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Abstract 

We introduce an almost over complete sequence in a Banach 

space and almost overtotal sequence in a dual space. We show that 

any of such sequences is relatively norm- compact. We study 

Banach space of traces of real polynomials on the Euclidean space 

to a compact subsets equipped with supremum norms. We develop 

a notion of a dimension where a Banach space with a uniformly 

bounded action of sofic group is a sofic approximation. We also 

develop a notion of the dimension with an embeddable group and 

the space of finite- dimensional Schatten p- class operators. We 

give examples of real Banach spaces with exactly infinite 

countably many complex structures. 
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 ةـالخلاص

تم إدخال متتالية شبه فوق التامة في فضاء باناخ ومتتالية فوق 
أوضحنا أنه لأي من مثل هذه المتتاليات هي . الكاملة في الفضاء المزدوج

قيقية درسنا فضاء باناخ لآثار كثيرات الحدود الح. متراص نسبياً -نظيم
على الفضاء الاقليدي إلى الفئات الجزئية المتراصة المتزنة مع نظيم أقل 

تم تطوير فكرة البعد حيث فضاء باناخ مع عمل محدود منتظم . حد أعلى
أيضاً تم تطوير فكرة البعد مع زمرة . من زمرة سوفيك هي تقريب سوفيك
푝التضمين وفضاء من مؤثرات عائلة  طينا أمثلة أع. شاتن منتهية البعد −

من فضاءات باناخ الحقيقية مع بنيات مركبة كثيرة قابلة للعد لا نهائية 
  .بالضبط
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Chapter 1 
Almost Over Complete and Almost Over Total Sequences in 

Banach Spaces   
 

A sequence in a Banach space 푋 is said to be over complete in 푋 
whenever the linear span of any its subsequence is dense in 푋. It is well-
known facts that overcomplete sequences exist in any separable Banach 
space. In the spirit of this notion, we introduce the new notion of 
overtotal sequence and weaken both these notions to that ones of almost 
overcomplete sequence and almost overtotal sequence. 
Section (1.1): Main Results 

We show that any bounded almost overcomplete sequence as well 
as any bounded almost overtotal sequence is relatively norm-compact. 
We feel that these facts provide useful tools for attacking many questions: 
several applications are presented to support this feeling. 

We use standard Geometry of Banach Spaces. In particular, [S] 
stands for the closure of the linear span of the set S and by “subspace” we 
always mean “closed subspace”. 

Let us start by the following definitions. 
Definition (1.1.1) [1]:  Let 푋 be a Banach space. A sequence in the dual 
space 푋∗ is said to be overtotal on 푋 whenever any of its subsequence is 
total over 푋. 
If 푋 admits a total sequence {푥∗ } ⊂ 푋∗, then there is an overtotal 
sequence on 푋. Indeed, put 푌 = [{푥∗ }]: 푌 is a separable Banach space, so 
it has an overcomplete sequence {푦∗} . It is easy to see that {푦∗} is 
overtotal on 푋. 

As an easy example of an overtotal sequence, consider 푋 = 퐴(퐷), 
where 퐴(퐷) is the usual Banach disk algebra A(D) (also spelled disc 
algebra) is the set of holomorphic functions (푓: 퐷 → 퐶), where 퐷 is the 
open unit disk in the complex plane 퐶, 푓 extends to a continous function 
on the closure of 퐷. That is: 

퐴(퐷) =  퐻 (퐷) ∩ 퐶(퐷), 
Where 퐻 (퐷) denotes the Banach space of bounded analytic finction on 
the unit disc 퐷 (i.e. a Hardy space). When endowed with the point wise 
addition, (푓 + 푔)(푧) = 푓(푧) +  푔(푧), and point wise multiplication, 

(푓푔)(푧) = 푓(푧) 푔(푧), 
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This set becomes an algebra over 퐶, since if 푓 and 푔 belong to the disk 
algebra then so do 푓 + 푔 푎푛푑 푓푔. 
Given the uniform norm 

‖푓‖ = sup{|푓(푧)|: 푧 ∈ 퐷} = max{|푓(푧)|: 푧 ∈ 퐷}, 
By construction it becomes a uniform algebra and a commutative Banach 
algebra. 

By construction the disc algebra is closed subalgebra of the Hardy 
space 퐻 . In contrast to the stronger requirement that is a continuous 
extension to the circle exists, it is lemma of Fatou that a general element 
of 퐻  can be radially extended to the circle almost everywhere [5]. 

Whose elements are the holomorphic functions on the open unit 
disk 퐷 of the plane that admit continuous extension to 휕퐷, and {푥∗ } =
{�푧 | ( )} where {푧 } is any sequence of points of 퐷 converging inside 퐷. 
Definition (1.1.2) [1]: A sequence in a Banach space 푋 is said to be 
almost over complete when-ever the closed linear span of any of its 
subsequence has finite codimension in 푋. 
Definition (1.1.3) [1]: Let 푋 be a Banach space. A sequence in the dual 
space 푋∗ is said to be almost overtotal on 푋 whenever the annihilator (in 
푋) of any of its subsequence has finite dimension. 

Clearly, any overcomplete < overtotal > sequence is almost 
overcomplete < almost overtotal > and the converse is not true. It is easy 
to see that, if {(푥 , 푥∗ )} is a countable biorthogonal system, then neither 
{푥 } can be almost overcomplete in [{푥 }], nor {푥∗ } can be almost 
overtotal on [{푥 }]. In particular, any almost overcomplete sequence has 
no basic subsequence. 
Theorem (1.1.4) [1]: Each almost overcomplete bounded sequence in a 
Banach space is relatively norm-compact. 
Proof. Let {푥 } be an almost overcomplete bounded sequence in a 
(separable) Banach space (푋, ‖∙‖). Without loss of generality we may 
assume, possibly passing to an equivalent norm, that the norm ‖∙‖ is 
locally uniformly rotund (LUR) and that {푥 } is normalized under that 
norm. 

First note that {푥 } is relatively weakly compact: otherwise, it is 
known that it should admit some subsequence that is a basic sequence, a 
contradiction. Hence, by the Eberlein- Smulyan theorem states that the 
three are equivalent on a banach space. While this equivalence is truein 
general for a (metric space), the weak topology is not metrizable in 
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infinite dimensional vector spaces, and so the Eberlein- Smulian theorem 
is needed [6], then {푥 } admits some subsequence 푥  that weakly 
converges to some point 푥 ∈ 퐵 . Two cases must now be considered. 

(i) ‖푥 ‖ < 1. From 푥 − 푥 ≥ 1 −  ‖푥 ‖ > 0, according to a 

well known result, it follows that some subsequence 푥 − 푥  

is a basic sequence: hence 푐표푑푖푚 푥 − 푥  = 푐표푑푖푚 푥 , 푥  =

 푐표푑푖푚 푥 = ∞, a contradiction. 
(ii) ‖푥 ‖ = 1. Since we are working with a LUR norm, the 

subsequence 푥  actually converges to 푥  in the norm too and 
we are done.  

As a first immediate consequence we get the following Corollary. 
Corollary (1.1.5) [1]: Let 푋 be a Banach space and {푥 } ⊂ 퐵  be a 
sequence that is not relatively norm-compact. Then there exists an 
infinite-dimensional subspace 푌 of 푋∗ such that |{푥 } ∩ 푌 | = ∞. For 
instance this is true for any 훿-separated sequence {푥 } ⊂ 퐵 (훿 > 0). 
Theorem (1.1.6) [1]: Let 푋 be a separable Banach space. Any bounded 
sequence that is almost overtotal on 푋 is relatively norm-compact. 
Proof. Let {푓 } = 1 ⊂ 푋∗ be a bounded sequence almost overtotal on 
푋. Without loss of generality, like in the proof of Theorem (1.1.4), we 
may assume {푓 } ⊂ 푆 ∗ . Let 푓  be any subsequence of {푓 }: since 푋 is 
separable, without loss of generality we may assume that 푓  weakly 
converges, say to푓 . 

Let 푍 be a separable subspace of 푋∗ that is 1-norming for 푋. Put 
푌 = [{푓 } , 푍]. Clearly 푋 isometrically embeds into 푌∗ (we 
isometrically embed 푋 into 푋∗∗ in the usual way) and 푋 is 1-norming for 
푌. There is an equivalent norm ‖|∙|‖ on 푌 such that, for any sequence 
{ℎ } and ℎ  in 푌, 

ℎ (푥) → ℎ (푥) ∀푥 ∈ 푋 푖푚푝푙푖푒푠 ‖|ℎ |‖ ≤ lim inf  ‖|ℎ |‖      (1) 
and, in addition, 

‖|ℎ |‖ → ‖|ℎ |‖ 푖푚푝푙푖푒푠 |‖ℎ − ℎ ‖|  → 0.     (2) 
Take such an equivalent norm on 푌 and put ℎ = 푓  and ℎ = 푓 . By 
(2), we are done if we prove that ‖|ℎ |‖ → ‖|ℎ |‖. Suppose to the 
contrary that 

푓 ↛ ‖|푓 |‖.                     (3) 
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From (1) it follows that there are 푛   and 훿 > 0 such that 

푓 − ‖|푓 |‖ > 훿, that forces 푓 − 푓 > 훿 for 푖 big enough. It 

follows that some subsequence 푓 − 푓 is a 푤∗-basic sequence 

(remember that 푌 ⊂ 푋∗, 푋 is separable and ‖|∙|‖ is equivalent to the 
original norm on 푌). For 푚 =  1, 2, . .. put 푔 = 푓 . Since {푔 −

푓 } is a 푤∗−basic sequence, it follows that for some sequence {푥 }  in 
푋 

{(푔 − 푓 , 푥 )}   is a biorthogonal sequence.           (4) 
Only two cases must be now considered. 

(i) For some sequence 푚  we have 푓 푥  =  0, 푗 = 1, 2, . ..: in 

this case 푔 , 푥  would be a biorthogonal system, 

contradicting the fact that 푔  is almost overtotal on 푋. 

(ii) There exists 푞 such that for any 푚 ≥ 푞 we have 푓 (푥 ) ≠ 0. For 
any 푗 > 푞, from (4) it follows 
0 = 푔 − 푓 푓 푥 ∙ 푥 − 푓 푥  ∙ 푥

=  푔 푓 푥 ∙ 푥 − 푓 푥 ∙ 푥 . 

It follows that the almost overtotal sequence 푔  annihilates the 

subspace 푊 = 푓 푥 ∙ 푥 − 푓 푥  ∙ 푥 ⊂ 푋: being 

{푥 }  a linearly independent sequence, 푊 is infinite-dimensional, a 
contradiction. 

Hence (3) does not work and we are done.  
As an immediate consequence we get the following Corollary. 

Corollary (1.1.7) [1]: Let 푋 be an infinite-dimensional Banach space and 
{푓 } ⊂ 퐵 ∗ be a sequence that is not relatively norm-compact. Then there 
is an infinite-dimensional sub-space 푌 ⊂ 푋 such that |{퐹 } ∩ 푌 | = ∞. 
For instance this is true for any 훿-separated sequence {푓 } ⊂ 퐵 ∗(훿 > 0). 
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Section (1.2): Applications 
 

The following theorem easily follows from Corollary (1.1.7) [1]. 
Theorem (1.2.1) [1]: Let 푋 ⊂ 퐶(퐾) be an infinite-dimensional subspace 
of 퐶(퐾) where 퐾is metric compact. Assume that, for {푡 } ∈ℕ ⊂ 퐾, the 
sequence {�푡 | } ⊂ 푋∗ is not relatively norm-compact. Then there are an 
infinite-dimensional subspace 푌 ⊂ 푋 and a subsequence 푡

∈ℕ
 such 

that 푦 푡 = 0 for any 푦 ∈ 푌 and for any 푘 ∈ ℕ. 
Remark. Sequences {푡 } ⊂ 퐾 as required in the statement of Theorem 
(1.2.1) always exist: trivially, for any sequence {푡 } dense in 퐾, the 
sequence {�푡 | }, being a 1-norming sequence for 푋, cannot be relatively 
norm-compact (since 푋 is infinite-dimensional). 

For any infinite-dimensional subspace 푋 ⊂ 퐶(퐾), there are an 
infinite-dimensional subspace 푌 ⊂ 푋 and a sequence {푡 } ∈ℕ ⊂ 퐾 such 
that 푦(푡 ) = 0 for any 푦 ∈ 푌 and any 푘 ∈ ℕ. Theorem (1.2.1) strengthens 
this result. In fact actually, for any infinite-dimensional subspace 
푋 ⊂ 퐶(퐾), we can find such a sequence {푡 } as a suitable subsequence 
푤  of any prescribed sequence {푤 } ⊂ 퐾 for which {�푤 | } ⊂ 푋∗ is 

not relatively norm-compact. 
There exist an infinite-dimensional subspace of 푙  every non-zero 

element of which has only finitely many zero-coordinates? Let us 
reformulate this question in the following equivalent way: does there 
exist an infinite-dimensional subspace 푌 ⊂ 푙  such that the sequence 
{�푒 | } of the “coordinate functionals” is overtotal on 푌?  

Since the sequence {�푒 | }is norming for 푌, it is not norm-compact 
(푌 is infinite dimensional), hence by Theorem (1.1.6) [1] it cannot be 
overtotal on 푌. So the answer to the Aron- Gurariy’s question is negative. 
Actually we can say much more. In fact, from Theorem (1.1.6) [1] it 
follows that there exist an infinite-dimensional subspace 푍 ⊂ 푌 and a 
strictly increasing sequence {푛 } of integers such that 푒 (푧) = 0  for 
every 푧 ∈ 푍 and 푘 ∈ ℕ. 

The next Theorem generalizes the previous argument. 
Theorem (1.2.2) [1]: Let 푋 be a separable infinite-dimensional Banach 
space and 푇: 푋 → 푙  be a one-to-one bounded non compact linear 
operator. Then there exist an infinite- dimensional subspace 푌 ⊂ 푋 and a 
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strictly increasing sequence {푛 } of integers such that 푒 (푇푦) = 0 for 
any 푦 ∈ 푌 and for any 푘 (푒  the “n-coordinate functional” on 푙 ). 
Proof. Assume to the contrary that for any sequence of integers {푛 } we 

have 푑푖푚 푇∗푒 < ∞. Then the sequence {푇∗(푒 )} ⊂ 푋∗ is almost 

overtotal on 푋, so 퐾 = ‖∙‖ − 푐l{푇∗(푒 )} is norm-compact in 푋∗ by 
Theorem (1.1.6) Clearly we can consider 퐵  as a subset of 퐶(퐾) (by 
putting, for 푥 ∈ 퐵  and 푡 ∈ 퐾, 푥(푡) = 푡(푥)). We claim that 퐵  is 
relatively norm-compact in 퐶(퐾). In fact, 퐵  is clearly bounded in 퐶(퐾) 
and its elements are equi-continuous since, for 푡 , 푡 ∈ 퐾 and 푥 ∈ 퐵 , we 
have 

|푥(푡 ) −  푥(푡 )| ≤ ‖푥‖ ∙ ‖푡 − 푡 ‖ ≤ ‖푡 − 푡 ‖ ∶ 
we are done by the Ascoli-Arzela theorem. Since, for 푥 ∈ 푋 we have 
‖푥‖ ( ) = ‖푇푥‖ , 푇(퐵 ) is relatively norm-compact in 푙  too. This 
leads to a contradiction since we assumed that 푇 is not a compact 
operator.  

Let now 푋 be an infinite-dimensional space and {푓 } ⊂ 푋∗ a 
norming sequence for 푋. By Theorem (1.1.6), the fact that {푓 } is not 
relatively norm-compact immediately forces {푓 } not to be overtotal on 푋. 
Since any norming sequence is a total sequence, it follows that any 
norming sequence for any infinite-dimensional space 푋 admits some 
subsequence that is not a norming sequence for 푋. In other words and 
following our terminology, “overnorming” sequences do not exist. 

As one more application of Theorem (1.1.6) [1] we obtain the 
following Theorem. 

We need some preparation. First note that, without loss of 
generality, from now on we may assume that 푇 has norm one and that the 
unconditional basis {푢 }  is normalized and unconditionally monotone 
(i.e., if 푥 = ∑ 훼 푢  and 휎 ⊂ ℕ, then ‖∑ 훼 훽 푢 

∈ ‖ < ‖푥‖for any 
choice of  훽  with |훽 | ≤ 1. 
Lemma (1.2.3) [1]: Let 푋, 푌 be infinite-dimensional Banach spaces, 푌 
having an unconditional basis {푢 }  with {푒 }  as the sequence of the 
associated coordinate functionals. 
Let 푇: 푋 → 푌 be a one-to-one bounded non compact linear operator. Then 
there exists 훿 > 0 such that, for any natural integer 푚, some point 푧 ∈ 퐵  
exists (depending on 푚) such that ‖푇푧‖ ≥ 훿 and the first m coordinates 
of 푇푧 are 0. 
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Proof. Let us start by: 
 ∃{푥 } ⊂ 퐵 , ∃ 0 < 훽 < 1 ∶ 푒 푇 → 0 푎푠 푘 → ∞ ∀푖 ∈ ℕ ∧

푇 > 훽 ∀푘 ∈ ℕ.     (5) 
In fact, let {푧 }  be any 푟−separated sequence in 푇(퐵 ) for some 

푟 > 0 (푇(퐵 ) is not pre-compact). By a standard diagonal procedure we 
can select a subsequence 푧  such that, for any 푖 ∈ ℕ, the numbers 
푒 푧푛푘

 converge as 푘 → ∞. Of course, for any 푖 we have 푒 푧푛푘
−

푧푛푘+1) → 0 as 푘 → ∞ with ||푧푛푘
− 푧푛푘+1

|| ≥ 푟. For each 푘, put 2푦 =
푧푛2푘

− 푧푛2푘+1
: since 푇(퐵 ) is both convex and symmetric with respect to 

the origin, it is clear that {푦 } ⊂ 푇(퐵푋) too; moreover for any 푘 we 
have ||푦푘|| ≥ 푟/2 and for any 푖 we have 푒 푦푘 → 0 as 푘 → ∞. So it is 
enough to assume 푥 = 푇 푦  for any 푘 and 훽 = 푟/2 and (5) is proved. 

Now fix 푚 ∈ ℕ. Put 퐿 = [{푇∗(푒 )} ]  and let 푥 ∈ 푋. Then, 
denoting by 푞: 푋 → 푋/퐿 the quotient map, for some positive constant 퐶  
independent on 푥 it is true that 

푑푖푠푡(푥, 퐿) = ‖푞(푥)‖ = 푆푢푝 푓 푞(푥) ∶ 푓 ∈ 푆 ∗

= 푆푢푝 |푔(푥)|: 푔 ∈ 푆[{ ∗( )} ]

≤ 퐶 푀푎푥{|푒 (푇푥)|: 1 ≤ 푛 ≤ 푚}.                 (6) 
Take {푥 }  as in (5): some 푘 ∈ ℕ exists such that 

퐶 푀푎푥{|푒 (푇푥 )|: 1 ≤ 푛 ≤ 푚} < 훽/2 
that by (6) implies 

푑푖푠푡(푥 , 퐿) < 훽/2. 
Let 2푧 ∈ 퐿 be such that ‖푥 − 2푧‖ < 훽/2: clearly ‖푧‖ < 1 and ‖푇푧‖ >

 ( 푇 − 훽/2) /2, so, since 푇 > 훽, we are done by assuming 

훿 = 훽/4.  
Lemma (1.2.4) [1]: Let 푌 be as in the statement of Lemma (1.2.3) [1]. 
Then for any 

푛 ∈ ℕ, 0 < 휀 ≤
1
2 , 푣 = 푣 푢 , 푤 = 푤 푢  푤푖푡ℎ ‖푣‖ < 휀  푎푛푑 ‖푤‖

> 1 − 휀,    (7) 
푡ℎ푒푟푒 푒푥푖푠푡푠 푗, 1 ≤ 푗 ≤ 푛, 푠푢푐ℎ 푡ℎ푎푡 푣 < 휀 푤 . 
Proof. Recall that, under our assumptions, basis {푢 } is unconditionally 
monotone. 
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Hence, without loss of generality, we may assume that 푤 ≠ 0, 푖 =
1, . . . , 푛. Moreover, for any 푛 ∈ ℕ, any scalars 훼 , . . . , 훼  and 
|훽 |, . . . , |훽 | ≤ 1, the following is true 

훽 훼푖푢푖

푛

푖=1

 ≤ 훼푖푢푖

푛

푖=1

 .                   (8) 

 
Assume to the contrary that some 푣, 푤 exist satisfying (7) for some 
휀, 0 < 휀 < 1/2, for which |푣 | ≥ 휀|푤 | (i.e.휀|푤 /푣 | ≤ 1) for every 
푖, 1 ≤ 푖 ≤ 푛. By putting in (8) 훼 = 푣 /휀 and 훽 = 휀푤 /푣  for any 푖, we 
get 

1 −  휀 < 푤 푢푖

푛

푖=1

 ≤ 푣푖푢푖/휀
푛

푖=1

 < 휖 

that gives 휀 > 1/2, a contradiction.  
Theorem (1.2.5) [1]: Let 푋, 푌 be infinite-dimensional Banach spaces, 푌 
having an unconditional basis {푢 }  with {푒 }  as the sequence of the 
associated coordinate functionals. 
Let 푇: 푋 → 푌 be a one-to-one bounded non compact linear operator. Then 
there exist an infinite-dimensional subspace 푍 ⊂ 푋 and a strictly 
increasing sequence {푘 } of integers such that 푒 (푇푧) = 0 for any 푧 ∈ 푍 
and any 푙 ∈ ℕ. 
Proof. By Lemma (1.2.3) [1], a bounded sequence {푥 } , ‖푥 ‖ < 푅 for 
some 푅 > 0, can be found in 푋 such that 푇 ∈ 푆  for every 푛 and 
푒 푇 = 0, 푗 = 1, . . . , 푛. For any 푛 put 

푇 =  푦 = 푦푛
푖 푢푖

푛

푖=푛+1

. 

Now we are going to construct a subsequence 푦  of {푦 }  
with special properties. 

Put in short 1/2 =  휀 , 푛 = 1, 2, …. 
Put 푛 = 1 and let 푝 > 푛  be such that 푦 ≠ 0 
Take 푛 ≥ 푝  such that 

푦 푢 < 휀 . 

Let 푛 > 푛  such that (remember that our basis is unconditionally 
monotone) 
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푦 푢 + 푦 푢 < 휀  

and consider the two vectors 

푣 = 푦푛0

푖 푢푖

푛2

푛1+1

, 푤 = 푦푛1

푖 푢푖

푛2

푛1+1

: 

clearly we have ‖푣 ‖ < 휀1
2 and ‖푤 ‖ > 1 − 휀2

2 > 1 − 휀 , hence by 
Lemma (1.2.4) [1] an integer 푝 , 푛 , +1 ≤ 푝 , 푛  can be found such that 

푦
푦

< 휀 . 

Now take 푛 > 푛  such that 

 푦 푢 < 휀  

and consider the two vectors 

푣 = 푦푛0

푖 + 푦푛1

푖 푢푖

푛3

푛2+1

, 푤 = 푦푛2

푖 푢푖

푛2

푛1+1

: 

clearly we have ‖푣 ‖ < 휀2
2 and ‖푤 ‖ > 1 − 휀3

2 > 1 − 휀 , hence by 
Lemma (1.2.4) [1] an integer 푝 , 푛 , +1 ≤ 푝 , 푛 , can be found such that 

푦 + 푦
푦

< 휀 . 

It is now clear how to iterate the process, so getting a sequence 푦  
in 푆 ( ), a corresponding subsequence {푝 }  being determined such that 
for 푘 ≥ 0  

푛 + 1 ≤ 푝  ≤ 푛 ∧
∑ 푦푛푗

푝푘푘−1
푗=0

푦푛푘
푝푘

 < 휀푘.              (9) 

Put 

퐸 = 푦푛푘 푘=0

∞
, 푊 = 푇  (퐸), 푒̃ = 푒 /푦푛푘

푝푘 , 푘 = 0, 1, 2, . . . . 

Clearly we have 

푒̃ 푦푛푖
= 0 푖푓 푘 < 푖, 푒̃ 푦푛푘

=  1, 푘 = 0, 1, 2, . . . .              (10) 

Note that, by our construction, 푦  is a sufficiently small 
perturbation of a block basis of the basis {푢 }. Hence it is an 
unconditional basis for 퐸. Let 퐵 its basis constant. 



16 
 

We claim that {�푇∗푒푘| } ⊂ 푊∗ is a bounded sequence. Clearly it 
is enough to prove that {�푒푘| }  is bounded. In fact, for any 푘 ∈ ℕ and 
any 푦 = ∑ 푎 푦 ∈ 푆 , taking into account (10) and (9) we have 

|푒̃ (푦)| = 푒̃ 푎 푦 = 푒̃ 푎 푦 ≤ |푎 | 푒̃ 푦푛푖

≤ 2퐵(휀 + 1) < 4퐵. 
Moreover we claim that it is a 1/푅-separated sequence. In fact for 

any 푘, 푚 with 푘 > 푚 ≥ 0, again remembering (10), we have 
‖푇∗푒푘 − 푇∗푒푚‖ ≥ (푇∗푒푘) 푥 /푅 − (푇∗푒푚) 푥 /푅

=
1
푅

(푒푘) 푦 − (푒푚) 푦 = 1/푅 

Hence, by Theorem (1.1.6), the sequence {�푇∗푒푘| }  cannot be 
almost overtotal on 푊: it means that there is an infinite-dimensional 
subspace 푍 ⊂ 푊 that annihilates some subsequence of the sequence 
{푇∗푒푘}. 

The proof is complete.  
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Chapter 2 
Banach Spaces of Polynomials as "Large" Subspaces of 

 퓵 -Spaces 
 

Recall that the Banach-Mazur distance between two 푘-dimensional 
real Banach spaces 퐸, 퐹 is defined as 

푑 (퐸, 퐹) ∶= inf{‖푢‖ ∙ ‖푢 ‖} , 
where the infimum is taken over all isomorphisms 푢: 퐸 → 퐹. We say that 
퐸 and 퐹 are equivalent if they are isometrically isomorphic (i.e., 
푑 (퐸, 퐹) = 1). Then ln 푑  determines a metric on the set ℬ  of 
equivalence classes of isometrically isomorphic 푘-dimensional Banach 
spaces (called the Banach-Mazur compactum). It is known that ℬ is 
compact of 푑 -“diameter” ~푘. 

Let 퐶(퐾) be the Banach space of real continuous functions on a 
compact Hausdorff space 퐾 equipped with the supremum norm. Let 
퐹 ⊂ 퐶(퐾) be a filtered subalgebra with filtration {0} ⊂ 퐹 ⊆ 퐹 ⊆ · · · ⊆
퐹 ⊆ · · · ⊆ 퐹 (that is, 퐹 = ⋃ 퐹 

∈ℤ  and 퐹 ∙ 퐹 ⊂ 퐹  for all 푖, 푗 ∈ ℤ ) 
such that 푛 : = dim 퐹 < ∞ for all 푑. In what follows we assume that 퐹  
contains constant functions on 퐾. We have the following: 
Theorem (2.1) [2]: Suppose there are 푐 ∈ ℝ and {푝 } ∈ℕ ⊂ ℕ such that 

    
ln 푛 .  

푝
 ≤ 푐 푓표푟 푎푙푙 푑 ∈ ℕ.                                  (1) 

Then there exist linear injective maps 푖 : 퐹 ↪ ℓ .  such that 

푑 퐹 , 푖 (퐹 ) ≤ 푒 , 푑 ∈  ℕ. 
As a corollary we obtain: 

Corollary (2.2) [2]: Suppose {푛 } ∈ℕ grows at most polynomially in 푑, 
that is, 

∃ 푘, 푐̂ ∈ ℝ  푠푢푐ℎ 푡ℎ푎푡 ∀ 푑    푛 ≤ 푐̂푑 .               (2) 
Then for each natural number 푠 ≥ 3 there exist linear injective maps 

푖 , : 퐹 ↪ ℓ , ,  where 푁 , ≔ 푐̂푑 . 푠 . ln(푐̂푑 ) + 1 , such that 

푑 퐹 , 푖 , (퐹 ) ≤ (푒푠 ) , 푘 ∈  ℕ. 

Let ℱ ̂, be the family of all possible filtered algebras 퐹 on compact 
Hausdorff spaces 퐾 satisfying condition (2). By ℬ ̂, , ⊂ ℬ  we denote 
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the closure in ℬ  of the set formed by all subspaces 퐹  of algebras 
퐹 ∈ ℱ ̂,  having a fixed dimension 푛 ∈ ℕ. 

Corollary (2.2) [2] allows to estimate the metric entropy of ℬ ̂, , . 
Recall that for a compact subset 푆 ⊂ ℬ  its 휀-entropy (휀 > 0) is defined 
as 퐻(푆, 휀): = ln 푁(푆, 푑  ,1 +  휀) , where 푁(푆, 푑  ,1 +  휀) is the 
smallest number of open 푑 -“balls” of radius 1 + 휀 that cover 푆. 
Corollary (2.3) [2]: For 푘 ≥ 1 there exists a numerical constant 퐶 such 

that for each 휀 ∈ 0,  

퐻 ℬ ̂, , , 휀 ≤  (퐶푘. ln(푘 + 1)) . (푐̂푑 ) . (ln(푐̂푑 ) + 1) .
1
휀 . ln

1
휀  

Let ℱ  be the space of real polynomials on ℝ  of degree at most 푑. 
For a compact subset 퐾 ⊂ ℝ  by �풫 |  we denote the trace space of 
restrictions of polynomials in 풫  to 퐾 equipped with the supremum 
norm. Applying Corollary (2.1.2) to algebra �풫 | : = ⋃  �풫 |  we 
obtain: 
(A) There exist linear injective maps 푖 , : �풫 | ↪ ℓ , , where  

푁 , =  ⌊푒 . (푛 + 2) . 푑 . (2푛 + 1 + ⌊푛 ln 푑⌋) ⌋,                 (1) 
such that 

푑 �풫 | , 푖 , (�풫 | )  ≤ (푒. (푛 + 2) ) (< 2.903).     (2) 

Indeed, 

푁 , ; = dim�풫 | ≤ 푑 + 푛
푛 <

푒. (푑 + 푛)
푛

≤
푒. (1 + 푛)

푛
. 푑

< 푒 . 푑 .                                                                        (3) 
Hence, Corollary (2.2) [2] with 푐 = 푒 , 푘 = 푛 and 푠: = (푛 + 2)  implies 
the required result. 

