Chapter 1

Amenability and Generalized Notions

In this chapter the Results are given on Banach sequence, Lipschitz
algebras and Burling algebras, and on crucial role of approximate
identities. We show a result due to N. Gronbzk on characterizing of
amenability for Beurling algebras.

Section (1.1): Equivalence with Uniform Notion and Sequence Space

The concept of amenability for a Banach algebra A was introduced by
Johmson in 1972, and has proved to be of enormous importance in
Banach algebra theory. Several modifications of this notion were
introduced. We continue the investigation of these, in particular that of
approximate amenability.

Let A be a Banach algebra, and let X be a Banach A-bimodule. A
derivation is a linear map D: A — X such that

D(ab) =a-D(a) +D(a)-b (a,b € A).

By a derivation we mean a continuous derivation. For x € X, set ady :
ar—a-x—x-3aA - X Then ady is the inner derivation induced by x.
The derivation D : A — X is approximately inner if there is a net (x,) in X
such that

D(a) =lim(a-x, —x,-a) (a€A),
a
so that D = lim, ady_ in the strong-operator of B(4, X).

The dual of a Banach space X is denoted by X™; in the case where X is
a Banach A-bimodule, X* is also a Banach A-bimodule. For the standard
dual module definitions.

Definition (1.1.1) [1]:
Let A be a Banach algebra.

(1) A is approximately amenable if, for each Banach A-bimodule X,
every derivation D : A — X" is approximately inner;



(i) A is approximately contractible if, for each Banach A-bimodule
X, every derivation D : A — X is approximately inner.

The qualifier sequential prefixed to the above definitions specifies that
there is a sequence of inner derivations approximating each given
derivation. Similarly, the qualifier weak*® prefixed to the definitions of
approximate amenability specifies that the convergence in the weak*
topology of X~.

Each amenable Banach algebra is approximately amenable. Some
approximately amenable Banach algebras which are not amenable are
constructed. Further examples have been shown Ghahramani and Stokke:
the Fourier algebra A(G) is approximately amenable for each amenable,
discrete group G, but it is known that these algebras are not always
amenable.

Throughout, the second dual of a Banach algebra A will always be
equipped with the first (or left) Arens product. Thus (x,y) = xy is a
continuous function of y € A™ for each x € A, and continuous function
of x € A** for each y € A**. Finally, A* will denote A with identity,
denoted by e, adjoined.

Now we can define Goldstine’s Theorem [5]: let X be a Banach space,
then the image of the closed unit ball B € X under the canonical
imbedding into the closed unit ball B “of the bidual space X is weakly *-
dense.

Theorem (1.1.2) [1]:
For a Banach algebra A the following are equivalent.

(1) A 1s approximately contractible;
(11) A 1s approximately amenable;
(111) A is weak*-approximately amenable.

Proof:
It suffices to show that (ii1) = (1).

Suppose that (iii) holds. Then A% is weak*-approximately amenable.
Following the classical argument of B.E.Johnson, there is a net (M,,) C



(a‘l# ® Jl#)** such that for each a€A,a-M,—M,-a— 0 and
n**(M,) - e in the weak*-topology of (a‘l# ® Jl#)** and A™,
respectively.

Now take &€ >0, and finite sets F c Af & c (A")*, and N c
(a‘l# ® o‘l#)*. Then there i1s v such that

a-f—=f-aM)l=[fa-M,—M,-a)|l <e
and
(p, ™" (M) —e)| <&
foralla € F,p € ®and f € N.

By Goldstine’s theorem, and the weak*-continuity of 7™, there is
m € A% ® A" such that

(fra-m—-—m-a)l =Ka-f—f-am)<eand ($,n(m)—e)| <e
foralla € F,p € ®and f € N.

Thus there is net (my) c A" ® A" such that for every a € 4,a -
my—my-a—0 and m(my) »e, weakly in A* @ A% and A%,
respectively.

Finally, for each finite set F ¢ A%, say F{ay, ..., a,},

(al "My — My Ay, .,y - My — My - an,n(m,l)) - (0,...,0,e)
weakly in (a‘l# ® Jl#)n ® A*. Thus
(0, ...,0,e) € 0" {(a, - my —my - ay, ..., an My —my - ay, w(my)) .

The Hahn-Banach theorem now gives that for each & > 0, there is
u. p € co{m,}, such that

||a "Ugp — Ugp a|| < ¢ and ||7t(ug,F) — e|| <¢g
for a € F. Thus we have (1).

Recall that a Banach algebra A is uniformly approximately amenable
if every continuous derivation from A into any dual Banach A-bimodule



may be approximated uniformly on the unit ball of A by inner derivations.
Clearly any amenable Banach algebra is uniformly approximately
amenable. In this section we show that the converse is also true.

Theorem (1.1.3) [1]:

A Banach algebra A is uniformly approximately amenable if and only
if it 1s amenable.

Proof:

Let A be uniformly approximately amenable. Note that A is amenable
(uniformly approximately amenable) if and only if its unitization A¥ is
amenable (respectively uniformly approximately amenable), and so
without loss of generality we may assume that A has a unit e. Consider
A & A°P with the product specified by

(@a®b)(c®d)=ac®db (a,b,c,d € A).

Let m: A® A° — A be the product map. To show A is amenable it
suffices to show that K, = ker(m) has a bounded right approximate
identity, or equivalently, that K™ has a right identity.

Fora,b € Aandt € A @ A°P, we have
(a®b)t=a-t"b. (D

By the weak* continuity of the actions involved, (1) also for t €
(A ®A°p)**. Take t € Ky". Then for s = }; a; ® b; € K, noting that
Yjajbj = m(s) = 0, and using (1), we have

st—s = z(aj ®bj)t_tzajbj —zaj ® b; +e®zajbf
J J J

j
=z(aj-t—t-aj—aj®e+e®aj)-bj.
j
It follows that

|st —s]|| < z”aj””bj” suplla-t—t-a—a®e+e®al,
; a€A;



where A; denotes the unit ball of A.
So we have

Ist —s|| < ||sl||suplla-t—t-a—a®e+eQ®al, (2)

aEA]'

for each s € K. Now take s € K;*. Then there is a net (s;) € K, such

wk* wk*
that ||s;|| < ||s|| and s; — s. Thus s;t —s — st —s and ||st —s| <
sup;|[s;t — s;|l. It follows that inequality (2) holds for all s € K*.

Consider the continuous derivation D : A — K" defined by
Da)=a®e—eQa.

From the hypothesis, there is a sequence (t,) € K", and &, — 0 such
that

la-t,—t,ra—a®@e+e®all <e¢g,llall (ae€A).

Thus, form inequality (2), the multiplication operator p, : K™ = Ky*

defined by p; (s) = st, satisfies ||ptn — idy+|| < 1 for n sufficiently
large. Take such n, so that p, is invertible. By surjectivity, there is
x € Ky* such that xt, =t,. Then for each y € K;* we have (yx —
Y)tn, = 0. From the injectivity of p, this implies yx = y(y € ;™). So

K™ has a right identity, as required.

In contrast to Theorem (1.1.2) the above theorem and indicate that
uniform  approximate amenability and uniform approximate
contractability are not the same.

Corollary (1.1.4) [1]:

If a finite-dimensional Banach algebra is approximately amenable,
then it is already amenable.

Proof:

If a Banach algebra A is finite- dimensional and is approximately
amenable, then it is wuniformly approximately amenable. So the
conclusion follows from Theorem (1.1.4).



As usual ¢y will be the subalgebra of CN consisting of sequences
having finite support.

Definition (1.1.5) [1]:

A Banach sequence algebra on N is a Banach algebra A which is a
subalgebra of CN such that cqq € A.

It is known that a Banach sequence algebra A is approximately amenable
whenever it has a bounded approximate identity. Indeed, a simple variant
on the argument there shows the following.

Proposition (1.1.6) [1]:

Let A be a commutative semisimple Banach algebra with discrete
maximal ideal space, and suppose that A has a bounded approximate
identity consisting of elements of compact support. Then A is
approximately amenable.

All  known approximately amenable algebras have bounded
approximate identities, though in general all that can be said is that
approximately amenable algebras have one-side, possibly unbounded,
approximate identities. Thus it is of interest to know conditions under
which an approximately amenable algebra must have a bounded
approximate identity. We show the following.

Proposition (1.1.7) [1]:

Either of the following conditions is sufficient for A to be sequentially
approximately contractible.

(i) A is a Banach algebra with identity e and there exists (G,) C
A ® A with m(G,,) = e and such that for every a € A,

lla-Gp — Gy -all - 0.

(i) A 1s a Banach sequence algebra with a bounded sequential
approximate identity in cg.

forn € N, set E,, = X[1,n] € cy9, &, = X[n].



Theorem (1.1.8) [1]:

Let A be a Banach sequence algebra such that (Enk) 1s an approximate
identity for some increasing sequence (ny); = 0. Then A is sequentially
approximately contractible if and only if A has a bounded sequential
approximate identity in cg.

Proof:

Suppose that A is sequentially approximately contractible. We take
(Enk) unbounded otherwise there is nothing to prove. By going to a
subsequence if necessary, we may suppose that P, = Ej,
unbounded sequence of idempotents. Set Py = E, . Define Ty : x —

— Ep, 1s an

Ey x for x € A. Then (T)) converges pointwise to the identity, so by
uniform boundedness there is B > 0 such that ||T,|| < B for all k. Thus
setting Qi = Ty41 — Tk, we have ||Qxll < 2B for each k, yet the
implementing elements P;, are unbounded in norm. set Z;, = P;. /|| Py |l.

Now our hypothesis gives sequences (M,,)) c A® 4, and (E,) c A
such that (F,) is an approximate identity for A for any x € 4,

x M, —M, x—xQF, +E®x—-0.

Indeed, since (Enk) is an approximate identity for A, it follows that cyq 1s

dense in A, so we may assume that M,, € ¢y ® ¢y and F,, € cqp.

By uniform boundedness, it follows that there is a constant L > 0 such
that

XMy —Mp-x—x®F + E®x[[ < Lllx|l meN)  (3)
Set x = z;, in (3). Then

WZy My —My-Z, —Z, QF, + FEQZ || <L meEN). (4)

Write F, = Y fj(")ej My, = (Zj ag.l)ej) ® (Z{) bi(?)eg) where

z z ai(;-l)ej z bi(?)e{)

J J ?

< ||M,|| + 1.




Note that each of the sums here is finite. Now
”Pk“(Zk ) Mn - Mn 'Zk - Zk ® Fn)

:Pk'Mn_Mn'Pk_Pk®Fn

ng+1
— m) (n)
—z z A € | ® zbij €j
T \JSmt 7
ng+1
(n) m)
i j f=ny+1
ng+1 n;+1
S e(s 5 )
j=nk+1 j €=Tli+1

Multiply though on the right by the idempotent P, this is a map with
bound 2B. Noting that Z, P, = Z, we have

WPll(Zy - My, - Py = My - Zy - Py — Zy @ E, * Py)

ng+1 ng+1
_ (n) (n)
- z z A € ® bL{’ €¢
j j=nk+1 {)=le+1
ng+1
(n) (n)
i j f=n;+1
ng+1 ng+1
n
j=nk+1 €=Tli+1

Consider the terms on the right-hand side of (5). For each

k, || Pl Z%H ej has unit norm; and Z?ﬁnkﬂfg"eg - 0ask — oo,

j=ng+1

Further,
nk+1

55 ) 55
j=ng+1 i j

<(1+B) z aie

i J




so the other terms have norm at most

ng+1 ng+1
(n) (n) (n)
z z A € | — z z ai; € |- z by e,
i j=ng+1 i j f=ny+1
< 2B(1+2B) z ai(;-l)ej ‘ z bi(?)e{)
i Ji ¢

< 2B(1 + 2B)(|IM, || + 1).
Since || Py || = o, it follows that for each n,
Zy My P — My - Py — Zi ®F, - P, = 0 (k — ).
But since from (4),
|Zy - My - Py =My Zy - Py —Z, @ By P + By @ Zy - Pyl| < 2BL

for all k,n, we have ”Fn” = llmk”Fk ®Zk” = llmk”Fk ®Zk ' Pk” 1S
bounded.

Thus (F) is a sequential bounded approximate identity for A
contained in cyq. The converse is Proposition (1.1.7) (i1).

In particular, consider the Feinstein algebras A,. Let @ = (a,) be a
sequence of strictly positive reals. Define

Aq=1{x = () € cor Il = Nl + )ty Py — ol < oo}.
n=1
These algebras have a bounded approximate identity if and only if
lim inf a,, < o0, and are amenable if and only if ) a; < c. Moreover,

they always have an approximate identity of the form (Enk).
Corollary (1.1.9) [1]:

The Feinstein algebra A, is sequentially approximately contractible if

and only if lim inf ) < oo, if and only if it has a bounded approximate
identity.



Proof:

If A, is sequentially approximate contractible, Theorem (1.1.8) shows
that A, has a bounded approximate identity, and so lim infa, < o as
noted above. Conversely, liminfa, < oo implies A, has a bounded

approximate identity, whence A, 1is sequentially approximately
contractible by Theorem (1.1.8).

Theorem (1.1.8) shows that £'(w) under pointwise operations is never
sequentially approximately contractible. In fact it is never approximately
amenable.

Suppose now that a; =1 and take a sequence (m;) such that
myg > mpg_1 + 1, let

I = {x € Ay:x; = Ounless j € {mk}}.

Then I is a closed ideal in A,, and I isomorphic to #'. Under the
supposition on (m;) shows that I complemented in A, is sequentially
approximately contractible, with a bounded approximate identity, yet I is
a complemented ideal which is not even approximately amenable. This is
in contrast to the situation with amenability.

We remark that taking I € A, to be the ideal * sits ” on the even
integers, so Z; = 2N + 1, ] that on the odd integers so that Z; = 2N, then
both [ and J are isomorphic to #!, are complemented (but not
complementary) ideals in A,,I NJ = {0}, and I + ] is dense. This just
reflects the fact that one cannot just set terms to zero and expect to remain
inside A,.

Example (1.1.10) [1]:

(Suggested by Garth Dales) Let S be the semigroup N with product
mn = min{m, n}, and take A, = £'(S) with convolution product. The
point masses {J,;: n € N} are idempotents with dense span, whence A, is
weekly amenable. However, it is not amenable. We show that A, is
sequentially approximately contractible.

Fora = Z aié'i € AA-
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n
opa = Eai&- + <z ai>6n ->a

i=1 i>n

as n — oo, so that (§,,) is a sequential bounded approximate identity. The
Gelfand transform for 4, is the map ®: A, = ¢, given by

d(x) = <z X;, z X;, )

i=1 =2

which is clearly injective with range containing cyo. Thus A, can be
considered as a Banach sequence algebra Proposition (1.1.8) (ii) shows
that A, is sequential approximately contractible, with G,, = E,, ® E,, and
E,, the required sequences when viewed in ®(A4,). Lifting back to A,
gives F, = 6, ® §,, which satisfies mw(F,) = §,. However to fit with
requires a sequence F, satisfying m(F,) = 26,,. In fact, setting §, = 0,

n
Fi=Fyt ) (8= 81) 8 (8 - 5-)
j=1

gives an unbounded sequence with the required properties. To see this
first note that

n n
2(ED) = 6, + z(aj —8_1)(6— 8_1) = 6, + 2(5]. _5_,) = 26,
j=1 j=1
Since

§i—8_1, j<k
5"(51'_51"1):{]0, T k<jl

for k < n we have

6kFT{_F1{6k+6n®6k_6k®6n

n n
=5 ) (5= ® (5 = §-1) = ) (- 8-1) ® (& - 5-1) &
j=1 j=1

=0,

and for k > n,

11



6kFT{_FT{6k+6k®6k_6k®6n
:6k'Fn_Fn'6k+6n®6k_6k®6n

So for a € A,,

aF,—FEa+6,Qa—a®9J,

- <z ai6i> ‘E,—E, - <z ai6i> +65,® <z ai5i>

i>n i>n i>n
— <z aié'i) ® 611
i>n
= 611 ® <z aié'i) — <z aié'i) ®5n
i>n i>n
- 0 (n - ). (6)

For the product mn = max{m, n}, A, = £'(S) has &, as an identity.

Define the (unbounded) sequence

Gn =06, ®8,+ ) (25,806~ 8 @1~ 5., ®5) (nEN)
i=2
Then n(G,,) = & clear. Further, for £ > n,
6# "Gy — Gy 6#

= 5,06 — 6,® 6, + 22(@@ 5 — 6:® 5,)

i=2

Z(@@& 1+5£®5)+Z(5 ®5;+6.1®6)
i=2 i=2
=5, 88, —5,®5,.
And for £ < n.

5['671—671'5[

= 5, ®8 — 5, @8, + 2 Z(‘Sf ®6; — 5,05,)

+ZZ(5®5 —5®5,) — Z@@all Zacaall

1£+1 1£+1

£+1 £+1
2511®5 Z@@a +Z<s ®5g+25®511
1£+2 i=f+2

+ Z 51 ® 6, +Z5l L ® 5.

i=f+1

12



Looking at the terms with §j, as first factor, for various values of k, we

have
£+1
5,® | 8 +2 25—& 2511 25 484+ 6, | =0,
i=
forr <,
6T®(_26{’+6l+6l):01
and forr > [,

6 & (6,1 — 6ry1 + 61 + 6,41) =0,
Thus 6, G, — G, - Gy, =0 forr < L.

It follows that for a = ), a;6; € A,

a-Gn—Gn-a=zak(6n®6k—6k®6n)
k=n

-0 (n-> o). (7)

So Ay is sequentially approximately amenable by Proposition (1.1.8) (1).

13



Section (1.2): Boundedly and Existence Approximate
Amenability of Direct Sums

Definition (1.2.1) [1]:

A Banach algebra A is boundedly approximately amenable if for every
Banach A-bimodule X, and every continuous derivation D : A = X~,

there is a net , there is a net (§;) € X™ such that the net (ad,gi) 1S norm
bounded in B(A4, X™) and such that

D(a) = liim adg,(a) (a € A).

Replacing X* with X in the above definition, we then have the notion
of boundedly approximately contractible.

Note that it is the net of derivations (ad,gi) that is required to be
bounded, not the implementing net (&;). On the other hand, if A is
amenable shows that A is boundedly approximately contractible with the
implementing net bounded.

A standard argument shows the following.
Proposition (1.2.2) [1]:

A Banach algebra A is boundedly approximately amenable if and only
if there is a constant L, > 0 such that for any A-bimodule X, and any
continuous derivation D : A — X*, there is a net (§;) € X* such that

(1) supi”adgi” < Lp||D||; and
(i) D(a) = lim; adg,(a) (a € A).

Proof:

The “if” part being trivial, assume that A is boundedly approximately
amenable. If there is no such L,;, then for every integer n € N there is a
module M,, with constant at least n for some norm one derivation D,
from A into M}. Take the module £'(M,) with dual £#°(M,;). Then the
derivation D = (D,,) into the latter has constant at least n, a contradiction.

In terms of the basic characterization of approximate amenability, we
have the following.

14



Theorem (1.2.3) [1]:

Suppose that the Banach algebra A is boundedly approximately
amenable. Then there is a net (M,,) C (A# ® A#)** and a constant L > 0
such that for each a €A% a-M,— M, -a—- 0,n**(M,) > e, and
la-M, — M, -a|| <L|la||]. Conversely, if A has this latter property and
(n** (Mv)) is bounded, then A is boundedly approximately amenable.

The uniform boundedness principle shows that every sequentially
approximately amenable Banach algebra is boundedly approximately
amenable.

Proposition (1.2.4) [1]:

Suppose that A is a boundedly approximately amenable Banach
algebra. If A is separable as a Banach space, then it is sequentially
approximately amenable.

Proof:

Let {b,;: n € N} be a countable dense subset of A. Let X be a Banach
A-bimodule and D:A — X* be a continuous derivation. Since A is
boundedly approximately amenable, there is a constant ¢ > 0 such that
for each n € N there is &, € X such that

1
ID(by) = (bi = $n = $n " bidl < - (k=12,..,n), and

lla-&n —&n-all < cllall (a € A).

This shows that the sequence (§;) € X* satisfies
D(by) = gi_{rolo(bk “$n—&n b)) (k€EN),

and the sequence (ad,gn) is a bounded net in B(4,X™). These together
with the density of (by) in A imply that

D(a) = %l_r)g(afn —$én-a) (a € A).

Therefore, D is sequentially approximately inner.

15



Proposition (1.2.5) [1]:

Suppose that A is a boundedly approximately contractible Banach
algebra. If A is separable as a Banach space, then it is sequentially
approximately contractible.

Example (1.2.6) [1]:

Let A = ¢y(S) where S is uncountable. Then A amenable and hence is
boundedly approximately contractible, but A cannot be sequentially
approximately contractible, for otherwise c,(S) would have a sequential
approximate identity, which is impossible. So, without separability
Proposition (1.2.5) is not true.

Example (1.2.7) [1]:

Let wy be the first infinite ordinal, and w; the first uncountable
ordinal. For each non-zero ordinal A, let S; be the set A taken as a
semigroup under the product A. Consider the resulting algebras £'(S;).

For A < wy these are finite-dimensional and amenable. We have

£! (Swo) boundedly approximately amenable as earlier, with L, < 2 from
Eq. (6).

Indeed, for any ordinal A the same calculation with S,, replaced S;,,
shows that fl(S y wo) is boundedly approximately amenable with L, = 2.

Note that (here the factor of 2 is merely a technical device)

2'(Sw,) =V {€1(S1420,): 4 < w1}.

Further (5/1+w0) ) is an approximate identity for £! (Swo) of bound 1 :

A<w
for a = ), a; 6, we have

Shtwed = z a0y + z A | Or+w, = -

k<l+w0 A+w0$k<w1

Since S340, € €1(5/1+2w0) and S,Hwoﬁl(Swl) C €1(5/1+2w0) shows that
fl(Swl) is approximately amenable, and checking the argument shows
that Lb = 2.

16



Yet ¢! (Swl) is not sequentially approximately contractible. For if it
were then in particular there would be a sequence (u,) in fl(Swl) such
that, for every a € fl(Swl),

a—uya— 0. (8)

But all the u,, have support in some countable set, and so in an interval
[0,1] for some A < w;. But then so does u,a for any a. So (8) fails for
a =g, forany u > A.

Give a Banach algebra A with unitization A*, set  : A* & A*°P — A#
to the product map, and set K =kerm. One of the standard
characterizations of amenability is the existence of a bounded right
approximate identity in K. As we now show, boundedly approximate
amenability can be characterized in a similar fashion. First a simple
lemma.

Lemma (1.2.8) [1]:

A Banach algebra A is boundedly approximately amenable if and only
if A* is boundedly approximately amenable.

Proof:

Let A be boundedly approximately amenable, X a Banach A*-
bimodule, D : A* — X* a derivation. By adjusting by an inner derivation
of norm at most 4||D|| we may suppose that X is neo-unital, and so
D(e) = 0.

By assumption, there is (x;") € X* and M > 0 such that for a € A:
D(a) = lilm(a x| —x; -+ a),
and for all i,
lla-x; —x; -all < Mllall.
Since D(e) = 0ande-x* = x"-e (x € X*), it follows that
D(a+ ae) = lilm((a +ae) x; —x; - (a+ ae)),
and

17



l(a+ ae) -x; —x; - (a+ ae)|| < M|la|| < lla+ ael|,
so that A* is boundedly approximately amenable.

Conversely, let X be an A-bimodule, and D : A - X* a derivation.
Setting e - x = x - e = x makes X into an A*-bimodule. Setting D(e) = 0
extends D to A*. Supposing A* is boundedly approximately amenable,
there is (x;) € X* and M > 0 such that forall a € A,

D(a) =lim(a-x; —x; -a), with [la-x; —x; - a|| < M||a]|,
l

as required.

In the following theorem m still denotes the product map from
A* ® A*°P into A% and K denotes kernel of 7.

Theorem (1.2.9) [1]:

A Banach algebra A is boundedly approximately amenable if and only
if there is a net (u;) € K™ and M > 0 such that:

(1) k-u; - k foreach k € K;
(1) k-l < M| k|| for all k € K and all i.

Proof:

Suppose that A is boundedly approximately amenable, and let
D :A - K* be the derivation D(a) = a ® e — e @ a. Then there is a
net (u;) € K** and M > 0 such that for all a € 4,

D(a) =lim(a-u; —u; -a),
l

with |la-u; —u; - al| < M||a|| foralli.
We show that (u;) has the desired properties.

Letk =) a, ® b, € K, so that ), a,,b,, = 0. Then

k-ui=zan-ui-bn=zan-ui-bn—2ui-anbn

n n n
:z(an U _ui'an)'bn'
n

so that
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e well < D llan - s = anll Iball < M) byl
n n

and so (ii) is satisfied.

