بسم الله الرحمن الرحيم

Sudan University of Science & Technology College of Post Graduate Studies

Investigation and Analysis of Technical Losses in Distribution Network-(case study, Khalil Osman substation)

A Thesis Submitted in a Partial Fulfillment for the Degree of Master of Science in Electrical Power Engineering

By :

Ashraf Seralkhatem Ali

Supervisor:

Dr. Mohammed Osman Hassan

OCT©2014

DEDICATION

I dedicate this research to my Mather,

My Father,

and my Brother

For their unstinting support

ACKNOWLEDGMENTS

First and foremost thanks to Allah. Without his help and blessing I would not have been able to finish this work.

I would like to express my gratitude and appreciation to my supervisor, Dr. Mohammed Osman for his continues guidance and help in this work. Also thanks and appreciation are extended go to Eng/Mustafa Mohammed Abdullah the Manager of Analyzing electrical distribution network Department in SEDC for providing me with research data.

Finally, my sincere thankfulness goes to my family for their prayers and encouragement that always helped me to take the right step in life.

ABSTRACT

Losses consideration is a key aspect of power system design and planning and has been an area of active research for some time now. Losses studies are performed to minimize the energy losses of an electric power grid. In many cases, losses studies will include a site visit to assess factors such as: type of load, capacitor condition at load location, confirm information's parameters of network such as: line length, conductors size, type of conductors, transformer capacities, voltage drop and line loading. And following the site visit a comprehensive report is submitted discussing the finding and suggestion ways to minimize overall losses of the system.

This thesis presents basic concepts of power system technical losses assessment techniques using NEPLAN power analysis software in distribution system.

الملخص

حسابات الفقد الكهربائي هو احد الجوانب الرئيسية لتخطيط و تصميم نظم القوى الكهربائية. و اصبح البحث في الفقد من مجالات البحث النشطة الان . تجري دراسات الفقد لتحقيق اقل قدر من الفقد في الشبكة . و في كثير من الحالات ، دراسة الفقد تشمل زيارة للشبكة لتقييم بعض العوامل مثل : نوعية الاحمال، حالة المكثفات في مواقع الاحمال ، تأكيد معلومات بيانات الشبكة مثل اطوال الخطوط ، مساحة مقاطع الكوابل ، نوع الكوابل ، سعة المحولات ، هبوط الجهد و تحميل الخطوط ، و بعد زيارة المواقع يعد تقرير شامل يقدم فيه نتائج بحثه و اقتراح الطرق المناسبة لتقليل الفقد الكهربائي واضعا في الاعتبار النواحي الاقتصادية.

قدم هذا البحث المفاهيم الاساسية لحسابات الفقد التقني باستخدام برنامج تحليل الشبكة نيبلان و العوامل المؤثرة فيها . تركزت دراستنا في نظام شبكة التوزيع و مقارنتها بالمواصفات العالمية (IEEE)

TABLES OF CONTENTS

Dedication		iii
Acknowledgments		iii
Abstract		iv
الملخص		٧
Tables of	Tables of Contents	
		vii
List of Fig	gures	i
List of Ta	bles	X
List of Al	obreviations	xii
	CHAPTER ONE INTERODUCTION	
1.1	Background	2
1.2	Objective	4
1.3	Case Study	5
1.4	Thesis Layout	5
	CHAPTER TWO ELECTRICAL LOSSES LITERATURE	
2.1	INTRODUCTION	7
2.2	Electrical system loss	7
2.3	The allowable volt drop	7
2.4	Losses study	7
2.5	Technical Losses	8
2.6	Transformer Losses	9
2.7	Reasons of technical losses	10
2.8	Non-Technical Losses	10
2.9	Line Losses and Voltage Drop Relationship	11
2.1	Losses factors	12
СНАРТ	RE THREE METHODOLOGY AND MODELING SUMULATION BY	NEPLAN
3.1	INTRODUCTION	15
3.2	DEFENTION	16
3.3	Design in NEPLAN	17
3.4	Basic Elements of NEPLAN	19
3.5	Procedure of NEPLAN implementation in this thesis	20
3.6	Input data	21
	3.6.1 Network Feeder	21