If 퐾 is 풫 -determining (i.e., no nonzero polynomial vanish on 퐾), 

then 푁 , = 푑 + 푛
푛  and so for some constant 푐(푛) (depending on 푛 

only) we have 
푁 , < 푁 , ≤ 푐(푛). 푁 , .  1 + ln 푁 , .                          (4) 

Hence, 푉 , (퐾) ∶= 푖 , (�풫 | ) is a “large” subspace of ℓ , . Therefore 
from (A) applied to 푉 , (퐾) we obtain: 
(B) There is a constant 푐 (푛) (depending on n only) such that for each 
풫 -determining compact set 퐾 ⊂ ℝ  there exists an m-dimensional 
subspace 퐹 ⊂ �풫 |  with 
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푚: = dim 퐹 > 푐 (푛). 푁 ,  푎푛푑 푑 (퐹, ℓ ) ≤ 3.        (5) 

In turn, if 푑 ∈ ℕ is such that 푁 , ≤ 푐 (푛). 푁 , , then due to 
property (A) for each 풫 -determining compact set 퐾 ⊂  ℝ  there exists 
훼푁 , -dimensional subspace 퐹 , , ⊂ 퐹 such that 

푑 퐹 , , , �풫 < 9.                                        (6) 

Further, the dual space 푉  (퐾) ∗
 of  푉  (퐾) is the quotient space 

of ℓ , . In particular, the closed ball of 푉  (퐾) ∗
 contains at most 

푐(푛) · 푁 , ·  1 + ln 푁 ,   extreme points, see (4). Thus the balls of 
푉  (퐾) ∗

 and 푉  (퐾) are “quite different” as convex bodies. 
This is also expressed in the following property (similar to the celebrated 
John ellipsoid theorem but with an extra logarithmic factor) which is a 
consequence of property (A): 
(C) There is a constant 푐 (푛) (depending on n only) such that for all 풫 -
determining compact sets 퐾 , 퐾 ⊂ ℝ  

푑 �풫 | �풫 | ∗
 ≤ 푐 (푛) ∙ 푁 , ·  1 + ln 푁 ,  .        (7) 

A stronger inequality is valid if we replace �풫 | ∗
 above by 

ℓ , . 
Remark (2.4) [2]: Property (C) has the following geometric interpretation. 
By definition, �풫 | ∗

 is a 푁 , -dimensional real Banach space generated 
by evaluation functional 훿  at points 푥 ∈ 퐾  with the closed unit ball being 
the balanced convex hull of the set {훿 } ∈ 퐾 . Thus 퐾  admits a natural 
isometric embedding into the unit sphere of  �풫 | ∗

. Moreover, the 

Banach space of linear maps �풫 | ∗ → �풫 |  equipped with the operator 
norm is isometrically isomorphic to the Banach space of real polynomial 
maps 푝: ℝ →  �풫 |  of degree at most 푑 (i.e., 푓∗ ∘  푝 ∈ 풫   for all 

푓∗ ∈ �풫 | ∗
) with norm ‖푝‖ ≔  sup ∈ ‖푝(푥)‖ �풫 .Thus property 

(C) is equivalent to the following one: 
(C') There exists a polynomial map 푝: ℝ →  �풫 |  of degree at most 푑 
such that the balanced convex hull of 푝(퐾 ) contains the closed unit ball 
of �풫 |  and is contained in the closed ball of radius 푐 (푛) ∙

푁 , ·  1 + ln 푁 ,   of this space (both centered at 0). 
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Our next property, a consequence of Corollary (2.3) [2] and 
equation (3), estimates the metric entropy of the closure of the set 
풫 , ⊂ ℬ ,  formed by all 푁 , -dimensional spaces �풫 | with 풫 -
determining compact subsets 퐾 ⊂ ℝ . 

(D) There exists a numerical constant 푐 > 0 such that for each 휀 ∈ 0, , 

퐻  푐푙 풫 , , 휀  ≤ (푐푛  · ln(푛 +  1))  · 푑 · (1 + ln 푑) · ∙

ln .                                                                                      (8) 

Remark (2.5) [2]: The above estimate shows that 풫 ,  with sufficiently 
large 푑 and 푛 is much less massive than ℬ , . Indeed, as follows : 

퐻 ℬ , , 휖 ~
1
휖

,

      푎푠 휖 → 0  

(here the equivalence depends on d and 푛 as well). On the other hand, 
implies that for any 휀 > 0, 

0 < lim
, →

inf
ln 퐻 ℬ , , 휖

푁 ,
≤ lim

, →
inf

ln 퐻 ℬ , , 휖
푁 ,

< ∞. 

It might be of interest to find sharp a symptotics of 퐻  푐푙 풫 , , 휀 , 
as 휖 → 0  and 푑 → ∞, and to compute (up to a constant depending on 푛) 
푑 -“diameter” of 풫 , . 

Similar results are valid for 퐾 being a compact subset of a real 
algebraic variety 푋 ⊂  ℝ  of dimension 푚 < 푛 such that if a polynomial 
vanishes on 퐾, then it vanishes on 푋 as well. In this case there are 
positive constants 푐 , 푐̃  depending on 푋 only such that 푐̃ 푑 ≤
dim� 풫 | ≤ 푐 푑 . For instance, Corollary (2.2) [2] with 푐 = 푐 , 푘 ∶= 푚 
and 푠: = (푚 + 2)  implies that �풫 |  is linearly embedded into ℓ , , 
where 푁 , ≔ ⌊푐 푑 ∙ (푚 + 2) ∙ (⌊ln 푐 푑 ⌋ + 1) ⌋, with distortion < 
2.903.  

Since dim 퐹 = 푛 , 푖 ∈ ℕ, and evaluations 훿  at points 푧 ∈
퐾determine bounded linear functionals on 퐹 , the Hahn-Banach theorem 
needs some preparation. Given a real vector space 푉, a function 푓: 푉 → 푅 is 
called sublinear if 

(i) Positive Homogeneity: 푓(훾푥) =  훾푓(푥) for all 훾 ∈ 푅 , 푥 ∈ 푉. 
(ii) Subadditivity: 푓(푥 + 푦) ≤ 푓(푥) + 푓(푦) for all 푥, 푦 ∈ 푉. 

Every seminorm on 푉 (in norm on 푉) is sublinear. Other functions can be 
useful as well, especially Minkowski functional of convex sets. If 푝: 푉 → 푅 
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is a sublinear function and 휑: 푈 → 푅 is a linear function on a linear subspace 
푈 ⊆ 푉 which is dominated by 푝 on 푈, i.e. 

휑(푥) ≤ 푝(푥)            ∀푥 ∈ 푈 
Then there exists a linear extension 휓: 푉 → 푅 of 휑 to the whole space 푉, i.e. 
there exists a linear functional 휓 such that: 

휓(푥) =  휑(푥)          ∀푥 ∈ 푈 ,   
휓(푥) ≤  휑(푥)          ∀푥 ∈ 푉 .  [7] 

Implies easily that span {훿 } ∈ = 퐹∗. Moreover, ‖훿 ‖ ∗ = 1 for all 푧 ∈  퐾 
and the closed unit ball of  퐹∗ is the balanced convex hull of the set 
{훿 } ∈ . Let 푓 , . . . , 푓 ⊂ 퐹  be an Auerbach basis with the dual basis 

 훿 , . . . , 훿 ⊂ 퐹∗, that is, 푓 훿 ≔ 푓 푧 = 훿  (the 

Kroneckerdelta) and 푓 = 1 for all 푘. (Its construction is similar to that 

of the fundamental Lagrange interpolation polynomials for 퐹 = �풫 | . 
Now, we use a “method of  E. Landau”. By the definition, for each 

푔 ∈ 퐹  we have 푔(푧) = ∑ 푓 (푧)푔(푧 ) , 푧 ∈ 퐾. Hence, ‖푔‖ ≤
푛 ‖푔‖ ,..., . Applying the latter inequality to 푔 = 푓 , 푓 ∈ 퐹 , 

containing in 퐹 , 푖 ≔ 푑 ∙ 푝 , , and using condition (1) we get for 퐴 : =
푧 , . . . , 푧 ⊂ 퐾 

‖푓‖ = (‖푔‖ ) ≤ 푛 ∙ ∙ ‖푔‖ ≤ 푒 ∙ ‖푓‖ . 
Thus, restriction 퐹 ↦ �퐹 |  determines the required map 푖 : 퐹 ↦

ℓ ∙ . 

Proof of Corollary (2.2) [2] We set 푝푑 ∶=  푠 ·  ln(푐̂푑 ) + 1 , 푑 ∈ ℕ. 
Then the condition of the corollary implies 

ln 푛 ∙

푝
≤

ln(푐̂푑 ) + 푘 ln 푝
푝

≤
1
푆

+
푘 ln 푆

푆
=: 푐. 

Thus the result follows from Theorem (2.1) [2].  
Proof of Corollary (2.3) [2]. We make use adapted to our setting: 
Lemma (2.6) [2]: Let 푆 ⊂ ℬ  be the subset formed by all 푛 -

dimensional subspaces of ℓ , . Consider 0 < 휉 <  and let 푅 = . 

Then 푆  admits an 푅-net 푇  of cardinality at most (1 + ) , ∙ . 

Now given 휀 ∈ 0,  we choose 푠 = ⌊푠 ⌋ with 푠  satisfying 

(푒푠 ) = √1 + 휀 and 휉 such that 푅 = 푅 = √1 + 휀. Then according to 
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Corollary (2.1.2) and Lemma (2.2.3), 푑푖푠푡  푇 , ℬ ̂, , < √1 + 휀. For 
each 푝 ∈ 푇  we choose 푞 ∈ ℬ ̂, ,  such that 푑 (푝, 푞 ) < √1 + 휀. 
Then the multiplicative triangle inequality for 푑  implies that open 
푑 -“balls” of radius 1 + 휀 centered at points 푞 , 푝 ∈ 푇 , cover ℬ ̂, , . 
Hence, 

푁 ℬ ̂, , , 푑 , 1 + 휀 ≤ 푐푎푟푑 푇 ≤  (1 +
2
휉

) , ∙ .                 (9) 

Next, the function 휑(푥) = ln(푒푥 ) decreases for 푥 ∈ 푒 , ∞  and 

lim → 휑(푥) = 0. Its inverse 휑  on this interval has domain 0, 푒  , 

increases and is easily seen (using that 휑 ∘ 휑 =  푖푑) to satisfy 

휑 (푥) ≤
3푘
푥

∙ ln
3푘
푥

, 푥 ∈ 0, 푒  .  

Since ln(1 + 휀)  < 푒   for 휀 ∈ 0, , the required 푠  exists and the 

previous inequality implies that 

푠 ≤
12푘

ln(1 + 휀)
∙ ln

12푘
ln(1 + 휀)

.                                     (10) 

Further, we have 
1
휉

=  
푛 (1 + 푅 )

푅 − 1
=

푛 (√1 + 휀 + 1)
√1 + 휀 − 1

             

=
푛 (√1 + 휀 + 1) ∙ √1 + 휀 + 1

휀
.                      (11) 

From (9), (10), (11) invoking the definition of 푁 ,  we obtain 
ln 푁 ℬ ̂, , , 푑 , 1 + 휀

≤ 푛푑푐̂푑 (ln(푐̂푑 ) + 1) ln
21푛푑

휀
12푘

ln(1 + 휀)
ln

12푘
ln(1 + 휀)

. 

Using that 푛 ≤ 푐푑푘 and the inequality . 휀 < ln(1 + 휀) , 휀 ∈ 0, , we 
get the required estimate.  
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Chapter 3 
An 풍풑- Version of Von Neumann Dimension for Banach 

Space Representations of Sofic Groups 
 

A theory of entropy for actions of a sofic group on a probability 
space or a compact metrizable space has been developed. Using this 
theory, it was shown for sofic groups 훤 that probability measure 
preserving Bernoulli actions  훤 ↷ (푋, 휇)  ,  훤 ↷ (푌, 휈) are not isomorphic 
if the entropy of (푋, 휇) does not equal the entropy of (푌, 휈), if 훤, and that 
Bernoulli actions  훤 ↷ 푋  ,  훤 ↷ 푌  are not isomorphic as actions on 
compact metrizable spaces if |푋| ≠ |푌| (here 푋 and 푌 are finite). We can 
think of the action of 훤 on 푙 ( 훤, 푉) as analogous to a Bernoulli action, 
since both actions are given by translating functions on the group. 
Section (3.1): Definition of the Invariants 
  

Let 훤 be a countable discrete group. Suppose that 퐻 is a closed 훤-
invariant subspace of 푙 ( 훤 ×  푁), and let 푃  be the projection onto 퐻, 
then it is known that the number 

푑푖푚 ( )(퐻) = 〈푃 훿( , ), 훿( , )〉
 

∈ℕ

 

obeys the usual properties of dimension, 
Property 1: 푑푖푚 ( )(퐻) = 푑푖푚 ( )(퐾), if there is a 훤 -equivariant 
bounded linear bijection from 퐻 to 퐾, 
Property 2: 푑푖푚 ( )(퐻 ⊕ 퐾) = 푑푖푚 ( )(퐻) + 푑푖푚 ( )(퐾), 
Property 3: 푑푖푚 ( )(퐻) = 0 if and only if 퐻 = 0, 
Property 4: 푑푖푚 ( )(⋂ 퐻 ) = lim → 푑푖푚 ( )(퐻 ), if 푑푖푚 ( )(퐻 ) <
∞, and also 퐻 ⊆ 퐻 , 
Property 5: 푑푖푚 ( ) ⋃ 퐻 = lim → 푑푖푚 ( )(퐻 ), if 퐻 ⊆ 퐻 . 
We also have 

푑푖푚 ( ) 푙 (훤)⊕ = 푛, 
Voiculescu and Gournay noticed that for amenable groups 훤, we 

can define this dimension as a limit of normalized approximate 
dimensions of 퐹 훺, with 퐹  a Følner sequence, and 훺 ⊆ 퐻. This formula 
is analogous to the definition of entropy for actions of an amenable group 
on a compact metrizable space or measure space. Gournay noted that a 
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formula for von Neumann dimension similar to Voiculescu’s makes 
senses for subspaces of 푙 ( 훤, 푉), with 훤 amenable. Using this, he defined 
an isomorphism invariant for subspaces of 푙 ( 훤, 푉) agreeing with von 
Neumann dimension in the case 푝 = 2. In particular, Gournay shows that 
if 훤 is amenable, and there is an injective 훤-equivariant linear map of 
finite type with closed image from 푙 ( 훤, 푉) → 푙 ( 훤, 푊) then dim 
푉 ≤ 푑푖푚푊. 

Combining ideas of Kerr and Li and Voiculescu, we define an 
isomorphism invariant 

dim Σ, 푙 ( 푌, 훤)  
for a uniformly bounded action of a sofic group on a separable Banach 
space 푌.  

A sofic group is a group whose Cayley graph is an initially 
subamenable graph, or equivalently a subgroup of an ultraproduct of 
finite- rank symmetric groups such that every two elements of the group 
have distance1. They were introduced by Gromov as a common 
generalization of amenable and residually finite groups. The name 
“sofic”, from the Hebrew word meaning “finite”, was later applied by 
Weiss, following Weiss’s earlier use of the same word to indicate a 
generalization of finiteness in sofic subshifts. 

The class of sofic groups is closed under the operations of taking 
subgroups, extensions by amenable groups, and free products. A finitely 
generated group is a sofic if it is the limit of a sequence of sofic groups. 
Te limit of a sequence amenable groups (that is, an initially subamenable 
group) is necessarily sofic, but there exist sofic groups that are not 
initially subamenable groups [8].   

This definition of dimension has the following properties: 
Property 1: dim Σ, 푙 ( 푌, 훤) ≤ dim Σ, 푙 ( 푋, 훤) if there is an equivariant 
bounded linear map 푋 → 푌 with dense image, 
Property 2: dim Σ, 푙 ( 푉, 훤)  ≤ dim Σ, 푙 ( 푊, 훤) + dim Σ, 푙 ( 푉/푊, 훤), if 
푊 ⊆ 푉 is a closed 훤-invariant subspace, 
Property 3: dim Σ, 푙 ( 푌⨁푊, 훤)  ≥ dim Σ, 푙 ( 푌, 훤) + dim Σ, 푙 ( 푊, 훤), for 
2 ≤ 푝 < ∞, where dim is a “lower dimension,” and is also an invariant, 
Property 4: dim Σ, 푙  푙 ( 훤, 푉) = dim Σ, 푙  푙 ( 훤, 푉) = dim(푉), for 
1 ≤ 푝 ≤ 2, 
Property 5: dim Σ, 푙 ( 푋, 훤) ≥ dim ( )  푋‖⋅‖ ,, when 푋 ⊆ 푙 ℕ, 푙 ( 훤)  
and 1 ≤ 푝 ≤ 2. 
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We also note that for defining dim  ( 푌, 훤), little about soficity of 
훤 is used, and we can more generally define our invariants associated to a 
sequence of maps 휎 :  훤 → 퐼푠표푚(푉 ) where 푉  are finite-dimensional 
Banach spaces. 

In particular, we can show that 푑푖푚 , (푌, 훤) can be defined for 
ℛ -embeddable groups 훤. Because unitaries also act isometrically on the 
space of Schatten 푝-class operators, we can also define an invariant 

푑푖푚 , (푌, 훤), 
푆  -dimension has properties analogous to 푙  -dimension. 
Property 1: 푑푖푚 , (푌, 훤) ≤ 푑푖푚 , (푋, 훤),, if there is a 훤-equivariant 
bounded linear bijection 푋 → 푌, 
Property 2: 푑푖푚 , (푉, 훤) ≤ 푑푖푚 , (푊, 훤) + 푑푖푚 , (푉/푊, 훤), if 
푊 ⊆ 푉 is a closed 훤-invariant subspace, 
Property 3: 푑푖푚 , (푌 ⊕ 푊, 훤) ≥ 푑푖푚 , (푌, 훤) + 푑푖푚 , (푊, 훤) for 
2 ≤ 푝 < ∞, 
Property 4: 푑푖푚 , (푙 (훤, 푉) = 푑푖푚(푉) for 1 ≤ 푝 ≤ 2, 
Property 5: 푑푖푚 , (푊, 훤) ≥ 푑푖푚 ( ) 푊‖⋅‖  if 푊 ⊆ 푙 ℕ, 푙 ( 훤)  is a 
nonzero closed invariant subspace and 1 ≤ 푝 ≤ 2, 
Property 6: 푑푖푚 , (퐻, 훤)  = 푑푖푚 , (퐻, 훤) = 푑푖푚 ( ) 퐻if 퐻 ⊆
푙 (ℕ, 푙 ( 훤)) is 훤 invariant. 
In particular 푙 (훤, 푉) is not isomorphic to 푙 (훤, 푊) as a representation of 
훤, if 훤 is ℛ -embeddable and 1 ≤ 푝 < ∞. This extends a result from 
amenable groups to ℛ -embeddable groups, and answers a question of 
Gromov in the case of ℛ -embeddable groups. 

We recall the definition of sofic and ℛ -embeddable groups. To 
fix notation we use 푆푦푚 (퐴) for the group of bijections of the set A, and 
we let 푆 = 푆푦푚({1,· · · , 푛}), finally we let 푈(푛) denote the unitary 
group of ℂ , where ℂ  has the usual inner product. It is useful to 
introduce metrics on the symmetric and unitary groups. For 휎, 휏 ∈ 푆 , we 
define the Hamming distance by 

푑 (휎, 휏) =
1
푛

|{푗: 휎(푗) ≠ 휏(푗)}|. 

If 퐴, 퐵 ∈ 푀 (ℂ) we let 

〈퐴, 퐵〉 =
1
푛

푇푟(퐵∗퐴), 
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note that 〈퐴, 퐵〉 is indeed an inner product. We let ‖∙‖  denote the Hilbert 
space norm induced by this inner product. 
Definition (3.1.1) [3]: Let 훤 be a countable group. A sofic approximation 
for 훤 is a sequence of maps 휎 : 훤 → 푆  with 푑 → ∞, (not assumed to be 
homomorphisms) which is approximately multiplicatively and 
approximately free in the sense that 

푑 휎 (푠푡), 휎 (푠)휎 (푡) →  0,       푓표푟 푎푙푙 푠, 푡 ∈ 훤,   
푑 휎 (푠푡), 휎 (푠 ) → 1,       푓표푟 푎푙푙 푠 ≠ 푠  ∈ 훤.   

We say that 훤 is sofic if it has a sofic approximation. 
One can think of a sofic approximation 휎  as above as maps so that 

if 
푥 , . . . , 푥 , 푦 , . . . , 푦 ∈ 훤  , 

and 푎 , . . . , 푎 , 푏 , . . . , 푏 ∈ {−1, 1} , then with high probability, 
휎 (푥 ) · · · 휎 (푥 ) (푗) = 휎 (푦 ) · · · 휎 (푦 ) (푗)푖푓 푥 … 푥

= 푦 … 푦 , 
휎 (푥 ) · · · 휎 (푥 ) (푗) ≠ 휎 (푦 ) · · · 휎 (푦 ) (푗)푖푓 푥 … 푥

≠ 푦 … 푦 , 
The requirement 푑 → ∞ is not necessary since one can replace 휎  

with 휎⨂  where 휎⨂ : 훤 → 푆푦푚 ({1, … , 푑 } ) is given by 

휎⨂ (푠) 푎 , … , 푎 = 휎 (푠)(푎 ) … 휎 (푠) 푎 . 
We require that 푑 → ∞ simply for our properties of 푙 -dimension to 
behave appropriately. Note that 푑 → ∞ is automatic when the group is 
infinite by our approximate freeness assumption. 

A related notion is that of being ℛ -embeddable. 
Definition (3.1.2) [3]: Let 훤 be a countable group. An embedding 
sequence for 훤 is a sequence of maps 휎 : 훤 →  푈(푑 ), with 푑 → ∞, (not 
assumed to be homomorphisms) such that 

‖휎 (푠푡) − 휎 (푠)휎 (푡)‖ →  0    푓표푟 푎푙푙 푠, 푡 ∈ 훤,   
1
푑

푇푟 휎 (푠 )∗휎 (푠) →  0    푓표푟 푎푙푙 푠 ≠ 푠  푖푛 훤.   

A group is said to be ℛ -embeddable if it has a embedding sequence. 
The second condition says that if 푠 ≠ 푠 , then asymptotically 

휎 (푠), 휎 (푠 ) become orthogonal under the inner product which induces 
‖∙‖ . One can formulate a probabilistic interpretation of an embedding 
sequence analogous to that of a sofic approximation: for any 휀 > 0, if 



27 
 

푥 , … , 푥 , 푦 , … , 푦 ∈ 훤 , and 푎 , … , 푎 , 푏 , … , 푏 ∈ {−1,1} , then if 
푥 … 푥 = 푦 … 푦 , 
ℙ({휉 ∈ 푆 : ‖휎 (푥 ) · · · 휎 (푥 ) (휉) − 휎 (푦 ) · · · 휎 (푦 ) (휉)‖

< 휀}) → 1, 
and if 푥 … 푥 ≠ 푦 … 푦 , 

ℙ({휉 ∈ 푆 : |〈휎 (푥 ) · · · 휎 (푥 ) (휉), 휎 (푦 ) · · · 휎 (푦 ) (휉)〉|
< 휀}) → 1, 

This equivalence follows by concentration of measure. 
Note that if 휎 ∈ 푆  and 푈  is the unitary on ℂ  which 휎 induces, 

we have that 

푑 (휎, 휏) = 푑 (휏 휎, 퐼푑) = 1 −
1
푛

푇푟(푈 )

= 1 −
1
2

푇푟(푈∗푈 ), 

‖푈 − 푈 ‖ = 2 − 2 1 − 푑 (휏 휎, 퐼푑) = 2푑 (휎, 휏)   
thus all sofic groups are ℛ -embeddable. 

We will sometimes use an alternate definition of ℛ -embeddable: 
a group is ℛ -embeddable if its group von Neumann algebra embeds into 
an ultraproduct of matrix algebras. For a good introduction to sofic and 
ℛ -embeddable groups. 

We now give examples of sofic groups, and thus ℛ -embeddable 
groups, although most of these can be shown directly). 
Example (3.1.3) [3]: All countable amenable groups are sofic. To prove 
this, let 퐹  is a Følner sequence for 훤. For 푔 ∈ 훤, let 휏 (푔): 퐹 \ 푔 퐹 →
퐹 \ 푔퐹  be an arbitrary bijection. Define 휎 : 훤 →  푆푦푚 (퐹 ) by 

휎 (푠)(푥) = 푠푥 푖푓 푥 ∈ 퐹 ∩ 푠 퐹
휏 (푠)(푥) 표푡ℎ푒푟푤푖푠푒.

� 

It follows directly from the definition of a Følner sequence that 휎  
is a sofic approximation. 
Example (3.1.4) [3]: All countable residually sofic groups are sofic. In 
particular, this includes all free groups and residually amenable groups. 
Example (3.1.5) [3]: Countable locally sofic groups are sofic. 
Example (3.1.6) [3]: By Malcev’s Theorem all finitely generated linear 
groups are residually finite, hence sofic. By the preceding example all 
countable linear groups are sofic. 

It is shown that sofic groups are closed under direct products, 
taking subgroups, inverse limits, direct limits, free products, and 
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extensions by amenable groups: if 훬 ⊲ 훤, 훬 is sofic, and 훤/훬 is 
amenable, then 훤 is sofic. It is also known that ℛ -embeddable groups 
are closed under these operations as well. It is unknown whether all 
countable groups are sofic. As mentioned earlier, a group is ℛ -
embeddable if and only if its group von Neumann algebra embeds into an 
ultrapower of the hyperfinite II1 factor. It follows that if the Connes 
Embedding Conjecture is true, then all countable discrete groups are ℛ -
embeddable. Even without the Connes Embedding conjecture we still 
have many examples of ℛ - embeddable groups. 
Definition (3.1.7) [3]: Let 푋 be a Banach space. An action 훤 on 푋 by is 
said to be uniformly bounded if there is a constant 퐶 > 0 such that 

‖푠푥‖ ≤  퐶‖푥‖      푓표푟 푎푙푙 푥 ∈  푋, 푠 ∈ 훤 . 
We say that a sequence 푆 = (푥 )  in 푋 is dynamically generating, if 푆 
is bounded and 푆푝푎푛 푠푥 : 푠 ∈ 훤 , 푗 ∈ ℕ  is dense. 

If 푋 is a Banach space we shall write 퐼푠표푚(푋) for the group of all 
linear isometries from 푋 to itself. 
Definition (3.1.8) [3]: Let 푉 be a vector space with a pseudonorm 휌. If 
퐴 ⊆ 푉, a linear subspace 푊 ⊆ 푉 is said to be 휀-contain A, denoted 
퐴 ⊆ 푊, if for every 푣 ∈ 퐴, there is a 푤 ∈ 푊 such that 휌(푣 − 푤) < 휀. 
We let 푑 (퐴, 휌) be the minimal dimension of a subspace which 휀-
contains 퐴. 
Definition (3.1.9) [3]: A dimension triple is a triple 푋, 훤  , Σ = 휎 : 훤 →

퐼푠표푚(푉 ) , where 푋 is a separable Banach space, 훤 is a countable discrete 
group with a uniformly bounded action on 푋, each 푉  is finite-
dimensional, and the 휎  are functions with no structure assumed on them. 

Definition (3.1.10) [3]: Let 푋, 훤  , Σ = 휎 : 훤 → 퐼푠표푚(푉 )  be a 

dimension triple. Fix 푆 = (푥 )  a dynamically generating sequence in 
푋. 

For 푒 ∈ 퐸 ⊆ 훤  finite, 푙 ∈ ℕ let 
푋 ,  =  푆푝푎푛{푠푥 : 푠 ∈ 퐸 , 1 ≤ 푗 ≤ 푙}. 

If 푒 ∈ 퐸 ⊆ 훤  finite, 푚 ∈ ℕ, 퐶, 훿 > 0, let 퐻표푚 (푆, 퐹, 푚, 훿, 휎 )  be 
the set of all linear maps 푇:  푋 , → 푉  such that ‖푇‖ ≤ 퐶 and 

푇 푠 … 푠 푥 − 휎 (푠 ) … 휎 (푠 )푇 푥 <  훿 
if 1 ≤ 푗, 푘 ≤  푚, 푠 ,· · · , 푠 ∈ 퐹. If 퐶 = 1 we shall use 퐻표푚 (푆, 퐹, 푚, 훿, 휎 ) 
instead of 퐻표푚 (푆, 퐹, 푚, 훿, 휎 ) . 
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We shall frequently deal with inducing pseudonorms on 푙 (ℕ, 푉) 
from pseudornoms on 푙 (ℕ). For this, we use the following notation: if 휌 
is a pseudonorm on 푙 (ℕ) and 푉 is a Banach space, we let 휌  be the 
pseudonorm on 푙 (ℕ, 푉) defined by 휌 (푓) = 휌(푗 ↦ ‖푓(푗)‖). 
Definition (3.1.11) [3]: Let Σ, 푆 be as in the proceeding definition and let 
휌 be a pseudonorm on 푙 (ℕ). Let 훼 : 퐵 푋 , , 푉 → 푙 (ℕ, 푉 ) be given 
by 훼 (푇)(푗) = 휒{ }(푗)푇 푥 . We let 

푑 (퐻표푚 (푆, 퐹, 푚, 훿, 휎 ), 휌) = 푑 훼 퐻표푚 (푆, 퐹, 푚, 훿, 휎 ) , 휌푉  
define the dimension of 푆 with respect to 휌 by 

푓. 푑푖푚 (푆, 퐹, 푚, 훿, 휀, 휌) = lim sup
→

1
dim 푉

 푑 (퐻표푚 (푆, 퐹, 푚, 훿, 휎 ), 휌), 

푓. 푑푖푚 (푆, 휀, 휌) = lim sup
∈ ⊆   

∈ℕ

푓. 푑푖푚 (푆, 퐹, 푚, 훿, 휀, 휌), 

푓. 푑푖푚 (푆, 휌) = sup 푓. 푑푖푚 (푆, 휀, 휌) , 

where the pairs (퐹, 푚, 훿) are ordered as follows (퐹, 푚, 훿) ≤ (퐹 , 푚 , 훿 ) 
if 퐹 ⊆ 퐹 , 푚 ≤ 푚 , 훿 ≥ 훿 . 

We also use 

푓. 푑푖푚 (푆, 퐹, 푚, 훿, 휀, 휌) = lim inf
→

1
dim 푉

 푑 (퐻표푚 (푆, 퐹, 푚, 훿, 휎 ), 휌), 

푓. 푑푖푚 (푆, 휀, 휌) = lim inf
∈ ⊆   

∈ℕ

푓. 푑푖푚 (푆, 퐹, 푚, 훿, 휀, 휌), 

푓. 푑푖푚 (푆, 휌) = sup 푓. 푑푖푚 (푆, 휀, 휌). 

We will show that 

푓. 푑푖푚 (푆, 휌) = sup lim inf
( , , )

 lim sup
→

1
dim 푉

 푑 (퐻표푚 (푆, 퐹, 푚, 훿, 휎 ), 휌),  

푓. 푑푖푚 (푆, 휌) = sup lim inf
( , , )

 lim inf
→

1
dim 푉

 푑 (퐻표푚 (푆, 퐹, 푚, 훿, 휎 ), 휌) . 

We introduce two other versions of dimension, which will be used 
to prove that the above notion of dimension does not depend on the 
generating sequence. 
Definition (3.1.12) [3]: Let 푋 be a separable Banach space, we say that 푋 
has the 퐶-bounded approximation property if there is a sequence 휃 : 푋 →
푋 of finite rank maps such that ‖휃 ‖ ≤  퐶 and 

‖휃 (푥) − 푥‖ →  0,       푓표푟 푎푙푙 푥 ∈ 푋. 
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We say that 푋 has the bounded approximation property if it has the 퐶-
bounded approximation property for some 퐶 > 0. 
Definition (3.1.13) [3]: Let 푋 be a separable Banach space with a 
uniformly bounded action of a countable discrete group 훤. Let 푞: 푌 → 푋 
be a bounded linear surjective map, where 푌 is a separable Banach space 
with the bounded approximation property. A 푞-dynamical filtration is a 

pair ℱ = 푎 ( , )∈  ×ℕ
, 푌 , ∈ ⊆   , ∈ℕ  where 푎 ∈ 푌, 푌 , ⊆ 푌 

is a finite dimensional linear subspace such that 
(i) 푠푢푝( , ) 푎 < ∞, 
(ii) 푞 푎 = 푠푞 푎 , 

(iii) 푞 푎  is dynamically generating, 

(iv) 푌 , ⊆ 푌 ,  푖푓 퐸 ⊆ 퐸 , 푙 ≤ 푙 , 
(v) 푘푒푟(푞) = ⋃ 푌 , ∩  푘푒푟(푞) 

( , ) , 
(vi) 푌 , =  푆푝푎푛 푎 : 푠 ∈ 퐸 , 1 ≤ 푗 ≤ 푙 +  푘푒푟(푞) ∩ 푌 , . 
Note that if 푋 has the bounded approximation property and 푌 = 푋 

with 푞 the identity, then a dynamical filtration simply corresponds to a 
choice of a dynamically generating sequence. In general, if 푆 = (푥 )  is 
a dynamically generating sequence, then there is always a 푞-dynamical 

filtration ℱ = 푎 ( , )∈  ×ℕ
, 푌 ,   such that 푞 푎 = 푥 . Simply choose 

푎  such that 푎 ≤ 퐶 푥  and 푞 푎 = 푠푥  for some 퐶 > 0. If 
(푦 )  is a dense sequence in 푘푒푟(푞), we can set 

푌 , =  푆푝푎푛 푎 : (푠, 푗) ∈ 퐸 × {1, … , 푙} +  ℂ푦 . 

