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Abstract

The thesis exposes the basic language of categories and
functions.

We construct the projective, inductive limits, kernel, cokernel,
product, co product. Complexes in additive categories and
complexes. in abelian categories.

The study asked when dealing with abelian category c, we
assume that c is full Abelian.

The thesis prove the Yoned lemma, Five lemma, Horseshoe
lemma and Snake lemma an then it give rise to an exact sequence,
and introduce the long and short exact sequence.

We consider three Abelian categories c, ¢', ¢" an additive bi
functor F: cxc' & ¢" and we assume that F is left exact with respect
to each of its argument, and the study assume that each injective
object IEC the functor F (1,.): ¢' = ¢" is exact.

The study shows important theorm and proving it if R is ring R
=€ {X1, e , Xn }, the Kozul complex KZ (R) is an object with
effective homology.

We prove the cone reduction theorem €
(ifp=(f,g,h): C- —3 D+, and p'=1.f,h"):

C'«—> D'+, be two reduction and @: C+ «— C'« a chain

complex morphism, then these data define a canonical reduction
P"=(f", g",h" : cone (@) —3% cone (f P g').

The study gives a deep concepts and nation of completely
multi — positive linear maps between C *- algebra and shows they are
completely multi positive

We gives interpretation and explain how whiteheal theorem is
important to homological algebra.



The study construct the localization of category when satisfies
its suitable conditions and the localization functors.

The thesis is splitting on De Rham co-homology in the module
category and structures on categories of complexes in abelian
categories.

The thesis applies triangulated categories to study the problem
B =D (R), the unbounded derived category of chain complexes, and
how to relate between categories and chain complexes.
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Chapter One

The Language of Categories

The aim of the study is to introduce the language of categories
and to present the basic notions of homological algebra first from an
elementary point of view, with the notion of derived functors, next
with a more sophisticated approach, with the introduction of
triangulated and derived categories.

After having introduced the basic concepts of categories theory
and particular those of projective and inductive limits, we treat with
some details additive and abelian categories and construct the
derived. The thesis show the important concepts of triangulated and
derived categories.

This thesis is of five Chapter.

In chapter one we expose the basic language of categories and
functors. A key point is Yoneda Lemma, which asserts that a
category ¢ may be embedded in category € of contra variant functors
on ¢ with values in the category set of sets.

This naturally leads to the concept of representable functor.
Many examples are treated, in particular in relation with the
categories set of sets and Mod (A) of A-modules, for a (non
necessarily commutative) ring A.

In chapter two we construct the projective and inductive limits,
as a particular case, the kernels and co-kernels, product and
coproduces.

We introduce the notions filtrant category and co final functors,
and we study with some care filtrant inductive limits in the category
set of sets.

Chapter three deals with additive categories and study the
category of complexes in sub categories in particular, we introduce
the shifted complex, the mapping cone of morphism, the homotopy
of complexes and the simple complex associated with a double
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complex, with application to bifunctors. We also briefly study the
simplicial category and explain how to associate complexes to
simplicial objects.

Chapter four deals with abelian category and develop chapter
three, and gives the relations between additive categories and abelian
categories C. The chapter also study the injective resolution in
constructive the derived functors of left exact functor.

Finally chapter four studies Kozul complexes and shows the
important of derived category of K-modules with examples and
applications.

In chapter five we study the homotopy category k (c) of derived
category c is \derived functors.

H’: k (¢) = ¢ is co homological and the derived category D (¢)
of ¢ is obtained by localizing k (c) with respect to the family of
quasi-homomorphism. The chapter constructs the localization of
category with respect to a family of morphism, satisfying suitable
conditions and we construct the localization of functors, and
Localization of categories appears in particular in the constructing of
derived categories.

We introduce triangulated categories, triangulated functors, and
we give some results. We also study triangulated categories and
functors, and we explain here this construction with some examples.

The word homology was first used in topological context by
Hennery Poincare in 1895. Who used it to think about manifolds
which were the boundaries of higher-dimensional manifolds it was
Emmy Noether in 1920 who began thinking of homology in terms of
groups and who developed algebraic techniques such as the idea of
Modules over a ring. These are both absolutely crucial in gradients
in the Modern theory of homological algebra, yet for the next twenty

years homology theory was to remain confined to the realer of

topology.



In 1942 came the first more forward towards homological
algebra as we know it today, with the arrival of a paper by Samuel

Eilenbery and Saunders Mac-lame.

In it we find Hom and Ext defined for the very first time, and a
long with it the notions of a functor and natural isomorphism. These
were needed to provide a precise language for talking about the
properties of Hom (A,B); in particular the fact that it varies
naturally, conveniently in A and conversantly in B. Only three years
later this language was expanded to include category and natural
equivalence. However this terminology was not widely accepted by
the mathematical community until the appearance of Chartan and

Eilenberg's book in 1956.

