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Chapter 1 

Amenability and Generalized Notions  
 

In this chapter the Results are given on Banach sequence, Lipschitz 
algebras and Burling algebras, and on crucial role of approximate 
identities. We show a result due to N. Grønbæk on characterizing of 
amenability for Beurling algebras.  

Section (1.1): Equivalence with Uniform Notion and Sequence Space  

The concept of amenability for a Banach algebra 퐴 was introduced by 
Johmson in 1972, and has proved to be of enormous importance in 
Banach algebra theory. Several modifications of this notion were 
introduced. We continue the investigation of these, in particular that of 
approximate amenability. 

Let 퐴 be a Banach algebra, and let 푋 be a Banach 퐴-bimodule. 퐴 
derivation is a linear map 퐷: 퐴 → 푋 such that 

퐷(푎푏) = 푎 ∙ 퐷(푎) + 퐷(푎) ∙ 푏			(푎, 푏 ∈ 퐴). 

By a derivation we mean a continuous derivation. For x ∈ X, set ad ∶
a ⟼ a ∙ x − x ∙ a, A → X. Then ad  is the inner derivation induced by x. 
The derivation D ∶ A → X is approximately inner if there is a net (x ) in X 
such that 

퐷(푎) = lim(푎 ∙ 푥 − 푥 ∙ 푎) 			(푎 ∈ 퐴), 

so that 퐷 = lim ad  in the strong-operator of ℬ(퐴, 푋). 

 The dual of a Banach space 푋 is denoted by 푋∗; in the case where 푋 is 
a Banach 퐴-bimodule, 푋∗ is also a Banach 퐴-bimodule. For the standard 
dual module definitions. 

Definition (1.1.1) [1]:  

Let 퐴 be a Banach algebra. 

(i) 퐴 is approximately amenable if, for each Banach 퐴-bimodule 푋, 
every derivation 퐷 ∶ 퐴 → 푋∗ is approximately inner; 
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(ii) 퐴 is approximately contractible if, for each Banach 퐴-bimodule 
푋, every derivation 퐷 ∶ 퐴 → 푋 is approximately inner. 

The qualifier sequential prefixed to the above definitions specifies that 
there is a sequence of inner derivations approximating each given 
derivation. Similarly, the qualifier weak* prefixed to the definitions of 
approximate amenability specifies that the convergence in the weak* 
topology of 푋∗. 

Each amenable Banach algebra is approximately amenable. Some 
approximately amenable Banach algebras which are not amenable are 
constructed. Further examples have been shown Ghahramani and Stokke: 
the Fourier algebra 퐴(퐺) is approximately amenable for each amenable, 
discrete group 퐺, but it is known that these algebras are not always 
amenable. 

Throughout, the second dual of a Banach algebra 퐴 will always be 
equipped with the first (or left) Arens product. Thus (푥, 푦) ⟼ 푥푦 is a 
continuous function of 푦 ∈ 퐴∗∗ for each 푥 ∈ 퐴, and continuous function 
of 푥 ∈ 퐴∗∗ for each 푦 ∈ 퐴∗∗. Finally, 퐴⋕ will denote 퐴 with identity, 
denoted by 푒, adjoined.     

Now we can define Goldstine’s Theorem [5]: let 푋 be a Banach space, 
then the image of the closed unit ball 퐵 ⊂ 푋 under the canonical 
imbedding into the closed unit ball 퐵 “of the bidual space 푋” is weakly	∗-
dense. 

Theorem (1.1.2) [1]: 

For a Banach algebra 퐴 the following are equivalent. 

(i) 퐴 is approximately contractible; 
(ii) 퐴 is approximately amenable;  
(iii) 퐴 is weak*-approximately amenable. 

Proof: 

It suffices to show that (iii) ⇒ (i). 

Suppose that (iii) holds. Then 풜⋕ is weak*-approximately amenable. 
Following the classical argument of B.E.Johnson, there is a net (푀 ) ⊂
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풜⋕	⨂	풜⋕ ∗∗
 such that for each 푎 ∈ 퐴, 푎 ∙ 푀 − 푀 ∙ 푎 → 0 and 

휋∗∗(푀 ) → 푒 in the weak*-topology of 풜⋕	⨂	풜⋕ ∗∗
 and 퐴∗∗, 

respectively. 

 Now take 휀 > 0, and finite sets 퐹 ⊂ 풜⋕, 훷 ⊂ (풜⋕)∗, and 푁 ⊂
풜⋕	⨂	풜⋕ ∗

. Then there is 푣 such that 

|〈푎 ∙ 푓 − 푓 ∙ 푎,푀 〉| = |〈푓, 푎 ∙ 푀 −푀 ∙ 푎〉| < 휀 

and 

|〈휙, 휋∗∗(푀 ) − 푒〉| < 휀 

for all 푎 ∈ 퐹, 휙 ∈ 훷 and 푓 ∈ 푁. 

By Goldstine’s theorem, and the weak*-continuity of 휋∗∗, there is 
푚 ∈ 풜⋕	⨂	풜⋕ such that 

|〈푓, 푎 ∙ 푚 −푚 ∙ 푎〉| = |〈푎 ∙ 푓 − 푓 ∙ 푎,푚〉| < 휀		and		|〈휙, 휋(푚) − 푒〉| < 휀 

for all 푎 ∈ 퐹, 휙 ∈ 훷 and 푓 ∈ 푁. 

Thus there is net (푚 ) ⊂ 풜⋕	⨂	풜⋕ such that for every 푎 ∈ 퐴, 푎 ∙
푚 −푚 ∙ 푎 → 0 and 휋(푚 ) → 푒, weakly in 풜⋕	⨂	풜⋕ and 풜⋕	, 
respectively. 

Finally, for each finite set 퐹 ⊂ 풜⋕, say 퐹{푎 , … , 푎 }, 

푎 ∙ 푚 − 푚 ∙ 푎 , … , 푎 ∙ 푚 − 푚 ∙ 푎 , 휋(푚 ) → (0, … ,0, 푒) 

weakly in 풜⋕	⨂	풜⋕ 	⨁	풜⋕. Thus 

(0, … ,0, 푒) ∈ co 푎 ∙ 푚 − 푚 ∙ 푎 ,… , 푎 ∙ 푚 −푚 ∙ 푎 , 휋(푚 ) . 

The Hahn-Banach theorem now gives that for each 휀 > 0, there is 
푢 , ∈ co{푚 }, such that 

푎 ∙ 푢 , − 푢 , ∙ 푎 < 휀		and		 휋 푢 , − 푒 < 휀 

for 푎 ∈ 퐹. Thus we have (1). 

Recall that a Banach algebra 퐴 is uniformly approximately amenable 
if every continuous derivation from 퐴 into any dual Banach 퐴-bimodule 
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may be approximated uniformly on the unit ball of 퐴 by inner derivations. 
Clearly any amenable Banach algebra is uniformly approximately 
amenable. In this section we show that the converse is also true. 

Theorem (1.1.3) [1]: 

A Banach algebra 퐴 is uniformly approximately amenable if and only 
if it is amenable. 

Proof: 

Let 퐴 be uniformly approximately amenable. Note that 퐴 is amenable 
(uniformly approximately amenable) if and only if its unitization 퐴⋕ is 
amenable (respectively uniformly approximately amenable), and so 
without loss of generality we may assume that 퐴 has a unit 푒. Consider 
퐴	⨁	풜  with the product specified by 

(푎	⨂	푏)(푐	⨂	푑) = 푎푐	⨂	푑푏			(푎, 푏, 푐, 푑 ∈ 퐴). 

Let 휋 ∶ 	퐴	⨁	풜 → 퐴 be the product map. To show 퐴 is amenable it 
suffices to show that 풦 = ker(휋) has a bounded right approximate 
identity, or equivalently, that 풦∗∗ has a right identity. 

For 푎, 푏 ∈ 퐴 and 푡 ∈ 퐴	⨁	풜 , we have 

																														(푎	⨂	푏)푡 = 푎 ∙ 푡 ∙ 푏.																								(1) 

By the weak* continuity of the actions involved, (1) also for 푡 ∈
퐴	⨂	퐴

∗∗
. Take 푡 ∈ 풦∗∗. Then for 푠 = ∑ 푎 	⨂	푏 ∈ 풦 , noting that 

∑ 푎 푏 = 휋(푠) = 0, and using (1), we have 

푠푡 − 푠 = 푎 	⨂	푏 푡 − 푡 푎 푏 − 푎 	⨂	푏 + 푒⨂ 푎 푏  

= 푎 ∙ 푡 − 푡 ∙ 푎 − 푎 	⨂	푒 + 푒	⨂	푎 ∙ 푏 . 

It follows that 

‖푠푡 − 푠‖ ≤ 푎 푏 sup
∈
‖푎 ∙ 푡 − 푡 ∙ 푎 − 푎	⨂	푒 + 푒	⨂	푎‖,	 
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where 퐴  denotes the unit ball of 퐴. 

So we have 

															‖푠푡 − 푠‖ ≤ ‖푠‖ sup
∈
‖푎 ∙ 푡 − 푡 ∙ 푎 − 푎	⨂	푒 + 푒	⨂	푎‖,							(2) 

for each 푠 ∈ 풦 . Now take 푠 ∈ 풦∗∗. Then there is a net (푠 ) ⊂ 풦  such 

that ‖푠 ‖ ≤ ‖푠‖ and 푠
∗

⎯ 푠. Thus 푠 푡 − 푠
∗

⎯ 푠푡 − 푠 and ‖푠푡 − 푠‖ ≤
sup ‖푠 푡 − 푠 ‖. It follows that inequality (2) holds for all 푠 ∈ 풦∗∗. 

Consider the continuous derivation 퐷 ∶ 퐴 → 풦∗∗ defined by 

퐷(푎) = 푎	⨂	푒 − 푒	⨂	푎. 

From the hypothesis, there is a sequence (푡 ) ⊂ 풦∗∗, and 휀 → 0 such 
that 

‖푎 ∙ 푡 − 푡 ∙ 푎 − 푎	⨂	푒 + 푒	⨂	푎‖ ≤ 휀 ‖푎‖			(푎 ∈ 퐴). 

Thus, form inequality (2), the multiplication operator 휌 :	풦∗∗ → 풦∗∗ 
defined by 휌 (푠) = 푠푡  satisfies 휌 − 푖푑풦∗∗ < 1 for 푛 sufficiently 
large. Take such 푛, so that 휌  is invertible. By surjectivity, there is 
푥 ∈ 풦∗∗ such that 푥푡 = 푡 . Then for each 푦 ∈ 풦∗∗ we have (푦푥 −
푦)푡 = 0. From the injectivity of 휌  this implies 푦푥 = 푦(푦 ∈ 풦∗∗). So 
풦∗∗ has a right identity, as required. 

In contrast to Theorem (1.1.2) the above theorem and indicate that 
uniform approximate amenability and uniform approximate 
contractability are not the same. 

Corollary (1.1.4) [1]:  

If a finite-dimensional Banach algebra is approximately amenable, 
then it is already amenable. 

Proof: 

If a Banach algebra 퐴 is finite- dimensional and is approximately 
amenable, then it is uniformly approximately amenable. So the 
conclusion follows from Theorem (1.1.4). 
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As usual 푐  will be the subalgebra of ℂℕ consisting of sequences 
having finite support. 

Definition (1.1.5) [1]: 

A Banach sequence algebra on ℕ is a Banach algebra 퐴 which is a 
subalgebra of ℂℕ such that 푐 ⊂ 퐴. 

It is known that a Banach sequence algebra 퐴 is approximately amenable 
whenever it has a bounded approximate identity. Indeed, a simple variant 
on the argument there shows the following. 

Proposition (1.1.6) [1]: 

Let 퐴 be a commutative semisimple Banach algebra with discrete 
maximal ideal space, and suppose that 퐴 has a bounded approximate 
identity consisting of elements of compact support. Then 퐴 is 
approximately amenable. 

All known approximately amenable algebras have bounded 
approximate identities, though in general all that can be said is that 
approximately amenable algebras have one-side, possibly unbounded, 
approximate identities. Thus it is of interest to know conditions under 
which an approximately amenable algebra must have a bounded 
approximate identity. We show the following. 

Proposition (1.1.7) [1]: 

Either of the following conditions is sufficient for 퐴 to be sequentially 
approximately contractible. 

(i) 퐴 is a Banach algebra with identity 푒 and there exists (퐺 ) ⊂
퐴	⨂	퐴 with 휋(퐺 ) = 푒 and such that for every 푎 ∈ 퐴, 

‖푎 ∙ 퐺 − 퐺 ∙ 푎‖ → 0. 

(ii) 퐴 is a Banach sequence algebra with a bounded sequential 
approximate identity in 푐 . 

for 푛 ∈ ℕ, set 퐸 = 풳[1, 푛] ∈ 푐 , 푒 = 풳[푛]. 
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Theorem (1.1.8) [1]: 

Let 퐴 be a Banach sequence algebra such that 퐸  is an approximate 
identity for some increasing sequence (푛 ) ≥ 0. Then 퐴 is sequentially 
approximately contractible if and only if 퐴 has a bounded sequential 
approximate identity in 푐 . 

Proof: 

Suppose that 퐴 is sequentially approximately contractible. We take 
퐸  unbounded otherwise there is nothing to prove. By going to a 

subsequence if necessary, we may suppose that 푃 = 퐸 − 퐸  is an 
unbounded sequence of idempotents. Set 푃 = 퐸 . Define 푇 ∶ 푥 ⟼
퐸 푥 for 푥 ∈ 퐴. Then (푇 ) converges pointwise to the identity, so by 
uniform boundedness there is 퐵 > 0 such that ‖푇 ‖ ≤ 퐵 for all 푘. Thus 
setting 푄 = 푇 − 푇 , we have ‖푄 ‖ ≤ 2퐵 for each 푘, yet the 
implementing elements 푃  are unbounded in norm. set 푍 = 푃 ‖푃 ‖⁄ . 

Now our hypothesis gives sequences (푀 ) ⊂ 퐴	⨂	퐴, and (퐹 ) ⊂ 퐴 
such that (퐹 ) is an approximate identity for 퐴 for any 푥 ∈ 퐴, 

푥 ∙ 푀 −푀 ∙ 푥 − 푥	⨂퐹 + 퐹 ⨂	푥 → 0. 

Indeed, since 퐸  is an approximate identity for 퐴, it follows that 푐  is 
dense in 퐴, so we may assume that 푀 ∈ 푐 	⨂	푐  and 퐹 ∈ 푐 . 

By uniform boundedness, it follows that there is a constant 퐿 ≥ 0 such 
that 

														‖푥 ∙ 푀 − 푀 ∙ 푥 − 푥	⨂퐹 + 퐹 ⨂	푥‖ ≤ 퐿‖푥‖		(푛 ∈ ℕ)								(3) 

Set 푥 = 푧  in (3). Then 

												‖푍 ∙ 푀 −푀 ∙ 푍 − 푍 	⨂	퐹 + 퐹 ⨂	푍 ‖ ≤ 퐿		(푛 ∈ ℕ).								(4) 

Write 퐹 = ∑ 푓( )푒 ,푀 = ∑ ∑ 푎( )푒 	⨂	 ∑ 푏 ℓ
( )푒ℓℓ  where 

푎( )푒 푏 ℓ
( )푒ℓ

ℓ

≤ ‖푀 ‖ + 1. 
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Note that each of the sums here is finite. Now 

‖푃 ‖(푍 ∙ 푀 −푀 ∙ 푍 − 푍 	⨂	퐹 ) 

= 푃 ∙ 푀 − 푀 ∙ 푃 − 푃 	⨂	퐹  

= 푎( )푒 	⨂	 푏( )푒

− 푎( )푒 	⨂	 푏 ℓ
( )푒ℓ

ℓ

− 푒 ⨂	 푓ℓ 푒ℓ
ℓ

. 

Multiply though on the right by the idempotent 푃 , this is a map with 
bound 2퐵. Noting that 푍 푃 = 푍 , we have 

‖푃 ‖(푍 ∙ 푀 ∙ 푃 −푀 ∙ 푍 ∙ 푃 − 푍 	⨂	퐹 ∙ 푃 )

= 푎( )푒 	⨂	 푏 ℓ
( )푒ℓ

ℓ

− 푎( )푒 	⨂	 푏 ℓ
( )푒ℓ

ℓ

− 푒 ⨂ 푓ℓ 푒ℓ
ℓ

.																																			(5) 

Consider the terms on the right-hand side of (5). For each 
푘, ‖푃 ‖ ∑ 푒  has unit norm; and ∑ 푓ℓ 푒ℓℓ → 0 as 푘 → ∞. 

Further, 

푎( )푒 − 푎( )푒

≤ (1 + 퐵) 푎( )푒 	 
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so the other terms have norm at most 

푎( )푒 − 푎( )푒 ∙ 푏 ℓ
( )푒ℓ

ℓ

≤ 2퐵(1 + 2퐵) 푎( )푒 푏 ℓ
( )푒ℓ

ℓ

≤ 2퐵(1 + 2퐵)(‖푀 ‖ + 1).															 

Since ‖푃 ‖ → ∞, it follows that for each 푛, 

푍 ∙ 푀 ∙ 푃 − 푀 ∙ 푃 − 푍 	⨂퐹 ∙ 푃 → 0		(푘 → ∞). 

But since from (4), 

‖푍 ∙ 푀 ∙ 푃 − 푀 ∙ 푍 ∙ 푃 − 푍 	⨂	퐹 ∙ 푃 + 퐹 	⨂	푍 ∙ 푃 ‖ ≤ 2퐵퐿 

for all 푘, 푛, we have ‖퐹 ‖ = lim ‖퐹 	⨂	푍 ‖ = lim ‖퐹 	⨂	푍 ∙ 푃 ‖ is 
bounded. 

Thus (퐹 ) is a sequential bounded approximate identity for 퐴 
contained in 푐 . The converse is Proposition (1.1.7) (ii). 

In particular, consider the Feinstein algebras 퐴 . Let 훼 = (훼 ) be a 
sequence of strictly positive reals. Define 

풜 = 푥 = (푥 ) ∈ 푐 :	‖푥‖ ≔ ‖푥‖ + 훼 |푥 − 푥 | < ∞ . 

These algebras have a bounded approximate identity if and only if 
lim	inf 훼 < ∞, and are amenable if and only if ∑훼 < ∞. Moreover, 
they always have an approximate identity of the form 퐸 . 

Corollary (1.1.9) [1]: 

The Feinstein algebra 퐴  is sequentially approximately contractible if 
and only if lim	inf 훼 < ∞, if and only if it has a bounded approximate 
identity. 
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Proof: 

If 퐴  is sequentially approximate contractible, Theorem (1.1.8) shows 
that 퐴  has a bounded approximate identity, and so lim	inf 훼 < ∞ as 
noted above. Conversely, lim	inf 훼 < ∞ implies 퐴  has a bounded 
approximate identity, whence 퐴  is sequentially approximately 
contractible by Theorem (1.1.8). 

Theorem (1.1.8) shows that ℓ (휔) under pointwise operations is never 
sequentially approximately contractible. In fact it is never approximately 
amenable. 

Suppose now that 훼 ≡ 1 and take a sequence (푚 ) such that 
푚 > 푚 + 1, let 

퐼 = 푥 ∈ 퐴 :	푥 = 0	unless	푗 ∈ {푚 } . 

Then 퐼 is a closed ideal in 퐴 , and 퐼 isomorphic to ℓ . Under the 
supposition on (푚 ) shows that 퐼 complemented in 퐴  is sequentially 
approximately contractible, with a bounded approximate identity, yet 퐼 is 
a complemented ideal which is not even approximately amenable. This is 
in contrast to the situation with amenability. 

We remark that taking 퐼 ⊂ 퐴  to be the ideal “ sits ” on the even 
integers, so 푍 = 2ℕ + 1, 퐽 that on the odd integers so that 푍 = 2ℕ, then 
both 퐼 and 퐽 are isomorphic to ℓ , are complemented (but not 
complementary) ideals in 퐴 , 퐼 ∩ 퐽 = {0}, and 퐼 + 퐽 is dense. This just 
reflects the fact that one cannot just set terms to zero and expect to remain 
inside 퐴 . 

Example (1.1.10) [1]: 

(Suggested by Garth Dales) Let 푆 be the semigroup ℕ with product 
푚푛 = min{푚, 푛}, and take 퐴∧ = ℓ (푆) with convolution product. The 
point masses {훿 : 푛 ∈ ℕ} are idempotents with dense span, whence 퐴∧ is 
weekly amenable. However, it is not amenable. We show that 퐴∧ is 
sequentially approximately contractible. 

For 푎 = ∑푎 훿 ∈ 퐴∧. 
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훿 푎 = 푎 훿 + 푎 훿 → 푎 

as 푛 → ∞, so that (훿 ) is a sequential bounded approximate identity. The 
Gelfand transform for 퐴∧ is the map Φ:	퐴∧ → 푐  given by 

Φ(푥) = 푥 , 푥 , … , 

which is clearly injective with range containing 푐 . Thus 퐴∧ can be 
considered as a Banach sequence algebra Proposition (1.1.8) (ii) shows 
that 퐴∧ is sequential approximately contractible, with 퐺 = 퐸 	⨂	퐸  and 
퐸  the required sequences when viewed in Φ(퐴∧). Lifting back to 퐴∧ 
gives 퐹 = 훿 	⨂	훿  which satisfies 휋(퐹 ) = 훿 . However to fit with 
requires a sequence 퐹  satisfying 휋(퐹 ) = 2훿 . In fact, setting 훿 = 0, 

퐹 = 퐹 + 훿 − 훿 	⨂	 훿 − 훿  

gives an unbounded sequence with the required properties. To see this 
first note that 

휋(퐹 ) = 훿 + 훿 − 훿 훿 − 훿 = 훿 + 훿 − 훿 = 2훿 . 

Since 

훿 훿 − 훿 =
훿 − 훿 ,
0,							

� 		
푗 ≤ 푘,			
푘 ≤ 푗 − 1, 

for 푘 ≤ 푛 we have 

훿 ∙ 퐹 − 퐹 ∙ 훿 + 훿 	⨂훿 − 훿 	⨂훿  

= 훿 훿 − 훿 	⨂	 훿 − 훿 − 훿 − 훿 	⨂	 훿 − 훿 훿

= 0, 

and for 푘 > 푛, 
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훿 ∙ 퐹 − 퐹 ∙ 훿 + 훿 	⨂훿 − 훿 	⨂훿
= 훿 ∙ 퐹 − 퐹 ∙ 훿 + 훿 	⨂훿 − 훿 ⨂훿  

So for 푎 ∈ 퐴∧, 

푎 ∙ 퐹 − 퐹 ∙ 푎 + 훿 ⨂	푎 − 푎	⨂	훿  

= 푎 훿 ∙ 퐹 − 퐹 ∙ 푎 훿 + 훿 	⨂ 푎 훿

− 푎 훿 ⨂	훿 												

= 훿 	⨂ 푎 훿 − 푎 훿 	⨂훿

→ 0	(푛 → ∞).																																																																												(6) 

For the product 푚푛 = max{푚, 푛} , 퐴∨ = ℓ (푆) has 훿  as an identity. 

Define the (unbounded) sequence 

퐺 = 훿 	⨂	훿 + (2훿 	⨂	훿 − 훿 	⨂훿 − 훿 	⨂	훿 )		(푛 ∈ ℕ) 

Then 휋(퐺 ) = 훿  clear. Further, for ℓ ≥ 푛, 
	훿ℓ ∙ 퐺 − 퐺 ∙ 훿ℓ

= 훿ℓ⨂	훿 − 훿 	⨂	훿ℓ + 2 (훿ℓ⨂	훿 − 훿 ⨂	훿ℓ)

− (훿ℓ⨂	훿 + 훿ℓ	⨂	훿 ) + (훿 	⨂	훿ℓ + 훿 	⨂	훿ℓ)

= 훿 	⨂	훿ℓ − 훿ℓ	⨂	훿 . 
And for ℓ < 푛. 

훿ℓ ∙ 퐺 − 퐺 ∙ 훿ℓ

= 훿ℓ	⨂훿 − 훿 	⨂훿ℓ + 2 (훿ℓ	⨂훿 − 훿 ⨂훿ℓ)
ℓ

+ 2 (훿 	⨂훿 − 훿 	⨂훿 )
ℓ

− 훿ℓ	⨂	훿
ℓ

− 훿 	⨂	훿
ℓ

− 훿 	⨂	훿
ℓ

− 훿ℓ	⨂	훿
ℓ

+ 훿 	⨂	훿ℓ

ℓ

+ 훿 	⨂	훿
ℓ

+ 훿 	⨂	훿
ℓ

+ 훿 	⨂	훿ℓ

ℓ

. 
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Looking at the terms with 훿  as first factor, for various values of 푘, we 
have 

훿ℓ	⨂	 훿 + 2 훿 − 훿
ℓ

− 훿 − 훿 + 훿ℓ + 훿ℓ

ℓℓ

= 0,	 

for 푟 < 푙, 

훿 	⨂	(−2훿ℓ + 훿 + 훿 ) = 0, 

and for 푟 > 푙, 

훿 	⨂	(−훿 − 훿 + 훿 + 훿 ) = 0. 

Thus 훿ℓ ∙ 퐺 − 퐺 ⋅ 퐺ℓ = 0 for 푟 < 푙. 

It follows that for 푎 = ∑푎 훿 ∈ 퐴∨, 

				푎 ∙ 퐺 − 퐺 ∙ 푎 = 푎 (훿 	⨂	훿 − 훿 	⨂	훿 )

→ 0		(푛 → ∞).						(7) 

So 퐴∨ is sequentially approximately amenable by Proposition (1.1.8) (i). 
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Section (1.2): Boundedly and Existence Approximate 
Amenability of Direct Sums   

Definition (1.2.1) [1]: 

A Banach algebra 퐴 is boundedly approximately amenable if for every 
Banach 퐴-bimodule 푋, and every continuous derivation 퐷 ∶ 퐴 → 푋∗, 
there is a net , there is a net (휉 ) ⊂ 푋∗ such that the net 푎푑  is norm 
bounded in ℬ(퐴, 푋∗) and such that 

퐷(푎) = lim푎푑 (푎)			(푎 ∈ 퐴). 

Replacing 푋∗ with 푋 in the above definition, we then have the notion 
of boundedly approximately contractible. 

Note that it is the net of derivations 푎푑  that is required to be 
bounded, not the implementing net (휉 ). On the other hand, if 퐴 is 
amenable shows that 퐴 is boundedly approximately contractible with the 
implementing net bounded. 

A standard argument shows the following. 

Proposition (1.2.2) [1]: 

A Banach algebra 퐴 is boundedly approximately amenable if and only 
if there is a constant 퐿 > 0 such that for any 퐴-bimodule 푋, and any 
continuous derivation 퐷 ∶ 퐴 → 푋∗, there is a net (휉 ) ⊂ 푋∗ such that 

(i) sup ad ≤ 퐿 ‖퐷‖; and 
(ii) 퐷(푎) = lim ad (푎)	(푎 ∈ 퐴). 

Proof: 

The “if” part being trivial, assume that 퐴 is boundedly approximately 
amenable. If there is no such 퐿 , then for every integer 푛 ∈ ℕ there is a 
module 푀  with constant at least 푛 for some norm one derivation 퐷  
from 퐴 into 푀∗ . Take the module ℓ (푀 ) with dual ℓ (푀∗). Then the 
derivation 퐷 = (퐷 ) into the latter has constant at least 푛, a contradiction. 

In terms of the basic characterization of approximate amenability, we 
have the following. 



15 
 

Theorem (1.2.3) [1]: 

Suppose that the Banach algebra 퐴 is boundedly approximately 
amenable. Then there is a net (푀 ) ⊂ 퐴⋕	⨂	퐴⋕

∗∗
 and a constant 퐿 > 0 

such that for each 푎 ∈ 퐴⋕, 푎 ∙ 푀 − 푀 ∙ 푎 → 0, 휋∗∗(푀 ) → 푒, and 
‖푎 ∙ 푀 − 푀 ∙ 푎‖ ≤ 퐿‖푎‖. Conversely, if 퐴 has this latter property and 
휋∗∗(푀 )  is bounded, then 퐴 is boundedly approximately amenable. 

The uniform boundedness principle shows that every sequentially 
approximately amenable Banach algebra is boundedly approximately 
amenable. 

Proposition (1.2.4) [1]: 

Suppose that 퐴 is a boundedly approximately amenable Banach 
algebra. If 퐴 is separable as a Banach space, then it is sequentially 
approximately amenable. 

Proof: 

Let {푏 : 푛 ∈ ℕ} be a countable dense subset of 퐴. Let 푋 be a Banach 
퐴-bimodule and 퐷: 퐴 → 푋∗ be a continuous derivation. Since 퐴 is 
boundedly approximately amenable, there is a constant 푐 > 0 such that 
for each 푛 ∈ ℕ there is 휉 ∈ 푋∗ such that 

‖퐷(푏 ) − (푏 ∙ 휉 − 휉 ∙ 푏 )‖ <
1
푛
		(푘 = 1,2, … , 푛),				and 

‖푎 ∙ 휉 − 휉 ∙ 푎‖ ≤ 푐‖푎‖		(푎 ∈ 퐴). 

This shows that the sequence (휉 ) ⊂ 푋∗ satisfies 

퐷(푏 ) = lim
→

(푏 ∙ 휉 − 휉 ∙ 푏 )		(푘 ∈ ℕ), 

and the sequence ad  is a bounded net in 퐵(퐴, 푋∗). These together 
with the density of (푏 ) in 퐴 imply that 

퐷(푎) = lim
→

(푎 ∙ 휉 − 휉 ∙ 푎) 		(푎 ∈ 퐴). 

Therefore, 퐷 is sequentially approximately inner. 
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Proposition (1.2.5) [1]: 

Suppose that 퐴 is a boundedly approximately contractible Banach 
algebra. If 퐴 is separable as a Banach space, then it is sequentially 
approximately contractible. 

Example (1.2.6) [1]: 

Let 퐴 = 푐 (푆) where 푆 is uncountable. Then 퐴 amenable and hence is 
boundedly approximately contractible, but 퐴 cannot be sequentially 
approximately contractible, for otherwise 푐 (푆) would have a sequential 
approximate identity, which is impossible. So, without separability 
Proposition (1.2.5) is not true. 

Example (1.2.7) [1]: 

Let 휔  be the first infinite ordinal, and 휔  the first uncountable 
ordinal. For each non-zero ordinal 휆, let 푆  be the set 휆 taken as a 
semigroup under the product ⋀. Consider the resulting algebras ℓ (푆 ). 

For 휆 < 휔  these are finite-dimensional and amenable. We have 
ℓ 푆  boundedly approximately amenable as earlier, with 퐿 ≤ 2 from 
Eq. (6). 

Indeed, for any ordinal 휆 the same calculation with 푆  replaced 푆  
shows that ℓ 푆  is boundedly approximately amenable with 퐿 = 2. 
Note that (here the factor of 2 is merely a technical device) 

ℓ 푆 =∪ ℓ 푆 :	휆 < 휔 . 

Further 푆  is an approximate identity for ℓ 푆  of bound 1 : 

for 푎 = ∑푎 훿 , we have 

푆 푎 = 푎 훿 + 푎 훿 → 푎. 

Since 푆 ∈ ℓ 푆  and 푆 ℓ 푆 ⊂ ℓ 푆  shows that 
ℓ 푆  is approximately amenable, and checking the argument shows 
that 퐿 = 2. 
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Yet ℓ 푆  is not sequentially approximately contractible. For if it 
were then in particular there would be a sequence (푢 ) in ℓ 푆  such 
that, for every 푎 ∈ ℓ 푆 , 

																																	푎 − 푢 푎 → 0.																												(8) 

But all the 푢  have support in some countable set, and so in an interval 
[0, 휆] for some 휆 < 휔 . But then so does 푢 푎 for any 푎. So (8) fails for 
푎 = 훿  for any 휇 > 휆. 

Give a Banach algebra 퐴 with unitization 퐴⋕, set 휋 ∶ 퐴⋕	⨂	퐴⋕ → 퐴⋕ 
to the product map, and set 풦 = ker 휋. One of the standard 
characterizations of amenability is the existence of a bounded right 
approximate identity in 풦. As we now show, boundedly approximate 
amenability can be characterized in a similar fashion. First a simple 
lemma.   

 Lemma (1.2.8) [1]: 

A Banach algebra 퐴 is boundedly approximately amenable if and only 
if 퐴⋕ is boundedly approximately amenable. 

Proof: 

Let 퐴 be boundedly approximately amenable, 푋 a Banach 퐴⋕-
bimodule, 퐷 ∶ 퐴⋕ → 푋∗ a derivation. By adjusting by an inner derivation 
of norm at most 4‖퐷‖ we may suppose that 푋 is neo-unital, and so 
퐷(푒) = 0. 

By assumption, there is (푥∗) ⊂ 푋∗ and 푀 > 0 such that for 푎 ∈ 퐴: 

퐷(푎) = lim(푎 ∙ 푥∗ − 푥∗ ∙ 푎), 

and for all 푖, 

‖푎 ∙ 푥∗ − 푥∗ ∙ 푎‖ ≤ 푀‖푎‖. 

Since 퐷(푒) = 0 and 푒 ∙ 푥∗ = 푥∗ ∙ 푒	(푥 ∈ 푋∗), it follows that 

퐷(푎 + 훼푒) = lim (푎 + 훼푒) ∙ 푥∗ − 푥∗ ∙ (푎 + 훼푒) , 

and 
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‖(푎 + 훼푒) ∙ 푥∗ − 푥∗ ∙ (푎 + 훼푒)‖ ≤ 푀‖푎‖ ≤ ‖푎 + 훼푒‖, 

 so that 퐴⋕ is boundedly approximately amenable. 

Conversely, let 푋 be an A-bimodule, and 퐷 ∶ 퐴 → 푋∗ a derivation. 
Setting 푒 ∙ 푥 = 푥 ∙ 푒 = 푥 makes 푋 into an 퐴⋕-bimodule. Setting 퐷(푒) = 0 
extends 퐷 to 퐴⋕. Supposing 퐴⋕ is boundedly approximately amenable, 
there is (푥∗) ⊂ 푋∗ and 푀 > 0 such that for all 푎 ∈ 퐴, 

퐷(푎) = lim(푎 ∙ 푥∗ − 푥∗ ∙ 푎) , with		‖푎 ∙ 푥∗ − 푥∗ ∙ 푎‖ ≤ 푀‖푎‖, 

as required. 

In the following theorem 휋 still denotes the product map from 
퐴⋕	⨂	퐴⋕  into 퐴⋕ and 풦 denotes kernel of 휋. 

Theorem (1.2.9) [1]: 

A Banach algebra 퐴 is boundedly approximately amenable if and only 
if there is a net (푢 ) ⊂ 풦∗∗ and 푀 > 0 such that: 

(i) 푘 ∙ 푢 → 푘 for each 푘 ∈ 풦; 
(ii) ‖푘 ∙ 푢 ‖ ≤ 푀‖푘‖ for all 푘 ∈ 풦 and all 푖. 

Proof: 

Suppose that 퐴 is boundedly approximately amenable, and let 
퐷 ∶ 퐴 → 풦∗∗ be the derivation 퐷(푎) = 푎	⨂	푒 − 푒	⨂	푎. Then there is a 
net (푢 ) ⊂ 풦∗∗ and 푀 > 0 such that for all 푎 ∈ 퐴, 

퐷(푎) = lim(푎 ∙ 푢 − 푢 ∙ 푎) ,

with		‖푎 ∙ 푢 − 푢 ∙ 푎‖ ≤ 푀‖푎‖		for	all	푖. 

We show that (푢 ) has the desired properties. 

Let 푘 = ∑푎 	⨂	푏 ∈ 풦, so that ∑푎 푏 = 0. Then 

푘 ∙ 푢 = 푎 ∙ 푢 ∙ 푏 = 푎 ∙ 푢 ∙ 푏 − 푢 ∙ 푎 푏

= (푎 ∙ 푢 − 푢 ∙ 푎 ) ∙ 푏 , 

so that 
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‖푘 ∙ 푢 ‖ ≤ ‖푎 ∙ 푢 − 푢 ∙ 푎 ‖ ‖푏 ‖ ≤ 푀 ‖푎 ‖‖푏 ‖, 

and so (ii) is satisfied. 