	3.6.2 Loads	21
	3.6.3 Lines	21
	3.6.4 Transformer	22
3.7	MODELING	22
	3.7.1 Introduction	23
	3.7.2 Case Study	23
	3.7.3 MODELING AND SIMULATION	25
	3.7.3.1 SIGA/SAIFONAT outgoing losses detail	29
	3.7.3.2 SAFIA outgoing losses detail	32
	3.7.7.3 SHAMBT outgoing losses detail	38
	3.7.3.4 COLA outgoing losses detail	40
	3.7.3.5 CAPO OUTGOING losses detail	43
	3.7.3.6 ELMASRA losses detail	46
	3.7.3.7 SAFA OIL losses detail	51
	CHAPTER FOUR RESULTS AND DISCUSSION	
4.1	INTRODUTION	58
4.2	Annual Technical Losses Percentage	60
4.3	Problems and Solutions	60
4.4	Customer Transformer Reactive Power	61
	CHAPTER FIVE RESULTS AND RECOMONDATION	
5.1	Conclusions	66
5.2	Recommendations	66
	Appendix A	68
	Appendix B	72
	REFERENCES	82

List of Figures

Figure 1.1	World Bank Indicators - Sudan - Energy losses	3
Figure 2.1	Transformer losses	9
Figure 2.2	Load Distribution and Dispersal Loss Factor	12
Figure 2.3	Relation between load and loss factor	13
Figure 3.1	NEPLAN Graphic User Interface	16
Figure 3.2	NEPLAN User Interface	18
Figure 3.3	One line diagram with network components	19
Figure 3.4	Element parameters Data insertion	20
Figure 3.5	Creation grid	21
Figure 3.6	Khalil Osman distribution substation Single line diagram	24
Figure 3.7	Single line diagram for CAPO, SIGA/ SAIFONAT and SAFIA	27
Figure 3.8	Single line diagram for ELMASRA	28
Figure 3.9	Single line diagram for COLA and SHMABT and SAFA oil	28
Figure 3.10	voltage drop of SIGA/SAIFONAT feeder at the customer	29
Figure 3.11	line loss condition of SIGA/SAIFONAT	31
Figure 3.12	Transformer loss condition of SIGA/SAIFONAT	32
Figure 3.13	voltage drop of Safia feeder at the customer transformer	33
Figure 3.14	lines loss condition of Safia	37
Figure 3.15	Transformer loss condition of Safia	38
Figure 3.16	Transformer loss condition of shambat	39
Figure 3.17	voltage drop of COLA feeder at the customer transformer	40
Figure 3.18	line condition COLA outgoing	42
Figure 3.19	Transformer condition COLA outgoing	42
Figure 3.20	voltage drop of CAPO feeder at the customer transformer	43
Figure 3.21	line loss condition CAPO outgoing	45
Figure 3.22	Transformer loss condition CAPO outgoing	45
	voltage drop of ELMASRA feeder at the customer	47
Figure 3.23	transformer	77
Figure 3.24	line loss condition ELMASRA outgoing	50
Figure 3.25	Transformer condition ELMASRA outgoing	50
	voltage drop of SAFA OIL feeder at the customer	52
Figure 3.26	transformer	32
Figure 3.27	Line condition SAFA OIL outgoing	55
Figure 3.28	Transformer loss condition SAFA OIL outgoing	56
Figure 4.1	losses per feeder	58

Figure 4.2	distribution between lines and transformers	59
Figure 4.3	Khalil Osman total energy 2013 profile	60