Take € > 0, and write k = k; + k, where

N

k, =2cn®dnEiK and ||k,|| < e.

n=1

This is possible. Then, as above,

N N
kl-ui=zcn-ui-dn=z(cn-ui—ui-cn)-dn, 9
n=1 n=1
Since D(a) =a®e—e@afora € A,
N N
k1=Ecn®dn=z(cn®e_e®cn)'dn
n=1 n=1

N
= z D(Cn) “dy (10)
n=1

Putting (9) and (10) together,

N
ey 1t = Jeall £ Y llen g = - 6 = D) Il < 2,

n=1

Provided that i is sufficiently large. Since
ko - u; — kol < (M + Dlk|l < (M + 1),
we thus have
|k -u; — k|| < (M +2)e
provided i is sufficiently large. Thus (i) is satisfied.

Now suppose that a net (u;) € K™ as above exists. By Lemma
(1.2.8) it suffices to show that A* is boundedly approximately amenable.
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Set v, =e®e—u; € (A* @A#Op)**. Then 7**(v;) =e, and for
acEaA,

a-v;i—vira=@®e—eQ®a)—(a-u; —u;*a)
=(@®e—e®a)—(a®e—e® a)y,
-0, (11)

because a @ e — e @ a € K. Moreover, there is m > 0 such that
la-v; —v;-al|| <mllal] (a€A4,alli). (12)

Now let X be a unit-linked A*-bimodule, and let D : A* - X* be a
derivation. Let ¢ : A* ® A* = X* be the mapping specified by

p(a®b) =a-D(b) (a,b € AY).
Then ||@|| < ||ID||, and for a € A%, u € A* ® A,

pu-a) =¢9w a+n@D(a), ¢la-u)=a .

The natural projection P : X*** — X* is an A*-bimodule morphism,
™ (A# @A#)** - X™" is weak*-weak* continuous, and the map
Y =Pogp™: (A# @A#)** — X* satisfies |||l < ||D]|. For a € A*,u €
(A# ® A#)**, noting that P is weak™® continuous we have

Yu-a)=yW -a+n”w- D@, Y w=a Pp.

In particular, using neo-unitality,

D(a) = n**(v;) - D(a)

=yp;-a) —yY)-a

=a Y —yYW) -a—-yla v, —v;-a).
Thus by (11),
D(a) =lim(a-yp) — v - a)

whence, by (12),

lla- @) =) -all < ID@I + IYlllla-v; —v; - all
< IDlI(m + Dfall.
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It follows that D is boundedly approximately inner.

The same argument, with appropriate modifications, shows the
following.

Theorem (1.2.10) [1]:

The Banach algebra A is boundedly approximately contractible if and
only if there is a net (u;) € K and M > 0 such that

(1) k - u; = k for each k € K;
() [|k - u;l] < M| k|| for all k € K and all i.

We improve concerning approximate amenability of the direct sum of
Banach algebras as follows. There appears to be a close relation between
the existence of two-sided approximate identities in approximately
amenable algebras and the approximate amenability of the direct sum of
approximately amenable algebras.

Proposition (1.2.11) [1]:

Suppose that A and B are approximately amenable Banach algebras.
Suppose that one of A or B has a bounded approximate identity. Then
A @ B is approximately amenable.

Proof:

Let X be an (A @ B)-bimodule, and let D: A@B —> X* be a
continuous derivation. Suppose that (b,) C B is a bounded approximate
identity for B. Without loss of generality we assume

wk* wk*
b, — E in B** and D(b,) — & in X™**.

Then X™* is an (A @ B)*™ = A™ @ B**-bimodule. We can extend the
module actions of A® B on X*** to actions of A* ® B on X*** by
defining

eq-F=F—E-F, F-eg=F—F-E, F eXx™,
where e, is the identity for A¥.

Now view D as a derivation from 4 @ B into X™*. We extend it to a
derivation from A* @ B into X*** by defining D(e,) = —¢. It is readily
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seen that after this extension D is still a derivation. For instance, for each
acEaA,

a-D(ey) +D(a)eqs=—-a-&+D(a)—D(a)E
= D(a) — weak™ — li&n D(ab,) = D(a) = D(ae,).

Since A* @ B is approximately, it is approximately contractible by
Theorem (1.1.2). Therefore the extended D is approximately inner. So
there exists a net (F;) € X™** for which

D(a,b) =lim[(a,b) - F; — F;-(a,b)], a€A,bE€B.
l
Applying the canonical projection from X™* to both sides of the above

equation, we obtain that the original D is approximately inner. So A © B
is approximately amenable.

Proposition (1.2.12) [1]:

Suppose that A and B are approximately amenable Banach algebras.
Then, for any neo-unital (A @ B)-bimodule X, continuous derivations
from A @ B into X* are weak™® approximately inner.

Proof:

Let D: A@ B — X* be a continuous derivation. Then D induces
(continuous) derivations D, : A - X* define by D;(a) = D(a,0), and
D, :B — X" define by D,(b)=D(0,b). Since A and B are
approximately amenable, there are nets (&;), ({;) € X* such that

D,(a) = lilm[(a, 0):¢—¢&:(a,0)] (a€A), (13)
D,(b) = lilm[(O, b)-¢;—¢;-(0,b)] (b €B), (14)

Let (I () respectively be left and right approximate identities of A,
and let (I12)(rB) respectively be left and right approximate identities of
B. Then we have

(a,0) = licrxn(a, b)(rA,0) = licrxn(lé, 0)(a,b) (a € A),

(0,b) = licrxn(a, b)(0,75) = licrxn(O, 18)(a,b) (b € B).

22



These together with equations (13) and (14) imply that there are nets (®,)
and (y,,) in X* such that

D(a,b) = D,(a) + D,(b)
= lilgn[(a, b) &, -y, (a,b)] (a€ADbEB).

Since D is a derivation, (®,) and (3,,) in the above equation satisfy

(a,b) - (®, — ) - (c,d) > 0 (a,c €A b,d € B).
So we have
D(a,b)(c,d) = lilgn[(a, b) -, — Py(a,b)]- (c,d),

for all a,c € A,b,d € B. If X is a neo-unital (4 @ B)-bimodule, this
implies that

D(a,b) = weak” — lilgn[(a, b) -y, — Y, (a,b)] (a €A DbeEB).

Therefore D is weak™* approximately inner.
Proposition (1.2.13) [1]:

If A@A is approximately amenable, then A has a two-sided
approximate identity.

Proof:

Make X = A an A @ A-bimodule by defining module actions as
follows.

(a,b)x=ax, x-(a,b) =xb (x € X,a,b € A).

Then D(a,b) = a — b is derivation from A @ A into X. So there exists
(x;) < X for which

a—b =lim(ax; — x;b) (a,b € A).
l

In particular, we have lim; ax; = a and lim; x;b = b (a,b € A). So (x;)
is a two-sided approximate identity.
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Suppose that A is an approximately amenable Banach algebra. In
particular, A has one-sided approximate identity. Consider the topology t
determined by the seminorms b +— ||ab|| (a € A).

Proposition (1.2.14) [1]:

Suppose that A is approximately amenable, and that 7 is stronger than
the weak topology on A. Then A has a two-sided approximate identity.

Proof:
Take X = A as an (4 @ A)-bimodule as above.

Following the argument of proposition (1.2.12), we have that for any
derivation D : A @ A — X there is a net (1,,) in X such that

D(a,b)(c,d) = lilgn[(a, b) - Y, — Py (a,b)] - (c,d).

Applying this to the derivation D(a,b) = a — b, we have that for every
CEA,

(a — b)c =lim(ay, — Y, b)c.
v
Hence from the assumption on 7,

a — b = weak”™ — lim(ay,, — ¥,,b).
v

Thus (y,) is a two-sided weak approximate identity, and standard
arguments yield a two-sided approximate identity.

Now we can define Mazure theorem [6]: most will — behaved normed
spaces are subspaces of the space of continuous path.

Proposition (1.2.15) [1]:
Suppose that

(i) span{aa*:a € A,a* € A*}is dense in A*; and
(11) A 1s boundedly approximately amenable, or
(111) A is boundedly approximately contractible.

Then A has a two-sided approximate identity.
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Proof:

Suppose (i) and (ii) and let D and X € X™* be as in Proposition (1.2.4).
Then there is a net (£&,,) in X™* such that

D(a,b)c =lim(a-&, —&,-b)c, a b, c €A,
v

where, moreover, (a-&, —&,-b) is bounded for each a,b € A. It
follows that forc € Aand c* € A",

(D(a,b),cc*)y =lim(a-&, — &, b,cc*), a €A,
v
and hence for finite sums c;cq + -+ + ¢, cx. But then by boundedness of
(a-é&, — &, - b) and hypothesis on A*,

a—b =weak lim(a-¢&,-¢&,-b),
v

which suffices.
Supposing (ii1) the argument is similar but simpler.

The spanning condition certainly holds if A* is essential with the usual
module operations. It also holds when A is approximately amenable and
reflexive as a Banach space. For with (e;) a right approximate identity for
A, we have

(a*,a) = lim{(a*, ae;) = lim{e;a", a),
l l

so that span{cc*}Veak

= A", and hence in norm by Mazur’s theorem.
However, it should be noted that no example of an infinite-dimensional
reflexive as a Banach algebra is known. Indeed, it has been conjectured

that a reflexive amenable Banach algebra is finite-dimensional.
Proposition (1.2.15) can be strengthened a little.
Proposition (1.2.16) [1]:

Let M = (spanfaa™a € A,a” € A*})™. Suppose that A is boundedly
approximately amenable and that M is complemented by a closed
submodule in A*. Then A has a two-sides approximate identity.
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Proof:

Let N be a complementing closed submodule, such that A* = M @ N.
By the definition of M, the left action of A annihilates N. Let D :
A@®A - A" be given by D(a,b) =a—b. Now A =M*"@ N*, let Q
be the quotient map of A™ onto M*. Then QD and (I — Q)D are
derivations into M* and N*, respectively.

Since the right action of A on N* is trivial, and A has a left
approximate identity, (I —Q)D is approximately inner. For QD, the
argument of Proposition (1.2.15) gives (§;) € M* with

QD(a,b) = lilm[(a, b)-& —¢& - (a,b)] (a,be€A).

Thus we have D is weak*-approximately inner, and hence approximately
inner. The result follows as in Proposition (1.2.14).
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Section (1.3): Lipschitz and Beurling with Discrete Semigroup

Algebras
For an infinite compact metric space E and 0 < a < 1,and f : E — C,
define
lf () = fF(W)I
P = : eEE .
a(f) Sup{ d(x,y)a x;y ,x#:y
Then set
Lipa (E) ={f : X = C: po(f) < oo},

and

. . |f () = F(W)

lip,(E) = {f € Lip,(E): A0x. )7 - 0asd(x,y) - 0.

On each of these spaces set ||f||, = |[f |l + P,(f). Then with pointwise
multiplication Lip, (E) and lip, (E) are commutative Banach algebras.

Since Lip, (FE) fails to be weakly amenable, 0 < a < 1, it cannot be
approximately amenable. Of rather more interest is lip,(E) where this
last statement only hold in general for 1/2 < a < 1.

Here we make a very modest contribution towards answering the
approximate amenability question for these algebras.

With E and «a as above, let A = lip, E, and set
X ={f € Lip,(EXE):f(x,x) =0 (x € E)}.
Proposition (1.3.1) [1]:
The derivation D : A = X given by
(Da)(x,y) = a(x) —a(y) (a € A,x,y €E)
is non-inner but is sequentially approximately inner.
Proof:
It has been shown that D is non-inner.
Forn € N, set
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. a
G,(x,y) = mln{l,n(d(x,y)) } (x,y € E).
Note that ||G,||, = 1 + an®. Let a € A, and consider

(a-G,—G,-a—Da)(x,y)
= (a(x) — a(®))(Gn(x,y) — D). (15)

We show this converges to 0 in X. Note that uniform convergence to 0 is
clear. Assume that the result fails. Without loss of generality, there is
1 > 0 such that

la- G, — G, a—Dal]l >n (n €N).

Thus there exist x,,, Y, X5, ¥y, € E such that

|(a(xn) - a(yn))(Gn(x; y)—1) — (a(xTI”L) - a(yrll))(Gn(x;v o) — 1) |

[dCen, ) + A, yp)1”
> 1. (16)

Note that necessarily lim,(d(xp, x5) + d(yn, ¥4)) = 0, since the
numerator in (16) converges uniformly to 0. Write

a(xn) - a(yn)
= (a(x,) — alxp) + (alxp) — a) + (abm) — aly)).

Since

a(x,) — alxy) -0 and a(y,) —alyy) R

d (xy, x,)* d(yn, y;q)a

0,

we deduce from (16) that

|(aCen) = ayn)) (G G, ) = Gt y))|

tim inf (G ) + Oy Y2 = (17)
o |(a(x1,1) - a(yrll))(Gn(xn' Vn) — Gy (xp, y1,1))|
tim inf (G ) + Oy Y2 =n. (18)

Now

(G Ctns y0) — G G )|
[d(xp, x7) + d(yn, y1)1*

< { 0' min{d(xn, yn); d(xTI”u nyL)} 2 1/n )
— 1 +n otherwise.
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Thus from (17) and (18) it follows that at least one of d(, x,y,) <
1/n or d(x,,y,) < 1/n must hold for infinitely many n. Without loss of
generality suppose it is the former. Then (18) gives

la(x,) —a(y)| 1+ n® _ o

n < liIEn infla(x,) — a(y,)|(1 +n%) < liIEn inf FTEMAL =

)

since d (x,, ) < 1/n for infinitely many n. This contradiction.

In the special case E = [0,1], the same style of argument also shows
that for a fixed y € [0,1], u,(x) = min{l,w(n(x—y))} defines an
(unbounded) approximate identity in the maximal ideal M, =
{f €lip,[0,1]: f(y) = 0}. Thus results are of no help as to the
approximate amenability of lip,[0,1].

A similar argument, with suitable G, € lip,[0,1] ® lip,[0,1], and
more technically involved, shows that for E = [0,1] the derivation above
is sequentially approximately inner when considered as mapping into

lip, [0,1]2.

To show approximate amenability we in effect need to show
convergence of (15), for such G,, in lip,[0,1] ® lip,[0,1] rather than
lip,[0,1]* as above, and the norms involved are not equivalent:
12" ® z™||,, = 0(n?%), |Iz" ® 3", = 0(n%). For any compact metric
space E, the natural map @ : lip,(E) ® lip,(E) - lip,(E?) is a
contractive monomorphism, and Hedbeg’s theorem can be used to show
it has dense range.

Recall that a weight w on a locally compact group is a continuous
function G — (0, ) satisfying

w(xy) < w@wy) (x,y € G).

For a weight w, L'(w) = L(G, w) is a Banach algebra under convolution,
the Beurling algebra corresponding to w.

The weight w is symmetric if w(g) = w(g™1)(g € G). For any weight
w, its symmetrization is the weight defined by Q(g) = w(g)w(g 1) (g €
).
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Throughout Proposition (1.3.2)-Theorem (1.3.5) below we assume
that w(e) = 1.

Proposition (1.3.2) [1]:

Suppose the weight w is bounded away from 0, and that L'(w) is
approximately amenable. Then G is amenable.

Proof:

The hypothesis ensure that L'(w) c LI(G), and hence UC(G) is an
L}(w)-bimodule. There is an invariant mean on UC(G), so G is amenable.

The precise relation between the behavior of w and the approximate
amenability of L'(w) is unresolved. For example L'(R,e?) = L'(R) is
amenable, so boundedness of w is not necessary. We conjecture that
L'(w) will fail to be approximately amenable whenever Q — co. Indeed,
should this not be the case then we have a group G which is amenable by
Proposition (1.3.2), with L'(w) approximately amenable but not amenable
(see Theorem (1.3.7)). While this remains unresolved, a modified
hypothesis yields a weaker result. Some preliminary constructions will be
required.

Suppose that G is a locally compact group, w a continuous weight on
G. Define

w(rx)
w(r)

It is readily seen that @ is continuous on G and for x,y € G,

®(x) = lim inf (x €G)
T—00

w1 <o) < wk),
o(xy) < d(x)w(@y) Awx)d(y). (19)

Note that @ is usually not a weight on G. In fact, @~ ! is a weight since
we always have @(xy) = d(x)D(y) (x,y € G).

For ¢ € IN(® X w), define

(@) () = f o(&,E L) dE (x,€ 6).

G
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Then () € IN®) with ||m(@)|| < |l@l|. Set 7* to be the adjoint of m*
maps L2 (@7 1) into L* (@~ x w™1).

Lemma (1.3.3) [1]:

Suppose that lim,_ . @(x Dw(x) = . Then ©*|Co(@~1) maps
Co((l/j_l) into Co((ﬁ_l X (1)_1).

Proof:

Let f € Co(@~1), and let ||f]l; denote its is norm. By definition
m*(f)(x,y) = f(xy), and so is certainly continuous on G X G. Take
€>0, and a compact set N © G such that |f(x)@(x)"!| <e for
x € G\N. Set ¢ = sup{w(x)@(x~1):x € N}. By hypothesis there is a
compact set K € G such that

cllflle
oy Do)

Then A = {(x,y):y € K,xy € N} is compact in G X G. For (x,y) ¢ A
and x,y € N,

<& (y € G\K).

" (NG| _ 1 )l
= S —= <E.
O)w)| ~ Olxy)

On the other hand for (x,y) € A and xy € N, so that y € K, (19) gives
T (NDCEP| _Ifen] oly) £l d(xy)w(y 'x™)
dw) | dxy) d@wl) T Y aGHw(y)

clliflla

=36 e = °

Thus 7*(f) € Co(@ ! x w™1).

Viewing m as map from L'(w X w), almost the same argument as
above yields the following.

Lemma (1.3.4) [1]:

Suppose that lim,_ . w(x Dw(x) = . Then ©*|Co(w™1) maps
Co(w™1) into Co(w™ ! x w™1).
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When the hypothesis that lim, ., @(x Dw(x) = (or the
hypothesis that lim, e w(x Dw(x) = ) holds, set
T = (n*|C0(6_1))*: M(® X w) > M(&@) (or, respectively, @ =
(n*|CO(65—1))*:M(w X w) & M(w)). Then 7 extends m and is weak*-

weak* continuous.
Theorem (1.3.5) [1]:
Let w be a weight function on G.

(i) Suppose that there is a net (7,) € G such that lim,r, = o and
(w(ra_l)w(ra)) is bounded. Then L'(w) is boundedly
approximately contractible if and only if it is amenable;

(ii)Suppose that limy_ . @(x " Dw(x) = . Then L'(w) is not
boundedly approximately amenable.

Proof:

We begin by setting up some module machinery. It is routine to check
that Cy(w™" X w™1) is a Banach L'(w)-bimodule, and hence a Banach
M (w)-bimodule; the module actions are given by

(- Py = | reyoane,
¢ (20)

w0 y) = f £(Ex,9)du(®),
\ G

where x,y € G, € M(w) and f € Co(w X w™1). It follows that
M(w X w) is dual M (w)-bimodule, with actions

(-, f) = | Fexndu©dme.»,
G (21)

(m -, f) = f £ Gy du(®)dm(x, ),
\ G3

where u € M(w X w) and f € Cy(w™ ! X w™1).

We also have Cy(w !X w™1) is an M(w)-bimodule with actions
given by (20). So M(& X w) is a dual M(w)-bimodule, with module
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actions given by (21). Moreover, these actions are weak*-weak*
continuous in each variable separately.

Finally, the natural dual actions given by

(- m)@) = | reyamey,

) GXG (22)
(m- )@ = f f(zx,y)dm(x, y)

\ GXG

for fE€Cy(w Xxw™) and m € M(® X w) define mapping from
Co(@ 1 xw™) X M(® X w) into Co(@~1).

Note that M(w X w) is dual L'(w)-bimodule by restricting the
operation in (21). Consider the continuous mapping D : L'(w) —
M(w X w) given by D(f) =f®6,—6,®f. In general, D is a
derivation into ker mr. If lim, o, w(x " Dw(x) = o, we can regard D as a
derivation into ker 7 which, by Lemma (1.3.4), is a dual L!(w)-bimodule.
Now suppose that L'(w) is boundedly approximately contractible or that
it is boundedly approximately amenable with lim,_., @(x " Dw(x) = o
(which implies that lim, . w(x 1w (x) = o). Then there is a net (,u j)
((,u j) c ker m in the former case and (,u j) c ker 7 in the latter case) and
ko > 0 such that for all ¢ € L'(w)),

D(p) =lim(¢ pj—uj 9),  with [lo-u;—u; ol < koligll

Set M;=6,86,—u; and k=ko+2 Then n(M;)=6, (or
respectively, ﬁ(Mj) = 6,), and for every ¢ € [N(w),

J
¢-M;j—M; 9 >0 and ||(p'Mj—Mj"p”
< kllg]| for allj. (23)

Since the M-bimodule operations are weak*-weak* continuous from
(21), it follows from (23) that

- M — M- pf| < Kllpll (4 € M(w).

In particular, ||6r *M; — M; - 6}” < kw(r) for each r € G. That is to say,
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f w@w®)d|8, - M; — M; - 5,:|(x,y) < kw(r),
GXG

and so

f w(rx)w(y)

"o d|Mj — 8,-1-M; - 6,.|(x,y) <k

GXG

for r € G and all j. Then for any compactset K € G X G,

w(rx)w(y) w(rx)w(y)
| = d|M"|(x’y)SH,[WOZ"S”“M’"&”'(””
w(x)w(yr)

<k+ f w()w ) d|M;(x,y).

(r,e)K(e,r—1)

But M; € M (w X w), and so, as r — oo, the integral on the right-hand
side tends to 0.

If L'(w) is boundedly approximately contractible and there is a net
(r,) € G such that 7, > o and w(r; Dw(r,) < d for all a, then we let r
tend to oo through (7). Noting that

wr)ol)  o@el) 1

w(@) T orHolr) = Ew(x)w(y)

when r = 7, we have

1 .
E”M]“ <k forallj.
Therefore, (Mj) is a bounded net in M(w X w) C (Ll(a)) ® Ll(a)))**,

which implies that there is a virtual diagonal for L}(w) is amenable. This
together with the remark after Definition (1.2.1) proves the first statement
of the theorem.

Now suppose that L'(w) is boundedly approximately amenable and
that lim, .o @(x "D w(x) = 0. We have
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w(rx)w(y)

e d||M;|(x,y) < k.

f&)\(x)w(y)d|Mj|(x,y) < }H{}f“pf
K K

(In fact, let A be the collection of all compact sets of G with the inclusion
as partial order. Then the net (fc)cea with

w(rx)

felx,y) = infremcmw(y) ((x, y) EK ) is equicontinuous, and so

converges to @ X w in measure on K.) Thus the net (Mj) is bounded in
M(& X w). By going to a subnet necessary, we may assume that (Mj)

converges weak* to some M € M(& X w). Note that weak* continuity of
T and ﬁ(Mj) = §, give i(M) = 6,.

Now for each ¢ € L'(w), ¢ - M; — M;- ¢ - 0in M(w X w), and since
@ < w, this limit also holds on M (& X w). But weak* continuity

op-M—M-p=0 ((pELI(w)).

By weak* continuity again, we have u-M — M - u = 0 for u € M(w), so
in particular M = §,-1 - M - 6, forr € G. Thus

MNMw=Mf«Mﬁm=“ﬂmf%mwmamuml
GXG

So for any compact K € G X G,

w>HWbm2f@@*ﬂw@ﬂﬂm&J)
BN

= fw(x‘l)w(y‘l)

K

mmmwzgﬁfﬁqmmmﬁ

where Cx = max, y)ex-1w(x)w(y). Letting 7 — oo, finiteness of
IM|| 5% 1mplies that de|M|(x, y) =0, and this holding for any
compact K € G X G necessitates M = 0. But this is a contradiction to
(M) = §,. Thus the second statement of the theorem is true.

Corollary (1.3.6) [1]:

The Beurling algebras ¢(Z, ), w(n) = (1 + |n|)* with a > 0, are
not boundedly approximately amenable and hence are not sequentially
approximately amenable.
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As noted, approximately amenability for commutative algebras, so,
£((1 + |n])®) is not approximately amenable for a > 1/2.

Now we give a new proof for characterization of amenability of
Beurling algebras due to N. Gr¢nbak.

Let ) be the symmertrization of w as define in the beginning of this
section. The following is essentially.

Theorem (1.3.7) [1]:

Let G be a locally compact group, w a weight on G with w(e) = 1.
Then the following are equivalent:

(i) L'(w) is amenable;
(ii) L'(Q) is amenable;
(111) G 1s amenable and Q is bounded.

The next results together give a new proof of Theorem (1.3.7). In fact
we able to dispense with the assumption that w(e) = 1.

Proposition (1.3.8) [1]:

Let w be a weight function on a locally compact group G, and suppose
that L!(w) is amenable. Then  is bounded.