Take 휀 > 0, and write 푘 = 푘 + 푘  where 

푘 = 푐 	⨂	푑 ∈ 풦		and		‖푘 ‖ < 휀. 

This is possible. Then, as above, 

									푘 ∙ 푢 = 푐 ∙ 푢 ∙ 푑 = (푐 ∙ 푢 − 푢 ∙ 푐 ) ∙ 푑 ,															(9) 

Since 퐷(푎) = 푎	⨂	푒 − 푒	⨂	푎 for 푎 ∈ 퐴, 

						푘 = 푐 	⨂	푑 = (푐 	⨂	푒 − 푒	⨂	푐 ) ∙ 푑

= 퐷(푐 ) ∙ 푑 					(10) 

Putting (9) and (10) together, 

‖푘 ∙ 푢 − 푘 ‖ ≤ ‖푐 ∙ 푢 − 푢 ∙ 푐 − 퐷(푐 )‖ ‖푑 ‖ < 휀, 

Provided that 푖 is sufficiently large. Since 

‖푘 ∙ 푢 − 푘 ‖ ≤ (푀 + 1)‖푘 ‖ < (푀 + 1)휀, 

we thus have 

‖푘 ∙ 푢 − 푘‖ ≤ (푀 + 2)휀 

provided 푖 is sufficiently large. Thus (i) is satisfied. 

Now suppose that a net (푢 ) ⊂ 풦∗∗ as above exists. By Lemma 
(1.2.8) it suffices to show that 퐴⋕ is boundedly approximately amenable. 
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Set 푣 = 푒	⨂	푒 − 푢 ∈ 퐴⋕	⨂	퐴⋕
∗∗

. Then 휋∗∗(푣 ) = 푒, and for 
푎 ∈ 퐴,      

푎 ∙ 푣 − 푣 ∙ 푎 = (푎	⨂	푒 − 푒	⨂	푎) − (푎 ∙ 푢 − 푢 ∙ 푎) 	
= (푎	⨂	푒 − 푒	⨂	푎) − (푎	⨂	푒 − 푒	⨂	푎)푢 																												
→ 0,																																																																																										(11) 

because 푎	⨂	푒 − 푒	⨂	푎 ∈ 풦. Moreover, there is 푚 > 0 such that 

																				‖푎 ∙ 푣 − 푣 ∙ 푎‖ ≤ 푚‖푎‖		(푎 ∈ 퐴, all	푖).														(12) 

Now let 푋 be a unit-linked 퐴⋕-bimodule, and let 퐷 ∶ 퐴⋕ → 푋∗ be a 
derivation. Let 휑 ∶ 퐴⋕	⨂	퐴⋕ → 푋∗ be the mapping specified by 

휑(푎⨂	푏) = 푎 ∙ 퐷(푏)		(푎, 푏 ∈ 퐴⋕). 

Then ‖휑‖ ≤ ‖퐷‖, and for 푎 ∈ 퐴⋕, 푢 ∈ 퐴⋕	⨂	퐴⋕, 

휑(푢 ∙ 푎) = 휑(푢) ∙ 푎 + 휋(푢)퐷(푎), 휑(푎 ∙ 푢) = 푎 ∙ 휑(푢). 

The natural projection 푃 ∶ 푋∗∗∗ → 푋∗ is an 퐴⋕-bimodule morphism, 
휑∗∗ ∶ 퐴⋕	⨂	퐴⋕

∗∗
→ 푋∗∗∗ is weak*-weak* continuous, and the map 

휓 = 푃 ∘ 휑∗∗ ∶ 퐴⋕	⨂	퐴⋕
∗∗
→ 푋∗ satisfies ‖휓‖ ≤ ‖퐷‖. For 푎 ∈ 퐴⋕, 푢 ∈

퐴⋕	⨂	퐴⋕
∗∗

, noting that 푃 is weak* continuous we have 

휓(푢 ∙ 푎) = 휓(푢) ∙ 푎 + 휋∗∗(푢) ∙ 퐷(푎), 휓(푎 ∙ 푢) = 푎 ∙ 휓(푢). 

In particular, using neo-unitality, 

퐷(푎) = 휋∗∗(푣 ) ∙ 퐷(푎) 

= 휓(푣 ∙ 푎) − 휓(푣 ) ∙ 푎 

= 푎 ∙ 휓(푣 ) − 휓(푣 ) ∙ 푎 − 휓(푎 ∙ 푣 − 푣 ∙ 푎). 

Thus by (11), 

퐷(푎) = lim(푎 ∙ 휓(푣 ) − 휓(푣 ) ∙ 푎) 

whence, by (12), 

‖푎 ∙ 휓(푣 ) − 휓(푣 ) ∙ 푎‖ ≤ ‖퐷(푎)‖ + ‖휓‖‖푎 ∙ 푣 − 푣 ∙ 푎‖
≤ ‖퐷‖(푚 + 1)‖푎‖. 
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It follows that 퐷 is boundedly approximately inner. 

The same argument, with appropriate modifications, shows the 
following. 

Theorem (1.2.10) [1]:      

The Banach algebra 퐴 is boundedly approximately contractible if and 
only if there is a net (푢 ) ⊂ 풦 and 푀 > 0 such that 

(i) 푘 ∙ 푢 → 푘 for each 푘 ∈ 풦; 
(ii) ‖푘 ∙ 푢 ‖ ≤ 푀‖푘‖ for all 푘 ∈ 풦 and all 푖. 

We improve concerning approximate amenability of the direct sum of 
Banach algebras as follows. There appears to be a close relation between 
the existence of two-sided approximate identities in approximately 
amenable algebras and the approximate amenability of the direct sum of 
approximately amenable algebras. 

Proposition (1.2.11) [1]: 

Suppose that 퐴 and 퐵 are approximately amenable Banach algebras. 
Suppose that one of 퐴 or 퐵 has a bounded approximate identity. Then 
퐴	⨁	퐵 is approximately amenable. 

Proof: 

Let 푋 be an (퐴	⨁	퐵)-bimodule, and let 퐷 ∶ 	퐴	⨁	퐵 → 푋∗ be a 
continuous derivation. Suppose that (푏 ) ⊂ 퐵 is a bounded approximate 
identity for 퐵. Without loss of generality we assume 

푏
∗

⎯ 퐸	in	퐵∗∗		and	퐷(푏 )
∗

⎯ 휉	in	푋∗∗∗. 

Then 푋∗∗∗ is an (퐴	⨁	퐵)∗∗ = 퐴∗∗	⨁	퐵∗∗-bimodule. We can extend the 
module actions of 퐴	⨂	퐵 on 푋∗∗∗ to actions of 퐴⋕	⨁	퐵 on 푋∗∗∗ by 
defining 

푒 ∙ 퐹 = 퐹 − 퐸 ∙ 퐹, 퐹 ∙ 푒 = 퐹 − 퐹 ∙ 퐸, 퐹 ∈ 푋∗∗∗, 

where 푒  is the identity for 퐴⋕. 

Now view 퐷 as a derivation from 퐴	⨁	퐵 into 푋∗∗∗. We extend it to a 
derivation from 퐴⋕	⨁	퐵 into 푋∗∗∗ by defining 퐷(푒 ) = −휉. It is readily 
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seen that after this extension 퐷 is still a derivation. For instance, for each 
푎 ∈ 퐴, 

푎 ∙ 퐷(푒 ) + 퐷(푎) ∙ 푒 = −푎 ∙ 휉 + 퐷(푎) − 퐷(푎) ∙ 퐸
= 퐷(푎) − weak∗ − limD(푎푏 ) = 퐷(푎) = 퐷(푎푒 ). 

Since 퐴⋕	⨁	퐵 is approximately, it is approximately contractible by 
Theorem (1.1.2). Therefore the extended 퐷 is approximately inner. So 
there exists a net (퐹 ) ⊂ 푋∗∗∗ for which 

퐷(푎, 푏) = lim[(푎, 푏) ∙ 퐹 − 퐹 ∙ (푎, 푏)] , 푎 ∈ 퐴, 푏 ∈ 퐵. 

Applying the canonical projection from 푋∗∗∗ to both sides of the above 
equation, we obtain that the original 퐷 is approximately inner. So 퐴	⨁	퐵 
is approximately amenable. 

Proposition (1.2.12) [1]: 

Suppose that 퐴 and 퐵 are approximately amenable Banach algebras. 
Then, for any neo-unital (퐴	⨁	퐵)-bimodule 푋, continuous derivations 
from 퐴	⨁	퐵 into 푋∗ are weak* approximately inner. 

Proof: 

Let 퐷 ∶ 	퐴	⨁	퐵 → 푋∗ be a continuous derivation. Then 퐷 induces 
(continuous) derivations 퐷 ∶ 퐴 → 푋∗ define by 퐷 (푎) = 퐷(푎, 0), and 
퐷 ∶ 퐵 → 푋∗ define by 퐷 (푏) = 퐷(0, 푏). Since 퐴 and 퐵 are 
approximately amenable, there are nets (휉 ), (휁 ) ⊂ 푋∗ such that 

													퐷 (푎) = lim[(푎, 0) ∙ 휉 − 휉 ∙ (푎, 0)]		(푎 ∈ 퐴),																(13) 

													퐷 (푏) = lim[(0, 푏) ∙ 휁 − 휁 ∙ (0, 푏)]		(푏 ∈ 퐵),																(14) 

Let (푙 )(푟 ) respectively be left and right approximate identities of 퐴, 
and let (푙 )(푟 ) respectively be left and right approximate identities of 
퐵. Then we have 

(푎, 0) = lim(푎, 푏)(푟 , 0) = lim(푙 , 0)(푎, 푏) 		(푎 ∈ 퐴), 

(0, 푏) = lim(푎, 푏)(0, 푟 ) = lim(0, 푙 )(푎, 푏)		(푏 ∈ 퐵). 
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These together with equations (13) and (14) imply that there are nets (훷 ) 
and (휓 ) in 푋∗ such that 

퐷(푎, 푏) = 퐷 (푎) + 퐷 (푏)
= lim[(푎, 푏) ∙ 훷 − 휓 ∙ (푎, 푏)]		(푎 ∈ 퐴, 푏 ∈ 퐵). 

Since 퐷 is a derivation, (훷 ) and (휓 ) in the above equation satisfy 

(푎, 푏) ∙ (훷 − 휓 ) ∙ (푐, 푑) → 0		(푎, 푐 ∈ 퐴, 푏, 푑 ∈ 퐵). 

So we have 

퐷(푎, 푏)(푐, 푑) = lim[(푎, 푏) ∙ 휓 − 휓 (푎, 푏)] ∙ (푐, 푑), 

for all 푎, 푐 ∈ 퐴, 푏, 푑 ∈ 퐵. If 푋 is a neo-unital (퐴	⨁	퐵)-bimodule, this 
implies that 

퐷(푎, 푏) = weak 	∗ − lim[(푎, 푏) ∙ 휓 − 휓 ⋅ (푎, 푏)]		(푎 ∈ 퐴, 푏 ∈ 퐵). 

Therefore 퐷 is weak* approximately inner. 

Proposition (1.2.13) [1]: 

If 퐴	⨁	퐴 is approximately amenable, then 퐴 has a two-sided 
approximate identity. 

Proof: 

Make 푋 = 퐴 an 퐴	⨁	퐴-bimodule by defining module actions as 
follows. 

(푎, 푏) ∙ 푥 = 푎푥,			푥 ∙ (푎, 푏) = 푥푏			(푥 ∈ 푋, 푎, 푏 ∈ 퐴). 

Then 퐷(푎, 푏) = 푎 − 푏 is derivation from 퐴	⨁	퐴 into 푋. So there exists 
(푥 ) ⊂ 푋 for which 

푎 − 푏 = lim(푎푥 − 푥 푏)			(푎, 푏 ∈ 퐴). 

In particular, we have lim 푎푥 = 푎 and lim 푥 푏 = 푏		(푎, 푏 ∈ 퐴). So (푥 ) 
is a two-sided approximate identity. 
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Suppose that 퐴 is an approximately amenable Banach algebra. In 
particular, 퐴 has one-sided approximate identity. Consider the topology 휏 
determined by the seminorms 푏 ⟼ ‖푎푏‖	(푎 ∈ 퐴). 

Proposition (1.2.14) [1]: 

Suppose that 퐴 is approximately amenable, and that 휏 is stronger than 
the weak topology on 퐴. Then 퐴 has a two-sided approximate identity. 

Proof: 

Take 푋 = 퐴 as an (퐴	⨁	퐴)-bimodule as above. 

Following the argument of proposition (1.2.12), we have that for any 
derivation 퐷 ∶ 	퐴	⨁	퐴 → 푋 there is a net (휓 ) in 푋 such that 

퐷(푎, 푏) ∙ (푐, 푑) = lim[(푎, 푏) ∙ 휓 − 휓 (푎, 푏)] ∙ (푐, 푑). 

Applying this to the derivation 퐷(푎, 푏) = 푎 − 푏, we have that for every 
푐 ∈ 퐴, 

(푎 − 푏)푐 = lim(푎휓 − 휓 푏)푐. 

Hence from the assumption on 휏, 

푎 − 푏 = weak 	∗ − lim(푎휓 − 휓 푏). 

Thus (휓 ) is a two-sided weak approximate identity, and standard 
arguments yield a two-sided approximate identity. 

Now we can define Mazure theorem [6]: most will – behaved normed 
spaces are subspaces of the space of continuous path. 

Proposition (1.2.15) [1]: 

Suppose that 

(i) span{푎푎∗: 푎 ∈ 퐴, 푎∗ ∈ 퐴∗} is dense in 퐴∗; and 
(ii) 퐴 is boundedly approximately amenable, or 
(iii) 퐴 is boundedly approximately contractible. 

Then 퐴 has a two-sided approximate identity. 
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Proof: 

Suppose (i) and (ii) and let 퐷 and 푋 ⊂ 푋∗∗ be as in Proposition (1.2.4). 
Then there is a net (휉 ) in 푋∗∗ such that 

퐷(푎, 푏)푐 = lim(푎 ∙ 휉 − 휉 ∙ 푏) c, 푎, 푏, 푐 ∈ 퐴, 

where, moreover, (푎 ∙ 휉 − 휉 ∙ 푏) is bounded for each 푎, 푏 ∈ 퐴. It 
follows that for 푐 ∈ 퐴 and 푐∗ ∈ 퐴∗, 

〈퐷(푎, 푏), 푐푐∗〉 = lim〈푎 ∙ 휉 − 휉 ∙ 푏, 푐푐∗〉 , 푎 ∈ 퐴, 

and hence for finite sums 푐 푐∗ +⋯+ 푐 푐∗. But then by boundedness of 
(푎 ∙ 휉 − 휉 ∙ 푏) and hypothesis on 퐴∗, 

푎 − 푏 = weak∗ lim(푎 ∙ 휉 ∙ 휉 ∙ 푏), 

which suffices. 

Supposing (iii) the argument is similar but simpler. 

The spanning condition certainly holds if 퐴∗ is essential with the usual 
module operations. It also holds when 퐴 is approximately amenable and 
reflexive as a Banach space. For with (푒 ) a right approximate identity for 
퐴, we have 

〈푎∗, 푎〉 = lim〈푎∗, 푎푒 〉 = lim〈푒 푎∗, 푎〉, 

so that span{푐푐∗} = 퐴∗, and hence in norm by Mazur’s theorem. 
However, it should be noted that no example of an infinite-dimensional 
reflexive as a Banach algebra is known. Indeed, it has been conjectured 
that a reflexive amenable Banach algebra is finite-dimensional. 

Proposition (1.2.15) can be strengthened a little. 

Proposition (1.2.16) [1]: 

Let 푀 = (span{푎푎∗: 푎 ∈ 퐴, 푎∗ ∈ 퐴∗}) . Suppose that 퐴 is boundedly 
approximately amenable and that 푀 is complemented by a closed 
submodule in 퐴∗. Then 퐴 has a two-sides approximate identity. 
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Proof: 

Let 푁 be a complementing closed submodule, such that 퐴∗ = 푀	⨁	푁. 
By the definition of 푀, the left action of 퐴 annihilates 푁. Let 퐷 ∶
퐴	⨁	퐴 → 퐴∗∗ be given by 퐷(푎, 푏) = 푎 − 푏. Now 퐴∗∗ = 푀∗	⨁	푁∗, let 푄 
be the quotient map of 퐴∗∗ onto 푀∗. Then 풬퐷 and (퐼 − 풬)퐷 are 
derivations into 푀∗ and 푁∗, respectively. 

Since the right action of 퐴 on 푁∗ is trivial, and 퐴 has a left 
approximate identity, (퐼 − 풬)퐷 is approximately inner. For 풬퐷, the 
argument of Proposition (1.2.15) gives (휉 ) ⊂ 푀∗ with 

풬퐷(푎, 푏) = lim[(푎, 푏) ∙ 휉 − 휉 ∙ (푎, 푏)] 		(푎, 푏 ∈ 퐴). 

Thus we have 퐷 is weak*-approximately inner, and hence approximately 
inner. The result follows as in Proposition (1.2.14).  
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Section (1.3): Lipschitz and Beurling with Discrete Semigroup 
Algebras       

For an infinite compact metric space 퐸 and 0 < 훼 < 1, and 푓 ∶ 퐸 → ℂ, 
define 

푃 (푓) = sup
|푓(푥) − 푓(푦)|
푑(푥, 푦)

: 푥, 푦 ∈ 퐸, 푥 ≠ 푦 . 

Then set 

Lip (퐸) ={푓 ∶ 푋 → ℂ:	푝 (푓) < ∞}, 

and 

lip (퐸) = 푓 ∈ Lip (퐸) :
|푓(푥) − 푓(푦)|
푑(푥, 푦)

→ 0	as	푑(푥, 푦) → 0 . 

On each of these spaces set ‖푓‖ = ‖푓‖ + 푃 (푓). Then with pointwise 
multiplication Lip (퐸) and lip (퐸) are commutative Banach algebras. 

Since Lip (퐸) fails to be weakly amenable, 0 < 훼 ≤ 1, it cannot be 
approximately amenable. Of rather more interest is lip (퐸) where this 
last statement only hold in general for 1 2⁄ < 훼 < 1. 

Here we make a very modest contribution towards answering the 
approximate amenability question for these algebras. 

With 퐸 and 훼 as above, let 퐴 = lip 퐸, and set 

푋 = {푓 ∈ Lip (퐸 × 퐸): 푓(푥, 푥) = 0	(푥 ∈ 퐸)}. 

Proposition (1.3.1) [1]: 

The derivation 퐷 ∶ 퐴 → 푋 given by 

(퐷푎)(푥, 푦) = 푎(푥) − 푎(푦)		(푎 ∈ 퐴, 푥, 푦 ∈ 퐸) 

is non-inner but is sequentially approximately inner. 

Proof: 

 It has been shown that 퐷 is non-inner. 

For 푛 ∈ ℕ, set 
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퐺 (푥, 푦) = min 1, 푛 푑(푥, 푦) 		(푥, 푦 ∈ 퐸). 

Note that ‖퐺 ‖ = 1 + 훼푛 . Let 푎 ∈ 퐴, and consider 

									(푎 ∙ 퐺 − 퐺 ∙ 푎 − 퐷푎)(푥, 푦)
= 푎(푥) − 푎(푦) (퐺 (푥, 푦) − 1).																																										(15) 

We show this converges to 0 in 푋. Note that uniform convergence to 0 is 
clear. Assume that the result fails. Without loss of generality, there is 
휂 > 0 such that 

‖푎 ∙ 퐺 − 퐺 ∙ 푎 − 퐷푎‖ > 휂		(푛 ∈ ℕ). 

Thus there exist 푥 , 푦 , 푥 , 푦 ∈ 퐸 such that 

		
푎(푥 ) − 푎(푦 ) (퐺 (푥, 푦) − 1) − 푎(푥 ) − 푎(푦 ) (퐺 (푥 , 푦 ) − 1)	

[푑(푥 , 푥 ) + 푑(푦 , 푦 )]
≥ 휂.																																																																																												(16) 

Note that necessarily lim 푑(푥 , 푥 ) + 푑(푦 , 푦 ) = 0, since the 
numerator in (16) converges uniformly to 0. Write 

푎(푥 ) − 푎(푦 )
= 푎(푥 ) − 푎(푥 ) + 푎(푥 ) − 푎(푦 ) + 푎(푦 ) − 푎(푦 ) . 

Since  

푎(푥 ) − 푎(푥 )
푑(푥푛, 푥푛′ )

→ 0		and		
푎(푦 ) − 푎(푦 )

푑 푦푛, 푦푛
′

→ 0, 

we deduce from (16) that 

														lim inf
푎(푥 ) − 푎(푦 ) 퐺 (푥 , 푦 ) − 퐺 (푥 , 푦 )

[푑(푥 , 푥 ) + 푑(푦 , 푦 )] ≥ 휂,					(17) 

													lim inf
푎(푥 ) − 푎(푦 ) 퐺 (푥 , 푦 ) − 퐺 (푥 , 푦 )

[푑(푥 , 푥 ) + 푑(푦 , 푦 )] ≥ 휂,					(18) 

Now 

퐺 (푥 , 푦 ) − 퐺 (푥 , 푦 )
[푑(푥 , 푥 ) + 푑(푦 , 푦 )]

≤ 0,
1 + 푛 ,

min{푑(푥 , 푦 ), 푑(푥 , 푦 )} ≥ 1 푛⁄ ,
otherwise.																						

� 
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Thus from (17) and (18) it follows that at least one of 푑(, 푥 푦 ) <
1 푛⁄  or 푑(푥 , 푦 ) < 1 푛⁄  must hold for infinitely many 푛. Without loss of 
generality suppose it is the former. Then (18) gives 

휂 ≤ lim inf|푎(푥 ) − 푎(푦 )|(1 + 푛 ) ≤ lim inf
|푎(푥 ) − 푎(푦 )|
푑(푥 , 푦 )

1 + 푛
푛

= 0, 

since 푑(푥 , 푦 ) < 1 푛⁄  for infinitely many 푛. This contradiction. 

In the special case 퐸 = [0,1], the same style of argument also shows 
that for a fixed 푦 ∈ [0,1], 푢 (푥) = min 1,휔 푛(푥 − 푦)  defines an 
(unbounded) approximate identity in the maximal ideal 푀 =
{푓 ∈ lip [0,1]: 푓(푦) = 0}. Thus results are of no help as to the 
approximate amenability of lip [0,1]. 

A similar argument, with suitable 퐺 ∈ lip [0,1] 	⨂	lip [0,1], and 
more technically involved, shows that for 퐸 = [0,1] the derivation above 
is sequentially approximately inner when considered as mapping into 
lip [0,1] . 

To show approximate amenability we in effect need to show 
convergence of (15), for such 퐺 , in lip [0,1] 	⨂	lip [0,1] rather than 
lip [0,1]  as above, and the norms involved are not equivalent: 
‖퓏 	⨂	퓏 ‖ = 푂(푛 ), ‖퓏 	⨂	퓏 ‖ = 푂(푛 ). For any compact metric 
space 퐸, the natural map 훷 ∶ 	 lip (퐸)	⨂	lip (퐸) → lip (퐸 ) is a 
contractive monomorphism, and Hedbeg’s theorem can be used to show 
it has dense range. 

Recall that a weight 휔 on a locally compact group is a continuous 
function 퐺 → (0,∞) satisfying 

휔(푥푦) ≤ 휔(푥)휔(푦)		(푥, 푦 ∈ 퐺). 

For a weight 휔, 퐿 (휔) = 퐿 (퐺, 휔) is a Banach algebra under convolution, 
the Beurling algebra corresponding to 휔. 

The weight 휔 is symmetric if 휔(g) = 휔(g )(g ∈ 퐺). For any weight 
휔, its symmetrization is the weight defined by Ω(g) = 휔(g)휔(g )(g ∈
퐺). 
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Throughout Proposition (1.3.2)–Theorem (1.3.5) below we assume 
that 휔(푒) = 1. 

Proposition (1.3.2) [1]: 

Suppose the weight 휔 is bounded away from 0, and that 퐿 (휔) is 
approximately amenable. Then 퐺 is amenable. 

Proof: 

The hypothesis ensure that 퐿 (휔) ⊂ 퐿 (퐺), and hence 푈퐶(퐺) is an 
퐿 (휔)-bimodule. There is an invariant mean on 푈퐶(퐺), so 퐺 is amenable. 

The precise relation between the behavior of 휔 and the approximate 
amenability of 퐿 (휔) is unresolved. For example 퐿 (ℝ, 푒 ) ≅ 퐿 (ℝ) is 
amenable, so boundedness of 휔 is not necessary. We conjecture that 
퐿 (휔) will fail to be approximately amenable whenever Ω → ∞. Indeed, 
should this not be the case then we have a group 퐺 which is amenable by 
Proposition (1.3.2), with 퐿 (휔) approximately amenable but not amenable 
(see Theorem (1.3.7)). While this remains unresolved, a modified 
hypothesis yields a weaker result. Some preliminary constructions will be 
required. 

Suppose that 퐺 is a locally compact group, 휔 a continuous weight on 
퐺. Define 

휔(푥) = lim	 inf
→

휔(푟푥)
휔(푟)

		(푥 ∈ 퐺) 

It is readily seen that 휔 is continuous on 퐺 and for 푥, 푦 ∈ 퐺, 

							휔(푥 ) ≤ 휔(푥) ≤ 휔(푥),
휔(푥푦) ≤ 휔(푥)휔(푦) 	∧ 휔(푥)휔(푦).																																						(19) 

Note that 휔 is usually not a weight on 퐺. In fact, 휔  is a weight since 
we always have 휔(푥푦) ≥ 휔(푥)휔(푦)	(푥, 푦 ∈ 퐺). 

For 휑 ∈ 퐿 (휔 × 휔), define 

휋(휑)(푥) = 휑(휉, 휉 , 푥)
	

푑휉			(푥, ∈ 퐺). 
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Then 휋(휑) ∈ 퐿 (휔) with ‖휋(휑)‖ ≤ ‖휑‖. Set 휋∗ to be the adjoint of 휋∗ 
maps 퐿 (휔 ) into 퐿 (휔 × 휔 ). 

Lemma (1.3.3) [1]: 

Suppose that lim → 휔(푥 )휔(푥) = ∞. Then �휋∗|퐶 (휔 ) maps 
퐶 (휔 ) into 퐶 (휔 × 휔 ). 

Proof: 

Let 푓 ∈ 퐶 (휔 ), and let ‖푓‖  denote its is norm. By definition 
휋∗(푓)(푥, 푦) = 푓(푥푦), and so is certainly continuous on 퐺 × 퐺. Take 
휀 > 0, and a compact set 푁 ⊂ 퐺 such that |푓(푥)휔(푥) | < 휀 for 
푥 ∈ 퐺\푁. Set 푐 = sup{휔(푥)휔(푥 ): 푥 ∈ 푁}. By hypothesis there is a 
compact set 퐾 ⊂ 퐺 such that 

푐‖푓‖
휔(푦 )휔(푦)

< 휀		(푦 ∈ 퐺\퐾). 

Then 퐴 = {(푥, 푦): 푦 ∈ 퐾, 푥푦 ∈ 푁} is compact in 퐺 × 퐺. For (푥, 푦) ∉ 퐴 
and 푥, 푦 ∉ 푁, 

휋∗(푓)(푥푦)
휔(푥)휔(푦)

≤
|푓(푥푦)|
휔(푥푦)

< 휀. 

On the other hand for (푥, 푦) ∉ 퐴 and 푥푦 ∈ 푁, so that 푦 ∉ 퐾, (19) gives 

휋∗(푓)(푥, 푦)
휔(푥)휔(푦)

=
|푓(푥푦)|
휔(푥푦)

휔(푥푦)
휔(푥)휔(푦)

		≤ ‖푓‖
휔(푥푦)휔(푦 푥 )
휔(푦 )휔(푦)

							

≤
푐‖푓‖

휔(푦 )휔(푦)
< 휀.		 

Thus 휋∗(푓) ∈ 퐶 (휔 × 휔 ). 

Viewing 휋 as map from 퐿 (휔 × 휔), almost the same argument as 
above yields the following. 

Lemma (1.3.4) [1]: 

Suppose that lim → 휔(푥 )휔(푥) = ∞. Then 휋∗|퐶 (휔 ) maps 
퐶 (휔 ) into 퐶 (휔 × 휔 ). 
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When the hypothesis that lim → 휔(푥 )휔(푥) = ∞ (or the 
hypothesis that lim → 휔(푥 )휔(푥) = ∞) holds, set 
휋 = 휋∗|퐶 (휔 ) ∗

:푀(휔 × 휔) → 푀(휔) (or, respectively, 휋 =
휋∗|퐶 (휔 ) ∗

:푀(휔 × 휔) → 푀(휔)). Then 휋 extends 휋 and is weak*-
weak* continuous. 

Theorem (1.3.5) [1]: 

Let 휔 be a weight function on 퐺. 

(i) Suppose that there is a net (푟 ) ⊂ 퐺 such that lim 푟 = ∞ and 
휔(푟 )휔(푟 )  is bounded. Then 퐿 (휔) is boundedly 

approximately contractible if and only if it is amenable; 
(ii) Suppose that lim → 휔(푥 )휔(푥) = ∞. Then 퐿 (휔) is not 

boundedly approximately amenable. 

Proof: 

We begin by setting up some module machinery. It is routine to check 
that 퐶 (휔 × 휔 ) is a Banach 퐿 (휔)-bimodule, and hence a Banach 
푀(휔)-bimodule; the module actions are given by 

																						

⎩
⎪
⎨

⎪
⎧(휇 ∙ 푓)(푥, 푦) = 푓(푥, 푦휉)푑휇(휉),

	

(푓 ∙ 휇)(푥, 푦) = 푓(휉푥, 푦)푑휇(휉),
	 � 																						(20) 

where 푥, 푦 ∈ 퐺, 휇 ∈ 푀(휔) and 푓 ∈ 퐶 (휔 × 휔 ). It follows that 
푀(휔 × 휔) is dual 푀(휔)-bimodule, with actions 

																									

⎩
⎪
⎨

⎪
⎧〈휇 ∙ 푚, 푓〉 = 푓(휉푥, 푦)푑휇(휉)푑푚(푥, 푦),

	

〈푚 ∙ 휇, 푓〉 = 푓(푥, 푦휉)푑휇(휉)푑푚(푥, 푦),
	 � 																	(21) 

where 휇 ∈ 푀(휔 × 휔) and 푓 ∈ 퐶 (휔 × 휔 ). 

We also have 퐶 (휔 × 휔 ) is an 푀(휔)-bimodule with actions 
given by (20). So 푀(휔 × 휔) is a dual 푀(휔)-bimodule, with module 
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actions given by (21). Moreover, these actions are weak*-weak* 
continuous in each variable separately. 

Finally, the natural dual actions given by 

																							

⎩
⎪
⎨

⎪
⎧(푓 ∙ 푚)(푧) = 푓(푥, 푦푧)푑푚(푥, 푦),

	

×

(푚 ∙ 푓)(푧) = 푓(푧푥, 푦)푑푚(푥, 푦)
	

×

� 																										(22) 

for 푓 ∈ 퐶 (휔 × 휔 ) and 푚 ∈ 푀(휔 × 휔) define mapping from 
퐶 (휔 × 휔 ) ×푀(휔 × 휔) into 퐶 (휔 ). 

Note that 푀(휔 × 휔) is dual 퐿 (휔)-bimodule by restricting the 
operation in (21). Consider the continuous mapping 퐷 ∶ 퐿 (휔) →
푀(휔 × 휔) given by 퐷(푓) = 푓	⨂	훿 − 훿 	⨂	푓. In general, 퐷 is a 
derivation into ker 휋. If lim → 휔(푥 )휔(푥) = ∞, we can regard 퐷 as a 
derivation into ker 휋 which, by Lemma (1.3.4), is a dual 퐿 (휔)-bimodule. 
Now suppose that 퐿 (휔) is boundedly approximately contractible or that 
it is boundedly approximately amenable with lim → 휔(푥 )휔(푥) = ∞ 
(which implies that lim → 휔(푥 )휔(푥) = ∞). Then there is a net 휇  
( 휇 ⊂ ker 휋 in the former case and 휇 ⊂ ker 휋 in the latter case) and 
푘 > 0 such that for all 휑 ∈ 퐿 (휔)), 

퐷(휑) = lim 휑 ∙ 휇 − 휇 ∙ 휑 , with		 휑 ∙ 휇 − 휇 ∙ 휑 ≤ 푘 ‖휑‖. 

Set 푀 = 훿 ⨂	훿 − 휇  and 푘 = 푘 + 2. Then 휋 푀 = 훿  (or, 
respectively, 휋 푀 = 훿 ), and for every 휑 ∈ 퐿 (휔), 

						휑 ∙ 푀 −푀 ∙ 휑 → 0		and		 휑 ∙ 푀 − 푀 ∙ 휑
≤ 푘‖휑‖		for	all	푗.																																																							(23) 

Since the 푀-bimodule operations are weak*-weak* continuous from 
(21), it follows from (23) that 

휇 ∙ 푀 −푀 ∙ 휇 ≤ 푘‖휇‖			 휇 ∈ 푀(휔) . 

In particular, 훿 ∙ 푀 −푀 ∙ 훿 ≤ 푘휔(푟) for each 푟 ∈ 퐺. That is to say, 
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휔(푥)휔(푦)푑 훿 ∙ 푀 −푀 ∙ 훿 (푥, 푦)
	

×

≤ 푘휔(푟), 

and so 

휔(푟푥)휔(푦)
휔(푟)

푑 푀 − 훿 ∙ 푀 ∙ 훿 (푥, 푦)
	

×

≤ 푘 

for 푟 ∈ 퐺 and all 푗. Then for any compact set 퐾 ⊂ 퐺 × 퐺, 

휔(푟푥)휔(푦)
휔(푟)

	

푑 푀 (푥, 푦) ≤ 푘 +
휔(푟푥)휔(푦)

휔(푟)

	

푑 훿 ∙ 푀 ∙ 훿 (푥, 푦) 	

≤ 푘 +
휔(푥)휔(푦푟)

휔(푟)

	

( , ) ( , )

푑 푀 (푥, 푦) 		

≤ 푘 + 휔(푥)휔(푦)
	

( , ) ( , )

푑|푀 (푥, 푦). 

But 푀 ∈ 푀(휔 × 휔), and so, as 푟 → ∞, the integral on the right-hand 
side tends to 0. 

If 퐿 (휔) is boundedly approximately contractible and there is a net 
(푟 ) ⊂ 퐺 such that 푟 → ∞ and 휔(푟 )휔(푟 ) ≤ 푑 for all 훼, then we let 푟 
tend to ∞ through (푟 ). Noting that 

휔(푟푥)휔(푦)
휔(푟)

≥
휔(푥)휔(푦)
휔(푟 )휔(푟)

≥
1
푑
휔(푥)휔(푦) 

when 푟 = 푟 , we have 

1
푑

푀 ≤ 푘			for	all	푗. 

Therefore, 푀  is a bounded net in 푀(휔 × 휔) ⊂ 퐿 (휔)	⨁	퐿 (휔)
∗∗

, 
which implies that there is a virtual diagonal for 퐿 (휔) is amenable. This 
together with the remark after Definition (1.2.1) proves the first statement 
of the theorem. 

Now suppose that 퐿 (휔) is boundedly approximately amenable and 
that lim → 휔(푥 )휔(푥) = ∞. We have 
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휔(푥)휔(푦)
	

푑 푀 (푥, 푦) ≤ lim
→

sup
휔(푟푥)휔(푦)

휔(푟)

	

푑| 푀 (푥, 푦) ≤ 푘. 

(In fact, let 퐴 be the collection of all compact sets of 퐺 with the inclusion 
as partial order. Then the net (푓 ) ∈  with 
푓 (푥, 푦) = inf ∈ \

( )
( ) 휔(푦)	 (푥, 푦) ∈ 퐾  is equicontinuous, and so 

converges to 휔 × 휔 in measure on 퐾.) Thus the net 푀  is bounded in 
푀(휔 × 휔). By going to a subnet necessary, we may assume that 푀  
converges weak* to some 푀 ∈ 푀(휔 × 휔). Note that weak* continuity of 
휋 and 휋 푀 = 훿  give 휋(푀) = 훿 . 

Now for each 휑 ∈ 퐿 (휔), 휑 ∙ 푀 − 푀 ∙ 휑 → 0 in 푀(휔 × 휔), and since 
휔 ≤ 휔, this limit also holds on 푀(휔 × 휔). But weak* continuity 

휑 ∙ 푀 −푀 ∙ 휑 = 0		 휑 ∈ 퐿 (휔) . 