List of Tables

Table 1.1	SEDC losses report 2013	2
Table 1.2	Transmission and distribution losses in selected countries	4
Table 2.1	losses factors in grid of transmission and distribution network	8
Table 2.2	Load Distribution and Dispersal Loss Factor	12
Table 3.2	Network parameters	21
Table 3.2	loads parameters	21
Table 3.3	Lines parameters	21
Table 3.4	Transformer parameters	22
Table 3.5	Distribution by Transformers	23
Table 3.6	Transformers (1) loads capacities	25
Table 3.7	Transformers (2) loads capacities	25
Table 3.8	Voltage drop of SIGA/SAIFONAT feeder	29
Table 3.9	line losses of SIGA/SAIFONAT feeder	30
Table 3.10	Transformer losses of SIGA/SAIFONAT feeder	31
Table 3.11	Voltage drop of Safia feeder	32
Table 3.12	line losses of Safia feeder	34
Table 3.13	Transformer losses of Safia feeder	36
Table 3.14	Voltage drop of Shambat feeder	38
Table 3.15	Line losses of Shambat feeder	39
Table 3.16	Transformer losses of Shambat feeder	39
Table 3.17	Voltage drop of COLA feeder	40
Table 3.18	line losses of COLA feeder	41
Table 3.19	Transformer losses of COLA feeder	41
Table 3.20	Voltage drop of CAPO feeder	43
Table 3.21	line losses of CAPO feeder	44
Table 3.22	Transformer losses CAPO feeder	44
Table 3.23	Voltage drop of ELMASRA feeder	46
Table 3.24	line losses of ELMASRA feeder	47
Table 3.25	Transformer losses ELMASRA feeder	49
Table 3.26	Voltage drop of SAFA OIL feeder	51
Table 3.27	line losses of SAFA OIL feeder	52
Table 3.28	Transformer losses SAFA OIL feeder	54
Table 4.1	losses percentage per feeder	59
Table 4.2	Total losses	60
Table 4.3	Khalil Osman total energy 2013 profile	60

Table 4.4	Khalil Osman feeders annual losses	61
Table 4.5	Problem and Solution Losses	61
Table 4.6	Danfodu 2013 load profile	62
Table 4.7	Alwaha oil factory 2013 load profile	63
Table 4.8	Sati oil factory 2013 load profile	63
Table 4.9	Dubai factory 2013 load profile	64

List OF ABBREVIATIONS

khalil osman 1 izb l4 Name of the incoming feeder connecting between Alizba

substation to Khalil Osman distribution substation

TR1 Transformer (1) in khalil Osman (33/11)
TR2 Transformer (2) in khalil Osman (33/11)

(Z605 KUKU L10) Name of the incoming feeder connecting between Kuku

substation to Khalil Osman distribution substation

Neplan power system analysis tool for applications in transmission

distribution, generation, industrial, renewable energy systems,

Smart Grid

ID number of element (generated by NEPLAN)

ID number of element (generated by NEPLAN) : The name of element given by

Neplan user for each ID

P Active energy Q Reactive energy

SEDC Sudanese Electrical Distribution Company

R(1) Positive sequence resistance in Ohm/km or see Units. R(0) Zero sequence resistance in Ohm/km or see Units. X(1) Positive sequence reactance in Ohm/km or see Units X(0) Zero sequence reactance in Ohm/km or see Units C(1) Positive sequence capacitance in μ F/km or see Units C(0) Zero sequence capacitance in μ F/km or see Units G(1) Positive sequence conductance in μ S/km or see Units

Ir max Maximum rated current in A, highest, medium, lowest value.

The loading of the line can be calculated according to all three

values (see Load Flow calculation parameters).

Un1 Nominal voltage of the primary winding node (just for information).

Nominal voltage of the secondary winding node (just for

Un2 information).

Ur1, Ur2 Rated voltage of the primary and secondary winding, based on the

transformation ratio.

Sr Rated power in MVA.

Maximum and minimum initial symmetrical short-circuit power in

Sk" max, min MVA

 $(Sk'' = SQRT(3) \cdot Un \cdot Ik'').$

Maximum and minimum initial symmetrical short-circuit currents in

Ik" max, min kA

 $(Ik'' = Sk''/(SQRT(3)\cdot Un)).$

R(1)/X(1) max, min Maximum and minimum ratio of positive sequence resistance of

Network Feeder to its positive sequence reactance

Z(0)/Z(1) max, min Maximum and minimum ratio of zero sequence impedance to its

positive sequence impedance

Maximum and minimum ratio of zero sequence resistance of

R(0)/X(0) max, min Network

Feeder to its zero sequence reactance.

C Capacitance of network in μF

LF-Type Node type for Load Flow calculation

ORIGINALITY DECLARATION

The author declares that thesis submitted is research works and results obtained by the author under the guidance of his supervisor. As far as the author known, this thesis does not contain any research result published or written by other individual or group unless the content has been indicated in the thesis clearly. The author is fully aware of the legal consequences of this statement to me.

Thesis Author Signature:

Date: