… ,0, … 																					(1). 

Thus for every bounded operator A we can simply write 
‖퐴‖ = Φ 푠 (퐴),… , 푠 (퐴), … . 

We also need to deal with sequences indexed by sets other than 푁. 
If W is a countable,infinite set, then we define 

Φ({푏 } ∈ ) = Φ 푏 ( ) ∈
. 

where 휋:푁 → 푊 is any bijection . From the definition of symmetric 
gauge functions we see that the value of Φ({푏 } ∈ ) is independent of 
the choice of the bijection 휋.  
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For a finite index set F = {푥 , … , 푥ℓ}, we define 
훷({푏 } ∈ ) = Φ 푏 ,… , 푏 ℓ , 0, … ,0, … 	 

Let us write 퐵 for the open unit ball {푧 ∶ |푧| < 1	} in 퐶 .  
Let 훽 be the Bergman metric on 퐵. That is, 

훽(푧, 휔) = 	
1
2
	log

1 + |휑 (휔)|
1 − |휑 (휔)|

	푧, 푤 ∈ 퐵 

where 휑  is the Mobius transform of 퐵 .For each 푧 ∈ 퐵. and each 푎 >
0,we define the corresponding -ball 퐷(푧, 푎) = {휔 ∈ 퐵: 훽(푧, 휔) <
푎}	푧, 푤 ∈ 퐵. 

(i) Let a be a positive number. 
 A subset Гof 퐵 is said to be a-separated if 퐷(퓏, 푎) ∩ 퐷(휔, 푎) = 0 for all 
distinct elements 퓏,휔 in Г. 

(ii) Let 0 < 푎 < 푏 < ∞. A subset Г of 퐵 is said to be an a, b-lattice 
if it is a-separated and has the property ⋃ 퐷(퓏, 푏)∈Г = 퐵. 

Recall that the normalized reproducing kernel for the Hardy space 
퐻 (푆) is given by the formula 

훫퓏(휔) =
(1 − |퓏| ) /

1 − 〈휔, 퓏〉
	, |퓏| < 1, |휔| ≤ 1 

For 푓 ∈ 퐿 (푆, 푑휎) and 푧 ∈ 퐵, we define  
푉푎푟(푓; 	푧) = ‖(푓 −	〈	푓푘 , 푘 〉)푘 ‖ 	

We think of 푉푎푟(푓; 푧) as the ʺvariance" of f with respect to the 
probability measure |푘 | 푑휎 on 푆.  

We know from previous investigations that the scalar quantity 
푉푎푟(푓; 푧) plays an extremely important role in the study of Hankel 
operators. 
One can formulate a rather broad conjecture about the membership of 
Hankel operators 퐻 	in a norm ideal 퐶 .  
Suppose that Φ is a symmetric gauge function satisfying the condition 
퐶 ⊃ 	퐶 	, which is necessary for 퐶  to contain any 퐻 ≠ 0.Then the 
general conjecture is that a Hankel operator 퐻  belongs to 퐶  if and only 
if 	

Φ 푉푎푟 (푓 − 	푃푓; 	퓏)
퓏∈Г

< ∞	,	

for some a; b-lattice Г in B with 푏 ≥ 2푎. But the challenge is to prove 
this conjectured result for specific symmetric gauge functions, where 
success depends in no small measure on the “user-friendliness” of the Φ 
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in question, the solution of this problem for the symmetric gauge 
functions Φ , 2푛 < 푝 < ∞, represented the limit of what could be done 
with the techniques available then. Now, newly developed techniques 
allow us to finally solve this problem for the symmetric gauge functions 
Φ  , 2푛 < 푝 < ∞ 
Theorem (4.1.2) [4]: Let 2푛 < 푝 < ∞ be given. Let 0 < 푎 < 푏 < ∞ 
be positive numbers such that 푏 ≥ 2푎. Then there exist constants 0 <
푐 ≤ 퐶 < ∞ which depend only on the given 푝, 푎, 푏 and the complex 
dimension n such that the inequality 

푐Φ 푉푎푟 (푓 − 	푃푓; 	퓏)
퓏∈Г

≤ Η

≤ 	푐	Φ 푉푎푟 (푓 − 	푃푓; 	퓏)
퓏∈Г

. 

holds for every 푓 ∈ 퐿 (푆, 푑휎)	and every a; b-lattice Г in B. 
Next let us explain some of the dificulties involved in the proof of 

Theorem (4.1.2). Recall that, an extremely important role was played by 
the inequality 

푐 훷 ({훼 } ∈ ) ≤ 훷 훼 	 ∈
≤ 푐 훷 ({훼 } ∈ ) 								(2). 

where 1 < 푟 < ∞, 1 < 휌 < ∞ and 푝 = 휌푟. For the lack of a better term, 
one might call (2) the power-transformation property of the family of 
symmetric gauge functions Φ 	,1 < 푝 < ∞.  

This power-transformation property is needed because, e.g., at 
certain point in our estimates, what we can prove are inequalities of the 
form  

Φ 퐴퓏, 퓏∈
= 훷 〈퐴∗퐴휓 , , 휓 , 〉 ∈ ≤ 퐶‖퐴∗퐴‖ 											(3) 

but what we need to prove are inequalities of the form 

Φ 퐴휓 , ∈ ≤ 	퐶‖퐴‖ 																													(4) 
The power-transformation property is precisely what allows us to deduce 
(4) from (3). 
But, the first stumbling block is that there is no analogue of this power 
transformation property for the family of symmetric gauge functions Φ  , 
1 < 푝 < ∞.	Thus our only hope is to somehow “make (2) work for 
the	Φ -problem” so to speak. 
Thanks to a rather complicated relation between	훷  and 
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훷 	,훷 	, 1 < 푟 < 푝 < 푟 < ∞, 
this idea actually works. 
Another major difficulty is the proof of a “reverse H표̈lder's inequality” of 
the form 

Φ {퐽 (푔; 푘, 푗)}( , )∈ ≤ 퐶훷 {퐽(푔; 푘, 푗)}( , )∈ 																		(5) 
Here	푡 ≥ 1	and 퐽  “has the exponent t inside the integral”, making (5) a 
reverse Holder 's inequality. The proof of this inequality in the case 
of		Φ  again depended on the power-transformation property. But for the 
proof of this inequality in the case of 	훷  , even the above-mentioned 
relation between 	훷  and 훷 	,훷  does not help. Instead, we must take an 
entirely new approach. We exploit a property of 	훷  called (DQK). 
Condition (DQK) was introduced for a completely different purpose, but 
it turns out to be exactly what is needed to prove (5). We are able to show 
that (5) actually holds for every symmetric gauge function that satisfies 
condition (DQK). 

We begin by establishing the all too important relation between 
Φ 	and Φ ,Φ 	. The proof of Theorem (4.1.2) depends on a crucial 
relation between the symmetric gauge functions Φ 	and	Φ ,Φ  ,where  
1 < 푟 	< 푝 < 푟 < ∞. Our task in this section is to establish this relation. 
Let us introduce the following notation. For every sequence of non-
negative numbers 푎 = 푎 , … , 푎 ,… .	and every 푠 > 0, we denote 
푁(푎; 푠) = 푐푎푟푑 푗 ∈ 푵: 푎 > 푠 . 
Lemma (4.1.3) [4]: Let 1 < 푝 < ∞. Then for every sequence of non-
negative numbers 푎 = 푎 , … , 푎 ,… .	we have 

{푁(푎; 푠)} ⁄
∞

≤ Φ (푎) ≤ 푃 {푁(푎; 푠)} ⁄
∞

											(6) 

Proof: Given any 1 < 푝 < ∞. it is trivial that 

푘 ⁄ ≤
1

푗( )⁄ ≤ 1 +
1

푥( )⁄ 푑푥 ≤ 푃푘 ⁄ 											(7) 

for every 푘 ∈ 푵. For the given 푝, define the measure 휇  on 푵 by the 
formula 

휇 (퐸) =
1

푗( )⁄
∈

, 퐸 ⊂ 푵	. 



٨٨ 
 

By the monotone convergence theorem and (1), it suffices to consider the 
case where the sequence	푎 = 푎 ,… , 푎 , … .	has only a finite number of 
nonzero terms. For such a sequence, rearranging the terms if necessary, 
we may assume that it is non-increasing, i.e., 푎 ≥ 푎 ≥ ⋯ ≥ 푎 ….. For 
such an 푎 = 푎 , … , 푎 , … .	we have 

Φ (푎) =
푎

푗( )⁄ = 휇 푗 ∈ 푵: 푎 > 푠 푑푠										(8) 

Where the second = follows from Fubini's theorem. Suppose that 푎 > 0, 
for otherwise (6) holds trivially. Since the sequence 푎 = 푎 , … , 푎 ,… .	is 
non-increasing, for each 0 < 푠 < 푎 , we have 푎 > 푠 if 1 ≤ 푗 ≤ 푁(푎; 푠) 
and 푎 ≤ 	푠 if 푗 > 푁(푎; 푠). Thus for every 0 < 푠 < 푎 	we have 

휇 푗 ∈ 푵: 푎 > 푠 = 휇 ({1, … . , 푁(푎; 푠)}) =
1

푗( )⁄

( ; )

	. 

Combining this with (7), we obtain 
{푁(푎; 푠)} ⁄ ≤ 휇 푗 ∈ 푵: 푎 > 푠 ≤ 푃{푁(푎; 푠)} ⁄ 															(9) 

for 0 < 푠 < 푎 . On the other hand, it is obvious that if 푠 ≥ 푎 , then 

휇 푗 ∈ 푵: 푎 > 푠 = 휇 (0) = 0 = {푁(푎; 푠)} ⁄ 														(10) 
Obviously, (6) follows from the combination of (8), (9) and (10). 
Proposition (4.1.4) [4]: For every sequence of non-negative numbers 
 푎 = 푎 ,… , 푎 ,… .	and every 푠 > 0, define the sequence 푎∨(푠) =
푎∨(푠), … , 푎∨(푠),… . where  

푎∧(푠) =
0			푖푓	푎 > 푠
푎 			푖푓	푎 ≤ 푠	 , 푗 ∈ 푵 

Then given any 1 < 푝 < 푟 < ∞, there exists a constant 0 < 퐶 . < ∞ 
such that 

1
푠

Φ (푎∨(푠))
/

푑푠
∞

≤ 퐶 . Φ (푎)																																		(11) 

for every sequence of non-negative numbers 푎 = 푎 , … , 푎 ,… . 
Proof: Let 1 < 푝 < 푟 < ∞ be given. By the monotone convergence 
theorem and (1), it suffices to consider the case where 푎 =
푎 , … , 푎 , … .	has only a finite number of nonzero terms. For each 푖 ∈ 풁, 

define 
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푣(푖) = 푐푎푟푑 푗 ∈ 푵: 2 < 푎 ≤ 2 																										(12) 
Suppose that 2 < 푠 ≤ 2  for some 푖 ∈ 풁. For such an 푠, by the 
definition of Φ  , there is a subset 휀(푠) of 푁 with 푐푎푟푑(휀(푠)) = 푘(푠) ∈
푵 such that 

Φ (푎∨(푠)) =
∑ 푎∨(푠)∈ ( )

1 ⁄ +⋯+ (푘(푠)) ⁄ ≤
∑ 푎∨(푠)∈ ( )

(푘(푠)) ⁄ 	 

Define 푗 ∈ 휀(푠): 2 < 푎∨(푠) = 	∑ ∑ 푎∨∈ ,
(푠). 

If 푗, 푖 and m are such that 푎∨(푠) > 2 , then 푎∨(푠) = 푎 .  
Therefore 

퐶푎푟푑	 퐸 , ≤ {푣(푖 + 푚), 푘(푠)}	 
Hence for each 푚 ≥ 0 we have 
1

(푘(푠)) ( ⁄ ) 푎∨(푠)
∈ ,

≤
2

2
.
퐶푎푟푑	 퐸 ,

(푘(푠)) ( ⁄ ) ≤
2

2
{푣(푖 + 푚)} ⁄ 	. 

Combining this with the above, we conclude that if 2 < 푠 ≤ 2 , 
then 

Φ (푎∨(푠)) ≤
1

(푘(푠)) ( ⁄ ) 푎∨
∈ ,

(푠)	 ≤ 2
1

2
{푣(푖 + 푚)} ⁄  

Consequently, we have 
1
푠
Φ (푎∨(푠)) ≤ 2

1
2

{푣(푖 + 푚)} ⁄ 	푓표푟	푒푣푒푟푦	푠 ∈ (2 , 2 ]										(13) 

Since	푟/푝 > 1, we have 푟/푝 = (1 + 휖)/(1 − 휖) for some 0 < 휖 < 1. 
That is, (	푟/푝)/(1 − 휖) = 1 + 휖.	Factoring 2  in the form 2 =
2 . 2 ( ) 	a simple application of Holder's inequality to (13) gives 
us 

1
푠
Φ (푎∨(푠))

/

≤ 퐶
1

2( ) {푣(푖 + 푚)} ⁄  

for 푠 ∈ (2 , 2 ]. Therefore 



٩٠ 
 

1
푠
Φ (푎∨(푠))

/

푑푠 =
1
푠
Φ (푎∨(푠))

/

푑푠

≤ 퐶
1
2

1
2( ) {푣(푖 + 푚)} ⁄

= 퐶
1
2

.
1

2
	{푣(푖 + 푚)} ⁄ =

= 퐶
1
2
{푣(푘)} ⁄ 1

2

= 퐶
1
2
{푣(푘)} ⁄ 																																																						(14) 

By (12), we have 푣(푘) ≤ 푁(푎; 푠) for every 푠 ∈ (2 , 2 ]. Thus 

1
2
{푣(푘)} ⁄ = 2

1
2

{푣(푘)} ⁄ ≤ 2 {푁(푎; 푠)} ⁄ 푑푠

= {푁(푎; 푠)} ⁄ 푑푠 ≤ Φ (푎)																																																					(15) 

where the last ≤ is an application of Lemma (4.1.3). Obviously, the 
proposition follows from the combination of (14) and (15). 
Proposition (4.1.5) [4]:For every sequence of non-negative numbers 
 푎 = 푎 ,… , 푎 ,…  and every 푠 > 0, define the sequence 푎∧(푠) =
푎∧(푠), … , 푎∧(푠),… ,where 

푎∧(푠) =
푎 			푖푓	푎 > 푠
0			푖푓	푎 ≤ 푠 	 , 푗 ∈ 푵 

Then given any 1 < 푟 < 푝 < ∞, there exists a constant 0 <
퐶 . < ∞	such that 

1
푠
Φ (푎∧(푠))

⁄

푑푠 ≤ 퐶 . Φ (푎) 

for every sequence of non-negative numbers 푎 = 푎 , … , 푎 ,… . 
Proof: Let 1 < 푟 < 푝 < ∞ be given. Again, by the monotone 
convergence theorem and (1), it suffices to consider the case where 푎 =
푎 , … , 푎 , … , has only afinite number of nonzero terms. For each 푖 ∈ 풁, 

let 푣(푖) be given by (12). Suppose that 2 < 푠 ≤ 2  for some 푖 ∈ 풁. 
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By the definition of Φ , there is a subset ℱ(푠) of 푁 with 푐푎푟푑(ℱ(푠)) =
푘 (푠) ∈ 푵 such that 

Φ (푎∧(푠)) =
∑ 푎∧(푠)∈ℱ( )

1 ⁄ +⋯+ (푘 (푠)) ⁄ ≤
∑ 푎∧(푠)∈ℱ( )

(푘 (푠)) ⁄  

Define 퐹 , = 푗 ∈ ℱ(푠): 2 < 푎∧(푠) ≤ 2 . for each 푚 ∈ 푍 . 
By definition, if 푎∧(푠) > 0, then 푎∧(푠) > 푠. Since 푠 > 2 , we have 

푎∧(푠)
∈ℱ( )

= 푎∧(푠)
∈ℱ ,

 

We have 푐푎푟푑(퐹 , ) ≤ sup{푣(푖 − 푚), 푘 (푠)} for every 푚 ≥ 0. Therefore 

1
푠
Φ (푎∧(푠)) ≤

1
(푘 (푠)) ⁄ 푎∧(푠)

∈ℱ ,

	 ≤ 2 2 {푣(푖 − 푚)} ⁄  

Consequently, 
1
푠
Φ (푎∧(푠)) ≤ 2 2 {푣(푖 − 푚)} ⁄  

Since 0 < 푟 푃⁄ < 1, it follows that 

1
푠
Φ (푎∧(푠))

⁄

≤ 2 2 ⁄ {푣(푖 − 푚)} ⁄  

for 	2 < 푠 ≤ 2 . Thus 

1
푠
Φ (푎∧(푠))

⁄

푑푠 =
1
푠
Φ (푎∧(푠))

⁄

푑푠

≤ 2 2 2 ⁄ {푣(푖 − 푚)} ⁄

= 2
1

2 ( ⁄ ) .
1

2
{푣(푖 − 푚)} ⁄

= 2
1
2
{푣(푘)} ⁄ 1

2 ( ⁄ ) 	. 