Chartan and Eilenberg's book was truly a revolution in the
subject, and in fact it was here that the term "Homological algebra"
was first coinet. The book used derived functor in a systematic way
which united all the previous homology theories. Which in the past
ten years had arisen in group theory? Lie algebras and algebraic
geometry. The sheer list of terms that were first defined in the book
may give an idea of how much of this project is due to the existence
of that one book! They defined what it means for an object to be
projective and injective resolutions. It is here that we find the first
motion of Hom being left exact and the first occurrence of Ext as the

right derived functors of Hom.

Until 1970, Chartan and Eilenberg's book was the bible on
Homological Algebra, and the subject started be coming standard

course material at many universities. Other books gradually started



appearing, such as the Hilteon and Stammback book which much of
this project is based around. Nowadays homological algebra is a
fundamental tool in mathematics, where it has helped to write the
foundations of algebraic geometry, to prove the wail conjectures,

and to in rent powerful new methods such as algebraic K-Theory.[1].

Many examples are treated, in particular in relation with the

categories set of sets and commutative ring A.

In this chapter we introduce some basic notions of category
theory which are constant use in various fields of mathematics,
without spending too much time on this language. After giving the
main definitions on categories and functors, we prove the yoneda
lemma, theorem and some propositions and linear maps and

modules.

We also introduce the notions of representable functors and

adjoint functors.

We start by recalling some basic notions on sets and on modules

over a ring, and which shall some important examples.
Section (1.1) Sets and Maps:

The aim of this section is to fix some notations and to recall

some elementary constructions on sets.

If f: X—— Y is amap from set X to set Y, we shall say that
f1s an isomorphism and write f: X—— Y, if there exists an isom-
orphism f: X —= , Y, we say that x and y are isomorphic and

write X ~ y.



We shall denote by Hom (X,Y), or simply Hom (x,y), the set
of all maps foorm x toy. if gt Y ——— Zis another map, we can
define the composition g of : X ——— Z. Hence, we get two

maps:
go : Hom (X,Y)—— Hom (X,Z),
of : Hom (Y,Z) ——— Hom (Y,Z2),

Notice that if X = {x} and Y={y} are two sets with one element
each, then there exists a unique isomorphism X———Y, of courses,
if x and y are finite sets with the same cardinal = >1, Xx and X and

still isomorphic, but the isomorphism is no more unique.

In the sequel we shall denote by @ the empty set and by {pt} a
set with one element. Note that for any set x, there is a unique map

() —— X and a unique map X——— {Pt}.

If {x;}ier 1s a family of sets indexed by a set I. The product of

the Xjs, denoted mie xi, or simply mie; X;, 1s defined as
(1.1) mx; = {Xi}ie, X;€X; for all 1€1
IfI: {1.2} one uses the notation X; x X,. If x; = X
for all 1€1, one uses the notation x', note that

(1.2) Hom (I,X) ~ X,

For a set y, there is natural isomorphism
(1.3) Hom (y,m; i) ~ mi Hom (y, xi)

For three sets I, x, y, there are natural isomorphism
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(1.4) Hom (Ix X, y) ~ Hom [ [, Hom (X,Y) ]
~ Hom (X,Y)

If {xi}ier 1s a family of sets indexed by asset I, one may also
consider their disjoint union, also called their co-product. The co-

product of the Xj is denoted Uie; X; or simply U; X; If
I= {1.2} one uses the notation X; U X,
If X;=X for all i€L,one uses the notation X". Note that
(1.5) XxI~X"Y

Consider two sets x and y and two maps f,g from x to y, we

write for short f,g: X Y.
The kernel (or equalize) of (f,g), denoted Ker (f,g), is defined as
(1.6)  Ker (f,g) = { xeX; f(x) = g(x) }.
Note that for a set Z, one has
(1.7) Hom (Z, Ker (f,g) ~ Ker (Hom (Z,X) — Hom (Z,Y).
Let us recall a few elementary definitions.

* A relation R on a set X is a subset of X x X. One writes xRy if

(x,y) €ER.

* The opposite relation R” is defined by (y)x€R™ y if and only if
yRx.



* A relation R is reflexive if it contains the diagonal, that is, xRx for

all xeX.
* A relation R is symmetric if xRy implies yRx.
* A relation R is anti-symmetric if xRy implies yRx implies x=y,
* A relation R is a transitive if xRy and yRz implies xRz.

* A relation R is an equivalence relation if it is reflexive, symmetric

and transitive.

* A relation R i1s a pre-order if it is reflexive and transitive. If
moreover it is anti-symmetric, then one says that R is an order on
X. A pre-order is often denoted <. A set endowed with a pre-order
is called apo set.