By weak* continuity again, we have 휇 ∙ 푀 − 푀 ∙ 휇 = 0 for 휇 ∈ 푀(휔), so 
in particular 푀 = 훿 ∙ 푀 ∙ 훿  for 푟 ∈ 퐺. Thus 

‖푀‖ × = ‖훿 ∙ 푀 ∙ 훿 ‖ = 휔(푟 푥)휔(푦푟)
	

×

푑|푀|(푥, 푦). 

So for any compact 퐾 ⊂ 퐺 × 퐺, 

∞ > ‖푀‖ × ≥ 휔(푟 푥)휔(푦푟)
	

푑|푀|(푥, 푦) 		

≥
휔(푟 )휔(푟)
휔(푥 )휔(푦 )

	

푑|푀|(푥, 푦) 	≥
휔(푟 )휔(푟)

퐶
푑|푀|(푥, 푦)

	

, 

where 퐶 = max( , )∈ 휔(푥)휔(푦). Letting 푟 → ∞, finiteness of 
‖푀‖ ×  implies that ∫ 푑|푀|(푥, 푦)	 = 0, and this holding for any 
compact 퐾 ⊂ 퐺 × 퐺 necessitates 푀 = 0. But this is a contradiction to 
휋(푀) = 훿 . Thus the second statement of the theorem is true. 

Corollary (1.3.6) [1]: 

The Beurling algebras ℓ (ℤ, 휔),휔(푛) = (1 + |푛|)  with 훼 > 0, are 
not boundedly approximately amenable and hence are not sequentially 
approximately amenable. 
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As noted, approximately amenability for commutative algebras, so, 
ℓ ((1 + |푛|) ) is not approximately amenable for 훼 ≥ 1 2⁄ . 

Now we give a new proof for characterization of amenability of 
Beurling algebras due to N. Gr¢nbæk. 

Let Ω be the symmertrization of 휔 as define in the beginning of this 
section. The following is essentially. 

Theorem (1.3.7) [1]: 

Let 퐺 be a locally compact group, 휔 a weight on 퐺 with 휔(푒) = 1. 
Then the following are equivalent: 

(i)  퐿 (휔) is amenable; 
(ii)  퐿 (Ω) is amenable; 
(iii) 퐺 is amenable and Ω is bounded. 

The next results together give a new proof of Theorem (1.3.7). In fact 
we able to dispense with the assumption that 휔(푒) = 1. 

Proposition (1.3.8) [1]: 

Let 휔 be a weight function on a locally compact group 퐺, and suppose 
that 퐿 (휔) is amenable. Then Ω is bounded. 

Proof: 

Let 푓 ∈ 퐿 (휔) have compact support 퐾 and be such that ∫ 푓(푥)	 푑푥 ≠
0. Certainly 퐹 = 푓 ∙ 1 ∈ 퐿 (휔 ) since 1 ∈ 퐿 (휔 ) and 퐿 (휔 ) is 
a Banach 퐿 (휔)-bimodule. Then 휋∗(퐹) ∈ 퐿 (휔 × 휔 ) with 

휋∗(퐹)(푥, 푦) = 퐹(푥, 푦) = 1 (푥푦휉)푓(휉) 푑휉. 

It follows that 휋∗(퐹)(푥, 푦) = 0 for 푥푦 ∉ 퐾퐾 . Set 퐸 = 퐾퐾 , a 
compact subset of 퐺. 

Now suppose that 푢 ∈ 퐿 (휔 × 휔)∗∗ is a virtual diagonal for 퐿 (휔), so 
that 푢 = 훿 ∙ 푢 ∙ 훿 	(g ∈ 퐺), and 휋∗∗(푢) ∙ 푓 = 푓. Thus 
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	〈휋∗(퐹), 푢〉 = 〈퐹, 휋∗∗(푢)〉 = 〈1 , 휋∗∗(푢) ⋅ 푓〉 = 〈1 , 푓〉 푓(푥)
	

푑푥

≠ 0.																																																																																												(24) 

Define 

퐴 = {(푥, 푦): 푥푦 ∈ 퐸}. 

Then 휋∗(퐹) has support contained in 퐴, so 휋∗(퐹) = 휋∗(퐹)1 . 

Given 훼 > 0, define 

퐴 = {(푥, 푦) ∈ 퐴:	휔(푥)휔(푦) < 훼}, 

								퐵 = 퐴\퐴 = {(푥, 푦) ∈ 퐴:	휔(푥)휔(푦) ≥ 훼}. 

Clearly 휋∗(퐹)1 , 휋∗(퐹)1 ∈ 퐿 (휔 × 휔 ), and 휋∗(퐹) =
휋∗(퐹)1 + 휋∗(퐹)1 . 

Now estimate, 

〈휋∗(퐹)1 , 푢〉 ≤ 휋∗(퐹)1 ∙ ‖푢‖ 		= ‖푢‖ sup
휋∗(퐹)(푥, 푦)
휔(푥)휔(푦)

	

= 	 ‖푢‖ sup
퐹(푥푦)
휔(푥푦)

∙
휔(푥푦)

휔(푥)휔(푦)
≤ 훼 ‖푢‖‖퐹‖푐 , 

where 푐 = sup ∈ 휔(푡). Thus 

																													 lim
→

〈휋∗(퐹)1 , 푢〉 = 0.																					(25) 

Further, for any g ∈ 퐺, 

〈휋∗(퐹)1 , 푢〉 = 〈휋∗(퐹)1 ∙ 훿 ∙ 푢 ∙ 훿 〉 	

≤ ‖푢‖ 훿 ∙ 휋∗(퐹)1 ∙ 훿 	= ‖푢‖ sup
휋∗(퐹)(푥, 푦)

휔(g 푥)휔(푦g)
	

= ‖푢‖ sup
퐹(푥, 푦)
휔(푥, 푦)

∙
휔(푥푦)

휔(g 푥)휔(푦g)
		

≤ ‖푢‖‖퐹‖ sup
휔(푥푦)휔(푥 )휔(푦 )

휔(g )휔(g)
	

≤ ‖푢‖‖퐹‖ sup
휔(푥푦)휔 (푦 푥 )휔(푥)휔(푦)

휔(g )휔(g)
. 
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Thus 

																								 〈휋∗(퐹)1 , 푢〉 ≤
훼‖푢‖‖퐹‖푐 푐
휔(g )휔(g)

,																(26) 

where 푐 = sup ∈ 휔(푡). 

Suppose the result is false. Then there is a sequence (g ) ⊂ 퐺 such 
that lim → 휔(g )휔(g ) = ∞, whence it follows from (26) that for 
each 훼 > 0, 

																												 〈휋∗(퐹)1 , 푢〉 = 0.																									(27) 

Putting (25) and (27) together, it follows that 

〈휋∗(퐹), 푢〉 = 0. 

contradicting (24). 

The next step we show. 

Proposition (1.3.9) [1]: 

Let 퐺 be a locally compact group, 휔 a weight on 퐺 such that 퐿 (휔) is 
amenable. Then there is a continuous positive character 휙 on 퐺 such that 

휙(g) ≤ 휔(g)			(g ∈ 퐺). 

Proof: 

Let 푢 ∈ 퐿 (휔 × 휔)∗∗ be a virtual diagonal for 퐿 (휔), so that 훿 ∙ 푢 ∙

훿 = 푢	(g ∈ 퐺) and 휋∗∗(푢) ∙ 푓 = 푓 푓 ∈ 퐿 (휔) . For 푓 ∈ 퐿 (휔 ×

휔 ) , define 

푢(푓) = sup{Re〈푢, 휓〉: 0 ≤ |휓| ≤ 푓, 휓 ∈ 퐿 (휔 × 휔 )}. 

Then 푢 ≢ 0 on 퐿 (휔 × 휔 )  and 푢 is affine on 퐿 (휔 × 휔 ) , 
and satisfies 0 ≤ 푢(푓) ≤ ‖푢‖‖푓‖(퐿 (휔 × 휔 ) ). Thus 푢 can be 
extended to a bounded linear functional on 퐿 (휔 × 휔 ) in the 
obvious manner. Then 푢 ≠ 0, 〈푢, 푓〉 ≥ 0 for 푓 ∈ 퐿 (휔 × 휔 ) , and 
훿 ∙ 푢 ∙ 훿 = 푢	(g ∈ 퐺). 

Now define 
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휔(푥) = sup
∈
휔(g 푥g)		(푥 ∈ 퐺). 

Note that 휔 is lower semicontinuous and hence measurable. By 
Proposition (1.3.8), Ω is bounded, whence 휔 ∈ 퐿 (휔 ). Further, clearly 
휔(g 푥g) = 휔(푥)	(푥, g ∈ 퐺), whence 휔(푥푦) = 휔(푦푥)	(푥, 푦 ∈ 퐺). 

Consider 휋∗(휔) ∈ 퐿 (휔 × 휔 ). Note that 

훿 ∙ 휋∗(휔) ∙ 훿 = 휋∗(휔)		(g ∈ 퐺). 

Take 푓 ∈ 퐶 (퐺)  with ∫ 푓 = 1, let 퐾 be the support of 푓, and set 
ℎ = 푓 ∙ 1 , where we regard 푓 as an element in 퐿 (휔) and 1  in 
퐿 (휔 ). Then ℎ is continuous with support contained in 퐾퐾 . Since 
휔(푥) ≥ 휔(푥) > 0 for 푥 ∈ 퐺, there is 푐 > 0 such that 휔 ≥ 푐ℎ, whence 
휋∗(휔) ≥ 푐휋∗(ℎ). Thus 

〈푢, 휋∗(휔)〉 ≥ 푐〈푢, 휋∗(ℎ)〉 ≥ 푐Re〈푢, 휋∗(ℎ)〉 

= 푐Re〈휋∗∗(푢), ℎ〉 ≥ 푐Re〈푓, 1 〉 = 푐 > 0. 

Set 퐹 = 〈푢, 휋∗(휔)〉 휋∗(휔) ∈ 퐿 (휔 × 휔 ), so we have that 
훿 ∙ 퐹 ∙ 훿 = 퐹	(g ∈ 퐺) and 〈푢, 퐹〉 = 1. Now define, for g ∈ 퐺, 

퐴 (푥, 푦) =
1
2
log

휔(g푥)휔(g푦 )
휔(푥)휔(푦 ) 퐹(푥, 푦)		(푥, 푦 ∈ 퐺). 

Then for g ∈ 퐺, 

log(g ) 퐹 ≤ 퐴 ≤ log휔(g) 퐹,																					(28) 

so that 퐴 ∈ 퐿 (휔 × 휔 ). Note that, for g , g ∈ 퐺, 

퐴 = 훿 ∙ 퐴 ∙ 훿 + 퐴 .																			(29) 

Finally, define 

휙(g) = exp〈푢, 퐴 〉			(g ∈ 퐺). 

Then (29) gives 

휙(g g ) = 휙(g )휙(g )			(g , g ∈ 퐺), 

so that 휙 is a character, and from (28) 
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휙(g) ≤ exp〈푢, log휔(g) 퐹〉 = 휔(g)			(g ∈ 퐺) 

shows 휙 dominated by 휔. 휙 bounded (on a neighbourhood of 푒) shows it 
is continuous. 

Corollary (1.3.10) [1]: 

Let 퐺 be a locally compact group, 휔 a weight on 퐺. Then if 퐿 (휔) is 
amenable, 퐺 is amenable. 

Proof: 

By Proposition (1.3.9) there is a continuous positive character 휙 ≤ 휔. 
Then 훷 ∶ 푓 ⟼ 휙푓 is continuous monomorphism of 퐿 (퐺, 휔) → 퐿 (퐺). 
Since 휙 is bounded on compact sets. Then a range of 훷 contains 퐶 (퐺), 
whence 퐿 (퐺) is amenable. It is standard that this equivalent to 퐺 being 
amenable. 

Proposition (1.3.11) [1]: 

Let 퐺 be a locally compact group, 휔 a weight on 퐺. Then 퐺 is 
amenable and Ω is bounded if and only if 퐿 (Ω) is amenable. 

Proof: 

Supposing 퐺 is amenable and Ω is bounded, 퐿 (Ω) ≅ 퐿 (퐺) is 
amenable. The converse is the symmetric case of Proposition (1.3.8) and 
Corollary (1.3.10). 

The final step is then 

Proposition (1.3.12) [1]: 

Let 퐺 be an amenable locally compact group, 휔 a weight on 퐺 such 
that Ω is bounded. Then 퐿 (ω) is amenable. 

A discrete semigroup 푆 is left amenable if the space ℓ (푆) admits a 
functional 푚 such that 푚(1) = 1 = ‖푚‖ and 푚(ℓ 푓) = 푚(푓)	 푥 ∈
푆, 푓 ∈ ℓ (푆) . Similarly for right amenable. If 푆 is both left and right 
amenable, it is amenable. In the case of a group, or even an inverse 
semigroup, left (or right) amenable implies amenable. 
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We recall some further standard notions from semigroup theory. Only 
the left versions will be defined. Let 푆 be a semigroup. 

(i) 푆 is regular if for all 푠 ∈ 푆, there is 푠∗ ∈ 푆 such that 푠푠∗푠 = 푠 and 
푠∗푠푠∗ = 푠∗, it is an inverse semigroup if such 푠∗ exists is unique;  

(ii) 푇 ⊆ 푆 is a left ideal group if 푇 is a left ideal in 푆 as well as being a 
group under the semigroup operation.  

Set 퐸  to be the set of idempotents in 푆. Note that (1) above both 
푠푠∗, 푠∗푠 ∈ 퐸 . 

We summarize some known structural implications of amenable of 
ℓ (푆). In fact a characterization is given. 

Theorem (1.3.13) [1]: 

Let 푆 be a semigroup with ℓ (푆) amenable. Then: 

(i) 푆 is amenable; 
(ii) 푆 is regular; 
(iii) 퐸  is finite; 
(iv) ℓ (푆) has an identity; 
(v) 푆 contains exactly one left ideal group 푆 , which is also the only 

right ideal group, and 푆 = 푆 푧 = 푧 푆 , for some idempotent 
푧, furthermore 푆  is amenable. 

Now suppose that ℓ (푆) is approximately amenable. Example (1.1.10) 
shows that (iii), (iv) and (v) may fail. On the other hand. 

Theorem (1.3.14) [1]: 

Let 푆 be a semigroup such that ℓ (푆) is approximately amenable. Then 

(i) 푆 is regular; 
(ii) 푆 is amenable. 

Proof: 

The argument is valid as far as showing that for each 푣 ∈ 푆, 푠푆 ∩
[푣푣 ] ≠ ∅, and that is sufficient to show regularity. Further, the 
standard argument, applied to an approximate diagonal yield a net 
Λ ⊂ 퐿 (푆)∗ satisfying 훿 ∙ Λ = Λ , Λ 훿 − Λ → 0 weak* for all 푠 ∈
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푆, and 〈1, Λ 〉 → 1. The argument at the end of now gives an invariant 
mean, so that 푆 is amenable. 

We give a direct construct of an approximate diagonal for 퐿 (휔) to 
show (iii) ⇒	(i) of Theorem (1.3.7) (that is, Proposition (1.3.12)) without 
assuming 휔(푒) = 1. First a simple lemma. 

Lemma (1.3.15) [1]: 

Let 휔 be a weight on 퐺 (not necessarily satisfying 휔(푒) = 1). Then 
the following are equivalent: 

(i) Its symmetrization Ω is bounded; 
(ii) There is a constant 푘 > 0 such that 

																							휔(gℎ) ≥ 푘휔(g)휔(ℎ)			(g, ℎ ∈ 퐺);										(30) 
(iii) There is a weight 휔 on 퐺, equivalent to 휔, with g ⟼

휔(g)휔(g ) a constant. 

Proof: 

(i) ⇒ (ii). 

휔(g)휔(ℎ) ≤ 휔(g)휔(g )휔(gℎ) ≤ Ω(g)휔(gℎ) ≤ 푐표푛푠푡 ∙ 휔(gℎ). 

(ii) ⇒ (i). Just take ℎ = g  

(ii) ⇒ (iii). Define 

휔(g) =
휔(g)

푘휔(g )

⁄

. 

Clearly 휔(g)휔(g ) = 1 푘⁄ . Further, 

휔(g) =
휔(g g )
푘휔(g )

⁄

≤
휔(g )
푘

⁄

≤
휔(g)

√푘
 

and  

휔(g) =
휔(g g )
푘휔(g )

⁄

≥ 휔(g ) ⁄ ≥ (푘휔(g) ) ⁄ = √푘휔(g). 

Thus 휔 and 휔 are equivalent. 
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Finally, 

휔(gℎ) =
휔(gℎ)

푘휔(ℎ g )

⁄

≤
휔(g)휔(ℎ)

푘 휔(ℎ )휔(g )

⁄

= 휔(g)휔(ℎ). 

(iii) ⇒ (ii) is obvious. 

Theorem (1.3.16) [1]: 

Let 휔 be a weight on 퐺 (not necessarily satisfying 휔(푒) = 1). 
Suppose that 퐺 is amenable and Ω is bounded. Then 퐿 (휔) has a bounded 
approximate diagonal and hence is amenable.  

Proof: 

We will use ‖	∙	‖  for the usual 퐿 -norm ‖	∙	‖  the norm in 퐿 (휔) ∙ 퐿  
will denote the left translation by 푡: (퐿 푎)(푠) = 푎(푡 푠). Fix throughout 
a neighbourhood 푉 of 푒 such that 휔(g) ≤ 2휔(푒) for g ∈ 푉. Let 푘 be the 
constant given by Lemma (1.3.15) (ii). 

Now take 휀 > 0 and a finite subset 퐹 ⊂ 퐿 (휔). Take a compact set 퐾 
such that 

휔(푡)|푓(푡)|
	

\

푑푡 < 휀푘 8휔(푒)⁄ 		(푓 ∈ 퐹). 

Using Reiter’s condition (푃 ) there is a 푎 ∈ 퐶 (퐺)  with ‖푎‖ = 1 and 
‖푓‖ ‖퐿 푎 − 푎‖ < 휀푘 4휔(푒)⁄  for 푡 ∈ 퐾, 푓 ∈ 퐹. 

Now f ∈ L (G) for each f ∈ F, and so there is a neighbourhood 푢 of 푒 
such that for 푠 ∈ supp(푎) , 푡 ∈ 푈, 푓 ∈ 퐹, 

‖퐿 (푓휔) − 푓휔‖ <
휀
2
, 

‖푓‖ |휔(푠푡푠 ) − 1| +
|휔(푠푡 푠 ) − 1|
휔(푠푡 푠 ) <

휀
2
. 

Thus we have 
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‖퐿 푓 − 푓‖ ≤ ‖퐿 (푓휔) − 푓휔‖ + ‖퐿 푓(퐿 휔 − 휔)‖ 		
<
휀
2
+ ‖푓(휔 − 	퐿 휔)‖ 		

≤
휀
2
‖푓‖ 1 −

퐿
휔

			

≤
휀
2
+ ‖푓‖ |휔(푠푡푠 ) − 1| +

|휔(푠푡 푠 ) − 1|
휔(푠푡 푠 ) 	

< 휀.																							 

Now take 푏 ∈ 퐿 (퐺)  with ‖푏‖ = 1 and supp(푏) ⊂ 푈. Define 푢 , = 푢 
in 퐿 (퐺 × 퐺) by 

푢(푠, 푡) = 푎(푠)푏(푡푠) △ (푠), 

where △ is the modular function of 퐺. Since 푎 and 푏 have compact 
support, 푢 ∈ 퐿 (휔 × 휔) which is, of course, 퐿 (휔)	⨂	퐿 (휔). 

Further, 푢 is bounded independent of 휀 and 퐹: 

‖푢‖ × = 휔(푠)푎(푠)푏(푡푠) △ (푠)휔(푡)
	

×

푑푠	푑푡	

= 휔(푠)휔(푡푠 )푎(푠)푏(푡)
	

×

푑푠	푑푡 ≤
1
푘

휔(푡)푎(푠)푏(푡)
	

×

푑푠	푑푡

≤
2휔(푒)
푘

‖푎‖ ‖푏‖ =
2휔(푒)
푘

. 

Now for 푓 ∈ 퐹, 

(푓 ⋅ 푢)(푠, 푡) = 푓(푣)푎(푣 푠)푏(푡푣 푠) △ (푣 푠)
	

푑푣, 

(푢 ⋅ 푓)(푠, 푡) = 푎(푠)푏(푡푣 푠) △ (푣 푠)푓(푣)
	

푑푣, 

so that 

(푓 ∙ 푢 − 푢 ∙ 푓)(푠, 푡) = 푎(푣 푠) − 푎(푠) 푏(푣 푠) △ (푣 푠)푓(푣)
	

푑푣. 

Thus 
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‖푓 ∙ 푢 − 푢 ∙ 푓‖ ×

≤ 휔(푠)휔(푡)|푎(푣 푠) − 푎(푠)|푏(푡푣 푠)
	

△ (푣 푠)|푓(푣)| 푑푣	푑푠	푑푡

≤ 휔(푠)|푎(푣 푠) − 푎(푠)|푏(푡)휔(푡푠 푣)|푓(푣)|
	

푑푣	푑푠	푑푡								

≤
휔(푠)휔(푠 푣)

휔(푣)
휔(푡)|푎(푣 푠)

	

− 푎(푠)|푏(푡)|푓(푣)|휔(푣) 푑푣	푑푠	푑푡

≤
2휔(푠)
푘

‖퐿 푎 − 푎‖ |푓(푣)|휔(푣)
	

푑푣

≤
2휔
푘

+ 	
		

\

‖퐿 푎 − 푎‖ |푓(푣)|휔(푣)푑푣	

≤
2휔(푒)
푘

2 |푓(푣)|
	

\

휔(푣)푑푣 +
푘휀

4휔(푒)
< 휀.						 

Further,  

휋(푢) ∗ 푓(푡) = 푎(푠)푏(푠 푣푠) △ (푠)푓(푣 푡)
	

×

푑푣	푑푠						

= 푎(푠)푏(푣)푓(푠푣 푠 푡)
	

×

푑푣	푑푠, 

so that 

‖휋(푢) ∗ 푓 − 푓‖ = 푎(푠)푏(푣)‖퐿 푓 − 푓‖
	

×

푑푣	푑푠 

								< 휀 푎(푠)푏(푣)
	

×

푑푠	푑푣 = 휀. 

It follows that (푢 , 퐹) is an approximate diagonal for 퐿 (휔) with 
bound at most 2휔(푒) 푘⁄ . 
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Chapter 2 

Banach Algebra and Character Amenability 
 

In this chapter Various necessary and sufficient conditions of a global 
and a pointwise nature are found for a Banach algebra to posses a 휑-mean 
of norm 1. We also completely determine the size of the set of 휑-means 
for a separable weakly sequentially complete Banach algebra 퐴 with no 
휑-mean in 퐴 itself. A number of illustrative examples are discussed.  

Section (2.1): 흓−Means of Norm One 

The notion of an amenable Banach algebra was defined and studied in 
the seminal work of Johnson. One of the fundamental results was that for 
a locally compact group 퐺, the group algebra 퐿 (퐺) is amenable if and 
only if the group 퐺 is amenable. Since then amenability has become a 
major issue in Banach algebra theory and in harmonic analysis.  

We continue our recent investigation of a concept which might be 
referred to as amenability with respect to a character. Let 퐴 be an 
arbitrary Banach algebra and 휑 a character of 퐴, that is, a homomorphism 
from 퐴 onto ℂ. We call A 휑-amenable if there exists a bounded linear 
functional 푚 on 퐴∗ satisfying (푚,휑) = 1 and 〈푚, 푓 ⋅ 푎〉 = 휑(푎)〈푚 ⋅ 푓〉 
for all 푎 ∈ 퐴 and 푓 ∈ 퐴∗. Here 푓 ⋅ 푎 ∈ 퐴∗ is defined by 〈푓 ⋅ 푎, 푏〉 =
〈푓, 푎푏〉, 푏 ∈ 퐴. Any such 푚 is called a 휑-mean. This concept considerably 
generalizes the notion of left amenability for 퐹-algebras which was 
introduced and studied. 

Note that a Banach algebra is called right character amenable if it is 휑-
amenable for each character 휑 and has a bounded right approximate 
identity. Note also that for a locally compact group 퐺 (respectively, a 
discrete semigroup 푆), the group algebra 퐿 (퐺) (respectively, the 
semigroup algebra 푙 (푆)) is amenable with respect to the trivial character 
1 precisely when 퐺 is amenable (respectively, 푆 is left amenable). 
However, 푙 (ℕ) is not amenable since it does not have a bounded 
approximate identity. 

We give two characterizations (in terms of cohomology groups and a 
Hahn-Banach type extension property) of 휑-amenability, which are close 
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to results. We mainly focus on 휑-means of norm 1. We establish various 
criteria for their existence. Pointwise conditions, in terms of elements 
푓 ∈ 퐴∗ or 푎 ∈ ker 휑, the kernel of 휑, are given that ensure the existence 
of 휑-means of norm 1. 

We concentrate on weakly sequentially complete Banach algebras. We 
show that if there is no 휑-mean in 퐴 itself, but there exists a so-called 
sequential bounded approximate 휑-mean, then 퐴 admit at least 2 휑-
means, and there are no more if 퐴 is separable. We also relate the 
existence of 휑-means to Arens regularity of 퐴. A result of a flavor similar 
to that of Theorem (2.2.1) is obtained in Theorem (2.2.10). It implies that 
if 퐴 is a separable 퐹-algebra and 휖 denotes the identity of the von 
Neumann algebra 퐴∗, then there are 2 	휖-means of norm 1 with the 
additional property that ‖푚 − 푛‖ = 2 for any two of them. 

Finally, we present illustrative examples such as Lipschitz algebras 
and 퐿 (퐺), where 퐺 is a compact group. 

In this section, the second dual 퐴∗∗ of a Banach algebra 퐴 will always 
be equipped with the first Arens product which is defined as follows. For 
푎, 푏 ∈ 퐴, 푓 ∈ 퐴∗ and 푚, 푛 ∈ 퐴∗∗, the elements 푓 ⋅ 푎 and 푚 ⋅ 푓 of 퐴∗ and 
푚푛 ∈ 퐴∗∗ are defined by 

〈푓 ⋅ 푎, 푏〉 = 〈푓 ⋅ 푎푏〉,			〈푚 ⋅ 푓, 푏〉 = 〈푚, 푓 ⋅ 푏〉		and		〈푚푛, 푓〉 = 〈푚, 푛 ⋅ 푓〉 

respectively. With this multiplication, 퐴∗∗ is a Banach algebra of 퐴∗∗. 
Alternatively, the multiplication on 퐴∗∗ can be defined by using iterated 
limits as follows. For 푚, 푛 ∈ 퐴∗∗, let 

푚푛 = 푤∗ lim
→

푤∗ − lim
→
푎푏 . 

In general, the multiplication (푚, 푛) → 푚푛 is not separately continuous 
with respect to the 푤∗-topology on 퐴∗∗. But, for fixed 푛 ∈ 퐴∗∗, the 
mapping 푚 → 푚푛 is 푤∗-continuous, and also for fixed 푎 ∈ 퐴, the 
mapping 푚 → 푎푚 is 푤∗-continuous. Moreover, for all 푚,푛 ∈ 퐴∗∗ and 
휑 ∈ ∆(퐴), the set of all homomorphisms from 퐴 onto ℂ, 〈푚푛, 휑〉 =
〈푚, 휑〉〈푛, 휑〉. Consequently, each 휑 ∈ ∆(퐴) extends to some element 휑∗∗ 
of ∆(퐴∗∗). The kernel of 휑∗∗, ker 휑∗∗, contains ker 휑 in the same sense 
that 퐴∗∗ naturally contains 퐴. Since each of these ideals has codimension 
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1, the theory of second polars shows that ker 휑 is 푤∗-dense in ker 휑∗∗ 
and that ker 휑∗∗ = (ker 휑)∗∗. 

The Banach algebra 퐴 is said to be 휑-amenable if there exists 푚 ∈ 퐴∗∗ 
such that (푚,휑) = 1 and 〈푚, 푓 ⋅ 푎〉 = 휑(푎)〈푚, 푓〉 for all 푓 ∈ 퐴∗ and 
푎 ∈ 퐴, and any such 푚 is called a 휑-mean. The 휑-means are nothing but 
the 푤∗-cluster points of bounded nets 푢  in 퐴 with 휑 푢 = 1 for all 

훾 and 푎푢 − 휑(푎)푢 → 0 for all 푎 ∈ 퐴. Consequently, we call such a 
net 푢  a bounded approximate 휑-mean. Given a 휑-mean 푚, the net 

푢  can be chosen so that 푢 → ‖푚‖.  

If 푋 is a Banach 퐴-module, then so is the dual 푋∗ with the module 
actions given by 

〈푎 ⋅ 푓, 푥〉 = 〈푓, 푥 ⋅ 푎〉			and			〈푓 ⋅ 푎, 푥〉 = 〈푓, 푎 ⋅ 푥〉, 

푎 ∈ 퐴, 푥 ∈ 푋, 푓 ∈ 푋∗. In the following theorem 퐻 (퐴, 푋∗) denotes the 
first cohomology group of 퐴 with coefficients in 푋∗. 

Theorem (2.1.1) [2]: 

 Let 퐴 be a Banach algebra and 휑 ∈ ∆(퐴). Then the following three 
conditions are equivalent. 

(i) 퐴 is 휑-amenable. 
(ii) If 푋 is a Banach 퐴-bimodule such that 푎 ⋅ 푥 = 휑(푎)푥 for all 푥 ∈ 푋 

and 푎 ∈ 퐴, then 퐻 (퐴,푋∗) = {0}. 
(iii) Give (ker 휑)∗∗ a second 퐴-bimodule structure by taking the left 

action to be 푎 ⋅ 푚 = 휑(푎)푚 for 푚 ∈ 퐴∗∗ and taking the right 
action to be the natural one. Then any continuous derivation 
퐷: 퐴 → (ker 휑)∗∗ is inner. 

Proof: 

The equivalence of (i) and (ii) has been shown. Trivially, (ii) implies 
(iii), and therefore we only have to show (iii) ⇔ (i). Choose any 푏 ∈ 퐴 
with 휑(푏) = 1. Then 퐷푎 = 푎푏 − 푏푎, 푎 ∈ 퐴, defines a derivation from 퐴 
into (ker 휑)∗∗. By (iii), 퐷 is inner, so there is 푚 ∈ (ker 휑)∗∗ such that 
퐷푎 = 푎(−푚) − (−푚)푎 for all 푎 ∈ 퐴. Then 
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푎(푏 + 푚) = (푏 +푚)푎 = 휑(푎)(푏 + 푚) 

for all 푎 ∈ 퐴 and 〈푏 + 푚, 휑〉 = 휑(푏) = 1. So 푏 +푚 is 휑-mean. 

The implication (iii) ⇒ (ii) in the above shows that if 퐻 (퐴,푋∗) =
{0} for the particular case in which 푋 = (ker 휑)∗, then all such 
cohomology groups are zero. We have the following result. 

Theorem (2.1.2) [2]: 

Let 퐴 be a Banach algebra and 휑 ∈ ∆(퐴). Then the following two 
conditions are equivalent. 

(i) 퐴 is 휑-amenable. 
(ii) If 푋 is any Banach 퐴-module and 푌 is any Banach 퐴-submodule of 

푋 and g ∈ 푌∗ is such that the left action of 퐴 on g has the form 
푎 ⋅ g = 휑(푎)g for all 푎 ∈ 퐴, then g extends to some 푓 ∈ 푋∗ such 
that 푎 ⋅ 푓 = 휑(푎)푓 for all 푎 ∈ 퐴. 

Proof: 

(i) ⇒ (ii) let g ∈ 푋∗ such that g extends g and ‖g‖ = ‖g‖. If 푎 ∈ 퐴 
satisfies 휑(푎) = 1, then 푎. g also extends g. Since 퐴 is 휑-amenable, there 
exists a net 푢 = 1 in 퐴 such that, for all 훾 ⋅ 휑 푢 = 1 and 푢 ≤

퐶 for some constant 퐶 > 0 and 푎푢 − 휑(푎)푢 → 0 for all 푎 ∈ 퐴. Then 
푢 ⋅ g extends g and we may assume that 푢 ⋅ g ≤ 퐶‖g‖ + 1 for all 훾. 
After passing to a subnet if necessary, we can also assume that 푢 ⋅ g → 푓 
in the 푤∗-topology for some 푓 ∈ 푋∗. Clearly, 푓 extends g. Taking 푤∗-
limits, we obtain  

푎 ⋅ 푓 = lim 푎 ⋅ 푢 ⋅ g = lim 푎푢 ⋅ g

= lim 푎푢 − 휑(푎)푢 ⋅ g + φ(푎)푢 ⋅ g = 휑(푎)푓 

for all 푎 ∈ 퐴. So (ii) holds. 

(ii) ⇒ (i) Take 푋 = 퐴∗ and 푌 = ℂ휑. Let 휑∗ ∈ 푌∗ be defined by 
〈휑∗, 휑〉 = 1. Then the left action of 퐴 on 휑∗ is given by 푎 ⋅ 휑∗ = 휑(푎)휑∗. 
By hypothesis, there exists 푚 ∈ 퐴∗∗ such that 푚|훾 = 휑∗ and 푎 ⋅ 푚 =
휑(푎)푚 for all 푎 ∈ 퐴. Since 〈푚, 휑〉 = 〈휑∗, 휑〉 = 1,푚 is a 휑-mean. 
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Using 푤∗-continuity, we easily see that an element 푚 ∈ 퐴∗∗ is a 휑-mean 
for 퐴 if and only if for all 푛 ∈ 퐴∗∗ we have 푛푚 = 휑∗∗(푛)푚. It is tempting 
to introduce a new general concept by saying that, when 휑 is a complex 
homomorphism on a complex algebra 퐵,푚 is a 휑-right zero if 푛푚 =
휑(푛)푚 for all 푛 ∈ 퐵 (the term "right zero" in this context comes from the 
measure algebra on a semigroup with a right zero). However, this is 
worthwhile, as it would merely be giving a new name to a 휑-mean which 
lies in 퐵. But this viewpoint does reduce the idea of a 휑-mean to a purely 
algebraic one, and sometimes it is easy to prove results in context and 
then interpret them as applying to Banach algebras. It is trivial to notice 
that 퐴 has a 휑-mean if and only if 퐴∗∗ has a 휑∗∗-mean which lies in 퐴∗∗. 
The next proposition ant its corollary provide an example of this 
technique. 

Proposition (2.1.3) [2]: 

Let 퐵 be a complex algebra and 휑:퐵 → ℂ a homomorphism. Let 퐽 be 
an ideal in 퐵 with 퐽 ⊆ ker 휑 and let 휑:퐵/퐽 → ℂ be the homomorphism 
induced by 휑. If 퐽 has a right identity and 퐵/퐽 has a 휑-mean in 퐵/퐽, then 
퐵 has a 휑-mean in 퐵. 

Proof: 

Let 푞: 퐵 → 퐵/퐽, so that 휑 = 휑 ∘ 푞. Let 푒 be a right identity for 퐽 and 
let 푚 ∈ 퐵 be such that 푞(푚) is a 휑-mean for 퐵/퐽. Since 푞(푒) = 0 we 
find for all 푥 ∈ 퐵, 

푞(푥)푞(푚 − 푚푒) = 푞(푥)푞(푚) = 휑 푞(푥) 	푞(푚) = 휑(푥)푞(푚 −푚푒). 

This shows that 푥(푚 −푚푒) − 휑(푥)(푚 − 푚푒) ∈ 퐽. Since 푒 is a right 
identity for 퐽 and (푚 − 푚푒)푒 = 0, we see that in fact 푥(푚 − 푚푒) −
휑(푥)(푚 − 푚푒) = 0, so that 푚 −푚푒 is a 휑-mean for 퐵. 