Recalling (15), the proof is now complete. 
Although Theorem (4.1.2) is about membership in the ideal 퐶 , the 

fact that we need Propositions (4.1.4) and (4.1.5) clearly indicates that 
symmetric gauge functions Φ 	, 1 < 푝 < ∞, will be an important part of 
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our analysis. We end this section with some facts about these symmetric 
gauge functions, which will be needed later on. 
Lemma (4.1.6)[4]: Suppose that 1 < 푝 < ∞. Let 훼 = {훼 , … , 훼 ,… . }	be 
a non-increasing sequence of non-negative numbers. Define 

퐹 (훼) = sup 푘 ⁄ 훼  

Then 
푃 − 1
푃

퐹 (훼) ≤ Φ (푎) ≤ 퐹 (훼) 

Lemma (4.1.7)[4]: Let 1 < 푟 < ∞, 1 < 푝 < ∞. and 푝 = 휌푟. Then for 
every sequence 훼 = {훼 , … , 훼 ,… . } of non-negative numbers we have 
휌 − 1
휌

Φ ({훼 } ∈ ) ≤ Φ ({훼 } ∈ ) ≤
푃

푃 − 1
Φ ({훼 } ∈ ) . 

If Φ  denotes the symmetric gauge function for the Schatten class 퐶 , 
1 < 푝 < ∞, then, of course, for every sequence of non-negative numbers 
푎 = {푎 , … . , 푎 , … }	we have the following well-known inequality of 
weak-type: 

푁(푎; 푠) ≤
Φ (푎)
푠

																																																								(16).	

for 푠 > 0. But for the purpose of this section, (16) is not good enough; we 
need an improved version of it. More specifically, we need to replace the 
Φ (푎) above by Φ (푎). 
Lemma (4.1.8)[4]: Suppose that 1 < 푝 < ∞. Then for every sequence of 
non-negative numbers 푎 = {푎 ,… . , 푎 ,… }	and every 푠 > 0	we have 

푁(푎; 푠) ≤
푃

푃 − 1
1
푠
Φ (푎) 																																	(17) 

Proof: Given an 푠 > 0, set 푀 = 푗 ∈ 푵: 푎 > 푠 . If 푐푎푟푑(푀) = ∞, then 
Φ (푎) = ∞,and therefore (17) holds in this case. Obviously, (17) also 
holds in the case 푀 = 0,	Suppose that 푐푎푟푑(푀) = 푚 ∈ 푁. Then there is 
a bijection 휋: {1, … ,푚} → 푀	such that 

푎 ( ) ≥ ⋯ ≥ 푎 ( ) 
Since  푎 ( ) > 푠, by Lemma (4.1.6) we have 

푠푚 ⁄ < 푎 ( )푚 ⁄ ≤ sup 푎 ( )푘 ⁄

≤
푃

푃 − 1
Φ 푎 ( ), … , 푎 ( ) ≤

푃
푃 − 1

Φ (푎). 

Solving for 푚(= 푁(푎; 푠)), we find that 푚	 ≤ {푃 (푃 − 1)⁄ } (Φ (푎)/푠) 	
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Although (17) is only a slight improvement of (16), we will see that this 
improvement makes quite a difference. In fact, (16) is the reason why 
Propositions (4.1.4) and (4.1.5) are useful for our purpose. 

 It is well known that the formula 
푑(휁, 휉) = |1 − 〈휁, 휉〉| ⁄ , 휁, 휉 ∈ 푆																																								(18)	

defines a metric on 푆 .Throughout, we denote 
퐵(휁, 푟) = 푥 ∈ 푆: |1 − 〈휁, 휉〉| ⁄ < 푟 	 

for	휁 ∈ 푆 and 푟 > 0. There is a constant 2 < 퐴 < ∞ such that 
2 푟 ≤ 휎 퐵(휁, 푟) ≤ 퐴 푟 																													(19) 

for all	휁 ∈ 푆 and 0 < 푟 ≤ √2 . Note that the upper bound actually holds 
when 푟 > √2 . 

Next we need to recall the spherical decomposition. For each 
integer	푘 ≥ 0, let 푢 , , … , 푢 , ( ) be a subset of 푆	which is maximal 
with respect to the property 

퐵 푢 , , 2 ∩ 	퐵 푢 , , 2 = 0	푓표푟	푎푙푙	1 ≤ 푗 < 푗 ≤ 푚(푘)								(20)		
The maximality of 푢 , , … , 푢 , ( ) implies that 

퐵 푢 , , 2 = 푆
( )

																																				(21) 

For each pair of 푘 ≥ 0 and 1 ≤ 푗 ≤ 푚(푘), define 
푇 , = 푟푢: 1 − 2 ≤ 푟 < 1 − 2 ( ), 푢 ∈ 퐵 푢 , , 2 			(22) 

We define the index set 
퐼 = {(푘, 푗): 푘 ≥ 0,1 ≤ 푗 ≤ 푚(푘)} 

Recall that for each pair of 0 < 푡 < ∞ and 푧 ∈ 푩, we define 

휓 , (휁) =
(1 − |푧| )( ⁄ )

(1 − 〈휁, 푧〉)
 

|휁| ≤ 1. In terms of the normalized reproducing kernel 푘  and the Schur 
multiplier 

푚 (휁) =
1 − |푧|
1 − 〈휁, 푧〉

																																													(23) 

We have the relation 
휓 , = (1 + |푧|) 푚 푘 	. 

We think of 푧, 푡 as a modified kernel function, i.e., a modified 
version of 푘 . 



٩٤ 
 

Definition (4.1.9) [4]: (a) A partial sampling set is afinite subset 퐹 of the 
open unit ball B with the property that 푐푎푟푑(퐹 ∩ 푇 , ) ≤ 1 for every 
(푘, 푗) ∈ 퐼. 
(b) For any partial sampling set 퐹 and any 푡 > 0, denote 

푅( ) = 휓 , ⨂휓 ,
∈

 

The next proposition shows the benefit of modifying	푘 : 
Proposition (4.1.10)[4]: For each	푡 > 0, there is a constant 퐶 . (푡)	such 
that the inequality 

Φ 〈퐵휓 , , 휓 , 〉 ∈ ≤ 퐶 . (푡)‖퐵‖  

holds for every partial sampling set 퐹, every symmetric gauge function 
Φ, and every non-negative self-adjoint operator B on the Hardy space 
퐻 (푆). 
Proof: Let Φ be any symmetric gauge function. Then it has the following 
property: For non-negative numbers 푎 ≥ ⋯ ≥ 푎 ≥ 0	and 푏 ≥ ⋯ ≥
푏 ≥ 0 in descending order, if 푎 +⋯+ 푎 ≤ 	푏 + ⋯+ 푏  for every 1 ≤
푗 ≤ 푣. 
then 

훷({푎 , … , 푎 , 0, . . ,0. . . }) ≤ 훷({푏 , … , 푏 , 0, . . ,0. . . }) 
Let 푡 > 0 be given,there is a constant 퐶 . (푡)	such that 

푅( ) ≤ 퐶 . (푡) 

for every partial sampling set 퐹. 
Let 퐵 be a non-negative self-adjoint operator, and suppose that	퐹 is 

a partial sampling set with 푐푎푟푑(퐹) = 푚. Then we can enumerate the 
elements in 퐹 as 푧 ,… , 푧  in such a way that 

〈퐵휓 , , 휓 , 〉 ≥ ⋯ ≥ 〈퐵휓 , , 휓 , 〉 
For each 1 ≤ 푘 ≤ 푚, define the subset 퐹 = {푧 ,… , 푧 }	of 퐹. Then each 

퐹  is also a partial sampling set, and we have 푅( ) ≤ 푅( ) ≤
퐶 . (푡)	for every 1 ≤ 푘 ≤ 푚. In terms of s-numbers, this implies that 

푠 퐵푅( ) ≤ 퐶 . (푡)푠 (퐵). 
for every 푗 ≥ 1 .Write ‖·‖  for the norm of the trace class. Since 

rank 푅( ) ≤ 푘	, we have 
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〈퐵휓 , , 휓 , 〉 + ⋯+ 〈퐵휓 , , 휓 , 〉 = 푡푟 퐵푅( ) ≤ 퐵푅( )

= 푠 퐵푅( ) +⋯+ 푠 퐵푅( ) ≤ 퐶 . (푡){푠 (퐵) +⋯+ 푠 (퐵)} 
Since this holds for every 1 ≤ 푘 ≤ 푚 .by the property of Φ that we 
mentioned in the previous paragraph, we have 

Φ 〈퐵휓 , , 휓 , 〉 ∈ ≤ 퐶 . (푡)Φ 푠 (퐵)
∈푵

= 퐶 . (푡)‖퐵‖  

proving the proposition.  
Proposition (4.1.11) [4]: Given any pair of 푡 > 0	and 2 < 푝 < ∞, there 
exists a constant 퐶 . (푡, 푝)	such that the inequality 

Φ 퐴휓 , ∈ ≤ 퐶 . (푡, 푝)‖퐴‖  

holds for every bounded operator 퐴:퐻 (푆) → 퐿 (푆, 푑휎) and every partial 
sampling set 퐹. 
Proof: Let 푡 > 0 and 2 < 푝 < ∞ be given. Set 휌 = 푝/2. Then 휌 > 1 and  
푝 = 2휌. Let 퐶 = {휌 (휌 − 1)⁄ } ⁄ . Let 퐴:퐻 (푆) → 퐿 (푆, 푑휎) be any 
bounded operator and let 퐹 be any partial sampling set. Applying Lemma 
(4.1.7) with 푟 = 2, we have 

Φ 퐴휓 , ∈ ≤ 퐶 Φ 퐴휓 , ∈

⁄

= 퐶 Φ 〈퐴∗퐴휓 , , 휓 , 〉 ∈

⁄
																																(24) 

On the other hand, Proposition (4.1.10) gives us 

Φ 〈퐴∗퐴휓 , , 휓 , 〉 ∈ ≤ 퐶 . (푡)‖퐴∗퐴‖ 																																		(25) 
Again applying Lemma (4.1.7) with 푟 = 2, we have 

‖퐴∗퐴‖ = (퐴∗퐴) ⁄ ≤ (퐴∗퐴) ⁄ = ‖퐴‖ 						(26)  

Thus if we set 퐶 . (푡, 푝) = 퐶{퐶 . (푡, 푝)} ⁄ {푃 (푃 − 1)⁄ }, then the 
proposition follows from the combination of (24), (25) and (26). 
Proposition (4.1.12)[4]: Given any pair of 푡 > 0 and 2 < 푝 < ∞, there 
exists a constant 퐶 . (푡, 푝)	such that the inequality 

Φ 퐴휓 , ∈ ≤ 퐶 . (푡, 푝)‖퐴‖ 																																															(27) 

holds for every bounded operator 퐴:퐻 (푆) → 퐿 (푆, 푑휎) and every partial 
sampling set 퐹. 
Proof: Let 푡 > 0 and 2 < 푝 < ∞ be given. We pick an 푟  such that 2 <
푟 < 푝. To prove (27), we only need to consider compact 퐴:퐻 (푆) →
퐿 (푆, 푑휎), for otherwise the inequality holds for the trivial reason that its 
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right-hand side is infinity. But for a compact	퐴, we have the 
representation 

퐴 = 푎 푥 ⨂푦  

where 푥 : 푗 ∈ 푵  and 푦 : 푗 ∈ 푵  are orthonormal sets in 퐿 (푆, 푑휎) and 
퐻 (푆)	respectively, and 푎 ≥ 0	for every 푗 ∈ 푵. For every 푠 > 0, define 
the operators 

퐴 = 푎 푥 ⨂푦 		푎푛푑	퐵 = 푎 푥 ⨂푦  

It follows from Proposition (4.1.5) that 

1
푠
‖퐴 ‖

⁄

푑푠 ≤ 퐶 . ‖퐴‖ 																																										(28) 

On the other hand, it is obvious that	‖퐵 ‖ ≤ 푠. Since 휓 , ≤ 2 , we 
have 

퐵 휓 , ≤ 2 푠																																																											(29) 
for all 푧 ∈ 퐵 and 푠 > 0. 
Let a partial sampling set 퐹 be given. With somewhat abuse of notation, 
let us write 

푁(퐹; ℷ) = 푐푎푟푑 푧 ∈ 퐹: 퐴 , > ℷ 	
for ℷ > 0. By Lemma (4.1.3), we have 

Φ 퐴휓 , ∈ ≤ 푃 {푁(퐹; ℷ)} ⁄ 푑ℷ 

(1 + 2 )푃 {푁(퐹; (1 + 2 )푠)} ⁄ 푑푠																													(30) 

where the last step is the substitution ℷ = (1 + 2 )푠 Define 
푁(푠) = 푐푎푟푑 푧 ∈ 퐹: 퐴 휓 , > 푠 	

for 푠 > 0. Since 퐴 = 퐴 + 퐵 , we have 퐴휓 , ≤ 퐴 휓 ,  for all 푠 > 0 
and 푧 ∈ 퐹. Therefore (29) implies that for every 푠 > 0, 

푁(퐹; (1 + 2 )푠) ≤ 푁(푠)	
Applying Lemma (4.1.8) and Proposition (4.1.11), we have 
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푁(푠) ≤
푟

푟 − 1
1
2
Φ 퐴 휓 , ∈

≤
푟

푟 − 1
1
푠
퐶 . ‖퐴 ‖ . 