* Let (I, <) be apo set. One says that (I,<) is filtrant (one also says
"directed") if I is non empty and for any i.j €I there exists jJEJ
with 1 <j.

* Assume (I, <) 1s a filtrate apo set and let Jcl be a sub set. One says
that J is co-final to I if for any 1€I there exists j€J with 1 < j.

If R is a relation on a set X, there is a smaller equivalence
relation which contains R.

(Take the intersection of all subsets of X x X which contain R
and which are equivalence relations).

Let R be an equivalence relation on set X. A subset S of X is
saturated if xRy and €ERY implies yRx. One then defines a
new set X/R and a canonical map f: X —X/R as follows: the

elements of X/R are the saturated subsets of X and the map f



associates to x€X the unique saturated set S such that
XES.[6,]

Chain Maps:
Definition (1.1.1): Let R be a commutative ring and let M, and N. be

R-comp-lexes. A chainmap F: M — N is sequence {fi: M; — Ni}iez

making the next "ladder-diagram" commute.

oM+ oM; OM;-
M; i1
F. F; Fi
6Ni+1 6N1 6Ni*l
N - N, - N .-

Chain maps are also called "morphism of R-complexes". An
isomorphism from Mto Nis chain mapF: M — N. such that each

map Fi: M; — N; is an isomorphism.

Example (1.1.1): Here is a chain map over the ring R = Z/127.

6 4 6 4
M. "> ZN2Z—> 7Z/12Z —> 7Z/12Z —*""

F. 2 3 2

4 6 4
N. > 7/127 ——> Z/12Z —— 7127 —O»

The next result states that a chain map induces maps on

homology. [15].



Proposition (1.1.2): Let R be a commutative ring and let F.: M. —

N. be a chain map.

(a) Foreach i, we have F; [ (Ker (6M;) | C Ker (dN;).
(b) Foreach i, we have F; [ (Im (0M;4) ] C Ker (dNj).
(c) For each, i the map H; (F.): H; (M) — H; (N.)

Given by H; (F.) (m) = F; (m) is a well-defined R— module

homomorphism.

Proof:

(a) and (b): chase diagram in Definition (1.1.1).
(b) The map H; (F.) is well-defined by parts (a) and

(c) It is straight forward to show that it is R—linear.

Definition (1.1.2): Let R be a commutative ring, let UER be a
multiplicatively closed sub set, and let M. be R—complex. The

localized complex U 'M. is the sequence.

-1 e -1 -1 -1
U M._ U716Mi71 U Mi U*16Mi U Mi U716Mi71 U Mi*l
Y OMin oM Y oM
There is an isomorphism of U 'R—complex U 'M. =(U 'R)@RM.
Let F.: M. — N. be a chain map of R—complexes
Define U 'F.: U'M.>U'N
To be the sequence of maps {U'F;: U'M; — U 'N; }. [15]
Remark (1.1.3):[15] Let R be a commutative ring, let UER be a
multiplicatively closed subset, and let M. be an R—complexes. The
sequence U 'M. is a U 'R—complexes. The natural maps M; —
U 'M; from a chain map M. — U 'M; if F.: M. — N. is a chain map

of R—complexes, then the sequence
U'F.: UM —>U'N.



Is a chain map of U 'R—complexes that makes the following

diagram commute?

F.
M » N
U''F
U'™M *»U N

Where the unlabeled vertical maps are the natural ones.

The natural isomorphism's is (UflR)®R M, — UM,

Form an isomorphism of UflR—complexes (UflR) ®RM;>U71M.

making the next diagram commute

(U'R) @xF.
(U'R) @M. > (U'R) ®rN.

U'F J
U'N

U 'M. >

Il
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Mapping Cones:

In this section, we discuss the mapping cone of chain map,
which gives another important short exact sequence of chain
maps.[15].

Definition (1.1.3): Let R be commutative ring, and let X. be an
R—complex. The suspension or shift of X. is the sequence > X.

defined as (3 X); = X;-; and ) X; = —0x;-1 [15]

Remark (1.1.4): Let R be a commutative ring, and let X. be an
R—complex. Diagrammatically, we see that ) X. is essentially
obtained by shifting X. one degree to the left.