Corollary (2.1.4) [2]: 

Let 퐴 be a Banach algebra 휑 ∈ ∆(퐴) and 퐼 a closed ideal in 퐴 with 
퐼 ⊆ ker 휑. Suppose that 퐼 has a bounded right approximate identity and 
that 퐴/퐼 is 휑-amenable, where 휑 ∈ ∆(퐴/퐼) is the homomorphism 
induced by 휑. Then 퐴 is 휑-amenable. 
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Proof: 

The statement follows from Proposition (2.1.3) on taking 퐵 = 퐴∗∗ and 
퐽 = 퐼∗∗. In fact, since 퐼 has a bounded right approximate identity, 퐼∗∗ has 
a right identity, and since 퐵/퐽 = 	퐴∗∗/퐼∗∗ = (퐴/퐼)∗∗ and 퐴/퐼 is 휑-
amenable and 휑∗∗ = 휑∗∗, 퐵/퐽 is 휑∗∗-amenable. Thus 퐵/퐽 has a 휑∗∗-mean 
and the proposition shows that 퐵 has a 휑∗∗-mean. This says that 퐴 is 휑-
amenable. 

Let 퐴 be a Banach algebra and 휑 ∈ ∆(퐴). In this section we establish 
several criteria for 퐴 to possess a 휑-mean of norm 1. We start by showing 
that the existence of such a mean is a pointwise property. 

Theorem (2.1.5) [2]: 

Let 퐴 be any Banach algebra and 휑 ∈ ∆(퐴). Suppose that for each 
푓 ∈ 퐴∗ there exists 푚 ∈ 퐴∗∗ such that 푚 = 〈푚 , 휑〉 = 1 and 
〈푚 , 푓 ⋅ 푎〉 = 휑(푎)〈푚 , 푓〉 for all 푎 ∈ 퐴. Then 퐴 has a 휑-mean of norm 1. 

Proof: 

Define a subsets 푆 of 퐴∗∗ by 

푆 = {푚 ∈ 퐴∗∗: ‖푚‖ = 〈푚, 휑〉 = 1} = {푚 ∈ 퐴∗∗: ‖푚‖ ≤ 1, 〈푚, 휑〉 = 1}. 

Then 푆 is 푤∗-compact and easily seen to be a semigroup for the first 
Arens product. Let ℱ denote the collection of all finite subsets 퐹 of 퐴∗, 
and for every 퐹 ∈ ℱ, let 

푆 = {푚 ∈ 푆: 〈푚, 푓 ⋅ 푎〉 = 휑(푎)〈푚, 푓〉		for	all	푓 ∈ 퐹		and		푎 ∈ 퐴} 

Then 푆  is closed in 푆 and 푆 ⊇ 푆  whenever 퐹 ⊆ 퐹 . Clearly, every 
푚 ∩ {푆 : 퐹 ∈ ℱ} is a 휑-mean with ‖푚‖ = 1. It therefore suffices to show 
that 푆 ≠ ∅ for each 퐹 ∈ ℱ. We achieve this by induction on the number 
of elements in 퐹. 

So suppose that some 푚 ∈ 푆  exists and let g ∈ 퐴∗\퐹 and set ℎ = 푚 ⋅
g ∈ 퐴∗. By hypothesis, there exists 푚 ∈ 푆{ }. Let 푚 = 푚 푚 ∈ 퐴∗∗. 
Then 푚 ∈ 푆 since 푆 is a semigroup. For 푓 ∈ 퐹 and 푎, 푏 ∈ 퐴, we have 

〈푚 ⋅ (푓 ⋅ 푎), 푏〉 = 〈푚 , 푓 ⋅ (푎푏)〉 = 휑(푎)〈푚 , 푓〉휑(푏) 
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Hence 푚 ⋅ 〈푓 ⋅ 푎〉 = 휑(푎)〈푚 , 푓〉휑, and similarly 푚 ⋅ 푓 = 〈푚 , 푓〉휑. It 
follows that, for 푓 ∈ 퐹 and all 푎 ∈ 퐴 

〈푚, 푓 ⋅ 푎〉 = 〈푚 ,푚 ⋅ (푓 ⋅ 푎)〉 = 휑(푎)〈푚 , 푓〉〈푚 ,휑〉
= 휑(푎)〈푚 , 〈푚 , 푓〉휑〉 = 휑(푎)〈푚 ,푚 ⋅ 푓〉 = 휑(푎)〈푚, 푓〉. 

Moreover, for all 푎 ∈ 퐴, 

〈푚, g ⋅ 푎〉 = 〈푚 , (푚 ⋅ g) ⋅ 푎〉 = 휑(푎)〈푚 ,푚 ⋅ g〉 = 휑(푎)〈푚, g〉. 

So 푚 ∈ 푆 ∪{ }, and this finishes the proof. 

Let 퐴 be a Banach algebra and 휑 ∈ ∆(퐴). For 푓 ∈ 퐴∗ and 휖 > 0, let 

퐾 , = {푢 ⋅ 푓: 푢 ∈ 퐴, 휑(푢) = 1, ‖푢‖ ≤ 1 + 휖} ∗ ⊆ 퐴∗. 

Clearly, 퐾 ,  is convex and 푤∗-compact, and so is 퐾 =∩ 퐾 , . 

Proposition (2.1.6) [2]: 

For 푓 ∈ 퐴∗, the following conditions are equivalent. 

(i) There exists 푚 ∈ 퐴∗∗ such that ‖푚‖ = 1, 〈푚, 휑〉 = 1 and 〈푚, 푓 ⋅
푎〉 = 휑(푎)〈푚, 푓〉 for all 푎 ∈ 퐴. 

(ii) 퐾  contains 휆휑 for some 휆 ∈ ℂ. 

In fact, ℂ휑 ∩ 퐾  equals the set of all 〈푚, 푓〉휑 where 푚 is as in (i). 

Proof: 

Let 푚 be as in (i), and let 푢  be a net in 퐴 such that 휑 푢 = 1 for 

all 훾 ⋅ 푢 → 1 and 푢 → 푚 in the 푤∗-topology. Then 

〈푢 ⋅ 푓, 푎〉 = 〈푢 , 푓 ⋅ 푎〉 → 〈푚, 푓 ⋅ 푎〉 = 휑(푎)〈푚, 푓〉 

for all 푎 ∈ 퐴, and hence 〈푚, 푓〉휑 ∈ 퐾 ,  for every 휖 > 0. 

Conversely, assume that 휆휑 ∈ 퐾  and let 휖 > 0. There exists a net 
푢 ,  in 퐴 such that 휑 푢 , = 1, 푢 , ≤ 1 + 휖 for all 훾 and 휆휑 =

푤∗ − lim 푢 ⋅ 푓 . Let 푛  be a 푤∗-cluster point of the net 푢 ,  in 퐴∗∗. 

Then ‖푛 ‖ ≤ 1 + 휖, 〈푛 , 휑〉 = 1 and 〈푛 , 푓 ⋅ 푎〉 = 휆휑(푎) for all 푎 ∈ 퐴 
since 
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〈푢 , , 푓 ⋅ 푎〉 = 〈푢 , ⋅ 푓, 푎〉 → 휆휑(푎). 

Let 푛 be a 푤∗-cluster point of the net (푛 ) . Then ‖푛‖ = 1, 〈푛, 휑〉 = 1 
and 

〈푛 ⋅ 푓, 푎〉 = 〈푛, 푓 ⋅ 푎〉 = 휆휑(푎) 

for all 푎 ∈ 퐴. Finally, let 푚 = 푛 ∈ 퐴∗∗. Then 〈푚, 휑〉 = 〈푛, 휑〉 = 1 and 
‖푚‖ = 1. Moreover, 

〈푚, 푓〉 = 〈푛, 푛 ⋅ 푓〉 = 〈푛, 휆휑〉 = 휆〈푛, 휑〉 = 휆, 

and hence, for all 푎 ∈ 퐴, 

〈푚, 푓 ⋅ 푎〉 = 〈푛, (푛 ⋅ 푓) ⋅ 푎〉 = 〈푛, (휆휑) ⋅ 푎〉 = 휆휑(푎)〈푛, 휑〉 = 휑(푎)〈푚, 푓〉. 

So 푚 satisfies all the requirements in (i). 

Actually, the above proof shows that 휆휑belongs to 퐾  if and only if 
휆 = 〈푚, 푓〉 for some 푚 ∈ 퐴∗∗ as in (i). 

As an immediate consequence of Proposition (2.1.6) and Theorem 
(2.1.5) we obtain  

Corollary (2.1.7) [2]: 

For a Banach algebra 퐴 and 휑 ∈ ∆(퐴), the following are equivalent. 

(i) 퐴 admits a 휑-mean of norm 1. 
(ii) For each 푓 ∈ 퐴∗, ℂ휑 ∩ 퐾 ≠ ∅. 

The next theorem, which is one of the main results, in particular shows 
that the existence of a 휑-mean of norm 1 is a pointwise property in the 
sense that it follows from the existence of a certain functional on 퐴∗ 
associated with each of the elements of the ideal ker 휑. 

Theorem (2.1.8) [2]: 

For a Banach algebra 퐴 and 휑 ∈ ∆(퐴), the following four conditions 
are equivalent. 

(i) There exists a 휑-mean such that ‖푚‖ = 1. 
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(ii) There exists a net 푢  in 퐴 such that 휑 푢 = 1 for all 

훾, 푢 → 1 and 푎푢 → |휑(푎)| for all 푎 ∈ 퐴. 
(iii) For each 푎 ∈ ker 휑, there exists 푚 ∈ 퐴∗∗ with ‖푚 ‖ ≤

1, 〈푚 , 휑〉 = 1 and 푎푚 = 0. 
(iv) For each 푎 ∈ ker 휑 and 휖 > 0, there exists 푢 ∈ 퐴 such that 

‖푢‖ ≤ 1 + 휖, ‖푎푢‖ ≤ 휖 and 휑(푢) = 1. 

Proof: 

(ii) ⇒ (iv) is clear. Also, (i) ⇒ (iii) is simple: if 푚 is a 휑-mean, we 
can choose 푚 = 푚 for all 푎 ∈ 퐴. Therefore, in order to establish the 
theorem it suffices to show the implications (i) ⇒ (ii), (iii) ⇒ (iv) and 
(iv) ⇒ (i). 

(i) ⇒ (ii) There exists a net 푢  in 퐴 with the following properties: 

휑 푢 = 1 for all 훾, 푢 → 1 and 푎푢 − 휑(푎)푢 → 0 for all 푎 ∈ 퐴. 
Thus, 

푎푢 − |휑(푎)| ≤ 푎푢 − 휑(푎)푢 + 휑(푎)푢 − |휑(푎)|

≤ 푎푢 − 휑(푎)푢 + |휑(푎)| ⋅ 푢 − 1  

(iii) ⇒ (iv) Fix 푎 ∈ ker휑 and take any net 푢  in 퐴 such that 

푢 ≤ 1 and 푢 → 푚  in the 푤∗-topology. Then 휑 푢 → 1. By 
replacing each 푢  with a scalar multiple of itself and taking a cofinal 
subnet, we may arrange that 푢 ≤ 1 + 휖 and 휑 푢 = 1 for all 훾. 
Since 푤∗ lim 푎푢 = 푎푚 = 0 and 푎푢 ∈ 퐴, is in the weak closure of the 
set 푎푢 and therefore 0 is in the norm closure of the convex hull of 

푎푢 . The set 푢  being contained in the closed hyperplane {푥 ∈

퐴: 휑(푥) = 1}, we easily reach our conclusion. 

(iv) ⇒ (i) We claim that for every finite subset of 퐹 of 퐴 and 휖 > 0, 
there exists 푢 ,  such that 휑 푢 , = 1, 푢 , ≤ 1 + 휖 and 

푎푢 , − 휑(푎)푢 , ≤ 휖 

for all 푎 ∈ 퐹. Let 퐹 = {푎 ,… , 푎 }, say, and choose 훿 > 0 such that 
(1 + 훿) ≤ 1 + 휖. By hypothesis, there exists 푢 ∈ 퐴 such that 
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휑(푢 ) = 1 and ‖푢 ‖ ≤ 1 + 훿. Since 푎 푢 − 휑(푎 )푢 ∈ ker 휑, again by 
(iv) there exists 푢 ∈ 퐴 such that 

휑(푢 ) = 1, ‖푢 ‖ ≤ 1 + 훿			and			‖(푎 푢 − 휑(푎 )푢 )푢 ‖ ≤ 훿. 

Likewise, 푎 푢 푢 − 휑(푎 )푢 푢 ∈ ker 휑 and hence there exists 푢 ∈ 퐴 
such that 

휑(푢 ) = 1, ‖푢 ‖ ≤ 1 + 훿			and			‖(푎 푢 푢 − 휑(푎 )푢 푢 )푢 ‖ ≤ 훿. 

For 푗 = 1,2 we have 푢 ≤ 1 + 훿, 휑 푢 = 1 and 

푎 푢 푢 푢 − 휑 푎 푢 푢 푢 ≤ 훿(1 + 훿) 

Proceeding inductively, we see that there exist 1 ≤ 푗 ≤ 푘, such that 
휑 푢 = 1, 푢 ≤ 1 + 훿 and for 푖 = 1,… , 푗, 

푎 푢 푢 … . . 푢 − 휑(푎 )푢 푢 … . . 푢 ≤ 훿(1 + 훿) ≤ 휖. 

In particular, when 푗 = 푘, setting 푢 , = ∏ 푢  gives us 휑 푢 , = 1, 
푢 , ≤ 1 + 휖 and 푎푢 , − 휑(푎)푢 , ≤ 휖 for all푎 ∈ 퐹. This proves 

the above claim. 

Now, order the pairs (퐹, 휖), 퐹 ⊆ 퐴 finite, 휖 > 0, in the obvious 
manner, and let 푚 be a 푤∗-cluster point of the net 푢 , ,  in 	

퐴∗∗. Then ‖푚‖ ≤ 1 and 〈푚, 휑〉 = 1 (and hence ‖푚‖ = 1) and 푎푚 =
휑(푎)푚 for all 푎 ∈ 퐴. So 푚 is the required 휑-mean. 

Remark (2.1.9) [2]: 

  Using methods similar to those employed in the proof of Theorem 
(2.1.8), the following can be shown. Let 퐴 be a Banach algebra and 
휑 ∈ ∆(퐴). For ∁> 0, the following statements are equivalent. 

(i) 퐴 has a 휑-mean of norm ∁. 
(ii) 퐴 contains an approximate 휑-mean with norm bound ∁. 

(iii) For each 푎 ∈ ker 휑, there exists 푚 ∈ 퐴∗∗ with ‖푚 ‖ = ∁, 
〈푚 , 휑〉 = 1 and 푎푚 = 0. 

(iv) There exists a net 푢  in 퐴 with 휑 푢 = 1 for all 훾 = 푢 →

∁ and 푎푢 → 0 for every 푎 ∈ ker 휑. 
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For a Banach algebra 퐴 and 휑 ∈ ∆(퐴), let 푁(퐴, 휑) denote the set of 
all 푓 ∈ 퐴∗ with the following property: for each 훿 > 0, there exists a 
sequence (푎 )  in 퐴 such that 휑(푎 ) = 1, ‖푎 ‖ ≤ 1 + 훿 for all 푛 and 
‖푓 ⋅ 푎 ‖ → 0. We now aim at a criterion for a 휑-mean of norm 1 
involving the set 푁(퐴, 휑) (Theorem (2.1.12) below). 

Lemma (2.1.10) [2]: 

For a Banach algebra 퐴 and 휑 ∈ ∆(퐴), the following hold. 

(i) 휑 ∉ 푁(퐴, 휑). 
(ii) 푁(퐴, 휑) is closed in 퐴∗ and closed under scalar multiplication. 

(iii) If 퐴 is commutative, then 푁(퐴,휑) is closed under addition. 

Proof: 

(i) is immediate since 휑 ⋅ 푎 = 휑 for all 푎 ∈ 퐴 with 휑(푎) = 1. 
(ii) Let 푓 ∈ 퐴∗, 푛 ∈ ℕ and 푓 ∈ 퐴∗ such that 푓 → 푓. For every 푛 there 

exists 푎 ∈ 퐴 such that 휑(푎 ) = 1, ‖푎 ‖ ≤ 1 +  and ‖푓 ⋅ 푎 ‖ ≤

. Then ‖푓 ⋅ 푎 ‖ ≤ ‖푓 − 푓 ‖ ⋅ ‖푎 ‖ +  for all 푛, whence 푓 ∈
푁(퐴, 휑). 

(iii) Let 푓 , 푓 ∈ 푁(퐴, 휑) and 훿 > 0. If 푎 ∈ 퐴, 푗 = 1,2, are such that 
휑 푎 = 1, 푎 ≤ 1 + 훿 and 푓 ⋅ 푎 ≤ 훿, then since 퐴 is 
commutative, 

‖(푓 + 푓 ) ⋅ (푎 푎 )‖ ≤ ‖푓 ⋅ 푎 ‖ ⋅ ‖푎 ‖ + ‖푓 ⋅ 푎 ‖ ⋅ ‖푎 ‖ ≤ 2훿(1 + 훿). 

It follows that 푓 + 푓 ∈ 푁(퐴,휑). 

Lemma (2.1.11) [2]: 

Suppose that 퐴 admits a 휑-mean of norm 1. Then 푁(퐴,휑) is a 
subspace of 퐴∗. 

Proof: 

Let 퐽 = {푎 ∈ 퐴: 휑(푎) = 1} and let 휖 > 0. Since 퐴 has a 휑-mean of 
norm 1, there exists a net 푢  in 퐴 such that 휑 푢 = 1 and 푢 ≤

1 + 휖 for all 훾 and 푎푢 − 푢 → 0 for every 푎 ∈ 퐽. 
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Now let 푓 , 푓 ∈ 푁(퐴, 휑). Given 휖 > 0, there exists 푎 , 푎 ∈ 퐽 such 
that 푓 ⋅ 푎 ≤ 휖 and 푎 ≤ 1 + 휖, 푗 = 1,2. By the first paragraph, there 
exists 푢 ∈ 퐴 with ‖푢‖ ≤ 1 + 휖, 휑(푢) = 1 and 

‖푎 푢 − 푎 푢‖ ≤ ‖푎 푢 − 푢‖ + ‖푢 − 푎 푢‖ < 휖. 

Then 

‖(푓 + 푓 ) ⋅ (푎 푢)‖
≤ ‖푓 ⋅ (푎 푢)‖ + ‖푓 ⋅ (푎 푢) − 푓 ⋅ (푎 푢)‖ + ‖푓 ⋅ (푎 푢)‖ 

												≤ ‖푓 ⋅ 푎 ‖ ⋅ ‖푢‖ + ‖푓 ‖ ⋅ ‖푎 푢 − 푎 푢‖ + ‖푓 ⋅ 푎 ‖ ⋅ ‖푢‖ 

≤ 휖(1 + 휖) + 휖‖푓 ‖ + 휖(1 + 휖)													 

= 휖(2 + 2휖 + ‖푓 ‖).																							 

Since 휑(푎 푢) = 1 and ‖푎 푢‖ ≤ (1 + 휖)  and 휖 > 0 is arbitrary, it 
follows that 푓 + 푓 ∈ 푁(퐴, 휑). 

Theorem (2.1.12) [2]: 

Let 퐴 be a Banach algebra and 휑 ∈ ∆(퐴). Then the following two 
conditions are equivalent. 

(i) There exists a 휑-mean 푚 with ‖푚‖ = 1. 
(ii) 푁(퐴, 휑) is a subspace of 퐴∗ and 푓 ⋅ 푎 − 푓 ∈ 푁(퐴,휑) for all 푓 ∈ 퐴∗ 

and all 푎 ∈ 퐴 with 휑(푎) = 1. 

Proof: 

Let 푚 be a 휑-mean of norm 1. By Lemma (2.1.11), 푁(퐴, 휑) is a 
subspace of 퐴∗ and 푎 ∈ 퐴 with 휑(푎) = 1. There exists a net 푢  in 퐴 

such that 휑 푢 = 1, 푢 → 1 and 푎푢 − 푢 → 0 since (푓 ⋅ 푎 − 푓) ⋅
푢 ‖ ≤ ‖푓‖ ⋅ 푎푢 − 푢 , it follows that 푓 ⋅ 푎 − 푓 ∈ 푁(퐴, 휑). 

Conversely, suppose that 푁(퐴, 휑) is a subspace of 퐴∗ and that (ii) 
holds. Since 휑 ∉ 푁(퐴, 휑) and ‖휑‖ = 1, by the Hahn-Banach theorem 
there exists 푚 ∈ 퐴∗∗ such that ‖푚‖ = 〈푚, 휑〉 = 1 and 푚| ( , ) = 0. 
Then, by (ii), 〈푚, 푓 ⋅ 푎〉 = 〈푚, 푓〉 for all 푓 ∈ 퐴∗ and all 푎 ∈ 퐴 with 
휑(푎) = 1 and hence 〈푚, 푓 ⋅ 푎〉 = 휑(푎)〈푚, 푓〉 for all 푎 ∈ 퐴. 



58 
 

We shall see in Example (2.2.16) that if ‖푚‖ > 1, it can even happen 
that 푁(퐴, 휑) = {0}. 

The following corollary is an immediate consequence of Lemma 
(2.1.10) and Theorem (2.1.12). 

Corollary (2.1.13) [2]: 

If 퐴 is a commutative Banach algebra and 휑 ∈ ∆(퐴), then 퐴 has a 휑-
mean of norm 1 if and only if 푓 ⋅ 푎 − 푓 ∈ 푁(퐴, 휑) for all 푓 ∈ 퐴∗ and all 
푎 ∈ 퐴 with 휑(푎) = 1. 

Before proceeding, recall that an 퐹-algebra 퐴 is a Banach algebra 
which is the predual of a von Neumann algebra 푀 such that the identity 휖 
of 푀 is a multiplicative linear functional on 퐴. In this case, the 휖-means 
of norm 1 are nothing but the topologically left invariant means (TLIM) 
on 퐴∗. Examples of 퐹-algebra include the group algebra, the Fourier 
algebra and the Fourier-Stieltjes algebra of a locally compact group. 
Other examples are the measure algebra of a locally compact semigroup 
and the predual of a Hopf-von Neumann algebra. 

Let 퐴 be a Banach algebra and 휑 ∈ ∆(퐴). We say that an element 푎 of 
퐴 is 휑-maximal if it satisfies ‖푎‖ = 휑(푎) = 1. Let 푃 (퐴,휑) denote the 
collection of all 휑-maximal elements of 퐴. When 퐴 is an 퐹-algebra and 휑 
is the identity of the von Neumann algebra 퐴∗, the 휑-maximal elements 
are precisely the positive linear functionals of norm 1 on 퐴∗ and hence 
span 퐴. However, in general 푃 (퐴, 휑) can be quite small. 

Let 푋(퐴, 휑) denote the closed span of 푃 (퐴, 휑). Then 푋(퐴, 휑) is a 
closed subalgebra of 퐴. 

Were MarKov-Kakutani fixed point theorem [7] said: A commuting 
family of continuous affine self-mappings of a compact convex subset in 
locally convex topological vectors space has a common fixed point.  

Proposition (2.1.14) [2]: 

Let 퐴 be a commutative Banach algebra and 휑 ∈ ∆(퐴) = 퐴, if 
푋(퐴,휑) = 퐴, then 퐴 has a 휑-mean of norm 1. 
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Proof: 

Let 퐾 = {푚 ∈ 퐴∗∗: ‖푚‖ = 〈푚,휑〉 = 1}. Then 퐾 is a 푤∗-compact 
convex subset of 퐴∗∗. For each 푎 ∈ 푃 (퐴, 휑), let 푇 :퐾 → 퐾 denote the 
map 푚 → 푎푚. Then 푎 → 푇  is a representation of the commutative 
semigroup 푃 (퐴,휑) as 푤∗ − 푤∗-continuous affine mapping from 퐾 into 
퐾. Therefore, by the Markov-Kakutani fixed point theorem, there exists 
푚 ∈ 퐾 with 푎푚 = 푚 for all 푎 ∈ 푃 (퐴, 휑). For all 푎 ∈ 퐴, it then follows 
that 푎푚 = 휑(푎)푚, and hence 푚 is a 휑-mean. 

Remark (2.1.15) [2]: 

Let 퐴 be a Banach algebra such that 퐴 is a left ideal in 퐴∗∗. Let 
휑 ∈ ∆(퐴) and suppose that there exists a 휑-mean 푚. Then there exists a 
휑-mean in 퐴 itself. 

To see this, fix 푎 ∈ 퐴 with 휑(푎) = 1. If 퐴 is a right ideal in 퐴∗∗, then 
푚 = 휑(푎)푚 = 푎푚 ∈ 퐴. If 퐴 is the left ideal in 퐴∗∗, then 

〈푚푎, 휑〉 = 〈푚, 푎 ⋅ 휑〉 = 〈푚, 휑〉 = 1 

and 푏(푚푎) = 휑(푏)푚푎 for all 푏 ∈ 퐴, whence 푚푎 ∈ 퐴 is 휑-mean. 
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Section (2.2): Complete Banach Algebras and Invariant 
Means on 푭- Algebras 

A 휑-mean of a Banach algebra 퐴 is an element of the second dual of 
퐴. There are some aspects of the theory of second duals which are 
particularly striking for weakly sequentially complete algebras. In this 
section we offer some results which are relevant to 휑-means.  

A Banach algebra 퐴 is weakly consequentially complete if every 
sequence (푎 )  in 퐴 which is weakly Cauchy is weakly convergent in 퐴. 
As is well-known, preduals of von Neumann algebras are weakly 
sequentially complete. In particular, 퐿 (퐺) and 퐴(퐺), the group algebra 
and the Fourier algebra of a locally compact group 퐺, are weakly 
sequentially complete. The 푤∗-topology on 퐴∗∗ induces the weak 
topology on 퐴, so an easy consequence of the definitions is that if a 
sequence (푎 )  in 퐴 converges to a 푤∗-limit 푎 ∈ 퐴∗∗, then in fact 푎 ∈ 퐴. 
Since bounded subsets in 퐴∗∗ are relatively 푤∗-compact, we see that if 
(푎 )  is a bounded sequence in 퐴 which has just one 푤∗-cluster point in 
퐴∗∗, then that cluster point is in 퐴. 

Theorem (2.2.1) [2]: 

 Let 퐴 be weakly sequentially complete with a sequential bounded 
approximate 휑-mean, but with no 휑-mean in 퐴 itself. Then 퐴 has at least 
2 휑-means. If 퐴 is separable, then it has precisely 2 	휑-means. 

Proof: 

Let (푢 )  be a sequential bounded approximate 휑-mean, and let 푀 
denote the set of all 푤∗-cluster point of (푢 )  in 퐴∗∗. Each element of 푀 
is 푤∗-compact. We claim that no element of 푀 has a countable 
neighbourhood based in 푀. Indeed, suppose that for some 푚 ∈ 푀, there 
is a decreasing countable base (푉 )  of closed neighbourhoods of 푚 in 
푀. Choose 푤∗-closed neighborhoods 푊 , 푘 ∈ ℕ, of 푚 in 퐴∗∗ with 
푊 ∩푀 = 푉 . Then 푀 ∩ (∩ 푊 ) = {푚}, and we can arrange for the 
sequence (푊 )  to be decreasing. For each 푘, select 푢 ∈ 푊 . Then 
every 푤∗-cluster point of the subsequence 푢  lies in each 푊  and in 

푀, so must be equal to 푚. Since 퐴 weakly sequentially complete, it 
follows that 푚 ∈ 퐴, which is impossible by hypothesis. 
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Thus no point of 푀 has a countable neighbourhoods base. This implies 
that 푀 has at least 2  elements. Finally, if퐴 is separable, then 퐴∗∗ has a 
countable 푤∗-dense subset and hence no more than 2  elements. 

Example (2.2.2) [2]: 

(i) If 퐺 is a locally compact group, then 휖: 푓 → ∫ 푓(푥)	 푑푥 

defines an element of ∆ 퐿 (퐺) . In this case, the 휖-means 
correspond to the set of topologically left invariant means on 
퐿 (퐺). Suppose that 퐺 is amenable, second countable and 
noncompact. Since then 퐿 (퐺) is separable, it follows from 
Theorem (2.2.1) that 퐿  admits precisely 2  topologically 
left invariant means, a fact which is known. 

(ii) Let 퐺 be a locally compact group and 퐴(퐺) its Fourier 
algebra. Then 퐴(퐺)∗ = 푉푁(퐺), the von Neumann algebra 
generated by left translation operators on 퐿 (퐺). The identity 
operator 1 on 퐿 (퐺) defines an element 휖 of ∆ 퐴(퐺)  by 
휖(푢) = 〈퐼, 푢〉 = 푢(푒), 푢 ∈ 퐴(퐺). Then the set of 휖-mean 
coincides with the set of topologically invariant means that 
studied, if 퐺 is second countable, then 퐿 (퐺) is separable 
and hence 퐴(퐺) is separable and weakly sequentially 
complete. If, in addition, 퐺, is not discrete, then no 휖-mean 
can belong to 퐴(퐺). Thus the cardinality of the set of 
topologically invariant means on 푉푁(퐺) is exactly 2 . 

(iii) Consider the convolution algebra 퐴 = 푙 (ℤ ). For 푧 ∈ 픻, 
the closed unit disc, define 휑 : 퐴 → ℂ by 휑 (푎) =
∑ 푎 푧 , 푎 = (푎 ) ∈ 퐴. Then the map 푧 → 휑  is a 
homeomorphism between 픻 and ∆(퐴). We already know 
that 퐴 is 휑 -amenable if and only if |푧| = 1. Let 푧 ∈ 픻 with 
|푧| = 1. Since 퐴 is weakly sequentially complete and 
separable, by Theorem (2.2.1) there either exists a 휑 -mean 
in 퐴 itself or there are precisely 2  휑 -means. Now, suppose 
that 푢 = (푢 ) ∈ 퐴 is a 휑 -mean. Then for all 푎 ∈ 퐴 and 
푓 = (푓 ) ∈ 푙 (ℤ ) = 퐴∗. 



62 
 

푓 (푎 푢 ) = 〈푓, 푎 ∗ 푢〉 = 〈푓 ⋅ 푎, 푢〉 = 휑 (푎)〈푓, 푢〉

= 푎 푧 ⋅ 푓 푢 . 

Taking 푓 = 훿  and 푎 = 훿 , 푙 > 푘, we obtain 푧 푢 = 0. Thus 푢 = 0 and 
hence there are exactly 2 	휑 -means. 

If 푚  and 푚  are two 휑-means on 퐴, then 푚 푚 = 휑(푚 )푚 = 푚 . 
One of the immediate consequences of Theorem (2.2.1) is therefore that 
if 퐴 satisfies its hypotheses, 퐴∗∗ is not commutative, even if 퐴 is. There is 
a formulation of this which makes sense for non-commutative algebras. 
Define a second multiplication on 퐴∗∗ by 

푚 ⋄ 푛 = 푤∗ − lim
→

푤∗ − lim
→

푎푏  

 (a similar formula to that which determines the multiplication in 퐴∗∗, but 
with the limits taken in the other order). The product 푚 ⋄ 푛 is 푤∗-
continuous in 푛 for fixed 푚.퐴 is called Arens regular if 푚 ⋄ 푛 = 푚푛 for 
all 푚,푛 ∈ 퐴∗∗. A condition equivalent to Arens regularity is that 푚푛 
should be 푤∗-continuous in 푛 for fixed 푚. When 퐴 is commutative, so 
that 푏푎 = 푎푏, we find that in 퐴∗∗ we have 푚 ⋄ 푛 = 푛푚. Thus we have 
shown that, under the hypotheses of Theorem (2.2.1), a commutative 퐴 is 
not Arens regular. We shall obtain a non-commutative result generalizing 
this. 

We must introduce some additional concepts. We call 푚 ∈ 퐴∗∗ a 2-
sided 휑-mean if 〈푚, 휑〉 = 1 and for each 푓 ∈ 퐴∗ and 푎 ∈ 퐴 we have not 
only 〈푚, 푓 ⋅ 푎〉 = 휑(푎)〈푚, 푓〉, but also 〈푚, 푓 ⋅ 푎〉 = 휑(푎)〈푚, 푓〉. Of 
course, the latter two conditions are equivalent to 푎푚 = 휑(푎)푚 and 
푚푎 = 휑(푎)푚 for all 푎 ∈ 퐴, respectively. 푊∗-continuity then gives 
푛푚 = 〈푛,휑〉푚 for all 푛 ∈ 퐴∗∗. However, we cannot conclude that 
푚푛 = 〈푛,휑〉푚 unless 퐴 is Arens regular. Notice that if 퐴 is commutative, 
every 휑-mean is automatically a 2-sided 휑-mean. 

A bounded net 푢  in 퐴 is called a bounded approximate 2-sided 휑-

mean if 휑 푢 = 1 for all 훾 and for each 푎 ∈ 퐴, 
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푎푢 − 휑(푎)푢 → 0			and			 푢 푎 − 휑(푎)푢 → 0. 

Proposition (2.2.3) [2]: 

An element 푚 of 퐴∗∗ is a 2-sided 휑-mean for 퐴 if and only if 푚 is a 
푤∗-cluster point of a bounded approximate 2-sided 휑-mean. 

Proof: 

If 푚 is a 푤∗-cluster point of a bounded approximate 2-sided 휑-mean 
푢 , then for each 푎 ∈ 퐴, 푎푚 is a 푤∗-cluster point of 푢  and this 

implies that 푎푚 = 휑(푎)푚. Similarly, 푚푎 = 휑(푎)푚. Since also 〈푚, 휑〉 =
lim 휑 푢 = 1, we get that 푚 is a 2-sided 휑-mean. 

Conversely, let 푚 be a 2-sided 휑-mean. Then 푚 is the 푤∗-limit of 
some net 푢  in 퐴 with 휈 → ‖푚‖. Then 휑 휈 − 1 =

〈휈 − 푚, 휑〉 → 0, and 푤∗-continuity gives 

푎휈 − 휑(푎)휈 → 푎푚 − 휑(푎)푚 = 0	and	휈 푎 − 휑(푎)휈 → 푚푎 − 휑(푎)푚 = 0 

in the 푤∗-topology for each 푎 ∈ 퐴. So the nets 

푎휈 − 휑(푎)휈 			푎푛푑			 휈 푎 − 휑(푎)휈  

in 퐴 both converge to 0 weakly for all 푎 ∈ 퐴. 

Now take any finite subset 퐹 = {푎 , … , 푎 } for 퐴 and let  

∁= 푎 휈 − 휑 푎 휈 , 휈푎 − 휑 푎 휈 ,휑(휈) − 1 : 휈 ∈ 퐴 . 

Then in the Banach space 퐴 × ℂ, 0 is in the weak closure of ∁ and 
hence in the norm closure since ∁ is convex. Thus, given 휖 > 0, we can 
find 푉 , ∈ 퐴 such that 푉 , ≤ 2‖푚‖, say, 휑 푉 , − 1 < 휖 and for 
all 푎 ∈ 퐹, 

푎휈 , − 휑(푎)휈 , < 휖			and			 휈 , 푎 − 휑(푎)휈 , < 휖. 

Finally replace 휈 ,  by a scalar multiple 푢 , = 휆 , 휈 ,  for which 

휑 푢 , = 1. Then 휆 , <  and 
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푎푢 , − 휑(푎)푢 , <
휖

1 − 휖
			and			 푢 , 푎 − 휑(푎)푢 , <

휖
1 − 휖

 

So the net 푢 , ,  is a bounded approximate 2-sided 휑-mean and 푚 is 

the 푤∗-limit of 푢 , , . 

We shall show 

Theorem (2.2.4) [2]: 

Let 퐴 be weakly sequentially complete. Suppose that 퐴 has a bounded 
approximate 2-sided 휑-mean, but that there is no 2-sided 휑-mean in 퐴 
itself. Then 퐴 is not Arens regular. 

In proving Theorem (2.2.4) we will partly follow an idea of Ulger, 
where he established a parallel result for bounded approximate identities. 

Let 퐼 be a commutative idempotent semigroup, that is, 푖 = 푖 for all 
푖 ∈ 퐼. Define an order on 퐼 by 푖 ≤ 푗 if 푖푗 = 푗. Then 퐼 is a directed set with 
max{푖, 푗} = 푖푗. 

Proposition (2.2.5) [2]: 

Let 퐴 be a Banach algebra. Let 퐼 be as above and let ℎ: 퐼 → 퐴 be a 
homomorphism into the multiplicative semigroup of 퐴 such that ℎ(퐼) is 
bounded and 0 ∉ ℎ(퐼). If the net ℎ(푖)  has a weak cluster point in 퐴, 
then ℎ(퐼) has a maximal element. 