Thus if we set 퐶 = {푟 퐶 . (푡, 푟 )/(푟 − 1)} ⁄ 	then 

{푁(퐹; (1 + 2 )푠)} ⁄ ≤ {푁(푠)} ⁄ ≤
1
푠
‖퐴 ‖

⁄

 

for every 푠 > 0. Substituting this in (30) and recalling (28), we obtain 

Φ 퐴휓 , ∈ ≤ (1 + 2 )푃퐶
1
푠
‖퐴 ‖

⁄

푑푠

≤ (1 + 2 )푃퐶퐶 . ‖퐴‖  
This completes the proof of the proposition.  
Definition (4.1.13) [4]: A partial sampling map is a map 휑 from a set 푋 
into 퐵 which has the property that 푐푎푟푑 푥 ∈ 푋:휑(푥) ∈ 푇 , ≤ 1 for 
every (푘, 푗) ∈ 퐼 
Lemma (4.1.14) [4]:There exists a natural number 푀 .  determined by 
the complex dimension 푛 such that the following is true: Let 퐿 be a subset 
of 퐼 and suppose that 푧: 퐿 → 푩 map satisfying the condition 푧(푘, 푗) ∈
푇 , for every (푘, 푗) ∈ 퐿 Then there is a partition 퐿 = 퐸 ∪ … .∪ 퐸 . . 
such that for every 1 ≤ 푣 ≤ 푀 . , the map 푧: 퐸 → 푩 is a partial sampling 
map. 
Proof: By (22), we have 푇 , ∩ 푇 , = 0 ; for all 푘 ≠ 푘  in 푍  and 1 ≤
푗 ≤ 푚(푘), 1 ≤ 푗 ≤ 푚(푘 ),. By (19), (20) and (22), there is an 푀 ∈
푁	determined by the complex dimension n such that the inequality 

푐푎푟푑 푖: 1 ≤ 푗 ≤ 푚(푘), 푇 , ∩ 푇 , ≠ 0 ≤ 푀																												(31)	
holds for every (푘, 푗) ∈ 퐼. Let us show that 푀 . = 푀  suffices for our 
purpose. 
Let 퐿 ⊂ 퐼, and suppose that 푧: 퐿 → 푩 is a map such that 푧(푘, 푗) ∈ 푇 ,  for 
every(푘, 푗) ∈ 퐿. Then by (31), for every (푘, 푗) ∈ 퐼 we have 

푐푎푟푑 ℓ ∈ {1,… ,푚(푘)}: 푧(푘, ℓ) ∈ 푇 , ≤ 푀 = 푀 .

, ∩ ,

						(32) 

We pick a subset 퐸  of 퐿 that is maximal with respect to the 
condition that the restricted map	푧: 퐸 → 푩 be a partial sampling map. 
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Suppose that	푚 ≥ 1 and that we have defined pairwise disjoint subsets 
퐸 ,… , 퐸  of 퐿.  
We then define 퐸  to be a subset of 퐿\(퐸 ∪ …∪ 퐸 )	that is maximal 
with respect to the condition that the restricted map 푧: 퐸 	→ 푩 be a 
partial sampling map. Then the proof will be complete once we show that 
퐸 . 	= 	0 Assume the contrary, i.e., assume that there were some 
(푘∗, 푗∗) ∈ 퐸 . . We will show that this leads to a contradiction. 

First of all, we have 
푧(푘∗, 푗∗) ∈ 푇 ∗, ∗ 																																		(33)  

By the maximality of the sets	퐸 ,… . , 퐸 . 	, for each 1 ≤ 푣 ≤ 푀 . , the 
map 푧 fails to satisfy Definition (4.1.13) on the set 퐸 ∪ {(푘∗, 푗∗)}. Since 
푧 is partial sampling on 퐸 , this means that for each 1 ≤ 푣 ≤ 푀 .  there is 
a (푘 , ℓ ) ∈ 퐸 	such that 

{푧(푘 , ℓ ), 푧(푘∗, 푗∗)} ⊂ 푇 , . 
for some (푘 , 푖 ) ∈ 퐼. By (33), this implies 푘 = 푘∗ = 푘  and 
푇 ∗, ∩ 푇 ∗, ∗ ≠ 0 ; for every	1 ≤ 푣 ≤ 푀 . 	. Thus z maps the set 
(푘∗, 푗∗), (푘∗, ℓ ),… , 푘∗, ℓ .  into ⋃ 푇 ∗,∗, ∗∩ ∗, 	 . 

Since the set (푘∗, 푗∗), (푘∗, ℓ ),… , 푘∗, ℓ .  contains 푀 . + 1 = 푀 +
1	elements, this contradicts (32). This completes the proof of the lemma. 
In addition to the index set 퐼, let us also define 퐼 = {(푘, 푗) ∈ 퐼:	푘 ≤ 푚}  
for each 푚 ∈ 	푍 .	The following is the main goal of this section: 
Proposition (4.1.15) [4]: Let 2 < 푝 < ∞ and 0 < t < 1 Suppose that 
푤 , ∈ 푇 ,  for every (푘, 푗) ∈ 퐼. Then the inequality 

Φ 퐴휓 , , ( , )∈
≤ 퐶 . (푡, 푃)푀 . ‖퐴‖ 												(34) 

holds for every bounded operator 퐴:퐻 (푆) → 퐿 (푆, 푑휎)	and every 
 푚 ≥ 1, where 퐶 . (푡, 푝)and 푀 .  are the constants provided by 
Proposition (4.1.12) and Lemma (4.1.14) respectively. 
Proof: First of all, a symmetric gauge function Φ has the following 
obvious property: If 푋 is any countable set and if 푋 = 푋 ∪ …∪ 푋 , then 
for every map 휑: 푋 → [0,∞) we have 

Φ({휑(푥)} ∈ ) ≤ Φ {휑(푥)} ∈ +⋯+Φ {휑(푥)} ∈ 						(35) 
Let 푚 ≥ 1 be given and consider the map (푘, 푗) ↦ 푤 ,  from 퐼  into 퐵. 

Since 푤 , ∈ 푇 , 	for every (푘, 푗), by Lemma (4.1.14) there is a 
partition 퐼 = 퐸 ∪ …∪ 퐸 . . 
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such that for every 1 ≤ 푖 ≤ 푀 . , the map (푘, 푗) ↦ 푤 , is partial sampling 
on 퐸 . By Definition (4.1.13), this means that the map (푘, 푗) ↦ 푤 , is 
injective on 퐸  and 푤 , : (푘, 푗) ∈ 퐸 	is a partial sampling set as defined 
in Definition (4.1.9). Hence Proposition (4.1.12) gives us 

Φ 퐴휓 , , ( , )∈
≤ 퐶 . (푡, 푃)‖퐴‖  

for every bounded operator 퐴:퐻 (푆) → 퐿 (푆, 푑휎)	and every 1 ≤ 푖 ≤
푀 . . By (35), we also have 

Φ 퐴휓 , , ( , )∈
≤ Φ 퐴휓 , , ( , )∈

.

 

Obviously, the proposition follows from the above two inequalities. 
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Section (4.2): Radial Contractions and Local Inequality with 
Lower Bound and Small Factor 
 

For each ℓ ∈ 푁 we define the radial contraction 

휌ℓ(푧) = 1 − 4ℓ(1 − |푧| )
⁄
(푧 |푧|⁄ )		푖푓	4ℓ(1 − |푧| ) < 1

0							푖푓	4ℓ(1 − |푧| ) ≥ 1
							(36) 

푧 ∈ 퐵. One can better understand these 휌ℓ	in terms of the following 
relations: we have 

휌ℓ(푧) |휌ℓ(푧)|⁄ = 푧 |푧|⁄ 		푎푛푑
1 − |휌ℓ(푧)| = 4ℓ(1 − |푧| )

																															(37) 

if 4ℓ(1 − |푧| ) < 1. Recall that the Schur multiplier 푚 	is given by (23). 
 A key ingredient in the proof of the lower bound in Theorem (4.1.2) is 
the following local inequality for Hankel operators: 
Theorem (4.2.1) [4]: Given any 0 < 훿 ≤ 1 2⁄ 	, there exists a constant 
0 < 퐶(훿) < 1 which depends only on 훿 and the complex dimension 푛 
such that the inequality 

푉푎푟 ⁄ (푓 − 푃푓; 푧) ≤ 퐶(훿)
1

2( )ℓ
ℓ

푀 ℓ( )퐻 푘 ℓ( )  

holds for all 푓 ∈ 퐿 (푆, 푑휎),	and 푧 ∈ 퐵. 
Next we again turn to the symmetric gauge function Φ  . 

Lemma (4.2.2)[4]: Let 1 < 푝 < ∞. Let 푋, 푌 be countable sets and let 
푁 ∈ 푵. 
Suppose that 푇: 푋 → 푌 is a map that is at most 푁-to-1. That is, 
	푐푎푟푑{푥 ∈ 푋: 푇(푥) = 푦} ≤ 푁 for every 푦 ∈ 푌 . Then for every set of real 
numbers 푎

∈
 we have 

Φ 푎 ( ) ∈
≤ max{푃, 2} 푁 ⁄ Φ 푎

∈
 

We will now bring the radial contractions	휌ℓ defined by (36) into our 
estimates. Recall that the index set 퐼 was defined in Section 3 and that for 
each	푚 ∈ 푍 , we write 퐼 = {(푘; 	푗) ∈ 퐼: 푘 ≤ 푚}.	
Lemma (4.2.3) [4]: There exists a constant 퐶 .  which depends only on 
the complex dimension 푛	such that the following holds true: Let ℎ:푩 →
[0,∞) be a map such that sup

∈ ,

ℎ(푤) < ∞ for every (푘, 푗) ∈ 퐼. For each 

(푘, 푗) ∈ 퐼, let 푤 , ∈ 푇 ,  be such that 
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ℎ 푤 , ≥
1
2
sup
∈ ,

ℎ(푤)																							(38) 

Suppose that 푧 , ∈ 푇 ,  for every (푘, 푗) ∈ 퐼. Then the inequality 

Φ 	
– ℎ 휌ℓ 푧 ,

( , )∈
≤ max{푃, 2} 퐶 . 2 ℓ⁄ Φ 	

– ℎ 푤 , ( , )∈
 

holds for all 푚, ℓ ∈ 푁 and 1 < 푝 < ∞. 
Proof: First of all, by (20) and (19), there exists a natural number 퐶 	such 
that for all integers 0 ≤ 푘 ≤ 푘 and 1 ≤ 푖 ≤ 푚(푘 ), we have 
푐푎푟푑 푗 ∈ {1,… ,푚(푘)}: 퐵 푢 , , 2 ∩ 	퐵 푢 , 2 ≠ 0 ≤ 퐶 2 ( )		(39) 

Let ℎ,푤 ,  and 푧 , , (푘, 푗) ∈ 퐼, be as in the statement of the lemma. 
Let ℓ ∈ 푁. By (37) and (22), we have 

휌ℓ 푇 ,

( )

⊂ 푇 ℓ,

( ℓ)

	푖푓	푘 > 푙																																(40) 

Consider any 1 < 푝 < ∞ and 푚 ∈ 푁. First let us consider the case where  
푚 > 푙. Then 퐼 = 퐼ℓ ∪ 퐼 ,ℓ	where 

퐼 ,ℓ = {(푘, 푗) ∈ 퐼: ℓ ≤ 푘 ≤ 푚} 
By (40), for each (푘, 푗) ∈ 퐼 ,ℓ, there is an 휂(푘, 푗) ∈ {1, … ,푚(푘 − ℓ)}such 
that 휌ℓ 푧 , ∈ 푇 ℓ, ( , ). We now define a map 휑: 퐼 ,ℓ → 퐼  by the 
formula 

휑(푘, 푗) = 푘 − ℓ, 휂(푘, 푗) , (푘, 푗) ∈ 퐼 ,ℓ	 
This map ensures that 휌ℓ 푧 , ∈ 푇 ( , ), (푘, 푗) ∈ 퐼 ,ℓ By (38), we have 

ℎ 휌ℓ 푧 , ≤ 2ℎ 푤 ( , ) 푓표푟	푒푣푒푟푦	(푘, 푗) ∈ 퐼 ,ℓ 
Consequently, 

Φ 	
– ℎ 휌ℓ(푧 , ) ( , )∈ ,ℓ

	≤ 2Φ 	
– ℎ 푤 ( , ) ( , )∈ ,ℓ

													(41) 

By (36), if (푘, 푗) ∈ 퐼 ,ℓ then 
휌ℓ 푧 ,

휌ℓ 푧 ,
=

푧 ,

푧 ,
 

Since 푧 , ∈ 푇 , and 휌ℓ(푧 , ) ∈ 푇 ( , ) = 푇 ℓ, ( , ), by (22), the above 
identity implies 

퐵(푢 , , 2 ) ∩ 	퐵(푢 ℓ, ( , ), 2 ℓ) ≠ 0	
Combining this with (39), we see that for each 푖 ∈ {1, … ,푚(푘 − ℓ)} 
푐푎푟푑{푗 ∈ {1, … ,푚(푘)}: 휂(푘, 푗) = 푖} ≤ 퐶 2 ℓ.	
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In other words, the map 휑: 퐼 ,ℓ → 퐼 	is at most 퐶 2 ℓ-to-1. By Lemma 
(4.2.2), this means 

Φ 	
– ℎ 푤 ( , ) ( , )∈ ,ℓ

≤ max{푃, 2} 퐶 ⁄ 2 ℓ⁄ Φ 	
– ℎ 푤 , ( , )∈

 

Since 퐶 ⁄ ≤ 퐶 	, if we combine the above with (41), we obtain 

Φ 	
– ℎ 휌ℓ 푧 , ( , )∈ ,ℓ

≤ max{푃, 2} 2퐶 2 ℓ⁄ Φ 	
– ℎ 푤 , ( , )∈

																																					(42) 

Next we consider the set 퐼ℓ. 
Note that by (20) and (19), there is a natural number 퐶  such that 

푚(푘) ≤ 퐶 2 	푓표푟	푒푣푒푟푦	푘 ≥ 0																																			(43)	
By (36), we have 

휌ℓ 푇 ,

( )

⊂ 푇 ,

( )

	푖푓	0 ≤ 푘 ≤ ℓ. 

Therefore there is a map	휑: 퐼ℓ → 퐼  such that 
휌ℓ 푧 , ∈ 푇 ( , )	푓표푟	푒푣푒푟푦	(푘, 푗) ∈ 퐼ℓ 

Combining this relation with (38), we have 

Φ 	
– ℎ 휌ℓ 푧 , ( , )∈ ℓ

≤ 2Φ 	
– ℎ 푤 ( , ) ( , )∈ ℓ

 

By (43), 푐푎푟푑(퐼ℓ) ≤ 퐶 ∑ 2ℓ ≤ 2퐶 2 ℓ Therefore the map  
 휓: 퐼ℓ → 퐼  is at most 2퐶 2 ℓ-to-1. Applying Lemma (4.2.2) again, we 
obtain 

Φ 	
– ℎ 푤 ( , ) ( , )∈ ℓ

≤ max{푃, 2} 2퐶 2 ℓ⁄ Φ 	
– ℎ 푤 , ( , )∈

 

Therefore 

Φ 	
– ℎ 휌ℓ(푧 , ) ( , )∈ ℓ

≤ max{푃, 2} 2퐶 2 ℓ⁄ Φ 	
– ℎ 푤 , ( , )∈

												(44) 

Combining this with (42), we see that in the case 푚 > 푙 we have 
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Φ 	
– ℎ 휌ℓ(푧 , ) ( , )∈

≤ Φ 	
– ℎ 휌ℓ(푧 , ) ( , )∈ ,ℓ

+ Φ 	
– ℎ 휌ℓ(푧 , ) ( , )∈ ℓ

≤ max{푃, 2} (2퐶 + 4퐶 )2 ℓ⁄ Φ 	
– ℎ 푤 , ( , )∈

. 