We can always find a Banach space 푌 with the bounded 
approximation property and a quotient map 푞: 푌 → 푋, in fact we can 
choose 푌 = 푙 (ℕ). 
Definition (3.1.14) [3]: A quotient dimension tuple is a tuple 

푌, 푞, 푋, 훤 , 휎 :  훤 →  퐼푠표푚(푉 )  where (푋, 훤 , 휎 ) is a dimension triple, 푌 is 
a separable Banach space with the bounded approximation property and 
푞: 푌 → 푋 is a bounded linear surjection. 
Definition (3.1.15) [3]: Let 푌, 푞, 푋, 훤 , 휎 :  훤 →  퐼푠표푚(푉 )  be a quotient 

dimension triple, and let ℱ = 푎 ( , )∈  ×ℕ
, 푌 ,   be a 푞-dynamical 
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filtration. For 푒 ∈ 퐹 ⊆ 훤  finite,푚 ∈ ℕ, 훿, 퐶 > 0 we let 퐻표푚 (ℱ, 퐹, 푚, 훿, 휎 )  
be the set of all bounded linear maps 푇: 푌 → 푉  such that ‖푇‖ ≤ 퐶 and 

푇 푎 … 푠 푗 − 휎 (푠 ) … 휎 (푠 )푇 푎 < 훿, 
�푇| ( )∩ , < 훿. 

 
As before, if 퐶 = 1 we will use 퐻표푚 (ℱ, 퐹, 푚, 훿, 휎 )  instead of 
퐻표푚 (ℱ, 퐹, 푚, 훿, 휎 ) . 

Again, in the case 푋 has the bounded approximation property, we 
are simply looking at almost equivariant maps from 훤 to 푉 , and this is 
similar in spirit to the definition of topological entropy. In the general 
case, note that genuine equivariant maps from 푋 to 푉  would correspond 
to maps on 푌 which vanish on the kernel of 푞, and so that 

푇 푎 … 푠 = 휎 (푠 ) … 휎 (푠 )푇 푎 . 
so we are still looking at almost equivariant maps on 푋, in a certain sense. 
Definition (3.1.16) [3]: Fix a pseudonorm 휌 on 푙 (ℕ), let 푌, 푞, 푋, 훤 , Σ =
(휎 :  훤 → 퐼푠표푚(푉 )  be a quotient dimension tuple, and ℱ a 푞-dynamical 
filtration. Let 훼ℱ: 퐵(푌, 푉 ) → 푙 (ℕ, 푉 ) be given by 훼ℱ(휙) =
(휙(푎 ))  we again use 푑 (퐴, 휌) = 푑 (훼ℱ(퐴), 휌푉 ). We define the 
dimension of ℱ with respect to 휌, Σ as follows: 

푓. 푑푖푚 (ℱ, 퐹, 푚, 훿, 휀, 휌) = lim sup
→

 
1

dim 푉
 푑 (퐻표푚 (ℱ, 퐹, 푚, 훿, 휎 ), 휌), 

푓. 푑푖푚 (ℱ, 휀, 휌) = lim
∈ ⊆   

∈ℕ

푓. 푑푖푚 (ℱ, 퐹, 푚, 훿, 휀, 휌), 

푓. 푑푖푚 (ℱ, 휌) = sup 푓. 푑푖푚 (ℱ, 휀, 휌) . 

Note that unlike 푓. 푑푖푚 (푆, 퐹, 푚, 훿, 휀, 휌) we know that 
푓. 푑푖푚 (ℱ, 퐹, 푚, 훿, 휀, 휌) is smaller when we enlarge 퐹 and m and shrink 
훿, thus the infimum is a limit and there are no issues between equality of 
limit supremums and limit infimums for this definition. 
Definition (3.1.17) [3]: Let 푌, 푋 be Banach spaces, and let 휌 be a 
pseduonorm on 퐵(푋, 푌). For 휀 > 0, 0 < 푀 ≤ ∞, and 퐴, 퐶 ⊆ 퐵(푋, 푌), the 
set 퐶 is said to (휀, 푀) contain 퐴 if for every 푇 ∈ 퐴, there is an  푆 ∈ 퐶 
such that ‖푆‖ ≤ 푀 and 휌(푆 − 푇) < 휀. In this case we shall write 
퐴 ⊆ , 퐶. We let 푑 , (퐴, 휌) be the smallest dimension of a linear 
subspace which (휀, 푀) contains 퐴. 
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Definition (3.1.18) [3]: Let 푌, 푞, 푋, 훤 , 휎 :  훤 →  퐼푠표푚(푉 )  be a quotient 
dimension tuple. Let ℱ = 푎  , 푌 ,  be a 푞-dynamical filtration. Fix a 
sequence of pseudonorms of 휌  on 퐵(푌, 푉 ) and 0 < 푀 ≤ ∞, set 

표푝푑푖푚 , (ℱ, 퐹, 푚, 훿, 휀, 휌 )

= lim sup
→

 
1

dim 푉
 푑 , (퐻표푚 (ℱ, 퐹, 푚, 훿, 휎 ), 휌 ), 

 표푝푑푖푚 , (ℱ, 휀, 휌 ) = inf
∈ ⊆   

∈ℕ

표푝푑푖푚 , (ℱ, 퐹, 푚, 훿, 휀, 휌),  

표푝푑푖푚 , (ℱ, 휌 ) = sup 표푝푑푖푚 , (ℱ, 휀, 휌) . 

As before, we shall use 
표푝푑푖푚 , (ℱ, 휌 ), 푓. 푑푖푚 , (ℱ, 휌 ) 

for the same definitions as above, but replacing the limit supremum with 
the limit infimum. 

By scaling, 
inf 표푝푑푖푚 , (ℱ, 휌 ) , 표푝푑푖푚 , (ℱ, 휌 ), 푓. 푑푖푚 (푆, 휌 ), 푓. 푑푖푚 (ℱ, 휌 ) 

remain the same when we replace 퐻표푚 (ℱ, 퐹, 푚, 훿, 휎 ), 퐻표푚 (푆, 퐹, 푚, 훿, 휎 ), 
by 퐻표푚 (ℱ, 퐹, 푚, 훿, 휎 ) , 퐻표푚 (푆, 퐹, 푚, 훿, 휎 ) , for 퐶 a fixed constant. 
This will be useful in several proofs. 

Note that if 휌 is a pseudonorm on 푙 (ℕ), then we get a 
pseudonorm 휌ℱ,  on 퐵(푌, 푉 ) by 

휌ℱ, =  휌 푗 ⟼ 푇 푎 . 
Further, for 0 < 푀 ≤ ∞ 

표푝푑푖푚 , ℱ, 휌ℱ, ≥ 푓. 푑푖푚 (ℱ, 휌 ). 
Definition (3.1.19) [3]: A product norm 휌 is a norm on 푙 (ℕ) such that 

(i) 휌 induces a topology stronger than the product topology, 
(ii) 휌 induces a topology which agrees with the product topology on 

{푓 ∈ 푙 (ℕ): ‖푓‖ ≤ 1}. 
Typical examples are the 푙 -norms: 

휌(푓) =
1
2푗

|푓(푗)| . 

We shall show that there is constant 푀 > 0, depending only on 푌, 
so that if ℱ, ℱ  are dynamical filtrations of 푞 and 푆 is a dynamically 
generating sequence, then for any two product norms 휌, 휌 , 
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표푝푑푖푚 , ℱ, 휌ℱ, = 표푝푑푖푚 , ℱ, 휌ℱ,
 = 푓. 푑푖푚 (ℱ, 휌 )

= 푓. 푑푖푚 (ℱ , 휌 ) = 푑푖푚 (푆, 휌 ) 
and the same with dim replaced by 푑푖푚. In particular all these dimension 
only depend of the action of 훤 on 푋, and give an isomorphism invariant. 
When we show all these equalities we let 

푑푖푚 (푋, 훤) 
denote any of these common numbers. 

The equality between these dimensions is easier to understand in 
the case when 푋 has the bounded approximation property. When 푋 has 
the bounded approximation property, we can take 푌 = 푋, 푞 = 퐼푑 and then 
the equality 

표푝푑푖푚 , ℱ, 휌ℱ,
 = 푓. 푑푖푚 (푆, 휌), 

says the data of local almost equivariant maps on 푋 is the same as the 
data of global almost equivariant maps on 푋. This is essentially because if 
we take 휃 , : 푋 → 푋 ,  which tend pointwise to the identity, then any 
almost equivariant map on 푋 ,  gives an almost equivariant map on 푋 by 
composing with 휃 , . 

Since the maps 휎 : 훤 →  퐼푠표푚(푉 ) are not assumed to have any 
structure, this invariant is uninteresting unless the maps 휎  model the 
action of 훤 on 푋 in some manner. Thus we note that if 훤 is a sofic group, 
then the maps 휎 ∶ 훤 → 푆  model at least the group 훤 in a reasonable 
manner. 

Because 푆  acts naturally on 푙 (푛) we get an induced sequence of 
maps 휎 ∶ 훤 → 퐼푠표푚 푙 (푑 )  and the above invariant measures how 
closely the action of 훤 on 푋 is modeled by these maps. When 훤 is sofic, 

and Σ = 휎 ∶ 훤 → 푆  is a sofic approximation and Σ = 휎 ∶ 훤 →

퐼푠표푚 푙 (푑 )  are the maps induced by the action of 푆  on 푙 (푛), we let 

푑푖푚 , (푋, 훤) = 푑푖푚 ( )(푋, 훤), 
푑푖푚 , (푋, 훤) = 푑푖푚 ( )(푋, 훤). 

Similarly, if 훤 is ℛ -embeddable, and 휎 ∶ 훤 → 푈(푑 ) is a 
embedding sequence, then since 푈(푑 ) is the isometry group of 푙 (푑 ) we 
shall let 

푑푖푚 , (푋, 훤) = 푑푖푚 (푋, 훤), 
푑푖푚 , (푋, 훤) = 푑푖푚 (푋, 훤). 
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Just as 푆  acts on commutative 푙 -Spaces, we have two natural 
actions of 푈(푛) on non-commutative 퐿 -spaces. Let 푆 (푛) be 푀 (ℂ) 
with the norm 

‖퐴‖ = 푇푟(|퐴| ) 
where |퐴| = (퐴 ∗ 퐴) / . Then 푈(푛) acts isometrically on 푆 (푛) by 
conjugation and by left multiplication. We shall use 

푑푖푚 , , (푋, 훤) 
for our dimension defined above, thinking of 휎  as a map into 
퐼푠표푚 푆 (푛)  by conjugation and 

푑푖푚 , , (푋, 훤) 
thinking of 휎  as a map into 퐼푠표푚 푆 (푛)  by left multiplication. 

One of our main applications will be showing that when 훤 is ℛ -
embeddable 

푑푖푚 , , 푙 (훤)⊕ , 훤 = 푑푖푚 , , 푙 (훤)⊕ , 훤 = 푛, 
if 1 ≤ 푝 ≤ 2, and 

푑푖푚 , 푙 (훤)⊕ , 훤 = 푑푖푚 , 푙 (훤)⊕ , 훤 = 푛, 
if 1 ≤ 푝 ≤ 2, In particular the representations 푙 (훤)⊕  are not 
isomorphic for different values of n, if 훤 is ℛ -embeddable. 

We show that our various notions of dimension agree. Here is the 
main strategy of the proof. First we show that there is an 푀 > 0, 
independent of ℱ so that 

표푝푑푖푚 , ℱ, 휌ℱ,
 = 푓. 푑푖푚 (ℱ, 휌), 

the constant 푀 comes from the constant in the definition of bounded 
approximation property. A compactness argument shows that 

표푝푑푖푚 , ℱ, 휌ℱ,
  

does not depend on the choice of pseudonorm. We then show that 
표푝푑푖푚 , ℱ, 휌ℱ,

  
does not depend on the choice of ℱ, this is easier than trying to show that 

푓. 푑푖푚 (푆, 휌) 
does not depend on the choice of 푆. This is because the maps used to 
define 

표푝푑푖푚 , ℱ, 휌ℱ,
  

all have the same domain, which makes it easy to switch from one 
generating set to another, since we can use that generators for ℱ have to 
be close to linear combinations of generators for ℱ . Then we show that 
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푓. 푑푖푚 (ℱ, 휌) = 푓. 푑푖푚 (푆, 휌), 
this will reduce to showing that if we are given an almost equivariant map 
휙: 푌 → 푉  which is small on the kernel of 푞, then there is a 푇: 푋 → 푉 
with 푋 ⊆ 푋 finite dimensional such that 푇 ∘ 푞 is close to 휙 on a 
prescribed finite set. 

First we need a simple fact about spaces with the bounded 
approximation property. 
Proposition (3.1.20) [3]: Let 푌 be a separable Banach space with the 퐶-
bounded approximation property, and let 퐼 be a countable directed set. 
Let (푌 ) ∈  be an increasing net of subspaces of 푌 such that 

푌 = 푌
 

. 

Then there are finite-rank maps 휃 : 푌 → 푌  such that ‖휃 ‖ ≤  퐶 and 
lim‖휃 (푦) − 푦‖ = 0 

for all ∈ 푌. 
Proof. Fix 푌 ,· · · , 푌 ∈ 푌 and 휀 > 0. Then there is a finite rank 휃: 푌 → 푌 
such that 

휃 푦 − 푦 < 휀, 
‖휃‖ ≤ 퐶. 

Write 

휃 = 휙 ⨂ 푥  

with 휙 ∈ 푌∗ and 푥 ∈ 푌. If 훼 is sufficiently large, then we can find 
푥 ∈ 푌  close enough to 푥  so that if we let 

휃 = 휙 ⨂ 푥 , 

휃 =
휃 푖푓 ‖휃 ‖ ≤ 퐶,

퐶
휃

‖휃 ‖ 표푡ℎ푒푟푤푖푠푒.
� 

then 
휃 푦 − 푦 < 2휀. 

Now let 푦  be a dense sequence in 푌, and let 

훼 ≤ 훼 ≤ 훼 ≤ · · · 
with 훼 ∈ 퐼 be such that for all 훽 ∈ 퐼, there is a j such that 훽 ≤ 훼  . By the 
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preceding paragraph, we can inductively construct an increasing sequence 
푛  of integers and finite-rank maps 

휃 : 푌 → 푌  
such that 

‖휃 ‖ < 퐶, 
휃 푦 − 푦 ≤ 2   푖푓 푗 ≤ 푘. 

Set 휃 = 휃  if 푘 is the largest integer such that 훼  is not bigger than 

훼. Let 휃 = 0 if 훼 < 훼 . Then 휃  has the desired properties.  

Lemma (3.1.21) [3]: Let 푌, 푞, 푋, 훤 , Σ = 휎 :  훤 →  퐼푠표푚(푉 )  be a 

quotient dimension tuple. Let ℱ = 푎
( , )∈  ×ℕ

, 푌 ,   be a 푞-dynamical 

filtration and 휌 a product norm, and let 퐶 > 0 be such that 푌 has the 퐶-
bounded approximation property. Fix 푀 > 퐶. Then for any 푉 ⊆ 푌 finite-
dimensional, and 휅 > 0, there is a 퐹 ⊆ 훤 푓푖푛푖푡푒 푚 ∈ ℕ, 훿, 휀 > 0 and 
linear maps 

퐿 : 푙 (ℕ, 푉 )  →  퐵(푌, 푉 ) 
so that if 휙 ∈ 퐻표푚 (ℱ, 퐹, 푚, 훿, 휎 ), 푓 ∈  푙 (ℕ, 푉 ) satisfy 휌 (훼ℱ(휙) −
 푓) < 휀, then 

‖퐿 (푓)‖ ≤ 푀, 
‖�퐿 (푓)| − �휙| ‖ ≤ 휅. 

Proof. Note that for every 푉 finite-dimensional there are an  퐸 ⊆ 훤 finite, 
푙 ∈ ℕ, such that 

max
∈

‖ ‖

inf
∈ ,

‖ ‖

‖푣 − 푤‖ < 휅, 

so we may assume that 푉 =  푌 ,  for some 퐸, 푙. 
Fix 휂 > 0 to be determined later. By the preceding proposition let 

휃 , : 푌 → 푌 ,  be such that 
휃 , ≤ 퐶, 

lim
( , )

휃 , (푦) − 푦 = 0   푓표푟 푎푙푙 푦 ∈ 푌. 

Choose 퐹, 푚 sufficiently large such that 
�휃 ,

,
− �퐼푑|

, ≤ 휂. 

Let ℬ , ⊆ 퐹 ×  {1,· · · , 푚} be such that 푞 푎 : (푠, 푗) ∈ ℬ ,  is a 

basis for 푋 , = 푠푝푎푛 푞 푎 : (푠, 푗) ∈ 퐹 ×  {1,· · · , 푚} . Define 

퐿 : 푙 (ℕ, 푉 )  →  퐵 푋 , , 푉  



37 
 

by 

퐿 (푓) 푞 푎 = 휎 (푠)푓(푗) 푓표푟 (푠, 푗)  ∈ ℬ , . 
We claim that if 훿 > 0, 휀 > 0 are sufficently small, 휙 ∈

퐻표푚 (ℱ, 퐹 , 푚, 훿, 휎 ) 푎푛푑 푓 ∈  푙 (ℕ, 푉 ) satisfy 
휌 푓 − 훼ℱ(휙) < 휀 , 

Then 
�퐿 (푓) ∘ 푞

,
− �휙|

, ≤ 휂.                (1) 

By finite-dimensionality, there is a 퐷(퐹, 푚) > 0 such that if 
푣 ∈ 푘푒푟(푞) ∩ 푌 , , (푑 ) ∈ ℂℬ , , then 

sup(‖푣‖, |푑 |) ≤ 퐷(퐹, 푚) 푣 + 푑 푎
 

( , )∈ℬ ,

. 

Thus if 푥 = 푣 + ∑ 푑 푎 
( , )∈ℬ ,

 with 푣 ∈ 푘푒푟(푞) ∩ 푌 ,  has ‖푥‖ = 1, 
then 

퐿 (푓) 푞(푥) − 휙(푥)

≤ 퐷(퐹, 푚)훿 + 퐷(퐹, 푚) ‖휙(푎 ) − 휎 (푡)푓(푟)‖
 

( , )∈ℬ ,

≤ 퐷(퐹, 푚)훿 + 퐷(퐹, 푚)|퐹| 푚훿

+ ‖휙(푎 ) − 푓(푟)‖
 

( , )∈ℬ ,

, 

if 훿 < ( , )( | | ), and 휀 > 0 is small enough so that 휌(푔) < 휀  

implies 

|푔(푟)|
 

( , )∈ℬ ,

<
휂
2

, 

then our claim holds. 
So assume that 훿, 휀 > 0 are small enough so that (1) holds, and set 

퐿 (푓) = �퐿 (푓) ∘ 푞
,

∘ 휃 , . Then   

‖퐿 (푓)‖ ≤ 퐶(1 + 휂) 
 

and for 휙, 푓 as above and 푦 ∈ 푌 ,  
‖퐿 (푓)(푦) − 휙(푦)‖

≤ (1 + 휂) 휃 , (푦) − (푦) + 퐿 (푓) ∘ 푞(푦) − 휙(푦)
≤ (2 + 휂)휂‖푦‖. 
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So we force 휂 to be small enough so that (2 + 휂)휂 < 휅, 퐶(1 + 휂) < 푀. 

Lemma (3.1.22) [3]: Let 푌, 푞, 푋, 훤 , Σ = 휎 :  훤 →  퐼푠표푚(푉 )  be a 
quotient dimension tuple. 

Let ℱ = 푎 ( , )∈  ×ℕ
, 푌 ,   be a 푞-dynamical filtration, and 휌 a 

product norm, suppose that 푌 has the 퐶-bounded approximation property. 
(a) If ∞ ≥ 푀 > 퐶, then 

푓. 푑푖푚 (ℱ, 휌 ) = 표푝푑푖푚 , (ℱ, 휌 ), 
푓. 푑푖푚 (ℱ, 휌 ) = 표푝푑푖푚 , (ℱ, 휌 ). 

(b) If 휌  is another product norm then for all 0 < 푀 < ∞, 

표푝푑푖푚 , ℱ, 휌 ℱ, = 표푝푑푖푚 , ℱ, 휌ℱ,  , 

표푝푑푖푚 , ℱ, 휌 ℱ, = 표푝푑푖푚 , ℱ, 휌ℱ,  . 
Proof. (a) First note that 

표푝푑푖푚 , (ℱ, 휌 ) ≥ 표푝푑푖푚 , (ℱ, 휌 ) ≥ 푓. 푑푖푚 (ℱ, 휌 ) 
so it suffices to handle the case that 푀 < ∞. 

Let 퐴 > 0 be such that 
푎 ≤ 퐴   푓표푟 푎푙푙 (푠, 푗) ∈ 훤 × ℕ. 

Take 1 > 휀 > 0. Let 푘 be such that if 푓 ∈ 푙 (ℕ), and ‖푓‖ ≤ 1, and 푓 
is supported on {푛: 푛 ≥ 푘}, then 휌(푓) < 휀. Since 휌 induces a topology 
weaker than the norm topology, we can find an 휀 > 휅 > 0 such that 

휌(푓) < 휀 
if 

‖푓‖ ≤ 휅. 
By Lemma (3.1.21), let 푒 ∈ 퐹 ⊆ 훤   be finite, 푚 ∈ ℕ, 휀 > 휀 > 0, 휅 > 훿 > 0 
and 퐿 : 푙 (ℕ, 푉 )  →  퐵(푌, 푉 )be such that if 휙 ∈ 퐻표푚 (ℱ, 퐹, 푚, 훿, 휎 ) and 
푓 ∈  푙 (ℕ, 푉 ) has (훼ℱ(휙) − 푓) < 휀 , then 

�퐿 (푓)| { }, − �휙| { }, < 휅, 
‖퐿 (푓)‖ ≤ 푀. 

Then if 휙, 푓 are as above we have 
휌 ℱ, 휙 − 퐿 (푓)

≤ (푀 + 1)퐴휀 + 휌 휒 (푗) 휙 푎 − 퐿 (푓) 푎  

and for 푗 ≤ 푘 
휙 푎푒푗 − 퐿푖(푓) 푎푒푗 ≤ 퐴(푀 + 1)휅. 
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Thus 
휌 ℱ, 휙 − 퐿 (푓) ≤ (푚 + 1)(퐴 + 1)휀. 

This implies that 

푑( )( ) , 퐻표푚 (ℱ, 퐹 , 푚 , 훿 , 휎 ), 휌 ℱ,

≤ 푑 퐻표푚 (ℱ, 퐹 , 푚 , 훿 , 휎 ), 휌 ℱ,  
for all 퐹 ⊇ 퐹, 푚 ≥ 푚, and all 훿 < 훿. This completes the proof. 

(b) This is a simple consequence of the compactness of the ‖∙‖  
unit ball of 푙 (ℕ) in the product topology. 
Lemma (3.1.23) [3]: Let 푌, 푞, 푋, 훤 , 휎 :  훤 →  퐼푠표푚(푉 )  be a quotient 
dimension tuple. Let ℱ, ℱ  be two 푞-dynamical filtrations. If 휌  is any 
fixed sequence of pseudonorms on 퐵(푌, 푉 ), then for all 0 < 푀 ≤ ∞, 

표푝푑푖푚 , ℱ, 휌 = 표푝푑푖푚 , ℱ , 휌  
, 

표푝푑푖푚 , ℱ, 휌 = 표푝푑푖푚 , ℱ , 휌  
. 

Proof. Let ℱ =  푎
( , )∈ ×ℕ

, 푌 . , ℱ =  푎 ( , )∈ ×ℕ
, 푌 , . We 

do the proof for 표푝푑푖푚 , the other case is proved in the same manner. 
Let 퐶 > 0 be such that ‖푠푥‖ ≤ 퐶‖푥‖ for all 푠 ∈ 훤 , 푥 ∈ 푋 and such that 

푎 , 푎 ≤ 퐶. Fix 퐹 ⊆ 훤  finite, and 푚 ∈ ℕ, 훿 > 0. Fix 휂 > 0 which 
will depend upon 퐹, 푚, 훿 in a manner to be determined later. 

Choose 퐸 ⊆ 훤  finite 푙 ∈ ℕ, such that for 1 ≤ 푗 ≤ 푚, 푠 ∈ 퐹  there 
are 푐 , ,  with (푡, 푘) ∈ 퐸 × {1,· · · , 푙} and 푣 ∈ 푌 . ∩ 푘푒푟(푞) such that 

푎 − 푣 − 푐 , ,

 

( , )∈ ×{ ,· · · , }

푎 < 휂, 

and so that for every 푤 ∈ 푌 , ∩ 푘푒푟(푞) there is a 푣 ∈ 푌 . ∩ 푘푒푟(푞) 
such that ‖푣 − 푤‖ ≤  휂‖푤‖. Let 퐴(휂) = sup 푐 , , , sup 푣  . 

Set 푚 = 2 max(푚, 푙) + 1 , 퐹 = [(퐹 ∪ 퐹 ∪  {푒})(퐸 ∪ 퐸 ∪
{푒})] , we claim that we can choose 훿 > 0, 휂 > 0 small so that 

퐻표푚 (ℱ, 퐹 , 푚 , 훿 , 휎 ) ⊆ 퐻표푚 (ℱ, 퐹, 푚, 훿, 휎 ). 
If 푇 ∈ 퐻표푚 (ℱ , 퐹 , 푚 , 훿 , 휎 ), 1 ≤  푗, 푟 ≤ 푚, and 푠 ,· · · , 푠 ∈ 퐹 

then 
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푇 푎 … 푠 푗 − 휎 (푠 ) … 휎 (푠 )푇 푎
≤ 2휂 + ‖푇(푣 푗)‖ + 휎 (푠 ) … 휎 (푠 )푇 푣

+ 푐 , ,

 

( , )∈ ×{ ,· · · , }

푇 푎 …

− 휎 (푠 ) … 휎 (푠 )푇(푎 )

≤ 2휂 + 훿 퐴(휂) + 훿 퐴(휂) + 2|퐸|푙퐴(휂)훿 . 

By choosing 휂 < 훿/2, and then choosing 훿  very small we can make the 
above expression less than 훿. If we also force 훿 < 훿/2 our choice of 휂 
implies that 

‖푇(푤)‖ ≤ 훿‖푤‖ 
for 푇 as above and 푤 ∈ 푌 ,  ∩ 푘푒푟(푞). This completes the proof.  

Because of the above lemma, the only difficulty in proving that 
표푝푑푖푚 (ℱ, 휌ℱ, 푖) does not depend on the choice of ℱ is switching the 
pseudonorm from 휌 ℱ,  to 휌 ℱ , . Because of this we will investigate how 
the dimension changes when we switch pseudonorms. 
Definition (3.1.24) [3]: Let 푌, 푞, 푋, 훤 , Σ = 휎 :  훤 →  퐼푠표푚(푉 )  be a 
quotient dimension tuple, and fix a 푞-dynamical filtration F. If 휌 , 푞  are 
pseduornoms on 퐵(푌, 푉 ) we say that 휌  is (ℱ, Σ)-weaker than 푞  and 
write 휌 ≼ ℱ, Σ, 푞  if the following holds. For every 휀 > 0, there are 
퐹 ⊆ 훤  finite, 훿, 휀 > 0, 푚, 푖 ∈ ℕ, and linear maps 퐿 : 퐵(푌, 푉 ) →
 퐵(푌, 푉 ) for 푖 ≥ 푖  such that if 휙 ∈ 퐻표푚 (ℱ, 퐹, 푚, 훿, 휎 ) and휓 ∈
퐵(푌, 푉 ) satisfy 푞 (휙 −  휓) < 휀 , then 휌 (휙 − 퐿 (휓))  < 휀. We say that 
휌  is (ℱ, Σ) equivalent to 푞 , and write 휌 ∼ ℱ, Σ푞 , if 휌 ≼ ℱ, Σ 푞  and 
푞 ≼ ℱ, Σ 휌 . 
Lemma (3.1.25) [3]: Let (푌, 푋, 푞, 훤 , Σ) be a quotient dimension tuple and 
ℱ a 푞-dynamical filtration. 

(a)  If 휌 , 푞  are pseudonorms with 휌 ≼ ℱ, Σ 푞 , then 

표푝푑푖푚 , ℱ, 휌 = 표푝푑푖푚 , ℱ, 푞  
, 

표푝푑푖푚 , ℱ, 휌 = 표푝푑푖푚 , ℱ, 푞  
. 

(b) Let ℱ = 푎
( , )∈ ×ℕ

, 푌 . , ℱ = 푎 ( , )∈ ×ℕ
, 푌 ,  be 푞-

dynamical filtrations. Let 휌 be any product norm.  
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Define a pseudonorm on 퐵(푌, 푉 ) by휌 ℱ, (휙) = 휌 휙 푎 , 

and similarly define 휌 ℱ , . Then 
휌 ℱ , ≼ ℱ, Σ 휌 ℱ, . 

Proof. Let Σ = 휎 :  훤 →  퐼푠표푚(푉 ) . 
(a) This follows directly follow the definitions. 
(b) Let 퐶 > 0 be such that 푌 has the 퐶-bounded approximation 

property and 
푎 ≤ 퐶, 
푎 ≤ 퐶. 

Choose 푚 ∈ ℕ such that 휌(푓) < 휀 if ‖푓‖ ≤ 1 and 푓 is supported 
on {푛: 푛 ≥ 푚}, and let 휅 > 0 be such that 휌(푓) < 휀 if ‖푓‖ ≤ 휅. 

By Lemma (3.1.21) choose 퐹 ⊇ 퐹 finite 푚 ≤ 푚 ∈  ℕ, and 
훿, 휀 > 0 and 

퐿 : 푙 (ℕ, 푉 )  →  퐵(푌, 푉 ) 
so that if 푓 ∈ 푙 (ℕ, 푉 ) and 휙 ∈ 퐻표푚 (ℱ, 퐹 , 푚 , 훿, 휎 ) has 휌푉 (훼ℱ(휙) −
 푓) < 휀  then 

�퐿 (푓)
{ },

− �휙|
{ },

≤ 휅, 

퐿 (푓) ≤ 2퐶. 
Let 퐿 : 퐵(푌, 푉 ) →  퐵(푌, 푉 ) be given by 퐿 (휓) = 퐿 훼ℱ(휓) . 

Suppose 휙 ∈ 퐻표푚 (ℱ, 퐹 , 푚 , 훿, 휎 ) and 휓 ∈ 퐵(푌, 푉 ) satisfy 휌ℱ, (휙 −
휓) < 휀 . Then, for 1 ≤ j ≤ m we have 

휙 푎 − 퐿 (휓) 푎 ≤ 퐶휅 
Our choice of 푚, 휅 then imply that 휌ℱ , 휙 − 퐿 (휓) < 2퐶(퐶 +  1)휀. 
This completes the proof. 
Corollary (3.1.26) [3]: Let 푌, 푞, 푋, 훤 , 휎 :  훤 →  퐼푠표푚(푉 )  be a quotient 
dimension tuple. Let 휌, 휌  be two product norms. For any two 푞-
dynamical filtrations ℱ, ℱ  we have 
표푝푑푖푚 , (ℱ, 휌 ℱ, 푖) = 표푝푑푖푚 , (ℱ , 휌 ℱ , 푖 ) = 표푝푑푖푚 , (ℱ , 휌 ℱ , 푖 ), 
표푝푑푖푚 , (ℱ, 휌 ℱ, 푖) = 표푝푑푖푚 , (ℱ , 휌 ℱ , 푖 ) = 표푝푑푖푚 (ℱ , 휌 ℱ , 푖 ). 