Proof:

Let f € L'(w) have compact support K and be such that [ o f(x)dx #
0. Certainly F = f - 1 € L®(w™ 1) since 14 € L (w™1) and L®(w™1) is
a Banach L!'(w)-bimodule. Then 7*(F) € L®(w™! X w™1) with

2 (F)(x,y) = F(x,y) = f 1 Gey©) £ (€) dE.

It follows that m*(F)(x,y) =0 for xy € KK™1. Set E=KK™1 a
compact subset of G.

Now suppose that u € L'(w X w)** is a virtual diagonal for L'(w), so
thatu = §g - u - 6g-1 (g € G), and ™" (u) - f = f. Thus
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() u) = (F, 1 @) = (L, 7 @) - f) = (1, f) f FG) dx

K
+ 0. (24)
Define
A ={(x,y):xy € E}.
Then *(F) has support contained in A, so t*(F) = n*(F)1,.
Given a > 0, define
Ay ={(x,y) € A: w(X)w(y) < a},
By =A\A, ={(x,y) € A 0(X)w(y) = a}.

Clearly " (F)1,,m (F)lp, € L® (wlxw™), and n*(F) =
" (F)1,, + 7 (F)1g,.

Now estimate,

) 7 (F)(x, )
[(m*(F) 1, w)| < ||m*(F)1p, || - llull = [lull Sup 00
Fxy) w(xy) -1
= lullswp [ s agy| <@ llIFles,
where ¢; = sup;ep w(t). Thus
Cli_r)rgo(n*(F)lBa,u) = 0. (25)
Further, forany g € G,
|(7t*(F)1Aa,u)| = |(T[*(F)1Aa Ogru-d —1)|
' (F)(x,y)

< Null}3s 7 (), - g = Il s

w(g x)w(yg)
Fix,y) oy
w(,y) 0@ ol
w@y)wx Holy™)
< JlullllF| Sfap 0@ Do
w(y)w?*(y~ x Do (x)w(y)
w(g Hw(g) '

= [lul Sup

< [[ulllIF]l sup
A(X

37



Thus

* allulllFlic;c3
R e ARG

where ¢; = sup;eg-1 w(t).

Suppose the result is false. Then there is a sequence (g,) € G such
that lim,,_,., w(g,)w(g,1) = o, whence it follows from (26) that for
eacha > 0,

|(7t*(F)1Aa,u)| = 0. (27)
Putting (25) and (27) together, it follows that
(r*(F),u) = 0.
contradicting (24).
The next step we show.
Proposition (1.3.9) [1]:

Let G be a locally compact group, w a weight on G such that L' (w) is
amenable. Then there is a continuous positive character ¢ on G such that

d(@) <w(g (g€ b).

Proof:

Let u € L'(w X w)** be a virtual diagonal for L'(w), so that Sg-1- U
Sy=u(g€G) and W) f=f(f €ll(w)). For feL™(w™*x

w~D*, define

u(f) = sup{Re(w, h): 0 < Y| < f,p € L%(w ™ x @™}

Then @ £ 0 on L®(w™ ! X w™)* and i is affine on L®(w ! x w17,
and satisfies 0 < i(f) < [ullllf|(L®(w ™t x w™1)*). Thus @ can be
extended to a bounded linear functional on L®(w™!x w™!) in the
obvious manner. Then % # 0,{il, f) = 0 for f € L (w ! X w™1)*, and
5g—1'ﬁ'5g=ﬁ(g€G).

Now define
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@(x) = supw(g~lxg) (x €G).
gea

Note that @ 1is lower semicontinuous and hence measurable. By
Proposition (1.3.8), Q is bounded, whence @ € L* (w™1). Further, clearly
@(g xg) = &(x) (x,g € G), whence @(xy) = @(yx) (x,y € G).

Consider 7* (@) € L®(w™! x w™1). Note that
8y - T (@) - §g-1 = * (@) (g € G).
Take f € C.(G)* with [ f =1, let K be the support of f, and set
h=f-1g, where we regard f as an element in L'(w) and 1 in
L*(w™1). Then h is continuous with support contained in KK 1. Since

@W(x) = w(x) >0 for x € G, there is ¢ > 0 such that @ = ch, whence
n* (@) = cm*(h). Thus

(T, 7 (@)) = c(ii,t*(h)) = cRe(i, w*(h))
= cRe(mr™ (u), h) = cRe(f,1x) = c > 0.

Set F=(ii,7*(®)) n*(@) € L°(w™ ' x w™1), so we have that
8g-1+F -8y =F (g € G) and (@i, F) = 1. Now define, for g € G,

[, w(E)olEy™)
Ag(x,y) =3 log IO F(x,y) (x,y € G).

Then for g € G,
log(g™) F < Ag <logw(g)F, (28)
so that Ag € L*(w™ ! x w™1). Note that, for g,g, € G,

A Sgz1+ Ag, " g, + Ag,. (29)

8182 —
Finally, define
¢(g) = exp(il, 4g) (g € G).

Then (29) gives

d(g182) = ¢ P(g2) (81,82 € G),

so that ¢ is a character, and from (28)
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$(g) < exp(il,logw(g) F) = w(g) (g€ G)

shows ¢ dominated by w. ¢ bounded (on a neighbourhood of e) shows it
is continuous.

Corollary (1.3.10) [1]:

Let G be a locally compact group, w a weight on G. Then if L'(w) is
amenable, G is amenable.

Proof:

By Proposition (1.3.9) there is a continuous positive character ¢ < w.
Then @ : f — ¢f is continuous monomorphism of L'(G,w) = L'(G).
Since ¢ is bounded on compact sets. Then a range of @ contains C.(G),
whence L}(G) is amenable. It is standard that this equivalent to G being
amenable.

Proposition (1.3.11) [1]:

Let G be a locally compact group, w a weight on G. Then G is
amenable and () is bounded if and only if L'(Q) is amenable.

Proof:

Supposing G is amenable and Q is bounded, L'(Q) = LI(G) is
amenable. The converse is the symmetric case of Proposition (1.3.8) and
Corollary (1.3.10).

The final step is then
Proposition (1.3.12) [1]:

Let G be an amenable locally compact group, w a weight on G such
that Q is bounded. Then L!(w) is amenable.

A discrete semigroup S is left amenable if the space £°(S) admits a
functional m such that m(1) =1 = ||m| and m(¥,f) = m(f) (x €
S, fe€ €°°(S)). Similarly for right amenable. If S is both left and right

amenable, it is amenable. In the case of a group, or even an inverse
semigroup, left (or right) amenable implies amenable.
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We recall some further standard notions from semigroup theory. Only
the left versions will be defined. Let S be a semigroup.

(1) S is regular if for all s € S, there is s* € S such that ss*s = s and
s*ss* = s*, it is an inverse semigroup if such s* exists is unique;
()T < S 1s a left ideal group if T is a left ideal in S as well as being a

group under the semigroup operation.

Set E5 to be the set of idempotents in S. Note that (1) above both
ss*,s*s € Es.

We summarize some known structural implications of amenable of

£1(S). In fact a characterization is given.
Theorem (1.3.13) [1]:
Let S be a semigroup with £'(S) amenable. Then:

(1) S is amenable;

(1) S 1s regular;

(iii) Es is finite;

(iv) £'(S) has an identity;

(v) S contains exactly one left ideal group S,, which is also the only

1

right ideal group, and § = Syz~! = z71S,,, for some idempotent

z, furthermore S, is amenable.

Now suppose that £'(S) is approximately amenable. Example (1.1.10)
shows that (ii1), (1v) and (v) may fail. On the other hand.

Theorem (1.3.14) [1]:
Let S be a semigroup such that £!(S) is approximately amenable. Then

(1) S is regular;
(11) S is amenable.

Proof:

The argument is valid as far as showing that for each v € S,s5 N
[vv™1] # @, and that is sufficient to show regularity. Further, the
standard argument, applied to an approximate diagonal yield a net
A, € L*(S)* satisfying & - A, = A, A,0 — A, > 0 weak* for all s €
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S, and (1,A,) = 1. The argument at the end of now gives an invariant
mean, so that S is amenable.

We give a direct construct of an approximate diagonal for L'(w) to
show (ii1) = (1) of Theorem (1.3.7) (that is, Proposition (1.3.12)) without
assuming w(e) = 1. First a simple lemma.

Lemma (1.3.15) [1]:

Let w be a weight on G (not necessarily satisfying w(e) = 1). Then
the following are equivalent:

(1) Its symmetrization Q is bounded;
(11) There is a constant k > 0 such that

w(gh) =z kw(gw(h) (g h € G); (30)
(111) There is a weight @ on G, equivalent to w, with g+
@(g)w(g™1) a constant,

Proof:
(1) = (i1).

w(@wh) < w@wlg Hw(gh) < AUw(gh) < const - w(gh).
(ii) = (i). Just take h = g~?

(ii) = (iii). Define

- w(@
w(g) = <—kw (g_1)>

Clearly @(g)@(g~1) = 1/k. Further,
o (o@g N 0@\ o@
w(g)—<Wg—1)> S( k ) =Tk
and

~ w(g’g™")
olg) = <kw(g‘1)

1/2
) > @)Y > (ko @DY2 = Viw(g).

Thus @ and w are equivalent.
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Finally,

w(gh) )1/2<< w(g)w(h)

1/2
kw(h=1g—1) kzw(h_l)w(g_1)> = w(ga(h).

@(gh) = <
(ii1) = (ii) is obvious.
Theorem (1.3.16) [1]:

Let w be a weight on G (not necessarily satisfying w(e) = 1).

Suppose that G is amenable and Q is bounded. Then L'(w) has a bounded
approximate diagonal and hence is amenable.

Proof:

We will use || - ||; for the usual L'-norm || - ||, the norm in L'(w) - L,
will denote the left translation by t: (L,a)(s) = a(t™1s). Fix throughout
a neighbourhood V' of e such that w(g) < 2w(e) for g € V. Let k be the
constant given by Lemma (1.3.15) (i1).

Now take & > 0 and a finite subset F c L}(w). Take a compact set K
such that

f w@®If (O] dt < ek/(8u(e)) (f € F).

G\K

Using Reiter’s condition (P;) there is a a € Cyo(G)* with ||al|l; = 1 and
Ifllulllea — all;, < ek/(4w(e)) fort €K, f € F.

Now f € L!(G) for each f € F, and so there is a neighbourhood u of e
such that for s € supp(a),t € U,f € F,

€
|Lsts—1(fw) — folly < >

lw(st™1s ™) —1|] ¢

ts™H) —1| + < —.

Thus we have
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ILses=1f = fllo < Lses—1(fw) = folly + |Lses—1f (Lses—10 — w)]l4

3
< > + |lf (w = Lge-15-10)]l4

&
<= Ifl

Lo-1o-1
st s 1w
1———m

o

lw(st™ts™1) — 1|
w(st~1s-1)

&
<5 +lIflle [Iw(sts‘l) -1 +
< E&.

Now take b € L'(G)* with ||b||; = 1 and supp(b) c U. Define Ugp = U
in L'(G x G) by

u(s,t) = a(s)b(ts) A (s),

where A is the modular function of G. Since a and b have compact
support, u € L'(w X w) which is, of course, L'(w) & L'(w).

Further, u is bounded independent of € and F:

[l = f w()als)b(ts) A ()w(e) ds dt

GXG

= f w(S)wts Ha(s)b(t) ds dt < % f w(t)a(s)b(t) ds dt

%xG( ) ) ( ) GXG
w(e w(e

< = lall:lipll; = ==,

Now for f € F,

(F - 1)(s, ) = f F)a(1)b(tv-1s) A (v-1s) dv,
G

W F)(s,b) = f a()b(tv=1s) & (v=Ls)f (v) dv,
G
so that

(fru—u-f)is,t)= f(a(v‘ls) —a(s))b(w™1s) A (v is)f(v) dv.
G

Thus
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If-u—u-flloxe
< fw(s)w(t)la(v‘ls) —a(s)|b(tv1s)

A E;;‘ls)lf(v)l dv ds dt
< f w(s)|a(w™1s) —als)|b®)w(ts ™ v)|f (v)| dv ds dt

G3

- w(S)w(s )
- Gf3 w(v)
—a(s)|b@®)|f W) |w() dv ds dt

< Zwkﬁ fIILva —all1|f W)|w() dv
G3

s%‘”( [+] >IlLva—a|I1If(v)Iw(v)dv

G\K K

w(®)]|a(v1s)

SZwkﬁ 2 \flf(v)lw(v)dv+4a]f(€e)><e.
G\K

Further,

m(u) = f(t) = f a(s)b(s7tvs) A (s)f(v~it) dv ds

GXG

_ f a(s)b(W)f(sv=s7) dv ds,

GXG

so that

@) * f = fllo = f a(s)b()||Lsps-1f = fllo dv ds

GXG

<e€ f a(s)b(v)ds dv = &.
GXG

It follows that (u,, F) is an approximate diagonal for L'(w) with
bound at most 2w (e)/k.
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Chapter 2
Banach Algebra and Character Amenability

In this chapter Various necessary and sufficient conditions of a global
and a pointwise nature are found for a Banach algebra to posses a ¢-mean
of norm 1. We also completely determine the size of the set of ¢-means
for a separable weakly sequentially complete Banach algebra A with no
@-mean in A itself. A number of illustrative examples are discussed.

Section (2.1): ¢p —Means of Norm One

The notion of an amenable Banach algebra was defined and studied in
the seminal work of Johnson. One of the fundamental results was that for
a locally compact group G, the group algebra L'(G) is amenable if and
only if the group G is amenable. Since then amenability has become a
major issue in Banach algebra theory and in harmonic analysis.

We continue our recent investigation of a concept which might be
referred to as amenability with respect to a character. Let A be an
arbitrary Banach algebra and ¢ a character of A, that is, a homomorphism
from A onto C. We call A @-amenable if there exists a bounded linear
functional m on A* satisfying (m,¢@) =1 and (m, f - a) = p(a)(m - f)
for all a € A and f € A*. Here f-a € A" is defined by (f -a,b) =
(f,ab),b € A. Any such m is called a ¢-mean. This concept considerably
generalizes the notion of left amenability for F-algebras which was
introduced and studied.

Note that a Banach algebra is called right character amenable if it is ¢-
amenable for each character ¢ and has a bounded right approximate
identity. Note also that for a locally compact group G (respectively, a
discrete semigroup S), the group algebra L'(G) (respectively, the
semigroup algebra [1(S)) is amenable with respect to the trivial character
1 precisely when G is amenable (respectively, S is left amenable).
However, [1(N) is not amenable since it does not have a bounded
approximate identity.

We give two characterizations (in terms of cohomology groups and a
Hahn-Banach type extension property) of ¢-amenability, which are close
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to results. We mainly focus on ¢-means of norm 1. We establish various
criteria for their existence. Pointwise conditions, in terms of elements
f € A" or a € ker ¢, the kernel of ¢, are given that ensure the existence
of ¢p-means of norm 1.

We concentrate on weakly sequentially complete Banach algebras. We
show that if there is no ¢@-mean in A itself, but there exists a so-called
sequential bounded approximate @-mean, then A admit at least 2€¢-
means, and there are no more if A is separable. We also relate the
existence of ¢-means to Arens regularity of A. A result of a flavor similar
to that of Theorem (2.2.1) is obtained in Theorem (2.2.10). It implies that
if A is a separable F-algebra and € denotes the identity of the von
Neumann algebra A*, then there are 2¢ e-means of norm 1 with the
additional property that |[m — n|| = 2 for any two of them.

Finally, we present illustrative examples such as Lipschitz algebras
and LP (G), where G is a compact group.

In this section, the second dual A** of a Banach algebra A will always
be equipped with the first Arens product which is defined as follows. For
a,b€eA feA and m,n € A™, the elements f -a and m - f of A* and
mn € A™ are defined by

(f ~a,b) ={f -ab), (m- f,b) =(m,f -b) and (mn, f) = (m,n - f)

respectively. With this multiplication, A*™ is a Banach algebra of A™.
Alternatively, the multiplication on A™ can be defined by using iterated
limits as follows. For m,n € A™, let
mn =w” lim (W* — lim ab).
a-m b-n

In general, the multiplication (m,n) - mn is not separately continuous
with respect to the w*-topology on A™. But, for fixed n € A™, the
mapping m — mn is w’-continuous, and also for fixed a € A, the
mapping m — am is w”-continuous. Moreover, for all m,n € A™ and
@ € A(A), the set of all homomorphisms from A onto C,(mn, @) =
(m, )(n, @). Consequently, each ¢ € A(A) extends to some element ¢**
of A(A™). The kernel of ¢**,ker ¢**, contains Ker ¢ in the same sense
that A™* naturally contains A. Since each of these ideals has codimension
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1, the theory of second polars shows that ker ¢ is w*-dense in ker ¢**
and that ker ¢** = (ker ¢)**.

The Banach algebra A is said to be ¢-amenable if there exists m € A™
such that (m,¢9) =1 and (m,f - a) = e(a)(m,f) for all f € A* and
a € A, and any such m is called a ¢-mean. The ¢@-means are nothing but

the w™-cluster points of bounded nets (uy)y in A with (p(uy) = 1 for all

Y and ||auy — (p(a)uy” — 0 for all a € A. Consequently, we call such a

net (uy)y a bounded approximate @-mean. Given a @-mean m, the net

(uy)y can be chosen so that ||uy|| - |m]||.

If X is a Banach A-module, then so is the dual X* with the module
actions given by

(a-f,x)=(f,x-a) and (f-a,x)=(f,a-x),

a€Ax€X, f€X* In the following theorem H'(4,X*) denotes the
first cohomology group of A with coefficients in X ™.

Theorem (2.1.1) [2]:

Let A be a Banach algebra and ¢ € A(A). Then the following three
conditions are equivalent.

(1) A is p-amenable.

(i) If X is a Banach A-bimodule such that a - x = @(a)x for all x € X
and a € A, then H'(4,X*) = {0}.

(iii) Give (ker @)™ a second A-bimodule structure by taking the left
action to be a-m = @(a)m for m € A™ and taking the right
action to be the natural one. Then any continuous derivation
D:A — (Ker ¢)*" is inner.

Proof:

The equivalence of (i) and (i1) has been shown. Trivially, (i1) implies
(iii), and therefore we only have to show (iii) & (i). Choose any b € A
with ¢(b) = 1. Then Da = ab — ba, a € A, defines a derivation from A
into (ker ¢)**. By (iii), D is inner, so there is m € (ker ¢)** such that
Da = a(—m) — (—m)a for all a € A. Then
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a(b+m)=(b+m)a=¢e(a)(b+m)
foralla € Aand (b + m, @) = @(b) = 1. So b + m is ¢-mean.

The implication (iii) = (ii) in the above shows that if H'(4,X*) =
{0} for the particular case in which X = (ker ¢)*, then all such
cohomology groups are zero. We have the following result.

Theorem (2.1.2) [2]:

Let A be a Banach algebra and ¢ € A(A). Then the following two
conditions are equivalent.

(1) A is ¢p-amenable.

(1) If X is any Banach A-module and Y is any Banach A-submodule of
X and g € Y* is such that the left action of A on g has the form
a-g=@(a)g for all a € A, then g extends to some f € X* such
thata - f = @(a)f forall a € A.

Proof:

(i) = (ii) let g € X* such that g extends g and |[g]| = ||g]|. fa € A
satisfies @(a) = 1, then a. g also extends g. Since A is @-amenable, there
exists a net (uy)y = 1 in A such that, for all y - (p(uy) =1 and ||uy|| <

C for some constant C > 0 and ||auy — (p(a)uy” — 0 for all a € A. Then
u, - § extends g and we may assume that ||uy 8|l < Cligll + 1 for all y.
After passing to a subnet if necessary, we can also assume that u,, - § - f

in the w*-topology for some f € X*. Clearly, f extends g. Taking w™*-
limits, we obtain

a-f= li)r/na- (uy -g) = li)r/n(auy) g
= li\r(n[(auy - (p(a)uy) g+ (p(a)uy ’ g] = (P(a)f
for all a € A. So (i1) holds.

(ii) > (i) Take X = A" and Y = Cp. Let @* € Y™ be defined by
(@*, @) = 1. Then the left action of A on ¢ is given by a - ¢* = @(a)@”.
By hypothesis, there exists m € A™ such that m|y = ¢™ and a-m =
@(a)m for all a € A. Since (m, ) = (p*,p) = 1,m is a @-mean.
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Using w*-continuity, we easily see that an element m € A™ is a ¢-mean
for A if and only if for all n € A™ we have nm = @™ (n)m. It is tempting
to introduce a new general concept by saying that, when ¢ is a complex
homomorphism on a complex algebra B,m is a ¢-right zero if nm =
@(n)m for all n € B (the term "right zero" in this context comes from the
measure algebra on a semigroup with a right zero). However, this is
worthwhile, as it would merely be giving a new name to a ¢-mean which
lies in B. But this viewpoint does reduce the idea of a ¢-mean to a purely
algebraic one, and sometimes it is easy to prove results in context and
then interpret them as applying to Banach algebras. It is trivial to notice
that A has a ¢-mean if and only if A™ has a ¢™"-mean which lies in A™.
The next proposition ant its corollary provide an example of this
technique.

Proposition (2.1.3) [2]:

Let B be a complex algebra and ¢: B — C a homomorphism. Let | be
an ideal in B with ] € ker ¢ and let ¢:B/] — C be the homomorphism
induced by ¢. If | has a right identity and B /] has a ¢-mean in B/J, then
B has a ¢-mean in B.

Proof:

Let g: B = B/], so that ¢ = @ o q. Let e be a right identity for /] and
let m € B be such that g(m) is a @¢-mean for B/]. Since q(e) = 0 we
find for all x € B,

q(x)q(m —me) = q(x)q(m) = §(q(x)) g(m) = p(x)q(m — me).

This shows that x(m — me) — @(x)(m — me) € J. Since e is a right
identity for /] and (m — me)e = 0, we see that in fact x(m — me) —
@(x)(m — me) = 0, so that m — me is a ¢-mean for B.

Corollary (2.1.4) [2]:

Let A be a Banach algebra ¢ € A(A) and I a closed ideal in A with
I < ker ¢. Suppose that I has a bounded right approximate identity and
that A/l is {@-amenable, where @ € A(A/I) is the homomorphism
induced by ¢. Then A is ¢-amenable.
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Proof:

The statement follows from Proposition (2.1.3) on taking B = A™ and
J = I"". In fact, since I has a bounded right approximate identity, /™" has
a right identity, and since B/] = A /"™ = (A/I)** and A/l is @-
amenable and ¢** = @™, B/] is ¢**-amenable. Thus B/J has a ¢**-mean
and the proposition shows that B has a ¢**-mean. This says that A is ¢-
amenable.

Let A be a Banach algebra and ¢ € A(A). In this section we establish
several criteria for A to possess a ¢-mean of norm 1. We start by showing
that the existence of such a mean is a pointwise property.

Theorem (2.1.5) [2]:

Let A be any Banach algebra and ¢ € A(A). Suppose that for each
f € A" there exists my € A” such that ||mf|| =(ms, @) =1 and
(mg, f - a) = p(a){my, f) for all a € A. Then A has a ¢-mean of norm 1.

Proof:
Define a subsets S of A™* by
S={meA™:|Im|l =(m, @) =1} ={m e A™:|m|| < 1,(m, ¢) = 1}.

Then S is w*-compact and easily seen to be a semigroup for the first
Arens product. Let F denote the collection of all finite subsets F of A%,
and for every F € F, let

Sp={meS:(m,f-a)=¢(a)(m,f) forall f € F and a € A}

Then Sp is closed in S and S, 2 S, whenever F; € F,. Clearly, every

m N {Sg: F € F} is a ¢-mean with ||m|| = 1. It therefore suffices to show
that Sp # @ for each F € F. We achieve this by induction on the number
of elements in F.

So suppose that some m,; € Sy exists and let g € A*\F and set h =m, -
g € A*. By hypothesis, there exists m, € Sgpy. Let m = mym; € A™.
Then m € S since S is a semigroup. For f € F and a,b € A, we have

(my - (f - a),b) = (my, f - (ab)) = ¢(a)(my, f)¢(b)
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Hence my - {f - a) = @(a){(m4, f)@, and similarly m, - f = (mq, f)@. It
follows that, for f € F and alla € A

(m'f ’ a) = (mZJml ’ (f ’ a)) = (p(a)(mli f)(mZ; (p)
= <p(a)(m2, (m1; f)(p) = (p(a)(mZJml ’ f) = (p(a)(m, f)

Moreover, for all a € A,
(m,g-a) = (my,(my - g) - a) = p(a)(my, m; - g) = @(a)(m,g).
So m € Spy(g}, and this finishes the proof.