On the other hand, if 푚 ≤ ℓ,then (44) gives us 

Φ 	
– ℎ 휌ℓ(푧 , ) ( , )∈

≤ Φ 	
– ℎ 휌ℓ(푧 , ) ( , )∈ ℓ

≤ max{푃, 2} 4퐶 2 ℓ⁄ Φ 	
– ℎ 푤 , ( , )∈

≤ max{푃, 2} 4퐶 2 ℓ⁄ Φ 	
– ℎ 푤 , ( , )∈

 

This completes the proof of the lemma.  
Proposition (4.2.4) [4]: Given any 2푛 < 푝 < ∞, there exists a constant 
퐶 . (푝) which depends only on 푝 and the complex dimension n such that 
the following estimate holds: Let 푓 ∈ 퐿 (푆, 푑휎). For each (푘, 푗) ∈ 퐼, let  
푤 , ∈ 푇 , be such that 

푀
,
퐻 푘 , ≥

1
2
sup
∈ ,

푀 퐻 푘 																									(45) 

Let 푧 , ∈ 푇 , , (푘, 푗) ∈ 퐼. Then for every 푚 ∈ 푁 we have 

Φ 	
– 푉푎푟 ⁄ 푓 − 푃푓; 푧 , ( , )∈

≤ 퐶 . (푃)Φ 	
– 푀

,
퐻 푘 , ( , )∈

																																										(46) 

Proof:  Since 푝 > 2푛, there is a 0 < 훿 ≤ 1 2⁄ ,	such that if we set  
휖 = 1 − 훿 − (2푛 푃⁄ ). 
then 휖 > 0. Let 푓 ∈ 퐿 (푆, 푑휎)and let 푤 ,  and 푧 , be as in the statement 
of the proposition. By Theorem (4.2.1), we have 

푉푎푟 ⁄ 푓 − 푃푓; 푧 , ≤ 퐶(훿)
1

2( )ℓ
ℓ

푀 ℓ( , )
퐻 푘 ℓ( , )  

for every(푘, 푗) ∈ 퐼. Since Φ 	
–  is a norm on 푐̂, it follows that 

Φ 	
– 푉푎푟 ⁄ 푓 − 푃푓; 푧 , ( , )∈

≤ 퐶(훿)
1

2( )ℓ
ℓ

Φ 	
– 푀 ℓ( , )

퐻 푘 ℓ( , ) ( , )∈
																				(47) 

for every 푚 ∈ 푁. Next, we define 
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ℎ(푤) = 푀 퐻 푘 	,푤 ∈ 퐵	
Then (45) tells us that this map ℎ: 퐵 → [0,∞) and the points 푤 , , 
 (푘, 푗) ∈ 퐼, satisfy condition (48). This allows us to apply Lemma (4.2.3) 
to obtain 

1
2( )ℓ

ℓ

Φ 	
– 푀 ℓ( , )

퐻 푘 ℓ( , ) ( , )∈

≤ 푃퐶 .
2 ℓ⁄

2( )ℓ
ℓ

Φ 	
– ℎ(푤 , ) ( , )∈

= 푃퐶 .
1
2 ℓ

ℓ

Φ 	
– 푀

,
퐻 푘 , ( , )∈

 

Combining this with (47), we see that the proposition holds for the 
constant 퐶 . = 푃퐶(훿)퐶 . ∑ 2 ℓ

ℓ . 
Propositions (4.1.15) and (4.2.4) represent the two main steps in 

the proof of the lower bound in Theorem (4.1.2). The remaining step in 
the proof of the lower bound is to bridge the gap between the right-hand 
side of (46) and the left-hand side of (34), which only involves existing 
ideas. Nonetheless, we repeat all the necessary details here for 
completeness. 
Lemma (4.2.5) [4]: There is a constant 0 < 퐶 . < ∞ such that 

푀 퐻 푘 ≤ 퐻 휓 , + 퐶 . 푉푎푟 ⁄ (푓 − 푃푓; 푧) 
for all 푓 ∈ 퐿 (푆, 푑휎), 푧 ∈ 퐵 and 0 < 푡 ≤ 1. 
Proposition (4.2.6) [4]: Given any 2푛 < 푝 < ∞, there is a constant 
퐶 . (푝) such that the following holds true: Let 푓 ∈ 퐿 (푆, 푑휎). For each 
(푘, 푗), let	푧 , ∈ 푇 ,  satisfy the condition 

	푉푎푟 ⁄ 푓 − 푃푓; 푧 , ≥
1
2
sup
∈ ,

푉푎푟 ⁄ (푓 − 푃푓; 푧)											(48) 

Then 

Φ 	
– 푉푎푟 ⁄ 푓 − 푃푓; 푧 , ( , )∈

≤ 퐶 . (푃) 퐻  

Proof: Let 푓 ∈ 퐿 (푆, 푑휎)be given. For each (푘, 푗) ∈ 퐼 we pick a 푤 , ∈
푇 , . such that 

푀
,
퐻 푘 , ≥

1
2
sup
∈ ,

푀 퐻 푘  

Then by Proposition (4.2.4) we have 
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Φ 	
– 푉푎푟 ⁄ 푓 − 푃푓; 푧 , ( , )∈

≤ 퐶 . (푃)Φ 	
– 푀

,
퐻 푘 , ( , )∈

. 

for every 푚 ∈ 푁. Applying Lemma (4.2.5) to each 푀
,
퐻 푘 , , for 

0 < 푡 ≤ 1 we have 

Φ 	
– 푉푎푟 ⁄ 푓 − 푃푓; 푧 , ( , )∈

≤ 퐶 . (푃)Φ 	
– 퐻 휓 , , ( , )∈

+ 퐶 . (푃)퐶 . 푡Φ 	
– 푉푎푟 ⁄ 푓 − 푃푓;푤 , ( , )∈

. 

Since 푤 , ∈ 푇 , . it follows from (48) that 푉푎푟 푓 − 푃푓;푤 , ≤
2푉푎푟 푓 − 푃푓; 푧 , .	Hence 

Φ 	
– 푉푎푟 ⁄ 푓 − 푃푓; 푧 , ( , )∈

≤ 퐶 . (푃)Φ 	
– 퐻 휓 , , ( , )∈

+ 2퐶 . (푃)퐶 . 푡Φ 	
– 푉푎푟 ⁄ 푓 − 푃푓; 푧 , ( , )∈

 

Now, for the given 2푛 < 푝 < ∞, we pick 0 < 푡 ≤ 1 such that 
2퐶 . (푃)퐶 . 푡 ≤ 1 2⁄ . This fixes the value of 푡 in terms of 푝, and from the 
above inequality we obtain 

Φ 	
– 푉푎푟 ⁄ 푓 − 푃푓; 푧 , ( , )∈

≤ 퐶 . (푃)Φ 	
– 퐻 휓 , , ( , )∈

+ (1 2⁄ )Φ 	
– 푉푎푟 ⁄ 푓 − 푃푓; 푧 , ( , )∈

. 

Since 퐼  is a finite set, the quantity Φ 	
– 푉푎푟 ⁄ 푓 − 푃푓; 푧 , ( , )∈

 

is finite. Therefore after the obvious cancellation the above inequality 
becomes 

Φ 	
– 푉푎푟 ⁄ 푓 − 푃푓; 푧 , ( , )∈

≤ 2퐶 . (푃)Φ 	
– 퐻 휓 , , ( , )∈

 

Assuming 퐻 < ∞, an application of Proposition (4.1.15) to the right-
hand side gives us 

Φ 	
– 푉푎푟 ⁄ 푓 − 푃푓; 푧 , ( , )∈

≤ 2퐶 . (푃)퐶 . (푡, 푃)푀 . 퐻  
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Since this holds for every 푚 ∈ 푁, by (1) we have 

Φ 	
– 푉푎푟 ⁄ 푓 − 푃푓; 푧 , ( , )∈

≤ 2퐶 . (푃)퐶 . (푡, 푃)푀 . 퐻  

Thus the proposition holds for the constant 퐶 . (푝) =
2퐶 . (푃)퐶 . (푡, 푃)푀 .  
Lemma (4.2.7) [4]: Given any 0 < 푎 < ∞, there exists a natural number 
퐾 which depends only on a and the complex dimension n such that the 
following holds true: Suppose that Γ is an a-separated subset of 퐵. Then 
there exist pairwise disjoint subsets Γ , … , Γ 	of Γ such that	⋃ Γ = Γ 
and such that 푐푎푟푑(Γ ∩ 푇 , ) ≤ 1 for all 푖 ∈ {1,… , 퐾}	and (푘, 푗) ∈ 퐼. 

With the above preparation, we now have proof of the lower bound 
in Theorem (4.1.2) Let 2푛 < 푝 < 1 and 푎 > 0	be given. We need to find 
a 0 < 퐶 < ∞ that depends only on p, a and n such that the inequality 

Φ 	 푉푎푟 ⁄ (푓 − 푃푓; 푧) ∈ ≤ 퐶 퐻 																				(49) 

holds for every 푓 ∈ 퐿 (푆, 푑휎)and every a-separated Γ set in 퐵. 
Let an a-separated set Γ in 퐵 be given. Then Lemma (4.2.7) provides the 
partition 

Γ = Γ ∪ … .∪ Γ 																																																		(50) 
where 퐾 depends only on a and 푛, such that 

푐푎푟푑 Γ ∩ 푇 , < 1	푓표푟	푎푙푙	푖 ∈ {1, … ,퐾}	푎푛푑	(푘, 푗) ∈ 퐼							(51)	
Let 푓 ∈ 퐿 (푆, 푑휎). For each (푘, 푗) ∈ 퐼	푝푖푐푘	푧 , ∈ 푇 ,  such that (48) 
holds. Combining (48) with (51), we see that 

Φ 	
– 푉푎푟 ⁄ (푓 − 푃푓; 푧) ∈ ≤ 2Φ 	

– 푉푎푟 ⁄ 푓 − 푃푓; 푧 , ( , )∈
 

for every 푖 ∈ {1,… , 퐾}. Proposition (4.2.6) tells us that 

Φ 	
– 푉푎푟 ⁄ 푓 − 푃푓; 푧 , ( , )∈

≤ 퐶 . (푃) 퐻  

Therefore 

Φ 	
– 푉푎푟 ⁄ (푓 − 푃푓; 푧) ∈ ≤ 2퐶 . (푃) 퐻  

푖 ∈ {1, … , 퐾}.. By (50) and (35) we have 

Φ 	 푉푎푟 ⁄ (푓 − 푃푓; 푧) ∈ ≤ Φ 	
– 푉푎푟 ⁄ (푓 − 푃푓; 푧) ∈  

By the above two inequalities, (49) holds for the constant 퐶 =
2퐾퐶 . (푃). 

We now turn to the upper bound in Theorem (4.1.2). One of the 
main ingredients in the proof of the upper bound is a reverse HÖlder's 
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inequality. But whereas for the symmetric gauge function Φ 	 , here the 

inequality must cover Φ 	
– , which makes its proof a much more difficult 

task. We will see that the key to the proof of the reverse Holder's 
inequality is a certain cancellation, and what enables this cancellation to 
take place is a certain “small factor". Here we must take an approach that 
is to obtain the requisite “small factor". 

For any 푎 = 푎
∈푵

 and 푁 ∈ 푵, define the sequence 푎[ ] =

푎
∈푵
	by the formula 

 푎 = 푎  if (푖 − 1)푁 + 1 ≤ 푗 ≤ 푖푁	, 푖 ∈ 푵																																(52) 
In other words, 푎[ ] is obtained from a by repeating each term 푁 times. 
Alternately, we can think of 푎[ ]푎푠	푎⨁…⨁푎, the “direct sum" of 
푁	copies of a. 
Definition (4.2.8) [4]: A symmetric gauge function Φ is said to satisfy 
condition (DQK) if there exist constants 0 < 휃 < 1	and 0 < 훼 < ∞	such 
that 

Φ 푎[ ] ≥ 훼푁 Φ(푎) 
for every 푎 ∈ 푐̂ and every 푁 ∈ 푵. 
The relevance of Definition (4.2.8) to what we do in this chapter is the 
following: 
Lemma (4.2.9) [4]: For each 1 < 푝 < ∞, the symmetric gauge function 
Φ 	satisfies condition (DQK). More precisely, we have Φ 	(푎[ ]) ≥
푁 ⁄ Φ 	(푎) for all 푎 ∈ 푐̂	and 푁 ∈ 푵. 
Proof: Let 1 < 푝 < ∞. It suffices to consider 푎 = 푎

∈푵
 where the 

terms are nonnegative and in descending order, i.e., 
푎 ≥ 푎 ≥ ⋯ ≥ 푎 ≥ ⋯	

Then by (52) and the definition of Φ , for every 푁 ∈ 푵 we have 

Φ 	 푎[ ] = 푎
1

(푖 − 1)푁 + 푗
( )⁄ ≥

푎 푁
(푖푁)( )⁄

= 푁 ⁄ Φ 	(푎) 
as promised.  
The proof of the reverse Holder's inequality for Φ will be based on 
condition (DQK). 
But for the proof itself it will be more convenient to work with (DQK), 
rather than with the specific Φ  . 
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Recall that for each	푘 ≥ 0, we introduced 푢 , , … . 푢 , (푘) , which is a 
subset of S that is maximal with respect to (20). For each (푘, 푗) ∈ 퐼, we 
now define 

퐴 , = 퐵 푢 , , 2 , 퐵 , = 퐵 푢 , , 2 																				(53) 
and  

퐶 , = 퐵 푢 , , 2 . 
Definition (4.2.10) [4]: For each	푖 ∈ 푍 and each (푘, 푗) ∈ 퐼, we set 
퐸풊(푘, 푗) = (푘 + 푖, 푗 ) ∈ 퐼: 퐴 , ∩ 퐵 , ≠ 0 . 
Definition (4.2.11) [4]: Suppose that 푔 ∈ 퐿 (푆, 푑휎). 

(a)  For each 1 ≤ 푡 < ∞ and each(푘, 푗) ∈ 퐼, define 

퐽 (푔; 푘, 푗) = (
1

휎 퐵 ,
푔 − 푔퐵 ,

,

푑휎) ⁄  

(b)  For each 푘 ∈ 푍 , define the function Rkg on 푆	by the formula 

푅 , (휁) =
1

휎(퐵(휁, 2 ))
푔푑휎

( , )

, 휁 ∈ 푆 

(c) For 1 ≤ 푡 < ∞	, 푖 ∈ 푍 and (푘, 푗) ∈ 퐼, define 

퐺 , (푔; 푘, 푗) = (
,
∫ |푔 − 푅 푔|

,
푑휎) ⁄   

and 

퐻 , (푔; 푘, 푗) = (
1

휎 퐵 ,
푅 푔 − 푔퐵 ,

,

푑휎) ⁄  

(d) For each (푘, 푗) ∈ 퐼, define 

퐽(푔; 푘, 푗) =
1

휎 퐶 ,
푔 − 푔퐶 ,

,

푑휎. 