Proof. Combining Lemmas (3.1.21), (3.1.25), and (3.1.23) we have 
표푝푑푖푚 , (ℱ , 휌 ℱ , 푖 ) = 표푝푑푖푚 , (ℱ , 휌 ℱ , 푖) ≤ 표푝푑푖푚 , (ℱ, 휌 ℱ, 푖 ). 
The opposite inequality follows by symmetry. 

Because of the preceding corollary 푓. 푑푖푚 (ℱ, 휌 ) only depends on 
the action of 훤 and the quotient map 푞: 푌 → 푋. Thus we can define 
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푑푖푚 (푞, 훤) = 표푝푑푖푚 , ℱ, 휌ℱ,  = 푓. 푑푖푚 (ℱ, 휌 )  
where ℱ is any 푞-dynamical filtration and 휌 is any product norm. 

We now proceed to show that 푑푖푚 (푞, 훤) does not depend on 푞, as 
stated before the idea is to prove that 

푑푖푚 (푞, 훤) = 푓. 푑푖푚 (푆, 휌) 
where 푆 is any dynamically generating sequence for 푋. 

For this, we will prove that we can approximate maps 푇 on 푌 
which almost vanish on the kernel of 푞, by maps on 푋. For the proof, we 
need the construction of ultraproducts of Banach spaces. 

Let 푋  be a sequence of Banach spaces and 휔 ∈ 훽ℕ\ℕ a free 
ultrafilter. We define the ultraproduct of the 푋 , written ∏ 푋  by 

푋
 

= (푥 ) : 푥 ∈ 푋 , sup‖푥 ‖ < ∞

/ (푥 ) : 푥 ∈ 푋 , lim
→

‖푥 ‖ = 0 . 

We use (푥 ) →  for the image of (푥 )  under the canonical quotient 
map to 

푋
 

 

If a set 퐴 ⊆ ℕ is in 휔, we will say that 퐴 is 휔-large. 
Lemma (3.1.27) [3]: Let 푋, 푌 be Banach spaces with 푋 and 푞: 푌 → 푋 a 
bounded linear surjective map. Let 퐹 ⊆ 푋 be finite and 푍 a finite-
dimensional subspace of 푌 with 푞(퐹) ⊆ 푍. Let 퐶 > 0 be such that for all 
푥 ∈ 푋, there is a 푦 ∈ 푌 with ‖푦‖ ≤ 퐶‖푥‖ such that 푞(푦) = 푥, and fix 
퐴 > 퐶. Let 퐼 be a countable directed set, and (푌 ) ∈  a net of subspaces 
of 푌 such that 푌 ⊆ 푌  if 훼 ≤ 훽, and 

푞(푌 ) ⊇ 푍, 

푘푒푟(푞) = 푌 ∩ ker(푞)
 

, 

퐹 ⊆ 푌
 

. 

Then for all 휀 > 0, there are a 훿 > 0 and 훼  with the following property. 
If 훼 ≥ 훼  and 푊 is a Banach space with 푇: 푌 → 푊 a linear contraction 
such that  

�푇| ( )∩ ≤ 훿, 
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then there is a 푆: 푍 → 푊 such that ‖푆‖ ≤ 퐴 and 
‖푇(푥) −  푆 ∘ 푞(푥)‖ ≤ 휀, 

for all 푥 ∈ 퐹. 
Proof. Note that our assumptions imply 

푌 = 푌
 

. 

Fix a countable increasing sequence 훼  in 퐼, such that for every 훽 ∈ 퐼 
there is an n such that 훽 ≤ 훼 . Assume also that 퐹 ⊆ 푌  . Since 퐼 is 
directed, if the claim is false, then we can find an 휀 > 0 and an increasing 
sequence 훽  with 훽 ≥ 훼  and a 푇 : 푌 → 푊  such that ‖푇 ‖ ≤ 1, 

�푇| ( )∩ ≤ 2 , 

and for every 푆: 푋 → 푊  with ‖푆‖ ≤ 퐴, 
‖푇 (푥) −  푆 ∘ 푞(푥)‖ ≥ 휀,   푓표푟 푠표푚푒 푥 ∈ 퐹. 

Fix 휔 ∈ 훽ℕ\ℕ and let 

푊 = 푊
 

. 

Define 

푇: 푌
 

→ 푊 

by 
푇 (푥) = 푇 (푥)

→ , 
note that for any 푘, the map 푇  is defined on 푌  for 푛 ≥ 푘, so 푇 is well-
defined. Also 

‖푇(푥)‖ ≤ ‖푥‖, 

푇(푥) = 0 표푛 푌
 

∩ ker(푞).  

Our density assumptions imply that 푇 extends uniquely to a 
bounded linear map, still denoted 푇, from 푌 to 푊, which vanishes on the 
kernel of 푞. Thus there is 푆: 푍 → 푊 such that 푇 = 푆 ∘ 푞, and our 
hypothesis on 퐶 implies that ‖푆‖ ≤ 퐶. 

Since 푍 is finite dimensional, we can find 푆 : 푋 → 푊  such that 
푆(푥) = 푆 (푥)

→ . Compactness of the unit sphere of 푍 and a simple 
diagonal argument show that 
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퐶 ≥ ‖푆‖ = lim
→

‖푆 ‖ . 

Thus 퐵 = {푛: ‖푆 ‖ < 퐴} is an 휔-large set, and by hypothesis 

퐵 = 푛 ∈ 퐵: 푇 (푥) − 푆 푞(푥) ≥ 휀
 

∈

 

Since 퐵 is 휔-large, there is some 푥 ∈ 퐹 such that 
푛 ∈ 퐵: 푇 (푥) − 푆 푞(푥) ≥ 휀   

is 휔-large. But then 푇(푥) ≠ 푆 ∘ 푞(푥), a contradiction. 

Lemma (3.1.28) [3]: Let 푌, 푞, 푋, 훤 , Σ = 휎 :  훤 →  퐼푠표푚(푉 )  be a 

quotient dimension tuple. Fix a dynamically generating sequence 푆 in 푋, 
and 휌 a product norm. Then 

푑푖푚 (푞, 훤) = 푓. 푑푖푚 (푆, 휌), 
푑푖푚 (푞, 훤) = 푓. 푑푖푚 (푆, 휌). 

Proof. We will only do the proof for dim . 

Let 푆 = 푥 and let ℱ =  푎 ( , )∈ ×ℕ
, 푌 , be a 

dynamical filtration such that 푞 푎푒푗 = 푥푗 . Let 퐶 > 0 be such that 
sup
( , )

푎푠푗 ≤ 퐶, 

sup 푥푗 ≤ 퐶, 

‖푞‖ ≤ 퐶, 
for every 푥 ∈ 푋, there is a 푦 ∈ 푌 such that 푞(푦) = 푥 and ‖푦‖ ≤ 퐶‖푥‖, 
and so that 푌 has the 퐶-bounded approximation property. By Proposition, 
(3.1.20), we may find ‖휃퐸.푙‖: 푌 → 푌퐸.푙 such that ‖휃퐸.푙‖ ≤ 퐶 and 

lim
( , )

‖휃퐸.푙(푦) − 푦‖ = 0    푓표푟 푎푙푙 푦 ∈ 푌.  

We first show that 
푑푖푚 (푞, 훤) ≥ 푓. 푑푖푚 (푆, 휌). 

For this, fix 휀 > 0, and choose 푟 ∈ ℕ such that 
휌(푓) < 휀,      if 푓 is supported on {푛: 푛 ≥ 푟} 푎푛푑 ‖푓‖ ≤ 1, 

as before choose 휀 ≥ 휅 > 0 such that if ‖푓‖ ≤ 휅, then 
휌(푓) < 휀. 

Let 푒 ∈ 퐸 ⊆ 훤 finite and 푙 ∈ ℕ be such that if 퐸 ⊆ 퐹 ⊆ 훤  is finite, and 
푘 ≥ 푙 then 

휃퐹,푘 푎 − 푎 < 휅 
for 1 ≤ 푗 ≤ 푟. 
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Now fix 퐸 ⊆ 퐹 ⊆ 훤 finite, 푙 ≤ 푚 ∈ ℕ, 훿 > 0. We claim that we 
can find 퐹 ⊆ 퐹 ⊆ 훤 finite 푚 ≤ 푚  푖푛 ℕ, 훿 > 훿 > 0 such that 

퐻표푚 (푆, 퐹 , 푚 , 훿 , 휎 ) ∘ �푞|
,

∘ 휃 , ⊆ 퐻표푚 (ℱ, 퐹, 푚, 훿, 휎 ) . 

For 푇 ∈ 퐻표푚 (푆, 퐹 , 푚 , 훿 , 휎 ), for 1 ≤ 푗, 푘 ≤ 푚 and 푠 ,· · · , 푠 ∈ 퐹, 
푇 ∘ 푞 ∘ 휃 , 푎 … 푠 푗 − 휎 (푠 ) … 휎 (푠 )푇 ∘ 푞 ∘ 휃 , 푎

≤ 퐶 휃 , 훼 … 푠 푗 − 훼 … 푠 푗
+ 퐶 휃 , 푎 − 푎
+ 푇 훼 … 푠 푥 − 휎 (푠 ) … 휎 (푠 )푇 푥
< 퐶 휃 , 훼 … 푠 푥 − 훼 … 푠 푗
+ 퐶 휃 , 푎 − 푎 + 훿 . 

Also for 푦 ∈ 푘푒푟(푞) ∩ 푌 ,  we have 
푇 ∘ 푞 ∘ 휃 , (푦) ≤ 퐶 휃 , (푦) − 푦 . 

So it suffices to choose 훿 < min(훿, 휅) and then 퐹 ⊇  퐹, 푚 ≥
max(푚, 푙, 푟) such that 

퐶 휃 , 훼 … 푠 푗 − 훼 … 푠 푗 + 퐶 휃 , 푎 − 푎 < 훿 − 훿 , 

퐶 �휃 ,
,

− �퐼푑|
, < 훿, 

for 1 ≤ 푗, 푘 ≤ 푚 and 푠 ,· · · , 푠 ∈ 퐹. 
Suppose that 훿 , 퐹 , 푚  are so chosen. If 푇 ∈

퐻표푚 (푆, 퐹 , 푚 , 훿 , 휎 ) and 휙 = �푇 ∘ 푞|
,

∘ 휃 ,  then, 

휌푉 훼 (푇) − 훼ℱ(휙) ≤ 퐶(퐶 + 1)휀 + 휌푉 휒{ : } 훼 (푇) − 훼ℱ(휙)  
and if 푗 ≤ 푟, 

‖훼 (푇)(푗) − 훼ℱ(휙)(푗)‖ = 푇 푥 − 푇 ∘ 푞 ∘ 휃 , 푎
≤ 퐶휅 + 푇 푥 − 푇 ∘ 푞 푎 = 퐶휅. 

Thus 
휌푉 훼 (푇) − 훼ℱ(휙) ≤ (퐶 + 퐶 + 1)휀. 

Therefore 
푑( ) 퐻표푚 푆, 퐹′, 푚′, 훿′, 휎푖 , 휌 ≤ 푑 (퐻표푚 (ℱ, 퐹, 푚, 훿, 휎푖) , 휌). 

Since 퐹 , 푚  can be made arbitrary large and 훿  arbitrarily small, this 
implies 

푓. 푑푖푚 (푆, 휌(퐶 + 퐶 + 1)휀)

≤ lim sup
1

dim 푉
푑 (퐻표푚 (ℱ, 퐹, 푚, 훿, 휎푖) , 휌), 
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taking the limit supremum over (퐹, 푚, 훿) and then the supremum over 
휀 > 0, 

푓. 푑푖푚 (푆, 휌) ≤ 푓. 푑푖푚 (푞, 훤). 
For the opposite inequality, fix 1 > 휀 >  0 and let 푟, 휅, 퐸, 푙 be as 

before. Fix 퐸 ⊆ 퐹 ⊆ 훤  finite, 푚 ≥ max(푟, 푙) and 훿 < min(휅, 휀). 
By Lemma (3.1.27) we can find 훿 < 훿, and 퐹 ⊆ 퐹 ⊆ 훤 finite and 
푚 ≤ 푚 ∈ ℕ such that if 푊 is a Banach space and 

푇: 푌 , → 푊 
has 

‖푇‖ ≤ 1, 
�푇| ( )∩ ,

≤ 훿 , 

then there is a 휙: 푋 , → 푊 such that 
푇 푎 … 푠 푗 − 휙 푠 … 푠 푥 ≤ 훿,    푓표푟 1 ≤ j, k ≤ m, 푠 … 푠 ∈  F 

and ‖휙‖ ≤  2퐶. 
Fix 푇 ∈ 퐻표푚 (ℱ, 퐹 , 푚 , 훿 , 휎 ), and choose 휙: 푋 , → 푉  such that 

‖휙‖ ≤  2퐶 and 
푇 푎 … 푠 푗 − 휙 ∘ 푞 푎 … 푠 푗 ≤ 훿,    푓표푟 1 ≤ j, k ≤ m, 푠 … 푠 ∈ F. 

Thus for 1 ≤ j, k ≤ m, 푠 … 푠 ∈ F we have 
휙 푠 … 푠 푥 − 휎 (푠 ) … 휎 (푠 )휙 푥

≤ 2훿 푇 훼 … 푠 푗 − 휎 (푠 ) … 휎 (푠 )푇 푎 < 2훿 + 훿
< 3훿. 

Thus 휙 ∈ 퐻표푚 (푆, 퐹, 푚, 3훿, 휎푖) . Furthermore, for 1 ≤ 푗 ≤ 푟 
‖훼 (푇 )(푗)  − 훼ℱ(휙)(푗)‖ = 푇 푎 − 휙 ∘ 푞(푎 ) ≤  휅, 

so 
휌푉 훼ℱ(푇) − 훼 (휙) ≤ 휀 + (2퐶 + 퐶) = (2퐶 + 퐶 + 1) . 

Thus 
푓. 푑푖푚 (ℱ, (퐶 + 퐶 + 2)휀, 휌)

≤ lim sup
1

dim 푉
푑 (퐻표푚 (푆, 퐹, 푚, 3훿, 휎푖) , 휌), 

and since 퐹, 푚, 훿, 휀 are arbitrary this completes the proof. 
Because of the preceding Lemma and Corollary (3.1.26), we know 

that 
푓. 푑푖푚 (푆, 휌), 푑푖푚 (푞, 훤) 

only depend upon the action of 훤 on 푋, and are equal. Because of this we 
will use 
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푑푖푚 (푋, 훤) = 푓. 푑푖푚 (푆, 휌) = 푑푖푚 (푞, 훤) 
for any dynamically generating sequence 푆, and any bounded linear 
surjective map 푞: 푌 → 푋, where 푌 has the bounded approximation 
property. We similarly define 푑푖푚 (푋, 훤). 

We now prove a lemma which allows us to treat the limit 
supremum over (퐹, 푚, 훿) in the definition of f. 푓. 푑푖푚 (푆, 휌) as a limit. 
Lemma (3.1.29) [3]: Let (푋, 훤 , Σ) = 휎 :  훤 →  퐼푠표푚(푉 )  be a dimension 
triple, fix a dynamically generating sequence 푆 in 푋 and 휌 a product 
norm. Then 

푓. 푑푖푚 (푆, 휌) = sup lim inf
 ( , , )

 lim sup
1

dim 푉
 푑 (퐻표푚 (푆, 퐹, 푚, 훿, 휎 ), 휌),  

푓. 푑푖푚 (푆, 휌) = sup lim sup
 ( , , )

 lim inf
1

dim 푉
 푑 (퐻표푚 (푆, 퐹, 푚, 훿, 휎 ), 휌). 

Proof. Let 푆 = 푥 . We do the proof for dim only, the proof for 푑푖푚 

is the same. Fix 휀 > 0 and choose 푘 ∈ ℕ such that if ‖푓‖  ≤ 1 +
sup ∈ℕ 푥  and 푓 is supported on {푛: 푛 ≥ 푘}, then 휌(푓) < 휀. It suffices 
to show that 
푓. 푑푖푚 (푆, 휌)

≤ sup lim inf 
     ( , , )

 lim sup
1

dim 푉
 푑 (퐻표푚 (푆, 퐹, 푚, 훿, 휎 ), 휌). 

Fix 퐹 ⊆ 훤 finite 푚 ≥ 푘, 훿 > 0. Then for any 퐹 ⊆ 퐹 ⊆ 훤 finite, 푚 ≥
 푚, 훿 < and 휓 ∈ 퐻표푚 푆, 퐹 , 푚′, 훿′, 휎푖  we have 휓 ∈ 퐻표푚 (푆, 퐹, 푚, 훿, 휎푖). 

Furthermore if 푓, 푔 ∈ 푙 (ℕ, 푉 ) are defined by 
푓(푗) = 휒{ }(푗)휓 푥 ,        푔(푗) = 휒{ }휓 푥  

then 
휌(푗 ⟼ ‖푓(푗) −  푔(푗)‖) < 휀. 

Thus 
푑 퐻표푚 푆, 퐹′, 푚′, 훿′, 휎푖 , 휌 ≤ 푑 (퐻표푚 (푆, 퐹, 푚, 훿, 휎 ), 휌). 

Therefore 

푓. 푑푖푚 (푆, 2휀, 휌) ≤ lim sup
1

dim 푉
 푑 (퐻표푚 (푆, 퐹, 푚, 훿, 휎 ), 휌). 

Since 퐹, 푚, 훿 were arbitrary 

푓. 푑푖푚 (푆, 2휀, 휌) ≤ lim inf 
( , , )

 lim sup
1

dim 푉
 푑 (퐻표푚 (푆, 퐹, 푚, 훿, 휎 ), 휌), 

and taking the supremum over 휀 > 0 completes the proof. 
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Section (3.2): Main Properties of 풅풊풎휮(푿, 휞) and Computation 
of 풅풊풎휮,풍풑(풍풑(휞, 푽), 휞), and 풅풊풎휮,푺풑,풄풐풏풌(풍풑(휞, 푽), 휞) 

 
The first property that we prove is that dimension is decreasing 

under surjective maps, as in the usual case of finite-dimensional vector 
spaces. 

Proposition (3.2.1) [3]: Let 푌, 훤  , Σ = 휎 : 훤 → 퐼푠표푚(푉 ) , (푋, 훤  , Σ) 

be two dimension triples. Suppose that there is a 훤 -equivariant bounded 
linear map 푇: 푌 → 푋, with dense image. Then 

푑푖푚 (푋, 훤) ≤ 푑푖푚 (푌, 훤), 
푑푖푚 (푋, 훤) ≤ 푑푖푚 (푌, 훤). 

Proof. Let 푆 = 푦 1 be a dynamically generating sequence for 푌. 

Let 푆 = 푇 푥 , then 푆 is dynamically generating for 푋. Then 

퐻표푚 (푆, 퐹, 푚, 훿, 휎 ) ∘ 푇 ⊆ 퐻표푚 (푆 , 퐹, 푚, 훿, 휎 )‖ ‖, 
and 

훼  (휙 ∘ 푇) = 훼 (휙), 
so the proposition follows. 
We next show that dimension is subadditive under exact sequences. It 
turns out to be strong of a condition to require that dimension be additive 
under exact sequences. As noted if dim ,  is additive under exact 
sequences and 

dim , 푙 (훤)⊕ , 훤 = 푛, 
then we can write the Euler characteristic of a group as an alternating sum 
of dimensions of 푙  cohomology spaces. But torsion-free cocompact 
lattices in 푆푂(4,1) have positive Euler characteristic and their 푙  
cohomology vanishes when 푝 is sufficiently large, so this would give a 
contradiction. 

Proposition (3.2.2) [3]: Let 푉, 훤  , Σ = 휎 : 훤 → 퐼푠표푚(푉 )  be a 

dimension triple. Let 푊 ⊆ 푉 be a closed 훤-invariant subspace. Then 
푑푖푚 (푉, 훤) ≤ 푑푖푚 (푉/푊, 훤) + 푑푖푚 (푊, 훤), 
푑푖푚 (푉, 훤) ≤ 푑푖푚 (푉/푊, 훤) + 푑푖푚 (푊, 훤), 

푑푖푚 푉⊕ , 훤 ≤ 푛 푑푖푚 (푉, 훤). 
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Proof. Let 푆 = 푤  be a dynamically generating sequence for 푊, 

and let 푆 = 푎  be a dynamically generating sequence for 푉/푊. Let 

푥 ∈ 푉, be such that 푥 + 푊 = 푎  , and 푥 ≤ 2 푎 . Let 푆 be the 
sequence 

푥 , 푤 , 푥 , 푤 ,· · · . 
We shall use the product norm on 푙 (ℕ) given by 

휌 (푓) =
1
2

|푓(푗)| , 

휌 (푓) =
1
2

|푓(2푗)| +
1
2

|푓(2푗 − 1)| . 

Let 휀 > 0, and choose 푚 such that 2 < 휀. Let 푒 ∈ 퐹 ⊆ 훤  be finite, 
푚 ≤ 푚 ∈ ℕ, and 훿 > 0. Let 휂 > 0 to be determined later. By Lemma 
(3.1.27), we can find a 훿 > 훿 > 0, a 퐹 ∈ 퐸 ⊆ 훤  finite, and a 푚 ≤ 푘 ∈
ℕ, so that if 푋 is a Banach space, and 

푇: 푉 , → 푋 
has ‖푇‖ ≤ 2, and 

�푇| ∩ , ≤ 훿, 
then there is a 휙: (푉/푊) ,  → 푋 with ‖휙‖ ≤  3, and 

휙 푠 ,· · · 푠 푎 −  푇 (푠 ,· · · 푠 푥 ) < 훿 , 
for all 1 ≤ 푗, 푘 ≤ 푚 , 푎푛푑 푠 ,· · · 푠 ∈ 퐹 . 
By finite-dimensionality, we can find a finite set 퐹 ⊇ 퐸, 푚 ≥ 2푘, and a 
0 < 훿 < 훿 , so that if 푇: 푉 , → 푋, satisfies 

푇 푠 ,· · · 푠 푥 < 훿 , 
for all 1 ≤ 푗, 푘 ≤ 푚 , 푎푛푑 푠 ,· · · 푠 ∈ 퐹 , then 

�푇| ∩ , ≤ 훿. 
Define 

푅: 퐻표푚 (푆, 퐹 , 2푚 , 훿 , 휎 ) →  퐻표푚 (푆 , 퐹 , 푚 , 훿 , 휎 ) 
by 

푅(푇) = �푇|
,

. 

Find 
훩: 푖푚(푅) →  퐻표푚 (푆, 퐹 , 2푚 , 훿 , 휎 ) 

so that 푅 ∘ 훩 = 퐼푑 . 
Then 
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(푇 −  휃 푅(푇) 푠 ,· · · 푠 푤 = 0, 
for all 1 ≤ 푗, 푘 ≤ 푚 , 푎푛푑 푠 ,· · · 푠 ∈ 퐹 . Thus by assumption, we can 
find a 

휙: (푉/푊) , → 푉 , 
so that ‖휙‖ ≤ 3, and 

휙 푠 ,· · · 푠 푎 −  푇 − 휃 푅(푇)  (푠 ,· · · 푠 푥 ) < 훿 , 
for all 1 ≤ 푗, 푘 ≤ 푚 , 푎푛푑 푠 ,· · · 푠 ∈ 퐹 , in particular, 

휙 푎 −  푇 − 휃 푅(푇)  (푥 ) < 훿 , 
 
for 1 ≤ 푗 ≤ 푚. 

Thus whenever 1 ≤ 푗, 푘 ≤ 푚 , 푠 ,· · · 푠 ∈ 퐹 , 
휙 푠 ,· · · 푠 푎 −  휎  (푠 ) … 휎  (푠 )휙 푎 < 2훿 + 2훿 < 4훿 . 

Now suppose that 
훼 퐻표푚 (푆 , 퐹 , 푚 , 훿 , 휎 ) ⊆ , , 퐺, 
훼 (퐻표푚 (푆 , 퐹, 푚, 4훿 , 휎 ) ) ⊆ , , 퐹. 

Let 퐸 ⊆ 푙 (ℕ, 푉 ) be the subspace consisting of all h so that there are 
푓 ∈ 퐹, 푔 ∈ 퐺 so that 

ℎ(2푘) =  푔(푘), ℎ(2푘 − 1) = 푓(푘). 
Then 푑푖푚(퐸) = 푑푖푚(퐹) + 푑푖푚(퐺). It easy to see that 

훼 퐻표푚 (푆, 퐹 , 푚 , 훿 , 휎 ) ⊆ , , 퐸. 
So if 훿 < 휀, we find that 

훼 퐻표푚 (푆, 퐹 , 푚 , 훿 , 휎 ) ⊆ 퐸. 
From this the first two inequalities follow. 

The last inequality is easier and its proof will only be sketched. Let 
푆 = 푥 be a dynamically generating sequence for 푋, and 푦 = 푥 ⊗

푒  if 푗 = 푛푞 + 푟, with 1 ≤ 푟 ≤ 푛, and 푥 ⊗ 푒  is the element of 푋⊕  
which is zero in all coordinates except for the 푟th, where it is 푥 . If 퐹 ⊆ 훤  
is finite 푚 ∈ ℕ, 훿 > 0, then 

퐻표푚 (푆, 퐹, 푛푚, 훿, 휎 ) ⊆ 퐻표푚 (푆, 퐹, 푚, 훿, 휎 )⊕ . 
The rest of the proof proceeds as above.  

We note here that subadditivity is not true for weakly exact 
sequences, that is sequences 

0 → 푋 → 푌 → 푍 → 0, 
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where 푋 → 푌 is injective, 푖푚(푋) =  푘푒푟(푌 → 푍), and the image of 푌 is 
dense in 푍. In fact, using 픽  for the free group on 푛 letters 푎 ,· · · , 푎 , it 
is known that the map 

휕: 푙 (픽 )⊕ → 푙 (픽 ) , 
given by 

휕(푓 ,· · · , 푓 )(푥) = 푓 (푥) − 푓 푥  

has dense image and is injective. We will show that 
푑푖푚 , 푙 (픽 )⊕ , 픽 = 푑푖푚 , 푙 (픽 )⊕ , 픽 = 푛, 

푑푖푚 , (푙 (픽 ), 픽 ) = 푑푖푚 , (푙 (픽 ), 픽 ) = 1. 
this gives a counterexample to subadditivity under weakly exact 
sequences. This also gives a counterexample to monotonicity under 
injective maps, though once should note in this case that the map defined 
above does not have closed image. 

For 2 ≤ 푝 ≤ ∞, we have a lower bound for direct sums, whose 
proof requires a few more lemmas. 
Lemma (3.2.3) [3]:  Let 퐻 , 퐻  be Hilbert spaces and let 퐻 = 퐻 ⊕ 퐻  
and let 훺 ⊆ 퐻  and suppose 퐶 , 퐶 > 0 are such that 퐶 ≤ ‖휉‖ ≤ 퐶 , for 
all 휉 ∈ 훺  . If 0 < 훿 < 퐶 , then 

푑 (훺 ⊕ 0 ∪ 0 ⊕ 훺 ) ≥ 푑 √ (훺 ) + 푑 √ (훺 ). 
Proof. By replacing 훺  with  

휉
‖휉‖ : 휉 ∈ 훺  

we may assume 퐶 = 퐶 = 1. Let 푃  be the projection onto each 퐻 , and 
set 훺 = (훺 ⊕ 0) ∪ (0 ⊕ 훺 ). Suppose that 푉 is a subspace such that 
훺 ⊆ 푉, and let 푄 be the projection onto 푉 and 푇 = �푄푃 푄| . Define 

훺 = 푄(훺 ⊕ 0),    훺 =  푄(0 ⊕ 훺 ). 
For 휉 ∈ 훺 we have 

‖(1 − 푄)휉‖ ≤ 훿 
thus for 휉 ∈ 훺 ⊕ {0} 

〈푇푄휉, 푄휉〉 = 〈푄푃 푄휉, 푄휉〉 = ‖푃 푄휉‖  ≥  (‖휉‖ − ‖푃 (1 − 푄)휉‖)
≥ (1 − 훿) . 

So if 푇 = ∫ 푡푑퐸(푡) 
[ , ]  we have with 휂 = 푄휉 

1 − 훿 − 훿 ≤ 〈 1 −
1
2

퐸([0,1/2]) 휂, 휂〉 ≤ 1 −
1
2

‖퐸([0,1/2])휂‖ . 
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Thus 
‖퐸([0,1/2])휂‖ ≤ 2(1 −  (1 −  훿) ) ≤ 4훿 

i.e. 
‖휂 − 퐸((1/2,1]) 휂‖ ≤  4훿. 

Thus 
훺 ⊆ √ 퐸((1/2, 1]) 푉. 

Similarly, because �푄푃 푄| = 1 − 푇 we have 
훺 ⊆ √ 퐸([0,1/2]) 푉. 

For any projection 푃  and any 푥 ∈ 퐻 we have ‖푥 − 푃 푥‖ =
 ‖푥‖ − ‖푃 푥‖ . So for all 휉 ∈ 훺 ⊕ 0 we have since, 푄퐸((1/2, 1] ) =
 퐸((1/2, 1]) (and 퐸((1/2, 1]푄 = 퐸((1/2, 1]) by taking adjoints), that 
‖휉 − 퐸((1/2, 1])푄휉‖ = ‖휉 − 퐸((1/2, 1])휉‖  

= ‖휉‖ − ‖퐸((1/2, 1])휉‖
= ‖휉‖ − ‖푄휉‖  + ‖푄휉‖ − ‖퐸((1/2, 1])휉‖  
= ‖휉 − 푄휉‖ + ‖푄휉 − 퐸((1/2, 1])푄휉‖  ≤ 훿 + 4훿 < 5훿. 

Thus with a similar proof for 훺  we have 
훺 ⊕ 0 ⊆√ 퐸((1/2, 1]) 푉, 
0 ⊕ 훺 ⊆√ 퐸((0/1, 2]) 푉 

since 
푉 = 퐸([0, 1/2])푉 ⊕  퐸 ((1/2, 1]) 푉 

the desired claim follows. 
Lemma (3.2.4) [3]: Let (푋, 훤  , Σ) be a dimension triple. Let 푆 be a 
dynamically generating sequence in 푋, and 휌 a product norm such that 
휌(푓) ≤ 휌(푔) if |푓| ≤ |푔|. Set 

휌( )(푓) = 휌(휒 푓). 
Then 

푓. 푑푖푚 (푆, 휌) = lim
→

푓. 푑푖푚 푆, 휌( ) , 

푓. 푑푖푚 (푆, 휌) = lim
→

푓. 푑푖푚 푆, 휌( ) . 

Proof. Let Σ = 휎 : 훤 → 퐼푠표푚(푉 ) . Let 푆 = 푥 , 퐶 = sup 푥 . 

Since 휌( ) ≤ 휌, for any 휀 > 0 
푓. 푑푖푚 푆, 휀, 휌( ) ≤ 푓. 푑푖푚 (푆, 휀, 휌) ≤ 푓. 푑푖푚 (푆, 휌). 

thus 
lim sup

→
푓. 푑푖푚 푆, 휌( ) ≤ 푓. 푑푖푚 (푆, 휌). 
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For the opposite inequality, fix 휀 > 0. and choose 푁 such that 
휌(푓) < 휀 if 푓 ∈ 푙 (ℕ, 푉 ) is supported on {푘: 푘 ≥ 푁} and ‖푓‖ ≤ 퐶. 
Thus for 푇 ∈ 퐵(푋, 푉 ), and 푓 ∈ 푙 (ℕ, 푉 ) with ‖푇‖ ≤ 1, and 푛 ≥ 푁 we 
have 

휌 훼 (푇) − 휒{ } − 휌( ) 훼 (푇) − 휒{ }푓

≤ 휌 휒{ }훼 (푇) ≤ 휀. 
Thus for 푛 ≥ 푁, 

푓. 푑푖푚 (푆, 2휀, 휌) ≤ 푓. 푑푖푚 푆, 휀, 휌( ) ≤ 푓. 푑푖푚 푆, 휌( ) , 
so 

푓. 푑푖푚 (푆, 2휀, 휌) ≤ lim inf
→

푓. 푑푖푚 푆, 휌( ) . 