Let A be a Banach algebra and ¢ € A(A). For f € A" and € > 0, let

Kee={u-fiued o =1ull <1+e¥ cA"
Clearly, Ky ¢ is convex and w*-compact, and so is Kr =N¢5q Ky .
Proposition (2.1.6) [2]:
For f € A", the following conditions are equivalent.

(i) There exists m € A™ such that ||m|| =1,(m,9) =1 and (m, f -
a) = @(a)(m, f) forall a € A.
(i) Ky contains A¢ for some 1 € C.

In fact, Cg N K equals the set of all (m, f)@ where m is as in ().
Proof:
Let m be as in (i), and let (uy)y be a net in A such that (p(uy) = 1 for
ally - ||uy|| — 1 and u,, > m in the w*-topology. Then
(uy, - f,a) =(uy, f-a) > (m,f - a) = p(a)(m, f)
for all a € A, and hence (m, f)p € K . for every € > 0.

Conversely, assume that Ap € K¢ and let € > 0. There exists a net
(uy,e)y in A such that (p(uy,e) =1, ||uy,e|| <1+ ¢€ for all y and Ap =
w*— limy(uy : f). Let n. be a w*-cluster point of the net (uy,e)y in A™.
Then |[n ]l <1+¢€,{n.,@)=1 and (n, f-a) =Ap(a) for all a € A

since

52



(uy,e'f a) = (uy,e fra) = 1e(a).

Let n be a w*-cluster point of the net (n.).. Then ||n|| =1,(n,¢@) =1
and

(n-f,a)=nf-a)=2p(a)

for all a € A. Finally, let m = n? € A**. Then (m, @) = (n,p)*> = 1 and
||m|| = 1. Moreover,

(m,f)=Mmn-f)=MnA1p) =An,¢) =2,
and hence, forall a € A,
(m,f-a)=Mn,m-f)- a)=(n~Ap) - a) = p(a){n,¢) = p(a)(m,f).
So m satisfies all the requirements in (i).

Actually, the above proof shows that Apbelongs to Ky if and only if
A = (m, f) for some m € A™ as in (i).

As an immediate consequence of Proposition (2.1.6) and Theorem
(2.1.5) we obtain

Corollary (2.1.7) [2]:
For a Banach algebra A and ¢ € A(A), the following are equivalent.

(1) A admits a ¢-mean of norm 1.
(i) Foreach f € A", Cop N Ky # Q.

The next theorem, which is one of the main results, in particular shows
that the existence of a ¢-mean of norm 1 is a pointwise property in the
sense that it follows from the existence of a certain functional on A"
associated with each of the elements of the ideal ker ¢.

Theorem (2.1.8) [2]:

For a Banach algebra A and ¢ € A(A), the following four conditions
are equivalent.

(i) There exists a ¢-mean such that ||m|| = 1.
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(1) There exists a net (uy)y in A such that (p(uy) =1 for all

Y, ||uy|| — 1 and ||auy|| - |@(a)| for all a € A.

(iii) For each a € ker¢, there exists m, € A™ with |[m,|l <
1,(mg, @) = 1and am, = 0.

(iv)  For each a € ker¢p and € > 0, there exists u € A such that
lull <1+ ¢, |lau|| < € and p(u) = 1.

Proof:

(ii) = (iv) is clear. Also, (i) = (iii) is simple: if m is a @-mean, we
can choose m, = m for all a € A. Therefore, in order to establish the
theorem it suffices to show the implications (i) = (ii), (iii) = (iv) and
(iv) = ().

(i) = (ii) There exists a net (uy)y in A with the following properties:

<p(uy) = 1 for all y, ||uy|| — 1 and ||auy — (p(a)uy” — 0 for all a € A.
Thus,

[l = lo @1l [llaw, || = lo@@wlllll + |lle@u, | - lo@]|
< [lawy = o@w || + 1o @] - [[Jw ]| - 1]

(iii) = (iv) Fix a € ker ¢ and take any net (uy)y in A such that
||uy|| <1 and u, »m, in the w*-topology. Then (p(uy) - 1. By
replacing each u, with a scalar multiple of itself and taking a cofinal
subnet, we may arrange that ||uy|| <1+¢€ and (p(uy) =1 for all y.
Since w” lim au, = am, = 0 and au, € A, is in the weak closure of the
set (auy)yand therefore 0 is in the norm closure of the convex hull of
(auy)y. The set (uy)y being contained in the closed hyperplane {x €
A: o(x) = 1}, we easily reach our conclusion.

(iv) = (i) We claim that for every finite subset of F of A and € > 0,
there exists ug ¢ such that (p(uF,E) =1, ||up,e|| <1+ e€and

”auF,e - (p(a)uF,e” <€

for all a € F. Let F ={a4, ..., a;}, say, and choose & > 0 such that
(1+ 6)**1 <1+ €. By hypothesis, there exists uy € A such that
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@(up) =1 and ||uel|| <1+ 6. Since a;uy — @(a,)uy € ker ¢, again by
(1v) there exists u; € A such that

p(uy) =1, lull £1+6 and [[(ajup — @(a)ug)u |l < 6.

Likewise, a,uou; — @(a,)uou, € Ker ¢ and hence there exists u, € A
such that

p(uy) =1, lupll <1+6 and |[(azupuy — @(az)uouu,ll < 6.
For j = 1,2 we have ||u]|| <1+ 5,(p(uj) =1 and
||aju0u1u2 — <p(aj)u0u1u2|| <6(1+9)

Proceeding inductively, we see that there exist 1 < j < k, such that
(p(uj) =1, ||u]|| <l+dandfori=1,..,J,

laiuouy ... u; — @(@duguy ... us|| <5+ 8) 1t <e

In particular, when j = k, setting up . = H?:ouj gives us (p(uF,e) =1,
|lurel| <1+ € and |laupe — (@) up || < € for alla € F. This proves
the above claim.

Now, order the pairs (F,€),F € A finite, € > 0, in the obvious

manner, and let m be a w*-cluster point of the net (uF'e)Fe in

A™. Then ||m|| <1 and (m,¢) =1 (and hence ||m| = 1) and am =
@(a)m for all a € A. So m is the required ¢-mean.

Remark (2.1.9) [2]:

Using methods similar to those employed in the proof of Theorem
(2.1.8), the following can be shown. Let A be a Banach algebra and
@ € A(A). For C> 0, the following statements are equivalent.

(1) A has a ¢-mean of norm C.
(i) A contains an approximate @-mean with norm bound C.
(iii) For each a € ker ¢, there exists m, € A™ with |m,|| =(
(mg, @) =1and am, = 0.
(iv)  There exists a net (uy)y in A with (p(uy) =1 forall y = ||uy|| -

Cand au, — 0 for every a € ker ¢.
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For a Banach algebra A and ¢ € A(A), let N(4, ¢) denote the set of
all f € A with the following property: for each 6 > 0, there exists a
sequence (a,), in A such that ¢(a,) =1,|la,l| <1+ § for all n and
IIf - a,ll = 0. We now aim at a criterion for a @-mean of norm 1
involving the set N (A4, ¢) (Theorem (2.1.12) below).

Lemma (2.1.10) [2]:

For a Banach algebra A and ¢ € A(A), the following hold.

(i) @ &N(4 9).
(i) N(4, ¢) is closed in A* and closed under scalar multiplication.
(iii) If A is commutative, then N (4, ¢) is closed under addition.

Proof:

(i) is immediate since ¢ - a = ¢ for all a € A with ¢(a) = 1.
(i) Letf, € A", n € Nand f € A" such that f,, = f. For every n there
exists a, € A such that ¢(a,) =1,|la,|| <1+ % and ||f;, - a,|l <

= Then |If - ayll < IIf = full - llagll + = for all n, whence f €

N4, ¢).
(i) Let fi,f, E N(A, @) and 6 > 0. If a; € A,j = 1,2, are such that

(p(aj) =1, ||aj|| <146 and ||f] . aj|| <6, then since A is

commutative,
I+ £f2) - (awa)ll < Nlfy - aall - llazll + Iz - azll - llag Il < 26(1 + 6).
It follows that f; + f, € N(4, ¢).
Lemma (2.1.11) [2]:

Suppose that A admits a ¢-mean of norm 1. Then N(4,¢) is a
subspace of A™.

Proof:

Let ] ={a € A:p(a) = 1} and let € > 0. Since A has a @-mean of
norm 1, there exists a net (uy)y in A such that (p(uy) =1 and ||uy|| <

1+ € for all y and ||auy — uy” — 0 forevery a € J.
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Now let fi,f; € N(A, ). Given € > 0, there exists a;,a, € J such
that ||f] : aj” < € and ||aj|| <1+ ¢,j = 1,2. By the first paragraph, there
exists u € A with ||u|| <1+ ¢ ¢(u) =1 and

la;u — aull < [lagu —ull + [[u — azull <e.
Then

1+ £2) - (@)l
< Iy - (@l +11fz - (@) = f2 - (@l + Ifz - (a0

< fy-aoll - llull + 520 - layu — azull + 11f2 - azll - ||l
<e(l+e)+ellfpll +e(d1+€)
= €(2 + 2e + |If21D.

Since @(a;u) =1 and |laju|l < (1 +€)? and € > 0 is arbitrary, it
follows that f; + f, € N(4, ).

Theorem (2.1.12) [2]:

Let A be a Banach algebra and ¢ € A(A). Then the following two
conditions are equivalent.

(i) There exists a ¢-mean m with ||m|| = 1.
(i) N(A, ) is asubspacec of A*and f -a—f € N(A,¢) forall f € A"
and all a € A with ¢(a) = 1.

Proof:

Let m be a @-mean of norm 1. By Lemma (2.1.11), N(4, @) is a
subspace of A* and a € A with ¢(a) = 1. There exists a net (uy)y in A
such that (p(uy) =1, ||uy|| — 1 and ||auy — uy” — 0 since ||(f -a — f) -
w, || < IfIl - ||aw, —u, ||, it follows that f - a — f € N(4, ).

Conversely, suppose that N(A, ¢) is a subspace of A* and that (ii)
holds. Since ¢ & N(A4, ) and ||@|| = 1, by the Hahn-Banach theorem
there exists m € A™ such that |[|m|[ =(m,@) =1 and m|yc4) = 0.
Then, by (ii), (m,f -a) =(m,f) for all f € A* and all a € A with
@(a) = 1and hence (m, f - a) = @(a)(m, f) for all a € A.
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We shall see in Example (2.2.16) that if ||m|| > 1, it can even happen
that N(4, ¢) = {0}.

The following corollary is an immediate consequence of Lemma
(2.1.10) and Theorem (2.1.12).

Corollary (2.1.13) [2]:

If A is a commutative Banach algebra and ¢ € A(A), then A has a ¢-
mean of norm 1 if and only if f-a — f € N(4, ¢) for all f € A" and all
a € Awith p(a) = 1.

Before proceeding, recall that an F-algebra A is a Banach algebra
which is the predual of a von Neumann algebra M such that the identity €
of M is a multiplicative linear functional on A. In this case, the e-means
of norm 1 are nothing but the topologically left invariant means (TLIM)
on A*. Examples of F-algebra include the group algebra, the Fourier
algebra and the Fourier-Stieltjes algebra of a locally compact group.
Other examples are the measure algebra of a locally compact semigroup
and the predual of a Hopf-von Neumann algebra.

Let A be a Banach algebra and ¢ € A(A). We say that an element a of
A is @-maximal if it satisfies ||a|| = ¢(a) = 1. Let P;(4, ¢) denote the
collection of all ¢-maximal elements of A. When A is an F-algebra and ¢
is the identity of the von Neumann algebra A*, the ¢-maximal elements
are precisely the positive linear functionals of norm 1 on A® and hence
span A. However, in general P; (A4, ¢) can be quite small.

Let X(A4, @) denote the closed span of P;(4,®). Then X(A4,¢) is a
closed subalgebra of A.

Were MarKov-Kakutani fixed point theorem [7] said: A commuting
family of continuous affine self-mappings of a compact convex subset in
locally convex topological vectors space has a common fixed point.

Proposition (2.1.14) [2]:

Let A be a commutative Banach algebra and ¢ € A(A) = A, if
X(A, @) = A, then A has a @-mean of norm 1.
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Proof:

Let K={m e A™:||m|| = (m,p) =1}. Then K is a w"-compact
convex subset of A™*. For each a € P;(4, ¢), let T,: K - K denote the
map m — am. Then a - T, is a representation of the commutative
semigroup P; (A4, @) as w* — w*-continuous affine mapping from K into
K. Therefore, by the Markov-Kakutani fixed point theorem, there exists
m € K with am = m for all a € P;(4, ¢). For all a € A, it then follows
that am = @(a)m, and hence m is a ¢-mean.

Remark (2.1.15) [2]:

Let A be a Banach algebra such that A is a left ideal in A™. Let
@ € A(A) and suppose that there exists a ¢-mean m. Then there exists a
@-mean in A itself.

To see this, fix a € A with ¢(a) = 1. If A is a right ideal in A™*, then
m = @(a)m = am € A. If A is the left ideal in A™*, then

(ma,p) = (m,a-@)=(m,p)=1

and b(ma) = @(b)ma for all b € A, whence ma € A is @-mean.

59



Section (2.2): Complete Banach Algebras and Invariant
Means on F- Algebras

A @-mean of a Banach algebra A is an element of the second dual of
A. There are some aspects of the theory of second duals which are
particularly striking for weakly sequentially complete algebras. In this
section we offer some results which are relevant to ¢-means.

A Banach algebra A is weakly consequentially complete if every
sequence (a,), in A which is weakly Cauchy is weakly convergent in A.
As is well-known, preduals of von Neumann algebras are weakly
sequentially complete. In particular, L'(G) and A(G), the group algebra
and the Fourier algebra of a locally compact group G, are weakly
sequentially complete. The w™-topology on A™ induces the weak
topology on A, so an easy consequence of the definitions is that if a
sequence (a,), in A converges to a w*-limit a € A**, then in fact a € A.
Since bounded subsets in A™ are relatively w*-compact, we see that if
(a,),, is a bounded sequence in A which has just one w*-cluster point in
A™*, then that cluster point is in A.

Theorem (2.2.1) [2]:

Let A be weakly sequentially complete with a sequential bounded
approximate @-mean, but with no ¢-mean in A itself. Then A has at least
2¢@-means. If A is separable, then it has precisely 2¢ @-means.

Proof:

Let (u,), be a sequential bounded approximate @-mean, and let M
denote the set of all w*-cluster point of (u,), in A**. Each element of M
is w'-compact. We claim that no element of M has a countable
neighbourhood based in M. Indeed, suppose that for some m € M, there
is a decreasing countable base (V,), of closed neighbourhoods of m in
M. Choose w*-closed neighborhoods Wj,k € N, of m in A™ with
Wy N M =V,. Then M N (Ng-, W) = {m}, and we can arrange for the
sequence (Wy)y to be decreasing. For each k, select u,, € Wy. Then

every w™-cluster point of the subsequence (unk)k lies in each W, and in

M, so must be equal to m. Since A weakly sequentially complete, it
follows that m € A, which is impossible by hypothesis.
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Thus no point of M has a countable neighbourhoods base. This implies

that M has at least 2¢ elements. Finally, if4 is separable, then A™ has a

countable w*-dense subset and hence no more than 2¢ elements.

Example (2.2.2) [2]:

(@)

(i)

(iii)

If G is a locally compact group, then €:f — fG f(x)dx

defines an element of A(Ll(G)). In this case, the e-means
correspond to the set of topologically left invariant means on
L (G). Suppose that G is amenable, second countable and
noncompact. Since then L'(G) is separable, it follows from
Theorem (2.2.1) that L* admits precisely 2¢ topologically
left invariant means, a fact which is known.

Let G be a locally compact group and A(G) its Fourier
algebra. Then A(G)* = VN(G), the von Neumann algebra
generated by left translation operators on L2(G). The identity
operator 1 on L?(G) defines an element € of A(A(G)) by
e(uw) ={,u) =u(e),u € A(G). Then the set of e-mean
coincides with the set of topologically invariant means that
studied, if G is second countable, then L*(G) is separable
and hence A(G) is separable and weakly sequentially
complete. If, in addition, G, is not discrete, then no e-mean
can belong to A(G). Thus the cardinality of the set of
topologically invariant means on VN (G) is exactly 2°.
Consider the convolution algebra A = [*(Z,). For z € D,
the closed unit disc, define ¢,:A—>C by ¢,(a)=
Ym0z, a = (a,), € A. Then the map z - ¢, is a
homeomorphism between D and A(A). We already know
that A is ¢,-amenable if and only if |z| = 1. Let z € D with
|z| =1. Since A is weakly sequentially complete and
separable, by Theorem (2.2.1) there either exists a ¢,-mean
in A itself or there are precisely 2¢ ¢,-means. Now, suppose
that u = (u,), € A is a @,-mean. Then for all a € A and

f=Udn €1®(Zy) = A"
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Y o @atn) = (fra s u) = (f - a,u) = g,(@(f, )
n=0

o} o}
— n

n=0 =0

Taking f = 6, and a = &;,1 > k, we obtain zu;, = 0. Thus u = 0 and
hence there are exactly 2¢ ¢,-means.

If m; and m, are two @-means on A, then mym, = @(m,;)m, = m,.
One of the immediate consequences of Theorem (2.2.1) is therefore that
if A satisfies its hypotheses, A™* is not commutative, even if A is. There is
a formulation of this which makes sense for non-commutative algebras.
Define a second multiplication on A™ by

m<>n=w*—llyi_r>r111(w*—olli_r>r11nab)
(a similar formula to that which determines the multiplication in A™*, but
with the limits taken in the other order). The product men is w*-
continuous in n for fixed m. A is called Arens regular if m ¢ n = mn for
all m,n € A™. A condition equivalent to Arens regularity is that mn
should be w*-continuous in n for fixed m. When A is commutative, so
that ba = ab, we find that in A™ we have m ¢ n = nm. Thus we have
shown that, under the hypotheses of Theorem (2.2.1), a commutative 4 is

not Arens regular. We shall obtain a non-commutative result generalizing
this.

We must introduce some additional concepts. We call m € A™ a 2-
sided ¢-mean if (m, @) = 1 and for each f € A* and a € A we have not
only (m,f-a)=¢@(a)(m,f), but also (m,f-a)=¢@(a)(m,f). Of
course, the latter two conditions are equivalent to am = @(a)m and
ma = @(a)m for all a € A, respectively. W*-continuity then gives
nm = (n,@)m for all n € A™. However, we cannot conclude that
mn = (n, @)m unless A is Arens regular. Notice that if A is commutative,
every @-mean is automatically a 2-sided ¢-mean.

A bounded net (uy)y in A is called a bounded approximate 2-sided ¢-

mean if (p(uy) = 1 for all y and for each a € A,
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||auy — (p(a)uy” - 0 and ||uya — (p(a)uy” - 0.
Proposition (2.2.3) [2]:

An element m of A™ is a 2-sided ¢-mean for A if and only if m is a
w™-cluster point of a bounded approximate 2-sided ¢-mean.

Proof:

If m is a w”-cluster point of a bounded approximate 2-sided ¢@-mean

(uy) , then for each a € A,am is a w”-cluster point of (uy) and this
14 14

implies that am = ¢ (a)m. Similarly, ma = ¢ (a)m. Since also (m, @) =
lim,, (p(uy) = 1, we get that m is a 2-sided ¢-mean.

Conversely, let m be a 2-sided ¢-mean. Then m is the w*-limit of
some net (uy)y in A with ||vy|| — ||m||]. Then (p(vy) —-1=

(v, —m, @) - 0, and w”-continuity gives
av, — ¢(a)v, » am — p(a)m = 0and vya — ¢(a)v, > ma —p(a)ym =0
in the w*-topology for each a € A. So the nets
(avy — (p(a)vy)y and (vya — (p(a)vy)y
in A both converge to 0 weakly for all a € A.

Now take any finite subset F = {a,, ..., a; } for A and let

C= {((ajv — (p(aj)v);(:l, (vaj — (p(aj)v);(:l, o) — 1) Vv E A}.

Then in the Banach space A%k % C,0 is in the weak closure of C and
hence in the norm closure since C is convex. Thus, given € > 0, we can

find Vg . € A such that ||VF,6|| < 2||m||, say, |<p(VF,e) — 1| < € and for
alla € F,

lavee — p(@vpe| <€ and ||vpea — @(@ve || <e.

Finally replace vp. by a scalar multiple up, = Ag (Vg for which

(p(uF,E) = 1. Then |/1F,e| < 1%6 and

63



€
1—¢€

€
”auF,e - (p(a)uF,e” < 1—¢ and ”uF,ea - (p(a)uF,e” <

So the net (uF,e)F . is a bounded approximate 2-sided ¢-mean and m is

the w*-limit of (upe), .

We shall show
Theorem (2.2.4) [2]:

Let A be weakly sequentially complete. Suppose that A has a bounded
approximate 2-sided ¢-mean, but that there is no 2-sided ¢@-mean in A
itself. Then A is not Arens regular.

In proving Theorem (2.2.4) we will partly follow an idea of Ulger,
where he established a parallel result for bounded approximate identities.

Let I be a commutative idempotent semigroup, that is, i = i for all
[ € 1. Define an order on [ by i < jif ij = j. Then I is a directed set with
max{i,j} = ij.
Proposition (2.2.5) [2]:

Let A be a Banach algebra. Let I be as above and let h: ] — A be a

homomorphism into the multiplicative semigroup of A such that h(I) is
bounded and 0 & h(I). If the net (h(i))i has a weak cluster point in A,

then h(I) has a maximal element.
Proof:

Let e be a weak cluster point of (h(i))i. Take | to be a cofinal subset
of I with w —lim;¢; h(i) = e. For i <j in ] we have h(D)h(j) = h(j).
Taking the j-limit gives h(i)e = e and then taking the i-limit gives

e? = e. Since weak and norm closures of convex sets coincide, e is in the

norm closure of the convex hull of {h(i):i € J}. Thus given € > 0, we
can find jy, ..., j, € J and scalar A, ..., 4, = 0 with }:}_; A; = 1 such that

> MhG) —e
k=1

For j € J with j = max{j, ..., j,} we have

< €.
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(Z Akhom) h() = ) 2chiel) = h(D.
k=1 k=1

Because h(l) is commutative, we see that eh(j) = e for all j and

therefore
IR = ell = || > 2hGOR() = eh(D| < |1 2ehGi) = e|| - IR
k=1 k=1
< esup|lh(II.
JEJ

But h(j) — e is an idempotent, so either is zero or satisfies ||h(j) —
e|| = 1. Since € > 0 is arbitrary, it follows that h(j) = e. This holds for
a cofinal set of j’s and consequently e is a maximal element in h(I).

Next we present a general construction which produces subalgebras
which have sequential bounded approximate ¢p-means.

Proposition (2.2.6) [2]:

Let A be a Banach algebra with a bounded approximate 2-sided -

mean (respectively, a bounded approximate@-mean) (uy)y. Let X =

{x4, X5, ... } be any countable subset of A. Then there is a closed separable
subalgebra A(X) of A which contains X and has a sequential bounded
approximate 2-sided @-mean (respectively, a sequential bounded

approximate @-mean) (uyn)Y chosen from (uy)y.

Proof:

We shall only prove the 2-sided ¢-mean case (the other one being
easier). If we replace each element of X by any non-zero scalar multiple
of itself we do not change A(X), and we may therefore arrange for X to
be bounded. Thus let C > 0 be such that ||x,]|, ||uy|| < (C for all n,y .

We choose u,,_,n € N, inductively to satisty
n

1 1
sy, = pCeduy, | <~ and Jluy, % — @Gy, || <
forl1 <i<n,and

1 1
”uyiuyn - uyn” = n and ”uynuyi - uyn” = n
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for 1 < i <n. We take A(X) to be the closed linear span of X U
{uyl,u),z, o b

Now (uyn))/n is a bounded approximate 2-sided ¢@-mean for A(X).
This requires a little argument, whereas the corresponding conclusion
when dealing with bounded approximate identities is just a simple
observation. Take any k elements ay, ..., a; from X U {uyl'un' } and

let € > 0. Choose N so large that kC*"1/N < € and that if n > N, then
x, and u, do not belong to {as,..,ax}. Then, for n > N, we can

estimate the norm

Cpi= ||a1 o Q. — @(ag ... ak)uyn”
as follows:

k
Cn < z”al ...aj<p(aj + 1) wo(adu, —aq ...aj_1<p(aj) (p(ak)uyn”
j=1

k
< DMl gyl [o(eyon)] 0@l - oy, = o(ay)u,|
j=1

A parallel calculation deals with w,_a; ... aj. Similar methods will allow
us to treat finite linear combinations of products a, ... a;. We then have a
bounded approximate 2-sided ¢@-mean for the algebra generated
algebraically by X U {uyn: ne N}. Standard arguments extend this to the

norm closure, that is, A(X).
Corollary (2.2.7) [2]:

Let A be a separable Banach algebra and ¢ € A(A). If A is -
amenable, then there exists a sequential bounded approximate ¢p-mean.