Proof: 

Let 푒 be a weak cluster point of ℎ(푖) . Take 퐽 to be a cofinal subset 
of 퐼 with 푤 − lim ∈ ℎ(푖) = 푒. For 푖 ≤ 푗 in 퐽 we have ℎ(푖)ℎ(푗) = ℎ(푗). 
Taking the 푗-limit gives ℎ(푖)푒 = 푒 and then taking the 푖-limit gives 
푒 = 푒. Since weak and norm closures of convex sets coincide, 푒 is in the 
norm closure of the convex hull of {ℎ(푖): 푖 ∈ 퐽}. Thus given 휖 > 0, we 
can find 푗 , … , 푗 ∈ 퐽 and scalar 휆 , … , 휆 ≥ 0 with ∑ 휆 = 1 such that 

휆 ℎ(푗 ) − 푒 ≤ 휖. 

For 푗 ∈ 퐽 with 푗 ≥ max{푗 ,… , 푗 } we have 
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휆 ℎ(푗푘) ℎ(푗) = 휆 ℎ(푗 푗) = ℎ(푗). 

Because ℎ(퐼) is commutative, we see that 푒ℎ(	푗) 	= 	푒 for all 푗 and 
therefore 

‖ℎ(푗) − 푒‖ = 휆 ℎ(푗 )ℎ(푗) − 푒ℎ(푗) ≤ 휆 ℎ(푗 ) − 푒 ⋅ ‖ℎ(푗)‖

≤ 휖 sup
∈
‖ℎ(푗)‖. 

But	ℎ(	푗) 	− 	푒 is an idempotent, so either is zero or satisfies ‖ℎ(푗) −
푒‖ ≥ 1. Since 휖 > 0 is arbitrary, it follows that ℎ(	푗) 	= 	푒. This holds for 
a cofinal set of 푗’s and consequently e is a maximal element in ℎ(퐼).  

Next we present a general construction which produces subalgebras 
which have sequential bounded approximate φ-means. 

Proposition (2.2.6) [2]: 

Let A be a Banach algebra with a bounded approximate 2-sided φ-
mean (respectively, a bounded approximateφ-mean) u . Let X =

{x , x ,… } be any countable subset of A. Then there is a closed separable 
subalgebra A(X) of A which contains X and has a sequential bounded 
approximate 2-sided φ-mean (respectively, a sequential bounded 
approximate φ-mean) u chosen from u . 

Proof: 

We shall only prove the 2-sided 휑-mean case (the other one being 
easier). If we replace each element of 푋 by any non-zero scalar multiple 
of itself we do not change 퐴(푋), and we may therefore arrange for 푋 to 
be bounded. Thus let 퐶	 > 	0 be such that ‖푥 ‖, 푢 ≤ ∁ for all 푛, 훾 . 
We choose 푢 , 푛 ∈ 푁, inductively to satisfy 

푥 푢 − 휑(푥 )푢 ≤
1
푛
			and			 푢 푥 − 휑(푥 )푢 ≤

1
푛

 

for 1 ≤ 푖 ≤ 푛, and 

푢 푢 − 푢 ≤
1
푛
			and			 푢 푢 − 푢 ≤

1
푛
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for 1	 ≤ 	푖	 < 푛. We take 퐴(푋) to be the closed linear span of 푋 ∪
{푢 , 푢 ,… }. 

Now 푢  is a bounded approximate 2-sided 휑-mean for 퐴(푋). 

This requires a little argument, whereas the corresponding conclusion 
when dealing with bounded approximate identities is just a simple 
observation. Take any 푘 elements 푎 , … , 푎  from 푋 ∪ 푢 , 푢 ,…  and 
let 휖 > 0. Choose 푁 so large that 푘∁ /푁 < 휖 and that if 푛 > 푁, then 
푥  and 푢  do not belong to {푎 ,… , 푎 }. Then, for 푛 > 푁, we can 
estimate the norm 

∁ ≔ 	 푎 …푎 푢 − 휑(푎 …푎 )푢  
as follows: 

푐 ≤ 푎 …푎 휑 푎 + 1 …휑(푎 )푢 − 푎 …푎 휑 푎 …휑(푎 )푢  

≤ ‖푎 ‖… 푎 ⋅ 휑 푎 … |휑(푎 )| ⋅ 푎 푢 − 휑 푎 푢 											 

≤ ∁ ∁
1
푛
= 푘∁

1
푛
																																		 

< 휖.																																																									 
A parallel calculation deals with 푢 푎 …푎 . Similar methods will allow 
us to treat finite linear combinations of products 푎 …푎 . We then have a 
bounded approximate 2-sided 휑-mean for the algebra generated 
algebraically by 푋 ∪ 푢 : 푛 ∈ ℕ . Standard arguments extend this to the 
norm closure, that is, A(X). 

Corollary (2.2.7) [2]: 

Let 퐴 be a separable Banach algebra and φ ∈ ∆(A). If A is φ-
amenable, then there exists a sequential bounded approximate φ-mean. 

The algebra A(X) constructed in the proof of Proposition (2.2.6) is of 
course not unique, as it depends on the choice of u . We now prove 
Theorem (2.2.4) in the following form. 
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Theorem (2.2.8) [2]: 

Let A be weakly sequentially complete and Arens regular, and suppose 
that A has a 2-sided 휑-mean 푚. Then m is unique and contained in A. 

Proof: 

We first consider the case in which the bounded approximate 2-sided 
휙-mean is sequential, say (푢 ) . If 푚  and 푚  are both 2-sided 휑-means, 
we have 푎 ⋅ 푚 = 휑(푎)푚  for all 푎 ∈ 퐴, and choosing a net in 퐴 
converging 푤∗ to 푚 , we get 푚 푚 = 〈푚 , 휑〉푚 = 푚 . In the same 
way, from 푚 ⋅ 푎 = 휑(푎)푚 , because 퐴 is Arens regular, we get that 
푚 푚 = 푚 . Thus 푚 = 푚 , and in particular any two 푤∗-cluster points 
of (푢 )  are equal. Since 퐴 is weakly sequentially complete, there exists 
a cluster point in 퐴 itself, which then is the unique 2-sided 휑-mean. 

Now let 퐴 be arbitrary. Take any countable subset 푋  of 퐴 and form 
퐴(푋 ) as in Proposition (2.2.6). Then 퐴(푋 ) is weakly sequentially 
complete and Arens regular and has a sequential bounded approximate 2-
sided 휑-mean. By the first part of the proof, 퐴(푋 ) has a unique 2-sided 
휑-mean, 푚 . If 푚  is a 2-sided 휑 mean for 퐴, we are finished. Otherwise 
we can find a countable subset 푋  of 퐴 with 푚 ∈ 푋  for which 푚  is not 
a 2-sided 휑-mean. Then 퐴(푋 ) contains a 2 sided 휑-mean, 푚  say. In 
particular, 푚 푚 = 〈푚 , 휑〉푚 = 푚  and similarly 푚 푚 = 푚 . Again, 
if 푚  is a 2-sided 휑-mean for 퐴, we are finished. Otherwise, take 푋  with 
푚 ,푚 ∈ 푋  in order to find 푚 , and so on. If this process stops we have 
found a 2-sided 휑-mean in 퐴. If it does not stop, we find a bounded 
infinite sequence (푚 )푛 in 퐴 with the product 푚 푚 = 푚 { , }. This is 
impossible by Proposition (2.2.5).  

Let 퐴 be an F-algebra. We now use the term topologically left 
invariant mean (TLIM) rather than 휖-mean of norm 1. The purpose is to 
prove the following theorem which was proved for the Fourier algebra of 
a locally compact group. 

Theorem (2.2.9) [2]:  

Let A be a separable F-algebra which is ϵ-amenable. Suppose that A∗ 
contains a ∁∗-subalgebra 퐵 such that 퐵 is 푤∗-dense in 퐴∗ and 푚(퐵) =
{0} for every 휖-mean 푚. Then there is a linear isometry Θ from 푙 (ℕ) 
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into 퐴 with the property that each 푚 ∈ Θ∗∗(훽ℕ\ℕ) is an 휖-mean. In 
particular, if 푚 ,푚 ∈ Θ∗∗(훽ℕ\ℕ) are distinct, then‖푚 −푚 ‖ = 2. 

The proof of Theorem (2.2.9) will make substantial use of the 
following lemma. 

Lemma (2.2.10) [2]:  

Let 퐴 and 퐵 be as in Theorem (2.2.9). 

(i) If 푚 is a TLIM on 퐴∗, then ‖푚 − 푎‖ = 2 for every 푎 ∈
푃 (퐴, 휖). 

(ii) If a net 푢  is an approximate 휖-mean with 푢 = 1 for all 

푦, then lim 푢 − 푎 = 2 for each 푎 ∈ 푃 (퐴, 휖). 
Proof: 

(i) Since 퐵 is 푤∗-dense in 퐴∗, by the Kaplansky density the unit 
ball of 퐵 is 푤∗-dense in the unit ball of 퐴∗. Consequently, the 
map 푟: 퐴∗∗ → 퐵∗, 푚 → 푚|  is a linear isometry of 퐴∗∗ into 퐵∗. 
Choose a bounded approximate identity 푒  in 퐵 such that 

푒 ≥ 0, 푒 ≤ 1 and 푒 ≤ 푒 if 훽 ≤ 훽′ (such a bounded 
approximate identity exists in every ∁∗ -algebra). Let 푎 ∈
푃 (퐴, 휖). Then ‖푎‖ = lim 〈푒 , 푎〉 and hence, given any 훿 > 0, 
there exists 훽 such that 〈푒 , 푎〉 ≥ ‖푎‖ − 훿 = 1 − 훿. Let 
g = 2푒 − 휖 ∈ 퐴∗. Now, if 푚 is any 휖-mean, then 

 
〈푎 − 푚, g〉 = 〈푎 − 푚, 2푒 − 휖〉 = 2〈푎 −푚, 푒 〉 ≥ 2(1 − 훿) − 2〈푚, 푒 〉

= 2 − 2훿 
 
as 〈푚, 푒 〉 = 0. So ‖푎 −푚‖ ≥ 2 − 2훿, and since 훿	 > 0 was arbitrary, 
‖푎 −푚‖ = 2. 

(ii) If 푢 − 푎  does not converge to 2, then by taking a subnet, we 
may assume that 푢 − 푎 ≤ 2 − 훿 for all 훾 and some 훿	 > 0. 
Then ‖푚 − 푎‖ ≤ 2 − 훿 for every 푤∗-cluster point of 푢 . 

This contradicts (i) since any such 푚 is an ϵ mean. 
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We now turn to the proof of Theorem (2.2.9). For 푎 ∈ 퐴, let 푠(푎) 
denote the support of a in 퐴∗, that is, the smallest projection 푝 such that 
〈푝, 푎〉 = 휖(푎) = ‖푎‖. 

If 푚 is a positive linear functional of norm 1 on 퐴∗, then there exists a 
net 푢  in 퐴 such that 푢 ≥ 0, 푢 = 1 (equivalently, 푢 ∈ 푃 (퐴, 휖)) 

and 푢 → 푚 in the 푤∗-topology. Thus 푤∗-lim 푎푢 − 휖(푎)푢 = 0 for 
every 푎 ∈ 퐴. 

By an argument similar to the one in the proof of Proposition (2.2.6), 
we can find a sequence 푢  such that 푎푢 − 휖(푎)푢 → 0 for all 

푎 ∈ 퐴. By Lemma (2.2.10), lim 푢 − 푎 = 2 for all 푎 ∈ 푃 (퐴, 휖). 
Using Theorem (2.1.8)(iii). We can find a subsequence 푢  of 푢  

and sequence 푣  in 푃 (퐴, 휖) such that 

푢 − v <
1

2
 

for all 푗 and 푠 푣 푠(푣 ) = 0 if 푗 ≠ 푘. Clearly, 푣  is an approximate 휖-

mean. 

Let 푉 = {푣 , 푣 , … }. Since 푉 is orthogonal, 푉 is a linearly independent 
subset of 퐴. Let 

Θ: span	{훿 : 푣 ∈ 푉} → span	푉 

be defined by 

Θ 휆 훿 = 휆 푣 . 

Clearly, Θ ∑ 휆 푣 ≤ ∑ 휆 . On the other hand, if 푃 = 푠 푣 , 
then 푃  is a sequence of pariwise orthogonal projections in 퐴∗. Let 푀 

be the 푤∗-closure of the span of the 푃 , 푗 ∈ ℕ. Then 푀 is a commutative 
푤∗-subalgebra of 퐴∗. For each 푗, let 휇 ∈ ℂ such that 휇 휆 = 휆 , and let 
푞 = ∑ 휇 푃 ∈ 퐴∗. Then ‖푞‖ = 1, and 
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〈Θ 휆 훿 , 푞〉 = 휆 , 

and therefore 

Θ 휆 훿 = 휆 훿 . 

Consequently, Θ extends to a linear isometry, also denoted Θ, from 푙 (푉) 
into 퐴. 

Finally, since each 휂 ∈ 훽ℕ\ℕ is a 푤∗-cluster point of 훿 , and Θ∗∗ 

is 푤∗-continuous, it follows that 푚 = Θ∗∗(휂) is a 푤∗-cluster point of the 
sequence v . So for each 푤∗-neighbourhood 푈 of 푚, there exists 

푛 ∈ ℕ such that 푣 ∈ 푈. Let 풰 denote the set of all 푤∗-neighbourhood 
of 푚. Then 푣  is a subset of the sequence 푣  and 푣 → 푚 in the 

푤∗-topology. Indeed, otherwise there exists 푁 ∈ ℕ such that 푛 ≤ 푁 for 
all 푈, which implies that 푚 is an 휖-mean in 퐴. However, since 푚| = 0, 
this is impossible. Clearly, 푚 is 휖-mean. 

Examples (2.2.11) [2]: 

We present two illustrative examples: algebras of Lipschitz functions 
on compact metric spaces and convolution algebras 퐿 (퐺) on a compact 
group 퐺. In both case, the relevant singletons in ⊿(퐴) are open. We 
therefore start by looking at how openness of {휑} and 휑-amenability are 
related. 

Remark (2.2.12) [2]: 

Let 퐴 be a Banach algebra and 휑 ∈ ⊿(퐴) and suppose that 퐴 is 휑-
amenable. For every 휓 ∈ ⊿(퐴) such that 휓 = 휑, there exists 푎 ∈ ker 휓 
with 휑 푎 = 1. So, if 푚 is a 휑-mean, then (푚,휑) = 1, whereas 

(푚, 휓) = 푚,휓 ∙ 푎 = 〈푚, 휓 푎 휓〉 = 0 

for all 휓 ≠ 휑. Hence {휑} is open in (⊿(퐴), weak). 



71 
 

We can define a Shilov’s idempotent [8]: Let 퐴 be a commutative Banach 
algebra and let 푐 be a compact open subset of ∆(퐴). Then there exists an 
idempotent 푎 in 퐴 such that 푎 equals the characteristic function of 퐶.  

Lemma (2.2.13) [2]: 

Let 퐴 be a semisimple commutative Banach algebra. Let 휑 ∈ ⊿(퐴) 
and suppose that {휑} is open in ⊿(퐴). Let 푎 be the unique element of 퐴 
with 휑(푎) = 1 and 휓(푎) = 0 for all 휓 ∈ ⊿(퐴)\{휑}	. 

(i) Then 푎 is a 휑-mean for 퐴 and it is only one in 퐴∗∗. 
(ii) If ‖푎‖ = 1, then 푁(퐴, 휑) = {푓 ∈ 퐴∗:	〈푓, 푎〉 = 0}. 

Proof: 

The existence of 푎 follows from Shilov’s idempotent. However, in the 
present special situation it is easy to avoid such heavy machinery. To see 
this, let 퐽 be the closed ideal of 퐴 defined by 

퐽 = 푎 ∈ 퐴:	휓(푎) = 0	푓표푟	푎푙푙	휓 ∈ ⊿(퐴)\{휑} . 

Since {휑} is open in (⊿(퐴), 푤∗), ⊿(퐽) = 휑|  and hence 퐽 is 1-
dimensiomal as 퐴 is semisimple. Of course, ker 휑 + 퐽 = 퐴 and ker 휑 ∩
퐽 = {0} since 퐴 is semisimple and 휓(ker 휑 ∩ 퐽) = {0} for all 휓 ∈ ⊿(퐴). 
Thus 퐴 = ker 휑	⨁	퐽 and 퐴∗ = (ker 휑)∗	⨁	ℂ . 

Let 푎 ∈ 퐽 such that 휑(푎) = 1. Then 휓(푎) = 0 for all 휓 ∈ ⊿(퐴)\{휑}, 
and 푎 is the only element of 퐴 with these properties since 퐴 is 
semisimple. 

(i) For each 푥 ∈ 퐴, 휑(푥푎) = 휑(휑(푥)푎) and, for 휓 ∈ ⊿(퐴)\
{휑}, 휓(푥푎) = 0 = 휓(휑(푥)푎). So 푥푎 = 휑(푥)푎 by 
semisimplicity and hence 푎 is a 휑-mean. Now let 푚 ∈ 퐴∗∗ be 
any 휑-mean for 퐴. Since 퐴 commutative, every element of 퐴 
commutes with every element of 퐴∗∗. Thus 

푚 = 휑(푎)푚 = 푎푚 = 푚푎 = 휑∗∗(푚)푎 = 〈푚,휑〉푎 = 푎. 

So 푎 is the only 휑-mean for 퐴 in 퐴∗∗. 

(ii) Let ‖푎‖ = 1. Since 푁(퐴, 휑) is a proper linear subspace of 퐴∗, 
by definition of 푁(퐴, 휑) it suffices to show that for any 
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푓 ∈ 퐴∗, 〈푓, 푎〉 = 0 implies 푓 ∙ 푎 = 0. Now, every 푥 ∈ 퐴 has a 
decomposition 푥 = 푦 + 휆푎 with 푦 ∈ ker 휑 and 휆 ∈ ℂ. Since 
푎푦 ∈ ker 휑 ∩ 퐽 = {0}, for 푓 ∈ 퐴∗, 

〈푓 ∙ 푎, 푥〉 = 〈푓, 푎푦〉 + 휆〈푓, 푎〉 = 휆〈푓, 푎〉. 

So 푓 ∙ 푎 = 0 whenever 〈푓, 푎〉 = 0. 

Since an amenable Banach algebra is 휑-amenable for each 휑 ∈ ⊿(퐴). 
If 퐴 is commutative and semisimple and the weak and weak* topologies 
coincide on ⊿(퐴), then by Lemma (2.2.13), 퐴 is 휑-amenable if and only 
if {휑} is open in ⊿(퐴). Then condition that the two topologies coincide, 
however, is quite restrictive. It is for instance satisfied if 퐴 is an ideal in 
퐴∗∗. 

Example (2.2.14) [2]: 

Let 푋 be a compact metric space with metric 푑 and let 0 < 훼 ≤ 1. 
Then lip 푋 is the space of al complex-valued functions 푢 and 푋 such that 

푃 (푢) = sup
|푢(푥) − 푢(푦)|
푑(푥, 푦)

: 푥, 푦 ∈ 푋, 푥 ≠ 푦  

is finite, and lip 푋 is the subspace of functions satisfying 

|푢(푥) − 푢(푦)|
푑(푥, 푦)

→ 0		as	푑(푥, 푦) → 0. 

with pointwise multiplication and the norm ‖푢‖ = ‖푢‖ + 푃 (푢), liP 푋 
is a unital commutative Banach algebra and lip 푋 is a closed subalgebra. 
These algebras were first studied by Sherbert and later by Bade, Curtis 
and Dales.  

We first treat lip 푋. The map 푥 → 휑 , where 휑 (푢) = 푢(푥) for 
푢 ∈ liP 푋, is a homeomorphism from 푋 onto ⊿(liP 푋). If 푥 is a non-
isolated point of 푋, then there exist non-zero continuous point derivations 
at 휑  and hence liP 푋 is not 휑 -amenable. Now, let 푥 be an isolated 
point of 푋. Then, by Lemma (2.2.15) (i), there exists a unique 휑 -mean, 
namely the Dirac function 훿 ∈ liP 푋. In view of Section (2.1) where the 
means are supposed to have norm 1, we point out that 
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‖훿 ‖ = 1 + 푃 (훿 ) = 1 + sup
1

푑(푥, 푦)
: 푦 ≠ 푥 ,	

which, depending on 푑, can be arbitrarily large. 

In light of Lemma (2.2.13) (ii) which shows that 푁(퐴, 휑) is a linear 
subspace of codimension 1 if there exists a 휑-mean of norm 1, it is 
interesting to note that 푁(liP 푋 , 휑 ) = {0} for any isolated point 푥 of 푋. 
To see this, let 푓 ∈ 푁(liP 푋 , 휑 ). There exists a sequence (푢 )  in 
lip 푋 with 푢 (푥) = 1 for all 푛, ‖푢 ‖ → 1 and 푓 ∙ 푢 → 0 in norm. it 
suffices to show that 푢 → 1 in lip 푋 because then 푓 = 푓 ∙ 1 =
lim → 푓 ∙ 푢 = 0. Since 

1 + 푃 (푢 ) = |푢 (푥)| + 푃 (푢 ) ≤ ‖푢 ‖ → 1, 

it follows that 푃 (푢 − 1) = 푃 (푢 ) → 0. Therefore it remains to verify 
that 푢 → 1 uniformly on 푋. Since 푋 is compact, there exists 퐶 > 0 such 
that 푑(푦, 푥) ≤ 퐶 for all 푦 ∈ 푋. For 푦 ≠ 푥 it follows that 

|푢 (푦) − 1| = |푢 (푦) − 푢 (푥)| ≤ 퐶 ∙
|푢 (푦) − 푢 (푥)|

푑(푦, 푥)
≤ 퐶 (푢 ),	

which tends to zero. So 푢 → 1 uniformly on 푋\{푥} and hence on all of 
푋. 

We now turn to lip 푋. Note that lip 푋 can be very small since for 푋 a 
compact interval it consists only of the constant functions. In fact, if 
푑(푥, 푦) = |푥 − 푦|, then each 푢 ∈ lip 푋 is differentiable with 푢 = 0 on 
푋. Thus, let 0 < 훼 < 1. Then lip 푋 is dense in lip 푋 and ⊿(lip 푋) can 
be identified with 푋 in the same manner as above. However, in contrast to 
lip 푋, all continuous point derivations on lip 푋 are zero. Nevertheless, 
for 푥 ∈ 푋, lip 푋 is also 휑 -amenable if and only if 푥 is an isolated point 
of 푋. This follows from Theorem (2.2.4) and the remarkable result that 
(lip 푋)∗∗ is isometrically isomorphic to lip 푋. Indeed, this latter fact 
implies that the weak* and the weak topologies coincide on ⊿(lip 푋) 
since 푋 is homeomorphic to both ⊿(lip 푋) and ⊿(lip 푋). 
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Example (2.2.15) [2]: 

Let 퐺 be a compact group with normalized Haar measure and consider 
the convolution algebra 퐿 (퐺), 1 ≤ 푃 < ∞. Let 퐺 denote the set of all 
continuous homomorphisms from 퐺 into the circle group 핋, equipped 
with the topology of uniform convergence. For 휒 ∈ 퐺, define 휑 ∶
퐿 (퐺) → ℂ by 휑 (푓) = ∫ 푓(푥)휒(푥)	 푑푥. It is routine to show that map 
휒 → 휑  is a homomorphism from 퐺 onto ⊿ 퐿 (퐺) . 

Let q = . Fix 휒 ∈ 퐺 and define 푚  on 퐿 (퐺) = 퐿 (퐺)∗ by 

〈푚 , g〉 = g(푥)휒(푥)
	

푑푥, g ∈ 퐿 (퐺) 

Then 〈푚 , 휑 〉 = ∫ |휒(푥)|	 푑푥 = 1 and 

〈푚 , g ∙ 푓〉 = 〈푚 , g ∗ 푓〉 = g(푥푦)푓(푦)휒(푥)
		

푑푦	푑푥

= g(푥)푓(푦)휒(푥푦 )
		

푑푥	푑푦 = 휑 (푓)〈푚 , g〉 

for all g ∈ 퐿 (퐺) and 푓 ∈ 퐿 (퐺). Thus 푚  is a 휑 -mean, and we claim 
that it is the only one. Note that 퐿 (퐺) does not have a bounded 
approximate identity and hence Lemma (2.2.13) (i) does not apply. So let 
푚 be a 휑-mean and let 

퐿 = {g − g(휒̅)휒̅ ∶ g ∈ 퐿 (퐺)}. 

Then 퐿 = ker푚  and, since g ∗ 휒̌ = g(휒̅)휒̅, we also have 

〈푚, g − g(휒̅)휒̅〉 = 〈푚, 〈푚,휑 〉g − g(휒̅)휒̅〉 = 〈푚, g ∗ 휒̌ − g(휒̅)휒̅〉 = 0 

for all g ∈ 퐿 (퐺). So 푚| = 0 and since 〈푚,휑 〉 = 〈푚 ,휑 〉, it follows 
that 푚 = 푚 . 

We now determine 푃 퐿 (퐺), 휑 . If 푃 = 1, then 

푃 퐿 (퐺), 휑 = 푓 ∈ 퐿 (퐺): 푓휒̅ ≥ 0, ‖푓휒̅‖ = 1 . 
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For every ℎ ∈ 퐿 (퐺) and 휒 ∈ 퐺, ℎ휒̅ can be written as a linear combination 
ℎ휒̅ = ∑ 푐 ℎ , where 푐 ∈ ℂ, ℎ ≥ 0, and ℎ = 1, 1 ≤ 푗 ≤ 4. Hence 
ℎ = ∑ 푐 ℎ 휒 and ℎ 휒 ∈ 푃 퐿 (퐺), 휑 . So 푃 퐿 (퐺), 휑  spans 퐿 (퐺). 
Alternatively, we could appeal to the fact that 퐿 (퐺) is an 퐹-algebra. 

We claim that 푃 퐿 (퐺), 휑 = {휒} whenever 푃 > 1, so that 
푃 퐿 (퐺), 휑  is as small as it can be in this case. 

Suppose first that 푃 ≥ 2. Then 퐿 (퐺) ⊆ 퐿 (퐺) and hence, for 
푓 ∈ 푃 퐿 (퐺), 휑 , 

1 = ‖푓‖ ≥ ‖푓‖ = 푓(휂)
	

∈

= 1 + 푓(휂)
	

. 

So 푓(휂) = 0 for 휂 ≠ 휒 and hence 푓 = ∑ 푓(휂)휂∈ = 휒 in 퐿 (퐺). 

Finally, let 1	 < 	푝	 < 	2 and 푓	 ∈ 퐿 (퐺) ⊆ 퐿 (퐺). Then, by the 
Hausdorff-Young inequality, 푓 ∈ 	 푙 (퐺) and 푓 ≤ ‖푓‖ . Thus, if 

푓 ∈ 푃 (퐿 (퐺), 휑 ), then 

1 = ‖푓‖ ≥ 푓(휂)
∈

⁄

= 1 + 푓(휂)

⁄

. 

Again, 푓(휂) = 	0 for 휂	 ≠ 	휒 and hence, since 퐿 (퐺) ⊆ 	퐿 (퐺), 푓 ∈
푘 퐺\{휒} = ℂ . Then 푓 = 휒 since 푓(휒) = 1. 

We now determine N L (G), φ . If G is abelian, it follows easily 
from Lemma (2.2.13) (ii) that 

푁 퐿 (퐺), 휑 = 푓 ∈ 퐿 (퐺):	푓(휒̅) = 0 . 
We show that the same description of 푁 퐿 (퐺), 휑  is true when 퐺 is an 
arbitrary compact group. 

Observe first that, for 푓 ∈ 	퐿 (퐺) and 휂 ∈ 퐺	, we have 

푓 ∙ 휒(휂) = 푓 ∗ 휒̅(휂) = 휂(푥)
	

푓(푥푦)휒(푦)
	

푑푦 푑푥

= 푓(푥)휂(푥)휒(푦)
		

푑푥	푑푦 = 푓(휂) 휒(푦)휂(푦)
	

푑푦. 
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The orthogonality relations now imply that 푓 · 휒 = 0 whenever 푓(휒̅) =
0. Thus 푓 · 휒 = 0, and since 휑 (휒) = 	1 and ‖휒‖ = 1, this shows that 

푓 ∈ 퐿 (퐺):	푓(휒̅) = 0 ⊆ 푁 퐿 (퐺), 휑 . 
Conversely, let 푓 ∈ 푁(퐿 (퐺), 휑 ) and let (g )  be a sequence in 퐿 (퐺) 
with ‖푓 ∙ g ‖ → 0 and 휑 (g ) = 1 for all 푛. Since 

푓(휒̅) = 푓(푥)휒(푥)
	

푑푥 ∙ g (푦)휒(푦)푑푦
	

= 푓(푥푦)푔 (푦 )휒(푥)
	

푑푦푑푥
	

≤ 푓(푥푦)푔 (푦 )
	

푑푦 푑푥
	 ⁄

= ‖푓 ∙ g ‖ , 

which tends to 0. It follows that 푓(휒̅) = 0 and hence 

푁(퐿 (퐺), 휑 ) ⊂ 푓 ∈ 퐿 (퐺):	푓(휒̅) = 0 , 

as required. 
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Chapter 3 

Approximate and Non Approximate amenability 
 

We give nice condition for 푐  direct-sum of amenable Banach algebras 
to be approximately amenable, which gives us a reasonably large and 
varied class.  then we examine examples in some details.we show 
that the two notions of bounded approximate amenability and bounded 
approximate contractibility are not the same; the direct-sum of two 
approximately amenable Banach algebras does not have to be 
approximately amenable; and a 1-condimensional closed ideal in a 
boundedly approximately amenable Banach algebra need be 
approximately amenable.  

Section (3.1): Approximate Identities 

Approximately inner and non-inner derivations arise naturally in the 
theory of operator algebras in abstract harmonic analysis. The notion of 
approximate amenability for Banach algebras founded by F. Ghahramani 
and R.J. Loy in the year 2000 to study the Banach algebras having the 
property that every continuous derivations from them into a related dual 
Banach bimodule is approximately inner. Since then various classes of 
naturally arising approximately amenable and non-amenable Banach 
algebras have emerged. Such are examples of certain sequence algebras, 
studied, certain semigroup algebras one studied and certain Fourier 
algebras studied. So far all of these examples of approximately amenable 
Banach algebras as well as the synthetic ones (constructed by 퐶 -direct-
sums or projective tensor products) have bounded approximate identities. 
It is a well-known and significant feature of amenable Banach algebras 
that they have bounded approximate identities. Several open questions in 
the theory of approximate amenability have recently been answered, by 
Choi and Ghahramani. It has been an open question whether 
approximately amenable Banach algebras must also have bounded 
approximate identities. In the positive direction, it was shown by Choi. 
Ghahramani and Zhang that if a boundedly approximately amenable 
Banach algebra has a multiplier bounded right approximate identity and a 
multiplier bounded left approximate identity, then it has a bounded 
approximate identity. In particular, every boundedly approximately 
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contractible Banach algebra has a bounded approximate identity. it is 
tempting to think that every boundedly approximately amenable Banach 
algebra must also have a bounded approximate identity. Here we give 
examples of boundedly approximately amenable Banach algebras which 
do not have bounded approximate identities.  

We will use the abbreviations a.i., l.a.i. and r.a.i. for approximate 
identity left approximate identity and right approximate identity, 
respectively. We use the abbreviations b.a., bl..a.i. and b.r.a.i. for 
bounded such approximate identities, and m.b.a.i, m.b.l.a.i, m,b,r.a.i. for 
multiplier bounded such approximate identities. All the bounded forms of 
approximate identity have their associated constants. 퐿(퐸, 퐹) denotes the 
Banach space of all continuous linear maps from the Banach space 퐸 to 
the Banach space 퐹, and 퐾(퐸, 퐹) denotes the closed subspace consisting 
of the compact operators. 퐿(퐸) 퐾(퐸)  denotes the Banach algebra 
퐿(퐸, 퐹) 퐾(퐸, 퐹) . If 풜.ℬ are Banach algebras. 풜⊗ℬ denotes their 
projective tensor product, and we use the symbol 휋:	풜⨂풜 → 풜 to 
denoted the natural product map with 휋(푎 	⨂	푎 ) = 푎 푎 . 

A Banach algebra 풜 is approximately contractible if every continuous 
derivation 푑:풜 → 퐸 from 풜 into a Banach 풜-bimodule 퐸 is 
approximately inner, that is, it is a limit, in the strong operator topology 
on 퐿(풜,퐸), of a suitable net of inner derivations 푎푑 (푥 ∈ 퐸), where 
푎푑 (푎) = 푎 ∙ 푥 − 푥 ∙ 풜 is approximately amenable every continuous 
derivation 푑:풜 → 퐸 from 풜 into 푎 and Banach 풜-binmodule 퐸 is 
approximately inner. 풜 is boundedly approximately amenable if every 
continuous derivation from 풜 into Banach 풜-bimodule 퐸 is the strong 
limit of a norm-bounded net of inner derivations 푎푑  (that is, the 
operators 푎푑  used in the net are uniformly bounded in 퐿(풜. 퐸). this 
condition is much weaker than saying that the elements 푥 involved are 
norm bounded in 퐸 –that condition is too strong, implying at once that 풜 
must be amenable). 

One can likewise define bounded approximate contractibility, but it turns 
out that a boundedly approximately contractible Banach algebra must 
have a b.a.i., so the algebras constructed in the present section do not 
have this last property. 풜⋕ denotes the unitization of a non-unital Banach 
algebra 풜: if 풜 is already unital, we define 풜⋕ = 풜. 
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A Banach algebra is approximately amenable if and only if it is 
approximately contractible. We shall see that the “bounded” version of 
this statement is not true: our main construction is of a Banach algebra 
which is boundedly approximately amenable but which, not having a 
b.a.i., is not boundedly contractible. We shall show also that the direct-
sum of boundedly approximately amenable Banach algebras is not 
necessarily approximately amenable, and a 1-codimensional closed ideal 
in a boundedly approximately amenable Banach algebra need not be 
approximately amenable. We note that in a boundedly approximately 
contractible Banach algebra a 1-condimensional closed ideal is boundedly 
approximately contractible.  

Most forms of amenability have an equivalent (and sometimes more 
useful) definition in terms of a suitable diagonal; for those we have 
defined above, they are as follows. A Banach algebra 풜 is approximately 
contractible if there is a net (푑 ) ∈  of elements in the Banach 풜 
bimodule 풜⋕	⨂	풜⋕ such that 휋(푑 ) = 1 and the operators 푎푑  tend to 
zero in the strong operator topology of 퐿 풜,풜⋕	⨂	풜⋕ . 풜 is boundedly 
approximately contractible if, in addition , the net (푑 ) can be chosen 
such that the operators 푎푑  are uniformly bounded. 풜 is approximately 
amenable if is a net (Δ ) ∈  of elements in the dual Banach 풜-bimodule 
풜⋕	⨂	풜⋕ ∗∗

 such that 휋∗∗(∆ ) = 1 and the operators 푎푑∆  tend to zero 

in the strong operator topology of 퐿 풜, 풜⋕	⨂	풜⋕ ∗∗
. 풜 is boundedly 

approximately amenable if the net (∆ ) can be chosen such that the 
operators 푎푑∆  uniformly bounded. 

Let 푙  denote the well-known space of complex sequences, and 푙  its 
dual. It is well known that the Banach algebra 퐾 푙  is amenable. In this 
section we renorm 퐾 푙  with a family of equivalent norms ‖∙‖[ ], in 
such a way that the b.l.a.i. constant (i.e. the infimum of all 푀 such that 
the algebra has a b.l.a.i. bounded by 푀) for 풜[ ] = 퐾(푙 ), ‖∙‖[ ]  is 
always 1, but the b.r.a.i. constant is precisely 퐾 + 1. So the 퐶 -direct-sum 
풜 = ⨁ 풜| | has a bounded l.a.i. but no bounded r.a.i.  