For the next lemma, we recall the notion of the volume ratio of a 
finite-dimensional Banach space. Let 푋 be an 푛-dimensional real Banach 
space, which we will identify with ℝ  with a certain norm. By an 
ellipsoid in ℝ  we mean a set which is the unit ball for some Hilbert 
space norm on ℝ . Let 퐵 ⊆ ℝ  be the unit ball of 푋. We define the 
volume ratio of 퐵, denoted 푣푟(퐵) by 

푣푟(퐵) = inf
푣표푙 (퐵)
푣표푙 (퐷)

/

, 

where the infimum runs over all ellipsoids 퐷 ⊆ 퐵. It is know that for any 
unit ball 퐵 of a Banach space norm on ℝ , there is an ellipsoid 퐷  
such that 퐷 ⊆ 퐵, and 퐷 has the largest volume of all such 
ellipsoids. So we have 

푣푟(퐵) =
푣표푙 (퐵)

푣표푙 (퐷 )

/

. 

The main property we will need to know about volume ratio is the 
following theorem. 
Theorem (3.2.5) [3]: Let 퐵 ⊆ ℝ  be the unit ball for a norm ‖∙‖ on ℝ . 
Let 퐷 ⊆ 퐵 be an ellipsoid. Set 

퐴 =
푣표푙 (퐵)
푣표푙 (퐷)

/

. 

Let |∙| be a norm such that 퐷 is the unit ball of (ℝ , |∙|), in particular 
‖∙‖ ≤ |∙|. Then for all 푘 = 1,· · · , 푛 −  1 there is a subspace 퐹 ⊆ ℝ  such 
that 푑푖푚 퐹 = 푘 and for every 푥 ∈ 퐹 

|푥| ≤  (4휋퐴) ‖푥‖.                     (2) 
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Further if we let 퐺  be the Grassmanian manifold of 푘-dimensional 
subspaces of ℝ , then 

ℙ({퐹 ∈ 퐺 : 푓표푟 푎푙푙 푥 ∈ 퐹, 퐸푞. (2)ℎ표푙푑푠}) > 1 − 2 , 
for the unique 푂(푛)-invariant probability measure on 퐺 . 

What we will actually use is the following corollary. 
Corollary (3.2.6) [3]: Let 퐵 ⊆ ℝ  be the unit ball for a norm ‖∙‖ on ℝ , 
and let 퐵  be its polar. Let 퐷 ⊆ 퐵  be an ellipsiod. Set 

퐴 =
푣표푙 (퐵 )
푣표푙 (퐷 )

/

. 

Let |∙| be a norm such that 퐷 is the unit ball of (ℝ , |∙|), in particular 
|∙| ≤ ‖∙‖. Then for all 푘 = 1,· · · , 푛 −  1 there is a subspace 퐹 ⊆ ℝ  such 
that 푑푖푚 퐹 = 푘 and for every 푥 ∈ ℝ /퐹  

‖푥‖(ℝ / ,‖∙‖) ≤  (4휋퐴) |푥|(ℝ / ,‖∙‖),              (3) 
where we use ‖∙‖(ℝ / ,‖∙‖) for the quotient norm induced by ‖∙‖ and 
similarly for |∙|. Further, 

ℙ({퐹 ∈ 퐺 : 푓표푟 푎푙푙 푥 ∈ 퐹, 퐸푞. (3)ℎ표푙푑푠}) > 1 − 2 . 
Here is the main application of the above corollary to dimension 

theory. 
Theorem (3.2.7) [3]: Let 훤 be a countable group with a uniformly 
bounded action on separable Banach spaces 푋, 푌. Let Σ = 휎 : 훤 →
퐼푠표푚(푉 )  with dim 푉 < ∞. Suppose that 푉  is the complexification of a 
real Banach space 푉  such that 

sup 푣푟 ((푉  )∗) < ∞, 

and there are constants 퐶 , 퐶 > 0 so that 

퐶 ‖푥‖ + ‖푦‖ ≤ ‖푥 + 푖푦‖ ≤ 퐶 ‖푥‖ + ‖푦‖ , 
for all 푥, 푦 ∈ 푉 . Then the following inequalities hold, 

푑푖푚 (푋 ⊕ 푌, 훤) ≥ 푑푖푚 (푋, 훤) + 푑푖푚 (푌, 훤), 
푑푖푚 (푌 ⊕ 푌 , 훤) ≥ 푑푖푚 (푋, 훤) + 푑푖푚 (푌, 훤), 

푑푖푚 푌⊕ , 훤 ≥ 푛 푑푖푚 (푌, 훤). 
Proof. We will do the proof for dim only, the proof of the other claims 
are the same. Let 푆 = (푥 ) , 푇 = (푦 )  be dynamically generating 
sequences, enumerate 푆 ⊕ {0} ∪ {0} ⊕ 푇 by 푥 , 푦 , 푥 , 푦 ,· · · , and fix 
integers 푘, 푚. By Lemma (3.2.4), it suffices to show that for fixed 
푚, 푘 ∈ ℕ, and for the pseudonorms 휌, 휌 , 휌  on 푙 (ℕ) given by 
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휌(푓) = |푓(푗)|

/

, 

휌 (푓) = |푓(푗)|

/

, 

휌 (푓) = |푓(푗)|

/

. 

we have 
푓. 푑푖푚 (푆 ⊕ 0 ∪ 0 ⊕ 푇, 휌) ≥ 푓. 푑푖푚 (푆, 휌 ) + 푓. 푑푖푚 (푇, 휌 ), 

Fix 휅, 휀 > 0 and fix 휂 > 0 which will depend upon 휅, 휀 in a manner 
to be determined later. By Corollary (3.2.6) there is a constant 퐴, which 
depends only on 휅, 퐶 , 퐶  Hilbert space norms |∙|  on 푋 , and finite 
dimensional complex subspaces 퐹 ⊆ 푉∗ of complex dimension ⌊(1 −
휅)(푑푖푚 푉 )⌋ such that 

1
퐴

|푥| ≤ ‖푥‖ ≤ 퐴|푥|  

for all 푥 ∈ 푉 /퐹  . Here, as in the Corollary (3.2.6), we abuse notation by 
using ‖푥‖ for the norm on 푋 /퐹  induced by ‖∙‖, and similarly for |∙|. 

For 푚 ≥  푚 ∈ ℕ, 훿 > 0 and 퐹 ⊆ 훤  finite we have 
퐻표푚 (푆, 퐹, 2푚 , 훿, 휎 ) ⊕ 퐻표푚 (푇, 퐹, 2푚 , 훿, 휎 )

⊆ 퐻표푚 (푆 ⊕ {0}) ∪ ({0} ⊕ 푇), 퐹, 푚 , 2훿, 휎 . 
Thus 

푑 퐻표푚 (푆 ⊕ {0}) ∪ ({0} ⊕ 푇), 퐹, 2푚 , 2훿, 휎 , 휌

≥ 푑 (퐻표푚 (푆, 퐹, 2푚 , 훿, 휎 ) ⊕ 퐻표푚 (푇, 퐹, 2푚 , 훿, 휎 ) , 휌). 
Let 

퐾 =  푇(푥 ),· · · , 푇(푥 ) : 푇 ∈ 퐻표푚 (푆, 퐹, 2푚 , 훿, 휎 ) , 
퐾 =  푆(푦 ),· · · , 푆(푦 ) : 푆 ∈ 퐻표푚 (푆, 퐹, 2푚 , 훿, 휎 ) . 

Then, by definition, 
푑 (퐻표푚 (푆, 퐹, 2푚 , 훿, 휎 ) ⊕ 퐻표푚 (푇, 퐹, 2푚 , 훿, 휎 ), 휌)

= 푑 퐾 ⊕ 퐾 , ‖∙‖⊕ ⊕ ‖∙‖⊕   
where we use the 푙 -direct sum. 

Let 휋 : 푉 → 푉푖/퐹  be the quotient map and let 
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퐺 =  휋⊕ 퐾 , 
where 푙 = 푚 if 푗 = 1, and 푙 = 푘 if 푗 = 2. 
Then 

푑 퐾 ⊕ 퐾 , ‖∙‖⊕ ⊕ ‖∙‖⊕ ≥ 푑 퐺 ⊕ 퐺 , ‖∙‖⊕ ⊕ ‖∙‖⊕

≥ 푑 퐺 ⊕ 퐺 , |∙|⊕ ⊕ |∙|⊕ . 
Set 

퐵 = 푥 ∈ 퐺 : 푙퐴 ≥ |푥| ≥ 퐴 
휀
4

, 

where 푙 = 푚 if 푖 = 1, and 푙 = 푘 if 푖 = 2. 
Then 

푑 퐺 ⊕ 퐺 , |∙|⊕ ⊕ |∙|⊕

≥ 푑 ( , )( / ) ( , ) 퐵 , |∙|⊕

+ 푑 ( , )( / ) ( , ) 퐵 , |∙|⊕ . 

Setting 휂 =
/

( , ). /  we have 

푑 퐾 ⊕ 퐾 , ‖∙‖⊕ ⊕ ‖∙‖⊕ ≥ 푑 퐵 , |∙|⊕ + 푑 퐵 , |∙|⊕

≥ 푑 퐵 , ‖∙‖⊕ + 푑 퐵 , ‖∙‖⊕ . 

Since 퐵 ⊇ 푥 ∈ 퐶 : ‖푥‖ ≥  we have 

푑 퐵 , ‖∙‖⊕ + 푑 퐵 , ‖∙‖⊕ = 푑 퐺 , ‖∙‖⊕ + 푑 퐺 , ‖∙‖⊕  
Let 퐸 ⊆ (푉 /퐹 )⊕  be a linear subspace of minimal dimension 

which 휀-contains 퐶  with respect to ‖∙‖⊕  (푙 = 푘, 푖푓 푖 = 1, 푎푛푑 푙 =
푚 푖푓 푖 = 2. ) Let 퐸 ⊆ 푉  be a linear subspace such that dim 퐸 = dim 퐸  
and 휋⊕ 퐸 = 퐸 . Set 푊 = 퐸 + 퐹⊕ . Then 푊  has dimension at most 
dim 퐸 + 푙푐  with lim → = 휅, since dim 푉 → ∞ , and 퐾 ⊆ ,‖∙‖ 푉 . 

Thus 
푑 퐺 , ‖∙‖⊕ ≥ 푑 퐾 , ‖∙‖⊕ −  푙푐 . 

Since 휀 → 0 as 휂 → 0 (and vice versa) we conclude that 
푑푖푚 푆 ⊕ 푆 , 훤, ‖∙‖ , ,

≥ −휅(푘 + 푚) + 푑푖푚 푆 , 훤, ‖∙‖ , + 푑푖푚 푌 , 훤, ‖∙‖ , . 
Since 휅 is arbitrary this proves the desired inequality. 
Corollary (3.2.8) [3]: Let 2 ≤ 푝 < ∞. 

(a)  Let 훤 be a sofic group with uniformly bounded actions on 
separable Banach spaces 푋, 푌 and let 훴 be a sofic approximation. 
Then 
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푑푖푚 , (푋 ⊕ 푌, 훤) ≥ 푑푖푚 , (푋, 훤) + 푑푖푚 , (푌, 훤), 
푑푖푚 , (푋 ⊕ 푌, 훤) ≥ 푑푖푚 , (푋, 훤) + 푑푖푚 , (푌, 훤). 

(b) Let 훤 be an ℛ -embeddable group with uniformly bounded actions 
on separable Banach spaces 푋, 푌 and let Σ be an embedding 
sequence. Then 

푑푖푚 , (푋 ⊕ 푌, 훤) ≥ 푑푖푚 , (푋, 훤) + 푑푖푚 , (푌, 훤), 
푑푖푚 , (푋 ⊕ 푌, 훤) ≥ 푑푖푚 , (푋, 훤) + 푑푖푚 , (푌, 훤). 

Proof. For 1 ≤ 푞 ≤ ∞, let 퐵  be the unit ball of 퐿 ({1,· · · , 푛}, 휇 ) where 
휇  is the uniform measure. 

It is known that for all 푞, 

inf
푣표푙 퐵
푣표푙 (퐵 )

/

> 0, 

sup
푣표푙 퐵
푣표푙 (퐵 )

/

< ∞ 

Similarly if we let 퐶  be the unit ball of {퐴 ∈ 푀 (ℂ): 퐴 = 퐴∗} in the 
norm ‖∙‖ , it is known that for all 푞, 

inf
푣표푙 퐶
푣표푙 (퐶 )

/

> 0, 

sup
푣표푙 퐶
푣표푙 (퐶 )

/

< ∞ 

Apply the preceding theorem.  
We note one last property of 푙 -dimension for representations, to 

show that our dimension agrees with von Neumann dimension in the 푙 -
case. 
Proposition (3.2.9) [3]: Let 퐻 be a separable unitary representation of a 
ℛ -embeddable group 훤. Let 훴 be an embedding sequence of 훤. Suppose 
that 퐻 = ⋃ 퐻  with 퐻  increasing, closed invariant subspaces, and 
that each 퐻  has a finite dynamically generating sequence. Then 

푑푖푚 , (퐻, 훤) =  sup 푑푖푚 , (퐻 , 훤), 

푑푖푚 , (퐻, 훤) =  sup 푑푖푚 , (퐻 , 훤). 

Proof. We will do the proof for dim only, the other cases are the same. 
By Proposition (3.2.2) we know that 푑푖푚 ,  is monotone for unitary 
representations, so we only need to show 
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푑푖푚 , (퐻, 훤) ≥ sup 푑푖푚 , (퐻 , 훤). 

Let {휉( ),· · · , 휉( )} be unit vectors which dynamically generate 퐻 . 
Let 푆  be the sequence 

휉( ), … , 휉( ), 휉( ), … , 휉( ), 휉( ), … , 휉( ), 
i.e. the 푙th term of 푆  is 

휉( ) 
if 푖 is the largest integer such that 

퐶 = 푟 < 푙
 

, 

and 

푞 = 푙 − 푟
 

. 

Let 푆 be the sequence obtained by the infinite concatenation of the 
푆 ’s. We will use 푆  to compute 푑푖푚 , (퐻 , 훤) and 푆 to compute 
푑푖푚 , (퐻, 훤), we also use the pseudornorms 

‖푇‖ , =
1
2

푇 휉 ,    ‖푇‖ , =
1
2

푇 휉 . 

Fix 휀 > 0, and let 푀 be such that 2 < 휀. Suppose 퐹 ⊆ 훤  is 
finite, 훿 > 0 and 푚 ∈ ℕ with 푚 > 퐶 . Let 푃 ∈ 퐵(퐻) be the projection 
onto 퐻 . Suppose 푉 is a subspace of 퐵(퐻 , ℂ ) of minimal dimension 
such that 

퐻표푚 (푆 , 퐹, 푚, 훿, 휎 ) ⊆ ,‖∙‖ , 푉, 
let 푉 ⊆ 퐵(퐻, ℂ ) be the image of 푉 under the map 푇 → 푇 ∘ 푃 . If 
푇 ∈ 퐻표푚 , ,( )(푆, 퐹, 푚, 훿, 휎 ) then 푇 = �푇|  is in 퐻표푚 (푆 , 퐹, 푚, 훿, 휎 ), 
and there exists 휙 ∈ 푉 such that 휙 − 푇 , < 휀. Then 

‖휙 ∘ 푃 − 푇‖ , ≤ 2
1

2
휙 − 푇 , ≤ 2 + 휀 ≤ 3휀. 

Thus 
퐻표푚 (푆, 퐹, 푚, 훿, 휎 ) ⊆ ,‖∙‖ , 푉, 

So 
푑 퐻표푚 (푆 , 퐹, 푚, 훿, 휎 ), ‖∙‖ , ≤ 푑 퐻표푚 (푆 , 퐹, 푚, 훿, 휎 ), ‖∙‖ , . 
Thus 
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푑푖푚 , 푆, 훤, 3휀, ‖∙‖ , , ≤ 푑푖푚 , 푆 , 3휀, ‖∙‖ , , ≤ sup 푑푖푚 , (휋 ) 

and similarly for 푑푖푚. Taking the supremum over 휀 > 0 completes the 
proof.  
Corollary (3.2.10) [3]: Let 훤 be a ℛ -embeddable group, and let 
Σ = 휎 : 훤 → 푈(푑 )  be an embedding sequence. Let 휋 : 훤 → 푈(퐻 ) be 
a representations of 훤 such that each 휋  has a finite dynamically 
generating sequence. Then 

푑푖푚 ,

∞
⊕

푘 = 1
휋  ≤ 푑푖푚 , (휋 ), 

푑푖푚 ,

∞
⊕

푘 = 1
휋  ≥ 푑푖푚 , (휋 ). 

We show that if 훴 is a sofic approximation of 훤 and 1 ≤ 푝 ≤ 2, 
then 

푑푖푚 , (푙 (훤, 푉), 훤) = dim 푉, 
for 푉 finite dimensional. Similarly if 훴 is a embedding sequence of 훤 and 
1 ≤ 푝 ≤ 2, we show that 

푑푖푚 , , (푙 (훤, 푉), 훤) = dim 푉, 
푑푖푚 , 푙 훤, 푙 (푛) , 훤 = 푛, 

again for 푉 finite dimensional. 
The proof for sofic groups will be relatively simple, but the proof 

for ℛ - embeddable groups requires a few more lemmas. 
Let 휈 be the unique 푈(푛) invariant Borel probability measure on 

푆 , for the next lemma we need that if 푇: ℂ → ℂ  is linear, then 
1
2

푇푟(푇) =  〈푇휉, 휉〉푑휈(휉)
 

. 

This follows from the fact that 푇푟 is, up to scaling, the unique linear 
functional on 푀 (ℂ) invariant under conjugation by 푈(푛). 

Additionally, we will use the following concentration of measure 
fact, if 푓 is a Lipschitz function on 푆 , then 

ℙ(|푓 − 피푓| > 푡) ≤ 4푒‖ ‖  . 
Lemma (3.2.11) [3]: Let 훤 be a ℛ -embeddable group, let 휎 : 훤 →
푈(푑 ) be an embedding sequence, and fix 퐸 ⊆ 훤 푓푖푛푖푡푒, 푚 ∈ ℕ. 퐹표푟 푗 ∈
{1,· · . , 푚}, 휉, 휂 ∈ 푆  define 
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푇 , : 푙 ( 훤 × {1,· · · , 푚}) → 푙 (푑 ), 
푇 , , : 푙 ( 훤 × {1,· · · , 푚}) → 푆 (푑 ) 

By 

푇 , (푓) = 푓(푠, 푗)휎 (푠)휉
 

∈

, 

푇 , , (푓) = 푓(푠, 푗)휎 (푠)휉 ⊗ 휎 (푠)휂
 

∈

. 

Then for any 훿 > 0 and 1 ≤ 푝 < ∞, 
(a) 
lim
→

ℙ 휉 ∈ 푆 : 푇 , : 푙 ( 훤 × {1,· · · , 푚}) → 푙 (푑 ) < 1 + 훿 = 1, 

(b) 
(휉, 휂) ∈ (푆 ) : 푇 , , : 푙 ( 훤 × {1,· · · , 푚}) → 푆 (푑 ) < 1 + 훿

⊇ 퐴 × 퐴 , 
Where 퐴 ⊆ 푆  has 휈(퐴 ) → 1. 

Proof. Let 휅 > 0 which will depend upon 훿 > 0, 푝 in a manner to be 
determined later. Let 

퐴 = {휉 ∈ 푆 : |〈휎 (푠)휉, 휎 (푡)휉〉| < 휅}
 

, ∈

 , 

since  

〈휎 (푠)휉, 휎 (푡)휉〉푑휈(휉)
 

=
1
푑

푇푟 휎 (푡) 휎 (푠) → 0 

for 푠 ≠ 푡, the concentration of measure estimate mentioned before the 
Lemma implies that 

휈(퐴) → 1. 
For the proof of (a), (b) we prove that if 휉, 휂 ∈ 퐴 then 

푇 , →
≤ 1 + 훿, 

푇 , , →
≤ 1 + 훿, 

if 휅 > 0 is sufficiently small. 
(a)  For 푓 ∈ 푙 (훤 ×  {1,· · · , 푚}), 휉 ∈ 퐴 we have 
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푇 , (푓) = 푓(푠, 푗)푓(푡, 푗)〈휎 (푠)휉, 휎 (푡)휉〉
 

, ∈

≤ ‖푓휒 ‖ + ‖푓‖
 

, , ∈

휅 ≤ ‖푓‖ (1 + 휅|퐸| )

≤ (1 + 훿)‖푓‖  
if 휅 < | | . 

(b) Fix 휀 > 0 to be determined later. If 휅 is sufficently small, then for 
any (휉, 휂) ∈ 퐴  we can find (휉 ) ∈ (휂 ) ∈  such that 〈휉 , 휉 〉 =
훿 , 〈휂 , 휂 〉 = 훿  and 

‖휉 − 휎 (푠)휉‖ < 휀, ‖휂 − 휎 (푠)휂‖ < 휀. 
Then 

푇 , , (푓) − 푓(푠)휉 ⊗ 휂
 

∈

≤ ‖푓‖ (‖휉 − 휎 (푠)휉‖ + ‖휎 (푠)휂 − 휂 ‖)
 

∈

 ≤ 2|퐸|휀‖푓‖ . 

Note that 

푓(푠)휉 ⊗ 휂
 

∈

= 푓(푠)푓(푡)〈휉 , 휉 〉휂 ⊗ 휂
 

, ∈

= |푓(푠)| 휂 ⊗ 휂
 

∈

. 

Thus  

푓(푠)휉 ⊗ 휂
 

∈

= ‖푓휒 ‖ ≤ ‖푓‖ . 

So if 휀 < | | the claim follows.  

Lemma (3.2.12) [3]: Let 퐻 be a Hilbert space, and 휂 ,· · · , 휂  an 
orthonormal system in 퐻, and 푉 = 푆푝푎푛 휂 : 1 ≤ 푗 ≤ 푘  and 푃  the 
projection onto 푉. Let 퐾 be a Hilbert space and 푇 ∈ 퐵(퐻, 퐾) with 
‖푇‖ ≤1. Then 

푑 ({푇(휂 ),· · · , 푇 (휂 )}) ≥ −푘휀 + 푇푟(푃 푇∗푇푃 ). 
Proof. For a subspace 퐸 ⊆ 퐻 we let 푃  be the projection onto 퐸. Let 푊 
be a subspace of minimal dimension which ε-contains {푇(휂 ),· · ·, 푇(휂 )}. 
Then 

푇푟(푃 푇 푇∗) =  푇푟(푃 푇 푇∗푃 ) ≤ 푇푟(푃 ), 
similarly 
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푇푟(푃 푇 푇∗) ≥  푇푟(푃  푇∗푃 푇푃 ) = 〈푃 푇 휂 , 푇 휂 〉

≥ −휀푘 + 〈푇 휂 , 푇 휂 〉 = −휀푘 + 푇푟(푃  푇∗푇푃 ). 

For convenience, we shall identify 퐿( 훤) as a set of vectors in 
푙 (훤 ). That is, we shall consider 퐿( 훤) to be all 휉 ∈ 푙 (훤 ) so that 

‖휉‖ ( ) = sup
∈ ( )

‖ ‖

‖휉 ∗ 푓‖ < ∞. 

Here 휉 ∗ 푓 is the usual convolution product. By standard 
arguments, if 휉 ∈ 퐿(훤 ), then for all 푓 ∈ 푙 (훤 ), 휉 ∗ 푓 ∈ 푙 (훤 ) and 

‖휉 ∗ 푓‖ ≤ ‖휉‖ ( )‖푓‖ . 
By general theory, 퐿( 훤) is closed under convolution and 

(휉 ∗ 휂) ∗ 휁 = 휉 ∗ (휂 ∗ 휁) 
for 휉, 휂, 휁 ∈ 퐿(훤 ). Finally for 휉 ∈ 퐿( 훤), we set 

휉∗(푥) = 휉(푥 ). 
If 휉 ∈ 퐿( 훤), 휁, 휂 ∈ 푙 (훤 ), then 

〈휉 ∗ 휂, 휁〉 = 〈휂, 휉∗ ∗  휁〉. 
Finally, for 휉 ∈ 퐿( 훤), 푓 ∈ 푐 (훤 ), 

‖푓 ∗ 휉‖ = ‖휉∗ ∗ 푓∗‖ ≤ ‖푓∗‖ ‖휉∗‖ ( ) = ‖푓‖ ‖휉‖ ( ). 
Hence every element of 퐿( 훤) is bounded as a right convolution 

operator. 
We shall need a few more lemmas, for the first we require the 

following definitions. 
Definition (3.2.13) [3]: We let ℂ∗〈푋 ,· · · , 푋 〉 be the free ∗-algebra in n 
noncommuting variables. That is ℂ∗〈푋 ,· · · , 푋 〉 is the universal ℂ -
algebra generated by elements 푋 ,· · · , 푋 , 푋∗,· · · , 푋∗ , and we equip 
ℂ∗〈푋 ,· · · , 푋 〉 with a ∗-algebra structure defined on words (and extended 
by conjugate linearity) by 

(푌 · · ·  푌 )∗  = 푌∗ · · ·  푌∗ , 푌 ∈ {푋 ,· · · , 푋 , 푋∗,· · · , 푋∗}, 

here 푋∗ ∗
= 푋 . We call elements of ℂ∗〈푋 ,· · · , 푋 〉 ∗-polynomials in 푛 

noncommuting variables. Note that if 퐴 is a ∗-algebra, and 푎 ,· · · , 푎 ∈
퐴, then there is a unique ∗-homomorphism ℂ∗〈푋 ,· · · , 푋 〉 → 퐴 sending 
푋  to 푎 . For 푃 ∈ ℂ∗〈푋 ,· · · , 푋 〉, we denote the image under this 
homomorphism by 푃(푎 ,· · · , 푎 ). 
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Definition (3.2.14) [3]: A tracial ∗-algebra is a pair (퐴, 휏) where 퐴 is a 
unital ∗-algebra, 휏: 퐴 → ℂ is a linear map so that 휏(1) = 1, 휏(푥∗푥) ≥ 0, 
with 휏(푥∗푥) = 0 if and only if 푥 = 0, and 휏(푥푦) = 휏(푦푥) for all 푥, 푦 ∈
퐴, and for all 푥 ∈ 퐴, there is a 푀 > 0 so that 휏(푦∗푥∗푥푦) ≤  푀휏(푦∗푦) for 
all 푦 ∈ 퐴. An embedding sequence of (퐴, 휏) is a sequence of maps 
휎 : 퐴 → 푀 (ℂ) such that 

sup‖휎 (푥)‖ < ∞ ,

푤ℎ푒푟푒 ‖∙‖  푖푠 푡ℎ푒 표푝푒푟푎푡표푟 푛표푟푚, 푓표푟 푎푙푙 푥 ∈ 퐴, 
휎 (1) = 1, 

1
푛

푇푟 휎 (푥) → 휏(푥), 

휎 푃(푥 ,· · · , 푥 ) − 푃 휎 (푥 ), … , 휎 (푥 ) → 0 
for all 푥 ,· · · , 푥 ∈ 퐴, and ∗-polynomials 푃 in 푛 noncomuting variables. 
Here ‖푥‖ = 휏(푥∗푥) /  for 푥 ∈ 퐴. We let 퐿 (퐴, 휏) be the completion of 
퐴 in ‖∙‖ . We also let 휋 : 퐴 → 퐵 퐿 (퐴, 휏)  be given by 휋 (푥)푎 = 푥푎, for 
푥, 푎 ∈ 퐴. 

The main example which will be relevant for us is 퐴 = 푐 (훤 ) with 
the product being convolution and the ∗-being defined by consider 
푐 (훤 ) ⊆ 퐿(훤 ), and 휏(푓) = 푓(푒). Then an embedding sequence of 훤 
extends to one of 푐 (훤 ) by 

휎 (푓) = 푓(푒)퐼푑 +  푓(푔)휎 (푔)
 

∈ \{ }

. 

We note that for the next Lemma, we will use measure theoretic 
notation for certain norms on tracial von Neumann algebras (푀, 휏). Thus 
‖푥‖  will be the operator norm of 푥, and ‖푥‖ =  휏((푥∗푥) / ) / . 
Lemma (3.2.15) [3]: Let (퐴, 휏) be a tracial ∗-algebra. And let 푀 be the 
weak operator topology closure of 휋 (퐴) equipped with the trace 
휏(푥) = 〈푥1, 1〉 for all 푥 ∈ 푀. Then any embedding sequence of 퐴 extends 
to one of 푀. 
Proof. By standard arguments, 휏 is indeed a trace, since 퐴 is ‖∙‖-dense in 
퐿 (퐴, 휏), and elements of 푀 commute with right multiplication it follows 
that 휏(푥∗푥) = 0 for 푥 ∈ 푀 if and only if 푥 = 0. If 푥 ∈ 푀\퐴, by the 
Kaplansky Density Theorem we may choose a sequence 푎 ,  so that 

휋 푎 , ≤ ‖푥‖  and 

푎 , − 푥 < 2 . 
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Note that if 휔 is a free ultrafilter on ℕ, then 휎 gives a trace-preserving 
embedding of 퐴 into 

푁 = (푥 ): 푥 ∈ 푀 (ℂ), sup‖푥 ‖ < ∞ (푥 ): lim
→

1
푛

푇푟(푥∗푥 ) = 0 , 

where 푁 has the trace 

휏 (푥) = lim
→

1
푑

푇푟(푥 ) , 

if 푥 = (푥 ). Thus �휎|{ ∈ : ‖ ‖ }is strong operator topology-strong 
operator topology continuous, and hence has an extension 

휏: {푎 ∈ 푀: ‖푎‖ ≤ 1} → 푁. 
If we define 

휌(푎) = 휏
푎

‖푎‖
‖푎‖ , 

it follows that 휌 is a trace-preserving ∗-homomorphism 푀 → 푁. 
So by a standard contradiction and ultrafilter argument, for all 

푎 ∈ 퐴, we may find 푎 ∈ 푀 (ℂ) so that ‖푎 ‖ ≤ ‖휋 (푎)‖  and 
‖푎 − 휎 (푎)‖ → 0. 

For 푥 ∈ 푀, choose integers 1 ≤ 푖 < 푖 < 푖 < · · · , and elements 
푏 , , ∈ 푀 (ℂ) so that 푏 , , ≤ ‖푥‖  and 

푏 , , − 휎 푎 , < 2   푓표푟 1 ≤ 푗 ≤ 푛, 푖 ≥ 푖 , 

휎 푎 , − 휎 푎 , < 2 + 푎 , − 푎 , 푓표푟 1 ≤ 푗, 푘 ≤ 푛, 푖 ≥ 푖 , 
the last inequality being possibile since 휎  is an embedding sequence on 
퐴. 

For 푥 ∈ 푀\퐴, define 휎 (푥) = 푏 , ,  where 푛 is such that 푖 ≤ 푖 <
푖 . If 푥 ∈ 푀\퐴, and 푖 ≥ 푖  and 푁 is such that 푖 ≤ 푖 ≤ 푖 , then 

휎 (푥) − 휎 푎 , < 2 + 휎 푎 , − 휎 푎 ,  

≤ 2. 2 + 푎 , − 푎 , ≤ 4. 2 , 
‖휎 (푥)‖ ≤ ‖푥‖ . 