The algebra A(X) constructed in the proof of Proposition (2.2.6) is of

course not unique, as it depends on the choice of (uyn)n. We now prove

Theorem (2.2.4) in the following form.
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Theorem (2.2.8) [2]:

Let A be weakly sequentially complete and Arens regular, and suppose
that A has a 2-sided ¢-mean m. Then m is unique and contained in A.

Proof:

We first consider the case in which the bounded approximate 2-sided
¢-mean is sequential, say (u,),. If m; and m, are both 2-sided ¢-means,
we have a-m, = @(a)m, for all a € A, and choosing a net in A
converging w”* to my, we get mym, = (m,, )m, = m,. In the same
way, from m, - a = @(a)m,, because A is Arens regular, we get that
mym, = my. Thus m; = m,, and in particular any two w*-cluster points
of (u,,), are equal. Since A is weakly sequentially complete, there exists
a cluster point in A itself, which then is the unique 2-sided ¢-mean.

Now let A be arbitrary. Take any countable subset X; of A and form
A(Xy) as in Proposition (2.2.6). Then A(X;) is weakly sequentially
complete and Arens regular and has a sequential bounded approximate 2-
sided @-mean. By the first part of the proof, A(X;) has a unique 2-sided
@-mean, m. I[f m; is a 2-sided ¢ mean for A, we are finished. Otherwise
we can find a countable subset X, of A with m; € X, for which m, is not
a 2-sided @-mean. Then A(X,) contains a 2 sided @-mean, m, say. In
particular, m;m, = (m4, )m, = m, and similarly m,m,; = m,. Again,
if m, 1s a 2-sided @-mean for A, we are finished. Otherwise, take X5 with
m4, m, € X3 in order to find ms, and so on. If this process stops we have
found a 2-sided @-mean in A. If it does not stop, we find a bounded
infinite sequence (m,)n in A with the product mym; = Mmpy,x( ;3. This is
impossible by Proposition (2.2.5).

Let A be an F-algebra. We now use the term topologically left
invariant mean (TLIM) rather than e-mean of norm 1. The purpose is to
prove the following theorem which was proved for the Fourier algebra of
a locally compact group.

Theorem (2.2.9) [2]:

Let A be a separable F-algebra which is e-amenable. Suppose that A*
contains a C*-subalgebra B such that B is w*-dense in A* and m(B) =
{0} for every e-mean m. Then there is a linear isometry © from [1(N)
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into A with the property that each m € @"*(SN\N) is an e-mean. In
particular, if m;, m, € 0" (SN\N) are distinct, then||m; — m,|| = 2.

The proof of Theorem (2.2.9) will make substantial use of the
following lemma.

Lemma (2.2.10) [2]:

Let A and B be as in Theorem (2.2.9).

(@)

(i)

Proof:

(@)

If mis a TLIM on A", then ||m — a|| = 2 forevery a €
Pl (A; E)'
If a net (uy)y 1s an approximate e-mean with ||uy|| = 1 for all

y, then limy”uy — a|| = 2 foreach a € P;(A4,¢).

Since B is w*-dense in A", by the Kaplansky density the unit
ball of B is w*-dense in the unit ball of A*. Consequently, the
map r:A™ = B*,m - m|p is a linear isometry of A™ into B".

Choose a bounded approximate identity (eﬁ) 8 in B such that
ep = 0,|leg| <1 and e < egiif B <" (such a bounded

approximate identity exists in every C° -algebra). Let a €
P1(4,€). Then ||al| = limg(eg, a) and hence, given any § > 0,
there exists B such that (eg,a)=|lal| -6 =1—46. Let
g = 2eg — € € A”. Now, if m is any e-mean, then

(a—m,g) =(a—m,2es —€) =2(a—m,eg) = 2(1 — &) — 2(m, eg)

=2-26

as (m,eg) = 0. So |la —m|| = 2 — 24, and since § > 0 was arbitrary,

lla —m|| = 2.

(i)

If ||uy — a|| does not converge to 2, then by taking a subnet, we
may assume that ||uy — a|| <2 -6 for all y and some § > 0.
Then ||m —a|| <2 —§ for every w*-cluster point of (uy)y.

This contradicts (1) since any such m is an € mean.
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We now turn to the proof of Theorem (2.2.9). For a € A, let s(a)
denote the support of a in A", that is, the smallest projection p such that

(p,a) = e(a) = |lall.
If m is a positive linear functional of norm 1 on A”, then there exists a

net (uy)y in A such that u, =0, ||uy|| = 1 (equivalently, u, € P;(4,¢€))
and u,, > m in the w*-topology. Thus W*-lim(auy — e(a)uy) = 0 for

every a € A.

By an argument similar to the one in the proof of Proposition (2.2.6),
we can find a sequence (uyn)n such that ||auyn — E(a)uyn” — 0 for all
a € A. By Lemma (2.2.10), limy”uyn — a|| = 2 for all a € P;(4,¢).
Using Theorem (2.1.8)(ii1). We can find a subsequence (uyn)j of (uyn)n

and sequence (vj)j in P; (4, €) such that

1
[, =vill < 7=

for all j and S(Uj)S(Uk) = 0 ifj # k. Clearly, (vj)j is an approximate €-

mean.

Let V = {v,,v,, ... }. Since V is orthogonal, V is a linearly independent
subset of A. Let

©:span {§,:v € V} - span V
be defined by

n n
Q) zg:ﬂj6vj ::ZE:Ajty.
j=1 j=1

Clearly, ||®(Z?=1/1jvj)|| < Z?=1|/1j|. On the other hand, if P; = s(vj),
then (P])] is a sequence of pariwise orthogonal projections in A*. Let M

be the w*-closure of the span of the P;,j € N. Then M is a commutative

, and let

w*-subalgebra of A*. For each j, let ; € C such that u;A; = |/1j
q = Xj-11jP; € A". Then ||q|| = 1, and
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n n
©( Y 16, |.ay=> 1],
= =1

and therefore

n n
o > x5, |l = (1> 1.,
=t =1

Consequently, © extends to a linear isometry, also denoted 0, from L)
into A.

Finally, since each n € SN\N is a w*-cluster point of (517]-) ,and O
J

is w*-continuous, it follows that m = ©**(n) is a w*-cluster point of the
sequence (Vj)j. So for each w™-neighbourhood U of m, there exists

ny € N such that v, , € U. Let U denote the set of all w*-neighbourhood
of m. Then (an)U is a subset of the sequence (vj)j and v, — m in the

w’-topology. Indeed, otherwise there exists N € N such that n; < N for
all U, which implies that m is an e-mean in A. However, since m|gz = 0,
this is impossible. Clearly, m is e-mean.

Examples (2.2.11) [2]:

We present two illustrative examples: algebras of Lipschitz functions
on compact metric spaces and convolution algebras LF (G) on a compact
group G. In both case, the relevant singletons in 4(A) are open. We
therefore start by looking at how openness of {¢} and @-amenability are
related.

Remark (2.2.12) [2]:

Let A be a Banach algebra and ¢ € A(A) and suppose that A is ¢@-
amenable. For every ¥ € 4(A) such that i) = ¢, there exists a,, € ker

with (p(aw) = 1. So, if m is a ¢-mean, then (m, ¢) = 1, whereas

(m, ) = (m, - ay) = (m,P(ay)P) =0

for all Y # ¢@. Hence {¢} is open in (4(A), weak).
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We can define a Shilov’s idempotent [8]: Let A be a commutative Banach
algebra and let ¢ be a compact open subset of A(A). Then there exists an
idempotent a in A such that @ equals the characteristic function of C.

Lemma (2.2.13) [2]:

Let A be a semisimple commutative Banach algebra. Let ¢ € 4(4)
and suppose that {¢} is open in 4(A). Let a be the unique element of A
with ¢(a) = 1 and Y(a) = 0 for all Y € 4(A)\{p} .

(1) Then a is a ¢p-mean for A and it is only one in A™,
()If llall = 1, then N(4, ) = {f € A™: (f,a) = 0}.

Proof:

The existence of a follows from Shilov’s idempotent. However, in the
present special situation it is easy to avoid such heavy machinery. To see
this, let / be the closed ideal of A defined by

J={a€ A:¢(a) =0 for all Y € 24(A)\{p}}.

Since {@} is open in (4(4),w"),4() = {(p|]} and hence | is 1-
dimensiomal as A is semisimple. Of course, kerp +] = A and kerp N
J = {0} since A is semisimple and Y (ker ¢ N J) = {0} for all Y € 4(A4).
Thus A = kerp @ ] and A* = (ker ¢)* @ C,.

Let a € ] such that ¢(a) = 1. Then y¥(a) = 0 for all Y € 4(A)\{p},
and a is the only element of A with these properties since A is
semisimple.

(i) For each x €A ,¢o(xa) =@(p(x)a) and, for Y € 4(4)\
{p}, Y(xa) =0 =9Y(p(x)a). So  xa=¢a by
semisimplicity and hence a is a ¢-mean. Now let m € A™ be
any ¢@-mean for A. Since A commutative, every element of A
commutes with every element of A**. Thus

m=¢@(a)m =am =ma = ¢**(m)a = (M, p)a = a.

So a is the only ¢-mean for 4 in A™.
(i) Let ||a]| = 1. Since N(4, ¢) is a proper linear subspace of A*,
by definition of N(A4,¢) it suffices to show that for any
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f €A (f,a) =0 implies f-a =0. Now, every x € A has a
decomposition x =y + Aa with y € ker¢p and A € C. Since
ay € kero nJ = {0}, for f € A,

(f ~a,x) =(f,ay) + Mf,a) = Kf, a).
So f -a = 0 whenever (f,a) = 0.

Since an amenable Banach algebra is ¢-amenable for each ¢ € A(A).
If A is commutative and semisimple and the weak and weak* topologies
coincide on 4(A), then by Lemma (2.2.13), A is @-amenable if and only
if {¢} is open in 4(A). Then condition that the two topologies coincide,
however, is quite restrictive. It is for instance satisfied if A is an ideal in
AT,

Example (2.2.14) [2]:

Let X be a compact metric space with metric d and let 0 < a < 1.
Then lip, X is the space of al complex-valued functions u and X such that

Iu(;ch—;;gy)l Xy € X, x % y}

P,(u) = sup{

is finite, and lip,, X is the subspace of functions satisfying

lu(x) —u(y)|
d(x,y)*

with pointwise multiplication and the norm ||u|| = ||ull» + B, (w),liP, X

- 0 asd(x,y) — 0.

is a unital commutative Banach algebra and lip, X is a closed subalgebra.
These algebras were first studied by Sherbert and later by Bade, Curtis
and Dales.

We first treat lip, X. The map x — ¢,, where @,(u) = u(x) for
u € liP, X, is a homeomorphism from X onto 4(liP, X). If x is a non-
isolated point of X, then there exist non-zero continuous point derivations
at ¢, and hence liP, X is not ¢,-amenable. Now, let x be an isolated
point of X. Then, by Lemma (2.2.15) (i), there exists a unique ¢,-mean,
namely the Dirac function 6, € liP, X. In view of Section (2.1) where the
means are supposed to have norm 1, we point out that
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1
=1+P =1 _
”5x“ + a(5x) + sup {d(x,y)“ y F x};

which, depending on d, can be arbitrarily large.

In light of Lemma (2.2.13) (ii) which shows that N(A4, ¢) is a linear
subspace of codimension 1 if there exists a ¢@-mean of norm 1, it is
interesting to note that N(liP, X, ¢,) = {0} for any isolated point x of X.
To see this, let f € N(liP, X, ¢, ). There exists a sequence (u,), in
lip, X with u,(x) =1 for all n,||lu,|| > 1 and f-u, = 0 in norm. it
suffices to show that u, -1 in lip, X because then f=f-1=
lim, o f - u, = 0. Since

1+ Pa(un) = |un(x)| + Pa(un) < ”un” -1,

it follows that P,(u,, — 1) = P,(u,) — 0. Therefore it remains to verify
that u,, = 1 uniformly on X. Since X is compact, there exists C > 0 such
that d(y,x)* < C forall y € X. For y # x it follows that

|un(y) - un(x)l
d(y, x)*

which tends to zero. So u,, = 1 uniformly on X\{x} and hence on all of
X.

lun () — 1] = luy, (y) —up()| < C- = CPa(un);

We now turn to lip, X. Note that lip; X can be very small since for X a
compact interval it consists only of the constant functions. In fact, if
d(x,y) = |x — y|, then each u € lip; X is differentiable with u’ = 0 on
X. Thus, let 0 < @ < 1. Then lip; X is dense in lip, X and 4(lip, X) can
be identified with X in the same manner as above. However, in contrast to
lip; X, all continuous point derivations on lip, X are zero. Nevertheless,
for x € X, lip, X is also ¢,-amenable if and only if x is an isolated point
of X. This follows from Theorem (2.2.4) and the remarkable result that
(lip, X)™ is isometrically isomorphic to lip, X. Indeed, this latter fact
implies that the weak* and the weak topologies coincide on A(lip, X)
since X is homeomorphic to both A(lip, X) and A(lip, X).
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Example (2.2.15) [2]:

Let G be a compact group with normalized Haar measure and consider
the convolution algebra LF(G),1 < P < . Let G denote the set of all
continuous homomorphisms from G into the circle group T, equipped
with the topology of uniform convergence. For y € G, define ¢, :
LP(G) - C by ¢, (f) = fo(x)m dx. It is routine to show that map

X = @ is a homomorphism from G onto 4(L7(G)).

Letq = %. Fix ¥ € G and define m, on L1(G) = LP(G)* by

(m,8) = f g0y dx, g€ LIG)
G

Then (my, ¢,) = [ |x(x)|? dx = 1 and
(Mg f) = (m,.g f) = f f g(n) f ) x () dy dx
G G
= [ [ eeor oGy drdy = o, (im0
G G

for all g € L9(G) and f € L¥(G). Thus m, is a ¢,-mean, and we claim

that it is the only one. Note that LP(G) does not have a bounded
approximate identity and hence Lemma (2.2.13) (i) does not apply. So let
m be a ¢-mean and let

L={g—-80nx:ge LG}
Then L = ker m,, and, since g * ¥ = () ¥, we also have
(m, g — 800X = (m,(m, g —8CNX) = (mgxx —80DxX) =0

for all g € L9(G). So m|; = 0 and since (m, ¢, ) = (m,, ¢, ), it follows
that m = m,,.

We now determine P; (L (G), ¢, ). If P = 1, then

P, (LG, ¢,) ={f € l'G): fx=0,lIfxll = 1}.
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For every h € L}(G) and y € G, hy can be written as a linear combination
hy = Z?zlcjhj, where ¢; € C,hj = 0, and ||h]|| =1,1<j < 4. Hence
h = Z;*:lcjhj)( and h;y € Pl(Ll(G), <pX). So Pl(Ll(G), <pX) spans L'(G).
Alternatively, we could appeal to the fact that L'(G) is an F-algebra.

We claim that P; (LP (@), (pX) = {y} whenever P >1, so that
P, (LP (@), (pX) is as small as it can be in this case.

Suppose first that P > 2. Then LF(G) € L?(G) and hence, for
f € P (LF(G), 9,),

=715 2 118 = Y [Fanf =1+ ) [Fan [

neG n#EX
So f(n) = 0 forn # x and hence f = Znegf(n)n = y in L?(G).
Finally, let 1 < p < 2 and f € L’(G) € L'(G). Then, by the
Hausdorff-Young inequality, f € 19(G) and ||f ||q < Ifllp. Thus, if
f € Pi(L(G), ¢y), then

1/q 1/q
L=lfle = | Y 1f@l* | =(1+ ) 1F@l*]
neG n*x
Again, f(n) = 0 for n # y and hence, since LP(G) € L'(G),f €
k(G\{x}) = C,. Then f = y since foo) = 1.

We now determine N(LP(G),(pX). If G is abelian, it follows easily
from Lemma (2.2.13) (i1) that

N(LP(6), ¢,) = {f € L9(®): (D) = 0}.
We show that the same description of N (LP (6), (pX) 1s true when G 1s an
arbitrary compact group.
Observe first that, for f € L9(G) andn € G , we have

Fxm=7xxm = f W( f fGx») dy> dx
G

G

= [ [ ren@xwy ax ay = foy | xomed ay,
G G G
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The orthogonality relations now imply that f - y = 0 whenever f(¥) =
0. Thus f - y = 0, and since ¢, (¥) = 1and [[x]|p = 1, this shows that

{f € L9G): f () = 0} = N(LP(G), 9,).
Conversely, let f € N(LF(G), ¢,) and let (g,,),, be a sequence in LF(G)
with ||f - g, | = 0 and ¢, (g,) = 1 for all n. Since

F(D] =

[ rex dx- [ gntixGray
G

G

[ [ ren a0 aya
G

G

(]

G

1/q

q
[ranamoma| ax]  =if gl

G

which tends to 0. It follows that f(¥) = 0 and hence

N(LP(G), @) c {f € L7 (6): f(x) = 0},

as required.
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Chapter 3

Approximate and Non Approximate amenability

We give nice condition for ¢, direct-sum of amenable Banach algebras
to be approximately amenable, which gives us a reasonably large and
varied class. then we examine examples in some details.we show
that the two notions of bounded approximate amenability and bounded
approximate contractibility are not the same; the direct-sum of two
approximately amenable Banach algebras does not have to be
approximately amenable; and a 1-condimensional closed ideal in a
boundedly approximately amenable Banach algebra need be
approximately amenable.

Section (3.1): Approximate Identities

Approximately inner and non-inner derivations arise naturally in the
theory of operator algebras in abstract harmonic analysis. The notion of
approximate amenability for Banach algebras founded by F. Ghahramani
and R.J. Loy in the year 2000 to study the Banach algebras having the
property that every continuous derivations from them into a related dual
Banach bimodule is approximately inner. Since then various classes of
naturally arising approximately amenable and non-amenable Banach
algebras have emerged. Such are examples of certain sequence algebras,
studied, certain semigroup algebras one studied and certain Fourier
algebras studied. So far all of these examples of approximately amenable
Banach algebras as well as the synthetic ones (constructed by C,-direct-
sums or projective tensor products) have bounded approximate identities.
It is a well-known and significant feature of amenable Banach algebras
that they have bounded approximate identities. Several open questions in
the theory of approximate amenability have recently been answered, by
Choi and Ghahramani. It has been an open question whether
approximately amenable Banach algebras must also have bounded
approximate identities. In the positive direction, it was shown by Choi.
Ghahramani and Zhang that if a boundedly approximately amenable
Banach algebra has a multiplier bounded right approximate identity and a
multiplier bounded left approximate identity, then it has a bounded
approximate identity. In particular, every boundedly approximately
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contractible Banach algebra has a bounded approximate identity. it is
tempting to think that every boundedly approximately amenable Banach
algebra must also have a bounded approximate identity. Here we give
examples of boundedly approximately amenable Banach algebras which
do not have bounded approximate identities.

We will use the abbreviations a.i., l.a.i. and r.a.i. for approximate
identity left approximate identity and right approximate identity,
respectively. We use the abbreviations b.a., bl.a.i. and b.r.a.i. for
bounded such approximate identities, and m.b.a.i, m.b.lL.a.1, m,b,r.a.1. for
multiplier bounded such approximate identities. All the bounded forms of
approximate identity have their associated constants. L(E, F) denotes the
Banach space of all continuous linear maps from the Banach space E to
the Banach space F, and K(E, F) denotes the closed subspace consisting
of the compact operators. L(E) (K (E )) denotes the Banach algebra
L(E, F)(K(E, F)). If A.B are Banach algebras. A @ B denotes their

projective tensor product, and we use the symbol m: ARA — A to
denoted the natural product map with m(a; ® a,) = a,a,.

A Banach algebra A is approximately contractible if every continuous
derivation d:A — E from A into a Banach A-bimodule E is
approximately inner, that is, it is a limit, in the strong operator topology
on L(A,E), of a suitable net of inner derivations ad,(x € E), where
ad,(a) =a-x —x-A is approximately amenable every continuous
derivation d: A — E from A into a and Banach A-binmodule E is
approximately inner. A is boundedly approximately amenable if every
continuous derivation from A into Banach A-bimodule E is the strong
limit of a norm-bounded net of inner derivations ad, (that is, the
operators ad, used in the net are uniformly bounded in L(A.E). this
condition is much weaker than saying that the elements x involved are
norm bounded in E —that condition is too strong, implying at once that A
must be amenable).

One can likewise define bounded approximate contractibility, but it turns
out that a boundedly approximately contractible Banach algebra must
have a b.a.i., so the algebras constructed in the present section do not
have this last property. A% denotes the unitization of a non-unital Banach
algebra A: if A is already unital, we define A* = A.
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A Banach algebra is approximately amenable if and only if it is
approximately contractible. We shall see that the “bounded” version of
this statement is not true: our main construction is of a Banach algebra
which is boundedly approximately amenable but which, not having a
b.a.i., is not boundedly contractible. We shall show also that the direct-
sum of boundedly approximately amenable Banach algebras is not
necessarily approximately amenable, and a 1-codimensional closed ideal
in a boundedly approximately amenable Banach algebra need not be
approximately amenable. We note that in a boundedly approximately
contractible Banach algebra a 1-condimensional closed ideal is boundedly
approximately contractible.

Most forms of amenability have an equivalent (and sometimes more
useful) definition in terms of a suitable diagonal; for those we have
defined above, they are as follows. A Banach algebra A is approximately
contractible if there is a net (d,),es Of elements in the Banach A
bimodule A* & A* such that m(d,) = 1 and the operators adg, tend to
zero in the strong operator topology of L(a‘l, AY ® Jl#). A 1s boundedly
approximately contractible if, in addition , the net (d,) can be chosen
such that the operators ad , are uniformly bounded. A is approximately
amenable if is a net (A,) ,e4 Of elements in the dual Banach A-bimodule

(A*® Jl#)** such that **(A,) = 1 and the operators ad,  tend to zero
in the strong operator topology of L(a‘l, (a‘l# ® o‘l#)**). A is boundedly

approximately amenable if the net (A,) can be chosen such that the
operators ad,  uniformly bounded.

Let I' denote the well-known space of complex sequences, and [® its
dual. It is well known that the Banach algebra K (ll) is amenable. In this
section we renorm K (ll) with a family of equivalent norms ||-||'¥], in
such a way that the b.l.a.i. constant (i.e. the infimum of all M such that
the algebra has a b.la.i. bounded by M) for AKXl = (K(ll), ||-||[K]) is
always 1, but the b.r.a.i. constant is precisely K + 1. So the Cy-direct-sum
A = €|9,°(°=1Jl|K| has a bounded l.a.i. but no bounded r.a.i.

We begin by constructing a bounded right approximate identity for the
algebra K (ll); a simple but not quite trivial task because no sequential
such r.a.i. exists.
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Let F denoted the collection of all partitions II of N into finitely many
n

non-empty disjoint subset (Fi(n)) . We define |II| = n and we direct
i=1

the set F by saying that I > II" if Il is a refinement of II’, that is,

|[IT| > |II"| and each set Fi(nl) is a union of some of the sets Fj(n). With

ecach partition II € F with |[[T| =n we associate the functionals
n

(fi(n)) € |®, where
i=1

f;(n)(ej) — {1, lf] € Fi(n); (1)

0, otherwise,

and where (e,) stands for the standard basis of I1. We write mgn) =

min Fi(n) and we note that fi(n) (em(n)) =0 j- We define the rank-one
j

operators FUP b F.(I.D(x) =e " f-(n)(x), and we define the
p L] y L] mi J

projection QU1 = Z?leiT). We also define the more basic projections

B, = Y1 Ei j, where Ej j(x) = e; - e (x).
Lemma (3.1.1) [3]:
The sequence (P;);=; is a bounded left approximate identity for K (ll).

Proof:

Let T € K(11),e > 0 and B be the unit ball of ;. Let x; ...x,, be an
g/2-net for T(B). Because Pyx — x for x € I, there is an N, such that
for all N > Ny, ||Pyx; — x;|l < &€/2,i =1,2,...,n. Then for y € B, there
is an i such that ||Ty — x;|| < £/2, so

I = P)Tyll < I = Py)x;ll + €/2 < e.

So |[T—PyT|| <e, for all N> N, and (P;);2, is a bounded left
approximate identity.

Lemma (3.1.2) [3]:

For g € I® we have Q*Pg - gas Il - F.
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Proof:

Let € > 0 and write g; = g(e;). Suppose IT € F is sufficiently refined
that for each k = 1, ..., |II| we have

sup{lg; —g;|:1./ € F"} < e
Then for i € F™ we have
|g(er) — Q" Mgle)| = |g: — 8(@™e)| = |gi - gm;@' <e
The sets F, cover N so ||g — Q*(Mg|| < .
Corollary (3.1.3) [3]:
The net (QUP) . __. is a bounded right approximate identity for K (I').