Lemma (4.2.12) [4]: There is a constant 퐶 .  such that 

퐺 , (푔; 푘, 푗) ≤ 2 퐶 .
휎 퐵 ,

휎 퐵 ,( , )∈ ( , )

퐽 (푔; 푘 + 푣, 푗 )	 

for all 푔 ∈ 퐿 (푆, 푑휎), 1 ≤ 푡 < ∞, 푖 ∈ 푍 and (푘, 푗) ∈ 퐼. 
Proof: By (19) and (53), there is a constant 퐶  such that 

휎 퐵 ,

휎(퐵(휁, 2 ))
≤ 푐 . 
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for all k; 푖 ∈ 푍 , 푗 ∈ {1, … ,푚(푘	 + 	푖)} and 휁 ∈ 푆. Let 푔 ∈ 퐿 (푆, 푑휎), 
1 ≤ 푡 < ∞, 1, 푖 ∈ 푍 	and	(푘, 푗) ∈ 퐼. Then by Definition (4.2.10) and (21) 
we have 

|푔 − 푅 푔|
,

푑휎 ≤ |푔 − 푅 푔|

,

푑휎
( , )∈ ( , )

	

≤ 2 푔 − 푔퐵 ,

,

푑휎
( , )∈ ( , )

	

+ 2 푔퐵 ,

,( , )∈ ( , )

− 푅 푔 푑휎																																																																							(54) 
For each 휁 ∈ 퐴 ,  we have 퐵(휁, 2 ) ⊂ 퐵 , . Therefore 

푔퐵 , − 푅 푔(휁) ≤
1

휎퐵(휁, 2 )
푔퐵 , − 푔 푑휎

( , )

≤ 퐶 퐽 (푔; 푘 + 푣, 푗 ) 
for every 휁 ∈ 퐴 , . Hence 

푔퐵 , − 푅 푔 푑휎
,

≤ 퐶 휎 퐴 , 퐽 (푔; 푘 + 푣, 푗 ). 

Substituting this in (54), we see that if we set 퐶 . = 1 + 퐶 , then the 
lemma holds.  
Lemma (4.2.13) [4]: Suppose that 푋 and 푌 are countable sets and that 푁 
is a natural number. Suppose that 푇: 푋 → 푌 is a map that is at most N-to- 
That is, for every 푦 ∈ 푌 , 푐푎푟푑{푥 ∈ 푋: 푇(푥) = 푦} ≤ 푁. Then for every 
set of real numbers 푏

∈
,and every symmetric gauge function Φ, we 

have 

Φ 푏 ( ) ∈
≤ 푁Φ 푏

∈
 

The next lemma is the most crucial step in the proof of our reverse 
Holder's inequality: extraction of the requisite “small factor”. 
Lemma (4.2.14) [4]: Let	Φ be a symmetric gauge function satisfying 
condition (DQK). Let 1 ≤ 푡 < ∞	and 휖 > 0 also be given. Then there 
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exists a natural number 푣 ∈ 푁 which depends only on	Φ, 푡, 휖 and the 
complex dimension n such that 

훷 퐽 푔; 푘 + 푣, 휂(푘, 푗) ( , )∈ ≤ 휖Φ 퐽 (푔; 푘, 푗) ( , )∈  

for all 푔 ∈ 퐿 (푆, 푑휎). and 푚 ∈ 푁. 
Proof: We begin by fixing a number of necessary constants. First of all, 
by (20) and (19), there is a natural number 푀 ∈ 푁 such that 

푐푎푟푑 푗 ∈ {1, … . , 푚(푘)}: 퐶 , ∩ 퐶 , ≠ 0 ≤ 푀 																			(55)	
for every (푘, 푗) ∈ 퐼. Let 푚 ∈ 푁. By a standard maximality argument, 
there is a partition 

퐼 = 퐼 ∪ … .∪ 퐼 																																																																						(56) 
of the truncated index set 퐼  such that for each pair of 푞 ∈ {1, … . , 푀 }  
and 푘 ∈ 푍 , if 

(푘, 푗); (푘, 푗 ) ∈ 퐼 	푎푛푑	푗 ≠ 푗 																																															(57) 
then 퐶 , ∩ 퐶 , = 0. 
Again by (20) and (19), there are constants 0 < 푐 ≤ 퐶 < ∞	such that 

푐 2 ≤
휎 퐵(휁, 2 푟)
휎(퐵(휉, 푟))

≤ 푐 2 															(58) 

holds for all 휁, 휉 ∈ 푆, 0 < 푟 ≤ 	8 and 푖 ∈ 푍 . In particular, we have 
휎(퐵 , ) ≤ 퐶 휎 퐴 , and	휎(퐶 , ) ≤ 퐶 휎 퐵 ,  for every (푘, 푗) ∈ 퐼, where 
 퐶 = (2 /푐 ). Note that for every 푖 ∈ 푍 , if (푘 + 푖, 푗 ) ∈ 퐸 (푘, 푗), then 
퐴 ⊂ 퐶 , . Combining these facts with (55), we see that if we set 
 퐶 = 푀 퐶 	, then 

휎 퐵 ,

휎 퐵 ,( , )∈ ( , )

≤ 퐶 																										(59) 

for all 푖 ∈ 푍 ,and (푘, 푗) ∈ 퐼. 
Suppose that Φ is a symmetric gauge function satisfying condition 
(DQK). Then Definition (4.2.8) implies that there exist constants 0 <
휃 < 1 and 0 < 퐶 < ∞ such that 

Φ(푎) ≤ 퐶 푁 Φ 푎[ ] 	푓표푟	푎푙푙	푎	 ∈ 푐̂	푎푛푑	푁 ∈ 푵																								(60) 
Let 1 ≤ 푡 < ∞ be given. We write 퐶 = 	2 퐶 . , where 퐶 .  is the 
constant provided by Lemma (4.2.12) Let 휖 > 0 also be given. We pick 
an 푁 ∈ 푵 such that 

(4퐶 ) ⁄ 퐶 푁 ≤
휖

2푀 퐶 ⁄ 																																											(61) 

Finally, with No so chosen, we pick a 푣 ∈ 	푁 such that 
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(4푁 퐶 퐶 2 ) ⁄ 푀 ≤ 휖 2⁄ 																																													(62) 
What remains is to show that the lemma holds for this 푣. 

Let 푔 ∈ 퐿 (푆, 푑휎)	be given. It suffice to consider the case where 
퐽 (푔; 푘, 푗) < ∞ for every (푘, 푗) ∈ 퐼  For each(푘, 푗) ∈ 퐼  Lemma 
(4.2.12)  gives us 

퐺 , (푔; 푘, 푗) ≤ 퐶
휎 퐵 ,

휎 퐵 ,( , )∈ ( , )

퐽 (푔; 푘 + 푣, 푗 )

= 퐶
휎 퐵 ,

휎 퐵 ,( , )∈ ( , )

퐽 (푔; 푘 + 푣, 푗 )																		(63) 

Where 퐸 (푘, 푗) = {(푘 + 푣, 푗 ) ∈ 퐸 (푘, 푗): 퐽 (푔; 푘 + 푣, 푗 ) > 0}. Now, for 
every	(푘, 푗) ∈ 퐼 , we have the decomposition 

퐸 (푘, 푗) = 푋ℓ(푘, 푗)
ℓ

	. 

where 푋ℓ(푘, 푗), is the collection of (푘 + 푣, 푗 ) ∈ 퐸 (푘, 푗), satisfying the 
condition 

2ℓ < 퐽 (푔; 푘 + 푣, 푗 ) ≤ 2ℓ																																											(64) 
ℓ ∈ 	푍. For each (푘, 푗) ∈ 퐼 , define the sets 

푍( )(푘, 푗) = ℓ ∈ 	푍 ∶ 1 ≤ 푐푎푟푑 푋ℓ(푘, 푗) ≤ 푁  
and  

푍( )(푘, 푗) = ℓ ∈ 푍: 푐푎푟푑 푋ℓ(푘, 푗) ≤ 푁  
It follows from (63) that 

퐺 , (푔; 푘, 푗) ≤ 퐶 푇( )(푘, 푗) + 푇( )(푘, 푗) 																				(65) 
Where, for 푖 = 1,2, 

푇( )(푘, 푗) =
휎 퐵 ,

휎 퐵 ,( , )∈ ℓ( , )ℓ∈ ( )( , )

퐽 (푔; 푘 + 푣, 푗 ) 

Let us first consider 푇( )(푘, 푗). Suppose that (푘, 푗) ∈ 퐼 is such that 
푧( )(푘, 푗) ≠ 0.  

Since 퐸 (푘, 푗) is afinite set, the set 푧( )(푘, 푗)is also finite and, 
consequently, has a largest element 휇(푘, 푗). Thus there is an 휂(푘, 푗) ∈
{1, … ,푚(푘 + 푣)} such that (푘 + 푣, 휇(푘, 푗)) ∈ 푋 ( , )(푘, 푗). By (64), we 
have 

2 ( , ) ≤ 2퐽 (푔; 푘 + 푣, 휂(푘, 푗)) 
By (58), 휎(퐵 , /	휎(퐵 , ) ≤ 퐶 2 . Since 푐푎푟푑(푋ℓ(푘, 푗)) ≤ 푁  for 
every ℓ ∈ 푧( )(푘, 푗)and since 휇(푘, 푗) is the largest element in 푧( )(푘, 푗), 
we have 
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푇( )(푘, 푗) ≤ 푁 퐶 2 2ℓ
( , )

ℓ

= 2퐶 2 2 ( , ) 	

≤ 4푁 퐶 2 퐽 (푔; 푘 + 푣, 휂(푘, 푗)) 
If (푘, 푗) ∈ 퐼  is such that 푧( )(푘, 푗) = 0	then 푇( )(푘, 푗) = 0. Thus we 
conclude that for every (푘, 푗) ∈ 퐼 , there is an 휂(푘, 푗) ∈ {1,… ,푚(푘 + 푣)} 
such that (푘 + 푣, 휇(푘, 푗)) ∈ 퐸 (푘, 푗) and such that 

푇( )(푘, 푗) ≤ 4푁 퐶 2 퐽 푔; 푘 + 푣, 휂(푘, 푗) 																								(66) 
Now define the map	휑:	퐼 → 퐼 . by the formula 휑(푘, 푗) =

(푘 + 푣, 휂(푘, 푗)). 
	(푘, 푗) ∈ 퐼 . If 푘 ∈ 푍 	and 푗 , 푗 ∈ {1,… ,푚(푘)}	are such that 
휂(푘, 푗 ) = 휂(푘, 푗 ), then, by the definition of 휂 we have 퐸 (푘, 푗 ) 	∩
퐸 (푘, 푗 ) ≠ 0 By (53), if 퐴 , ∩ 퐵 , ≠ 0,then 퐴 , ⊂ 퐶 ,  . 
Hence the condition 퐸 (푘, 푗 ) 	∩ 퐸 (푘, 푗 ) ≠ 0 , implies 퐶 , ∩
퐶 , ≠ 0. By (55), the map 휑:	퐼 → 퐼 is at most 푀 -to-1. Thus 
Lemma (4.2.13) gives us 

Φ 퐽 (푔; 푘 + 푣, 휂(푘, 푗)) ( , )∈ = Φ 퐽 푔;휑(푘, 푗) ( , )∈

≤ M1Φ 퐽푡(푔; 푘, 푗) (푘,푗)∈퐼푚+푣
 

By (66), we have 

푇( )(푘, 푗)
⁄
≤ (4푁 퐶 2 ) ⁄ 퐽 (푔; 푘 + 푣, 휂(푘, 푗)) 

for every (푘, 푗) ∈ 퐼 The combination of these two inequalities gives us 

Φ 푇( )(푘, 푗)
⁄

( , )∈
≤ (4푁 퐶 2 ) ⁄ M Φ {퐽 (푔; 푘, 푗)}( , )∈ 																															(67) 
It follows from (65) that 

퐺 , (푔; 푘, 푗) ≤ 퐶 ⁄ 푇( )(푘, 푗)
⁄
+ 푇( )(푘, 푗)

⁄
 

Hence 
Φ 퐺 , (푔; 푘, 푗) ( , )∈

≤ 퐶 ⁄ Φ 푇( )(푘, 푗)
⁄

( , )∈

+ 퐶 ⁄ Φ 푇( )(푘, 푗)
⁄

( , )∈

≤ (휖 2⁄ )Φ {퐽 (푔; 푘, 푗)}( , )∈ + 퐶 ⁄ Φ 푇( )(푘, 푗)
⁄

( , )∈
. 

where the second ≤follows from (67) and (62). Thus the proof of the 
lemma is reduced to the proof of the inequality 
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퐶 ⁄ Φ 푇( )(푘, 푗)
⁄

( , )∈
≤ (휖 2⁄ )Φ {퐽 (푔; 푘, 푗)}( , )∈  

By (56) and (35), this inequality will follow if we can show that 

Φ 푇( )(푘, 푗)
⁄

( , )∈

≤
휖

2푀 퐶 ⁄ Φ {퐽 (푔; 푘, 푗)}( , )∈ 																											(68) 

for every 푞 ∈ {1,… ,푀 }.	
To prove (68), consider any 푞 ∈ {1, … ,푀 }	and define 퐼 = (푘, 푗) ∈
퐼 : 푧( )(푘, 푗) ≠ 0 . Again, each 푧( )(푘, 푗).is a finite set because  
푐푎푟푑(퐸 (푘, 푗)) < ∞. Thus for each (푘, 푗) ∈ 퐼 , 푧( )(푘, 푗). has a largest 
element ℷ(푘, 푗)That is, 

푐푎푟푑(푋ℷ( , )(푘, 푗) > 푁 																																								(69)	
and ℓ ∉ 	 푧( )(푘, 푗)	푖푓	ℓ > ℷ(푘, 푗). For each (푘, 푗) ∈ 퐼 , pick an ℎ(푘, 푗) ∈
{1, … ,푚(푘 + 푣)} such that (푘 + 푣, ℎ(푘, 푗)) ≤ 푋ℷ( , )(푘, 푗). 

Since	푋ℷ( , ) is the largest element in 푧( )(푘, 푗), by (64) we have 
퐽 (푔; 푘 + 푣, 푗 ) ≤ 2퐽 (푔; 푘 + 푣, (푘, 푗))	푓표푟	푒푣푒푟푦	(푘 + 푣, 푗 )

∈ 푋ℓ(푘, 푗)
ℓ∈	 ( )( , )	

 

Combining this with the definition of 푇( )(푘, 푗) and with (59), we obtain 
푇( )(푘, 푗) ≤ 2퐶 퐽 (푔; 푘 + 푣, (푘, 푗)). 

Thus 푇( )(푘, 푗)
⁄
≤ (2퐶 ) ⁄ 퐽 푔; 푘 + 푣, (푘, 푗)  for every (푘, 푗) ∈ 퐼 	.	 

Consequently, 

Φ 푇( )(푘, 푗)
⁄

	( , )∈
= Φ 푇( )(푘, 푗)

⁄

	( , )∈

≤ (2퐶 ) ⁄ Φ 퐽 (푔; 푘 + 푣, ℎ(푘, 푗)) ( , )∈ 														(70) 

Recall that the condition 퐴 , ∩ 퐵 , ≠ 0; implies 퐴 , ⊂ 퐶 , . 
Combining this fact with (57), we have 퐸 (푘 , 푗 ) ∩	퐸 (푘 , 푗 ) = 0 ; for 
all (푘 , 푗 ) ≠ (푘 , 푗 )	in	퐼 Therefore 
푋ℷ( , )(푘 , 푗 ) ∩ 푋ℷ( , )(푘 , 푗 ) = 0	푓표푟	푎푙푙	(푘 , 푗 )

≠ (푘 , 푗 )																																																																		(71) 
in 퐼 . 
Note that (64) also gives us 
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퐽 (푔; 푘 + 푣, (푘, 푗)) ≤ 2 ⁄ 퐽 (푔; 푘 + 푣, 푗 )																										(72) 
for every (푘 + 푣, 푗 ) ∈ 푋ℷ( , )(푘, 푗). 