6Xi 6X1 6Xif
X = Jrl= Xi > Xifl D1
_6Xi g _6Xi71‘ 6Xi72

TX. =t X X, e

It follows readily that > X. is an R—complex and that there is an
isomorphism H, (3.X.) = H,-; (X.) for each n. [15]

Definition(1.1.4): (15) Let R be commutative ring, and let f.:

X.—Y. be a chain map. The mapping cone of f. is the sequence cone

(f.) defined as follows Sy iy Sy fis
Yi| i Yi| i ._52" Yi
0 i

i —oX
o i1
®
Xi-1 Xia Xi-3
Cone (f)="">"

In other words, we have
Cone (f)l =YVi ® Xi-1
dicone () =yi ® Xi-1 =Vi-1 ®Xi2

11



dicone (f)

yi | _[ovifii|fyi ] Y (i) + it (Xi-1)
Xi-1 | | 00X Xi-1| I—SXH (Xi-1)

_ | 97 () fin (Ximn)
a —0Xi-1 (Xi-1)

Proposition (1.1.5): Let R be cumulative ring and let f.: X. — Y. be

a chain map. The sequence cone (f.) is an R—complex

Proof:

It is straight forward to show that each map

§ome(® js an R-module homomorphism. Since X. and Y.
are R—complexes, we have 0x;,0x;-1 =0 and

8Y, & =0 for each i. since f. is a chain map, we have

8Y fio1 = fio0xi; for each i. These facts give the last equality in

the following computation;

oY  fi- oY fi-
cone (f) gcone __ - 1—2 H i—1
O dp = [ é —6xi2] [ 0 —6xi1]
_ |98 ¥ Y fiq fin Oxi | _[0 o0
B 0 6Xi726xi71 oo

This shows that § %/ (0§ e = and hence the desired result. [15]

12



Section (1.2) Modules and linear maps:

Let M and N be two A-modules. An A-linear map f: M — N is
also called a morphism of A-Modules. One denotes by Hom, (M,N)
the set of A-linear maps f: M — N. This is clearly a K-Module. In
fact one defines the action of K on Hom, (M,N) by setting; [Af (m)]
= A [f(m)]. Hence (Af) (am) = Af (am) = Aaf (m) = aAf (m) = a (Af
(m), and Af€ Homa (M,N).

There is a natural isomorphism Homa (A,M) ~ M; to u€ Homy
(A,M) one associates u (I) and to mEM one associates the linear map
A — M, a — am. More generally, if I is an ideal of A then Homyu

(A/LM) ~ {m€M; Im =0}

Note that if A is a k-algebra and LeMod (k), M€ Mod (A), the
k-module Homg (L,M) is naturally endowed with as structure of a

left A-module.

If N is a right A-module, then Homg (N,L) becomes a left A-
module. [6, 71. 72].

Example (1.2.6): Let W, (k) denote as above the Wey algebra.
Consider the left W, (k)-linear map W, (k) — k [x;....-»,X,].wn (k)
eEp pd € k) {xi..., x,} This map is clearly surjective and its
kernel is the left ideal generated by (9;....... ,0n). Hence, one has the
isomorphism of left W, (k) — modules;

W, (K) /Y wa (K) & —=—> [Xi......xa]. [6,71.72].

Proposition (1.2.7):The map B is (A,K) — bilinear and for any k-
module L and any (A,K) — bilinear map f: N X M — L, the map f

13



factorizes uniquely through a k-linear map.
Y:N&®&M — L

The proposition is visualized by the diagram

N xM —>N®AM

%

Consider an A liner map f: M — L. It defines a linear map idy x f: Nx

M — NXL, hence a (A,K) — bilinear map NXM — N 4L,

and finally a k-linear map
[dNXf: N®a M — NKaL.
One constructs similarly g&idy associated to g: N — L.
There is natural isomorphism
ARAs M ~ Mand NQar A ~ N.

Denote by BIL (NXM, L) the k-module of (A,K) —bilinear maps
from N XM to L. One has the isomorphism

BIL(NXM,L) ~  Homg (N®x M,L)

~ Homa [ M, Homg (M,L) ]

[

Homy [ N, Homg (M,L) ]

For Le Mod (k) and Me Mod (A), the k-module L& M is

14



naturally endowed with a structure of a left a-module. For M, N€
Mod (A) and L€ Mod (k), we have the isomorphism

Hom, (L&k N, M) ~ Homy [N, Homg (L,M) ]
~ Homg [L, Homa (N,M) ]

If A is commutative, there is an isomorphism:

N®aM ~ M®a N given by n @ m — m@n.

Moreover, the tensor product is associative, that is, if L, M, N

are A-modules, there are natural isomorphism L&Qs (M&a N)~
(L&A M) QaN.

One simply writes L& M&@4 N. [6, 71. 72].

Definition (1.2.1): A linear map from V to w is a function T: v —»w

with the following properties.

1 T+v)=T(w +T(v)forall p,veV
(i) T(av)=aT(v)forall véV and a€F

The set of all linear maps from V to W is denoted by ¥ (v, w)
Definition (1.2.2):

If T,SeY (v,w) we define the product of S and T to be (ST) (v)
=S [T (v)] for v€V as the product of S and T. [4]

Definition (1.2.3) [4] For T€ (v,w), the null space of T, is the subset
of v consisting of the vector that T mps to 0: null (T) ={veV" Tv=0}

Definition (1.2.4): A linear map T: v — w 1is called injective
whenever pv €V. and Tu = Tv, we have u = v [4]

15



Proposition (1.2.8): Let TEY (v,w), then T is injective if and only if
null T. = {0}.