Proof:

Given T € K (ll) and € > 0, we pick n sufficiently large that ||T —
B,T|| < &/3. The operator S = B, T is of form S(x) = Y1, e; - s{ (x), for
some Sj, ..., Sy € . From the preceding lemma we can choose I1, € F
such that forall II > I, and i = 1, ...,n, we have

|Q*(”)slf“ —s;| < &/3n. Then for any x € ll,

n n
|SQPx — Sx|| = z e; (s; —s;QU)x|| = z si(x) — Q*Ws} (x)|
i=1 i=1
< |lx|l /3.
Therefore,

ITQx —Tx| < (e/3 + [T = Q|| - IS — TI)IIx|l
< (¢/3 + 2¢/3)|Ix|| = llx|.

So, the net (Q(H )) is a bounded right approximate identity.
Lemma (3.1.4) [3]:

Let K > 1. If we renorm K (ll) with the equivalent norm
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ITllx = ITIl + K lim sup||Te, ||, (2)
n

then this is an algebra norm, and the left approximate identity P, has
norm 1 in the Banach algebra

AWK = (K (1Y), IIFlx), (3)

but the smallest norm of any bounded right approximate identity in A
s K + 1.

Proof:
We have

limsup ||TSe,|| < ||IT|| - lim sup||Se, ||
n n

Hence in fact ||TS||x < |IT]| - [IS]|x, so we have an algebra norm. the B,
have norm 1 because P, e; is 0 for all but finitely many i. But let T be the
operator such that T'(e;) = e; for all i.T € A and if Q is any operator
such that ||[TQ — T|| < € we must have ||Q|| > 1 — ¢, but also

lim supl|Qen | = lim sup [ITQe, I/IITIl > 1 — .
n

also because lim||Te;|| = 1. Therefore |[|Q|lx > (1 +K)(1 —¢), and
1+ K is the smallest possible norm for right approximate identity of
AKX Since ||]|¥! is at most K + 1 times the usual norm on K(ll), and
since the family (Q(H)) are b.r.a.i. for K(ll) of norm 1, they are b.r.a.i.

for AKX of norm exactly K + 1, and the b.r.a.i. constant for A%l is
K+ 1.
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Section (3.2): Non Approximate Amenability

We now give condition for a cy-direct-sum of amenable Banach
algebras. If boundedly approximately amenable.

Corollary (3.2.1) [3]:

The algebra A = cy —D L, AKX defined in the previous section is
boundedly approximately amenable, but has no b.r.a.i.

Theorem (3.2.3) is proved using the following lemma, which look less
general but is in fact enough to give the main result. In the proof of the
lemma we use the following result which we think is folklore, as we
cannot find a reference for it, so we have sketched a proof. Let E and F
be Banach spaces. Then the projective tensor product E ® F** has a

continuous embedding in (E ®F )** To see this, first we identity the

dual space (E ® F)>k with B(E, F*). Then we define © from E ® F** by
using duality, as follows:

® (Z en ®fn**>,T> = ) (T i) (T € BE.F))
n=1

n=1

To see that O is injective, it suffices to assume that in that in the

@(i en ®fn**> =0,

n=1

equation

The e,,’s are linearly independent and use special T ’s to conclude that
fn" =0, forall n.

Lemma (3.2.2) [3]:

Let C =1 and let (B[K])Io:zl be a family of amenable Banach
algebras. Suppose € and F are direct sets, and suppose, for each K, the

family (P,LK])meg is a.b.La.i. for BX) of norm at most C. Suppose, for
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each K, ab.r.a.1. (Q,[lK]) for BIX] is also given, and there 1s a bounded

ne}"

net (d,[,lf ]n in B @ BIXI such that

’ )mee,ne}"
| (dinn) — bR + 01 - o IR -0, @

asm — € and n = F (i.e. the set € X F is given the product order and the

limit of the associated net to this direct set is taken); and for b € BIX] we
have b - d,[,lﬁl - d,[,lf]n b —> 0 asm— & and n — F. Then the cy-direct-

sum B = ®%_,B!X! is boundedly approximately amenable.
Proof of Lemma (3.2.3):

To begin, we need an ultrafilter U on € X F which refines the order
filter on the Cartesian product € X F of our given direct sets. Let us pick
such a U, but not just any U. Rather, let us pick an ultrafilter U; on €
refining the order filter on £, and an ultrafilter U, on F refining the order
filter on F. Let EF denote the collection of all functions from F to &.

For A € U4, B € U, and h € £F we define the subset

S(A,B,h)
={(mn) EEXF:meAn€e€Bandm = h(n)}. (5)

These sets are not-empty because B is non-empty, and for each fixed
n € B, the collection of m € £ such that m = h(n) meets A because A
belongs to the ultrafilter U4, which refines the order filter on €. Let G be
the collection of all supersets of sets S(4, B, h) € € X F. Our collection G
is closed under finite intersection and is therefore a filter on € X F (given
S;and S, as in (3.2.2), if we intersection the A sets, interest the B sets,
and take a function h: F — £ which, at each point n € F, exceeds the two
functions we have been given, then we have an S € §; N S,, so $; N S,
being a superset of one of the elementary sets in (5), is in filter). We
refine the filter G to an ultrafilter U. Plainly as (m,n) —» U we have
m— U, and n - U,.

We define PXI = = limy,_q, Pn[l l'e BIKI™ and QIKl = = lim,_q, Q,[lK]:
limits being weak -* limits here and for most of this section. We note that
for A € Uy, B € Uy and f; € BT (j =1, ..., ). U also contains the set
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S(K; A,B, fy, ., f;,1)
= {(m,n):meAneB, |(Q,[1K]P,£1K] — QLK]P[K]rfj)l
<n(G=1,..,D} (6)

(for P,%K] — PIXI 50 for each fixed n € F there is an my = h(n) € € such
that whenever m = mg, Eq. (6) holds. Then,
S(4,B,h) c S(K; A, B, f1, . [} n) so the latter set in the filter G.)

In view of (6), we are sure that Qn Qn : - 0 the weak-
* topology as (m,n) —» U ; since Qn - Q I we will have Qn plKl
QX1g pIK] (the first Arens product); so
QP! - Q¥ o pIK] (7)
It is also true that for the element RIX! = limy, n)sw Q,[lK]®Pn[1K] €
(B K& B[K])** we have
ﬂ**(R[K]) = QK1 g plK], (8)
and
b-RXl = p @plKl RIKl.p = Q[K] Qb 9)

for each b € BIXI (here we regard both BXI @ BIKI™ and BIKI” & BIXI
as canonically embedded in (B ® BIX ) ). Similarly we may define

Pl = lim lim P ®P (10)
n—>'u1 m—>'u2
and we have m**(P¥]) = lim, lim,, pX pIKl — jim,, P¥1 (because
(P,%K]) is a.L.a.i.) =P'X] and for b € BIX! we have
b = lim llmP I'® P Pl @ b. (11)

n m

Using the bounded approximate diagonal we have been given, we

define alKl= lim ¢, ) dr[rlf, ]n It is clear from (4) that
and for b € BIXI
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b-AlKI= K] p, (13)

At this point, we have done all we could do with the individual
algebras BIX]; we begin to make suitable definitions involving the algebra
B=c,— @K BEl and its bidual B =1* — @ Bl Let
£kl BIK] 5 B denote the natural embedding of B as a closed ideal of
B, and let X1 : BIK] 5 B be the natural left inverse which picks out the
K-th coordinate of an element of B. Write pK = YX_, €Mzl for the

natural projection onto the first K coordinates of the direct-sum. Let K]

denote the tensor product £ @€X]: BIKI @ BIX] _, B ® B. We define

K
P(K) = z glkl™ (plrl) e B~ (14)
r=1

and we let P(o) be the weak-* limit of this sequence in the [*-direct-
sum B** (which exists because the P projection are norm bounded by €
independent of r and so the sum resulting from evaluating the terms of
P(K) at an element ¢ of the I'-direct-sum B* is Cauchy, being bounded
by Cllo|l). Now EXI(a)éIH(b) is zero unless K = L, in which case it is
EXl(ab); so for b € B with b, = nl"1(b) we have

K K
PUO b= 1" (P b,) = Y €l (b) = pk(®),  (15)
r=1 r=1

since P! - x = x for x € BI"]. Therefore

P() b = b. (16)
Likewise, we write
K
o) = ) €l (i), a7)
r=1

Since x - Q[K] = x for x € BX! we have

b-Q(K) = pK(b) (18)

for b € B. Once again using the fact that B ® B** is canonically
embedded in (B ® B)**, we define
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R(K) = lim <ze ) ® P() € (B®B)™, (19)

Tl—>2

and since b, Q,[lr] is norm convergent to b,- asn — U,, we have
bR = | Y €M) | ® Peo) = pK(b) ® P(x0),  (20)
and by (16),

glr ,[Z”] ®b=0Q(K)®b. (21)

Mx

R(K)-b = lim
n-Uu 2
r=1

Also

K
T (P(K)) _1}3} z Eer (Qn P’”)

Tl—>’U2
K
_ z gl (@l g pIr). (22)
r=1
We define
K
P(K) = » EM"(PM) (23)
r=1

and P(o0) to be any weak-* limit point of the finite sums (such a limit
exists because ||13[K]|| < C? for all K, and the projective tensor product
B ® B is the cy-direct-sum of its “ components’” B & BIK] hence its
bidual is the [*-direct-sum of (B! & B[K])**, and the norm ||P(K)|| =
max{||13[r]||: r < K} < C? also). Egs. (10) and (11) then is that

Mx

P(K)-b (PN @ b,), (24)

=<
I
=

and
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K
m*(P(K)) = z g™ (P = p(K).
r=1

Then,
n**(ﬁ(oo)) = liIr(n P(K) = P(c0).

We write

K
AU = ) EMT (aln);
r=1

using (13) we find that for each b € B,
b-A(K) =A(K) - b;
And

n**(A(K)) £lrl n_**(A[r])

Il
N=

=<
I
=

gl (Pl 4 @Il — @Il g pir),

Il
N=

=<
I
=

(25)

(26)

(27)

(28)

(29)

To prove the lemma we need a multiplier bounded approximate

diagonal for B*. We proceed as follows: for each K we define an element

Dy € (B* ® B*)" by

Dy = 181 — 1QP(») — Q(K)®1 + R(K) + A(K) + P(0) — P(K).

(30)

We claim that the (Dg) from a multiplier bounded approximate
diagonal for B¥ in (B*"@B#)** , showing that B is boundedly

approximately amenable. For

K
(D) = 1- P(eo) — QUK) + » 1" (@l Pl
r=1

K

+ z g™ (pIr 4 @Il — oIl ppl™l) 4+ P(c0) — P(K)

r=1

K
=1+ z ™ (Pl 4+ @MY — @(k) — P(K) = 1.
r=1
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Furthermore, if b € B then

b-Dy —Dg-b
=b®1-1Qb) - (b®P(x) -1®b)
— (px(b) ®1 - Q(K) ® b)
+ (px(b) ® P(0) — Q(K) ® b)
+ (b (P() — P(K)) - b),

which is a bounded expression since the Q (K) terms disappear:
=(b—px)®(1—=P(x)) +b-(P(x) —P(K)) — (P(0) — P(K)) - b.

All the P terms have norm at most C, and the P terms have norm at most
C?. Furthermore, the difference P(o) — P(K) is a limit of sums of

tensors in the image of EM” for r = K + 1 to infinity, so
b (P(0) = P(K)) = (b — px (b)) - (P(0) — P(K))
and
(P(0) = P(K)) *b = (P(0) = P(K)) - (b — pg()).
For every K and every b € B we therefore have
Ib - Dg — Dy - bll < 6C2|Ib — px (B)]| < 6C2|IDI.

As K — oo, we have b - Dy — Di - b — 0 because b — pg(b) — 0. So the
sequence of elements Dy is a multiplier bounded approximate diagonal
for B*, which is therefore boundedly approximately amenable.

Theorem (3.2.3) [3]:

Let C =1, and let (B[K])Io:zl be a sequence of amenable Banach
algebras. If each B!X! has b.l.a.i. of norm at most C, then the C,-direct-

sum B = ®%_,BX! is boundedly approximately amenable.
Proof of Theorem (3.2.3):

From Lemma (3.2.2) let £,, F, be directed sets such that for each K
we can find a b.lLa.i. (P,LK]) and a b.r.a.1. (Q,[lK]) for BIX]: with
meé&,

neF,

||P,,[1K] || < C for all m and K. Let G be yet another directed set, such that
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d[K]

X)) e @B for
veg

there is a bounded approximate diagonal (

each K. So, writing

u)[,K] =T (d)[,K]) B1D)
the net (u)[,K]) o is a bounded approximate identity for BX1, and for
YE

each x € BIX] we have x - d)(,K) — d)(,K) x> 0asy—G.

Let £ = &, X §G; given the product ordering this is a direct set, and
if for m = (m,y) € £ we define P,LK] = PH[IK], the net (PH(IK)) is a

meé
b.La.i. for BX] of norm at most C.
Let F = Fy X N; given the product ordering this too is a direct set,

and if for n = (n,n") € F we define Q,[IK] = Q,[IK], the net ( ,(IK)) - is a
ne

b.r.a.i. for BIXI.

For each m = (m,y) €€ and n=(n,n') € F, let us pick a ge §
such that g=>y and Max {”Q,[,K]ug(] — QI[IK] || - | uf[;K]Pn[lK] — PH[IK] ||} <
1/n'. We define

dct = Q- ald 4+ ald- pld — o9 ald . pld. (32)
Then
(1) = Q1L 4 o FTBIET — I KIpIK]
I () - (08 + 27 - QbR = (2 + ) = S

SO

”" (dl[ﬂ) B (QI[IK] + Py - Q:EK]PILK])” - 0,asm— Eandn
- F. (33)

Also for x € B[K], we have

90



x-d,[IIf,L—d[K] "X

m,n

=x-dg(]—dg(]- x+(x- ,[,K]—x)- dg(]-(l—PILK])

—(1-0l) -al"- (Px - x). (34)

(K],

g x” - 0; as

Asm - € and n - F we have g = G so ||x-dg(]—d
m — £ we have ||P,I[1K]x—x|| — 0; and as n - F we have ||xQ,[1K] —

x” — 0. Therefore,

||x-d,[fﬂ,—d,[ﬂ,-x||—>0, asm- andn - F. (35)

By (33) and (35), the net (di)

m,n) satisfies the requirements of Lemma

(3.2.3). Therefore, B is boundedly approximately amenable.
Corollary (3.2.4) [3]:

Our algebra A constructed in the preceding as a cy-direct-sum of the
algebras (K (ll), Il I K) has the following properties:

(1) It is boundedly approximately amenable;
(11) It has no two-side bounded approximate identity.

Hence A is not boundedly approximately contractible.
Proof:

It only suffices to note that every boundedly approximately
contractible Banach algebra has a bounded approximate identity.

It is shown that if a Banach algebra B is boundedly approximately
amenable, has a multiplier bounded right approximate identity, and a
multiplier bounded left approximate identity, then it has a bounded
approximate identity. The following shows that the existence of such nets
in the second dual of the Banach algebra cannot ensure the same
conclusion.

Theorem (3.2.5) [3]:

The algebra A constructed in the preceding section has the following
property: A™* has a multiplier-bounded approximate identity for A with
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constant 1 (that is, there is a net (T,),¢; in A such that for all a €
A,a € I we have

Max {lla- Ty - all} < lall: (36)
and a- T, - a, T, a— a as a = I). The m.b.a.i. can be chosen to be
sequential.

Proof:

A is the cy-direct-sum of the algebras ALY, each of which has a b.a.i.,
since it has a b.a,i, and a b.r.a.i., albeit with the bad constant i + 1. So

AW has an identity el"! for A4, an element such that el - qa = a for

every a € AlY; the m.b.a.i. we want is the sequence

n 00
E, = z gl (el e =12- @ A",

i=1 i=1
Ifa=(a;)2,€Aand f=(f)2, €A (so f is the I!-direct-sum of
elements f; € A1) then

(a ) En;f) = (En'f ’ a) = (En' (fl ) ai)?il) = z(e[i];fi ) ai)
i=1

= i(ai,fi).
i=1

The difference between this and (a, f) is at most ||f|| - max{||a;||: i > n},
soa- E, - ainnormas n = . Likewise E,, - a = a.

The above is more remarkable because <A does not have a m.b.r.a.i.

It was shown that if the Banach algebras A and B are approximately
amenable and either one has a bounded approximate identity, then the
direct-sum A @ B is approximately amenable. It is tempting to think that
the condition on the existence of bounded approximate identity may be
dispensed with. However, that is not the case, as the following shows.
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Theorem (3.2.6) [3]:

Let A°P denote the opposite algebra to our algebra A. The algebra
B = A @ A°P is not approximately amenable.

Note that our proof depend somewhat on special properties of A, but
is nonetheless general enough to indicate that it may be difficult to find
an approximately amenable Banach algebra which has neither a bounded
right approximate identity nor a bounded left approximate identity.

For x € I, let us write A(x) = X2 (x,e;). Let Ty € K(ll) be the
element such that Ty(x) = e; - (x,1). Evidently lim sup;||Tye;|| = 1 and
ITolI'! = K + 1. Let us choose a free ultrafilter U on N. Up to scaling, a

support functional for T, in any of the ||||'¥! norms is ¢(T) =

lim;_,¢(Te;, A). For if |¢(T)| = 1, then certainly lim sup;||Te;|| = 1 so
ITI¥! > K +1, hence |¢]lK! < Kiﬂ: and (¢, Ty) =1 = |||

ITolI™K). So equality must hold, and ||¢||X] = Kiﬂ Simple calculation
shows that TyA = 4, so we have lim;_(T,Se;, A) = lim;_(Se;, A) for
any S € K(ll), that 1s,

¢(ToS) = ¢ (S). (37)

(This is the special property of K (ll) that will be used to prove the
theorem.)

There is an isometry E:cy — A sending § = (§;);2 to the sequence
(Ty8,/2,To82/3,To83/3, ., Tob /(K + 1), ...) which is

> €M BT/ (K + 1),

K=1

Let’s write ¢ X1 = ¢ o 1K) € A*, the linear functional of norm
1/(K + 1) which applies ¢ to the Kth entry of a € A. Evidently,

¢UVI(E®) = 6/ (K + 1),
and more generally, because of (37) we have
SHIE®) - a) = 6/ (K +1) - (@), (38)

forany a € A.
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Lemma (3.2.7) [3]:

Let (M;);2, be a strictly increasing sequence of positive integers.
Suppose the sequence § € ¢y is chosen to tend to zero so slowly that
8om, = 2/n for all n € N. Write 7 = E(5). Then whenever a € A is

such that ||[ta — t|]| £ 1/n? (some n € N), we have
lall = My, (39)

more specifically

|p!2Mnl(a) — 1| < % (40)

Proof:

Note that (39) follows from (40); for (40) implies

lall = 2M, + D|p!#M=l(a)| = M, + 1)/2.

But
[ZMn] — [ZMn] < - — <
[@H(@) — g Era)] < am. v Tl = ey Ty
and the left-hand side is
Som. — Oop. P2M2l(a
| 2My 2Mn¢ ( )| > |1 _ ¢[2Mn](a)| —_—
2M, +1 n(2M,, + 1)
so |1 — ¢ [2Mnl] (@)] < %, as required.
Let
A=1®1-1Qu—v®1+de Bt @B, (41)

with d € B® B. Let P; (i = 1,2) be the maps which pick the left and
right coordinates respectively from the pair (a,,a,) € A @ A°P = B,
and let p;, = P,® P,: B® B —» A ® A°P. (Obviously there are similar
maps P;4, Po; and P,, but it’s P;, that we ’re interested in.) For a proof of
Theorem (3.2.6), we claim that provided that the sequence (M,,) increases
sufficiently rapidly, it is impossible (regardless of choice of u, v and d) to
have
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|(z,0)-A—A-(7,0)|| < 1/10 (42)
and
|(0,7)-A—A-(0,7)|| < 1/10. (43)

To see this, let X denote the character on B* with X' (Al + b) = 1 and let
gxX) =x—X)I(xe€B*) and g=q®q. We write di,=
P;,(d),u; = P;(u) and v; = P;(v), and then we apply P;,q to both sides
of (42). Most of the terms disappear, and we get

||T'd12—‘[®u2|| < 1/10 (44)
We do the same to (43) and we get
”dlZ 'T_Ul ®T” < 1/10 (45)

Note that in this last equation d;, - T refers to the natural right module
action of the opposite algebra on A @ A°P, so that (a; ® a,) "7 =
a; ® ta, for a; € A, a, € A°P: where ta, denotes the © usual * product
of elements of A, not the  opposite > product.

Lemma (3.2.8) [3]:

Suppose that the sequence M,, increases ‘“‘sufficiently rapidly”, (41)
(42) and (43) hold, and that for some n > 2 we have

|p2Mnl(uy)| € [(1/2 + 1/n,3/2 — 1/n)] (46)

and

|92l (v))| € [(1/2 + 1/n,3/2 — 1/0)]. (47)

Then we must also have

|p12Ml(uy)| € [(1/2 +1/L,3/2 — 1/L)],

and

lpl2Ml(w)| e [(1/2 +1/L,3/2 — 1/L)],

where
L= [,/5(1 n ZMn)J.
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Proof:

Let P,Q denote the rank I projections onto lin (u,) and lin (v;)
respectively, with

¢p!2Mnl (x)

P(x) = u, " pEMal(L) (48)
and
_ . pl2Mnl(x)
Q(x) =1, Ml (5 )’ (49)

We have [IP|| < [lull ||| /|92l (up)| < 2 Mlull /(1 + 2M,,),
because |¢[2Mn] (u2)| >1/2 by (46). Similarly, we have ||Q| <
2 |lv4ll/(1 + 2M,,) because of (47). Let’s write (I @ P)(d1,) = v; Q@ u,
for some v; € A, and (Q ® I)(d,) = V1@ u, for some u; € A°P.
Applying I @ P to (44) we get

l(zv; —7) ® .|l < [|P]I/10; (50)
SO
ltvy — 7| < ST 20 < 1/L%; (51)
so (40) tells us
|p!2Mul(v)) — 1| < 1/2L. (52)
We apply Q ® I to (45) and we get
lv; ® (ru; — DIl < [lQIl/10; (53)
so by (40),
lw) — || < W < 1/17, (54)
and hence by (40),
|p!2Mel(uy) — 1| < 1/2L. (55)

Next, let us apply I @ P to (45). In view of (38) we have
P(b-1) = P(th) = 6, P(b)/(1 + 2M,,) (b € A°P).
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Therefore,
(I ®P)(d 1) = 6, I ®P)(d)/(1 +2M,) (d € A& A°P).

Also

P(7) = uy - p12Mil(7) /p12Mnl () = 52Mnu2/((1 + 2M,,) p12Mn] (uz))
because entry 2My, of T is 6,5, To/(1 + 2My,) and ¢(T,) = 1. So we get

v @ u, — i ‘ < P10
u

: 5(1“-|-22”Mn) (56)
and so

v |l < < n/10. (57)

¢ [2My] (uz) 552Mn
This last estimate may not look so strong, but it looks much better if we
apply ¢2ML! to it and recall that ||(,b 2My] || s 7 ey We get
v n
P2 <”1 - ¢[2M,3(u2)>‘ =100+ 2M)’ (58)
SO
n|q§ 2Mn] (u2)| 3n

|¢ 2M.] (v)o [2Mn] (up) — ZML 1)|

=700+ 2M,) = 2001 + 2M,)

since |12 (u)| <3/2. Now  [pPMil(u) —1] <2 -~ and

n
, 1
M) — 1] < —, s0

|p12Mel ()12l (uy) | < ——1+i+i<1—1),

2L T 20\2 n
and
11 1 1, 1 3 _1 1
2M)(p ) — 1| < = — =4 — _<___) Z_Z
e e R TAETAC 2001+2M) =2 1

given a mild growth condition on the sequence (M,,); so
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|p2M(v)| € [1/2 +1/L,3/2 — 1/L].
Similarly, if we apply Q ® I to (44), we get
|pPMl(up)| € [1/2 +1/1,3/2 - 1/1], (59)
and the proof of the lemma is complete.

Corollary (3.2.9) [3]:

If any A exists satisfying (41), (42) and (43), we cannot have
|p2Mel(v)| € [1/2—1/n,3/2—1/n] and  |p!PMnl(uy)| € [1/2 +
1/n,3/2 —1/n] forany n > 2.

For given a mild growth condition we always have L > n in Lemma
(3.2.8), by Lemma (3.2.8) we would have |¢[2Mn] (v1)| €[1/2 +
1/n,3/2—1/n] and |¢!2Mn(u,)| € [1/2+1/n,3/2 —1/n] for an
infinite sequence of values of n. But ||¢[K]|| =1/(K + 1) so this is
impossible.