We begin by constructing a bounded right approximate identity for the 
algebra 퐾 푙 ; a simple but not quite trivial task because no sequential 
such r.a.i. exists. 
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Let ℱ denoted the collection of all partitions 훱 of ℕ into finitely many 

non-empty disjoint subset 퐹( ) . We define |훱| = 푛 and we direct 

the set ℱ by saying that 훱 > 훱  if 훱 is a refinement of 훱 , that is, 
|훱| > |훱 | and each set 퐹( ) is a union of some of the sets 퐹( ). With 
each partition 훱 ∈ ℱ with |훱| = 푛 we associate the functionals 

푓( ) ∈ 푙 , where 

																										푓( ) 푒 = 1,			푖푓	푗 ∈ 퐹( );
0,			otherwise,

� 																			(1) 

and where (푒 ) stands for the standard basis of 푙 . We write 푚( ) =

min 퐹( ) and we note that 푓( ) 푒 ( ) = 훿 , . We define the rank-one 

operators 퐹 ,
( ) by 퐹 ,

( )(푥) = 푒 ( ) ∙ 푓( )(푥), and we define the 

projection 푄( ) = ∑ 퐹 .
( ). We also define the more basic projections 

푃 = ∑ 퐸 . , where 퐸 . (푥) = 푒 ∙ 푒∗(푥). 

Lemma (3.1.1) [3]: 

The sequence (푃 )  is a bounded left approximate identity for 퐾 푙 . 

Proof: 

Let 푇 ∈ 퐾(푙 ), 휀 > 0 and 퐵 be the unit ball of 푙 . Let 푥 … 푥  be an 
휀 2⁄ -net for 푇(퐵). Because 푃 푥 → 푥 for 푥 ∈ 푙 , there is an 푁  such that 
for all 푁 > 푁 , ‖푃 푥 − 푥 ‖ < 휀 2⁄ , 푖 = 1,2,… , 푛. Then for 푦 ∈ 퐵, there 
is an 푖 such that ‖푇푦 − 푥 ‖ < ℰ 2⁄ , so 

‖(퐼 − 푃 )푇푦‖ < ‖(퐼 − 푃 )푥 ‖ + 휀 2⁄ < 휀. 

So ‖푇 − 푃 푇‖ ≤ 휀, for all 푁 ≥ 푁  and (푃 )  is a bounded left 
approximate identity. 

Lemma (3.1.2) [3]: 

For g ∈ 푙  we have 푄∗( )g → g as 훱 → ℱ. 
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Proof: 

Let 휀 > 0 and write g = g(푒 ). Suppose 훱 ∈ ℱ is sufficiently refined 
that for each 푘 = 1, … , |훱| we have 

sup g − g : 푖, 푗 ∈ 퐹( ) ≤ 휀. 

Then for 푖 ∈ 퐹( ) we have 

g(푒 ) − 푄∗( )g(푒 ) = g − g 푄( )푒 = g − g ( ) ≤ 휀. 

The sets 퐹  cover ℕ so g − 푄∗( )g ≤ 휀. 

Corollary (3.1.3) [3]: 

The net 푄( )
∈ℱ is a bounded right approximate identity for 퐾 푙 . 

Proof: 

Given 푇 ∈ 퐾 푙  and 휀 > 0, we pick 푛 sufficiently large that ‖푇 −
푃 푇‖ < 휀 3⁄ . The operator 푆 = 푃 푇 is of form 푆(푥) = ∑ 푒 ∙ 푠∗(푥), for 
some 푠∗, … , 푠∗ ∈ 푙 . From the preceding lemma we can choose 훱 ∈ ℱ 
such that for all 훱 ≥ 훱  and 푖 = 1, … , 푛, we have 

 푄∗( )푠∗ − 푠∗ < 휀 3푛⁄ . Then for any 푥 ∈ 푙 , 

푆푄( )푥 − 푆푥 = 푒 푠∗ − 푠∗푄( ) 푥 = 푠∗(푥) − 푄∗( )푠∗(푥)

≤ ‖푥‖ 휀 3⁄ . 

Therefore, 

푇푄( )푥 − 푇푥 ≤ 휀 3⁄ + 퐼 − 푄( ) ∙ ‖푆 − 푇‖ ‖푥‖
≤ (휀 3⁄ + 2휀 3⁄ )‖푥‖ = 휀‖푥‖. 

So, the net 푄( )  is a bounded right approximate identity. 

Lemma (3.1.4) [3]: 

Let 퐾 > 1. If we renorm 퐾 푙  with the equivalent norm 
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																													‖푇‖ = ‖푇‖ + 퐾 lim sup‖푇푒 ‖,														(2) 

then this is an algebra norm, and the left approximate identity 푃  has 
norm 1 in the Banach algebra 

																														풜[ ] = 퐾 푙 , ‖∙‖ ,																							(3) 

but the smallest norm of any bounded right approximate identity in 풜[ ] 
is 퐾 + 1.  

Proof: 

We have 

lim sup	‖푇푆푒 ‖ ≤ ‖푇‖ ∙ lim sup‖푆푒 ‖. 

Hence in fact ‖푇푆‖ ≤ ‖푇‖ ∙ ‖푆‖ , so we have an algebra norm. the 푃  
have norm 1 because 푃 푒  is 0 for all but finitely many 푖. But let 푇 be the 
operator such that 푇(푒 ) = 푒  for all 푖. 푇 ∈ 풜 and if 푄 is any operator 
such that ‖푇푄 − 푇‖ ≤ 휀 we must have ‖푄‖ > 1 − 휀, but also 

lim	sup‖푄푒 ‖ ≥ lim sup ‖푇푄푒 ‖ ‖푇‖⁄ > 1 − 휀. 

also because lim‖푇푒 ‖ = 1. Therefore ‖푄‖ > (1 + 퐾)(1 − 휀), and 
1 + 퐾 is the smallest possible norm for right approximate identity of 
풜[ ]. Since ‖∙‖[ ] is at most 퐾 + 1 times the usual norm on 퐾 푙 , and 
since the family 푄( )  are b.r.a.i. for 퐾 푙  of norm 1, they are b.r.a.i. 
for 풜[ ] of norm exactly 퐾 + 1, and the b.r.a.i. constant for 풜[ ] is 
퐾 + 1. 
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Section (3.2): Non Approximate Amenability 

We now give condition for a 푐 -direct-sum of amenable Banach 
algebras. If boundedly approximately amenable. 

Corollary (3.2.1) [3]: 

The algebra 풜 = 푐 −⊕ 풜[ ] defined in the previous section is 
boundedly approximately amenable, but has no b.r.a.i. 

Theorem (3.2.3) is proved using the following lemma, which look less 
general but is in fact enough to give the main result. In the proof of the 
lemma we use the following result which we think is folklore, as we 
cannot find a reference for it, so we have sketched a proof. Let 퐸 and 퐹 
be Banach spaces. Then the projective tensor product 퐸	⨂	퐹∗∗ has a 
continuous embedding in 퐸	⨂	퐹

∗∗
. To see this, first we identity the 

dual space 퐸	⨂	퐹
∗
 with ℬ(퐸, 퐹∗). Then we define Θ from 퐸	⨂	퐹∗∗ by 

using duality, as follows: 

〈Θ 푒 	⨂	푓∗∗ , 푇〉 = 〈푇(푒 ), 푓∗∗〉 			 푇 ∈ ℬ(퐸. 퐹∗) . 

To see that Θ is injective, it suffices to assume that in that in the 
equation 

Θ 푒 	⨂	푓∗∗ = 0, 

The 푒 ’s are linearly independent and use special 푇 ’s to conclude that 
푓∗∗ = 0, for all 푛. 

Lemma (3.2.2) [3]: 

Let 퐶 ≥ 1 and let ℬ[ ]  be a family of amenable Banach 
algebras. Suppose 휀 and ℱ are direct sets, and suppose, for each 퐾, the 

family 푃[ ]

∈
 is a.b.l.a.i. for ℬ[ ] of norm at most 퐶. Suppose, for 
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each 퐾, ab.r.a.i. 푄[ ]

∈ℱ
 for ℬ[ ] is also given, and there is a bounded 

net 푑 ,
[ ]

∈ , ∈ℱ
 in ℬ[ ]	⨂	ℬ[ ] such that 

																					 휋 푑 ,
[ ] − 푃[ ] + 푄[ ] − 푄[ ]푃[ ] → 0,												(4) 

as 푚 → 휀 and 푛 → ℱ (i.e. the set 휀 × ℱ is given the product order and the 
limit of the associated net to this direct set is taken); and for 푏 ∈ ℬ[ ] we 
have 푏 ∙ 푑 ,

[ ] − 푑 ,
[ ] ∙ 푏 → 0 as 푚 → ℰ and 푛 → ℱ. Then the 푐 -direct-

sum ℬ = ⨁ ℬ[ ] is boundedly approximately amenable. 

Proof of Lemma (3.2.3): 

To begin, we need an ultrafilter 풰 on ℰ × ℱ which refines the order 
filter on the Cartesian product ℰ × ℱ of our given direct sets. Let us pick 
such a 풰, but not just any 풰. Rather, let us pick an ultrafilter 풰  on ℰ 
refining the order filter on ℰ, and an ultrafilter 풰  on ℱ refining the order 
filter on ℱ. Let ℰℱ  denote the collection of all functions from ℱ to ℰ. 

For 퐴 ∈ 풰 , 퐵 ∈ 풰  and ℎ ∈ ℰℱ  we define the subset 

										푆(퐴, 퐵, ℎ)
= {(푚, 푛) ∈ ℰ × ℱ:푚 ∈ 퐴, 푛 ∈ 퐵	and	푚 ≥ ℎ(푛)}.							(5) 

These sets are not-empty because 퐵 is non-empty, and for each fixed 
푛 ∈ 퐵, the collection of 푚 ∈ ℰ such that 푚 ≥ ℎ(푛) meets 퐴 because 퐴 
belongs to the ultrafilter 풰 , which refines the order filter on ℰ. Let 풢 be 
the collection of all supersets of sets 푆(퐴, 퐵, ℎ) ⊂ ℰ × ℱ. Our collection 풢 
is closed under finite intersection and is therefore a filter on ℰ × ℱ (given 
푆 	and 푆  as in (3.2.2), if we intersection the 퐴 sets, interest the 퐵 sets, 
and take a function ℎ: ℱ → ℰ which, at each point 푛 ∈ ℱ, exceeds the two 
functions we have been given, then we have an 푆 ⊂ 푆 ∩ 푆 , so 푆 ∩ 푆  
being a superset of one of the elementary sets in (5), is in filter). We 
refine the filter 풢 to an ultrafilter 풰. Plainly as (푚, 푛) → 풰 we have 
푚 → 풰  and 푛 → 풰 . 

We define 푃[ ] = lim →풰 푃[ ] ∈ ℬ[ ]∗∗ and 푄[ ] = lim →풰 푄[ ]: 
limits being weak -* limits here and for most of this section. We note that 
for 퐴 ∈ 풰 , 퐵 ∈ 풰  and 푓 ∈ ℬ[ ]∗ 	(푗 = 1, … , 퐽). 풰 also contains the set 
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푆 퐾; 퐴, 퐵, 푓 , … , 푓 , 휂
= 	 (푚, 푛):푚 ∈ 퐴, 푛 ∈ 퐵, 〈푄[ ]푃[ ] − 푄[ ]푃[ ], 푓 〉
< 휂(푗 = 1,… , 퐽) .																																																																		(6) 

(for  푃[ ] → 푃[ ] so for each fixed 푛 ∈ ℱ there is an 푚 = ℎ(푛) ∈ ℰ such 
that whenever 푚 ≥ 푚 , Eq. (6) holds. Then, 
푆(퐴, 퐵, ℎ) ⊂ 푆 퐾; 퐴, 퐵, 푓 , … , 푓 , 휂  so the latter set in the filter 풢.) 

In view of (6), we are sure that 푄[ ]푃[ ] − 푄[ ]. 푃[ ] → 0 in the weak-
* topology as (푚, 푛) → 풰 ; since 풬[ ] → 풬[ ] we will have 푄[ ] ∙ 푃[ ] →
푄[ ]□	푃[ ] (the first Arens product); so 

																												푄[ ]푃[ ] → 푄[ ]	□	푃[ ]																																(7) 

It is also true that for the element 푅[ ] = lim( , )→풰푄
[ ]⨂푃[ ] ∈

ℬ[ ]	⨂	ℬ[ ] ∗∗
 we have 

																											휋∗∗ 푅[ ] = 푄[ ]	□	푃[ ],																							(8) 

and 

																						푏 ∙ 푅[ ] = 푏	⨂푃[ ],			푅[ ] ∙ 푏 = 푄[ ]	⨂푏													(9) 

for each 푏 ∈ ℬ[ ] (here we regard both ℬ[ ]	⨂	ℬ[ ]∗∗ and ℬ[ ]∗∗ 	⨂	ℬ[ ] 
as canonically embedded in ℬ[ ]	⨂	ℬ[ ] ∗∗

). Similarly we may define 

																								푃[ ] = lim
→풰

lim
→풰

푃[ ] 	⨂푃[ ]																				(10) 

 and we have 휋∗∗ 푃[ ] = lim lim 푃[ ] 푃[ ] = lim 푃[ ] (because 

푃[ ]  is a.l.a.i.) =푃[ ] and for 푏 ∈ ℬ[ ] we have 

																푃[ ]. 푏 = lim lim푃[ ] 	⨂	푃[ ] = 푃[ ]	⨂	푏.																	(11) 

Using the bounded approximate diagonal we have been given, we 
define △[ ]= lim( , )→풰 푑 ,

[ ] . It is clear from (4) that 

																		휋∗∗ △[ ] = 푃[ ] + 푄[ ] − 푄[ ]	□	푃[ ]; 															(12) 

and for 푏 ∈ ℬ[ ], 
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																						푏 ∙△[ ]=△[ ]	∙ 푏.																															(13) 

At this point, we have done all we could do with the individual 
algebras ℬ[ ]; we begin to make suitable definitions involving the algebra 
ℬ = 푐 − ⨁[ ] ℬ[ ] and its bidual ℬ∗∗ = 푙 −⨁[ ] ℬ[ ]∗∗. Let 
ℰ[ ]: ℬ[ ] → ℬ denote the natural embedding of ℬ[ ] as a closed ideal of 
ℬ, and let 휋[ ] ∶ ℬ[ ] → ℬ be the natural left inverse which picks out the 
퐾-th coordinate of an element of ℬ. Write 휌퐾 = ∑ ℰ[ ] 휋[ ] for the 
natural projection onto the first 퐾 coordinates of the direct-sum. Let ℰ̅[ ] 
denote the tensor product ℰ[ ]	⨂ℰ[ ]:	ℬ[ ]	⨂	ℬ[ ] → ℬ	⨂	ℬ. We define 

																								푃(퐾) = ℰ[ ]∗∗ 푃[ ] ∈ ℬ∗∗																			(14) 

and we let 푃(∞) be the weak-* limit of this sequence in the 푙 -direct-
sum ℬ∗∗ (which exists because the 푃[ ] projection are norm bounded by 퐶 
independent of 푟 and so the sum resulting from evaluating the terms of 
푃(퐾) at an element 휙 of the 푙 -direct-sum ℬ∗ is Cauchy, being bounded 
by 퐶‖휙‖). Now ℰ[ ](푎)ℰ[ ](푏) is zero unless 퐾 = 퐿, in which case it is 
ℰ[ ](푎푏); so for 푏 ∈ ℬ with 푏 = 휋[ ](푏) we have 

												푃(퐾) ∙ 푏 = ℰ[ ]∗∗ 푃[ ] ∙ 푏 = ℰ[ ] (푏 ) = 휌퐾(푏),							(15) 

 since 푃[ ] ∙ 푥 = 푥 for 푥 ∈ ℬ[ ]. Therefore 

																									푃(∞) ∙ 푏 = 푏.																																		(16) 

Likewise, we write 

																							푄(퐾) = ℰ[ ]∗∗ 풬[ ] .																										(17) 

Since 푥 ∙ 푄[ ] = 푥 for 푥 ∈ ℬ[ ] we have 

																									푏 ∙ 푄(퐾) = 휌퐾(푏)																													(18) 

for 푏 ∈ ℬ. Once again using the fact that ℬ	⨂	ℬ∗∗ is canonically 
embedded in ℬ	⨂	ℬ

∗∗
, we define 
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															푅(퐾) = lim
→풰

ℰ[ ] 푄[ ] 	⨂	푃(∞) ∈ (ℬ	⨂ℬ)∗∗,							(19) 

and since 푏 푄[ ] is norm convergent to 푏  as 푛 → 풰 , we have 

															푏 ∙ 푅(퐾) = ℰ [ ] (푏 ) 	⨂	푃(∞) = 휌퐾(푏)	⨂	푃(∞),					(20) 

and by (16), 

									푅(퐾) ∙ 푏 = lim
→풰

ℰ[ ] 푄[ ] 	⨂	푏 = 푄(퐾)	⨂	푏.													(21) 

Also 

						휋∗∗ 푃(퐾) = lim ℰ[ ]∗∗

→풰

푄[ ]푃[ ]

= ℰ[ ]∗∗ 푄[ ]	□	푃[ ] .																																																								(22) 

We define 

																					푃(퐾) = ℰ̅[ ]∗∗ 푃[ ] 																												(23) 

and 푃(∞) to be any weak-* limit point of the finite sums (such a limit 
exists because 푃[ ] ≤ 퐶  for all 퐾, and the projective tensor product 
ℬ	⨂	ℬ is the 푐 -direct-sum of its “ components’’ ℬ[ ]	⨂	ℬ[ ] hence its 
bidual is the 푙 -direct-sum of ℬ[ ]	⨂	ℬ[ ] ∗∗

, and the norm ‖푃(퐾)‖ =
max 푃[ ] : 푟 ≤ 퐾 ≤ 퐶  also). Eqs. (10) and (11) then is that 

																								푃(퐾) ∙ 푏 = ℰ̅[ ]∗∗ 푃[ ]	⨂	푏 ,																(24) 

and 



88 
 

																						휋∗∗ 푃(퐾) = ℰ[ ]∗∗ 푃[ ] = 푃(퐾).														(25) 

Then, 

																							휋∗∗ 푃(∞) = lim 푃(퐾) = 푃(∞).																		(26) 

We write 

																									∆(퐾) = ℰ̅[ ]∗∗ ∆[ ] ; 																							(27) 

using (13) we find that for each 푏 ∈ ℬ, 

																															푏 ∙ ∆(퐾) = ∆(퐾) ∙ 푏;																					(28) 

And 

		휋∗∗ ∆(퐾) = ℰ̅[ ] 휋∗∗ ∆[ ]

= ℰ̅[ ]∗∗ 푃[ ] + 푄[ ] − 푄[ ]	□	푃[ ] .																								(29) 

To prove the lemma we need a multiplier bounded approximate 
diagonal for ℬ⋕. We proceed as follows: for each 퐾 we define an element 
퐷 ∈ ℬ⋕	⨂	ℬ⋕

∗∗
 by 

		퐷 = 1⨂1 − 1⨂푃(∞) − 푄(퐾)⨂1 + 푅(퐾) + ∆(퐾) + 푃(∞) − 푃(퐾).					(30) 

We claim that the (퐷 ) from a multiplier bounded approximate 
diagonal for ℬ⋕ in ℬ⋕	⨂	ℬ⋕

∗∗
 , showing that ℬ is boundedly 

approximately amenable. For 

휋∗∗(퐷 ) = 1 − 푃(∞) − 푄(퐾) + ℰ[ ]∗∗ 푄[ ]	□푃[ ]

+ ℰ[ ]∗∗ 푃[ ] + 푄[ ] − 풬[ ]	□푃[ ] + 푃(∞) − 푃(퐾)

= 1 + ℰ[ ]∗∗ 푃[ ] + 푄[ ] − 푄(퐾) − 푃(퐾) = 1. 
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Furthermore, if 푏 ∈ ℬ then 

푏 ∙ 퐷 − 퐷 ∙ 푏
= (푏	⨂	1 − 1	⨂	푏) − (푏	⨂	푃(∞) − 1	⨂	푏)
− (휌 (푏)	⨂1 − 푄(퐾)	⨂	푏)
+ (휌 (푏)	⨂	푃(∞) − 푄(퐾)	⨂	푏)
+ 푏 ∙ 푃(∞) − 푃(퐾) ∙ 푏 , 

which is a bounded expression since the 푄(퐾) terms disappear: 

= 푏 − 휌 (푏) 	⨂	 1 − 푃(∞) + 푏 ∙ 푃(∞) − 푃(퐾) − 푃(∞) − 푃(퐾) ∙ 푏. 

All the 푃 terms have norm at most 퐶, and the 푃 terms have norm at most 
퐶 . Furthermore, the difference 푃(∞) − 푃(퐾) is a limit of sums of 
tensors in the image of ℰ̅[ ]∗∗ for 푟 = 퐾 + 1 to infinity, so 

푏 ∙ 푃(∞) − 푃(퐾) = 푏 − 휌 (푏) ∙ 푃(∞) − 푃(퐾)  

and 

푃(∞) − 푃(퐾) ∙ 푏 = 푃(∞) − 푃(퐾) ∙ 푏 − 휌 (푏) . 

For every 퐾 and every 푏 ∈ ℬ we therefore have 

‖푏 ∙ 퐷 − 퐷 ∙ 푏‖ ≤ 6퐶 ‖푏 − 휌 (푏)‖ ≤ 6퐶 ‖푏‖. 

As 퐾 → ∞, we have 푏 ⋅ 퐷 − 퐷 ⋅ 푏 → 0 because 푏 − 휌 (푏) → 0. So the 
sequence of elements 퐷  is a multiplier bounded approximate diagonal 
for ℬ⋕, which is therefore boundedly approximately amenable. 

Theorem (3.2.3) [3]: 

Let 퐶 ≥ 1, and let ℬ[ ]  be a sequence of amenable Banach 

algebras. If each ℬ[ ] has b.l.a.i. of norm at most 퐶, then the 퐶 -direct-
sum ℬ = ⨁ ℬ[ ] is boundedly approximately amenable. 

Proof of Theorem (3.2.3): 

From Lemma (3.2.2) let ℰ , ℱ  be directed sets such that for each 퐾 

we can find a b.l.a.i. 푃[ ]

∈ℰ
 and a b.r.a.i. 푄[ ]

∈ℱ
 for ℬ[ ]; with 

푃[ ] ≤ 퐶 for all 푚 and 퐾. Let 풢 be yet another directed set, such that 
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there is a bounded approximate diagonal 푑[ ]

∈풢
∈ ℬ[ ]	⨂	ℬ[ ] for 

each 퐾. So, writing 

							푢[ ] = 휋 푑[ ] 																																																								(31) 

the net 푢[ ]

∈풢
 is a bounded approximate identity for ℬ[ ], and for 

each 푥 ∈ ℬ[ ], we have 푥 ∙ 푑( ) − 푑( ) ∙ 푥 → 0 as 훾 → 풢. 

Let ℰ = ℰ × 풢; given the product ordering this is a direct set, and 

if for 퐦 = (푚, 훾) ∈ ℰ we define 푃퐦
[ ] = 푃퐦

[ ], the net 푃퐦
( )

퐦∈ℰ
 is a 

b.l.a.i. for ℬ[ ] of norm at most 퐶. 

Let ℱ = ℱ × ℕ; given the product ordering this too is a direct set, 

and if for 퐧 = (푛, 푛 ) ∈ ℱ we define 푄퐧
[ ] = 푄퐧

[ ], the net 푄퐧
( )

퐧∈ℱ
 is a 

b.r.a.i. for ℬ[ ]. 

For each 퐦 = (푚, 훾) ∈ ℰ and 퐧 = (푛, 푛 ) ∈ ℱ, let us pick a g ∈ 풢 

such that g ≥ 훾 and Max	 풬퐧
[ ]푢[ ] − 풬퐧

[ ] ∙ 푢[ ]푃퐦
[ ] − 푃퐦

[ ] ≤

1 푛⁄ . We define 

          				푑퐦,퐧
[ ] = 푄퐧

[ ] ∙ 푑[ ] + 푑[ ] ∙ 푃퐦
[ ] − 푄퐧

[ ] ∙ 푑[ ] ∙ 푃퐦
[ ].														(32) 

Then 

휋 푑퐦,퐧
[ ] = 푄퐧

[ ]푢[ ] + 푢[ ]푃퐦
[ ] − 푄퐧

[ ]푢[ ]푃퐦
[ ], 

휋 푑퐦,퐧
[ ] − 푄퐧

[ ] + 푃퐦
[ ] − 푄퐧

[ ]푃퐦
[ ] ≤

1
푛

2 + 푃퐦
[ ] ≤

2 + 퐶
푛

, 

so 

		 휋 푑퐦,퐧
[ ] − 푄퐧

[ ] + 푃퐦
[ ] − 푄퐧

[ ]푃퐦
[ ] → 0, as	퐦 → ℰ	and	퐧

→ ℱ.		(33) 

Also for 푥 ∈ ℬ[ ], we have 
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푥 ∙ 푑퐦,퐧
[ ] − 푑퐦,퐧

[ ] ∙ 푥

= 푥 ∙ 푑[ ] − 푑[ ] ∙ 	푥 + 푥 ∙ 푄퐧
[ ] − 푥 ∙	푑[ ] ∙ 1 − 푃퐦

[ ]

− 1 − 푄퐧
[ ] 	 ∙ 푑[ ] ∙ 푃퐦

[ ]푥 − 푥 .																															(34) 

As 퐦 → ℰ and 퐧 → ℱ we have g → 풢 so 푥 ∙ 푑[ ] − 푑[ ] ∙ 푥 → 0; as 

퐦 → ℰ we have 푃퐦
[ ]푥 − 푥 → 0; and as 퐧 → ℱ we have 푥푄퐧

[ ] −

푥 → 0. Therefore, 

													 푥 ∙ 푑퐦,퐧
[ ] − 푑퐦,퐧

[ ] ∙ 푥 → 0, as	퐦 → ℰ	and	퐧 → ℱ.												(35) 

By (33) and (35), the net 푑퐦,퐧
[ ]  satisfies the requirements of Lemma 

(3.2.3). Therefore, ℬ is boundedly approximately amenable. 

Corollary (3.2.4) [3]: 

Our algebra 풜 constructed in the preceding as a 푐 -direct-sum of the 
algebras 퐾 푙 , ‖. ‖  has the following properties: 

(i) It is boundedly approximately amenable; 
(ii) It has no two-side bounded approximate identity. 

Hence 풜 is not boundedly approximately contractible. 

Proof: 

It only suffices to note that every boundedly approximately 
contractible Banach algebra has a bounded approximate identity. 

It is shown that if a Banach algebra ℬ is boundedly approximately 
amenable, has a multiplier bounded right approximate identity, and a 
multiplier bounded left approximate identity, then it has a bounded 
approximate identity. The following shows that the existence of such nets 
in the second dual of the Banach algebra cannot ensure the same 
conclusion. 

Theorem (3.2.5) [3]: 

The algebra 풜 constructed in the preceding section has the following 
property: 풜∗∗ has a multiplier-bounded approximate identity for 풜 with 
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constant 1 (that is, there is a net (푇 ) ∈  in 풜∗∗ such that for all 푎 ∈
풜, 훼 ∈ 퐼 we have 

																									Max	{‖푎 ∙ 푇 ∙ 푎‖} ≤ ‖푎‖:																																				(36) 

and 푎 ∙ 푇 → 푎, 푇 ∙ 푎 → 푎 as 훼 → 퐼). The m.b.a.i. can be chosen to be 
sequential. 

Proof: 

풜 is the 푐 -direct-sum of the algebras 풜[ ], each of which has a b.a.i., 
since it has a b.a,i, and a b.r.a.i., albeit with the bad constant 푖 + 1. So 
풜[ ]∗∗ has an identity 푒[ ] for 풜[ ], an element such that 푒[ ] ∙ 푎 = 푎 for 
every 푎 ∈ 풜[ ]; the m.b.a.i. we want is the sequence 

퐸 = ℰ[ ]∗∗ 푒[ ] ∈ 풜∗∗ = 푙 −
∞
⨁

푖 = 1
풜[ ]∗∗ . 

If 푎 = (푎 ) ∈ 풜 and 푓 = (푓 ) ∈ 풜∗ (so 푓 is the 푙 -direct-sum of 
elements 푓 ∈ 풜[ ]∗) then 

〈푎 ∙ 퐸 , 푓〉 = 〈퐸 , 푓 ⋅ 푎〉 = 〈퐸 , (푓 ∙ 푎 ) 〉 = 〈푒[ ], 푓 ∙ 푎 〉

= 〈푎 , 푓 〉. 

The difference between this and 〈푎, 푓〉 is at most ‖푓‖ ∙ max{‖푎 ‖: 푖 > 푛}, 
so 푎 ∙ 퐸 → 푎 in norm as 푛 → ∞. Likewise 퐸 ∙ 푎 → 푎. 

The above is more remarkable because 풜 does not have a m.b.r.a.i. 

It was shown that if the Banach algebras 풜 and ℬ are approximately 
amenable and either one has a bounded approximate identity, then the 
direct-sum 풜	⨁	ℬ is approximately amenable. It is tempting to think that 
the condition on the existence of bounded approximate identity may be 
dispensed with. However, that is not the case, as the following shows. 

 

 



93 
 

Theorem (3.2.6) [3]: 

Let 풜  denote the opposite algebra to our algebra 풜. The algebra 
ℬ = 풜	⨁	풜  is not approximately amenable. 

Note that our proof depend somewhat on special properties of 풜, but 
is nonetheless general enough to indicate that it may be difficult to find 
an approximately amenable Banach algebra which has neither a bounded 
right approximate identity nor a bounded left approximate identity. 

For 푥 ∈ 푙 , let us write 휆(푥) = ∑ 〈푥, 푒∗〉. Let 푇 ∈ 퐾 푙  be the 
element such that 푇 (푥) = 푒 ∙ 〈푥, 휆〉. Evidently lim	 sup ‖푇 푒 ‖ = 1 and 
‖푇 ‖[ ] = 퐾 + 1. Let us choose a free ultrafilter 풰 on ℕ. Up to scaling, a 
support functional for 푇  in any of the ‖∙‖[ ] norms is 휙(푇) =
lim →풰〈푇푒 , 휆〉. For if |휙(푇)| = 1, then certainly lim	 sup ‖푇푒 ‖ ≥ 1 so 
‖푇‖[ ] ≥ 퐾 + 1, hence ‖휙‖[ ] ≤ : and 〈휙, 푇 〉 = 1 ≥ ‖휙‖[ ] ∙

‖푇 ‖[ ]. So equality must hold, and ‖휙‖[ ] = . Simple calculation 
shows that 푇∗휆 = 휆, so we have lim →풰〈푇 푆푒 , 휆〉 = lim →풰〈푆푒 , 휆〉 for 
any 푆 ∈ 퐾 푙 , that is, 

														휙(푇 푆) = 휙(푆).																																																										(37) 

(This is the special property of 퐾 푙  that will be used to prove the 
theorem.) 

There is an isometry 퐸: 푐 → 풜 sending 훿 = (훿 )  to the sequence 
(푇 훿 2⁄ , 푇 훿 3⁄ , 푇 훿 3⁄ ,… , 푇 훿 (퐾 + 1), …⁄ ) which is 

ℰ[ ] (훿 푇 (퐾 + 1)⁄ ). 

Let’s write 휙[ ] = 휙 ∘ 휋[ ] ∈ 풜∗, the linear functional of norm 
1 (퐾 + 1)⁄  which applies 휙 to the 퐾th entry of 푎 ∈ 풜. Evidently, 

휙[ ] 퐸(훿) = 훿 (퐾 + 1)⁄ , 

and more generally, because of (37) we have 

		휙[ ](퐸(훿) ∙ 푎) = 훿 (퐾 + 1)⁄ ∙ 휙[ ](푎),																																(38) 

for any 푎 ∈ 풜. 
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Lemma (3.2.7) [3]: 

Let (푀 )  be a strictly increasing sequence of positive integers. 
Suppose the sequence 훿 ∈ 푐  is chosen to tend to zero so slowly that 
훿 ≥ 2 푛⁄  for all 푛 ∈ ℕ. Write 휏 = 퐸(훿). Then whenever 푎 ∈ 풜 is 
such that ‖휏푎 − 휏‖ ≤ 1 푛⁄  (some 푛 ∈ ℕ), we have 

																													‖푎‖ ≥ 푀 ,																																								(39) 

more specifically 

																										 휙[ ](푎) − 1 ≤
1
2푛
.																														(40) 

Proof: 

Note that (39) follows from (40); for (40) implies 

‖푎‖ ≥ (2푀 + 1) 휙[ ](푎) ≥ (2푀 + 1) 2⁄ . 

But 

휙[ ](휏) − 휙[ ](휏푎) ≤
1

(2푀 + 1)
‖휏 − 휏푎‖ ≤

1
푛 (2푀 + 1)

, 

and the left-hand side is 

훿 − 훿 휙[ ](푎)
2푀 + 1

≥ 1 − 휙[ ](푎) ∙
2

푛(2푀 + 1)
, 

so 1 − 휙[ ](푎) ≤ , as required. 

Let 

												∆= 1	⨂1 − 1	⨂푢 − 푣	⨂1 + 푑 ∈ ℬ⋕	⨂ℬ⋕,																											(41) 

with 푑 ∈ ℬ	⨂	ℬ. Let 푃 	(푖 = 1,2) be the maps which pick the left and 
right coordinates respectively from the pair (푎 , 푎 ) ∈ 풜	⨁	풜 = ℬ, 
and let 푝 = 푃 ⨂	푃 :	ℬ	⨂	ℬ → 풜	⨂	풜 . (Obviously there are similar 
maps 푃 , 푃  and 푃  but it’s 푃  that we ’re interested in.) For a proof of 
Theorem (3.2.6), we claim that provided that the sequence (푀 ) increases 
sufficiently rapidly, it is impossible (regardless of choice of 푢, 푣 and 푑) to 
have 
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																								‖(휏, 0) ∙ ∆ − ∆ ∙ (휏, 0)‖ < 1 10⁄ 																										(42) 

and 

																								‖(0, 휏) ∙ ∆ − ∆ ∙ (0, 휏)‖ < 1 10⁄ .																								(43) 

To see this, let 풳 denote the character on ℬ⋕ with 풳(휆l + 푏) = 휆 and let 
푞(푥) = 푥 − 풳(푥)l(푥 ∈ ℬ⋕) and 푞 = 푞	⨂	푞. We write 푑 =
푃 (푑), 푢 = 푃 (푢) and 푣 = 푃 (푣), and then we apply 푃 푞 to both sides 
of (42). Most of the terms disappear, and we get 

																								‖휏 ∙ 푑 − 휏	⨂	푢 ‖ < 1 10⁄ .																																	(44) 

We do the same to (43) and we get 

																								‖푑 ∙ 휏 − 푣 	⨂	휏‖ < 1 10⁄ .																																	(45) 

Note that in this last equation 푑 ∙ 휏 refers to the natural right module 
action of the opposite algebra on 풜	⨁	풜 , so that (푎 	⨂	푎 ) ∙ 휏 =
푎 	⨂	휏푎  for 푎 ∈ 풜, 푎 ∈ 풜 : where 휏푎  denotes the ‘ usual ’ product 
of elements of 풜, not the ‘ opposite ’ product. 