Proof:

suppose T is injective, since T (0) =0, O€ null T and so {0} €null T.
let v €null T. Then T (0) =0 =T (v) yields v = 0 because T is
injective. Thus null TE{0}. Therefore, null T = {0}. Then T(u-v) =
conversely, assume null T = {0}. And let u, véV. If T u = Tv, and
Tu — Tv = 0 which shows u-p €null T. Thus u = v and there fore, T

1s injective

Which shows u— v € mull T. Thus u = r and therefore, T is
injective. [4.42. 70].

Definition (1.2.5): A linear map T: v — w is called surjective if its

range equals w.[4. 42.70].

Proposition (1.2.9): If Te€W¥(v,w), then range T is a subspace of w

proof:
by definition, range T = {Tv/vEV}€Ew, and let w; w, € w range T.

wy = Tv,. By linearity of T, w; + w, =Tv; + Tv, =T (vi + vy)
which shows w; + w,€ range T. For all w; , w,€ rang T.Let we
range T and let K be a scalar. Then there exists VEV such that w =

Tv. By linearity of T.

Kw = KTv = T (kv) which shows Kwe€ range T of all we range
T and for all scalars K. Therefore, range T is a subspace ow.

[4.42.70].

16



Definition (1.2.6): Let T TEY (v,w) and let b; = {v;.......... Vn} be a
basis for v and b;= {w;.......... wy} be a base for w. Then the matrix

of T with aspect to the bases b; and b, is

di1 din
ami amn
where the a;;€F are determined by Tvy = aj,wy + ....... AmkWm
foreachk=1........... , N
Definition (1.2.7): Letb= {v;......... Vu} be basis for v and let v€V.

We define the matrix of v, denoted by M(v), to be the n-by,
matrix [by,......... b,} denoted by

by v=byv;+....... + byvm. [4.3.42. 70].

Proposition (1.2.10): If TEY (v,w), then m (Tv) = m(T) m(v) for all
veEV

Proof
Let (vi......... ,Vn) be basis of v and (wj......... ,Wp) be basis of w. If
LEV, then there exists by ........ b,€F such that

v=byv; +...... b,v, so that M(v) =

r
by )
|
|
|
|
|
|

b
ot
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For each k, 1 < k <n we write Tvy =

ap,wi + ... amkWn, and so by definition of the matrix of a

djq djn
M =
aml amn
By linearity of T: Tv=b; Tv;+............... + b, Tv,

m m
= b1 (Z ajle)+......+bn (Z ajnwj)
=1 j=1

wi (aj by ... +apby) + .. T Wy (@mbr Tt . + ayn by)
ajlbl +o. alnbl
|
|
m(Tv) =| | =m(T) m(v)
|
amlbl ot amnbl

Where the last equality holds by definition of matrix
multiplication. [4. 42. 70]

Definition (1.2.8): A linear map T€Y (v,w) is called inventible if
there exists a linear map SEL (w,v) such that ST equals the identity
map on V and TS equal the identity map on W.

Definition (1.2.9): Given T€¥(v,w). A linear map S€L(w,v)
satisfying

ST=I1and TS =11is called an increase of T. [4.1.2].

Proposition (1.2.11): A linear map is invertible if and only if it is
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injective and surjective.

Proof:
Suppose TEWY(v,w) in inventible with inverse T.
Let u,v €V. If Tu = Tv then
u=(THuw)=T"'(Tu)=T "' (Tv)=T 'T(v)=v
and so T is injective, if W€ W, thenv=T 'we W
with Tv=T (T"'w)=w

Shows T is subjective.Assume T is injective and subjective. For
each w €W assign T (v) = w, such S (w) = v exists because T is
subjective and is unique since T is injective. Then T(v) = w shows
ST(v) = S(w) = v so that ST is the identity on V. Also, TS (W) =T
(SW) =Tv =w shows Ts is the identity on w. thus S and T are linear

since.

(1) If w;w,EW, then there exists a unique v, and v, such that
Tv, = w; and Tv, = w, S (wy) = v and S (W,) = v, by
linearity of T, S (w;) + S (wy).

(i) If weW and k€F then there exists a unique v€V, such that
Tv=w and S (w) =v. By linearity of T, S(Kw) = S(Ktv) =
S (Ktv) =S (Tkv) =Kv =Ks (v).

Therefore S is linear and is the inverse of T. [4.42].

Example(1.2.12): Show that every linear map from a one-
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dimensional vector space to it self is multiple location by some
scalar. More precisely, prove that if dim V=1 and T€L (v,v), then

there exists a€F such that Tv = av for all veV.
Solution:
Let {w} be a basis of v, and let v€V.
Then there exists cEF such that ve cv.
Applying Tyields,
Tv=T (cw)=cTw=c (aw)=(ca) w =a (cw) = av
Where Tw — aw since Tw €v and {w} is a basis of v [4].