But now we can prove Theorem (3.2.6). For if any A exists satisfying
(42) and (43), we apply P; - (IQ y) to both sides of (42) (where y is the
character), and we get ||t — tv|| < 1/10 so by (40), |p2Msl(v,) — 1| <
1/6. We apply P, (y® I) to both sides of (43) and we likewise get
|¢[2M3](u2) — 1| < 1/6. So the conditions |¢[2Mn] (u2)|, |¢[2Mn] (v1)| €
[1/2+4+1/n,3/2 —1/n] would be satisfied with n =3, which by
Corollary (3.2.9) is impossible. So no such A exists and A @ A°P is not
approximately amenable.

Corollary (3.2.10) [3]:

There is a boundedly approximately amenable Banach algebra that has
a l-codimensional closed ideal which is not boundedly approximately
amenable.

Proof:

Let A be our algebra constructed above and let A* be the unitization
of A. Then from the proof of a Banach result we see that the Banach
algebra B = A* @ A°P is boundedly approximately amenable, whereas
the l1-codimensional ideal A @ A°P of B is not boundedly approximately
amenable, as seen above.
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Chapter 4
Approximate amenability On The Banach Algebra

We use to give examples of Banach spaces X for which the Banach
algebra K(X) is approximately amenable but not amenable. Thus we
answer a question on existence of such spaces.

Section (4.1): Introduction and Results

The notion of approximate amenability was introduced by R.J. Loy.
The first example of an approximately amenable non-amenable Banach
algebra, is synthetic. Later, a host of naturally arising example of
approximately amenable non-amenable Banach algebras were found
amongst: Banach sequence algebras, Fourier algebras and semigroup
algebras.

The study of amenability of the Banach algebra K (X) began with the
work of B.E. Johnson. Later N. Gronbeak, B.E. Johnson and G.A. Willis
made an extensive study of amenability of the Banach algebra K (X), for
various Banach space X. A. Blanco made a systematic study of weak
amenability of the Banach algebra A(X) of all approximable operator on
the Banach space X, for various Banach spaces X. later in 2000 — when
approximate amenability was founded — it was natural to ask whether
there could be a Banach space X for which K(X) is approximately
amenable (but not amenable).

We now recall the definition of approximately amenable Banach
algebras. First off, a continuous derivation D from the Banach algebra A
into a Banach A-bimodule X is approximately inner, if there exists a net
(x;) of elements of X such that D(a) =lim;a-x; — x; - a, for all a €
A. The Banach algebra A is approximately amenable if every continuous
derivative from A into the dual Banach bimodule X is approximately
inner, for all Banach A-binomiales X. As noted in the above definition
one can replace X* by X i.e. approximate amenable and approximate
contractibility are the same concepts. We will also be concerned with the
concept of pseudo-amenability for Banach algebra. The Banach algebra
A is pseudo-amenable if there is a net (m;) of elements of A®A such
that
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a-mi—m;j-a—>0 (a€A)
and
n(m;)-a—-a (a€A),

where m: ARA — A is the so-called product map, specified by
m(a®b) = ab foralla,b € A.

Definition (4.1.1) [4]:

Let b > 0 be an absolute constant, and X a Banach space. We will say
X 1s "fairly close" to a Hilbert space (with constant b) if the following

conditions hold: For every finite sequence (TM)Zl:l c K(X), and every
€ > 0 we can find a shrinking basis (x;)j2; for X#=! (with co-ordinate
functional (x;) € X*, x; (xj) = 4, j), and a finite sequence
0=ng<n <n,<--<n,=N,
with the following properties:
(i) Letl<r<k,and m, =3~ x; - x; where x; - x;(x) =

i=1+nr_1
(x; - x)x;, (x € X).
Let

T

ﬁr=2ns, 1<r<k).

s=1

Then ||, || V |l = 7, || < b.

ii) Let (e;)2, denote the unit vector basis of £2. Let
( ) 1/i=1

nq ny
p=2€i-x§‘:X—>€2 and p’=2xi-e§‘:€2—>X,
i=1 i=1

where for x € X,e; - x/(x) = (x/,x)e; and for f € €% (x;-e/,f)=
(e/, f)x; and if we let

N N
* /] *
o= E ej-x;, o0 = E X; * €
l=1+n1 l=1+n1
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then |[p|| V |Ip']] < %\/E, for a certain ¢ > 0, depending on T4, ..., T, and
g ||l Vo' < %\/5, while k > (b + ¢)* /€

(i1) For u=1..m we have ||TM—7T1TM7T1|| < €; and for each
j€l1,n.],(1 <r <k)wehave

| = 7 DT | < d

n,. 2" (b +c)?

and

The point of this definition is:

_ €
x; o T,(I — T < n 2T (b £ )2

Theorem (4.1.2) [4]:

Let X be fairly close to a Hilbert space. Then K(X) is approximate
amenable.

Note. We shall show then that certain 2 -direct sums X = EB?';MZ: are
fairly close to Hilbert space but K(X) is not amenable. This is because if
we split the direct sum into X; = Elapi<2€g: and X, = EBpi<2€Z:, then we
find that neither X; is finitely representable in X, nor X, is finitely

representable in X;.

This means that K(X;@®X,) cannot be amenable. The complete details
will be given in Theorem (4.2.8).

Proof:

Given (T“):=1 c K(X), with ”Tu” <1 say, and € > 0, we seek

a A€ K(X)®K (X) such that ||z(A) - T, — T,|| < b%¢ and ||T,-A—A-
Tyl < (9+4b)e (u=1..m) and ||m(A)|| < b. We claim this is enough

for our assertion. Perhaps it is best if we prove that first so as to get it out
of the way:

Lemma (4.1.3) [4]:

Let A be a Banach algebra, and b > 0. Suppose that for every
T, T,,..T, € A with ”Tu” <1(u=1,..,m), and every € > 0, there is

101



a A€ AQA such that ||m(A)|| < b, ”T[(A) T, — Tﬂ” < b%e and ||A
T,—T, A <(9+4b)e,(u=1..m). Then A is approximate

amenable.
Proof:

Since ||m(A)|| < b, we have approximate amenability of A as a
consequence of (1) & (ii1).

So returning to the main proof. We pick a shrinking basis (x;) and finite
sequence ny < nq < -+ < ng as in Definition (4.1.1), for the particular
(T,) and e. We write F;; = x; -x; € K(X) and E;; = e; - ¢] € K(£%).
We define, fori € N,

~ _ (rifi € (n_y,n.]r < k;
r(l)‘{ k+1,ifi >ny = N, )
and
k+1—-r(
A) = k @

We then define A€ K(X)®K (X) by

N
1
A= N z A(l)FLJ®F],l (2)
i,j=1
Evidently,
N K
. I
n(8) = Y ADF =7 ) T,
i=1 r=1
(k+1-17)

(since both operators S have S(e;) = e; if i € (n,_q,n,], so

e; €lmm, Nlmm. ; N...NIm 7, , but e €kerw;, for j<r).
Accordingly,

el < max{||7,|I} < b, (3)
by (i) of Definition (4.1.1).

Similarly,
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I = (M) < max{||l — 7|} < b (4)

Furthermore, since A(i) = 1 for i < n,, we have w(A) - m; = m,. So

I(7 = @) - T[] = [|( = n (@) = w)T, |
<b-||U-m)T, ()

by part (ii1) of Definition (4.1.1).
Let us now estimate ||[T - A — A - T|| for T € K(X). we have
T -A=T- 7 A,

because F;; = My F;;, for all i,j =1,...,N. Similarly, A-T =A-7; - T.
Now T (x;) = X;21 Ty ;x;, where

= (x;, T(x));

also

co

* — *

xl- o = z Ti,lxl,
=1

the latter being a norm-convergent sum in X* because (x;) is a shrinking
basis, and (x;) the dual basis of X*. So,

T-A== Y AT -F, ;®F

/’l(l)Tl lFl]®F ir

ZIH

2] -
"MzTMZ z

N

D)

i AT, F, j®F; (6)
=1

2.2,

(since A(i) = 0 for i > N anyway). Likewise
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N
1

ij1

Nz z AT, F; ;®F; 7

j=11il=

N (o)
1
== ) AT ®F,
=1i0=1

Accordingly, for any T € K(X), we have

N 00
T-A—A-T = lz z (A(D) = A(D)T,;F,,®F;;

N —1 =1
1 N oo (8)
N—kz (r() —r())Ty,iF, j®F; ;
j=1il=1

Given our sequence (TM)le, let us define (T!; )Zl=1 b

(Tuxi'x;); if |T(l) - T(])l < 1;

Tix;, xi) = { 9
(Tuxi, %7) 0, otherwise ©)
Let us estimate ”Tu — T!;” For i,j € N, we will have
( ifi € (0,n,]and j € (0,n,]
(T'uxi’xj) Ori € (nT‘—linT‘]ir € [Zlk))_] € (nr—Z;nr+1];
(T!jxi,xj‘) = ori € (ng_q,ni] and j € (ny_,, ©);
| o or i € (ny, o] and j € (ny_y, o0);
otherwise.
Hence, if we adopt the convention that 7y, = Ty = 0, we have
k-1
= ) @+ 7y + T DTy + (1= T )Ty
r=1
+ (1 = T )T, (1 — 7p) (10)

If we also adopt the convention that 77, ; = I, we also have

104



Tﬂ - TMI = (I - ﬁ'z)Tﬂnl

K
+ Z(ﬁr—z + 1 =T ) Tymy + g1 T, (1 — 7Ty) (11)

r=2

For j € (n,_q,n,] we have

_ €
”(1 o T[T+1)T#xf” < nrzr(b + C)Z’

by part (ii1) of (4.1.1). Hence

€

| — T D Tm || < 70T

(12)

For3<r<k+1andj <n,_,, we have

by part (iii) of Definition (4.1.1). So

X T, (I —r_q) <

2" 2n,_,(b + )%

€

”ﬁr—ZTy(I — )| < 70+ O

(13)

and in particular, since m, = (I — T;_1),_, we have

ellm,|| - 2€b
2772(b +¢)? 7 2"2(b + ¢)?

|2 T || < (14)
u

Substituting (12), (14), and (13) into (11), we get

||T T’|| - € N € N “ e(1 + 8b) N €
kKB =2(b+¢)2  4(b +¢)? ] 27(b + ¢)?  2k-1(bh + ¢)?
r=
€
< ——= (2 + 2b). 15
< Grar@t ) (15)
Next we estimate ||A|:
N
1
A= N z /’l(l)Fl]®P‘] i
i,j=1

With p, p’ and o, ¢’ as in part (ii) of Definition (4.1.1), we write T = p +
oand T’ = p' + o'. Then we have F; ; = T'E; j7 (when 1 < i,j < N) and
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so, if T:K(#*)®K(#?) » K(X)®K(X), is the map specified by
T(A®B) = T'ATQ®T' BT, then we have A= T(A,), where Ay=
%Z?"f:l/l(i)Ei,j®Ej,i. Since A(i) € [0,1], it is straightforward that
1A,]l = 1in K(£?)®K (£?). So

1 4
A< CITN-177ID2 < lpll + e D"l + llo’ID? < (E\/5+ \/E)
< (b+c)? (16)
by part (ii) of equation (1). Form (15) and (16) we get
(T = 7) - 8= a- (1, =Tl < 2|, = 7| - N1l
<2e(2 +2b). (17)

It remains to estimate ||T!1 A=A TA” Forany T, we have T-A—A-T

given by (8). But when T =T, the coefficients T;; =T}, ;

unless |r(i) —r(j)| <1 (in which case they are equal to the

arc zcCro

corresponding coefficients T, ; ; of T,,). Suppressing the index u, we have

N k
1
T"-A—A-T' = N_Kzz z Tl,iFl,j®Fj,i - z Tl.iFl.J'@FJ',i
j=1r=1r1)=r+1 r(D=r
r(i):r T(L)=T+1
For fixed 7, X}_; Xr@)=r+1 T1iF,i®F;; =
r()=r
N N
z z nT‘+1TFi,j®P‘j,i == z 7TT+1T7TrFi,j®P‘j,i;
j=1 T'(l.)=7" i,j=1

where when r = k we define m, . = Ty,1 — T = I — @,. Likewise,

N

N
z z T,F,QF;; =z z n.TF; j®F;;

j=1r{)=r+1 j=1r@{)=r

r(D=r
N N
= z z T T 1 F jQF; ;.
T=1ig=1

Hence,
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T A—A-T' = z(annm T - d, (18)
r=1
where,
N
1
1= 55 D Fy8h
ij=1
1 =/1
Now d =T (L2, E; ;®E;, ). hence
(b + ¢)?
lall < ===, (19)

by the same argument as for our estimate (16). Now on Hilbert space, the
map

k-1
H:SH PTSPT+1_PT+1SPT’

r=1

(P a family of disjoint orthogonal projections) has norm at most 2. We
have

k-1

z (T[rTT[r+1 - T[T‘+1TT[T‘)

1
k-1

- z{:r By - T'TyPyyy T’ — TPy T'TTR.T'S,
1
for B.(e;) = e; (if r(i) = r) or 0 otherwise. So
k—1

z T Ty g — Ty T,
1

< UITN- 1T DT < (B + )T,

and

k

z T Ty — Ty T,
1

<IITIED + )? + 2 llmye |l - 1 — 7 |1}

< |ITNI - {(b + ¢)* + 4b*} < 5(b + ¢)*?
Substituting this and (19) in (18) we find
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5 2, 2
(b+c)-(b+c) <s
k
Since k > (b + ¢)* by part 2 of Definition (4.1.1). Throwing in (17) we
find

787 < 2

|IT,-A—A-T,|| < e+ 4b).

So for every (T#):ﬂ c K(X), with ”Tu” <1, there is a A€ K(X)QK (X)

with [[z(Q)|| < b (by (3)), and ||7(A)-T, —T,|| < b%e (by (5)), and
”Tu A=A Tu” <€(9+4b). So the Banach algebra K(X) is

approximately amenable.
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Section (4.2): Examples
Example (4.2.1) [4]:

Let a; < b; <a, <b, <:- be a strictly increasing sequence of
positive integers, which will be required to satisfy growth conditions. We
define p; € [1,3] by

_ {2 —1/a;,ifiis odd,
Pi= 12 + 1/a;,if i is even,

and let the Banach space X be the £2-direct sum X = EIB,‘?;lbe, where

fgz stands for b,,-dimentional complex ¢, -space. We write X = X;®X,

with

b b
Xl == @ 'g m X2 == @ 'g n.
ne2N+1 Pn’ ne2N Pn

We claim that (given growth conditions), X; is not finitely representable
in X,, nor is X, finitely representable in X;. This is because X;, being an
£,-direct sum of £3-spaces with p < 2, has cotype 2, while X, (given the
growth conditions) does not; whereas X,, being an ¢,-direct sum of £3-

spaces with 3 > p = 2, has type 2, but X; does not. Let us give the full
argument:

Lemma (4.2.2) [4]:
The space X; has cotype 2, and the space X, has type 2.
Proof:

For all p € [1,2] it is known that the Banach space £, has cotype 2;
furthermore the cotype 2 constant is uniformly bounded (a suitable
uniform bound is given, for example. Let C denote such a uniform bound.

All the spaces KZZ(n odd) have cotype 2 constant at most C; therefore, by
an elementary and well-known calculation, the cotype 2 constant of the

£,-direct sum @nezmlfgz is at most C as well.

Similarly, for p € [2,3] the type 2 constant of £, is uniformly
bounded, a uniform estimate being given in Veraar; though we could not
allow p € [2, o] here, because ¢, does not have any nontrivial type. But

109



for p on the bounded interval [2,3] (or indeed on [2,N] for fixed N) there
is a uniform bound; let's call it T. The spaces fgz (n even) all have type 2
constant at most T. The same elementary calculation then shows that the

£,-direct sum X, = EBnEZNKZZ has type 2 constant at most T'.

Lemma (4.2.3) [4]:

Given growth conditions, X; does not have type 2, nor does X, have
cotype 2.

Proof:

By considering the unit vectors e;, 1 < i < m, we find that the type 2
1 1 1 1

constant of £3}* is at least mp 2 and the cotype 2 constant is at least m2 ».

Given an odd n, and p = p, = 2 — 1/a,, the type 2 constant of £}" is at
1 1 1
least n provided mp 2 = m#an-2 > n, or m = n**~2, Given an even n,

and p =p, =2+ 1/a,, the cotype 2 constant of £} is at least n
1 1 1

provided m2 » = m4an+z > n, orm = n*n*2,

So if we impose the growth conditions b, > n***2 for all n € N, we
find the type 2 constant of X; = @nezmlfgz is at least n for all n €

2N + 1 and the cotype 2 constant 2 of X, = EBnEZNKZZ is at least n for all
n € N.

Corollary (4.2.4) [4]:

Given growth conditions, X; is not finitely representable in X,, or
even in the #,-direct sum of countably many copies of X,. The same is
true with roles of X; and X, reserved.

Proof:

The £,-direct sum of countably many copies of X, still has type 2, and
is not possible to finitely represent a space not of type 2 in a space which
does have type 2. The ¢, direct sum of countably many copies of X; still
has cotype 2, so X, is not finitely representable in it.

We define a Banach-Mazur distance [9]: Is a way to define distance on
the set Q(n) of n-dimensional normed spaces. If X and Y are two finite-
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dimensional normed space with the same dimension. Let GI(X,Y) denote
the collection of all linear isomorphism T:X — Y. The Banach-Mazur
distance between X and Y is defined by

5X,Y) = log(inf{|ITIIT :T € GL(X,Y)})

Equipped with the metric &, the space Q(n) is a compact metric space,
called the Banach-Mazur Compactum.

Theorem (4.2.5) [4]:
Given growth conditions, K (X) is not amenable.
Proof:

Evidently K(X) = F(X) (the closure of the space of finite-rank
operators) because X has an obvious Schauder basis. We have X must be
approximately primary, i.e. whenever X =~ X;@®X,, one of the product
maps

my: F (X, X)®F (X1, X) - F(X),
or
T[Z::F(XJXZ)®:F(X2'X) _):F(X)

(where F (A, B) stands for the closure of finite-rank operators from B into
A) is surjective, and therefore an open map. In particular, the projections
P, onto the first n elements of the Schauder basis of X must satisfy

P, = Z,?zlA,((n)BIEn) with Y02 ||A,((n)|| ||B,£n)|| < C (independent of n),

and either B} € F(Xy,X), A} € F(X,X;), for all k, or B} € F(X,,X),
A} € F(X,X,), for all k. Without loss of generality, we may assume that
the first of the above two statements holds. Normalizing we can further
assume that ||AR|| = ||B7|| for all k, n; so we have Y||A}||* < C. We then

have P, = A™WB®™  where A™ =@,A} € F (X, (@1?=1X1(k))2)'

B™ = @,B™ e F ((69?=1ka))2 ,x) and ||A®)|, 11B™| < VC.

So the Banach-Mazur distance from Im B, to a subspace of the £,-

direct sum of countably many copies Xl(k) of X; (namely the subspace
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B™P, X) is at most C. Hence X, is represented on (EBle(k)) up to C-
2

equivalence; a contradiction, and the proof is complete by symmetry.

Now writing B, = 2 + (—1)"@i and X = (EB%":JZZ)Z, we claim that

if the sequence a; < b; < a, < b, < -+ satisfies growth conditions, then
X 1s approximately amenable. To prove this we shall use Theorem
(4.1.2). we will also need the following fairly elementary lemma.

We can define Banach lattice [10]: It is a vector lattice that is at the
same time a Banach space with a norm with norm which satisfies the
monotonicity condition.

Lemma (4.2.6) [4]:

There is a function &: N? — N with the following property: Whenever
X is a Banach space with 1-unconditional normalized basis (f;);2;, and
whenever n,m € N,y;,...,y, € X with [|ly;|| =1, there are vectors
Zq, .., Zx € X, K = &(m, n), which are disjointedly supported with respect
to the basis f;, and for each i = 1, ..., n the distance from y; to the linear
span lin (z4, ..., z;.) is at most 1/m. In fact, one may take

En,m) = (1 + dmn)™. (20)
Proof:

Let f;" be the support functional for (f]), with f;* (f]) = §; ;. For each
Jj € N we define a vector v; € C" by

(v,e)=fi (i) (@(=1..n) (21)

(v} the given vectors in X. We write E = {j: v # 0}. The unit ball B,
of (C™, ||*]l,) (the usual Euclidean norm) has for each € > 0 an e-net of
size at most (14 2/¢e)™. we write € = 2/mn and choose an e-net

(Wi)?zl for B,, of size Q < (1+ 2/¢e)™ = (1 + 4mn)™. For each j € E,
we pick an @ = a(j) € [1, Q] such that

e = G/l )], < e

Given a € [1,Q] we write E, = {j € E: a(j) = a}, and in cases when
E, # @, weletl, € [1,1/n] be an index such that
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|(Wa; el(a))| = max xi{l(Wa; ei)l}-

Then we define

Zog = z (yI(a)»fj*)fj-

JEEq

The vectors (Za)g=1 have disjoint supports E,. We claim that for each
i =1..n, the distance d(y;, lin{z,:a =1..0Q}) < 1/m. To show this
let A={a:z, # 0} and let us decide on an approximating vector
z € lin{z,}, namely

(Wa' ei)

Z= ) —————"Z,.
4 (Wq, ela) *

ae

We claim that ||z — y;|| < 1/m. For if j € N is any index such that
fi (i) #0 or fi(z) # 0, then j belongs to one of the sets Eg a =

a(j) € A, then
Gif7) (e

(y'f*) = (U',e'), - .
O il el

So

Vo f7)

—_— = (Wa;ei)‘ <

<E€.
Il

Y
lvill,
Accordingly,

|00 1) = wa eIy, | < el
If I = I(a), we also have

|01, £ = e el | < ellwl,
So

(Wa' ei)
(Wq, €;)

_ (Wa' ei)
(Wq, €)

(ylif}*)

) <zl

because I = I(a) is chosen such that |{(w,, ;)| is maximal. So

‘(yi,f,-*> < el (1 n
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(Wq, €;)
War 1)
=\ I(a)

= [\Vi— (Wa’ €1) z(}’l»f])f]

(W )
= ZE(( o1 ot )(yl(a)f,)>f

Q€A jEE,

<|1> ) 2elwll,- 5| (22)

Q€A jEE,

ly: —zll =

Because X having 1-unconditional basis (f]) is a Banach lattice, and
lyil <6; implies [[Zyifill <X 6:fill. But |lvilly < X l(vi, e)l =

?=1|(f,-*,yi)| so i the sense of the Banach Ilattice X, we have
ZaeAZjEEa 26||Uj|| - fj < 2eYi-4lyil. Since |ly;|l =1 by hypothesis
equation (22) tell us ||y; — z|| < 2ne = 1/m.

Corollary (4.2.7) [4]:

There is a function y:N? - N with the following property: if a
Banach space X has 1-unconditional normalized basis (f;){’, if n,m € N
and (y;)i=; € X with ||y;|| = 1, then there are vectors z; ...zx € X,K =

x(n,m) disjointly supported, d(y;,lin{z;}) < 1/m for all i, and in
addition, the support of each y; is a union of some of the supports of the
z;. In fact, we may take

y(n,m) = 2"(1 + &é(n, m)), (23)
¢ as in Lemma (4.2.6).
Proof:

The ring R of subsets of N generated by the supports supp (y;) (i =
1, ...,n) and their complements has less than or equal 2™ atoms (minimal
non-empty elements). Given X,n,m and (y;) first we pick vectors
zy ...z, (N <&(n,m)) in accordance with Lemma (4.2.6). We add an
extra vector zy,; whose support is N\UY suppz;, if that set is non-
empty. For each atom E € R we define
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Zi,E == ZilE (l == 1 N + 1)
that is

(fi zi) ifj€E,

(ff’z"'E)z{ 0 ifj # E.

The z; g are disjointly supported, and their linear span contains each z;, so
d (yi, lin{zi,E}) < 1/m for all j. The support of y; is a union of some of
the atoms of R; so it is the union of the supports of the z; g over i =
1..N + 1 and appropriate atoms E. The non-zero z; g can be normalized
and there are at most 2"(1 + &é(n, m)) of them. Of course if there are
strictly less one can "pad" the sequence out by splitting up some of the
z; g Into vectors of smaller support. So one obtains a set of the right size
and properties.

Before proceeding to the main proof, we also wish to discuss uniform
convexity. Let us impose the modest growth condition a; = 2. Then all

the p, lie in the interval E,g], and all the conjugate indices p’ (with
%+ ﬁ =1) lie in E, 3]. Now the ¢, except p =1 or co are uniformly
convex; that is, there is a function A,: (0,1] - (0,1] such that whenever
lIxIl = llyll =1 and [lx =yl = €, we have [[(x +¥)/2] <1 —Ay(e).
For a compact set of values p not including p = 1, we can use the same

modulus of convexity for all p, e.g. for all p € E, 3]. Our Banach space

X(X*) are the f,-direct sum of £} having a common modulus of
convexity. Therefore, X and X* themselves are uniformly convex. Let A
denote a common modulus of convexity for all such Banach spaces. (A is
the modulus of convexity for the uncountable #£,-direct sum

<€BPEE,3]€P)2)‘ We now show the following result.