Lemma (3.2.8) [3]: 

Suppose that the sequence 푀  increases “sufficiently rapidly”, (41) 
(42) and (43) hold, and that for some 푛 ≥ 2 we have 

										 휙[ ](푢 ) ∈ [(1 2⁄ + 1 푛⁄ , 3 2⁄ − 1 푛⁄ )]																										(46) 

and 

																 휙[ ](푣 ) ∈ [(1 2⁄ + 1 푛⁄ , 3 2⁄ − 1 푛⁄ )].																					(47) 

Then we must also have 

휙[ ](푢 ) ∈ [(1 2⁄ + 1 퐿⁄ , 3 2⁄ − 1 퐿⁄ )], 

and 

휙[ ](푣 ) ∈ [(1 2⁄ + 1 퐿⁄ , 3 2⁄ − 1 퐿⁄ )], 

where  

퐿 = 5(1 + 2푀 ) . 
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Proof: 

Let 푃, 푄 denote the rank I projections onto lin	(푢 ) and lin	(푣 ) 
respectively, with 

																										푃(푥) = 푢 ∙
[ ]( )
[ ]( )

																																	(48) 

and 

																										푄(푥) = 푣 ∙
[ ]( )
[ ]( )

.																																(49) 

We have ‖푃‖ ≤ ‖푢 ‖ 휙[ ] 휙[ ](푢 ) ≤ 2 ‖푢 ‖ (1 + 2푀 )⁄ , 
because 휙[ ](푢 ) ≥ 1 2⁄  by (46). Similarly, we have ‖푄‖ ≤
2 ‖푣 ‖ (1 + 2푀 )⁄  because of (47). Let’s write (퐼	⨂	푃)(푑 ) = 푣 	⨂	푢  
for some 푣 ∈ 풜, and (푄	⨂	퐼)(푑 ) = 푣 ⨂	푢  for some 푢 ∈ 풜 . 
Applying 퐼	⨂	푃 to (44) we get 

																			‖(휏푣 − 휏)	⨂	푢 ‖ ≤ ‖푃‖ 10⁄ ;																																(50) 

so 

																				‖휏푣 − 휏‖ ≤
1

5(1 + 2푀 ) ≤ 1 퐿⁄ ; 																													(51) 

so (40) tells us 

																							 휙[ ](푣 ) − 1 < 1 2퐿⁄ .																															(52) 

We apply 푄	⨂	퐼 to (45) and we get 

																								‖푣 	⨂	(휏푢 − 휏)‖ ≤ ‖푄‖ 10⁄ ;																												(53) 

so by (40), 

																									‖휏푢 − 휏‖ ≤ ( ) ≤ 1 퐿⁄ ,																											(54) 

and hence by (40), 

																									 휙[ ](푢 ) − 1 < 1 2퐿⁄ .																															(55) 

Next, let us apply 퐼	⨂	푃 to (45). In view of (38) we have 

푃(푏 ∙ 휏) = 푃(휏푏) = 훿 푃(푏) (1 + 2푀 )⁄ 			(푏 ∈ 풜 ). 
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Therefore, 

(퐼	⨂푃)(푑 ∙ 휏) = 훿 (퐼	⨂푃)(푑) (1 + 2푀 )⁄ 			 푑 ∈ 풜	⨂	풜 . 

Also 

푃(휏) = 푢 ∙ 휙[ ](휏) 휙[ ](푢 )⁄ = 훿 푢 (1 + 2푀 )휙[ ](푢 )  

because entry 2푀  of 휏 is 훿 푇 (1 + 2푀 )⁄  and 휙(푇 ) = 1. So we get 

			 푣 	⨂	푢 −
푣 ⨂	푢

휙[ ](푢 )
훿 푀

1 + 2푀
≤ ‖푃‖ 10⁄

≤
‖푢 ‖

5(1 + 2푀 )																																																																								
(56) 

and so 

											 푣 −
푣

휙[ ](푢 ) ≤
1

5훿
≤ 푛 10⁄ .																															(57) 

This last estimate may not look so strong, but it looks much better if we 
apply 휙[ ] to it and recall that 휙[ ] ≤ . We get 

															 휙[ ] 푣 −
푣

휙[ ](푢 ) ≤
푛

10(1 + 2푀 ),															
(58) 

so 

휙[ ](푣 )휙[ ](푢 ) − 휙[ ](푣 ) ≤
푛 휙[ ](푢 )
10(1 + 2푀 ) ≤

3푛
20(1 + 2푀 ), 

since 휙[ ](푢 ) ≤ 3 2⁄ . Now 휙[ ](푢 ) − 1 ≤ −  and 

휙[ ](푣 ) − 1 ≤ , so 

휙[ ](푣 )휙[ ](푢 ) ≤
1
2
−
1
푛
+
1
2퐿

+
1
2퐿

1
2
−
1
푛
, 

and 

휙[ ](푣 ) − 1 ≤
1
2
−
1
푛
+

1
2퐿

+
1
2퐿

1
2
−
1
푛

+
3푛

20(1 + 2푀 ) ≤
1
2
−
1
퐿
. 

given a mild growth condition on the sequence (푀 ); so 
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휙[ ](푣 ) ∈ [1 2⁄ + 1 퐿⁄ , 3 2⁄ − 1 퐿⁄ ]. 

Similarly, if we apply 푄	⨂	퐼 to (44), we get 

																			 휙[ ](푢 ) ∈ [1 2⁄ + 1 퐿⁄ , 3 2⁄ − 1 퐿⁄ ],															(59) 

and the proof of the lemma is complete. 

Corollary (3.2.9) [3]: 

If any ∆ exists satisfying (41), (42) and (43), we cannot have 
휙[ ](푣 ) ∈ [1 2⁄ − 1 푛⁄ , 3 2⁄ − 1 푛⁄ ] and 휙[ ](푢 ) ∈ [1 2⁄ +
1 푛⁄ , 3 2⁄ − 1 푛⁄ ] for any 푛 ≥ 2. 

For given a mild growth condition we always have 퐿 > 푛 in Lemma 
(3.2.8), by Lemma (3.2.8) we would have 휙[ ](푣 ) ∈ [1 2⁄ +
1 푛⁄ , 3 2⁄ − 1 푛⁄ ] and 휙[ ](푢 ) ∈ [1 2⁄ + 1 푛⁄ , 3 2⁄ − 1 푛⁄ ] for an 
infinite sequence of values of 푛. But 휙[ ] = 1 (퐾 + 1)⁄  so this is 
impossible. 

But now we can prove Theorem (3.2.6). For if any ∆ exists satisfying 
(42) and (43), we apply 푃 ∙ (퐼⨂	휒) to both sides of (42) (where 휒 is the 
character), and we get ‖휏 − 휏푣 ‖ < 1 10⁄  so by (40), 휙[ ](푣 ) − 1 ≤
1 6⁄ . We apply 푃 ∙ (휒⨂	퐼) to both sides of (43) and we likewise get 
휙[ ](푢 ) − 1 ≤ 1 6⁄ . So the conditions 휙[ ](푢 ) , 휙[ ](푣 ) ∈
[1 2⁄ + 1 푛⁄ , 3 2⁄ − 1 푛⁄ ] would be satisfied with 푛 = 3, which by 
Corollary (3.2.9) is impossible. So no such ∆ exists and 풜	⨁	풜  is not 
approximately amenable. 

Corollary (3.2.10) [3]: 

There is a boundedly approximately amenable Banach algebra that has 
a l-codimensional closed ideal which is not boundedly approximately 
amenable. 

 Proof: 

Let 풜 be our algebra constructed above and let 풜⋕ be the unitization 
of 풜. Then from the proof of a Banach result we see that the Banach 
algebra ℬ = 풜⋕	⨁	풜  is boundedly approximately amenable, whereas 
the l-codimensional ideal 풜	⨁	풜  of ℬ is not boundedly approximately 
amenable, as seen above. 



99 
 

Chapter 4 

Approximate amenability On The Banach Algebra 
 

We use to give examples of Banach spaces 푋 for which the Banach 
algebra 퐾(푋) is approximately amenable but not amenable. Thus we 
answer a question on existence of such spaces.  

Section (4.1): Introduction and Results   

The notion of approximate amenability was introduced by R.J. Loy. 
The first example of an approximately amenable non-amenable Banach 
algebra, is synthetic. Later, a host of naturally arising example of 
approximately amenable non-amenable Banach algebras were found 
amongst: Banach sequence algebras, Fourier algebras and semigroup 
algebras. 

The study of amenability of the Banach algebra 퐾(푋) began with the 
work of B.E. Johnson. Later N. Gronbeak, B.E. Johnson and G.A. Willis 
made an extensive study of amenability of the Banach algebra 퐾(푋), for 
various Banach space 푋. A. Blanco made a systematic study of weak 
amenability of the Banach algebra 퐴(푋) of all approximable operator on 
the Banach space 푋, for various Banach spaces 푋. later in 2000 – when 
approximate amenability was founded – it was natural to ask whether 
there could be a Banach space 푋 for which 퐾(푋) is approximately 
amenable (but not amenable).  

We now recall the definition of approximately amenable Banach 
algebras. First off, a continuous derivation 퐷 from the Banach algebra 풜 
into a Banach 풜-bimodule 푋 is approximately inner, if there exists a net 
(푥 ) of elements of 푋 such that 퐷(푎) = lim	 푎 ⋅ 푥 − 푥 ⋅ 푎, for all 푎 ∈
풜. The Banach algebra 풜 is approximately amenable if every continuous 
derivative from 풜 into the dual Banach bimodule 푋∗ is approximately 
inner, for all Banach 풜-binomiales 푋. As noted in the above definition 
one can replace 푋∗ by 푋 i.e. approximate amenable and approximate 
contractibility are the same concepts. We will also be concerned with the 
concept of pseudo-amenability for Banach algebra. The Banach algebra 
풜 is pseudo-amenable if there is a net (푚 ) of elements of 풜⨂풜 such 
that 
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푎 ⋅ 푚 − 푚 ⋅ 푎 → 0			(푎 ∈ 풜) 

and 

휋(푚 ) ⋅ 푎 → 푎			(푎 ∈ 풜), 

where 휋:풜⨂풜 → 풜 is the so-called product map, specified by 
휋(푎⨂푏) = 푎푏 for all 푎, 푏 ∈ 풜. 

Definition (4.1.1) [4]: 

Let 푏 > 0 be an absolute constant, and 푋 a Banach space. We will say 
푋 is "fairly close" to a Hilbert space (with constant 푏) if the following 
conditions hold: For every finite sequence 푇 ⊂ 퐾(푋), and every 

휖 > 0 we can find a shrinking basis (푥 )  for 푋  (with co-ordinate 
functional (푥∗) ⊂ 푋∗, 푥∗ 푥 = 훿 , ), and a finite sequence 

0 = 푛 < 푛 < 푛 < ⋯ < 푛 = 푁, 

with the following properties: 

(i) Let 1 ≤ 푟 ≤ 푘, and 휋 = ∑ 푥 ⋅ 푥∗ where 푥 ⋅ 푥∗(푥) =
〈푥∗ ⋅ 푥〉푥 	, (푥 ∈ 푋).  

Let 

휋 = 휋 ,			(1 ≤ 푟 ≤ 푘). 

Then ‖휋 ‖ ∨ ‖퐼 − 휋 ‖ ≤ 푏. 

(ii) Let (푒 )  denote the unit vector basis of ℓ . Let 

휌 = 푒 ⋅ 푥∗ : 푋 → ℓ 		and		휌 = 푥 ⋅ 푒∗: ℓ → 푋, 

where for 푥 ∈ 푋, 푒 ⋅ 푥∗(푥) = 〈푥∗, 푥〉푒  and for 푓 ∈ ℓ , 〈푥 ⋅ 푒∗, 푓〉 =
〈푒∗, 푓〉푥  and if we let 

휎 = 푒 ⋅ 푥∗ ,						휎 = 푥 ⋅ 푒∗ 
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then ‖휌‖ ∨ ‖휌′‖ ≤ √푐, for a certain 푐 > 0, depending on 푇 ,… , 푇  and 

휖, ‖휎‖ ∨ ‖휎′‖ ≤ √푏, while 푘 > (푏 + 푐) 	 휖⁄ . 

(iii) For 휇 = 1…푚 we have 푇 − 휋 푇 휋 < 휖; and for each 
푗 ∈ [1, 푛 ], (1 ≤ 푟 < 푘) we have 

(퐼 − 휋 )푇 푥 <
휖

푛 ⋅ 2 ⋅ (푏 + 푐)
 

and 

푥∗ ∘ 푇 (퐼 − 휋 ) <
휖

푛 ⋅ 2 ⋅ (푏 + 푐)
 

The point of this definition is: 

Theorem (4.1.2) [4]: 

Let 푋 be fairly close to a Hilbert space. Then 퐾(푋) is approximate 
amenable.  

Note. We shall show then that certain ℓ  -direct sums 푋 = ⨁ ℓ  are 
fairly close to Hilbert space but 퐾(푋) is not amenable. This is because if 
we split the direct sum into 푋 = ⨁ ℓ  and 푋 = ⨁ ℓ , then we 
find that neither 푋  is finitely representable in 푋  nor 푋  is finitely 
representable in 푋 . 

This means that 퐾(푋 ⨁푋 ) cannot be amenable. The complete details 
will be given in Theorem (4.2.8).  

Proof: 

Given 푇 ⊂ 퐾(푋), with 푇 ≤ 1 say, and 휖 > 0, we seek 

푎 △∈ 퐾(푋)⨂퐾(푋) such that 휋(∆) ⋅ 푇 − 푇 < 푏 휖 and 푇 ⋅ ∆ − ∆ ⋅
푇 ‖ < (9 + 4푏)휖	(휇 = 1…푚) and ‖휋(∆)‖ ≤ 푏. We claim this is enough 
for our assertion. Perhaps it is best if we prove that first so as to get it out 
of the way: 

Lemma (4.1.3) [4]:  

Let 풜 be a Banach algebra, and 푏 > 0. Suppose that for every 
푇 , 푇 , … 푇 ∈ 풜 with 푇 ≤ 1	(휇 = 1, … ,푚), and every 휖 > 0, there is 
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a ∆∈ 풜⨂풜 such that ‖휋(∆)‖ ≤ 푏, 휋(∆) ⋅ 푇 − 푇 < 푏 휖 and ∆ ⋅
푇 − 푇 ⋅ ∆‖ < (9 + 4푏)휖, (휇 = 1…푚). Then 풜 is approximate 
amenable. 

Proof: 

 Since ‖휋(∆)‖ ≤ 푏, we have approximate amenability of 풜 as a 
consequence of (i) ⟺(iii).  

So returning to the main proof. We pick a shrinking basis (푥 ) and finite 
sequence 푛 < 푛 < ⋯ < 푛  as in Definition (4.1.1), for the particular 
푇  and 휖. We write 퐹 , = 푥 ⋅ 푥∗ ∈ 퐾(푋) and 퐸 , = 푒 ⋅ 푒∗ ∈ 퐾(ℓ ). 

We define, for 푖 ∈ ℕ, 

																								푟(푖) = 푟, if	푖 ∈ (푛 , 푛 ], 푟 ≤ 푘;
푘 + 1, if	푖 > 푛 = 푁,				

� 																	(1) 

and 

휆(푖) =
푘 + 1 − 푟(푖)

푘
 

We then define ∆∈ 퐾(푋)⨂퐾(푋) by 

																															∆=
1
푁

휆(푖)퐹 , ⨂퐹 ,
,

																				(2) 

Evidently, 

휋(∆) = 휆(푖)퐹 , =
1
푘

휋 , 

(since both operators 푆 have 푆(푒 ) = ( )푒  if 푖 ∈ (푛 , 푛 ], so 
푒 ∈ lm 휋 ∩ lmπ ∩ …∩ lm	 휋 	, but 푒 ∈ ker 휋 , for 푗 < 푟). 
Accordingly, 

																						‖휋(∆)‖ ≤ max{‖휋 ‖} ≤ 푏,																										(3) 

by (i) of Definition (4.1.1). 

Similarly, 
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																									‖퐼 − 휋(∆)‖ ≤ max{‖퐼 − 휋 ‖} ≤ 푏																(4) 

Furthermore, since 휆(푖) = 1 for 푖 ≤ 푛 , we have 휋(∆) ⋅ 휋 = 휋 . So 

							 퐼 − 휋(∆) ⋅ 푇 = 퐼 − 휋(∆) (퐼 − 휋 )푇
≤ 푏 ⋅ (퐼 − 휋 )푇 																																																																					(5) 

by part (iii) of Definition (4.1.1). 

Let us now estimate ‖푇 ⋅ ∆ − ∆ ⋅ 푇‖ for 푇 ∈ 퐾(푋). we have 

푇 ⋅ ∆= 푇 ⋅ 휋 ⋅ ∆, 

because 퐹 , = 휋 퐹 , , for all 푖, 푗 = 1, … , 푁. Similarly, ∆ ⋅ 푇 = ∆ ⋅ 휋 ⋅ 푇. 
Now 푇(푥 ) = ∑ 푇 , 푥 , where 

푇 , = 〈푥∗, 푇(푥 )〉; 

also 

푥∗ ∘ 푇 = 푇 , 푥∗, 

the latter being a norm-convergent sum in 푋∗ because (푥 ) is a shrinking 
basis, and (푥∗) the dual basis of 푋∗. So,  

																					

푇 ⋅ ∆=
1
푁

휆(푖)푇 ⋅ 퐹 , ⨂퐹 ,
,

=
1
푁

휆(푖)푇 , 퐹 , ⨂퐹 ,
,

=
1
푁

휆(푖)푇 , 퐹 , ⨂퐹 . ,
,

				 																			(6) 

(since 휆(푖) = 0 for 푖 > 푁 anyway). Likewise  
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∆ ⋅ 푇 =
1
푁

휆(푖)퐹 , ⨂퐹 , 푇
,

=
1
푁

휆(푖)푇 , 퐹 , ⨂퐹 ,
,

=
1
푁

휆(푙)푇 , 퐹 , ⨂퐹 ,
,

				 																					(7) 

Accordingly, for any 푇 ∈ 퐾(푋), we have 

																	

푇 ⋅ ∆ − ∆ ⋅ 푇 =
1
푁

휆(푖) − 휆(푙) 푇 , 퐹 . ⨂퐹 ,
,

=
1
푁푘

푟(푙) − 푟(푖) 푇 , 퐹 , ⨂퐹 ,
,

					 		(8) 

Given our sequence 푇 , let us define 푇 	  by 

																		〈푇 푥 , 푥∗〉 =
〈푇 푥 , 푥∗〉,			if	|푟(푖) − 푟(푗)| ≤ 1,

0,			otherwise																
				� 								(9) 

Let us estimate 푇 − 푇 . For 푖, 푗 ∈ ℕ, we will have 

〈푇 푥 , 푥∗〉 =

⎩
⎪
⎨

⎪
⎧〈푇 푥 , 푥∗〉

			
0

if	푖 ∈ (0, 푛 ]and	푗 ∈ (0, 푛 ]																	
or	푖 ∈ (푛 , 푛 ], 푟 ∈ [2, 푘), 푗 ∈ (푛 , 푛 ];
or	푖 ∈ (푛 , 푛 ]	and	푗 ∈ (푛 ,∞);									
or	푖 ∈ (푛 ,∞]	and	푗 ∈ (푛 ,∞);											

otherwise.																															

� 

Hence, if we adopt the convention that 휋 = 휋 = 0, we have 

푇 = (휋 + 휋 + 휋 )푇 휋 + (1 − 휋 )푇 휋

+ (1 − 휋 )푇 (1 − 휋 )																																																			(10) 

If we also adopt the convention that 휋 = 퐼, we also have 
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푇 − 푇 = (퐼 − 휋 )푇 휋

+ (휋 + 1 − 휋 )푇 휋 + 휋 푇 (1 − 휋 )																					(11) 

For 푗 ∈ (푛 , 푛 ] we have 

(퐼 − 휋 )푇 푥 <
휖

푛 2 (푏 + 푐)
, 

by part (iii) of (4.1.1). Hence  

															 (퐼 − 휋 )푇 휋 <
휖

2 (푏 + 푐)
.																										(12) 

For 3 ≤ 푟 ≤ 푘 + 1 and 푗 ≤ 푛 , we have 

푥∗푇 (퐼 − 휋 ) <
휖

2 푛 (푏 + 푐)
, 

by part (iii) of Definition (4.1.1). So 

																	 휋 푇 (퐼 − 휋 ) <
휖

2 (푏 + 푐)
,																					(13) 

and in particular, since 휋 = (퐼 − 휋 ) , we have 

																		 휋 푇 휋 <
휖‖휋 ‖

2 (푏 + 푐)
≤

2휖푏
2 (푏 + 푐)

.											(14) 

Substituting (12), (14), and (13) into (11), we get 

		 푇 − 푇 ≤
휀

2(푏 + 푐)
+

휀
4(푏 + 푐)

+
휖(1 + 8푏)
2 (푏 + 푐)

+
휖

2 (푏 + 푐)

≤
휖

(푏 + 푐)
(2 + 2푏).																																																													(15) 

Next we estimate ‖∆‖: 

∆=
1
푁

휆(푖)퐹 , ⨂퐹 ,
,

. 

With 휌, 휌′ and 휎, 휎′ as in part (ii) of Definition (4.1.1), we write 풯 = 휌 +
휎 and 풯 = 휌 + 휎′. Then we have 퐹 , = 풯′퐸 , 풯 (when 1 ≤ 푖, 푗 ≤ 푁) and 
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so, if 풯:퐾(ℓ )⨂퐾(ℓ ) → 퐾(푋)⨂퐾(푋), is the map specified by 
풯(퐴⨂퐵) = 풯′퐴풯⨂풯 	퐵풯	 , then we have ∆= 풯(∆ ), where ∆ =
∑ 휆(푖)퐸 , ⨂퐸 ,, . Since 휆(푖) ∈ [0,1], it is straightforward that 

‖∆ ‖ = 1 in 퐾(ℓ )⨂퐾(ℓ ). So 

‖∆‖ ≤ (‖풯‖ ⋅ ‖풯 ‖) ≤ (‖휌‖ + ‖휎‖) (‖휌′‖ + ‖휎′‖) ≤
1
2
√푏 + √푐

≤ (푏 + 푐) ,																																																	(16) 

by part (ii) of equation (1). Form (15) and (16) we get 

							 푇휇 − 푇휇′ ⋅ ∆ − ∆ ⋅ 푇휇 − 푇휇′ ≤ 2 푇휇 − 푇휇′ ⋅ ‖∆‖
≤ 2휖(2 + 2푏).					(17) 

It remains to estimate 푇 ⋅ ∆ − ∆ ⋅ 푇 . For any 푇, we have 푇 ⋅ ∆ − ∆ ⋅ 푇 
given by (8). But when 푇 = 푇  the coefficients 푇 , = 푇 , ,  are zero 
unless |푟(푖) − 푟(푗)| ≤ 1 (in which case they are equal to the 
corresponding coefficients 푇 , ,  of 푇 ). Suppressing the index 휇, we have 

푇 ⋅ ∆ − ∆ ⋅ 푇 =
1
푁휅

푇 , 퐹 , ⨂퐹 ,
( )
( )

− 푇 , 퐹 , ⨂퐹 ,
( )

( )

 

For fixed 푟, ∑ ∑ 푇 , 퐹 , ⨂퐹 , =( )
( )

 

휋 푇퐹 , ⨂퐹 ,
( )

= 휋 푇휋 퐹 , ⨂퐹 , ,
,

 

where when 푟 = 푘 we define 휋 = 휋 − 휋 = 퐼 − 휋 . Likewise, 

푇 , 퐹 , ⨂퐹 ,
( )
( )

= 휋 푇퐹 , ⨂퐹 ,
( )

= 휋 푇휋 퐹 , ⨂퐹 ,
,

. 

Hence, 
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									푇 ⋅ ∆ − ∆ ⋅ 푇 = (휋 푇휋 − 휋 푇휋 ) ⋅ 푑 ,															(18) 

where, 

푑 =
1
푁푘

퐹 , ⨂퐹 ,
,

. 

Now 푑 = 풯 ∑ 퐸 , ⨂퐸 ,, , hence 

																			‖푑‖ ≤
(푏 + 푐)

푘
,																																		(19) 

by the same argument as for our estimate (16). Now on Hilbert space, the 
map 

휃: 푆 ⟼ 푃 푆푃 − 푃 푆푃 , 

(푃  a family of disjoint orthogonal projections) has norm at most 2. We 
have 

(휋 푇휋 − 휋 푇휋 )

= {풯 ⋅ 푃 ⋅ 풯 푇풯푃 풯 − 풯푃 풯 푇풯	푃 풯′}, 

for 푃 (푒 ) = 푒  (if 푟(푖) = 푟) or 0 otherwise. So 

휋 푇휋 − 휋 푇휋 ≤ (‖풯‖ ⋅ ‖풯 ‖) ‖푇‖ ≤ (푏 + 푐) ‖푇‖, 

and  

휋 푇휋 − 휋 푇휋 ≤ ‖푇‖{(푏 + 푐) + 2 ⋅ ‖휋 ‖ ⋅ ‖퐼 − 휋 ‖}

≤ ‖푇‖ ⋅ {(푏 + 푐) + 4푏 } ≤ 5(푏 + 푐) 	 

Substituting this and (19) in (18) we find 
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푇 ⋅ ∆ − ∆ ⋅ 푇 ≤
5(푏 + 푐) ⋅ (푏 + 푐)

푘
≤ 5휖, 

Since 푘 > (푏 + 푐)  by part 2 of Definition (4.1.1). Throwing in (17) we 
find 

푇 ⋅ ∆ − ∆ ⋅ 푇 ≤ 휖(9 + 4푏). 

So for every 푇 ⊂ 퐾(푋), with 푇 ≤ 1, there is a ∆∈ 퐾(푋)⨂퐾(푋) 

with ‖휋(∆)‖ ≤ 푏 (by (3)), and 휋(∆) ⋅ 푇 − 푇 ≤ 푏 휖 (by (5)), and 
푇 ⋅ ∆ − ∆ ⋅ 푇 ≤ 휖(9 + 4푏). So the Banach algebra 퐾(푋) is 

approximately amenable. 
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Section (4.2): Examples 

Example (4.2.1) [4]: 

Let 푎 < 푏 < 푎 < 푏 < ⋯ be a strictly increasing sequence of 
positive integers, which will be required to satisfy growth conditions. We 
define 푝 ∈ [1,3] by 

푝 = 2 − 1 푎⁄ , if	푖	is	odd,
2 + 1 푎 , if	푖	is	even,⁄

� 

and let the Banach space 푋 be the ℓ -direct sum 푋 = ⨁ ℓ , where 

ℓ  stands for 푏 -dimentional complex ℓ -space. We write 푋 = 푋 ⨁푋  
with 

푋 = ⨁
∈ ℕ

ℓ ,			푋 = ⨁
∈ ℕ

ℓ . 

We claim that (given growth conditions), 푋  is not finitely representable 
in 푋 , nor is 푋  finitely representable in 푋 . This is because 푋 , being an 
ℓ -direct sum of ℓ -spaces with 푝 ≤ 2, has cotype 2, while 푋  (given the 
growth conditions) does not; whereas 푋 , being an ℓ -direct sum of ℓ -
spaces with 3 ≥ 푝 ≥ 2, has type 2, but 푋  does not. Let us give the full 
argument: 

Lemma (4.2.2) [4]: 

 The space 푋  has cotype 2, and the space 푋  has type 2. 

Proof: 

For all 푝 ∈ [1,2] it is known that the Banach space ℓ  has cotype 2; 
furthermore the cotype 2 constant is uniformly bounded (a suitable 
uniform bound is given, for example. Let 퐶 denote such a uniform bound. 
All the spaces ℓ (푛 odd) have cotype 2 constant at most 퐶; therefore, by 
an elementary and well-known calculation, the cotype 2 constant of the 
ℓ -direct sum ⨁ ∈ ℕ ℓ  is at most C as well. 

Similarly, for 푝 ∈ [2,3] the type 2 constant of ℓ  is uniformly 
bounded, a uniform estimate being given in Veraar; though we could not 
allow 푝 ∈ [2,∞] here, because ℓ  does not have any nontrivial type. But 
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for 푝 on the bounded interval [2,3] (or indeed on [2,N] for fixed 푁) there 
is a uniform bound; let's call it 푇. The spaces ℓ  (푛 even) all have type 2 
constant at most 푇. The same elementary calculation then shows that the 
ℓ -direct sum 푋 = ⨁ ∈ ℕℓ  has type 2 constant at most 푇. 

Lemma (4.2.3) [4]: 

Given growth conditions, 푋  does not have type 2, nor does 푋  have 
cotype 2. 

Proof: 

By considering the unit vectors 푒 , 1 ≤ 푖 ≤ 푚, we find that the type 2 

constant of ℓ  is at least 푚  and the cotype 2 constant is at least 푚 . 
Given an odd 푛, and 푝 = 푝 = 2 − 1 푎⁄ , the type 2 constant of ℓ  is at 

least 푛 provided 푚 = 푚 > 푛, or 푚 ≥ 푛 . Given an even 푛, 
and 푝 = 푝 = 2 + 1 푎⁄ , the cotype 2 constant of ℓ  is at least 푛 

provided 푚 = 푚 > 푛, or 푚 ≥ 푛 . 

So if we impose the growth conditions 푏 > 푛  for all 푛 ∈ ℕ, we 
find the type 2 constant of 푋 = ⨁ ∈ ℕ ℓ  is at least 푛 for all 푛 ∈

2ℕ + 1 and the cotype 2 constant 2 of 푋 = ⨁ ∈ ℕℓ  is at least 푛 for all 
푛 ∈ ℕ.  

Corollary (4.2.4) [4]: 

Given growth conditions, 푋  is not finitely representable in 푋 , or 
even in the ℓ -direct sum of countably many copies of 푋 . The same is 
true with roles of 푋  and 푋  reserved. 

Proof: 

The ℓ -direct sum of countably many copies of 푋  still has type 2, and 
is not possible to finitely represent a space not of type 2 in a space which 
does have type 2. The ℓ  direct sum of countably many copies of 푋  still 
has cotype 2, so 푋  is not finitely representable in it. 

We define a Banach-Mazur distance [9]: Is a way to define distance on 
the set Q(푛) of 푛-dimensional normed spaces. If 푋 and 푌 are two finite-
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dimensional normed space with the same dimension. Let 퐺푙(푋, 푌) denote 
the collection of all linear isomorphism 푇: 푋 → 푌. The Banach-Mazur 
distance between 푋 and 푌 is defined by 

훿(푋, 푌) = log(inf{‖푇‖‖푇 ‖:푇 ∈ 퐺푙(푋, 푌)}) 

Equipped with the metric 훿, the space Q(푛) is a compact metric space, 
called the Banach-Mazur Compactum.   

Theorem (4.2.5) [4]: 

Given growth conditions, 퐾(푋) is not amenable. 

Proof: 

Evidently 퐾(푋) = ℱ(푋) (the closure of the space of finite-rank 
operators) because 푋 has an obvious Schauder basis. We have 푋 must be 
approximately primary, i.e. whenever 푋 ≃ 푋 ⨁푋 , one of the product 
maps 

휋 :ℱ(푋, 푋 )⨂ℱ(푋 , 푋) → ℱ(푋), 

or  

휋 :ℱ(푋, 푋 )⨂ℱ(푋 , 푋) → ℱ(푋) 

(where ℱ(퐴, 퐵) stands for the closure of finite-rank operators from B into 
A) is surjective, and therefore an open map. In particular, the projections 
푃  onto the first 푛 elements of the Schauder basis of 푋 must satisfy 

푃 = ∑ 퐴( )퐵( ) with ∑ 퐴( ) 퐵( ) ≤ 퐶 (independent of 푛), 

and either 퐵 ∈ ℱ(푋 , 푋), 퐴 ∈ ℱ(푋, 푋 ), for all 푘, or 퐵 ∈ ℱ(푋 , 푋), 
퐴 ∈ ℱ(푋, 푋 ), for all 푘. Without loss of generality, we may assume that 
the first of the above two statements holds. Normalizing we can further 
assume that ‖퐴 ‖ = ‖퐵 ‖ for all 푘, 푛; so we have ∑‖퐴 ‖ ≤ 퐶. We then 

have 푃 = 퐴( )퐵( ), where 퐴( ) = ⨁ 퐴 ∈ ℱ 푋, ⨁ 푋( ) , 

퐵( ) = ⨁ 퐵( ) ∈ ℱ ⨁ 푋( ) , 푋  and 퐴( ) , ‖퐵 ‖ ≤ √퐶. 

So the Banach-Mazur distance from lm	 푃  to a subspace of the ℓ -
direct sum of countably many copies 푋( ) of 푋  (namely the subspace 



112 
 

퐵( )푃 푋) is at most 퐶. Hence 푋  is represented on ⨁ 푋( )  up to 퐶-

equivalence; a contradiction, and the proof is complete by symmetry. 

Now writing 푃 = 2 + (−1)  and 푋 = ⨁ ℓ , we claim that 

if the sequence 푎 < 푏 < 푎 < 푏 < ⋯ satisfies growth conditions, then 
푋 is approximately amenable. To prove this we shall use Theorem 
(4.1.2). we will also need the following fairly elementary lemma. 

We can define Banach lattice [10]: It is a vector lattice that is at the 
same time a Banach space with a norm with norm which satisfies the 
monotonicity condition. 

Lemma (4.2.6) [4]: 

There is a function 휉: ℕ → ℕ with the following property: Whenever 
푋 is a Banach space with 1-unconditional normalized basis (푓 ) , and 
whenever 푛,푚 ∈ ℕ, 푦 , … , 푦 ∈ 푋 with ‖푦 ‖ = 1, there are vectors 
푧 , … , 푧 ∈ 푋, 퐾 = 휉(푚, 푛), which are disjointedly supported with respect 
to the basis 푓 , and for each 푖 = 1, … , 푛 the distance from 푦  to the linear 
span 푙푖푛	(푧 , … , 푧 ) is at most 1 푚⁄ . In fact, one may take 

							휉(푛,푚) = (1 + 4푚푛) .																																				(20) 

Proof: 

Let 푓∗ be the support functional for 푓 , with 푓∗ 푓 = 훿 , . For each 
푗 ∈ ℕ we define a vector 푣 ∈ ℂ  by 

									〈푣 , 푒 〉 = 푓∗(푦 )					(푖 = 1…푛)																									(21) 

(푦 )  the given vectors in 푋. We write 퐸 = 푗: 푣 ≠ 0 . The unit ball 퐵  
of (ℂ , ‖⋅‖ ) (the usual Euclidean norm) has for each 휖 > 0 an 휖-net of 
size at most (1 + 2 휖⁄ ) . we write 휖 = 2 푚푛⁄  and choose an 휖-net 
(푤 )  for 퐵  of size 푄 ≤ (1 + 2 휖⁄ ) = (1 + 4푚푛) . For each 푗 ∈ 퐸, 
we pick an 훼 = 훼(푗) ∈ [1, 푄] such that 

푤 − 푣 푣⁄ < 휖. 

Given 훼 ∈ [1, 푄] we write 퐸 = {푗 ∈ 퐸:	훼(푗) = 훼}, and in cases when 
퐸 ≠ ∅, we let 퐼 ∈ [1, 1 푛⁄ ] be an index such that 
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〈푤 , 푒 ( )〉 = max 푥 {|〈푤 , 푒 〉|}. 

Then we define 

푧 = 〈푦퐼( ), 푓∗〉푓
∈

. 

The vectors (푧 )  have disjoint supports 퐸 . We claim that for each 
푖 = 1…푛, the distance 푑(푦 , lin{푧 : 훼 = 1…푄}	) < 1 푚⁄ . To show this 
let 퐴 = {훼: 푧 ≠ 0} and let us decide on an approximating vector 
푧 ∈ lin{푧 }, namely 

푧 =
〈푤 , 푒 〉
〈푤 , 푒퐼 〉

⋅ 푧
∈

. 

We claim that ‖푧 − 푦 ‖ < 1 푚⁄ . For if 푗 ∈ ℕ is any index such that 
푓∗(푦 ) ≠ 0 or 푓∗(푧) ≠ 0, then 푗 belongs to one of the sets 퐸 , 훼 =
훼(푗) ∈ 퐴, then 

〈푦 , 푓∗〉 = 〈푣 , 푒 〉,			
〈푦 , 푓∗〉
푣

=
〈푣 , 푒 〉
푣

. 

So  

〈푦 , 푓∗〉
푣

− 〈푤 , 푒 〉 ≤
푣
푣

− 푤 < 휖. 

Accordingly, 

〈푦 , 푓∗〉 − 〈푤 , 푒 〉 푣 < 휖 푣 . 

If 퐼 = 퐼(훼), we also have 

〈푦 , 푓∗〉 − 〈푤 , 푒 〉 푣 < 휖 푣  

So 

〈푦 , 푓∗〉 −
〈푤 , 푒 〉
〈푤 , 푒 〉

〈푦 , 푓∗〉 < 휖 푣 1 +
〈푤 , 푒 〉
〈푤 , 푒 〉

≤ 2휖 푣  

because 퐼 = 퐼(훼) is chosen such that |〈푤 , 푒 〉| is maximal. So 
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‖푦 − 푧‖ = 푦 −
〈푤 , 푒 〉
〈푤 , 푒 ( )〉

⋅ 푧
∈

= 푦 −
〈푤 , 푒 〉
〈푤 , 푒 〉

∈

⋅ 〈푦 , 푓∗〉푓
∈

= 〈푦 , 푓∗〉 −
〈푤 , 푒 〉
〈푤 , 푒퐼( )〉

⋅ 〈푦퐼( ), 푓∗〉 푓
∈∈

< 2휖 푣 ⋅ 푓
∈∈

	,																																											(22) 

Because 푋 having 1-unconditional basis 푓 , is a Banach lattice, and 
|훾 | ≤ 훿  implies ‖∑훾 푓 ‖ ≤ ‖∑훿 푓‖. But ‖푣 ‖ ≤ ∑ |〈푣 , 푒 〉| =
∑ 〈푓∗, 푦 〉  so in the sense of the Banach lattice 푋, we have 
∑ ∑ 2휖 푣 ⋅ 푓 ≤ 2휖 ∑ |푦 |∈∈ . Since ‖푦 ‖ = 1 by hypothesis 
equation (22) tell us ‖푦 − 푧‖ ≤ 2푛휖 = 1 푚⁄ .  