From this estimate it is not hard to see that 휎  is an embedding sequence 
of 푀. 
Lemma (3.2.16) [3]: Let 훤 be a countable sofic group, and 훴 = 휎 : 훤 → 푆  
a sofic approximation of 훤. Extend 휎  to a embedding sequence, still 
denoted 휎 , of (퐿(훤 ), 휏) with 휏 the group trace. For 푟, 푠 ∈ ℕ define 

휎 : 푀 , (퐿(훤 )) → 푀 , 푀 (ℂ)  by 휎 (퐴) = [휎 (푎 )] , . Fix 푛 ∈
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ℕ . For 1 ≤ 푗 ≤ 푑 , 1 ≤ 푘 ≤ 푛 and 퐸 ⊆ 훤 finite define 푇 ,
( ): 푙 (훤)⊕ →

푙 (푑 ) by 

푇 ,
( )(푓) =  푓 (푔)휎 (푔)푒

 

∈

. 

Then 

(a) For all 퐸 and 1 −  표(1) 푛푑  of the 푗,k we have 푇 ,
( )

→
≤ 1 

as 푖 → ∞. 
(b) For 1 ≤ 푝 ≤ ∞, for all 휀 >  0, for all 푓 ∈ 푐 (훤 ), 푔 ∈ 푙 (훤 )⊕ , 

there is a finite subset 퐸 ⊆ 훤 , so that if 퐸 ⊇ 퐸 is a finite subset of 
훤, then the set of (푗, 푘) so that 

푇 ,
( )(푓 ∗ 푔) − 휎 (푓)푇 ,

( )(푔) ≤ 휀‖푔‖  

has cardinality at least (1 − 휀))푛푑  for all large 푖. 
(c) For all 휀 > 0, for all 휉 ∈ 푀 , 퐿(훤 ) , (identifying 푀 , 퐿(훤 )  as a 

subset of 푙 (훤 )⊕  there is a finite subset 퐸 ⊆ 훤 , so that if 퐸 ⊇ 퐸 
is a finite subset of 훤, then the set of (푗, 푘) so that 

푇 ,
( )(휉) − 휎 (휉) 푒 ⊕ 푒 ≤ 휀 

(here 푒 ⊕ 푒 ∈ 푙 (푑  )⊕  is 푒  in the 푘th coordinate and zero otherwise). 
Has cardinality at least (1 − 휀))푛푑  for all large 푖. 
Proof. (a) We have 

푇 ,
( )(푓) =  푓 (푔)

 

∈
( )( )

 

. 

Let 퐶 = {푗 ∈ {1,· · · , 푑 }: 휎 (푔)(푗) ≠ 휎 (ℎ)(푗) 푓표푟 푔 ≠ ℎ 푖푛 퐸}. By soficity, 

we have | | → 1, and if 푗 ∈ 퐶  we have 

푇 ,
( )(푓) ≤ ‖푓 ‖ ≤ ‖푓‖ . 

(b) For 퐴 ∈ 푀푑푖
(ℂ), 

‖퐴‖ =
1
푑

퐴푒 , 

where 푒  is the vector which has 푗th coordinate equal to 1, and all other 
coordinates zero. Hence by Chebyshev’s inequality, the fact that 
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푇 ,
( )(푓)

 
≤ 1, and the definition of embedding sequences, it is enough 

to verify this for 푓 = 훿 , 푔 = 훿  for some 푥, 푦 ∈ 훤 . But this is trivial from 
the definition of soficity. 

(c) Let us first verfiy this when 휉 ∈ 푀 , 푐 ( 훤) . In this case, we 
may again reduce to 휉 = (훿 ,· · · , 훿 ) for some 푎 ,· · · , 푎 ∈ 훤 . Then if 
퐸 ⊇ {푎 ,· · · , 푎 } we have 

푇 ,
( )(휉) = 휎 (푎 )푒 = 휎 (휉) 푒 ⊕ 푒 . 

In the general case let 휀 > 0, given 휉 ∈ 푀 , 퐿( 훤)  choose 

푓 ∈ 푀 , 푐 ( 훤)  so that ‖푓 − 휉‖ < 휀. Thus for 1 − 휀 + 표(1) 푘푑  of 

the (푗, 푘) we have 

푇 ,
( )(휉) − 휎 (휉) 푒 ⊕ 푒 ≤ 2휀 + 휎 (휉) − 휎 (푓) 푒 ⊕ 푒 . 

By the definition of embedding sequence for all large 푖 we have 

1
푑

 휎 (휉) − 휎 (푓) 푒 ⊕ 푒
  

< 휀 , 

thus for at least 1 −  √휀 푛푑  of the (푗, 푘) we have 
휎 (휉) − 휎 (푓) 푒 ⊕ 푒 < √휀, 

combining these estimates completes the proof. 
We need a similar lemma for ℛ -embeddable groups. 

Lemma (3.2.17) [3]: Let 훤 be a countable ℛ -embeddable group, and 
훴 = 휎 : 훤 → 푈(푑 )  an embedding sequence. Define 휌 : 훤 →
 푈 푆 (푑 )  by 휌 (푔)퐴 = 휎 (푔)퐴휎 (푔) . Extend 휎 , 휌  to embedding 
sequences, still denoted 휎 , 휌  of (퐿(훤 ), 휏) with 휏 the group trace. For 

ℎ, 푠 ∈ ℕ define 휎 : 푀 , 퐿(훤 ) → 푀 , 푀 (ℂ)  by 휎 (퐴) =
[휎 (푎 )] , . Fix 푛 ∈ ℕ. For 휉, 휂 ∈ 푙 (푑 ), 1 ≤ 푘 ≤ 푑  and 

퐸 ⊆ 훤 finite define 푇 , ,
( ) : 푙 (훤)⊕ → 푆 (푑 ) by 

푇휉,휂,
( ) (푓) =  푓 (푔)휎 (푔)휉 ⊗ 휎 (푔)휂

 

∈

. 

Then 
(a) There exists measurable 퐴 ⊆ 푆  with ℙ(퐴 ) → 1, so that 

(휉, 휂) ∈ (푆 ) : 푇휉,휂,
( )

→
≤ 2 ⊇ 퐴 × 퐴 , 
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for 1 −  표(1) 푑  of the 푘. 
(b) For all 휀 > 0, for all 푓 ∈ 푐 (훤), 푔 ∈ 푙 (훤 )⊕ , there exists 

measurable 퐵 ⊆ 푆 , with ℙ(퐵 ) ≥ 1 − 휀, for all large 푖, a 
finite subset 퐸 ⊆ 훤, so that if 퐸 ⊇ 퐸 is a finite subset of 훤, then 
for (1 −  휀)푑  of the 푘 and for all large 푖, 

(휉, 휂) ∈ (푆 ) : 푇휉,휂,
( )(푓 ∗ 푔) − 휌 (푓)푇휉,휂,

( ) (푔) ≤ 휀 ⊇ 퐵 × 퐵 , 

(c) For all 휀 > 0, for all 휁 ∈ 푀 , 퐿( 훤) , (identifying 푀 , 퐿( 훤)  as a 
subset of 푙 (훤 )⊕ ) there are measurable 퐶 ⊆ 푆 , with 
ℙ(퐶 ) ≥ 1 − 휀 for all large 푖, a finite subset 퐸 ⊆ 훤, so that if 
퐸 ⊇  퐸 is a finite subset of 훤, so that for at least (1 − 휀)푑  of the 푘 
and for all large 푖, 

(휉, 휂) ∈ (푆 ) : 푇휉,휂,
( )(휁) − 휌 (휁)휉 ⊗ 휂 ≤ 휀 ⊇ 퐶 × 퐶 , 

has cardinality at least (1 − 휀)푛푑  for all large 푖. 
Finally we need one last lemma, which allows us to reduce to 

considering subspaces of finite direct sums of 푙 ( 훤). 
Lemma (3.2.18) [3]: Let 훤 be a countable discrete group. Let 퐻 ⊆
푙 ℕ, 푙 (훤 )  be a closed 훤-invariant subspace. 

(a) Define 휋 : 푙 ℕ, 푙 (훤 ) → 푙 (훤)⊕  푏푦 휋  푓(푗) = 푓(푗) for 1 ≤ 푗 ≤ 푘. 
Then 

푑푖푚 (훤 )(퐻) = sup 푑푖푚 (훤 ) 휋푘(퐻)
‖∙‖2 . 

(b) The representation 퐻 is isomorphic to a direct sum of 
representations of the form 푙 ( 훤)푝 with 푝 ∈ 퐿( 훤) (by the remarks 
preceding definition (3.2.13) each element of 퐿( 훤) is a bounded 
right convolution operator) an orthogonal projection. 

Proof. (a) Since 휋 (퐻) is dense in 휋 (퐻) we have 

푑푖푚 (훤 )(퐻) ≥ sup 푑푖푚 (훤 ) 휋푘(퐻)
‖∙‖2 . 

Let us first handle the case when 푑푖푚 (훤 )(퐻) < ∞, let 푃 be the 
projection onto 퐻. 
Then 

푑푖푚 (훤 ) 휋푘(퐻) = 푑푖푚 (훤 )(푘푒푟(휋푘(푃)⊥)

= 푑푖푚 (훤 ) 퐻∩ 퐻⊥ + 푙2(훤)⊕푘

= 푑푖푚 (훤 ) 퐻∩ 퐻 ∩ 푙2(ℕ{1, … 푘}, 훤)
⊥

. 
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Let 푄  be the projection onto 퐻 ∩ 푙 (ℕ{1, … 푘}, 훤). Then 

푑푖푚 (훤 ) 퐻 ∩ 푙2(ℕ{1, … 푘}, 훤) = 〈푄 (훿 ⊗ 푒 ), 훿 ⊗ 푒 〉

= 〈푄 (훿 ⊗ 푒 ), 훿 ⊗ 푒 〉 ≤ 〈푃(훿 ⊗ 푒 ), 훿 ⊗ 푒 〉

→ 0, 
as 푑푖푚 (훤 )(퐻) < ∞. 

In the general case, it suffices to show that we may write 퐻 as a 
direct sum of representations with finite von Neumann dimension. Zorn’s 
Lemma implies that every representation is a direct sum of cyclic 
representations which are contained in 푙 ℕ, 푙 (훤) , so it suffices to show 
every cyclic representation contained in 푙 ℕ, 푙 (훤)  has finite von 
Neumann dimension. 

For this, let 휉 ∈ 퐻 be a cyclic vector, then there is vector 휁 ∈ 푙2(훤) 
so that 

〈푔휉, 휉〉 =  〈푔휁, 휁〉 

for all 푔 ∈ 훤 . Thus 퐻 is isomorphic to 푆푝푎푛
‖∙‖

(훤 휉) via the unitary 
sending 푔휉 → 푔휁. From this it clear that 퐻 has dimension at most 1. 

(b) As in part (a), we may assume that 퐻 is a cyclic representation 
contained in 푙 (훤). Let 푝 be the projection onto 퐻, then 푝 commutes with 
퐿(훤). Set 휉 = 푝(훿 ), since 푝 commutes with 퐿(훤), it is not hard to see that 
푝(푓) = 푓 ∗ 휉 for 푓 ∈ 푐 ( 훤). Arguments entirely similar to those before 
Definition (3.2.13) prove that 휉 is a bouned left convolution operator. 
Hence 휉 is an orthogonal projection in 퐿(훤), and 퐻 = 푙2(훤)휉. 
Theorem (3.2.19) [3]: Let 훤 be a countable discrete group, let 1 ≤ 푝 ≤
2, and 푌 a closed 훤 -invariant subspace of 푙 ℕ, 푙 (훤) , with 훤 acting by 

푔푓(푥) = 푓(푔 푥). Set 퐻 = 푌
‖∙‖

 . 
(a) Suppose 훴 is a sofic approximation of 훤, then 

푑푖푚훴, (푌, 훤) ≥ 푑푖푚퐿(훤)(퐻). 
(b) Suppose 훴 is an embedding sequence of 훤, then 

푑푖푚훴, , (푌, 훤) ≥ 푑푖푚퐿(훤)(퐻) 

(c) Suppose 훴 is an embedding sequence of 훤, and 퐻 ⊆ 푙2 ℕ, 푙2(훤)  is 
훤 invariant, then 

푑푖푚훴, (퐻, 훤) ≥ 푑푖푚퐿(훤)(퐻) 
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Proof. We first reduce to the case that 푌 ⊆ 푙 ( 훤)⊕  with ℎ finite. 
Consider the projection 

휋 : 푙푝(ℕ, 훤) → 푙푝 {1,· · · , ℎ}, 푙푝( 훤)  
given by 

휋 푓(푗) = 푓(푗), 
assume we know the result for 푌 ⊆ 푙 ( 훤)⊕  for each ℎ. 

Then, 

푑푖푚훴, (푌, 훤) ≥ 푑푖푚훴, 휋 (푌)
‖∙‖

, 훤 ≥ 푑푖푚퐿(훤) 휋 (퐻)
‖∙‖

, 

letting ℎ → ∞ and applying the preceding Lemma proves the claim. Thus, 
we shall assume that 푌 ⊆ 푙 ( 훤)⊕  with 푛 ∈ ℕ. 

By part (b) of the preceding Lemma, we can find vectors 
휉( ) ∈ 퐻, so that 

〈휆(푔)휉( ), 휉( )〉 = 〈휆(푔)푞 , 푞 〉  
= 푞 (푔 ), 푤ℎ푒푟푒 푞  푖푠 푎 푝푟표푗푒푐푡푖표푛 푖푛 퐿(훤), 

휏(푞 ) = 푑푖푚퐿(훤)(퐻), 

〈휆(푔)휉( ), 휉( )〉 = 0  푓표푟 푗 ≠ 푙, 푔 ∈ 훤, 

퐻 =
∞
⊕

푗 = 1
퐿(훤)휉( ). 

These equations can be rewritten as 

휉( ) ∗ 휉( ) ∗
= 푞 , 푓표푟 1 ≤ 푗 ≤ ∞, 

휉( ) ∗ 휉( ) ∗
= 0 , 푖푓 푗 ≠ 푙. 

Let us illuminate these equations a little. Regard a vector 휉 ∈
푙 ( 훤)⊕  as a element in 푀 , (푙 ( 훤) ) with the product of two matrices 
induced from convolution of vectors. Then the product of elements of 
푀 , (푙 ( 훤) ), 푀 , (퐿( 훤) ) makes sense, but may not land back in 푙 ( 훤) . 
The above equations then read 

휉( ) 휉( ) ∗
=  푞 , 푓표푟 1 ≤ 푗 < ∞, 

휉( ) 휉( ) =  0 푓표푟 푗 ≠  푙. 
In particular, the above equations imply that 
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휉( )
(훤)

≤ 1. 

So that 휉( ) ∈  푀 , (퐿( 훤) ). Extend 휎  to a embedding sequence of 
푀 , (퐿( 훤) ) for all 푛, 푚 and such that 

휎 휉( ) ≤ 1, 푓표푟 푎푙푙 푗, 

휎 휉( ) ≤ 1, 푓표푟 푎푙푙 푗, 푟, 

휎 휉( ) 휎 휉( ) ∗
= 0, 푓표푟 푎푙푙 푗 ≠ 푙. 

for all 푗, 푟. 
(a) Let 푆 = 푥  be a dynamical generating sequence for 푌. 

Fix 휂 > 0, 푡 ∈ ℕ and choose a finite subset 퐹 ⊆ 훤 , 푚 ∈ ℕ, and 
푐( ) for 1 ≤ 푠 ≤  푡, (푔, 푗) ∈  퐹 ×  {1,· · · , 푚 } so that for all 1 ≤  푠 ≤  푡 

휉( ) − 푐( )푔푥
 

∈
< 휂. 

Choose finitely supported functions 푥  so that 푥 − 푥  < 휂  . 

Since 푝 ≤  2, it is easy to see that if we force 휂  to be sufficiently small 
then, 

휉( ) − 푐( )푔푥  
 

∈
< 휂. 

Let 푆 = 푥  be a dynamically generating sequence for 푌. Fix 

퐹 ⊂ 훤  푓푖푛푖푡푒 푚 ∈ ℕ, 훿 >  0. Let 퐸 ⊆ 훤   be finite, let 푇 ,
( ) be defined as 

Lemma (3.2.16) [3]. 

It is easy to see that if 퐸 is sufficently large, then �푇 ,
( )

,
∈

퐻표푚훤(푆, 퐹, 푚, 훿, 휎 )  for 1 − 표(1) 푛푑  of the 푗, 푘, and in fact 

푇 ,
( )

→
≤ 2 for 1 ≤ 푝 ≤ 2. For such (푗, 푘), and for all small 훿, for 

1 ≤ 푠 ≤ 푡 + 1 

푇 ,
( ) 휉( ) − 푐( )휎 (푔)푇 ,

( ) 푥
 

∈
< 2휂, 
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푇 ,
( ) 푔푥 − 푇 ,

( ) 푔푥 < 휂. 

Thus by Lemma (3.2.16) [3] for at least (1 − (2013)!휀) 푛푑  of the 푗, 푘 we 
have 

휎 휉( ) 푒 ⊗ 푒 − 푐( )휎 (푔)푇 ,
( ) 푥

 

∈
< 휀 + 휂. 

Now consider the linear map 퐴: 푙 ℕ, 푙 (푑 )  → 푙 (푑 )⊕  given by 

푆(푓) =

⎝

⎜
⎛

푐( )휎 (푔)푓(푗)
 

∈

⎠

⎟
⎞

, 

from the above it is easy to see that if 훼 퐻표푚훤(푆, 퐹, 푚, 훿, 휎 ) ⊆  푉 
and 휀  is sufficiently small, 

퐴(푉) ⊇ ,‖∙‖ 휙 푒 ⊗ 푒 ∶ (푗, 푘) ∈ 퐴 , 
with 

|퐴 |
푑

→  (1 −  (2013)! 휀)푛푑 , 

휙 (푓) =  휎 휉( ) (푓), 휎 휉( ) (푓),· · · , 휎푖 휉( ) (푓) . 
Thus 휙  is given in matrix form by 

휙 =

⎣
⎢
⎢
⎢
⎡휎 휉( ) 0 ⋯ 0      

0 휎 휉( ) ⋯ 0      
⋮
0

⋱
0

⋯ ⋮       
⋯ 휎 휉( ) ⎦

⎥
⎥
⎥
⎤
 

As 

휙 휙∗ =

⎣
⎢
⎢
⎢
⎡휎 휉( ) 휎 휉( ) ∗

0 ⋯ 0               
0 휎 휉( ) 휎 휉( ) ∗

⋯ 0               
⋮
0

⋱
0

⋯ ⋮               
⋯ 휎 휉( ) 휎 휉( ) ∗

⎦
⎥
⎥
⎥
⎤

. 

By our choice of 휎  we have 
‖휙 ‖ ≤ 1. 

By Lemma (3.2.12) [3], we find that 
푑푖푚훴, (푉, 훤) ≥ (1 −  (2013)! 휀)푛 푑푖푚퐿(훤)(퐻). 

Letting 휀 →  0, 푡 →  ∞ completes the proof. 
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(b), (c) Same proof as in (a), one instead uses Lemma (3.2.17) [3], 
Lemma (3.2.11) [3], and the formula 

ℙ(퐴) = 푗: 푈푒 ∈ 퐴 |푑 �
 

( )

 푑푈, 

for 퐴 ⊆ 푆 , to find an orthonormal system 휁 ,· · · , 휁  with 푞 ≥ (1 −

휀)푑 , so that 푇 , ,
( )  ∈ 퐻표푚  (· · · ) for most k and all 푗, 푝.  

Corollary (3.2.20) [3]: Let 1 ≤ 푝 ≤ 2, 푉 a finite-dimensional normed 
vector space, and 훤 a countable discrete group. 

(a)  If 훤 is sofic and 훴 is a sofic approximation of 훤, then 
푑푖푚훴, (푙 (훤, 푉), 훤) = 푑푖푚 훴, (푙 (훤, 푉), 훤) = dim 푉. 

(b) If 훤 is ℛ -embeddable and 훴 is an embedding sequence of 훤, then 
푑푖푚훴, 푙 훤, 푙2(푛) , 훤 = 푑푖푚 훴, 푙 훤, 푙2(푛) , 훤 = 푛, 

푑푖푚훴, , (푙 (훤, 푉), 훤) = 푑푖푚 훴, , (푙 (훤, 푉), 훤) = dim 푉. 
Corollary (3.2.21) [3]: Let 훤 be a ℛ -embeddable group 1 ≤ 푝 ≤ 2. If 
푉, 푊 are finite dimensional vector spaces with dim 푉 < dim 푊, then 
there are no 훤–equivariant bounded linear maps from 푙 (훤, 푉) to 
푙 (훤, 푊) with dense image. Consequently if 2 ≤ 푝 < ∞, then there are no 
훤 -equivariant bounded linear injections from 푙 (훤, 푊) to 푙 (훤, 푉). 
Theorem (3.2.22) [3]: Let 훤 be an ℛ -embeddable group, and 휋: 훤 →
푈(퐻) a representation, such that 휋 ≤ 휆⊕ . Then for every embedding 
sequence 훴,  

푑푖푚훴, (휋) = 푑푖푚 훴, (휋) = 푑푖푚퐿(훤)(휋). 
Proof. Let 휆: 훤 → 푈(푙 (훤)) be given by 휆(푔) 푓(푥) = 푓(푔 푥). We 
already know from Theorem (3.2.20) that 

푑푖푚훴, 휆⊕ = 푑푖푚 훴, 휆⊕ = 푛. 
Let us first assume that 휋 is cyclic with cyclic vector 휉, then as in 

Lemma (3.2.18) [3] we may find a 휁 ∈ 푙 (훤) so that 
〈휋(푥)휉, 휉〉 = 〈휆(푥)휁, 휁〉, 

so 휋 ≤ 휆. Let 휋  be a representation such that 휆 = 휋 ⊕ 휋 , then by 
Theorem (3.2.19) [3] we have 

1 = 푑푖푚훴, 휆 ≥ 푑푖푚 훴, 휋 + 푑푖푚 훴, 휋 ≥ 푑푖푚 훴, 휋 + 푑푖푚 훴, 휋
≥ 푑푖푚 퐿(훤)휋 + 푑푖푚 퐿(훤)휋 = 1. 

Thus all the above inequalities must be equalities, in particular 
푑푖푚 훴, 휋 = 푑푖푚 훴, 휋 = 푑푖푚 퐿(훤)휋. 
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In the general case, apply Zorn’s Lemma to write 휋 =⊕ 휋  
with 휋  cycle. Then by Corollary (3.2.10) [3] 

푑푖푚 , (휋) ≥ 푑푖푚 , (휋 ) = 푑푖푚 (훤)(휋 ) = 푑푖푚 퐿(훤)휋, 

푑푖푚 , (휋) ≤ 푑푖푚 , (휋 ) = 푑푖푚 (훤)(휋 ) = 푑푖푚 퐿(훤)휋. 

This completes the proof of the theorem. 
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Chapter 4 
A Banach Space with a Countable Infinite Number of 

Complex Structures 
We show the question remains about finding examples of Banach 

spaces with exactly infinite countably many different complex structures. 
A first natural approach to solve this problem is to construct an infinite 
sum of copies of 푋(ℂ), and in order to control the number of complex 
structures to take a regular sum, for instance, ℓ 푋(ℂ) . 
Section (4.1): Construction and Complex Structure of the 
Space 햃흎ퟏ

(ℂ) 
  

A real Banach space 푋 is said to admit a complex structure when 
there exists a linear operator 퐼 on 푋 such that 퐼 = −퐼푑. This turns 푋 into 
a ℂ-linear space by declaring anew law for the scalar multiplication: 

(휆 + 푖휇). 푥 = 휆푥 + 휇퐼(푥)      (휆, 휇 ∈  ℝ). 

Equipped with the equivalent norm  
‖푥‖ =  sup ‖cos 휃푥 + sin 휃퐼푥‖ 

we obtain a complex Banach space which will be denoted by 푋 . The 
space 푋  is the complex structure of 푋 associated to the operator 퐼, which 
is often itself referred to as a complex structure for 푋. 

When the space 푋 is already a complex Banach space, the operator 
퐼푥 = 푖푥 is a complex structure on 푋ℝ (i.e., 푋 seen as a real space) which 
generates 푋. Recall that for a complex Banach space 푋 its complex 
conjugate 푋 is defined to be the space 푋 equipped with the new scalar 
multiplication 휆. 푥 = 휆̅푥. 

Two complex structures 퐼 and 퐽 on a real Banach space 푋 are 
equivalent if there exists a real automorphism 푇 on 푋 such that 푇퐼 = 퐽푇. 
This is equivalent to saying that the spaces 푋  and 푋  are ℂ-linearly 
isomorphic. To see this, simply observe that the relation 푇퐼 = 퐽푇 actually 
means that the operator 푇 is ℂ-linear as defined from 푋  to 푋 . 

We note that a complex structure 퐼 on a real Banach space 푋 is an 
automorphism whose inverse is −퐼, which is itself another complex 
structure on 푋. In fact, the complex space 푋  is the complex conjugate 
space of 푋 . Clearly the spaces 푋  and 푋  are always ℝ-linearly 
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isometric. On the other hand, J. Bourgain and N. J. Kalton constructed 
examples of complex Banach spaces not isomorphic to their 
corresponding complex conjugates, hence these spaces admit at least two 
different complex structures. The Bourgain example is an ℓ sum of finite 
dimensional spaces whose distance to their conjugates tends to infinity. 
The Kalton example is a twisted sum of two Hilbert spaces, i.e., 푋 has a 
closed subspace 퐸 such that 퐸 and 푋/퐸 are Hilbertian, while 푋 itself is 
not isomorphic to a Hilbert space. More recently 푅. Anisca  constructed a 
complex weak Hilbert space not isomorphic to its complex conjugate. 

Complex structures do not always exist on Banach spaces. The first 
example in the literature was the James space, proved by J. Dieudonné. 
Other examples of spaces with-out complex structures are the uniformly 
convex space constructed by S. Szarek and the hereditary 
indecomposable space of W. T. Gowers and B. Maurey. W. T. Gowers 
and B. Maurey and S. A. Argyros, K. Beanland and T. Raikoftsalis also 
constructed a space with unconditional basis but without complex 
structures, the second is a weak Hilbert space. In general these spaces 
have few operators. For example, every operator on the Gowers– Maurey 
space is a strictly singular perturbation of a multiple of the identity and 
this forbids complex structures: suppose that 푇 is an operator on this 
space such that 푇 = −퐼푑 and write 푇 = 휆퐼푑 + 푆 with 푆 a strictly 
singular operator. It follows that (휆 + 1)퐼푑 is strictly singular and of 
course this is impossible. 

More examples of Banach spaces without complex structures were 
constructed by P. Koszmider, M. Martín and J. Merí. In fact, they 
introduced the notion of extremely non-complex Banach space: A real 
Banach space 푋 is extremely non-complex if every bounded linear 
operator 푇: 푋 → 푋 satisfies the norm equality ‖퐼푑 + 푇 ‖ = 1 + ‖푇‖ . 
Among their examples of extremely non-complex spaces are 퐶(퐾) spaces 
with few operators (e.g. when every bounded linear operator 푇 on 퐶(퐾) 
is of the form 푇 = 푔퐼푑 + 푆 where 푔 ∈ 퐶(퐾) and 푆 is a weakly compact 
operator on 퐶(퐾)), a 퐶(퐾) space containing a complemented isomorphic 
copy of ℓ  (thus having a richer space of operators than the first one 
mentioned) and an extremely non-complex space not isomorphic to any 
퐶(퐾) space. 

Going back to the problem of uniqueness of complex structures, 
Kalton proved that spaces whose complexification is a primary space 
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have at most one complex structure (this result may be found in V. 
Ferenczi and E. Galego). In particular, the classical spaces 푐 , ℓ (1 ≤
푝 ≤ ∞), 퐿 [0, 1](1 ≤ 푝 ≤ ∞), and 퐶[0, 1] have a unique complex 
structure. 

We have mentioned before examples of Banach spaces with at 
least two different complex structures. In fact, V. Ferenczi constructed a 
space 푋(ℂ) such that the complex structure 푋(ℂ)  associated to some 
operator 퐽 and its conjugate are the only complex structures on 푋(ℂ)up to 
isomorphism. Furthermore, every ℝ-linear operator 푇 on 푋(ℂ) is of the 
form 푇 = 휆퐼푑 + 휇퐽 + 푆, where 휆, 휇 are reals and 푆 is strictly singular. 
Ferenczi also proved that the space 푋(ℂ)  has exactly 푛 + 1complex 
structures for every positive integer 푛. Going to the extreme, R.Anisca [1] 
gave examples of subspaces of 퐿 (1 ≤ 푝 < 2) which admit continuum 
many non-isomorphic complex structures. 

It follows that every ℝ-linear bounded operator 푇 on ℓ 푋(ℂ)  is 
of the form 푇 = 휆(푇) + 푆, where 휆(푇) is the scalar part of 푇, i.e., an 
infinite matrix of operators on 푋(ℂ) of the form 휆 , 퐼푑 + 휇 , 퐽, and 푆 is an 
infinite matrix of strictly singular operators on 푋(ℂ). It is easy to prove 
that if 푇 is a complex structure then 휆(푇) is also a complex structure. 
Recall that two complex structures whose difference is strictly singular 
must be equivalent. Unfortunately, the operator 푆 in the representation of 
푇 is not necessarily strictly singular, and this makes very difficult to 
understand the complex structures on ℓ 푋(ℂ) . 

It is necessary to consider a more “rigid” sum of copies of spaces 
like 푋(ℂ). We found this interesting property in the space 픛  
constructed by S.A.Argyros, J.Lopez-Abad and S.Todorcevic. Based on 
that construction we present a separable reflexive Banach space 픛 (ℂ) 
with exactly infinite countably many different complex structures which 
admits an infinite dimensional Schauder decomposition 픛 (ℂ) = ⨁ 픛  
for which every ℝ-linear operator 푇 on 픛 (ℂ) can be written as 
푇 = 퐷 + 푆, where 푆 is strictly singular, �퐷 |픛 = 휆 퐼푑픛 (휆푘 ∈ ℂ) and 
(휆 )  푘 is a convergent sequence. 

This construction also shows the existence of continuum many 
examples of Banach spaces with the property of having exactly 휔 
complex structures and the existence of a Banach space with exactly 휔  
complex structures. 
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We construct a complex Banach space 픛 (ℂ) with a bimonotone 
transfinite Schauder basis (푒 ) , such that every complex structure 퐼 
on 픛 (ℂ) is of the form 퐼 = 퐷 + 푆, where 퐷 is a suitable diagonal 
operator and 푆 is strictly singular. 

By a bimonotone transfinite Schauder basis we mean that 
픛 (ℂ) = span (푒 )  and such that for every interval 퐼 of 휔  the 
naturally defined map on the linear span of (푒 )   

휆 푒
 

⟼ 휆 푒
 

∈

 

extends to a bounded projection 푃 : 픛 (ℂ) → 픛 = spanℂ(푒 ) ∈  with 
norm equal to1. 

Basically 픛 (ℂ) corresponds to the complex version of the space 
픛  constructed in this section modifying the construction in a way that 
its ℝ-linear operators have similar structural properties to the operators in 
the original space 픛  (i.e., the operators are strictly singular perturbation 
of a complex diagonal operator). 

Recall that 휔 and 휔  denotes the least infinite cardinal number and 
the least uncountable cardinal number, respectively. Given ordinals 
훾, 휉 we write 훾 + 휉, 훾 · 휉, 훾  for the usual arithmetic operations. For an 
ordinal 훾 we denote by 훬(훾) the set of limit ordinals < 훾. Denote by 
푐 (휔 , ℂ) the vector space of all functions 푥 ∶ 휔 → ℂ such that the set 
푠푢푝푝 푥 = {훼 < 휔 : 푥(훼) ≠ 0}is finite and by ((푒 ) ∈  its canonical 
Hamel basis. For a vector 푥 ∈ 푐 (휔 , ℂ) ran 푥 will denote the minimal 
interval containing 푠푢푝푝 푥. Given two subsets 퐸 , 퐸  of 휔  we say that 
퐸 < 퐸  if max 퐸 < max 퐸 . Then for 푥, 푦 ∈ 푐 (휔 , ℂ) 푥 < 푦 means 
that 푠푢푝푝 푥 < 푠푢푝푝 푦. For a vector 푥 ∈ 푐 (휔 , ℂ) and a subset 퐸 of 
휔  we denote by 퐸푥 (or 푃 ) the restriction of 푥 on 퐸 or simply the 
function 푥휒 . Finally in some cases we shall denote elements of 
푐 (휔 , ℂ) as 푓, 푔, ℎ, . .. and its canonical Hamel basis as (푒∗ ) ∈  
meaning that we refer to these elements as being functionals in the 
norming set. 
Definition (4.1.1) [4]: The space 픛 (ℂ) shall be defined as the 
completion of 푐 (휔 , ℂ) equipped with a norm given by anorming set 
휅 (ℂ) ⊆ 푐 (휔 , ℂ). This means that the norm for every 푥 ∈ 푐 (휔 , ℂ) 
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is defined as sup |휙(푥)| = ∑ 휙(훼)푥(훼) : 휙 ∈ 휅 (ℂ) . The norm 
of this space can also be defined inductively. 