If (푘, 푗) ∈ 퐼 , then, of course, 푋ℷ( , )(푘, 푗) ⊂ 퐼 . Thus, if we re-
enumerate the numbers 퐽 (푔; 푘 + 푣, ℎ(푘, 푗)) ( , )∈ 	in the form 푏 =

{푏 , … , 푏 }, then it follows from the combination of (72), (71) and (69) 
that Φ 푏[ ] ≤ 2 ⁄ Φ {퐽 (푔; 푘, 푗)}( , )∈ . 

Applying (60), we now have 

Φ 퐽 (푔; 푘 + 푣, ℎ(푘, 푗)) ( , )∈ = Φ(푏) ≤ 퐶 푁 Φ 푏[ ]

≤ 2 ⁄ 퐶 푁 Φ {퐽 (푔; 푘, 푗)}( , )∈  
Combining this with (70) and (61), we have 

Φ 푇( )(푘, 푗)
⁄

	( , )∈
≤ (4퐶 ) ⁄ 퐶 푁 Φ {퐽 (푔; 푘, 푗)}( , )∈

≤
휖

2푀 퐶 ⁄ Φ {퐽 (푔; 푘, 푗)}( , )∈ .																														(73) 

This proves (68) and completes the proof of the lemma.  
Lemma (4.2.15) [4]: There exists a constant 퐶 .  which depends only on 
the complex dimension 푛 such that the inequality 

퐻 , (푔; 푘, 푗) ≤ 퐶 . 2 퐽(푔; 푘, 푗). 
holds for all 푔 ∈ 퐿 (푆, 푑휎) ,	(푘, 푗) ∈ 퐼. 푖 ∈ 푍  and 1 ≤ 푡 < ∞. 
Proof: Let 푔 ∈ 퐿 (푆, 푑휎) and (푘, 푗) ∈ 퐼. If 휁 ∈ 퐵 , and 푖 ∈ 푍  then 
 퐵(휁, 2 ) ⊂ 퐶 ,  , and consequently 

|(푅 푔)(휁) − 푔퐶 | ≤
1

퐵(휁, 2 )
|푔 − 푔퐶 |

( , )

푑휎

≤
휎(퐶 )

퐵(휁, 2 )
.

1
휎(퐶 ) |푔 − 푔퐶 |

( )

푑휎

≤ (2 퐶⁄ )2 퐽(푔; 푘, 푗). 
where the third ≤ follows from (58). On the other hand, 

|푔퐶 − 푔퐵 |
1

휎(퐵 ) |푔퐶 − 푔| 푑휎 ≤
휎(퐶 )
휎(퐵 ) .

1
휎(퐶 ) |푔퐶 − 푔| 푑휎

≤ (2 퐶⁄ )2 퐽(푔; 푘, 푗). 
where the last	≤ again follows from (58). Write 퐶 . = (2 퐶⁄ ) +
(2 퐶⁄ ). Then the above two inequalities together give us 
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|(푅 푔)(휁) − 푔퐶 | ≤ 퐶 . 2 퐽(푔; 푘, 푗). 
for every 휁 ∈ 퐵 ,  . Recalling Definition (4.2.11) (c), the lemma follows. 
Definition (4.2.16) [4]:  

(a) For each (푘, 푗) ∈ 퐼, we set 퐸(푘, 푗) = (푘 , 푗 ) ∈ 퐼: 푘 ≤
푘, 푑(푢 , 	, 푢 , ) < 2 	 and 퐺(푘, 푗) = (푘 , 푗 ) ∈ 퐼: 푘 ≤
		푘, 퐴 , ∩ 퐵 ≠ 0 .	
(b)  For	푔 ∈ 퐿 (푆, 푑휎)	and (푘, 푗) ∈ 퐼. we set 푀(푔; 푘, 푗) 	=
	푠푢푝{퐽(푔; 푘 , 푗 ): (푘 , 푗 ) ∈ 퐸(푘, 푗)}.	

Proposition (4.2.17) [4]: Let 1 ≤ 푡 < ∞. Then there exists a constant 
 퐶 . = 퐶 . (푡, 푛)	such that the inequality 

퐽 (푔; 푘, 푗) ≤ 	퐶 . 푀(푔; 	푘; 	푗).	
holds for all 푔 ∈ 퐿 (푆, 푑휎) and (푘, 푗) ∈ 퐼, 

Obviously, Proposition (4.2.17) follows from a more structured 
version of the well-known John-Nirenberg theorem, a version that 
incorporates our particular decomposition scheme (20), (21) and (53). As 
such, the proof of Proposition (4.2.17)  is relegated to the Appendix [4]. 
Proposition (4.2.18) [4]: Let 1 ≤ 푡 < ∞. There exists a constant  퐶 . =
퐶 . (푡, 푛)	such that if Φ is any symmetric gauge function, 푔 ∈
퐿 (푆, 푑휎)and ℓ ∈ 푍 , then 

Φ {퐽 (푔; ℓ, 푖)} (ℓ) ≤ 퐶 . Φ {퐽(푔; 푘, 푗)}( , )∈ . 

Proof: By (20) and (19), there is a natural number 퐿 such that the 
inequality 

푐푎푟푑 푗 ∈ {1,… ,푚(푘)}: 푑(푢 , , 푢 , ) < 2 ≤ 퐿																							(74)	
holds for every (푘, 푗) ≤ 퐼. Let 1 ≤ 푡 < 1 be given Let 푔 ∈ 퐿 (푆, 푑휎)	and 
symmetric gauge function Φ also be given To prove (73), it suffices to 
consider the case where Φ {퐽(푔; 푘, 푗)}( , )∈ < ∞. Note that this implies 

sup
( , )

퐽(푔; 푘, 푗) < ∞. 

Let ℓ ∈ 푍 . Then for each	푖 ∈ {1, … ,푚(푘)} there is an ℎ(푖) ∈
퐸(ℓ, 푖)	such that 

퐽(푔; ℎ(푖)) ≥
1
2
푀(푔; ℓ, 푖). 

Applying Proposition (4.2.17), we have 
퐽 (푔; ℓ, 푖) ≤ 퐶 . 푀(푔; ℓ, 푖) ≤ 2퐶 . 퐽(푔; ℎ(푖)). 

푖 ∈ {1, … ,푚(푘)}. Consequently, 
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Φ {퐽(푔; ℓ, 푖)} (ℓ) ≤ 2퐶 . Φ {퐽(푔; ℎ(푖))} (ℓ) 															(75) 

If 푖, 푖 ∈ {1, … ,푚(푘)} are such that ℎ(푖) = ℎ(푖 ), then 퐸(ℓ, 푖) ∩
퐸(ℓ, 푖 ) ≠ 0 which means that there is some (푘 , 푗 ) such that 
푑(푢ℓ, 	, 푢 , ) < 2 ℓ  and 푑(푢ℓ, 	, 푢 , ) < 2 ℓ . 

Hence if ℎ(푖) = ℎ(푖 ), then 푑(푢ℓ, 	, 푢ℓ, ) < 2 ℓ . Thus, by (74), 
the map ℎ: {1, … ,푚(ℓ)} → 퐼. is at most L-to-1. Therefore it follows from 
Lemma (4.2.13) that 

Φ {퐽(푔; ℎ(푖))} (ℓ) ≤ 퐿Φ {퐽(푔; 푘, 푗)}( , )∈ . 

Combining this with (75), we see that the proposition holds for the 
constant 퐶 . = 2퐿퐶 . .	
After the extensive preparation above, here is our reverse HÖlder's 
inequality: 
Proposition (4.2.19) [4]: Let Φ be a symmetric gauge function satisfying 
condition (DQK), and let 1 ≤ 푡 < ∞. Then there exists a constant 퐶 .  
which depends only on	Φ ,푡	and the complex dimension 푛 such that 

Φ {퐽 (푔; 푘, 푗)}( , )∈ ≤ 퐶 . Φ {퐽(푔; 푘, 푗)}( , )∈ 																			(76) 
for every 푔 ∈ 퐿 (푆, 푑휎) 
Proof: Given Φand t as in the statement of the proposition, Lemma 
(4.2.14) provides a 푣 ∈ 	푁	such that 

Φ 퐺 , (푔; 푘, 푗) ( , )∈
≤
1
2
Φ {퐽 (푔; 푘, 푗)}( , )∈ 																					(77) 

for all 푔 ∈ 퐿 (푆, 푑휎) and 푚 ∈ 푁. By Lemma (4.2.15), we also have 
Φ 퐻 , (푔; 푘, 푗) ( , )∈

≤ 퐶 . 2 Φ {퐽(푔; 푘, 푗)}( , )∈ 															(78) 

for all 푔 ∈ 퐿 (푆, 푑휎)and 푚 ∈ To prove (76), we only need to consider 
푔 ∈ 퐿 (푆, 푑휎)	satisfying the condition Φ {퐽(푔; 푘, 푗)}( , )∈ < ∞. By 
Proposition (4.2.17), this implies 퐽 (푔; 푘, 푗) < ∞ for every (푘, 푗) ∈ 퐼. 

Since 퐼 = 퐼 ∪ {퐼 \퐼 }, by (35) we have 
Φ {퐽 (푔; 푘, 푗)}( , )∈

≤ Φ {퐽 (푔; 푘, 푗)}( , )∈ + Φ {퐽 (푔; 푘, 푗)}( , )∈ \

≤ Φ {퐽 (푔; 푘, 푗)}( , )∈ + Φ {퐽 (푔; ℓ, 푖)} (ℓ)

ℓ

. 

Applying Proposition (4.2.18), we obtain 
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Φ {퐽 (푔; 푘, 푗)}( , )∈

≤ Φ {퐽 (푔; 푘, 푗)}( , )∈ + 푣퐶 . Φ {퐽(푔; 푘, 푗)}( , )∈  
Substituting this in (77), we have 

Φ 퐺 , (푔; 푘, 푗) ( , )∈

≤
1
2
Φ {퐽 (푔; 푘, 푗)}( , )∈ + 푣퐶 . Φ {퐽(푔; 푘, 푗)}( , )∈ . 

By Definition (4.2.11), 퐽 (푔; 푘, 푗) ≤ 	퐺 , (푔; 푘, 푗) 	+ 퐻 , (푔; 푘, 푗). Thus, 
combining the above inequality with (78), we find that 
Φ {퐽 (푔; 푘, 푗)}( , )∈

≤ Φ 퐺 , (푔; 푘, 푗) ( , )∈ +Φ 퐻 , (푔; 푘, 푗) ( , )∈

≤
1
2
Φ {퐽 (푔; 푘, 푗)}( , )∈

+ (푣퐶 . + 퐶 . 2 )Φ {퐽(푔; 푘, 푗)}( , )∈  
Thus the obvious cancellation in the above leads to 
Φ {퐽 (푔; 푘, 푗)}( , )∈ ≤ 2(푣퐶 . + 퐶 . 2 )Φ {퐽(푔; 푘, 푗)}( , )∈  

Since 푚 ∈ 푁 is arbitrary, recalling (1), we conclude that the proposition 
holds for the constant 퐶 . = 2(푣퐶 . + 퐶 . 2 ).	
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Section (4.3): Upper Bound 
 

We now turn to the estimate of 푃,푀  . As it happens, this 
estimate involves a new and quite elaborate interpolation scheme. In 
other words, this is not the standard kind of interpolation [3]. Our 
estimate of 푃,푀 will be realized through an interpolation between 

the norms ‖·‖ 	and ‖·‖ 	where 푟 < 	푝 < 	푟. What complicates the 
matter is that estimates of ‖·‖ 	and ‖·‖ 	are themselves obtained 
through interpolation between Schatten classes. Thus the estimate of 
푃,푀 is really a two-stage interpolation. 

For each operator A we introduce the distribution function 
푁 (푠) = 푐푎푟푑 푗 ∈ 푁:	푠 (퐴) > 푠 , 

푠 > 0, where 푠 (퐴), 푠 (퐴), … , 푠 (퐴), …	are the s-numbers of	퐴. Also 
recall that we have the inequality 

푁 (푠) ≤ 	푁 (푠/2) + 푁 (푠/2)	
We define the measure 

푑휇(푥, 푦) =
푑휎(푥)푑휎(푦)
|1 − 〈푥, 푦〉|

 

on 푆 × 푆. For each 1 < 푝 < ∞, let 퐿 (푆 × 푆, 푑휇)	be the collection of 
functions 퐹 on 푆 × 푆 which are 퐿  with respect to 푑휇 and which satisfy 
the condition 

|퐹(푥, 푦)| = |퐹(푦, 푥)|, (푥, 푦) ∈ 푆 × 푆. 
For each 퐹 ∈ 퐿 (푆 × 푆, 푑휇)	, define 푇  to be the integral operator on 
퐿 (푆, 푑휎)with the kernel function 

퐾 (푥, 푦) =
퐹(푥, 푦)

(1 − 〈푥, 푦〉)
. 

For these operators we have the following weak-type inequality: 
Proposition (4.3.1) [4]: Given any 2 < 푝 < ∞, there is a constant 퐶 . =
퐶 . (푝, 푛) such that 

푁 (푡) ≤
퐶 .

푡
|퐹(푥, 푦)|

|1 − 〈푥, 푦〉|
푑휎(푥)푑휎(푦). 

For all 퐹 ∈ 퐿 (푆 × 푆, 푑휇) and 푡 > 0. 
Definition (4.3.3) [4]:  

(a)  A subset 푌 of 푆 × 푆 is said to be symmetric if for every (푥, 푦) ∈
푆 × 푆, we have (푥, 푦) ∈ 푌 if and only if (푥, 푦) ∈ 푌. 
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(b)  푆 × 푆, we let 퐶(푔, 푌	) 
denote the integral operator on 퐿 (푆, 푑휎)with the kernel function 

휒푌(푥, 푦) =
푔(푦) − 푔(푥)
(1 − 〈푥, 푦〉)

. 

Definition (4.3.4) [4]: (a) For each 푘 ∈ 	푍 ,	let 퐸 = {(푥, 푦) ∈ 	푆 × 푆 ∶
2 ≤ 	푑(푥, 푦) < 2 }. (b) For each (푘, 푗) ∈ 퐼, we set 퐷 , = 	퐵 , 	×
퐵 , 	, where 퐵 , is defined in (53). 
(c) For each (푘, 푗) ∈ 퐼, we set 푅 , = 	퐷 , \	퐸 . 

We are now ready to carry out the out two-stage interpolation for 
푃,푀 . The first interpolation is a more refined version: 

Proposition (4.3.4) [4]: Let 2 < 푝 < 푡 < ∞. Then there is a constant 
퐶 . 	= 퐶 . (푝, 푡, 푛).  
Such that the following estimate holds: Suppose that 퐺 is a subset 
of	퐼	and that 푌 is a measurable, symmetric subset of 푆 × 푆 satisfying the 
condition 

푌 ⊂ 푅 ,
( , )∈

	 .	

Then 
‖퐶(푔; 푌)‖ ≤ 퐶 . 	Φ {퐽 (푔; 푘, 푗)}( , )∈ 	푓표푟	푒푣푒푟푦	푔 ∈ 퐿 (푆, 푑휎)	 

Proof: Let 2 < 푝 < 푡 < ∞. By (19), it is elementary that there is a 
constant 퐶 such that 

2 |푔(푥) − 푔(푦)| 푑휎(푥)푑휎(푦)
,

≤ 퐶퐽 (푔; 푘, 푗). 

for all 푔 ∈ 퐿 (푆, 푑휎) and (푘, 푗) ∈ 퐼. Let G and Y be as in the statement of 
the proposition. 