Corollary (4.2.7) [4]: 

There is a function 휒:ℕ → ℕ with the following property: if a 
Banach space 푋 has 1-unconditional normalized basis (푓 ) , if 푛,푚 ∈ ℕ 
and (푦 ) ∈ 푋 with ‖푦 ‖ = 1, then there are vectors 푧 … 푧 ∈ 푋, 퐾 =
휒(푛,푚) disjointly supported, 푑(푦 , 푙푖푛{푧 }	) ≤ 1 푚⁄  for all 푖, and in 
addition, the support of each 푦  is a union of some of the supports of the 
푧 . In fact, we may take 

																											휒(푛,푚) = 2 1 + 휉(푛,푚) ,																			(23) 

휉 as in Lemma (4.2.6). 

Proof: 

The ring 푅 of subsets of ℕ generated by the supports 푠푢푝푝	(푦 )	(푖 =
1, … , 푛) and their complements has less than or equal 2  atoms (minimal 
non-empty elements). Given 푋, 푛,푚 and (푦 ) first we pick vectors 
푧 …푧 		(푁 ≤ 휉(푛,푚)) in accordance with Lemma (4.2.6). We add an 
extra vector 푧  whose support is ℕ\∪ 	supp푧 , if that set is non-
empty. For each atom 퐸 ∈ 푅 we define 
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푧 , = 푧 1 					(푖 = 1…푁 + 1) 

that is 

〈푓∗, 푧 , 〉 =
〈푓∗, 푧 〉 			if	푗 ∈ 퐸,
0						 			if	푗 ≠ 퐸.

� 

The 푧 ,  are disjointly supported, and their linear span contains each 푧 , so 
푑 푦 , lin 푧 , ≤ 1 푚⁄  for all 푗. The support of 푦  is a union of some of 
the atoms of 푅; so it is the union of the supports of the 푧 ,  over 푖 =
1…푁 + 1 and appropriate atoms 퐸. The non-zero 푧 ,  can be normalized 
and there are at most 2 1 + 휉(푛,푚)  of them. Of course if there are 
strictly less one can "pad" the sequence out by splitting up some of the 
푧 ,  into vectors of smaller support. So one obtains a set of the right size 
and properties. 

Before proceeding to the main proof, we also wish to discuss uniform 
convexity. Let us impose the modest growth condition 푎 ≥ 2. Then all 

the 푝  lie in the interval , , and all the conjugate indices 푝′ (with 

+ = 1) lie in , 3 . Now the ℓ  except 푝 = 1 or ∞ are uniformly 

convex; that is, there is a function ∆ : (0,1] → (0,1] such that whenever 
‖푥‖ = ‖푦‖ = 1 and ‖푥 − 푦‖ ≥ 휖, we have ‖(푥 + 푦) 2⁄ ‖ ≤ 1 − ∆ (휖). 
For a compact set of values 푝 not including 푝 = 1, we can use the same 

modulus of convexity for all 푝, e.g. for all 푝 ∈ , 3 . Our Banach space 

푋(푋∗) are the ℓ -direct sum of ℓ  having a common modulus of 
convexity. Therefore, 푋 and 푋∗ themselves are uniformly convex. Let ∆ 
denote a common modulus of convexity for all such Banach spaces. (∆ is 
the modulus of convexity for the uncountable ℓ -direct sum 

⨁ ∈ , ℓ ). We now show the following result. 

Theorem (4.2.8) [4]: 

If the sequence 푎 < 푏 < 푎 … satisfies growth conditions, then our 
space 푋 is "fairly close" to a Hilbert space (with constant 푏 = 100), and 
therefore 퐾(푋) is approximately amenable. 
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Proof: 

Given 푇 ∈ 퐾(푋) of norm at most 1, and 휖 > 0, we must find a 

shrinking basis (푥 )  with coordinate functional (푥∗), 0 = 푛 < 푛 <
⋯푛 = 푁, and 푐 > 0 such that the conditions of Definition (4.1.1) are 
satisfied. We may assume that 휖 < 1. We being by choosing 푛  and 푐, 
also the finite sequences (푥 )  and (푥∗) . 

Definition (4.2.9) [4]: 

Let 푄 :⨁ ℓ → ⨁  be the natural projection onto the first 푟 

vectors in the ℓ -direct sum. Pick an 푟  large enough that 푟 > 푚 ∨ , and 

				 푇 − 푄 푇 푄 < 휖				(휇 = 1…푚).																									(24) 

We write 퐵 = ∑ 푏 	(푎푛푑	퐵 = 0), and let (푓 )  be the unit 

vector basis of 푙 , so that the entire sequence (푓 )  is the obvious basis 
of 푋. Let (푓∗)  denote the dual basis. Thus, we have 

																									푄 = 푓 ⋅ 푓∗ ,			(푟 ∈ ℕ).																						(25) 

Define 푛 = 퐵 , 푥 = 푓  and 푥∗ = 푓∗ for 1 ≤ 푖 ≤ 푛 . We also define 

																														푐 = 4 ⋅ 푏
⁄

																						(26) 

and 

																														푘 = 1 + 푟 (푏 + 푐) .																							(27) 

In the notation of Definition (4.1.1), we are committed to 휋 = 푄 . 
Note that the condition 푇 − 휋 푇 휋 < 휖 of part (iii) of Definition 
(4.1.1) is satisfied by (24). Note also that 푘 > (푏 + 푐) 휖⁄  because 
푟 > 1 휖⁄ . 
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Lemma (4.2.10) [4]: 

Given growth conditions on the sequences (푎 ) and (푏 ), the maps 
휌 = ∑ 푒 ⋅ 푥∗ : 푋 → ℓ  and 휌 = ∑ 푥 ⋅ 푒∗: ℓ	 → 푋 have norm at 

most √푐. 

Proof: 

Let 1 ≤ 푟 ≤ 푟 . The natural map 휌 = ∑ 푒 ⋅ 푥∗ sends the unit 

vectors of ℓ  to some of the unit vectors of ℓ , and the map 휌 =

∑ 푥 ⋅ 푒∗ sends unit vectors of ℓ  to unit vectors of ℓ ; so 

‖휌 ‖ ∨ ‖휌 ‖ = 푏 = 푏 ( )⁄  (if 푟 is odd) or 푏 ( )⁄  (if 푟 is 
even). 

We can assume, as a growth condition, that the sequence 

푏 ( )⁄

∈ℕ
 is non-decreasing; so ‖휌‖ = ∑ 휌 =∨ ‖휌 ‖ ≤

푏
⁄

= √푐, likewise ‖휌′‖ ≤ √푐 also. 

So we now need to choose 푛 …푛 . In fact we shall also define a 
sequence 휂 …휂  of small positive reals, as follows: 

Definition (4.2.11) [4]: 

Given 푛 , 푏, 푐 and 푘, we define sequences (휂 ) , (휂 )  recursively 
as follows: Given 푖 ∈ [1, 푘] and the value 푛 , we define 

																									휂 =
1
5
⋅ ∆

휖
2 ⋅ 푛 ⋅ (푏 + 푐)

,																(28) 

where ∆ is the modulus of convexity as defined above; and 휂 , 휂  we 
define 푁 = (2푚 + 1)푛  and (when 푖 < 푘) 

																																	푛 = 휒 푁 ,
1
휂

,																				(29) 

where 휒:ℕ → ℕ is as in (23) and 휉 as in (20). 
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Note that from (23) we certainly have 푛 ≥ 2 > 푛 ; the sequence 
(푛 ) is strictly increasing as required. We continue by defining some 
vectors 푧( ) ∈ 푋, 푧( )∗ ∈ 푋∗		(푖 = 1…푛 , 1 ≤ 훾 ≤ 푘) as follows. 

Definition (4.2.12) [4]: 

We define 푧( ) = 푥 = 푓  and 푧( )∗ = 푓∗		(푖 = 1…푛 ). Given 

훾 ∈ [1, 푘) and 푧( ), 푧( )∗ 		(푖 = 1…푛 ), we define Ω( ) = (푖, 휇): 1 ≤ 푖 ≤

푛 , 1 ≤ 휇 ≤ 푚, 푇 푧( ) ≠ 0 , and for (푖, 휇) ∈ Ω( ) we write 

																													푣 ,
( ) =

푇 푧( )

푇 푧
.																													(30) 

We write Ω( ) = (푖, 휇): 1 ≤ 푖 ≤ 푛 , 1 ≤ 휇 ≤ 푚, 푧( )∗ ∘ 푇 (1 − 휋 ) ≠ 0  

and for (푖, 휇) ∈ Ω( ) we write 푤 ,
( ) ∈ 푋 for the (unique, because 푋, 푋∗ are 

uniformly convex) norm 1 support vectors for the functional 푧( )∗ ∘
푇 (1 − 휋 ) ∈ 푋∗. We then write 

								푆( ) = 푧( ) ∪ 푣 ,
( ): (푖, 휇) ∈ Ω( )

∪ 푤 ,
( ): (푖, 휇) ∈ Ω( ) .																																																											(31) 

There are at most (2푚 + 1)  non-zero elements of 푆( ). By Corollary 

(4.2.7) there is a collection of norm-1 vectors 푧( ) of size 

휒 (2푚 + 1) ,
1
휂

= 휒 푁 ,
1
휂

= 푛 , 

having disjoint supports, such that for each 푠 ∈ 푆( ) we have 

																				푑 푠, lin 푧( ): 1 ≤ 푖 ≤ 푛 	 ≤ 휂 															(32) 

and the support of 푧( ) is a union of some of the supports of the 푧( ) for 

each 푗. These are our vectors 푧( ) . The functionals 푧( )∗  are the 

unique norm 1 support functionals for the vectors 푧( ); as always with 
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a uniformly convex space with 1-unconditional basis, the support of 
푧( )∗ is the same as the support of 푧( ). 

We know that for each 푗 = 1…푛  and 훾 = 2…푘, the collection 

푧( )  includes a unit vector whose support is the singleton {푗}, which 

is the support of 푧( ) = 푥 = 푓 . We can rearrange if necessary and 

assume simply that 푧( ) = 푓  (and so 푧( )∗ = 푓 ) for all 훾 = 1…푘, 1 ≤

푗 ≤ 푛 . Then for 푗 ∈ (푛 , 푛 ], the vector 푧( ) is supported on (푛 ,∞), as 

is the support functional 푧( )∗. 

Definition (4.2.13) [4]: 

 For 푟 ∈ [1, 푘] we write 푍( ) = lin 푧( ): 1 ≤ 푖 ≤ 푛 ; and we define a 

further set of vectors 휁( ): 1 ≤ 푟 ≤ 푘, 1 ≤ 푖 ≤ 푛 ⊂ 푍( ) recursively as 

follows: 휁( ) = 푧( ) for all 푖, and for each 푟 < 푘 and 푖 ∈ [1, 푛 ], 휁( ) is 

the unique vector in 휁( ) = 푙푖푛 휁( ): 1 ≤ 푗 ≤ 푛  which is closets 

to 푧( ). 

As usual, the "closets vectors" in the definition are indeed unique because 
푋 is uniformly convex. And as we have discussed, for any 푟 one has 
푧( ) = 푓  for 1 ≤ 푖 ≤ 푛  hence 휁( ) = 푓 , also when 푖 ≤ 푛 . 

Also, for fixed 푟 the 푧( ) are chosen disjointly supported with respect 

to the standard basis (푓 ); and when 푟 < 푘, the support 푠푢푝푝	푧( ) is a 

union of some of the supports of the vectors 푧( ). We claim that the 

support 푠푢푝푝	휁( ) is contained in 푠푢푝푝	푧( ) for all 푖 and 푟. When 푟 = 푘, 
equality holds. Proceeding by reverse induction on 푟, let us fix 푖 ∈ [1, 푛 ] 
and write 푠푢푝푝	푧( ) =∪ ∈ 	 푠푢푝푝푧

( ); and assume that 푠푢푝푝	휁( ) ⊂

푠푢푝푝	푧( ) for all 푗 = 1, … , 푛 . Then for 푗 ∉ 퐸, 푠푢푝푝휁( ) ∩

푠푢푝푝푧( ) = ∅, so since (푓 ) is a 1-unconditional basis, the unique closets 

vector to 푧( ) in lin 휁( )  is a linear combination of vectors 

휁( ): 푗 ∈ 퐸  alone. That is, 휁( ) ∈ lin 휁( ): 푗 ∈ 퐸 , 푠푢푝푝	휁( )	 ⊂
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	∪ ∈ 	 푠푢푝푝휁
( ) ⊂∪ ∈ 푠푢푝푝푧( ) by hypothesis, that is 푠푢푝푝휁( ) ⊂

푠푢푝푝푧( ). In fact, we can say a little more: 

Lemma (4.2.14) [4]: 

 The vectors 휁( ) are non-zero, and the distance 휁( ) − 푧( ) ≤ 2휂  

for all 푟 ∈ [1, 휅] and 푖 ∈ [1, 푛 ]. 

Proof: 

We write 휀 = max 휁( ) − 푧( ) : 푖 = 1, … , 푛 . Form (28) we see 

that 휂 ≤ 1 5⁄  for all 푟, so since 푧( ) = 1, we only need to prove the 

second assertion. Since for fixed 푟, the vectors 푧( ) are disjointly 
supported, for every 푦 ∈ ℂ  we have 

																		max|푦 | ≤ 푦 푧( ) ≤ |푦 |.																					(33) 

One can define a linear map 훼 = 훼( ): 푍( ) → 휁( ) with 

																					훼 푧( ) = 휁( )																																					(34) 

for each 푖, and (33) gives us the simple estimate 

														‖훼(푥) − 푥‖ ≤ ‖푥‖ ⋅ 푧( ) − 휁( ) ≤ 푛 휀 ⋅ ‖푥‖.										(35) 

Now suppose that 푟 > 1. By (32), the vectors 푧( ) are chosen so that for 

each 푗 ∈ [1, 푛 ], the norm distance 푑 푧( ), 푍( ) ≤ 휂 . Fix 푗 and 

let 푧 ∈ 푍( ) be a vector with 푧 − 푧( ) ≤ 휂 . Then the vector 훼(푧) 

lies in 휁( ), and 훼(푧) − 푧( ) ≤ 휂 + ‖훼(푧) − 푧‖ ≤ 휂 +

푛 휀 ‖푧‖ + 휂 + 푛 휀 (1 + 휂 ) because 푧( ) = 1 and 푧 −

푧( ) ≤ 휂 . Since 휁( ) is by definition the closets vector in 휁( ) to 
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푧( ) we accordingly have 휁( ) − 푧( ) ≤ 휂 + 푛 휂 (1 +

휂 ), and hence, 

																				휀 ≤ 푛 휀 (1 + 휂 ) + 휂 .																							(36) 

Now for all 푟 ∈ [1, 푘], the constant 휂 = ⋅ ∆ ( ) ≤  

because ∆ is a modulus of convexity so ∆(ℎ) ≤ ℎ for all ℎ ∈ (0,1]. 
Therefore, 

																				푛 휂 ≤
1

2 푛
≤ 2 휂 , if	푟 > 1;															(37) 

because the constant 푛 = 휒 푁 ,  where 휒(푛,푚) > 휉(푛,푚) =

(1 + 4푛푚)  by (23) and (20); so very crudely, we can say 푛 > 4 휂⁄ . 
Substituting this in (36) and dividing by 휂 , we have 

휀
휂

≤ 2
휀
휂
(1 + 휂 ) + 1 ≤ 2

휀
휂
+ 1. 

So if ≤ 2, certainly ≤ 2. But we begin with 휀 = 0; so ≤ 2 for 

all 푟 = 1, … , 푘 by reverse induction. 

Corollary (4.2.15) [4]: 

For all 푟 = 1, … , 푘 and 푥 ∈ 푍( ) we have 훼( )(푥) − 푥 ≤ 2푛 휂 ⋅
‖푥‖ (2 푛 )⁄ , and when 푟 > 1, we have 훼( )(푥) − 푥 ≤ ‖푥‖ ⋅
2 휂 . 

Proof: 

We are now in a position to complete the definition of the sequences 
(푥 ) , (푥∗) . 

Definition (4.2.16) [4]: 

For 푟 ∈ (1, 푘] we define the maps 훽: 푋 → ℓ  and 훽 : ℓ → 푋 by 

																																	훽 = 푒 ⋅ 푧( )∗ 																					(38) 



122 
 

and  

											훽 = 푧( ) ⋅ 푒∗ .																																						(39) 

We also define a Euclidean seminorm ‖⋅‖  on 푋 by 

																						‖푥‖ = ‖휌(푥) + 훽(푥)‖,																											(40) 

where 휌 = ∑ 푒 ⋅ 푥∗ = ∑ 푧( )∗ as in Definition (4.1.1). Of course, 
‖⋅‖  is a norm on the finite dimensional subspace 푍( ). The subspaces 
휉( ) ⊂ 푍( ) are nested, and we have a projection 푃 = ∑ 푧( ) ⋅ 푧( )∗ 

onto 푍( ). We have already defined the sequence (푥 ) , namely 푥 = 푓 , 

and it is ‖⋅‖ -orthonormal basis of 휁( ) = 푙푖푛 휁( ): 1 ≤ 푖 ≤ 푛 =

푙푖푛{푓 : 1 ≤ 푖 ≤ 푛 }. We define the sequence (푥 )  to be any ‖⋅‖ -

orthonormal basis of the orthonormal complement 휁( ) ⊝ 휁( ) (noting 
that this subspace does indeed have dimension exactly 푛 − 푛  because 
the 휁( ) are disjointly supported, and non-zero by Lemma (4.2.14)). The 
sequence (푥 )  is any orthonormal basis of 휁( ) ⊝ 휁( ); and so on, 

unit the sequence (푥 )  is orthonormal basis of 휁( ) ⊝ 휁( ). 

Thus we choose (푥 )  such that they are an orthonormal basis of the 
image 푃푋 = 푍( ). 

Now the space 푋 has a Schauder basis, so its closed subspaces of finite 
codimension all have Schauder bases. The sequence (푥 )  we 
choose to be an arbitrary Schauder basis of the kernel ker 푃, so the whole 
sequence (푥 )  is a basis of 푋. The associated coordinate functionals 
(푥∗) ∈ 푋∗ will satisfy ∑ 푥 ⋅ 푥∗ = 푃, so the sequence really does 
extend the initial sequence 푥∗ = 푓∗ for 푖 = 1,… , 푛 . 

We note that the Schauder basis (푥 ) is certainly a shrinking basis 
because 푋 is reflexive. We claim that our choice of the (푥 ) and (푥∗) 
satisfies all the other conditions of Definition (4.1.1), hence 푋 is fairly 
close to a Hilbert space. We now begin to prove this, by getting a decent 
estimate on the norms of the projections 휋  as in Definition (4.1.1). 
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Lemma (4.2.17) [4]: 

Let 퐹:ℕ → ℕ be any function. Given suitable growth conditions on 
the underlying sequences 푎 < 푏 < 푎 < 푏 …, the following is true: 
whenever (푧 )  are disjointly supported unit vectors in 푙푖푛 푓 : 푗 >
퐵 } ⊂ 푋, and (푧∗)  are the corresponding support functionals, and 
훼 ≤ 퐹(푟, 푏 ), one has 

																										‖	풯‖ ⋅ ‖	풯′‖ ≤ 1 +
1
푎

																						(41) 

where 	풯 = ∑ 푒 ⋅ 푧∗ : 푋 → ℓ  and 	풯′ = ∑ 푧 ⋅ 푒∗ : ℓ → 푋. 

Proof: 

 Consider first the case when all the 푧  belong to a single ℓ (푠 ≥ 푟 +
1). One has ‖∑ 휆 푧 ‖ = (∑|휆 | ) ⁄  but ‖∑ 휆 푒 ‖ = (∑ |휆 | ) ⁄  
and routing calculations lead to the conclusion that 

‖	풯‖ ∨ ‖	풯 ‖ ≤ 훼 ≤ 훼 ⁄ 			 since	푝 = 2 ±
1
푎

≤ 훼 ⁄ . 

When the 푧  may be supported on several of the ℓ  we can split 푧  into 

several 푧 , ∈ ℓ , take the direct sum of the projections 	풯  onto 

lin 푧 , : 푖 = 1…훼 , 

compose it at the ℓ -end with a partial isometry such that the images of 

the sums ∑ 풯 푧 ,  (one has ∑ 푧 , = 1 because 푋 is an ℓ -direct sum) 
are the unit vectors 푒 , and one obtains the map 	풯. So still, ‖	풯‖ ≤
훼 ⁄  and similarly ‖	풯 ‖ ≤ 훼 ⁄ . Our growth condition is therefore 

																	퐹(푟, 푏 ) ⁄ = exp
log 퐹(푟, 푏 )

푎
< 1 +

1
푎

								(42) 

for each 푟, a perfectly respectable growth condition. 
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Corollary (4.2.18) [4]: 

We can, given growth conditions, be sure that the maps 훽 and 훽′ of 
(38) and (39) satisfy 

																		‖훽‖ ∨ ‖훽′‖ < 1 +
1
푎

< (1 + 휂 ) ⁄ 															(43) 

Proof: 

For the first inequality, the preceding lemma tells us that it is only 
necessary to show that 푛  as in Definition (4.2.11) is bounded above by a 
fix function 퐹 푟 , 푏 . Now 푛 = 퐵 ≤ 푟 푏  because the sequence (푏 ) 
is increasing likewise the constants 푐, 푘 as defined in (26) and (27) are 
bounded by suitable functions of 푟  and 푏 . In the same definition, 
Definition (4.2.9), we chose 푟 > 푚 and 푟 > 1 휖⁄ , so when we 
recursively define 푛 …푛  and 휂 …휂  by the procedure of Definition 
(4.2.11), even the last element 푛  of the sequence is bounded by a 
function of 푟  and 푏 . Likewise the small constant 휂  has 1 휂⁄  bounded 

by a suitable function of 푟  and 푏 ; so the second inequality 1 + <

(1 + 휂 ) ⁄  is just another growth condition. 

Corollary (4.2.19) [4]: 

With our chosen shrinking basis (푥 ), and our chosen sequence 
(푛 ) , the maps 휎, 휎′ as defined in Definition (4.1.1) have norm at 
most (1 + 휂 ) ⁄ . The estimate ‖휎‖ ∨ ‖휎′‖ ≤ √푏 is satisfied. 

Proof: 

The map 휎 = ∑ 푒 ⋅ 푥∗ annihilates ker 푃 and lm휋 =

lin{푓 : 1 ≤ 푖 ≤ 푛 }, and it sends the ‖⋅‖ -orthonormal basis (푥 )  of 
lm푃 ⊝ lm휋  to the unit vectors 푒 (푖 = 1 + 푛 ,… , 푛 ). The map 훽 =
∑ 푒 ⋅ 푧( )∗ likewise annihilates ker 푃 and lm휋 , and sends the 

original ‖⋅‖ -orthonormal basis 푧( ) to the unit vectors 푒 (푖 = 1 +
푛 ,… , 푛 ). Consequently we have 휎 = 푈훽 for a suitable unitary operator 
푈 on ℓ . Similarly we have 휎 = 훽′푈∗, so ‖휎‖ ∨ ‖휎′‖ = ‖훽‖ ∨ ‖훽′‖ and 
the result follows from Corollary (4.2.18). 
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Corollary (4.2.20) [4]: 

With our chosen shrinking basis (푥 ), and our chosen sequence 
(푛 ) , the maps 휋 (푟 = 1,… , 푘) as defined in Definition (4.1.1) have 
norm at most 2 + 휂 . The estimate ‖휋 ‖ ∨ ‖퐼 − 휋 ‖ ≤ 푏 is satisfied. 
Furthermore, we have ‖휋 − 휋 ‖ ≤ 1 + 휂 . 

Proof: 

The basis constant for 푋 is 1, and 휋 = ∑ 푓 ⋅ 푓∗ accordingly has 
norm 1. For 푟 > 1, the difference 휋 − 휋 = ∑ 푥 ⋅ 푥∗ is equal to 
the composition 휎′푞 휎, where 푞  is the orthonormal projection with  

																									푞(푒 ) = 푒 푖 ∈ (푛 , 푛 ];
0 otherwise.

� 																						(44) 

Accordingly ‖휋 − 휋 ‖ ≤ ‖휎‖ ⋅ ‖휎′‖ ≤ 1 + 휂  by our preceding 
Corollary. The result follows. 

We can now establish the rest of the condition of Definition (4.1.1). 
Form (i) and (ii) of Definition (4.1.1), there is nothing left to prove, so we 
now establish part (iii). We must show that 

(퐼 − 휋 )푇 푥 <
휖

푛 ⋅ 2 ⋅ (푏 + 푐)
, 

and 

푥∗ ∘ 푇 (퐼 − 휋 ) <
휖

푛 ⋅ 2 ⋅ (푏 + 푐)
, 

for 푗 ∈ [1, 푛 ], 1 ≤ 푟 < 푘 and 휇 = 1…푚. Now 퐼 − 휋  is a projection 
of norm no more than 4 by Corollary (4.2.19), so it is enough to show that 

								푑 푇 푥 , lm	 휋 = 푑 푇 푥 , 휁( )

<
휖

4푛 ⋅ 2 ⋅ (푏 + 푐)
,																																																												(45) 

and 

															푑 푥∗ ∘ 푇 , 푋∗ ∘ 휋 <
휖

4푛 ⋅ 2 ⋅ (푏 + 푐)
.															(46) 
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Let us first establish (45). If 푗 ≤ 푛  then 푥 = 푓 = 푧( ), and 

푑 푇 푧( ), 푍( ) ≤ 휂  by (32). If 푧 ∈ 푍( ) is the closets vector to 

푇 푧( ) then ‖푧‖ ≤ 1 + 휂  so 훼( )푧 − 푧 ≤ (1 + 휂 ) ⋅ 2 휂  by 

Corollary (4.2.15). So 푑 푇 푧( ) , 휁( ) ≤ 푇 푧( ) − 훼( )푧 ≤ 휂 +
(1 + 휂 ) ⋅ 2 휂 ≤ 2휂 , and (46) is established when we look at the 
definition of 휂  in (28) and remember that ∆(ℎ) ≤ ℎ. 

 If 푗 > 푛 , 푥  is a sum ∑ 휆 휁( ) with 푥 = 1. By Corollary 

(4.2.15), the map 훼( ): 푍( ) → 휁( ) satisfies ‖훼(푥) − 푥‖ ≤ 2푛 휂 ‖푥‖ ≤
‖푥‖ 16⁄  for all 푥 ∈ 푍( ). So the inverse map 훼  has ‖훼 ‖ ≤ 16 15⁄ ; 
we have 훼 푥 = ∑ 휆 푧( ), and the 푧( ) are disjointly supported with 
norm 1, so 훼 푥 ≥ max{|휆 |}, so for all 푖, |휆 | ≤ 훼 푥 ≤
16 푥 15⁄ ≤ 16 ‖휎′‖ 15⁄  for	푥 = 휎′푒 ≤ 16 1 + 1 푎⁄ 15⁄  by 
Corollary (4.2.19). This estimate is at most 3 2⁄ , given the very modest 
growth condition 푎 ≥ 7, so no |휆 | exceeds 3 2⁄ . We have 푥 −
훼 푥 ≤ 2푛 휂 훼 푥 ≤ 3푛 휂 , and so 푇 푥 − 푇 훼 푥 ≤ 3푛 휂  

also. By (28), and ∆(ℎ) ≤ ℎ, we have 푇 푥 − 푇 훼 푥 ≤ ⋅

( ) . Comparing this with our target (45), we see that it is enough 

to show  

																	푑 푇 훼 푥 , 휁( ) ≤
휀

8푛 ⋅ 2 ⋅ (푏 + 푐)
.																(47) 

The vector 푇 훼 푥 = ∑ 휆 푇 푧( ), and 
( )

( ) = 푣 ,
( ) ∈ 푆( ) by 

Definition (4.2.12). The vectors 푧( ) are chosen such that 

푑 푣 ,
( ), 푍( ) ≤ 휂 . The closets vector 푤 to 푣 ,

( ) in 푍( ) has norm at 

most 1 + 휂 , and 훼( )푤 −푤 ≤ 2 휂 ⋅ ‖푤‖ by Corollary 

(4.2.15). The vector 훼( )푤 ∈ 휁( ), so 푑 푣 ,
( ), 휁( ) ≤

휂 (1 + 2 ⋅ ‖푤‖) ≤ 휂 . 
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Since 푇 푧( ) ≤ 1, we also have 푑 푇 푧( ), 휁( ) ≤ 휂  also. Now 

훼 푥 = ∑ 휆 푧( ) with |휆 | ≤ 3 2⁄ , so we have 푑 푇 훼 푥 , 휁( ) ≤

푛 휂 . Applying (28) again (and ∆(ℎ) ≤ ℎ), we find 

푑 푇 훼 푥 , 휁( ) ≤ ⋅ ( ) . Thus (47), and hence (45) are 

established. 

It remains to establish (46). We first note that 

푥∗ ∘ 푇 휋 ∈ lin 푥∗…푥∗ = lin 푥∗ ∘ 휋 …푥 	∗ ∘ 휋 , 

so (46) is exactly equivalent to 

																푑 푥∗ ∘ 푇 (퐼 − 휋 ), 푋∗ ∘ 휋 <
휖

4푛 ⋅ 2 ⋅ (푏 + 푐)
.								(48) 

The set 푆  includes a supporting vector 푤 ,
( ) for the functional 푧( )∗ ∘

푇 ∘ (퐼 − 휋 ), and the closets vector 푤 to 푤 ,
( ) in lin 푧( )  is within 

distance 휂 . That means that we have ‖푤‖ ≤ 1 + 휂 , and 푤 = 훼( )푤 
satisfies ‖푤 − 푤‖ ≤ 2 휂 ‖푤‖ ≤ 2 휂  by Corollary (4.2.19), so 

푤 ,
( ) − 푤′ ≤ 3휂 2⁄  and ‖푤′‖ ≤ 1 + 3 휂 2⁄ . Accordingly, the real 

part 

						ℜ푒 〈푧( )∗ ∘ 푇 (퐼 − 휋 ), 푤′〉

≥ 푧( )∗ ∘ 푇 (퐼 − 휋 ) ⋅ 1 −
3
2
휂 .																																	(49) 

Now 휋 푤 = 푤′, so we also have 

ℜ푒 〈푧( )∗ ∘ 푇 (퐼 − 휋 )휋 , 푤′〉 ≥ 푧( )∗ ∘ 푇 (퐼 − 휋 ) ⋅ 1 − 휂 . 

We have 

‖(퐼 − 휋 )휋 ‖ = ‖휋 − 휋 ‖ ≤ 1 + 휂 , 

so the ratio 
( )∗∘ ( )

( )∗∘ ( )
≤ 1 + 휂 . 

Writing 푧∗ = 푧( )∗ ∘ 푇 (퐼 − 휋 ) 푧( ) ∘ 푇 (퐼 − 휋 ) , and 
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푤∗ = 푧( )∗ ∘ 푇 (퐼 − 휋 )휋 푧( )∗ ∘ 푇 (퐼 − 휋 )휋 , 

we have ℜ푒〈푧∗, 푤′〉 ≥ 1 − 휂  and  

ℜ푒〈푤∗, 푤′〉 ≥ 1 − 휂 (1 + 휂 ) ≥ 1 − 휂 . 

We also have 

‖푧∗‖ = ‖푤∗‖ = 1, 

And 
∗ ∗

≥ ℜ푒 〈
∗ ∗

, 푤′〉 ‖푤′‖ ≥ ( )
‖ ‖ ≥ ( ) ≥ 1 − 4휂 . 

But 휂 = ∆
⋅( ) 5⁄ , by (28), so by the uniform convexity of 

푋∗,we have ‖푧∗ − 푤∗‖ < 휖 푛 ⋅ 2⁄  ⋅ (푏 + 푐) . But 푤∗ ∈ 푋∗ ∘ 휋  so 
푑(푧∗, 푋∗ ∘ 휋 ) <

⋅( ) .  

Hence, since 

푧( )∗ = 1, 푎푛푑 푇 (퐼 − 휋 ) ≤ 1, 

we also have 

														푑 푧( )∗ ∘ 푇 (퐼 − 휋 ), 푋∗ ∘ 휋 ≤
휖

2 푛 ⋅ (푏 + 푐)
.							(50) 

For 푗 ≤ 푛 , 푥∗ = 푧( )∗ = 푓∗ so equation (50) also applies with 푧( )∗ 
replaced by 푥∗, and (46) is established for this 푗. If 푛 < 푗 ≤ 푛  let us 

again write 푥 = ∑ 휆 휁( ). The linear function 푥∗ annihilates ker 휋  
and lm	 휋 , and satisfies 푥∗(푥 ) = 훿 ,  for 푛 < 푖 ≤ 푛 . The (푥 ) are a 
‖⋅‖ -orthonormal basis of 휁( ), so, we have 

								〈푥∗, 푦〉 = 〈(휋 − 휋 )푦, 푥 〉 = 휆 〈(휋 − 휋 )푦, 휁( )〉 ,											(51) 

for all 푦 ∈ 푋, where 〈⋅,⋅〉 is the inner product associated with ‖⋅‖ . 
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We write 휁( )∗ for the functional in 푋∗ with 휁( )∗(푦) = 〈(휋 −

휋 )푦, 휁( )〉 = 〈휎 푞 휎푦, 휁( )〉 (where 푞  is as in (44)) = 〈푞 휎푦, 휎휁( )〉, 

where the last inner product is in ℓ . We will have 휁( )∗ ≤ ‖휎‖ ⋅

휁( ) ≤ (1 + 휂 ) 휁( )  (by Corollary (4.2.19)) ≤ (1 + 휂 )(1 + 2휂 ) 

(by Lemma (4.2.14)). So the normalized functional 푤∗ = 휁( )∗ 휁( )∗  

has 푤∗ 휁( ) = 휁( ) 휁( )∗ ≥ (1 + 휂 ) 휁( ) 휁( ) . The 

ratio 휁( ) 휁( )  is equal to 훽 훽휁( ) 훽휁( ) , and cannot exceed 

(1 + 휂 ) ⁄  by Corollary (4.2.18); so 휁( ) 휁( ) ≥ (1 +

휂 ) 휁( ) , and 

																	푤∗ 휁( ) 휁( ) ≥ (1 + 휂 ) ≥ 1 − 2휂 .														(52) 

 The norm 1 functional 푧( )∗ has ℜ푒푧( )∗ 휁( ) = 1 + ℜ푒푧( )∗ 휁( ) −

푧( ) ≥ 1 − 2휂  by Lemma (4.2.14) again, so ℜ푒푧( )∗ 	 휁( ) ≥
(1 − 2휂 ) (1 − 2휂 )⁄ ≥ 1 − 4휂 . Comparing this with (52), we find that 

the average 푤∗ + 푧( )∗ 2⁄  has norm at least 1 − 3휂 > 1 −

∆
⋅( )  by (28). By the uniform convexity of 푋∗, we have 

푤∗ − 푧( )∗ <
⋅( ) , and so 푑 푤∗ ∘ 푇 (1 − 휋 ), 푋∗ ∘ 휋 ≤

⋅( )  by (50), we have 푥∗ = ∑ 휆 휁( )∗ = ∑ 휆  

휁( ) ⋅ 푤∗, where no |휆 | exceed 3 2⁄ , and no 휁( )∗  exceeds (1 + 휂 ) 

(1 + 2휂 ); therefore 푑 푥∗ ∘ 푇 (1 − 휋 ), 푋∗ ∘ 휋 ≤ ( )( )
⋅( )  

<
⋅( )  since no 휂 > 1 80⁄  by (28). Thus (48), and so also (46), 

are established. 

So 퐾(푋) is approximately amenable, given growth conditions on the 
(푎 ) and (푏 ). 
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