Example (1.2.13) (Linear Extension): Suppose that V is finite-
dimensional. Prove that any linear map on a subspace of v can be

extended to a linear map on v.

In other words, show that if u is a subspace of v and s€¥ (u,w),

then there exists TEY (v,w) such that Tu = su for all ueU.

Solution:
Let (uy......... u,) be basis of v and extend this basis of u to a
basis of v, say (u;.......... Upy Vieeurnnnnn Vo)

Define T as the linear extension of S, as follows T (u;) for 1 <1 <n

and T (vj) = v; for for 1 <j <m.
Then for all ueU,

T =T@u +......... + a,u,)



= aSu;t......... + a,Su,
=S@u+........ + asuy)
= S (w)

Where a;....... a,€F. By definition of T, TEY (v,w). [4.4.70]

Example (1.2.14): Suppose that T is a linear map form v to F. Prove
that if u€V is not in null T, then v = null TQ) {au/a€F}

Solution:
Let U = {au/a€F}. The following argument show
V =null T+U, and null TNU = {0}, respectively

(1) Let veV with Tv = b. Since Tu # 0 there is au;€U such
that Tu; = b. Then we can write v =u + (v—u,), and v—u, €
null T. This gives V =null T+U.

(1) Let ve null TNU, there exists a€F such that
v=all and so T (v) =aTu = 0 since Tve€ null T.

Thus a = 0 and so v =0 meaning null TNUC {o}.
Since o€ nullTNU, if follows null TNU = [o]. [4.42. 70].
Example (1.2.15) [4]: Suppose that T€l (u,w) is injective and

Vieeeennnn. vn) 1s linearly independent in v, prove that
(Tvieeen..... Twvy) 1s linearly independent in w.
Solution:

Suppose a;Tvi+......... a,Tvy,=o0 inw where a,.........,a,EF.
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Then by linearity of T, T (a;vi+......... anVn) = O.

Since T (o) and T is injective,

avit..ooee. anVn = 0 since (vj........ vn) 1s linearly independent
- TR =a,=0
Therefore, (Tv;.......... ,Tvy) 1s linearly independent.

Example (1.2.16): Prove that if s;.....s, are injective linear maps

such that s;...s, makes sense, then s ...s,is injective
Solution:

Suppose v and w are any vectors and (s;....Sy) vV = (Sz.....8y) W. Then
by definition of composition, S; (s;.......8,) V= S; (s;....... sp) W, and
since S; is injective Sy(s5.....8n) V=S, (s3.....8,) W. Since s,.....s, are

all injective v=w as desired showing s;.....s, 1s injective. [4.42. 70].

Example (1.2.17): Suppose that v and w are finite-dimensional and
TeEY (v,w). Prove that there exists a subjective linear map from v on

tow if and only if dim w < dim v.

Solution:
Suppose T is a linear map of v onto w, then
Dim v = dim null T + dim range T.

Since dim null > 0, dim v> dim range T = dim w, since T is

onto. Conversely, assume m = dim w < dim v = n with bases of w.
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Say (Wi......... ,Wn) and of v say (vy.......... vn). define T to be

the linear extension of:

Tv)=w;jif1 <i<m

T(v))=0ifi>m

Then T is surjective since: if WEW then there exists

a;€F such that w=ayw+.......... amWm=a; T (v)) +....... +

anT (Vi) = T (ajvi+.......... amVm) showing every element in w

is in range T. [4. 42. 70].

Example (1.2.18): Suppose that v is finite-dimensional and if an
only if there TEY (w,v). Prove that T is Surjective exists SE L (w,v)

such that TS is the identity map on w.
Solution:

We will present two proofs

(1)  Suppose s€¥ (w,v)and Ts — Iw.

Let weW. Thenv=S (w) EVissuch that T (v) =Ts (w) =w
and therefore T is surjective. Since v is a finite-dimensional vectors
space and T is linear map, w is finite-dimensional. Let (Tv;....,Tvy)
abasis for V. Since T is surjective, (Tv;... Tv,) spans w, also since

T is surjective dim w < dim v = n.

Any spanning set reduced to a basis say (Tv;.......,Tv,) is a basis

of w where m <n. Define S as the linear extension of S (Tv;) =v; for
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each 1 <i<m. Then, for all weW, s(w) = s(a;Tvi+........4an sTvy)

= av|t....... +a,vm = W for scalars a; ....... ,an€F, and so Ts = Iw.

(11) Suppose T is surjective. There exists a subspace U of V such
that UN null T = {0} and rang T = {Tu: u€V}. Define T;: u
— w by Tju = Tu for u€U. Notice T; is injective and
surjective and SOT; has an inverse. Deine s = T;' we have

Tsw=T,T, ' w=w for all weW. [4.1. 70].

Example (1.2.19): Prove that every linear map from mat (n;i;f) to
mat (m;1.f) is given by matrix multiplication. In other words, prove
that if T€l (mat (n,1.F), mat (m,1.F) then there exists an m-by-n
matrix A such that TB = AB for every BE mat (n,1.F).

Solution:

Let (ey....... ,en) be a basis for mat (n,1.F) and let (v;....... Vi)
be a basis for mat (m,1.F) for each k, there exists ajk,........ , amkEF
such that Tek = a;kv; +.......... + akv,,. Define the mxn matrix A as
follows

A =[Tej....... Teyl

If BE mat (n,1.F) there exists by .......... ,b,EF such that

B=bieit............ + bye,; and thus

TB =T (bie;*............ +buen) =biTer+............ + b,Te, = BA
as desired, notice the word "the" follows since (v;......... Vn) 1S a

basis. In other words one bases have been chosen, the matrix A is

unique. [4. 2. 70].
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Theorem (1.2.20): Let A and B be c-algebra. Then the linear map T

given by.

(1) T is an isomorphism from M,[B (A,B)] onto B [M,(A,), B];

(1) T maps Px[A,B] into Py [M,(A,)B] and

T ' maps Pi, [My(A,), B] into PE [A,B] for eachk =1.2...

(i11) T is an i1somorphism from Pi [A,B] into P, [M,(A,) B],

Proof: It is clear that the linear map T is one-to-one.

(1) Let {Ejj | 1j = 1.....n} be the standard matrix untis in M,.

(i)

Then a ® Ej; 1s the nxn matrix in M, (A) with a at the (I,j)
component and zeros elsewhere. For €B [M, (A), B],
‘define the linear maps @; : A @ Bby @ (a) = 0@ (anZIEij)
fora €A and 1 <I,j <n. Then we have

T(@) 8" l@) 1-% ?1 (a5)= @ [(ay)], and
so that the linear map T is onto.

LetT [@ij]?’jzl be a k-multi-postive linear map from A to
B.

For a while, we will use the notatian @ instead of the

linerar map [W;] from M, (A) into M, (B).

We define the linear map T : M,(B)— B by

LJ=

T[0b) = by [bs] €M (B).
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Then we have T ( [@ij]?’jzl ) 1s a k-positive linear map of M,(A)
into B. In order to show that T (Px, [Mi(A), B] ) < PE [A,B] for
each positive integer k, let [Qij]?f = T ' (@) for any @€B [M, (A), B].
First, suppose that @ is an n-positive linear maps of M, (A) into B.

Define the linear maps 9, : M,, (A)— M, [ M, (A) ] by

Ya [a5] = [a; ® Eij]ijzl, [aij] Ejzle M, (A)

Then W,is completely positive, and we have [ (@ ®In) o'¥Pn ]
() [, ] = [(@ ®In) [(a ®Ey) ;]

=[9 (a5 ® Ey) ]Ej=1 = O [(ay ],

for each [aij]?’jzl € M, (A). Since @ ® In and ¥, are positive
linear maps, [@ijijzl = (0 ® 1,) 0¥n is a multi-positive linear maps
from A into to B. From the relation

[Qij]?jzl ® Ik = [(Q ® In) Oan] ®Ik = (0 ®Ink) o (an ®Ik)9

We see that if @ €Py, [My(A), B] then [@;] EP | [A,B].

(i) Let map (@;;)fi—,; pe a completely multi — positive linear
p ]1/1=1
maps from A in to B. Then @€ P, [M,(A) M, (B)]. Since
T (5)ij=1 = T o@and T is completely positive. The
linear maps T ([Dj;]) 1s completely positive. To show that
T (P% [A.B]) P, [M,(A,) B], assume that @€P,, [M,
(A,) B]. Since ([0;] ® = (Oly) oY, and the linear maps
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Ipn is completely positive, the linear maps [Qj] 1s
completely multi-positive, which completes the
proof.Define the linear map S: M;, (A,B), — B (A; M,, (B)
byS ([9i];;,) (@) = [95 @], € M, [B(A,B) and a€ A
for each[;] [5].

Definition (1.2.10):Let [@ijrj:ble an nxn matrix of linear map from a
c*—algebra A in to a c*—algebra B. Then [@ij]?’jzl may be considered

as a linear map from M, (B)by
(1.1) [95]: [ag] = [ D5 (@) -, - [3]€Ma (A)

We say that [@ij]?jzl 1s a multi-positive (respectively, k-multi
positive or completely multi-positive) linear map from A into B if

the linear map [@;] in (1.1) 1s positive.