To prove the proposition, it suffices to consider 푔 ∈ 퐿 (푆, 푑휎). 
satisfying the condition	퐶 . 	Φ {퐽 (푔; 푘, 푗)}( , )∈ < ∞ 

Let us estimate 푁 ( ; )(푠), 푠 > 0. For this, we will decompose the 
integral operator 퐶(푔; 푌)in the form 퐶(푔; 푌) = 퐴 + 퐵  and take 
advantage of the inequality 

푁 ( ; )(푠) ≤ 푁 (푠 2⁄ ) + 푁 (푠 2⁄ ) 
We will then estimate 푁 (푠 2⁄ )by Proposition (4.3.2) and estimate 
푁 (푠 2⁄ ) by using the Hilbert-Schmidt norm ‖퐵 ‖ . But first we need to 
define 퐴  and 퐵 . Let us write 
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푅 = 2 ⁄ 푃
푃 − 1

	Φ {퐽 (푔; 푘, 푗)}( , )∈ 																														(79) 

Set 풩 = 푁 in the case 푐푎푟푑(퐺) = ∞	and set 풩 = {1, … ,푚} in the case 
푐푎푟푑(퐺) = 푚 < 	∞. By Lemma (4.1.6), there is a bijection 휋:풩 → 퐺 
such that 

퐽 (푔; 휋(푖)) ≤
푅
푖 ⁄ 푓표푟	푒푣푒푟푦	푖 ∈ 풩																										(80) 

Let 퐺(푠) = {휋(푖): 1 ≤ 푖 < (푅/푠) }. We define 

푊(푠) = 푌⋂푅 ,
( , )∈ ( )

푎푛푑	퐹(푠) = 푌\푊(푠).	

Now we let 퐴  and 퐵  be the integral operators on 퐿 (푆, 푑휎) with the 
kernel functions 

휒퐹(푠)(푥, 푦)
푔(푦) − 푔(푥)
(1 − 〈푥, 푦〉)

		푎푛푑	휒푊(푠)(푥, 푦)
푔(푦) − 푔(푥)
(1 − 〈푥, 푦〉)

. 

respectively. We first estimate 푁 (푠/2). 
Since 푌 ⊂ ⋃ 푅 , 	( , )∈  by assumption, we have 퐹(푠) 	⊂

⋃ 푅 , 	( , )∈ \ ( )  Hence 

|푔(푦) − 푔(푥)|
|1 − 〈푥, 푦〉|

( )

푑휎(푥)푑휎(푦)

≤
|푔(푦) − 푔(푥)|
|1 − 〈푥, 푦〉|

,( , )∈ \ ( )

푑휎(푥)푑휎(푦)

≤ 2 |푔(푦) − 푔(푥)| 푑휎(푥)푑휎(푦)
,( , )∈ \ ( )

≤ 퐶 퐽 (푔; 푘, 푗)
( , )∈ \ ( )

= 퐶 퐽 푔; 휋(푖)
( ⁄ )

≤ 퐶 푅 푖 ⁄⁄
( ⁄ )

		 푏푦(80) ≤ 푅 . 퐶 max 1,
푅
2

( ⁄ )

= 퐶 푅 max 1,
푅
2

. 
where the last ≤ is the reason why we must require 푡 > 푝. Since the set 
퐹(푠) is symmetric, we can apply Proposition (4.3.2) to obtain 
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푁
푠
2

≤ 퐶 . (푠 2⁄ )
|푔(푦) − 푔(푥)|
|1 − 〈푥, 푦〉|

( )

푑휎(푥)푑휎(푦)

≤ 퐶 . (푠 2⁄ ) . 퐶 푅 max 1,
푅
2

≤ 2 퐶 퐶 . 푅 푠 							(81) 

where the last ≤ also uses the assumption 푡 > 푝.To estimate 푁 (푠/2), 
note that 

‖퐵 ‖ =
|푔(푦) − 푔(푥)|
|1 − 〈푥, 푦〉|

( )

푑휎(푥)푑휎(푦)

≤
|푔(푦) − 푔(푥)|
|1 − 〈푥, 푦〉|

,( , )∈ ( )

푑휎(푥)푑휎(푦)

≤ 2 |푔(푦) − 푔(푥)| 푑휎(푥)푑휎(푦)
,( , )∈ ( )

≤ 퐶 퐽 (푔; 푘, 푗)
( , )∈ ( )

. 

where the last follows from (19) and HÖlder's inequality. Recalling (80), 
we have 

‖퐵 ‖ ≤ 퐶 퐽 (푔; 휋(푖))
( )∈ ( )

≤ 퐶 푅 푖 ⁄⁄
( ⁄ )

≤ 퐶 푅 . (푅 푠⁄ ) ( ⁄ ) = 퐶 푅 푠  
Therefore 

푁	 (푠 2⁄ ) ≤ (2 푠⁄ ) ‖퐵 ‖ ≤ 4퐶 푅 푠 . 
Combining this with (81) and recalling (79), we have 
푁	 ( ; )	(푠) ≤ {2 퐶 퐶 . + 4퐶 }푅 푠

= 퐶 Φ {퐽 (푔; 푘, 푗)}( , )∈ 푠 . 
If 푣 ∈ 푁 and 푎 > 0 are such that 푁 (푎 ) < 푣, then 푠 (푇) ≤ 푎 . Hence it 
follows from the above inequality that the s-numbers of 퐶(푔; 푌)	satisfy 
the condition 

푠 퐶(푔; 푌) ≤ (2퐶 ) ⁄ Φ {퐽 (푔; 푘, 푗)}( , )∈ 푣 ⁄  
for every 푣 ∈ 푁. Therefore 

‖퐶(푔; 푌)‖ ≤ (2퐶 ) ⁄ Φ {퐽 (푔; 푘, 푗)}( , )∈  
This completes the proof of the proposition.  
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The second stage of our interpolation requires the estimates 
obtained. 
Proposition (4.3.5) [4]: Let 2 < 푝 < ∞. Then there is a constant 퐶 . =
퐶 . (푝, 푛) such that 푃,푀 ≤ 퐶 . Φ {퐽(푔; 푘, 푗)}( , )∈ 	for every 푔 ∈
퐿 (푆, 푑휎). 
Proof. Given 2 < 푝 < ∞, we pick a t such that 푝 < 푡 < ∞. Lemma 
(4.2.8) tells us that the symmetric gauge function Φ  satisfies condition 
(DQK). Thus, by Proposition (4.2.19), 

Φ {퐽 (푔; 푘, 푗)}( , )∈ ≤ 퐶 . Φ {퐽 (푔; 푘, 푗)}( , )∈  
for every 푔 ∈ 퐿 (푆, 푑휎). Hence it suffices to show that there is a constant 
퐶	such that 

푃,푀 ≤ 퐶Φ {퐽 (푔; 푘, 푗)}( , )∈ 																														(82) 
for every 푔 ∈ 퐿 (푆, 푑휎). 

To prove (82), we pick 푟 and 푟  such that 2 < 푟 < 푝 < 푟 <
푡.	Given 푔 ∈ 퐿 (푆, 푑휎),let us estimate 푁 ; (푠), 푠 > 	0. The idea is to 

decompose 푃;푀  in the form 퐶(푔; 푋 ) + 퐶(푔; 푌 ) and take advantage 
of the inequality 

푁 ; (푠) ≤ 푁	 ( ; )	(푠 2⁄ ) + 푁	 ( ; )	(푠 2⁄ )																	(83) 

The sets 푋  and 푌  are chosen as follows. Let ∆	denote the diagonal 
{(푥; 	푥): 푥 ∈ 푆} in 푆 × 푆. Then, of course, (휎 × 휎)(∆) = 0. For each 푠 >
0 we set 퐸(푠) = {(푘; 	푗) ∈ 퐼: 퐽 (푔; 푘, 푗) ≤ 푠}.	

We then define 푋 = ⋃ 푅 , 	( , )∈ ( ) 푎푛푑	푌 = (푆 × 푆)\(푋 ⋃∆).	
Since 2 < 푟 < 푡, it follows from Proposition (4.3.4) that 

‖퐶(푔; 푋 )‖ ≤ 퐶 . (푟, 푡)Φ {퐽 (푔; 푘, 푗)}( , )∈ ( )  
By Lemma (4.2.8), we have 

푁 ( ; )(푠 2⁄ ) ≤
푟

푟 − 1
2
푠
‖퐶(푔; 푋 )‖  

Setting	퐶 = {2퐶 . (푟, 푡)푟/(푟 − 1)} , from the above two inequalities we 
obtain 

푁 ( ; )(푠 2⁄ ) ≤ 퐶
1
푠
Φ 퐽 {푔; 푘, 푗}( , )∈ ( ) 																	(84) 

By (21) and (53), we have ⋃ 퐷 ,
( ) ⊂ 퐸  for every 푘 ∈ 푍 . Also, it is 

obvious that ⋃ 퐸 = (푠 × 푠)\∆. Consequently, ⋃ 푅 , = (푠 ×( , )∈

푠)\∆. 
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Therefore 푌 ⊂ ⋃ 푅 ,( , )∈ \ ( ) 	. 
Since 2 < 푟 < 푡,	it follows from Proposition (4.3.5) that 

‖퐶(푔; 푌 )‖ ≤ 퐶 . (푟 , 푡)Φ {퐽 (푔; 푘, 푗)}( , )∈ ( )  
Then another application of Lemma (4.2.8) gives us 

푁 ( ; )(푠 2⁄ ) ≤ 퐶
1
푠
Φ {퐽 (푔; 푘, 푗)}( , )∈ ( ) 													(85) 

where 퐶 = {2퐶 . (푟 , 푡)푟 /(푟 − 1)} . Note that (푎 + 푏) ⁄ ≤ 푎 ⁄ +
푏 ⁄  for all 푎, 푏 ∈ [0,∞).Thus if we write 퐶 = (푚푎푥{퐶 , 퐶 }) ⁄ , then it 
follows from (83), (84) and (85) that 

푁 , (푠)
⁄

≤ 퐶
1
푠
Φ {퐽 (푔; 푘, 푗)}( , )∈ ( )

⁄

+ 퐶
1
푠
Φ {퐽 (푔; 푘, 푗)}( , )∈ ( )

⁄

																											(86) 

Since 2 < 푝 < 푟, it follows from Proposition (4.1.4) that 

1
푠
Φ {퐽 (푔; 푘, 푗)}( , )∈ ( )

⁄

푑푠 ≤퐶 . Φ {퐽 (푔; 푘, 푗)}( , )∈  

Similarly, since 2 < 푟 < 푃,	Proposition (4.1.5) tells us that 

1
푠
Φ {퐽 (푔; 푘, 푗)}( , )∈ \ ( )

⁄

푑푠 ≤ 퐶 . Φ {퐽 (푔; 푘, 푗)}( , )∈  

Combining the above two inequalities with (86), we obtain 

푁 , (푠)
⁄
푑푠 ≤퐶 (퐶 . + 퐶 . )Φ {퐽 (푔; 푘, 푗)}( , )∈  

Now an application of Lemma (4.1.3) gives us 

푃,푀 ≤ 푃 푁 , (푠)
⁄
푑푠

≤푃퐶 (퐶 . + 퐶 . )Φ {퐽 (푔; 푘, 푗)}( , )∈  
That is, (82) holds for the constant 퐶 = 푃퐶 (퐶 . + 퐶 . ) This completes 
the proof.  
Proposition (4.3.5)  is the essential part of the proof of the upper bound in 
Theorem (4.1.2). 
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What remains in the proof of the upper bound is to bring 
푉푎푟 ⁄ (푔; 	푧) and Bergman lattice into the picture. But this last step has 
been taken care of previously: 
Proposition (4.3.6) [4]: Given any positive number 0 < 푏 < ∞ there is a 
constant 퐶 . 	which depends only on b and n such that if Γ	is a countable 
subset of 퐵 with the property that ⋃ 퐷∈ (푧, 푏) = 퐵, then 

Φ {퐽 (푔; 푘, 푗)}( , )∈ ≤ 퐶 . Φ 푉푎푟 ⁄ (푔; 	푧) ∈  

for every 푔 ∈ 퐿 (푆, 푑휎) and every symmetric gauge function Φ. 
Proof of the upper bound in Theorem (4.1.2) Given an 푓 ∈

퐿 (푆, 푑휎), write 푔 = 푓 − 	푃푓. 
Then 퐻 = 퐻 . Let 2 < 푝 < ∞ and 푏 > 0. Let Γ be a countable subset of 
퐵	such that ⋃ 퐷∈ (푧, 푏) = 퐵. Applying Propositions (4.3.5) and (4.3.6), 
we have 
퐻 = 퐻 ≤ 푃,푀 ≤ 퐶 . Φ {퐽 (푔; 푘, 푗)}( , )∈

≤ 퐶 . 퐶 . Φ 푉푎푟 ⁄ (푔; 	푧) ∈

= 퐶 . 퐶 . Φ 푉푎푟 ⁄ (푓 − 	푃푓; 	푧) ∈ . 
This completes the proof of Theorem (4.1.2).  
Lemma (4.3.7) [4]: There exists a constant 퐶 .  such that 푀 푓 (푥) ≤
퐶 . (푀 푓)(푥) for all	푓 ∈ 퐿 (푆, 푑휎), 푥 ∈ 푆, and 푘 ∈ 푍 . 
Proof: By (58), there is a constant 퐶 . such that 

휎 퐴 ,

휎 퐵 ,
≤ 퐶 .  

for all 푘 ∈ 푍 , 푗 ∈ {1, … ,푚(푘)} and 푗 ∈ {1, … ,푚(푘 + 3)}. Let 푓 ∈
퐿 (푆, 푑휎), 푥 ∈ 푆, and 푘 ∈ 푍 . be given. By (21), there is a 푗∗ ∈
{1, … ,푚(푘)} such that 푥 ∈ 퐵(푢 , ∗ , 2 ). 

By (53), we have 퐴 , ∗ ⊃ 퐵 , . Again by (53), if 푖 ∈
{1, … ,푚(푘 + 3)}.	is such that 푥 ∈ 퐵 , , then 퐵(푥, 2 ) ⊃ 퐵 , . Thus 
퐴 , ∗ ⊃ 퐵 ,  for every 푖 ∈ {1,… ,푚(푘 + 3)} such that 푥 ∈
퐵 , Therefore if 푥 ∈ 퐵 ,  then 

1
휎 퐵 ,

|푓|푑휎
,

≤
휎 퐴 , ∗

휎 퐵 ,

1
휎 퐴 , ∗

|푓|푑휎
, ∗

≤ 퐶 . (푀 푓)(푥) 

Combining this with the definition of 푀 푓 (푥), the lemma follows.  
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Lemma (4.3.8) [4]: There exist constants 퐶 . and 퐶 .  such that the 
following estimates hold: 
Suppose 푓 ∈ 퐿 (푆, 푑휎), (푘, 푗) ∈ 퐼 and 푟 > 0 satisfy the condition 

1
휎 퐶 ,

|푓|푑휎
,

≤ 푟																				(87) 

Then there exists a subset 퐺	of 퐺(푘, 푗) such that 

(푎)					|푓(푥)| ≤ 퐶 . 	푓표푟	휎 − 푎. 푒. 푥 ∈ 퐵 , \ 퐵 ,
( , )∈

 

			(푏) 				 휎 퐵 , ≤
푀
푟

|푓|푑휎
,( , )∈

 

where 푀  is the natural number in (55); 
  (푐) for every(푘, 푖) ∈ 퐺. we have 

1
휎 퐵 ,

|푓|푑휎
,

≤ 퐶 . . 