We start by fixing two fast increasing sequences (푚 ) and (푛 ) that 
are going to be used in the rest of this work. The sequences are defined 
recursively as follows: 

(i) 푚 = 2 and 푚 = 푚 ; 
(ii) 푛 = 4 and 푛 = (4푛 ) , where 푠 = log 푚 . 
Let 휅 (ℂ) be the minimal subset of 푐 (휔 , ℂ) such that 
(a) It contains every (푒∗ ) . It satisfies that for every 휙 ∈ 휅 (ℂ) 

and for every complex number 휃 = 휆 + 푖휇 with 휆 and 휇 rationals 
and |휃| ≤ 1, 휃휙 ∈ 휅 (ℂ). It is closed under restriction to intervals 
of 휔 . 

(b) For every {휙 : 푖 = 1, . . . , 푛 }  ⊆ 휅 (ℂ) such that 휙 < ⋯ < 휙 , 
the combination  

휙 =
1

푚
휙 ∈ 휅 (ℂ). 

In this case we say that 휙 is the result of an (푚 , 푛 )-operation. 

(c) For every special sequence 휙 < ⋯ < 휙  (see Definition 
(4.2.4), the combination 

휙 =
1

푚
휙 ∈ 휅 (ℂ). 

In this case we say that 휙 is a special functional and that 휙 is the result of 
an (푚 , 푛 )-operation. 

(d) It is rationally convex. 
Define a norm on c푐 (휔 , ℂ) by setting  

‖푥‖ = sup 휙(훼)푥(훼)
 

: 휙 ∈ 휅 (ℂ) . 

The space 픛 (ℂ) is defined as the completion of (푐 (휔 , ℂ), ‖∙‖) . 
This definition of the norming set 휅 (ℂ) is similar to other (c). 

We add the property of being closed under products with rational 
complex numbers of the unit ball. This, together with property (b) above, 
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guarantees the existence of some type of sequences in the same way they 
are constructed for 픛 . It follows that the norm is also defined by 

‖푥‖ = sup 휙(푥) = 휙(훼)푥(훼)
 

: 휙 ∈ 휅 (ℂ), 휙(푥) ∈ ℝ . 

We also have the following implicit formula for the norm: 

‖푥‖ = sup ‖푥‖ , sup sup
1

푚
‖퐸 푥‖, 퐸 < 퐸 < ⋯ < 퐸  

∨ sup
1

푚 휙(퐸푥) : (휙 ) 푖푠 푛 푠푝푒푐푖푎푙, 퐸 푖푛푡푒푟푣푎푙 . 

It follows from the definition of the norming set that the canonical Hamel 
basis (푒 )  is a transfinite bimonotone Schauder basis of 픛 (ℂ). In 
fact, by property (a) for every interval 퐼 of 휔  the projection 푃  has norm 
1:  

‖푃 푥‖ = sup
∈ (ℂ)

|푓푃 푥| = sup
∈ (ℂ)

|푃 푓푥| ≤ ‖푥‖ 

Moreover, we have that the basis (푒 ) ∈  is boundedly complete and 
shrinking, the proof is the obvious modification to the one for 픛 . In 
consequence 픛 (ℂ) is reflexive. 
Proposition (4.1.2) [4]: 휅 (ℂ) ∗ = 퐵픛∗ (ℂ). 
Proof. Recall that the set 휅 (ℂ) is by definition rationally convex. We 
notice that 휅 (ℂ) ∗  is actually a convex set. Indeed let 푓, 푔 ∈ 휅 (ℂ) ∗ 

and 푡 ∈ (0, 1). Suppose that 푓
∗

푓, 푔
∗

푔 푎푛푑 푡 → 푡, where 푓 , 푔 ∈
휅 (ℂ) and 푡 ∈ ℚ ∩ (0, 1) for every 푛 ∈ ℕ. Then 푡푓 + (1 − 푡)푔 ∈
휅 (ℂ) ∗  because  

푡 푓 + (1 − 푡 )푔
∗

푡푓 + (1 − 푡)푔. 
In the same manner we can prove that 픛∗ (ℂ) is balanced, 
i.e., 휆 픛∗ (ℂ) ⊆ 픛∗ for every |휆 | ≤ 1. To prove the proposition suppose 
that there exists 푓 ∈ 퐵픛∗ (ℂ)\휅 (ℂ) ∗. It follows by a standard 
separation argument that there exists 푥 ∈ 픛 (ℂ) such that  

|푓(푥)| > sup |푔(푥)|: 푔 ∈ 휅 (ℂ)  
which is absurd.  

Now we show the complex structures on 픛 (ℂ) 
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Let 퐼 ⊆ 휔  be an interval of ordinals, we denote by 픛 (ℂ) the 
closed subspace of 픛 (ℂ) generated by {푒 } ∈ . For every ordinal 
훾 < 휔  we write 픛 (ℂ)  = 픛[ , ](ℂ). Notice that 픛 (ℂ) is a 1-
complemented subspace of 픛 (ℂ) : the restriction to coordinates in Iis a 
projection of norm 1 onto 픛 (ℂ). We denote this projection by 푃  and by 
푃 = (퐼푑 − 푃 ) the corresponding projection onto the complement space 
(퐼푑 − 푃 )픛 (ℂ) , which we denote by 픛 (ℂ). 

A transfinite sequence (푦 )  is called a block sequence when 
푦 < 푦  for all 훼 < 훽 < 훾. Given a block sequence (푦 )  a block 
subsequence of (푦 )  is a block sequence 푥   in the span of 

(푦 )  . A real block subsequenceof (푦 )  is a block subsequence in 
the real span of (푦 )  . A sequence (푥 ) ∈ℕ is a block sequence of 
픛 (ℂ) when it is a block subsequence of (푒 ) . 
Theorem (4.1.3) [4]: Let 푇: 픛 (ℂ)  → 픛 (ℂ) be a complex structure 
on 픛 (ℂ), that is, 푇 is a bounded ℝ-linear operator such that 푇 =
−퐼푑. Then there exists a bounded diagonal operator 퐷 : 픛 (ℂ)  →
픛 (ℂ), which is another complex structure, such that 푇 − 퐷  is strictly 

singular. Moreover 퐷 = ∑ 휖 푖푃  for some signs 휖  and ordinal 

intervals 퐼 < 퐼 <. . . < 퐼  whose extremes are limit ordinals and such 
that 휔 = ⋃ 퐼 . 

The strategy for the proof of Theorem (4.1.4) is for the real case. 
However here we want to understand bounded ℝ-linear operators in 
acomplex space. The result is obtained using the following theorems that 
we explain with more details in Appendix A. 
Step I. There exists a family 픉 of semi-normalized block subsequences of 
(푒 ) , called R.I.S.(Rapidly Increasing Sequences), such that every 
normalized block sequence (푥 ) ∈ℕ of 픛 (ℂ) has a real block 
subsequence in 픉. 

Recall that a Banach space 푋 is hereditarily indecomposable (or 
H.I.) if no (closed) subspace of 푋 can be written as the direct sum of 
infinite-dimensional subspaces. Equivalently, for any two subspaces 
푌, 푍 of 푋 and 휖 > 0, there exist 푦 ∈ 푌, 푧 ∈ 푍such that ‖푦‖ = ‖푧‖ =
1 and ‖푦 − 푧 ‖ < 휖. 
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Step II. For every normalized block sequence (푥 ) ∈ℕ of 픛 (ℂ), the 
subspace 푠푝푎푛ℝ(푥 ) ∈ℕ of 픛 (ℂ) is a real H.I. space. 
Step III. Let (푥 ) ∈ℕ be a R.I.S. and 푇: 푠푝푎푛ℂ(푥 ) ∈ℕ → 픛 (ℂ) be a 
bounded ℝ -linear operator. Then lim → (푇푥 , ℂ푥 ) = 0. 
The proofs of Steps I, II and III are given in Appendix A. 
Step IV. Let ((푥 ) ∈ℕ be a R.I.S. and 푇: 푠푝푎푛ℂ(푥 ) ∈ℕ → 픛 (ℂ) be a 
bounded ℝ -linear operator. Then the sequence 휆 : ℕ → ℂ defined by 
푑(푇푥 , ℂ푥 ) = ‖푇푥 − 휆 (푛)푥 ‖ is convergent. 
Proof of Step IV. First we note that the sequence 휆 (푛)  is bounded. 
Then consider (훼 )  and (훽 )  as two strictly increasing sequences of 
positive integers and suppose that 휆 (훼 ) → 휆  and 휆 (훽 ) → 휆 , when 
푛 → ∞. Going to a subsequence we can assume that 푥 < 푥 < 푥  
for every 푛 ∈ ℕ. 

Fix 휖 > 0. Using the result of Step III, we have that 
lim → 푇푥 − 휆 푥 = 0. By passing to a subsequence if necessary, 
assume 

푇푥 − 휆 푥 ≤
휖

2 6
, 

for every 푛 ∈ ℕ. Hence, for every 푤 = ∑ 훼 푥 ∈ 푠푝푎푛ℝ 푥  with 
‖푤‖ ≤ 1 we have  

‖푇푤 − 휆 푤‖ ≤ |훼 | 푇푥 − 휆 푥
 

≤ 휖/3, 

because (푒 )  is a bimonotone transfinite basis. In the same way, we 
can assume that for every 푤 ∈ 푠푝푎푛ℝ 푥 with ‖푤‖ ≤ 1, ‖푇푤 −

휆 푤‖ ≤ 휖/3. By Step II we have that 푠푝푎푛ℝ 푥 ∪ 푥  is real- H.I. 

Then there exist unit vectors 푤 ∈ 푠푝푎푛ℝ 푥  and 푤 ∈ 푠푝푎푛ℝ 푥 , 

such that ‖푤 − 푤 ‖ ≤ ‖푇‖. Therefore,  
‖휆 푤 − 휆 푤 ‖ ≤ ‖푇푤 − 휆 푤 ‖ + ‖푇푤 − 푇푤 ‖ + ‖푇푤 − 휆 푤 ‖ ≤ 휖 

By other side 
‖휆 푤 − 휆 푤 ‖ ≥ ‖(휆 − 휆 )푤 ‖ − ‖휆 (푤 − 푤 )‖

= |휆 − 휆 | − |휆 |휖 
In consequence, |휆 − 휆 | ≤ (1 + |휆 |)휖. Since 휖 was arbitrary, it 
follows that 휆 = 휆 . 
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Let 푇: 픛 (ℂ) → 픛 (ℂ) be a bounded ℝ-linear operator. We 
define a bounded diagonal operator 퐷  (with respect to the basis 
(푒 ) ) such that 푇 − 퐷  is strictly singular: Let 훼 ∈ 훬(휔 ) be a limit 
ordinal, and (푥 ) ∈ℕ, (푦 ) ∈ℕ be two R.I.S. such that 
sup max 푠푢푝푝 푥 = sup max 푠푢푝푝 푦 = 훼 + 휔. By a property of 픉 
we can mix the sequences (푥 ) , (푦 )  in order to form a new R.I.S. 
(푧 ) ∈ℕ, such that 푧 ∈ {푥 } ∈ℕ and 푧 ∈ {푦 } ∈ℕ for all 푘 ∈ ℕ. 
Then it follows from Step IV that the sequences defined by the formulas 
푑 푇푥 , ℂ = 푇푥 − 휆 (푛)  and 푑 푇푦 , ℂ = 푇푦 − 휇(푛)  
are convergent, and by the mixing argument, they must have the same 
limit. Hence for each 훼 ∈ 훬(휔 ) there exists a unique complex number 
휉 (훼) such that 

lim
→

푇푤 − 휉 (훼)퓌 = 0 

for every R.I.S. (푤 ) ∈ℕ in 픛 , where we write 퐼  to denote the ordinal 
interval [훼, 훼 + 휔). We proceed to defining a diagonal linear operator 퐷  
on the (linear) decomposition of span (푒 )   

푠푝푎푛 (푒 ) = ⨁
∈ ( )

푠푝푎푛 (푥 ) ∈  

by setting 퐷 푒 = 휉 (훼)  when 훽 ∈ 퐼 . 

Observe in addition that this sequence 휉 (훼)
∈ ( )is 

convergent. That is, for every strictly increasing sequence (훼 ) ∈ℕ in 
훬(휔 ), the corresponding subsequence 휉 (훼)

∈ℕ is convergent. In fact, 

for every 푛 ∈ ℕ, let (푦 ) ∈ℕ be a R.I.S. in 픛 .  

Then we can take a R.I.S. 푦 ∈ℕ such that 푇푦 − 휉 (훼 +

휔)푦 < 1/푛. It follows by Step IVthere exists 휆 ∈ ℂ such that 
lim 푇푦 − 휆푦 = 0. This implies that lim 휉 (훼 + 휔) = 휆. 

In general this operator 퐷  defines a bounded operator on 픛 (ℂ). 
The proof is the same as that uses certain James like space of a mixed 
Tsirelson space is finitely interval representable in every normalized 
transfinite block sequence of 픛 (ℂ). For the case of complex structures 
we have a simpler proof (see Proposition (4.1.8)). 
Proposition (4.1.4) [4]: Let 퐴 be a subset of ordinals contained in 휔  
and 푋 = 푠푝푎푛ℂ(푒 ) ∈  . Let 푇: 푋 → 픛 (ℂ) be a bounded ℝ-linear 
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operator. Then 푇 is strictly singular if and only if for every R.I.S. 
(푦  ) ∈ℕ on 푋, lim 푇푦 = 0. 
Proof. The proposition is trivial when the set 퐴 is finite, then we assume 
that 퐴 is infinite. Suppose that 푇 is strictly singular. Let (푦 ) ∈ℕ be a 
R.I.S. on 푋 such that lim 푇푦 = 0, then by Step IV there is 휆 ≠ 0 with 
lim ‖푇푦 − 휆푦 ‖ = 0. Take 0 < 휖 < |휆|. By passing to a subsequence if 
necessary, we assume that �(푇 − 휆퐼푑)|

ℂ( ) < 휖. This implies that 
�푇|

ℂ( )  is an isomorphism, which is a contradiction. 
Conversely, suppose that for every R.I.S. (푦 ) on 푋, lim 푇푦 = 0. 

Assume that 푇 is not strictly singular. Then there is a block sequence 
subspace 푌 = 푠푝푎푛ℂ(푦 ) ∈ℕ  of 푋 such that 푇 restricted to 푌 is an 
isomorphism. By Step I we can assume that the sequence (푦 )  is already 
a R.I.S. on 푋. Then inf ‖푇푦 ‖ > 0. And we obtain acontradiction.  

Given 푌 ⊆ 픛 (ℂ) we denote by 푖  the canonical inclusion of 푌 
into 픛 (ℂ). 
Corollary (4.1.5) [4]: Let 훼 ∈ 훬(휔 ) and 푇: 픛 (ℂ) → 픛 (ℂ) be a 
bounded ℝ-linear operator. Then there exists (unique) 휉 (훼)  ∈ ℂ such 
that 푇 − 휉 (훼) 픛 (ℂ)  is strictly singular. 

Proof. Let 휉 (훼) be the (unique) complex number such that lim ‖푇푦 −
휉 (훼)푦 ‖ = 0 for every R.I.S. (푦 )  on 픛 (ℂ). Then by the previous 
proposition 푇 − 휉 (훼) 픛 (ℂ)  is strictly singular.  

Corollary (4.1.6) [4]: Let 훼 ∈ 훬(휔 ) and 푅: 픛 (ℂ) → 픛 (ℂ) be a 
bounded ℝ-linear operator. Then 푅 is strictly singular. 
Proof. By the previous result, 푖픛 (ℂ)푅 = 휆푖픛 (ℂ) + 푆 with 푆 strictly 
singular. Then projecting by 푃  we obtain 푅 = 푃 ∘ 푖픛 (ℂ)푅 =
푃 푆 which is strictly singular.  
Proposition (4.1.7) [4]: Let 푇 be a complex structure on 픛 (ℂ) . Then 
the linear operator 퐷  is a bounded complex structure. 
Proof. Let 푇 be a complex structure on 픛 (ℂ) and 퐷  the corresponding 
diagonal operator defined above. Fix 훼 ∈ 훬(휔 ). We shall prove that 
휉 (훼) = −1. In fact, 

푇 ∘ 푖픛 (ℂ) = 푃 푇 ∘ 푖픛 (ℂ) + 푃 푇 ∘ 푖픛 (ℂ) = 푃 푇 ∘ 푖픛 (ℂ) + 푆  
where 푆  is strictly singular. This implies 푃 푇 ∘ 푖픛 (ℂ) = 휉 (훼) 퐼푑픛 (ℂ) +
푆 : 픛 (ℂ) → 픛 (ℂ) with 푆  strictly singular. Now computing:  
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푃 푇푖픛 (ℂ) ∘ 푃 푇푖픛 (ℂ) = 푃 푇 ∘ 푃 푇푖픛 (ℂ)

= 푃 푇 ∘ (퐼푑 − 푃 )푇푖픛 (ℂ)

= 푃 푇 푖픛 (ℂ) − 푃 푇푃 푇푖픛 (ℂ) = −퐼푑픛 (ℂ) + 푆  

where 푆  is strictly singular because the underlined operator is strictly 
singular. Hence we have that (휉 (훼) + 1)퐼푑픛  is strictly singular, 
which allows us to conclude that 휉 (훼) = −1. The continuity of 퐷  is 
then guaranteed by the convergence of (휉 (훼) ) ∈ ( ).  
Indeed, 휉 (훼) = ±푖 for every 훼 ∈ 훬(휔 ) and by convergence we have 
that the variation of signals is finite, then there exist ordinal intervals 
퐼 < 퐼 < ⋯ 퐼  with 휔 = ⋃ 퐼∗  and such that 퐷 = ∑ 휖 푖 푃 for 

some signs 휖 . 

Remark (4.1.7) [4]: More generally, the proof of Proposition (4.1.8) 
actually shows that if 푇 is an ℝ-linear bounded operator on 픛 (ℂ) such 
that 푇 + 퐼푑 = 푆 for some 푆 strictly singular, then 퐷  is bounded and 
퐷 = −퐼푑. 

Let 푇: 픛 (ℂ) → 픛 (ℂ) be a bounded ℝ -linear operator which is 
a complex structure and 퐷  be the diagonal bounded operator associated 
to it. It only remains to prove that 푇 − 퐷  is strictly singular. And this 
follows directly from Proposition (4.1.5), because by definition lim (푇 −
퐷 ) = 0 for every R.I.S. (푦 ) on 픛 (ℂ).  

We come back to the study of the complex structures on 픛 (ℂ). 
Denote by 픇 the family of complex structures 퐷  on 픛 (ℂ) as in 

Theorem (4.1.4), i.e., 퐷 = ∑ 휖 푖 푃  where 휖 are signs and 

퐼 < 퐼 < ⋯ 퐼  are ordinal intervals whose extremes are limit ordinals and 
such that 휔 = ⋃ 퐼 . Notice that 픇 has cardinality 휔 . 

Recall that two spaces are said to be incomparable if neither of 
them embed into the other. 
Corollary (4.1.8) [4]: The space 픛 (ℂ) has 휔  many complex structures 
up to isomorphism. Moreover any two non-isomorphic complex structures 
are incomparable. 
Proof. Let 퐽 be a complex structure on 픛 (ℂ). By Theorem (4.1.4) we have 
that 퐽 − 퐷  is a strictly singular operator and 퐷 ∈ 픇. Recall that two 
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complex structures whose difference is strictly singular must be equivalent. 
Then 퐽 is equivalent to 퐷 . 

To complete the proof it is enough to show that given two different 
elements of 픇 they define non-equivalent complex structures. Moreover, we 
prove that one structure does not embed into the other. Fix 퐽 ≠ 퐾 ∈ 픇. Then 
there exists an ordinal interval 퐼 = [훼, 훼 + 휔) such that, without loss of 
generality, �퐽|픛 = �푖퐼푑|픛  and �퐾|픛 = −�푖퐼푑|픛 . Suppose that there exists 
푇: 픛 (ℂ) → 픛 (ℂ)  an isomorphic embedding. Then 푇 is in particular 
an ℝ-linear operator such that 푇퐽 = 퐾푇. We write using Corollary (4.1.6), 
�푇|픛 = 휉 (훼) 픛 (ℂ) + 푆  with 푆 strictly singular. Then 휉 (훼)�퐽|픛 −

휉 (훼)�퐾|픛 = 푆  where 푆  is strictly singular. In particular for each 
푥 ∈ 픛 , 푆 푥 = 2 휉 (훼)푖푥. It follows from the fact that 픛  is infinite 
dimensional that 휉 (훼) = 0. Hence �푇|픛 = 푆  , but this is a contradiction 
because 푇 is an isomorphic embedding.  

The next corollary offers uncountably many examples of Banach 
spaces with exactly countably many complex structures. 
Corollary (4.1.9) [4]: The space 픛 (ℂ) has 휔 complex structures up to 
isomorphism for every limit ordinal 휔 ≤ 훾 < 휔 . 
Proof. Let 퐽 be a complex structure on 픛 (ℂ). We extend 퐽 to a complex 
structure defined in the whole space 픛 (ℂ) by setting 푇 = 퐽푃 + 푖푃 , where 
퐼 = [0, 훾). It follows that 푇 = 퐷 + 푆 for a strictly singular operator 푆 and a 
diagonal operator 퐷  like in Theorem (4.1.4). Notice that 퐷 푥 = 푖푥 for 
every 푥 ∈ 픛 , otherwise there would be a limit ordinal α such that �푆|픛 =
2�푖퐼푑|픛 . Hence 퐽푃 = 퐷 푃 + 푆. Which implies that 퐽 has the form 

퐽 = ∑ 휖 푖 푃 + 푆  where S1is strictly singular on 픛 (ℂ), 휖 are 

signs and 퐼 < 퐼 < ⋯ < 퐼 are ordinal intervals whose extremes are limit 
ordinals and such that 훾 = ⋃ 퐼 . Now the rest of the proof is identical to 
the proof of the previous corollary. In particular, all the non-isomorphic 
complex structures on 픛 (ℂ) are incomparable.  

We also have, using the same proof of the previous corollary, that for 
every in-creasing sequence of limit ordinals 퐴 = (훼 ) , the space 픛 =
⨁ 픛 (ℂ), where 퐼 = [훼 , 훼 + 휔), has exactly infinite countably many 
different complex structures. Hence there exists a family, with the 
cardinality of the continuum, of Banach spaces such that every space in it 
has exactly 휔 complex structures. 
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Section (4.2): Observations 
It is easy to check that subspaces of even codimension of a real 

Banach space with complex structure also admit complex structure. An 
interesting property of 픛 (ℂ) is that none of its real hyperplanes (and 
thus every real subspace of odd codimension) admit complex structure. 
Proposition (4.2.1) [4]: The real hyperplanes of 픛 (ℂ) do not admit 
complex structure. 
Proof. By the results of V. Ferenczi and E. Galego it is sufficient to prove 
that the ideal of all ℝ-linear strictly singular operators on 픛 (ℂ) has the 
lifting property, that is, for any ℝ -linear isomorphism on 픛 (ℂ) such 
that 푇 + 퐼푑 is strictly singular, there exists a strictly singular operator 푆 
such that (푇 − 푆) = −퐼푑. The proof now follows easily from Remark 
(4.1.7) [4].  
Appendix A 

The purpose of this section is to give a proof for the results in Steps 
I, II and III. Several proofs are very similar to the corresponding ones in 
[3]. In order to make this section as self contained as possible, we 
reproduce them in detail. 

First we clarify the definition of the norming set by defining what 
being a special sequence means. All the definitions we present in this part 
are the corresponding translation of [3] for the complex case. 
A.1. Coding and special sequences 

Recall that [휔 ] = {(훼, 훽) ∈ 휔 : 훼 < 훽}. 
Definition (4.2.2) [4]: A function 휚: [휔 ] → 휔 such that 

(1) 휚(훼, 훾)  ≤ max{휚(훼, 훽), 휚(훽, 훾)}  for all 훼 < 훽 < 훾 < 휔 . 
(2) 휚(훼, 훽)  ≤ max{휚(훼, 훾), 휚(훽, 훾)} for all 훼 < 훽 < 훾 < 휔 . 
(3) The set {훼 < 훽: 휚(훼, 훽) ≤ 푛} is finite for all 훽 < 휔  and 푛 ∈ ℕ 

is called a 휚-function. 
The existence of 휚-functions is due to S. Todorcevic. Let us fix a 휚-

function 휚: [휔 ] → 휔, and then all the following work relies on that 
particular choice of 휚. 
Definition (4.2.3) [4]: Let 퐹 be a finite subset of 휔  and 푝 ∈ ℕ, then we 
write 

휌퐹 = 휌 (퐹) = max
, ∈

휚(훼, 훽). 

퐹 = {훼 ≤ max 퐹 : 푡ℎ푒푟푒 푖푠 훽 ∈ 퐹 푠푢푐ℎ 푡ℎ푎푡 훼 ≤ 훽 푎푛푑 휚(훼, 훽) ≤ 푝} 
A.1.1. 휎 -coding and the special sequences 
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We denote by ℚ (휔 , ℂ) the set of finite sequences 
(휙 , 푤 , 푝 , . . . , 휙 , 푤 , 푝 ) such that 

(i) For all 푖 ≤ 푑, 휙 ∈ 푐 (휔 , ℂ) and for all 훼 < 휔  the real and the 
imaginary part of 휙(훼) are rationals. 

(ii) (푤 ) , (푝 ) ∈ ℕ  are strictly increasing sequences. 
(iii) 푝 ≥ 휌 ⋃   for every 푖 ≤ 푑. 

Let ℚ (ℂ) be the set of finite sequences 
(휙 , 푤 , 푝 , 휙 , 푤 , 푝 , . . . , 휙 , 푤 , 푝 ) satisfying properties (1), (2) above 
and for every 푖 ≤ 푑, 휙 ∈ 푐 (휔 , ℂ). Then ℚ (ℂ) is a countable set 
while ℚ (휔 , ℂ) has cardinality 휔 . Fix a one to one function 휎: ℚ (ℂ) →
{2푗: 푗 푖푠 표푑푑} such that 

휎(휙 , 푤 , 푝 , . . . , 휙 , 푤 , 푝 ) > max 푝 ,
1
휖

, max 푠푢푝푝 휙  

where 휖 = min{|휙 (푒 )|: 훼 ∈ 푠푢푝푝 휙 , 푘 = 1, … , 푑} . Given a finite 
subset 퐹 of 휔 , we denote by 휋 : {1, 2, . . . , #퐹} → 퐹 the natural order 
preserving map, i.e., 휋  is the increasing numeration of 퐹. 

Given 훷 = (휙 , 푤 , 푝 , . . . , 휙 , 푤 , 푝 ) ∈ ℚ (ℂ), we set 

퐺 = 푠푢푝푝 휙 . 

Consider the family 
 휋 (훷) = (휋 (휙 ), 푤 , 푝 , 휋 (휙 ), 푤 , 푝 , … , 휋 (휙 ), 푤 , 푝 ) where  

휋 (휙 )(푛) = 휙 휋퐺훷
(푛) 푖푓 푛 ∈ 퐺 ,

0,         표푡ℎ푒푟푠푖푠푒.
� 

Finally 휎 : ℚ (휔 , ℂ) → {2푗 ∶ 푗 표푑푑} is defined by 휎 (훷) = 휎 휋 (훷) . 
Definition (4.2.4)[4]: A sequence 훷 = (휙 , 휙 , . . . , 휙 ) of functionals 
of 풦 (ℂ) is called a 2푗 + 1 special sequence if 
(SS.1) 푠푢푝푝휙 < 푠푢푝푝휙 <··· < 푠푢푝푝휙 . For each 푘 ≤ 푛 , 휙  is 
of type I, 푤(휙 ) = 푚  with 푗  even and 푚 > 푛 . 

(SS.2) There exists a strictly increasing sequence 푝 , 푝 , . . . , 푝  

of natural numbers such that for all 1 ≤ 푖 ≤ 푛 − 1 we have that 
푤(휙 )  = 푚 (훷 ) where  

훷 = 휙 , 푤(휙 ), 푝 , 휙 , 푤(휙 ), 푝 , … , 휙 , 푤(휙 ), 푝  
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Special sequences in separable examples with one to one codings 
are in general simpler: they are of the form 휙 , 푤(휙 ), … , 휙 , 푤(휙 ) . 
Their main feature is that if 휙 , 푤(휙 ), … , 휙 , 푤(휙 )  and 

휓 , 푤(휓 ), … , 휓 , 푤(휓 )  are two of them, there exists 푖 ≤ min{푘, 푙} 
with the property that  

휙 , 푤(휙 ) = 휓 , 푤(휓 )   for all 푖 ≤ 푖             (1) 
{푤(휙 ): 푖 ≤ 푖 ≤ 푘} ∩= {푤(휓 ): 푖 ≤ 푖 ≤ 푙}   = ∅        (2) 

In non-separable spaces, one to one codings are obviously impossible, 
and (1), (2) are no longer true. Fortunately, there is a similar feature to 
(1), (2) called the tree-like interference of a pair of special sequences: Let 
훷 = 휙 , … , 휙  and 휓 = 휓 , … , 휓  be two 2푗 + 1-special 
sequences, then there exist two numbers 0 ≤ 휅 , ≤ 휆 , ≤ 푛  such 
that the following conditions hold: 
(TP.1)  For all 푖 ≤ 휆 , , 푤(휙 )  = 푤(휓 ) and 푝 = 푝 . 
(TP.2)  For all 푖 < 휅 , , 휙 = 휓 . 
(TP.3)  For all 휅 , < 푖 < 휆 ,   

supp 휙 ∩ supp 휓 ∪ … ∪ supp 휓 ,  , = ∅  
And 

supp 휓 ∩ supp 휙 ∪ … ∪ supp 휙 ,  , = ∅ 

(TP.4)  푤(휙 ) ∶ 휆 , < 푖 ≤ 푛 ∩ {푤(휓 ) ∶ 푖 ≤ 푛 } = ∅ and 
푤(휓 ) ∶ 휆 , < 푖 ≤ 푛 ∩ {푤(휙 ) ∶ 푖 ≤ 푛 } = ∅. 

A.2. Rapidly increasing sequences (R.I.S.) 
For the proof of Step I we shall construct a family of block 

sequences on 픛 (ℂ) commonly called rapidly increasing sequences 
(R.I.S.). These sequences are very useful because one has good estimates 
of upper bounds on |푓(푥)| for 푓 ∈ 풦 (ℂ) and 푥 averages of R.I.S. 

For the construction of the family 픉 the only difference from the 
general theory is that our interest now is to study bounded ℝ-linear 
operators on the complex space 픛 (ℂ). Hence, all the construction of 
R.I.S. in a particular block sequence (푥 ) ∈ℕ must be on its real linear 
span. We point out here that there are no problems with this, because all 
the combinations of the vectors (푥 ) ∈ℕ to obtain R.I.S. use rational 
scalars. 
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Definition (4.2.5) [4]: (R.I.S.). We say that a block sequence (푥 )  of 
픛 (ℂ) is a (퐶, 휖)-R.I.S., 퐶, 휖 > 0, when there exists a strictly increasing 
sequence of natural numbers (푗 )  such that: 

(i) ‖푥 ‖ ≤ 퐶; 
(ii) |푠푢푝푝 푥 | ≤ 푚 휖; 
(iii) For all the functionals 휙 of 풦 (ℂ) of type I, with 휔(휙) <

푚 , |휙(푥 )| ≤
( )

. 

The following remark is an immediate consequence of this definition. 
Remark (4.2.6) [4]: Let 휖 < 휖. Every (퐶, 휖) -R.I.S. has a subsequence 
which is a (퐶, 휖 )-R.I.S. And for every strictly increasing sequence of 
ordinals (훼 )  and every휖 > 0, 푒  is a (1, 휖)-R.I.S. 
Remark (4.2.7) [4]: Let (푥 )  and (푦 )  be two (퐶, 휖)-R.I.S. such that 
sup max 푠푢푝푝 푥 = sup max 푠푢푝푝 푦 . Then there exists a (퐶, 휖)-R.I.S. 
(푧 )  such that 푧 ∈ {푥 } ∈ℕ and 푧 ∈ {푦 } ∈ℕ. 
Proof. Suppose that (푡 )  and (푠 )  are increasing sequences of positive 
integers satisfying the definition of R.I.S. for (푥 )  and (푦 )  
respectively. We construct (푧 )  as follows. Let 푧 = 푥  and 푗 = 푡 . 
Pick 푠  such that 푥 < 푦 and 푡 < 푠 . Then we define 푗 = 푠  and 
푧 < 푦 . Notice that 

(i) ‖푧 ‖ ≤ 퐶; 
(ii) |푠푢푝푝 푧 | ≤ 푚 휖 < 푚 휖 = 푚 휖; 
(iii) For all the functionals 휙 of 풦 (ℂ) of type 퐼, with 휔(휙) <

푚 , |휙(푧 )| ≤
( )

. 

Continuing with this process we obtain the desired sequence.  
Theorem (4.2.8) [4]: Let (푥 )  be a normalized block sequence of 픛  
and 휖 > 0. Then there exists a normalized block subsequence (푦 )  in 
푠푝푎푛ℝ {푥 } which is a (3, 휖)-R.I.S. 

For the proof of Theorem (4.2.8) [4] we first construct a simpler 
type of sequence. 
Definition (4.2.9) [4]: Let 푋 be a Banach space, 퐶 ≥ 1 and 푘 ∈ ℕ. A 
normalized vector 푦 is called a 퐶 − ℓ -average of 푋, when there exists a 
block sequence (푥 , . . . , 푥 ) such that 

(i) 푦 = (푥 +. . . + 푥 )/푘; 
(ii) ‖푥 ‖ ≤ 퐶, for all 푖 = 1, . . . , 푘. 
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In the next result we want to emphasize that this special type of 
sequences is really constructed on the real structure of the space 픛 (ℂ). 
Theorem (4.2.10) [4]: For every normalized block sequence (푥 ) of 
픛 (ℂ), and every integer 푘, there exist 푧 <. . . < 푧  in 푠푝푎푛ℝ (푥 ), 
such that 푧 +. . . +푧 /푘 is a 2 − ℓ -average. 
Proof. The proof is standard. Suppose that the result is false. Let 푗 and 푛 
be natural numbers with  

2 > 푚
푛 > 푘 . 

Let 푁 = 푘  and 푥 = ∑ 푥 . For each 1 ≤ 푖 ≤ 푛 and every 1 ≤ 푗 ≤
푘 , we define  

푥(푖, 푗) = 푥
( )

.  

Hence, 푥(0, 푗) = 푥  and 푥(푛, 1) = 푥. 
It is proved by induction on 푖 that ‖푥(푖, 푗)‖ ≥ 2 푘 , for all 푖, 푗. In 

particular, ‖푥‖ = ‖푥(푛, 1)‖ ≤ 2 푘 = 2 푁. Then by property (i) of 
the definition in the norming set 

‖푥‖ ≥
1

푚
‖푥 ‖ =

푛
푚

>
푁

푚
. 

Hence,  

2 푁 >
푁

푚
푚 > 2 ,

 

which is a contradiction.  
Finally, for the construction of R.I.S. we observe these simple 

facts: 
(a) If 푦 is a 퐶 − ℓ -average of 픛 (ℂ) and 휙 ∈ 풦 (ℂ) has weight 

휔(휙) < 푚 , then |휙(푦)| ≤
( )

; 

(b) Let (푥 )  be a block sequence of 픛 (ℂ) such that there exists a 
strictly increasing sequence of positive integers (푗 )  and 휖 > 0 
satisfying: 
(a) Each 푥  is a 2 − ℓ -average; 
(b) |푠푢푝푝 푥 | ≤ 휖푚 . 

Then (푥 )  is a (3, 휖 )-R.I.S. 
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A.3. Basic inequality 
To prove Steps II and III we need a crucial result called the basic 

inequality which is very important to find good estimations for the norm 
of certain combinations of R.I.S. in 픛 (ℂ). First we need to introduce 
the mixed Tsirelson spaces. 

The mixed Tsirelson space 푇 푚 , 푛  is defined by 

considering the completion of 푐 (휔 , ℂ) under the norm ‖⋅‖  given by 
the following implicit formula  

‖푥‖ = max ‖푥‖ , sup sup
1

푚
‖퐸 푥‖ . 

The supremum inside the formula is taken over all the sequences 
퐸 <. . . < 퐸  of subsets of 휔. Notice that in this space the canonical 
Hamel basis (푒 )  of 푐 (휔 , ℂ) is 1-subsymmetric and 1-
unconditional basis. 

We can give an alternative definition for the norm of 

푇 푚 , 푛  by defining the following norming set. Let 

푊 푚 , 푛 ⊆ 푐 (휔 , ℂ) be the minimal set of 푐 (휔 , ℂ) satisfying 

the following properties: 
(i) For every 훼 < 휔, 푒∗ ∈ 푊 푚 , 푛 . If 휙 ∈ 푊 푚 , 푛  and 

휃 = 휆 + 푖휇 is a complex number with 휆 and 휇 rationals and 
|휃| ≤ 1, 휃휙 ∈ 푊 푚 , 푛 ; 

(ii) For every 휙 ∈ 푊 푚 , 푛  and 퐸 ⊆ 휔, 퐸휙 ∈ 푊 푚 , 푛 ; 
(iii) For every 푗 ∈ ℕ and 휙 <. . . < 휙  in 푊 푚 , 푛 , (1/

푚 ) ∑ 휙 ∈ 푊 푚 , 푛 ; 
(iv) 푊 푚 , 푛  is closed under convex rational combinations.  

Theorem (4.2.11) [4]: (Basic inequality for R.I.S.). Let  (푥 )  be a 
(퐶, 휖)-R.I.S. of 픛 (ℂ) and  (푏 ) ∈ 푐 (ℂ, ℕ). Suppose that for some 
푗 ∈ ℕ we have that for every 푓 ∈ 풦 (ℂ) with weight 푤(푓) = 푚  and 
for every interval 퐸 of 휔 , 

푓 푏 푥
 

∈

≤ 퐶 max
∈

|푏 | + 휖 |푏 |
 

∈

. 
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Then for every 푓 ∈ 풦 (ℂ) of type 퐼, there exist 푔 , 푔 ∈ 푐 (ℂ, ℕ) such 
that 

푓 푏 푥
 

∈

≤ 퐶(푔 + 푔 ) |푏 |
 

∈

푒 , 

Where 푔 = ℎ  or 푔 = 푒∗ + ℎ , 푡 ∉ 푠푢푝푝 ℎ , and ℎ ∈ 푊 푚 , 4푛   such 

that ℎ ∈ convℚ ℎ ∈ 푊 푚 , 4푛 : 푤(푓) = 푤{푓}  and 푚  does not appear 

as a weight of a node in the tree analysis of  ℎ , and ‖푔 ‖ ≤ 휖. 
The following results are consequences of the basic inequality.  

Proposition (4.2.12) [4]: Let 푓 ∈ 풦 (ℂ) or 푓 ∈ 푊 푚푗
−1, 4푛푗  be of 

type 퐼. Consider 푗 ∈ ℕ and 푙 ∈ , 푛 . Then for every set 퐹 ∈

푐 (휔 , ℂ) of cardinality 푙,  

푓
1
푙

푒
 

∈

≤

⎩
⎪
⎨

⎪
⎧ 2

푤(푓)푚
, 푖푓 푤(푓) < 푚 ,

1
푤(푓)

푖푓 푤(푓) ≥ 푚 .

� 

If the tree analysis of 푓 does not contain nodes of weight 푚 , then 

푓
1
푙

푒
 

∈

≤
2

푚
 

Proposition (4.2.13) [4]: Let (푥 )  be a (퐶, 휖)-R.I.S. of 픛 (ℂ) with 

휖 ≤ , 푙 ∈ , 푛  and let 푓 ∈ 풦 (ℂ) be of type 퐼. Then,  

푓
1
푙

푥 ≤

⎩
⎪
⎨

⎪
⎧ 3퐶

푤(푓)푚
, 푖푓 푤(푓) < 푚 ,

퐶
푤(푓)

+
2퐶
푛

, 푖푓 푤(푓) ≥ 푚 .
� 

Consequently, if (푥 )  is a normalized (퐶, 휖)-R.I.S. with 휖 ≤ , 푙 ∈

, 푛 , then 

1
푚

≤
1
푙

푥 ≤
2퐶

푚
. 

Proof. Let (푥 )  be a (퐶, 휖)-R.I.S. and take 푏 = , . . . , , 0, 0, . . . ∈

푐 (ℂ, ℕ). It follows from the basic inequality that for every 푓 ∈ 풦 (ℂ) 
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of type 퐼, there exist ℎ ∈ 푊 푚 , 4푛   with 휔(ℎ ) = 휔(푓), 푡 ∈ ℕ and 
푔 ∈ 푐 (ℕ) with ‖푔‖ ≤ 휖  such that  

푓
1
푙

푥 ≤ 퐶(푒∗ + ℎ + 푔 )
1
푙

푒 . 

Moreover,  

푔
1
푙

푒 ≤ ‖푔 ‖
1
푙

푒
 

≤ 휖 ≤
1
푛

 . 

Now by the estimates on the auxiliary space 푇 푚 , 4푛  of 

Proposition (4.2.12), we have 
(a) If 휔(푓) < 푚 ,  

푓
1
푙

푥 ≤ 퐶
1
푙

+
2

휔(푓)푚
+

1
푛

≤ 퐶
푚
푛

+
2

휔(푓)푚
+

1
푛

≤
3퐶

휔(푓)푚
 

(b) If 휔(푓) ≥ 푚 ,  

푓
1
푙

푥 ≤ 퐶
1
푙

+
퐶

휔(푓)
+

1
푛

≤
퐶

휔(푓)
+

2퐶
푛

 

And notice 
(c) 

( )
≤ , if 휔(푓) < 푚 , 

(d) 
( )

+ ≤ + = , if 휔(푓) ≥ 푚 . 

We conclude from the fact that 풦 (ℂ) is the norming set: 

1
푙

푥 ≤ 2퐶/푚 . 

For the proof of the second part of the theorem, let (푥 )  be a 

normalized (퐶, 휖)-R.I.S. with 휖 ≤ , 푙 ∈ , 푛 . For every 푘 ≤ 푙, we 

consider 푥∗ ∈ 풦 (ℂ), such that 푥∗ (푥 ) = 1 and 푟푎푛 푥∗ ⊆ 푟푎푛 푥 , then 

푥∗ = ∑ 푥∗ ∈ 풦 (ℂ) and 푥∗ ∑ 푥 = . Hence, ≤

∑ 푥 . 
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A.4. Proof of Step II 
Now we introduce another type of sequences in order to construct 

the conditional frame in 픛 (ℂ). In fact, this space has no unconditional 
basic sequence. 
Definition (4.2.14) [4]: A pair (푥, 휙) with 푥 ∈ 픛 (ℂ) and 휙 ∈ 풦 (ℂ) 
is called a (퐶, 푗)-exact pair when: 

(a) ‖푥‖ ≤ 퐶, 휔(휙) = 푚  and 휙(푥) = 1. 
(b) For each 휓 ∈ 풦 (ℂ) of type 퐼 and 휔(푥) = 푚 ,푖 ≠ 푗, we have 

|휓(푥)| ≤

⎩
⎪
⎨

⎪
⎧2퐶

푚
, 푖푓 푖 < 푗,

퐶
푚

, 푖푓 푖 > 푗.
� 

Proposition (4.2.15) [4]: Let (푥 )  be a normalized block sequence of 
픛 (ℂ). Then for every 푗 ∈ ℕ, there exists (푥, 휙) such that 푥 ∈
푠푝푎푛ℝ(푥 ), 휙 ∈ 풦 (ℂ) and (푥, 휙) is a(6, 2푗)-exact pair. 
Proof. Fix a normalized block sequence (푥 )  of 픛 (ℂ) and a positive 
integer 푗. By Proposition (4.2.8) [4] there exists (푦 ) , a normalized 
(3, 1/푛 )-R.I.S., in 푠푝푎푛ℝ(푥 ). For every 1 ≤ 푖 ≤ 푛  and 휖 > 0, we 
take 휙 ∈ 풦 (ℂ) such that 휙 (푦 ) > 1 − 휖, and 휙 < 휙 .  

Let 푥 = (푚 /푛 ) ∑ 푦  and 휙 = (1/푚 ) ∑ 휙 ∈ 풦 (ℂ). By 
perturbating 푥 by a rational coefficient on the support of some 푦  we may 
assume that then 휙(푥) = 1 and using Proposition (4.2.13) [4] we 
conclude that (푥, 휙) is a (6, 2푗)-exact pair.  

Definition (4.2.16) [4]: Let 푗 ∈ ℕ. A sequence 푥 , 휙 , . . . , 푥 , 휙  

is called a (1, 푗)-dependent sequence when: 
(DS.1)  푠푢푝푝 푥 ∪ 푠푢푝푝 휙 <. . . < 푠푢푝푝 푥 ∪ 푠푢푝푝 휙 . 
(DS.2) The sequence 훷 = (휙 , . . . , 휙 ) is a 2푗 + 1-special sequence. 

(DS.3) (푥 , 휙 ) is a (6, 2푗 )-exact pair. #  푠푢푝푝 푥 ≤ 푚 /푛  for 
every 1 ≤ 푖 ≤ 푛 + 1. 

(DS.4)  For every (2푗 + 1)-special sequence 훹 = 휓 , . . . , 휓  we 
have that  

푠푢푝푝 푥
 

, ,

∩ 푠푢푝푝 휓
 

, ,

= ∅, 
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where 휅 , , 휆 ,  are numbers introduced in Definition (4.2.4).  
Proposition (4.2.17) [4]: For every normalized block sequence (푦 )  of  
픛 (ℂ), and every natural number 푗 there exists a (1, 푗)-dependent 

sequence 푥 , 휙 , . . . , 푥 , 휙  such that 푥  is in the ℝ-span of 
(푦 )  for every 푖 = 1, . . . , 푛 . 
Proof. Let (푦 )  be a normalized block sequence of  픛 (ℂ) and 푗 ∈ ℕ. 

We construct the sequence 푥 , 휙 , . . . , 푥 , 휙  inductively. First 

using Proposition (4.2.15) we choose a (6, 2푗 )-exact pair (푥 , 휙 ) such 
that 푗  is even, 푚 > 푛  and 푥 ∈ 푠푝푎푛ℝ(푦 ) . Assume that we 
have constructed (푥 , 휙 , . . . , 푥 , 휙 )  such that there exists 
(푝 , . . . , 푝 ) satisfying 

(i)   푠푢푝푝 푥 ∪ 푠푢푝푝 휙 <. . . < 푠푢푝푝 푥 ∪ 푠푢푝푝 휙 , where 
푥 ∈ 푠푝푎푛ℝ(푦 )  and (푥 , 휙 ) is a (6, 2푗 )-exact pair. 

(ii) For 
1 < 푖 ≤ 푙 − 1, 푤(휙 ) =
휎 (휙 , 푤(휙 ), 푝 , . . . , 휙 , 푤(휙 ), 푝 ). 

(iii) For 1 ≤ 푖 < 푙 − 1, 푝 ≥ max 푝 , 푝 , where 퐹 =
⋃ 푠푢푝푝휙 ∪ 푠푢푝푝 푥 . 

To complete the inductive construction choose  
푝 ≥ max 푝 , 푝퐹푖−1, 푛 #푠푢푝푝 푥   

and 2푗 = 휎휚 휙1, 푤 휙1 , 푝1, . . . , 휙푙−1, 푤 휙푙−1 , 푝푙−1 . Hence take a (6, 2푗 )-
exact pair (푥 , 휙 ) such that 푥 ∈ 푠푝푎푛ℝ(푦 )  and 푠푢푝푝푥 ∪
푠푢푝푝푥 푠푢푝푝 휙푙. Notice that properties (DS.1), (DS.2) and (DS.3) are 
clear by definition of the sequence and (DS.4) follows from (iii) and 
(TP.3).  

Modifying a little the previous argument we obtain the following: 
Proposition (4.2.18) [4]: For every two normalized block sequences 
(푦 )  and (푧 )  of 픛 (ℂ), and every 푗 ∈ ℕ there exists a (1, 푗)-

dependent sequence 푥 , 휙 , . . . , 푥 , 휙  such that 푥 ∈
푠푝푎푛ℝ(푦 ) and 푥 ∈ 푠푝푎푛ℝ(푧 ) for every 푙 = 1, . . . , 푛 .  

Another consequence of the basic inequality is the following 
proposition. 
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Proposition (4.2.19) [4]: Let 푥 , 휙 , . . . , 푥 , 휙  be a (1, 푗)-
dependent sequence. Then: 

(i) ∑ 푥 ≥ ; 

(ii) ∑ (−1) 푥 ≤ . 

Proof. The first inequality is clear since the functional 휙 = 1/
푚 ∑ 휙 ∈ 풦 (ℂ) and 휙 ∑ 푥 = 푛 /푚 . The second 
is obtained by the basic inequality.  

Now we can give a proof of Step II.  
Proposition (4.2.20) [4]: Let (푦 )  be a normalized block sequence of 
픛 (ℂ). Then the closure of the real span of (푦 )  is H.I. 
Proof. Let (푦 )  be a normalized block sequence of 픛 (ℂ). Fix 휖 > 0 
and two block subsequences (푧 )  and (푤 )  in 푠푝푎푛ℝ(푦 ) . Take an 
integer 푗 such that 푚 휖 > 1. By Proposition (4.2.18) there exists a 

(1, 푗)-dependent sequence 푥 , 휙 , . . . , 푥 , 휙  such that 푥 ∈

푠푝푎푛ℝ(푧 ) and 푥 ∈ 푠푝푎푛ℝ(푤 ).  
We define 푧 = (1/푛 ) ∑ 푥( )  and 푤 = 1/푛 ∑ 푥( )  . 
Notice that 푧 ∈ 푠푝푎푛ℝ(푧 ) and 푤 ∈ 푠푝푎푛ℝ(푤 ). Then by Proposition 
(4.2.19) we get ‖푧 + 푤‖ ≥ 1/푚  and  ‖푧 − 푤‖ ≥ 1/푚 . Hence 
‖푧 − 푤‖ ≤ 휖‖푧 + 푤‖.  
A.5. Proof of Step III 
Definition (4.2.21) [4]: A sequence 푧 , 휙 , . . . , 푧 , 휙  is called a 

(0, 푗)-dependent sequence when it satisfies the following conditions: 

  (0DS.1) The sequence 훷 = 휙 , . . . , 휙  is a 2푗 + 1-special 

sequence and 휙 (푧 ) = 0 for every 1 ≤ 푖, 푘 ≤ 푛 . 

  (0DS.2) There exists 휓 , . . . , 휓 ⊆ 풦 (ℂ) such that 

푤(휓 ) = 푤(휙 ), # 푠푢푝푝 푧 ≤ 푤(휙 + 1)/푛  and 푧푖, 휓푖  is a 
(6, 2푗 )-exact pair for every 1 ≤ 푖 ≤ 푛 . 

 (0DS.3) If 퐻 = ℎ , . . . , ℎ  is an arbitrary 2푗 + 1-special 
sequence, then  
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푠푢푝푝 푧
 

, ,

∩ 푠푢푝푝 ℎ
 

, ,

= ∅. 

Proposition (4.2.22) [4]: For every (0, 푗)-dependent sequence 
 푥 , 휙 , . . . , 푥 , 휙  we have that  

1
푛

푥 ≤
1

푚
 

Proposition (4.2.23) [4]: Let (푦 )  be a (퐶, 휖)-R.I.S., 푌 = 푠푝푎푛ℂ(푦 ), 
and 
 푇: 푌 → 픛 (ℂ) an ℝ-linear bounded operator.  
Then lim → 푑(푇푦 , ℂ푦 ) = 0. 
Proof. Suppose that lim → 푑(푇푦 , ℂ푦 ) ≠ 0. Then there exists an 
infinite subset 퐵 ⊆ ℕ such that inf ∈ 푑(푇푦 , ℂ푦 ) > 0. We shall show 
that for every 휖 > 0 there exists 푦 ∈ 푌 such that ‖푦‖ < 휖‖푇푦‖, and this 
is a contradiction. 
Claim 1. There exists a limit ordinal 훾 , 퐴 ⊆ ℕ infinite and 훿 > 0 such 
that 

inf
∈

푑(푃훾 푇푦 , ℂ푦 ) > 훿 

To prove this claim we observe that 

훾 = min 훾 < 휔 : ∃퐴 ∈ [ℕ] inf
∈

푑 푃 푇푦 , ℂ푦 > 0  

is a limit ordinal. In fact, by the assumption the set on the right hand side 
is not empty. And if 훾  is not limit, then we have 훾 = 훽 + 1. The 
sequence (푦 )  is weakly null (because (푒 )  is shrinking) and then  

lim
→

푒∗ 푇푦 = 0 

And for large 푛 and every 휆 ∈ ℂ  
푃 푇푦 − 휆푦 ≥ 푃 푇푦 − 휆푦 − 푒∗ 푇푦 ≥ 훿 − 푒∗ 푇푦

≥ 훿/2, 
which is a contradiction. 
Claim 2. Fix 훾  and 퐴 ⊆ ℕ as in Claim 1. Then there exist a sequence 
푛 < 푛 <. .. in 퐴, a sequence of functionals 푓 , , 푓 , . .. in 풦 (ℂ) and a 
sequence of ordinals 훾 < 훾 <. . . < 훾  such that 

(i)  푑(푃[ , ]푇푦 , ℂ푦 )  ≥ 훿/2; 
(ii) 푓 푇푦 ≥ 훿/2; 
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(iii) 푓 푦 = 0; 
(iv) 푟푎푛푓 ⊆ 푟푎푛푇푦 ; 
(v) 푠푢푝푝푓 ∩ 푠푢푝푝 푦 = ∅ 푤ℎ푒푛 푚 ≠ 푘. 
To prove this claim, let 휉 = sup max 푦 . We analyze the three 

possibilities for 휉: 
Case (a): 휉 < 훾 . Let 푛 = min 퐴 and choose 휉 < 훾 < 훾  such that 

푃훾 푇푦 − 푃 푇푦 < 훿/2, 
hence, 푑 푃훾 푇푦 , ℂ푦 > 훿/2. By minimality of 훾  we have  

inf
∈

푑(푃훾 푇푦 , ℂ푦 ) = 0, 

then we can choose 푛 > 푛  in A such that 푑 푃훾 푇푦 , ℂ푦 < 훿/2 and 
this implies that 

푑 푃 − 푃 푇푦 ℂ푦 > 훿/2 

Approximating the vector 푃 − 푃 푇푦  choose 훾 > 훾 > 훾  such that 
푃 − 푃 × 푇푦  is small in order to guarantee that 

푑(푃[ , ]푇푦 , ℂ푦 )  ≥ 훿/2. 
Using the complex Hahn–Banach theorem, there exists 푔 ∈ 퐵픛∗ (ℂ) such 
that 

(a) 푔 (푃[ , ]푇푦 )  > 훿/2; 
(b) 푔 푦 = 0, 

and by Proposition (4.1.3) [4] we can choose ℎ ∈ 풦 (ℂ) such that 
ℎ (푃[ , ]푇푦 )  > 훿/2 and ℎ (푦 ) is arbitrarily small. Replacing ℎ  by 
훼ℎ + 훽푘  where |훼| + |훽| = 1, 푘 푦  is close enough to 1, and 
푘 ∈ 풦 (ℂ) we may assume that ℎ 푦 = 0. 

Let 푓 = ℎ 푃[ , ]∩  ∈ 풦 (ℂ). Again by minimality of 훾 , 

there exists 푛 > 푛  in A such that 푑 푃 푇푦 , ℂ푦 < 훿/2 and we can 
choose 훾 > 훾 > 훾  satisfying  

푑(푃[ , ]푇푦 , ℂ푦 )  > 훿/2. 
Again by Hahn–Banach theorem and by Proposition (4.1.3) [4] there 
exists a functional ℎ ∈ 풦 (ℂ) such that 

(i) ℎ (푃[ , ]푇푦 )  > 훿/2; 
(ii) ℎ 푦 = 0, 

then we define 푓 = ℎ 푃[ , ]∩  ∈ 풦 (ℂ). The previous argument 
gives us the way to construct the sequences of Claim 2. Properties (i)–(v) 
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are easy to check, in particular property (v) is true because 
min 푠푢푝푝 푓 > 휉 > max 푠푢푝푝 푦  for every positive integers 푘, 푙. 

Case (b): 휉 > 훾 . In this case we start by picking 푛 ∈ 퐴 such that 
min 푠푢푝푝 푦 > 훾 . Then we repeat exactly the same argument as in 
Case (a). 

Case (c): 휉 = 훾 . We basically repeat the same argument of Case 
(a) with the additional care of maintaining property (v) true. That is, each 
time we choose the ordinal 훾  (with 훾 > 훾 > 훾 ) we take it such 
that 훾 > max 푠푢푝푝 푦 . 

Claim 3. There exists a (0, 푗)-dependent sequence 푧 , 휙 , . . . , 푧  
such that 

(i) 푧 ∈ 푋 for every 1 ≤ 푖 ≤ 푛 ; 
(ii) 푟푎푛 휙 ⊆ 푟푎푛푇푦  and 휙 (푇푧 ) > 훿/2. 
Let 푗 with 푚 > 24/휖훿. Choose 푗  even such that 푚 > 푛  

(see definition of special sequence) and 퐹 ⊆ 퐴 with #퐹 = 푛  such that 
(푦 ) ∈  is a (3, 1/푛 ) -R.I.S. Then define  

 휙 =
1

푚
푓 ∈ 풦 (ℂ)

 

∈

     and    푧 =
푚
푛

푦
 

∈

 

observe that 푤(휙 ) = 푚 , 휙 (푇푧 ) = ∑ 푓 ∑ 푇푦 
∈

 
∈ > 훿/2 

and 휙 (푇푧 ) = ∑ 푓 ∑   
∈

 
∈ = 0. Select 

푝 ≥ max 푝 , 푝 (푠푢푝푝 푧 ∪ 푠푢푝푝 푇푧 ∪ 푠푢푝푝 휙 ), 푛 # 푠푢푝푝 푧  , 
denote 2푗 = 휎 휙 , 푚 , 푝 . Then take 퐹 ⊆ 퐴 with #퐹 = 푛  and 
퐹 > 퐹  such that (푦 ) ∈ 퐹  is (3, 1/푛 )-R.I.S. and define  

휙 =
1

푚
푓 ∈ 풦 (ℂ)

 

     and    푧 =
푛
푛

푦
 

 

So we have 휙 < 휙 , 휙 (푇푧 )  > 훿 and 휙 (푧 )  = 휙 (푧 )  = 0. Pick 
푝 ≥ max 푝 , 푝 (푠푢푝푝 푧 ∪ 푠푢푝푝 푧 ∪ 푠푢푝푝 푇푧 ∪ 푠푢푝푝 푇푧

∪  푠푢푝푝 휙 ∪  푠푢푝푝 휙 )푛 # 푠푢푝푝 푧  
and set 2푗 = 휎 휙 , 푚 , 푝 , 휙 , 푚 , 푝 . Continuing with this 

procedure we form a sequence 푧 , 휙 , . . . , 푧 , 휙 . Now we check 

that this is a (0, 푗)-dependent sequence. 
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Property (0DS.1) is clear, because of the construction of the 
functionals their weights satisfy 푤(휙 + 1) = 푚 ( ) where 훷 =
(휙 , 푤(휙 ), 푝 , . . . , 휙 , 푤(휙 ), 푝 ). 

Property (0DS.2).We proceed to the construction of the sequence 
휓 , . . . , 휓  in 풦 (ℂ) such that (푧 , 휓 ) is a (6,2푗 )-exact pair and 

푤(휓 ) = 푤(휙 ) for every 1 ≤ 푖 ≤ 푛 . The other condition 
# 푠푢푝푝 푧 ≤ 푤(휙 )/푛  is already obtained by the construction of 
the weights. For each 푧  there exists a subset 퐹 ⊆ 퐴 with #퐹 = 푛  such 
that 푧 = (푚 /푛 ) ∑  푦 

∈  where (푦 ) ∈ 퐹  is a (3,1/푛 )R.I.S. 
Now we follow the same arguments as in Proposition (4.2.15). For every 
푘 ∈ 퐹  we take 푓 ∈ 풦 (ℂ) such that 푓 푦 = 1 and 푓 < 푓 . 
Then 휓 = (1/푚 ) ∑  푓 ∈ 풦 (ℂ) 

∈  and (푧 , 휙 ) is a (6,2푗 )-exact 
pair. 

Property (0DS.3). Let 퐻 = ℎ , . . . , ℎ  be an arbitrary 2푗 + 1-

special sequence. We consider two cases: (a) Suppose that max 푠푢푝푝 푧 ≤
max 푠푢푝푝 휙  for every 1 ≤ 푘 ≤ 푛 . Then 푠푢푝푝 푧 ⊆ 푠푢푝푝 휙

,
,  

for every 휅 , < 푘 < 휆 , . Then for the second part of (TP.3) we obtain the 
desired result. (b) Suppose that max 푠푢푝푝 휙 ≤ max 푠푢푝푝 푧  for every 
1 ≤ 푘 ≤ 푛 . Then 푠푢푝푝 휙 ⊆ 푠푢푝푝 푧

,
,  for every 휅 , < 푘 <

휆 , , and the result follows from the first part of (TP.3). 
Fix a (0, 푗)-dependent sequence as obtained in the previous claim, 

and define  

푧 = 1 푛2푗+1⁄ 푧

푛2푗+1

     푎푛푑    휙 = 1 푚2푗+1⁄ 휙

푛2푗+1

 

Then 휙(푇푧)  = (1/푛 ) ∑ 휙푘(푇푧)푘=1 ≥ 훿/푚  and  ‖푧‖ <
12/푚 . Hence, ‖푇푧‖ ≥ 훿/푚2푗+1 ≥ 훿푚2푗+1‖푧‖/12 > 휖‖푧‖, and this 
completes the proof.  

  



101 
 

List Of Symbols 

Symbols  Page No 

푯  Hardy space 1 

Sup Supremum  2 

Max Maximum  2 

풍  Hilbert  space  5 

Dim Dimension  6 

Dist  Distance 7 

Inf Infimum  7 

Card cardinality 11 

풍풑 Lebesgue space  16 

풍ퟐ Hilbert space  17 

⊕ Direct  sum 17 

Isom Isomorphism  17 

Sym Symmetry  19 

Hamm  Hamming  19 

⊗ Tensor  product 20 

Ker Kernel  24 

Hom  Homomorphism  25 

푳풑 −  풔풑풂풄풆풔 Lebesgue space 28 

Vr Volume ratio 47 

퓵ퟏ Hilbert space 68 

Supp Support  71 

R.I.S Rapidly increasing  74 

MIN minimum 91 

ran range 93 
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