Theorem (4.2.8) [4]:

If the sequence a; < b; < a, ... satisfies growth conditions, then our
space X is "fairly close" to a Hilbert space (with constant b = 100), and
therefore K (X) is approximately amenable.
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Proof:

Given (TM)Zl:l € K(X) of norm at most 1, and € > 0, we must find a

shrinking basis (x;)7° with coordinate functional (x;),0 =ny <n; <
-1, = N, and ¢ > 0 such that the conditions of Definition (4.1.1) are
satisfied. We may assume that € < 1. We being by choosing n; and c,

also the finite sequences (x; ?;1 and (x; )?zll.
Definition (4.2.9) [4]:

Let Q,: EB%‘;MZZ — @] _, be the natural projection onto the first r

. . . 1
vectors in the £,-direct sum. Pick an 1 large enough that ry, > m v - and

IT,— @, T.0Qr || <€ (u=1..m). (24)
We write B, = Yt_, bs (and By = 0), and let (fi)?;lJrBr_1 be the unit

vector basis of lg:, so that the entire sequence (f;);=; is the obvious basis
of X. Let (f;");=, denote the dual basis. Thus, we have

By
Qr=zfi-fi*, (r € N). (25)
i=1

Define ny = B, x; = fiand x; = f;" for 1 < i < n;. We also define

¢ = [4 b, (2"‘”"1)] (26)
and
k=1+ry(b+0)* 27)

In the notation of Definition (4.1.1), we are committed to my = Q.
Note that the condition ||T, —m;T,m;|| < € of part (iii) of Definition

(4.1.1) is satisfied by (24). Note also that k > (b + ¢)*/e because
ro > 1/€.
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Lemma (4.2.10) [4]:

Given growth conditions on the sequences (a,) and (b,,), the maps
p= Z?:llei x:X > £ and p' =Y1'x;-ef:€, > X have norm at
1
most > \/E

Proof:

Let 1 < r < ry. The natural map p, = e; - x; sends the unit

r
i=1+Br_1

vectors of fg: to some of the unit vectors of ¢,, and the map p, =

B : : b
Yili+p. . Xi-e; sends unit vectors of £, to unit vectors of £7; so
- r—1 r

1

1
ol v okl = b|pr 2l = pM U2 (if 1 is odd) or b4 (if r is

T
even).

We can assume, as a growth condition, that the sequence

1/(4a,—2 . .
(5/49r™D) s non-decreasing: so lloll = [1E, prl| =VIL, llo I <
1/(4ay -2 o .
bro/( aro=2) = %\/c, likewise ||p’|| < %\/c also.

So we now need to choose n, ...n,. In fact we shall also define a
sequence 7, ..., of small positive reals, as follows:

Definition (4.2.11) [4]:

Given ny, b, ¢ and k, we define sequences (1;)%_,, ()%, recursively
as follows: Given i € [1, k] and the value n;, we define

1 €
== A|l = 2
"= <zz+4-n§-(b+c)2>' (29)

where A is the modulus of convexity as defined above; and n;,7n; we
define N; = (2m + 1)n; and (when i < k)

nis = x (M [ﬂ) (29)

where y:N? — N is as in (23) and € as in (20).
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Note that from (23) we certainly have n;,; = 2" > n;; the sequence
(n;) is strictly increasing as required. We continue by defining some

vectors Z(y) € X, Z(y) €EX” (i=1..n,1 <y <k)as follows.

Definition (4.2.12) [4]:

We define Zi(l) =x; =f; and Z(l)* =f (i=1..ny). Given
vy € [1,k) and Zi(y) 27 (i=1..n,), we define Q(y) {(l u:1<i<

'

n,l<upu<sm, Tuzi(y) #* O}, and for (i, u) € ng) we write

)
T,z;
(y)
=Tl o

Wewrlteﬂ(y) {(l,u) 1<L<ny1<,u<mz(y*oT(1—7T1)¢O}

(y)

and for (i,u) € ng) we write w,i € X for the (unique, because X, X* are

uniformly convex) norm 1 support vectors for the functional Z(y)*

T,(1 —my) € X*. We then write

S(y) — {Z_(V)} U{ (Y) (l H) € Q(Y)}

U{ (Y) (l H) € Q(Y)} (31)

There are at most (2m + 1)n non-zero elements of SO, By Corollary

(y+1

(4.2.7) there is a collection of norm-1 vectors z; ) of size

1 1
(ans o o)==

having disjoint supports, such that for each s € S%) we have

d (s, lin {Zi(yﬂ): 1<i< ny+1} ) <1y (32)

) .

and the support of z;"~ is a union of some of the supports of the Z-(y+1) for

each j. These are our vectors ( (r+ 1)) The functionals ( (r+1)" ) are the

(y+1),

unique norm 1 support functionals for the vectors z; ; as always with
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a uniformly convex space with l-unconditional basis, the support of

Zi(yﬂ)* is the same as the support of Zi(yﬂ).

We know that for each j=1..n; and y = 2 ...k, the collection

n
(Zi()/)) " includes a unit vector whose support is the singleton {j}, which
i=1

is the support of Zj(l) = x; = f;. We can rearrange if necessary and
assume simply that Zj(y) = fj (and so Zj(y)* =fj) forally =1..k 1<

j < ny. Then for j € (ny,n], the vector Zj(k) is supported on (n,, ), as

is the support functional Zj(k)*.

Definition (4.2.13) [4]:

For r € [1, k] we write Z™ = lin {Zi(r): 1<i< nr}; and we define a
further set of vectors {( i(k): 1<r<kl1<ic< nr} cz® recursively as
follows: (i(k) = Zi(k) for all i, and for each r < k and i € [1, nr],(i(r) is
the unique vector in (Y = lin {(}Hl): 1<) < nr+1} which is closets

to Zi(r).

As usual, the "closets vectors" in the definition are indeed unique because
X 1s uniformly convex. And as we have discussed, for any r one has

Zi(r) = f; for 1 < i < nq hence (i(r) = f;, also when i < n,.

Also, for fixed r the Zi(r) are chosen disjointly supported with respect

) .

to the standard basis (f;); and when r < k, the support supp z;"” is a

union of some of the supports of the vectors Zi(rﬂ). We claim that the

support supp ¢ i(r) is contained in supp Zi(r) for all i and r. When r = k,

equality holds. Proceeding by reverse induction on r, let us fix i € [1,n,]

r) +1) (r+1)

and write supp z; ; and assume that supp {: c
PP z; PP §;

+1)

=Ujex suppz,”
supp Zj(r for all j=1,..,n.41. Then for j & E, supp(}rﬂ) N
Suppzi(r) = @, so since (f;) is a 1-unconditional basis, the unique closets

()

. . +1 . . . .
vector to z;° in lin {(}r )} is a linear combination of vectors

{(}Hl):j € E} alone. That is, (i(r) € lin {(}Hl):]’ € E};SUPP (i(r) c
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(r+1)

Ujer suppy; CUjeg Suppzj(r+1) by hypothesis, that is supp(i(r) c

Suppzi( ) In fact, we can say a little more:

Lemma (4.2.14) [4]:

((r) (r)

The vectors ¢ i(r) are non-zero, and the distance <27,

forallr € [1,x] and i € [1,n,].

Proof:
We write ¢, = max{ i(r) — Zi(r) i=1, ...,nr}. Form (28) we see
that n,. < 1/5 for all r, so since | Zi(r) || = 1, we only need to prove the

()

second assertion. Since for fixed r, the vectors z;° are disjointly

supported, for every y € C™ we have

ny ny
max|y;| < zyzzim < zlyil- (33)
i=1 i=1
One can define a linear map a = a™: 2™ - ¢ with
a( (T)) ((T) (34)

for each i, and (33) gives us the simple estimate

_ (i(r)

ny
laGo) = xll < fixll- ) |2 <neplixll. (35)
i=1

()

Now suppose that r > 1. By (32), the vectors z; ~ are chosen so that for

each j € [1,n,_,], the norm distance d( (r=1) Z(T)) <1,_,. Fix j and
let z € Z™ be a vector with ||Z — Z-(r_l) || < 1,_4. Then the vector a(z)
lies in ¢, and ||a(z) (r 1)” <N_1+llai) —z|| <n_,+

ne&llzll + nr_1 +npe (1 + 77r—1) because ||Zj(r 1)” =1 and | zZ—

Zj(r_l) || < 1,_1. Since (}r_l) is by definition the closets vector in { ™ to
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(r-1)
Zj

n,-_1), and hence,

we accordingly have ||(]§r_1) — zj(r_l) || <Np_q+n,1m_1(1+

&1 SN & (1 +1p_q) +1poq. (36)

Now for all r € [1,k], the constant 7, =%-A( c )< :

2"+4n2(b+c)?) T 27+4nZ
because A is a modulus of convexity so A(h) < h for all h € (0,1].
Therefore,

1
nn, < W < 2_r_61’]r_1, ifr > 1; (37)
T

because the constant n, = y (Nr_l, [ﬁ]) where y(n,m) > &(n,m) =

r—1
(1 4+ 4nm)™ by (23) and (20); so very crudely, we can say n, > 4/n,_;.
Substituting this in (36) and dividing by 7,-_;, we have

Er-1

& &
<276 LT(14n)+1<27 5141,
Mr—1 Nr Nr

So if L < 2, certainly r-1 < 2. But we begin with g, = 0; so & <2 for

Nr Nr-1 Nr

all r = 1, ..., k by reverse induction.

Corollary (4.2.15) [4]:

Forall r=1,..,k and x € Z™ we have ||a(r)(x) — x|| <2n,.n,-
llx||/(2"*3n,), and when 7 >1, we have ||a(r)(x) — x|| < |Ix]| -

Z_T_Snr—1-
Proof:

We are now in a position to complete the definition of the sequences

(ediz1, ()i1-
Definition (4.2.16) [4]:

For r € (1, k] we define the maps 8: X — ¢, and B': £, - X by

Nk
B= ez (38)

1+n,
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and

ng

B = z 209 e (39)

1+n,

We also define a Euclidean seminorm |||, on X by

llxll2 = llpCx) + SO, (40)
where p = Z?:ll e x; = Z?zll Zi(k)* as in Definition (4.1.1). Of course,
Il is a norm on the finite dimensional subspace Z®). The subspaces

(k) (k)*

§M c 2 are nested, and we have a projection P = Z?zkl z;" -z

onto Z®). We have already defined the sequence (x; ?zll, namely x; = f;,
and it is ||-||,-orthonormal basis of ¢ = lin {(i(l): 1<i< nl} =
lin{f;:1 <i <n,}. We define the sequence (x; ?=21+n1 to be any ||-||,-

orthonormal basis of the orthonormal complement (@ © ¢(™ (noting
that this subspace does indeed have dimension exactly n, — n,; because

the ¢ i(r) are disjointly supported, and non-zero by Lemma (4.2.14)). The
ns3

i=1+n, is any orthonormal basis of { 30 ¢@; and so on,

sequence (x;)

unit the sequence (x; ?=k1 +n,_, 1s orthonormal basis of ¢ k) @ ¢k-D),
Thus we choose (x;);¥,

image PX = 70,

such that they are an orthonormal basis of the

Now the space X has a Schauder basis, so its closed subspaces of finite
codimension all have Schauder bases. The sequence (x;)iZiin, We
choose to be an arbitrary Schauder basis of the kernel ker P, so the whole
sequence (x;);j=; is a basis of X. The associated coordinate functionals
(x)j2; € X* will satisfy Z?zkl x; - x; = P, so the sequence really does

extend the initial sequence x; = f;" fori =1, ..., n4.

We note that the Schauder basis (x;) is certainly a shrinking basis
because X is reflexive. We claim that our choice of the (x;) and (x;)
satisfies all the other conditions of Definition (4.1.1), hence X is fairly
close to a Hilbert space. We now begin to prove this, by getting a decent
estimate on the norms of the projections 7, as in Definition (4.1.1).
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Lemma (4.2.17) [4]:

Let F:N? - N be any function. Given suitable growth conditions on
the underlying sequences a; < b; < a, < b, ..., the following is true:
whenever (z;){~, are disjointly supported unit vectors in lin{fj: j>
B,}c X, and (z{)%, are the corresponding support functionals, and
a < F(r,b,), one has

Il N7 <1+ (41)

Ar+1
where r =X%e;-z;: X > ¥, and ' =Xz ¢ : 4, - X.
Proof:

Consider first the case when all the z; belong to a single fgz (s=>r+
1). One has [|IZ§ 2zl = (TI4:1P)YPs but 1B Liesll = (X512:1%)Y2
and routing calculations lead to the conclusion that
1 1

1
Ps 2| < al/%s <since ps =2% —) < q/sr,
aS

IVl < a

When the z; may be supported on several of the fgz we can split z; into

several z; ¢ € fgz, take the direct sum of the projections 7 onto
lin{zi,s:i =1 ...a},

compose it at the £,-end with a partial isometry such that the images of

2 : :

the sums ), 75z; ; (one has ZS”ZL-,S” = 1 because X is an £,-direct sum)
are the unit vectors e;, and one obtains the map 5. So still, || || <
a'/@r+1 and similarly || 7l < a'/%r+1, Our growth condition is therefore

log F(r,b
gF( r)><1+

Ari1

F(r, b)Y/ %r+1 = exp < (42)

1
vV Ar+1

for each r, a perfectly respectable growth condition.
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Corollary (4.2.18) [4]:

We can, given growth conditions, be sure that the maps 8 and B’ of
(38) and (39) satisty

1BV <1+ < (1 +n)"? (43)

1
v Grg+1
Proof:

For the first inequality, the preceding lemma tells us that it is only
necessary to show that n;, as in Definition (4.2.11) is bounded above by a
fix function F(ry, bro). Now ny = B, < ryb,, because the sequence (b;)
is increasing likewise the constants c, k as defined in (26) and (27) are
bounded by suitable functions of ry and b, . In the same definition,
Definition (4.2.9), we chose roy>m and 1y > 1/€¢, so when we
recursively define n, ...n, and 71 ...n, by the procedure of Definition
(4.2.11), even the last element n;, of the sequence is bounded by a
function of 74 and b, . Likewise the small constant 77, has 1/7; bounded

by a suitable function of 7 and b, ; so the second inequality 1 + <

1
Vi aT0+1
(1 + 1;,)'/? is just another growth condition.

Corollary (4.2.19) [4]:

With our chosen shrinking basis (x;), and our chosen sequence
(n,)k_,, the maps 0,0 as defined in Definition (4.1.1) have norm at

most (1 4 n,)/2. The estimate ||a|| V ||o’|| < %\/E is satisfied.
Proof:

— V7% ek 1 —
The map o =22, +n, € " X annihilates ker P and Imm; =

lin{f;: 1 < i < n,}, and it sends the ||||,-orthonormal basis (x; ?£1+n1 of

ImP © Imm; to the unit vectors e;(i =1+ ny,...,n;). The map B =

Z?zkl +n, G Zi(k)* likewise annihilates ker P and Imm,, and sends the

original ||:]|,-orthonormal basis Zi(k) to the unit vectors e;(i =1+
n4, ..., Ny ). Consequently we have ¢ = U for a suitable unitary operator
U on ¢,. Similarly we have ¢’ = B'U*, so ||a|| V |l&’|| = IBIl V l|B’]] and
the result follows from Corollary (4.2.18).
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Corollary (4.2.20) [4]:

With our chosen shrinking basis (x;), and our chosen sequence
(n,)k_,, the maps T, (r = 1, ...,k) as defined in Definition (4.1.1) have
norm at most 2 + 1. The estimate |||V ||[[ — @, || < b is satisfied.
Furthermore, we have ||, — .|| < 1 + 1.

Proof:

The basis constant for X is 1, and m; = Z?zll i - fi" accordingly has
n
i=rl+n1

the composition ¢’q,-0, where g, is the orthonormal projection with

norm 1. For r > 1, the difference 7, — m; = ), x; - x; is equal to

N (e 1€ (my,nl; 44
q(e:) {O otherwise. (44)

Accordingly ||, — .|| < |lo]l - llo']l <1 +7n, by our preceding
Corollary. The result follows.

We can now establish the rest of the condition of Definition (4.1.1).
Form (i) and (i1) of Definition (4.1.1), there is nothing left to prove, so we
now establish part (ii1). We must show that

€
n.-2,-(b+c)?

1T = DT | <

and

€
n.-2,-(b+c)?

forje[l,n.],1<r<kand u=1..m. Now I — 7T,,, is a projection

X o T,(I = Tryp)|| <

of norm no more than 4 by Corollary (4.2.19), so it is enough to show that

d(Tﬂxj, Im T,4q) = d(Tﬂxj,((’”’l))
€
45
St 2 b+ (45)

and

€
4n, 27 - (b + ¢)?’

d(x] o Ty X* 0 yryq) < (46)
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Let us first establish (45). If j<n; then x; =f; =Zj(r), and
d(Tuzj(r),Z(”)) <n, by (32). If z€ ZT*D is the closets vector to
Tﬂzj(r) then ||zl < 1+7n, so ||« PVz—z|| <A +n)-277"°, by
Corollary (4.2.15). So d (T,z”,¢7+0) < ||7,28 — atr+Vs|| <, +

(1+mn,)-27""%y, < 27,, and (46) is established when we look at the
definition of 1,- in (28) and remember that A(h) < h.

If j>mnq,x; is a sum Zﬁnl Ai(i(r) with ||xj||2 = 1. By Corollary
(4.2.15), the map a™:Z™ = ¢ gatisfies ||a(x) — x|| < 2n,n,||x]| <
||x||/16 for all x € Z(r) So the inverse map a1 has ||la™!|| < 16/15;

we have a_lxj = A Z( " , and the Z( ") are disjointly supported with

1+n
norm 1, so ||a xj” > max{|4;|}, so for all i,|A;]| < ||a xj” <
16 ||x;]|/15 < 16 |la’l1 /15 (for x; = o’e;) < 16(1 + 1/ [a11r,)/15 by
Corollary (4.2.19). This estimate is at most 3/2, given the very modest
growth condition a; = 7, so no |A;| exceeds 3/2. We have ||xj —
a x| < 2nmy||a || < 3n.my, and so ||T,x; — T,a x| < 3n,7,
also. By (28), and A(h) <h, we have ||T,x —T,a x| < %

£ Comparing this with our target (45), we see that it is enough

2" 40, (b+c)?
to show
£
d(T,a tx;, (D) < . 47
(Tua™x,¢%) 8n, - 2" - (b + ¢)? (47)
_ 1,27
The vector Tya ™ 'x; = Z?;Hn AT,z l(r) and . (r)” (r) € ST by

Definition (4.2.12). The vectors Zi(rﬂ) are chosen such that

d( !Sl),Z(’”“)) < 7n,. The closets vector w to v( ™ in Z0+1 has norm at

most 1+7,, and |«®*Pw—w| <27, |lw| by Corollary
(4.2.15). The vector aTtVwe D o ( S’l),((rﬂ))

= 3
n-(1+2777° lwlD) <>,
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Since | Tﬂzi(r) || < 1, we also have d (Tuzi(r), ((”1)) < %nr also. Now
alx; = 1111711 Aizi(r) with |4;] < 3/2, so we have d(T,a 1x;, {T+Y) <
%nrnr. Applying (28) again (and A(h) <h), we find

-1 1 9
d(Tﬂa xj,((’”’ )) <5

established.

€
2T+4n (b+c)?’

Thus (47), and hence (45) are

It remains to establish (46). We first note that
x; o T,my € lin{x{ ...x,";l} = lin{x{ O TTpyq e Xy,  © ﬁrﬂ},

so (46) is exactly equivalent to

d(x; oT,(I —my),X o < : 48
The set S” includes a supporting vector W!E?? for the functional Zi(r)* °
Ty o (I — my), and the closets vector w to W!E?? in lin {Zi(rﬂ)} 1s within

distance 7,. That means that we have ||w|| < 1 +1,, and w’ = "Dy
satisfies ||w' — w|| < 277 %, |lw|| < 27" °n, by Corollary (4.2.19), so

<3n,./2 and ||W|| <1+ 371,/2. Accordingly, the real

(r) 1
”Wui W
part
Re (zi(r)* o T,(I —my),w')

. 3
Zi(r) o T, (I — nl)” : <1 — —nr). (49)

> | .

Now 7T,,,w' = W', so we also have
Re (27" o T,(1 = m)ryr, ) 2 || 27" e T,U —m|| - (1=2m,).
We have
U = ) Trpqll = Ty —mll < 1+ 1y,

Z-(r)*°TH(I—7T1)ﬁr+1 ”

”zi(r)*oTH(I—nl)”

so the ratio <1+mn.

Writing z* = (zi(r)* oT,(I - nl))/| Zi(r) o T,(I —my)

, and
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2" o Ty (I = )T

b

W = (Zi(r)* o T,(I - nl)ﬁr+1)/|
we have Re(z*,w') > 1 — %nr and
x 1 3 5
Re(w*,w') > (1 — Enr)/(l +n)=>1—- ST
We also have

lz*|] = llw™ll = 1,

And

z'+w" 4wt o< (=2my)  (1-2n,)
> Re , W wl = > >1—4n,.
2 || = Re 2 )/“ I lwl| 1+%77r r

But n, = A (W)/ 5, by (28), so by the uniform convexity of

X*,we have ||z* —w*|| <e/n2-2"** . (b+ ¢)?. Bt w* € X* o T,.,; SO

— €
d(z*, X oT < ——.
( ) T‘+1) 2T+4n$-(b+c)2

Hence, since

Zi(r)*” =1,and ||TM(I -m)| <1,

we also have

(r)= % =
d(z7" o T,(1 = my), X" 0 Tpyy) < s aror OO
For j <mny,x = Zj(r)* = f;’ so equation (50) also applies with Zi(r)*
replaced by x;, and (46) is established for this j. If n; <j < n, let us
again write x; = Z?;l +n, /1]-(]@. The linear function x; annihilates ker 7,

and Im 7, and satisfies x; (x;) = §;; for n; <i<n,. The (x;) are a

I|-||,-orthonormal basis of ™, so, we have

W) = (@ —mdy) = ) Al —my ), 6D

l=1+n1

for all y € X, where (:,-) is the inner product associated with ||-||,.
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We write (i(r)* for the functional in X* with (i(r)*(y) = ((7T, —

m)Y, (i(r)) = (0'q,0y, (i(r)) (where g, is as in (44)) = (q,0y, J(i(r)),
| < oz

where the last inner product is in £,. We will have |

I < @+no ¢
(by Lemma (4.2.14)). So the normalized functional w;" = (i(r)* / |

* ™Y\ _ 2 2
s i (67) = e/ 2/|
¢ i(r) / | ¢ i(r) , is equal to || B'BC i(r) , and cannot exceed
2
(1+n)Y2 by Corollary (4.2.18); so | 2/|

nk)_l | (i(r)

(by Corollary (4.2.19)) < (1 +n,)(1 + 21,)
(m*
a

The

( i(r) (i(r) (i(r) )

(i(r)*” > 1+t
/|lse”

(i(r)

ratio |

(O =+

, and

wi (¢/]

The norm 1 functional Zi(r)* has EReZi(r)* ((i(r)) =1+ ERezi(r)* ((i(r) —
Zi(r)) >1-—2n, by Lemma (4.2.14) again, so EReZi(r)* (| (i(r) )2
(1-2n,)/1 —2n,) =1 — 4n,. Comparing this with (52), we find that
the average (Wi* + Z(r)*) /2 has norm at least 1—-3n,>1-—

i

() z @+ md?=1- 20, (52)

A(;) by (28). By the uniform convexity of X*, we have

27+4n2.(b+c)?

N

* &
w; — Z;

2"+4n2.(b+c)?’

by (50), we have x/ =X Ai(i(r)*=znr Ai

l

and so d(wi* oT,(1—m),X" o ﬁr+1) <

€
27+4n2.(b+c)?

e
l

(1+ 2n,); therefore d(x]fk oT,(1 —my),X" o ﬁr+1) <

(i(r)* exceeds (1 + 1)

-w;, where no |4;| exceed 3/2, and no |

3n,e(1+m,)(1+27,)
27+4n2.(b+c)?

since no n; > 1/80 by (28). Thus (48), and so also (46),

27+4n2.(b+c)?

are established.

So K(X) is approximately amenable, given growth conditions on the
(a,) and (by).
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SUD & SUPTEMUM w.evuviveniereeseseererssnseresesssssessssesssssessssssssass sesesssessseseseses (5)
NN T MINTMUM et ettt see e e (10)
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