Proof: By (19), there is a constant 0 < 퐶 . 	 < ∞ such that 

휎 퐵(휁, 2 )

휎 퐵(휁, 2 )
≤ 퐶 . . 

for all 휁, 휉 ∈ 푆 and 푘 ∈ 푍 Suppose that (87) holds. Then define 

퐵 = 푥 ∈ 퐵 , : lim	sup
→

(푀 푓)(푥) > 퐶 . . 

It follows from (19) that if x is a Lebesgue point for |푓|then 
lim	
→

(푀 푓)(푥) = |푓(푥)|. 

Hence |푓(푥)| ≤ 퐶 .  for 휎 − 푎. 푒. 푥 ∈ 퐵 , \퐵 Consequently it 
suffices to find a subset 퐺 of 퐺(푘, 푗) such that 

퐵 , ⊃ 퐵
( , )∈

,																																												(88) 

and such that estimates (b) and (c) hold. To find such a 퐺, we first recall 
that if 푘 ≥ 	푘	and if 퐴 , ∩ 퐵 , ≠ 0 then퐴 , ⊂ 퐶 , . 

Let 푥 ∈ 퐵 , . For any 1 ≤ 푣 ≤ 	3, if 푖 ∈ {1, … ,푚(푘 + 푣)}	is such 
that 푥 ∈ 퐴 , , then 
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1
휎 퐴 ,

|푓|푑휎
,

≤
휎 퐶 ,

휎 퐴 ,
.

1
휎 퐶 ,

|푓|푑휎
,

≤ 퐶 . . 

This shows that (푀 푓)(푥) ≤ 퐶 .  for all 푥 ∈ 퐵 , and 푣 =
1, 2, 3. Thus for each 푥 ∈ 퐵, there is a natural number 푘(푥) > 푘	 + 	3 
such that 

푀 ( )푓 (푥) ≤ 퐶 . 푎푛푑	 푀 ( ) 푓 (푥) ≤ 퐶 . . 
Set 퐶 . = 퐶 . 퐶 . . By Lemma (4.3.7), the second inequality above 

implies 
	푀 ( )

~ 푓 (푥) ≤ 	퐶 . 																																						(89)	
For each 푥 ∈ 퐵, there is an 푖(푥) ∈ {1, … ,푚(푘 + 푣)}	such that 
 푥 ∈ 	퐴 ( ), ( ) and 

1
휎 퐴 ( ), ( )

|푓|푑휎
( ), ( )

= 푀 ( )푓 (푥) ≤ 퐶 . 												(90) 

Let 풢 = 푘(푥), 푖(푥) : 푥 ∈ 퐵 . 
Then, of course, 풢 ⊂ 퐺(푘, 푗)	and ⋃ 퐴 , ⊃ 퐵( , )∈풢 . Our desired set 

퐺	will be a subset of 풢, defined as follows. Recall that 푘(푥) ≥ 푘 + 4	for 
every	푥 ∈ 퐵. We define 

퐶 = 푘(푥), 푖(푥) : 푥 ∈ 퐵	푎푛푑	푘(푥) = 푘 + 4 	. 
Inductively, suppose that ℓ ≥ 4 and that we have defined 퐺  for 

every 4 ≤ 푞 ≤ ℓ. Then we define 

퐶 ℓ = 푘(푥), 푖(푥) : 푥 ∈ 퐵	, 푘(푥)

= 푘 + ℓ + 1	푎푛푑	퐴 ( ), ( ) ∩ 퐴 ,
( , )∈

= 0
ℓ

 

This defines 퐶 ℓ for every ℓ ≥ 4. Let 퐺 = ⋃ 퐶 ℓℓ . 
Let us verify that 퐺 has the desired properties. First of all, by the 

above inductive process, if	푥 ∈ 퐵 is such that 푘(푥), 푖(푥) ∉ 퐺, then 
there is a (푘, 푖) ∈ 퐺	with 푘 < 푘(푥)	such that 퐴 ( ), ( ) ∩ 퐴 , ≠ 0	.	Since 
푘 < 푘(푥), this implies 퐴 ( ), ( ) ⊂ 퐵 , . Hence (88) holds. 

To verify (b), for each ℓ ≥ 4,we define 
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Δℓ = 퐴 ℓ,
( ℓ, )∈ ℓ

 

It follows from (55) that  

휒퐴 ℓ,
( ℓ, )∈ ℓ

≤ 푀 휒Δℓ 

for every ℓ ≥ 4. By (90), we have 

퐶 . 휎 퐴 ℓ, <
1
푟

|푓|푑휎
ℓ,

 

for every (푘 + ℓ, 푖) ∈ 퐺 ℓ,  . Combining the above two inequalities, we 
have 

퐶 . 휎 퐴 ℓ, <
1
푟

( ℓ, )∈ ℓ

|푓|푑휎 ≤
푀
푟

|푓|푑휎
ℓℓ,( ℓ, )∈ ℓ

 

Since 퐶 . 휎 퐴 ℓ, ≥ 휎 퐵 ℓ,  for every (푘 + ℓ, 푖) ∈ 퐺 ℓ, we 
obtain 

휎 퐵 ℓ, ≤
푀
푟

|푓|푑휎
ℓ( ℓ, )∈ ℓ

 

ℓ ≥ 4 If (푘 + ℓ, 푖) ∈ 퐺 ℓ, , then 퐴 ℓ, ∩ 퐵 ≠ 0. Hence Δℓ ⊂ 퐺 ℓ, for 
every ℓ ≥ 4 The definition of the 퐺 ℓ,

,푆ensures thatΔℓ ∩ Δℓ = 0 for all 
	4 ≤ ℓ < ℓ . Therefore 

휎 퐵 , <
( , )∈

휎 퐵 ℓ,
( ℓ, )∈ ℓℓ

≤
푀
푟

|푓|푑휎
ℓℓ

≤
푀
푟

|푓|푑휎
,

 

proving (b). Finally, (c) follows simply from (89). Indeed for each 푥 ∈ 퐵, 
we have 

1
휎 퐵 ( ), ( )

|푓|푑휎
( ), ( )

≤ 푀 ( )푓 (푥) ≤ 퐶 .  

This completes the proof. 
Proposition (4.3.9) [4]: There exists a constant 퐶 .  such that if 푔 ∈
퐿 (푆, 푑휎) and (푘, 푗) ∈ 퐼	satisfy the condition 0 < 푀(푔; 푘, 푗) < ∞	and if 
푠 > 0, then 

휎 푥 ∈ 퐵 , : 푔(푥) − 푔퐵 , > 푠
휎 퐵 ,

≤ 2푒푥푝
−푠

퐶 . 푀(푔; 푘, 푗)
												(91) 
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Proof: By (19), there is a constant 퐶  such that 휎 퐶 , ≤ 퐶 퐵 , . 
for every (푘, 푖) ∈ 	퐼. It is easy to see that 휑퐵 , − 휑퐶 , ≤ 퐶 퐽(휑; 푘, 푖), 
for all 휑 ∈ 퐿 (푆, 푑휎)and (푘, 푖) ∈ 	퐼. By the homogeneity of (91), it 
suffices to consider the case where 푔 ∈ 퐿 (푆, 푑휎) and (푘, 푖) ∈ 	퐼 .satisfy 
the condition 푀(휑; 푘, 푖) = 1. Note that 

1
휎 퐶 ,

푔 − 푔퐵 ,

,

푑휎 ≤
1

휎 퐶 ,
푔 − 푔퐶 ,

,

푑휎 + 푔퐶 , − 푔퐵 ,

≤ 1 + 퐶  
Now we apply Lemma (4.3.8) to the pair of 푓 = 푔 − 푔퐵 , 	and	(푘, 푗), 
and to the number 

푟	 = 	2퐶 푀 (1	 +	퐶 )																																(92)	
where 푀  is the natural number that appears in (55). By Lemma (4.3.8), 
there is a subset 퐺( )표푓	퐺(푘, 푗) such that 

푔(푥) − 푔퐵 , ≤ 퐶 . 	푓표푟	휎 − 푎. 푒. 푥 ∈ 퐵 , \ 	
( , )∈ ( )

퐵 , , 

휎 퐵 ,
( , )∈ ( )

≤
푀
푟

푔 − 푔퐵 ,

,

푑휎 ≤
푀
푟
(1	 +	퐶 )휎 퐶 ,

≤
1
2
휎 퐵 ,  

And 

1
휎 퐵 ,

푔 − 푔퐵 ,

,

푑휎 ≤ 퐶 . 	푓표푟	푒푣푒푟푦	(푘, 푖) ∈ 퐺( )	 

This last inequality implies that 
푔퐵 , − 푔퐵 , ≤ 퐶 . 	푓표푟	푒푣푒푟푦	(푘, 푖) ∈ 퐺( ) 

Also, since 퐺( ) ⊂ 퐺(푘, 푗), for every (푘, 푖) ∈ 퐺( )	we have 푘 ≥
푘	 + 	1 and 푑 푢 , , 푢 , < 2. 2 = 2 . 2 	. 

Inductively, suppose that ℓ < 1 and that we have a subset 퐺(ℓ) of  
{(푘, 푖) ∈ 	퐼: 푘 ≥ 푘 + ℓ}. such that  
푔(푥) − 푔퐵 , ≤ 퐶 . + (ℓ + 1)퐶 . 	푓표푟	휎 − 푎. 푒. 푥

∈ 퐵 , \ ⋃( , )∈ (ℓ)퐵 , 																																																										(93) 

휎 퐵 ,
( , )∈ ( )

≤
1
2ℓ
휎 퐵 , 																																																							(94) 
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and 
푔퐵 , − 푔퐵 , ≤ 퐶 . 	푎푛푑푑 푢 , , 푢 ,

< 2 + ⋯+ 2 ℓ . 2 																																																(95)	 
for every (푘, 푖) ∈ 퐺(ℓ). This last condition means 퐺(ℓ) ⊂ 퐸(푘, 푗)	(see 
Defnition (4.2.16), which together with the condition 푀(푔; 	푘, 푗) = 1 
implies 

1
휎 퐶 ,

푔 − 푔퐵 ,

,

푑휎 ≤
1

휎 퐶 ,
푔 − 푔퐶 ,

,

푑휎 + 푔퐶 , − 푔퐵 , ≤ 1 + 퐶  

for every (푘, 푖) ∈ 퐺(ℓ). Thus the above argument can be repeated. That is, 
we apply Lemma (4.3.8) to each triple of (푘, 푖) ∈ 퐺(ℓ), 푓 , = 푔 − 푔퐵 ,  

and the same 푟 given by (92).This gives us a subset 퐺 ,
(ℓ ) of 퐺(푘, 푖) for 

each (푘, 푖) ∈ 퐺(ℓ).  
We set 

퐺(ℓ ) = 퐺 ,
(ℓ)

( , )∈ (ℓ)

. 

By Lemma (4.3.8) (a) and (95): 
푔(푥) − 푔퐵 , ≤ 퐶 . + ℓ퐶 .  

For 

휎 − 푎. 푒. 푥 ∈ ⋃( , )∈ (ℓ)퐵 , \⋃( , )∈ (ℓ )퐵 , . 
Combining this with (93), we have 
푔(푥) − 푔퐵 , ≤ 퐶 . + ℓ퐶 . 	푓표푟	휎 − 푎. 푒. 푥

∈ ⋃( , )∈ (ℓ)퐵 , \⋃( , )∈ (ℓ )퐵 , . 
Also, 

휎 퐵 ,
( , )∈ (ℓ )

≤
1
2
휎 퐵 ,

( , )∈ (ℓ)

≤
1

2ℓ
휎 퐵 , 	, 

And 
푔퐵 , − 푔퐵 , ≤ (ℓ + 1)퐶 . 	푓표푟	푒푣푒푟푦	(푘, 푖) ∈ 퐺(ℓ ). 

Furthermore, if (푘, 푖) ∈ 퐺(ℓ )then there is a (푘 , 푖 ) ∈ 퐺(ℓ).such 
that (푘, 푖) ∈ 퐺(푘 , 푖 ).	Since 푘 ≥ 푘 + ℓ	this implies 푑 푢 , , 푢 , <

2 . 2 ≤ 2 ℓ . 2 . By the triangle inequality, 
푑 푢 , , 푢 , < (2 + ⋯+ 2 ℓ + 2 ℓ ). 2 	푓표푟	푒푣푒푟푦	(푘, 푖) ∈ 퐺(ℓ ). 
This completes the inductive selection of the sets 퐺( ), 퐺( ), … , 퐺(ℓ), …. 



١٣٠ 
 

To complete the proof of the proposition, let us write 퐶 =
푚푎푥{퐶 . , 퐶 . }푟,	where, as we recall, 푟 is fixed in (92). Suppose that 푠 ≥
퐶. Then there is an ℓ ∈ 	푁 such that 

ℓ퐶 ≤ 푠 < (ℓ + 1)퐶. 
By (93) and (94), we have 
휎 푥 ∈ 퐵 , : 푔(푥) − 푔퐵 , > 푠

휎 퐵 ,
≤
1
2ℓ

= 2푒 (ℓ )

≤ 2푒푥푝 −
log 2
퐶

푠  

On the other hand, if  0 < 푠 < 퐶, then 

2푒푥푝 −
log 2
퐶

푠 ≥ 2푒푥푝 −
log 2
퐶

퐶 = 1

≥
휎 푥 ∈ 퐵 , : 푔(푥) − 푔퐵 , > 푠

휎 퐵 ,
. 

Hence the proposition holds for the constant 퐶 . = 퐶/ log 2 ,	
Proof of Proposition (4.2.17). For any 1 ≤ 푡	 < ∞,푔	 ∈ 퐿 (푆, 푑휎). and 
(푘, 푗) ∈ 퐼,, we have 

퐽 (푔; 푘, 푗) =
1

휎 퐵 ,
푔 − 푔퐵 ,

,

푑휎

= 푡 푠
휎 푥 ∈ 퐵 , : 푔(푥) − 푔퐵 , > 푠

휎 퐵 ,
푑푠. 

Applying Proposition (4.3.9) to the fraction in the last integral and 
making the obvious substitution, we obtain 

퐽 (푔; 푘, 푗) ≤ 2푡 퐶 . 푀(푔; 푘, 푗) 푢 푒 푑푢	. 

Thus Proposition (4.2.17) holds for the constant 

퐶 . = (2푡) ⁄ 퐶 . 푢 푒 푑푢

⁄

 

This completes the proof. 
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List of symbols 
symbol  page 

‖ ‖ norm 3 

퐿  Hilbert Space 3 

inf infimum 3 

Sup Supremum 3 

BMO Bounded mean Oscillation 4 

VMO Vanishing Meam Oscillation 4 

퐵  Dyadic Besov Space 5 

Supp Support 6 

〈, 〉 Inner product 12 

⊗ Tensor product 14 

⊕ Direct Sum 18 

퐴  FOCK Space 51 

exp exponential 52 

tr Trace class 55 

퐻  Hardy Space 59 

Max maximum 128 
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