We denote by PE [A,B] (respectively, PE [A,B] the cone of all
k-multi-positive linear maps. If n = 1. then ]E [A.B] coincide with Py
[A,B] and P, [A,B], [5].

Proposition (1.2.21):Let [@ijszl be multi-positive linear map from

a quintal ¢’ —algebra A into a ¢ —algebra B. Then we have:
1 9 @) = D (@) for eacha€A andij=1........ n;

() [D(aa aai)]ijzl < lalf[ D (aa)] ?,j=1 for each

Proof:

Let B (A,B) denote the space of all bounded linear maps from A
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into B. We define the linear map T: M,, [ B (A), B ] by

T ([9]) ([ag]) = iijl Dy (aij)

for [D;] € M, [ B (A,B) ] and [a;] € M, (A). [S].

Theorem (1. 2.22): Let A and B be ¢ —algebra. Then the linear map
S given by (satisfies the following).

(1)  Sis an isomorphism from M,[ B (A,B) ] onto
B[ AM\(B) |;
(i) SmapsP, [AB]into Py [AM,(B)andS " maps
P [ A, My(B) into Py [A,B] foreachk =12, ......

(i11) S is an isomorphism from Pi [ A,B] onto P, [A, Mn(B)].

Proof:
Clearly, S is one-to-one. Let Y€B [ A,M,(B).

We denote by ¥ (a) the (i,)) component of ¥ (a) EM,(B) for each
a€Aandij=1.......... ,n. Then

[ lIJij ]Ejzl EMH[ B (A,b) ] and

S(I¥]) @ = [P @ 17, = ¥ (@), a€A

Therefore, it follows that S is onto.

() Let[¥]] | € P, [A,B] foreachk=12........... Define
the linear map 6 : A — M,(B) by
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0@ => a ®E,a€cA
ij=1

Then S (['Pjj] ) = W00, where ¥ denotes the linear map from M,(A)

into My(B). Since 6€P,, [ A, M, (A) ] and Y€P, [M, (A), M, (B) ],

we see that S ( [W;] ) is a k—positive linear map of A into M, (B).

We shall show that S (P, [ A, M, (B) ] C PE [A,B] for each
positive integer k. First assume that Y€P, [ A,M,, (B) ].

(i) Let ([\Pij]?j:1 =S (¥). We define the linear map
T, : My [ M, (B) =»M,(B) by

n n

T.(Y x® Ej) =2 Xxj ®Ej, x;EM, (B)
ij=1 ij=1

Where x;; the (1,j) component of x;;. Then T, 1s completely

n

positive. For each [x;;] €M, (A) we have
Lj=1

Too[¥®L)] ([a] ) =Tw§ [Pu (a)] ® Ej)l

i,j=1 i,j=1 i,j=1
n
= iZ;,:l‘l’ij(aij) ® E; = ¥ ([a5)]).

Thus, it follows that ¥ =T, 0 (¥ ® In). SinceY & In and

n
=T, are positive linear, the linear map [®;]  is a multi -positive
ij=1

linear map from A into B. By the equality
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[Ps] ® Lk=(Tho(P®L)&® L=(Ta® Ik)o (¥® Iu),
=1

We obtain that [¥;] € P, [A,B] when ever Y€ Pkn [A,Mn (B)],

Now it only remains to establish the property.

n
(1) Let [W¥;] be completely multi-positive linear map from
1j=1

A into B. Then Y€P,, [M, (A), M, (B) ].

n
Since [Vj] o ¥ 0 0 and 0 is completely positive,
i,j=

We have s ( [V;]€P» [A,M, (B) |.If YEPL[A,My(B) ],
then we got ( [W¥;] [A,B]€PY since ¥ =T, 0 (¥ I,) and T,

is completely positive. This completely, the proof. [5].

Corollary (1.2.23) [5]: The map V:B [M,, (A), (B) [-B [A, M, (B)]
given by

V = So T is an isomorphism preserving the complete positivity.
Modules:

Definition (1.2.11):
A left module over the ring R (or left R—module) is an abelian group
A together with a notion of multiplication by elements of R', which

satisfies the following four axioms for all a;a; a, €A and rir; 1, ER

(1) (n+r)a=ria+nra
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(2) (nrp)a=r[rn(a)]
3) Ira=a
(4) r (ay+ay)=ra; +ra,

So a module 1s generalization of a vector space, with the
coefficients of the elements being taken from a ring rather than a
filed. A right module is defined similarly, only multiplication would

then be from the right.

It is worth noting for future reference that an abelian group is
the same thing as aZ-modules for n >0 we, definenatobea+...+a

(n, times), if n =0 we put na = 0, and if n <0 we say
Na=-(—na) [1.25. 35].

Example (1.2.23): Let R be a commutative ring. The ring R is an
R—is an R—Module.

More generally, the set.

( A
I
|
R" = { || >
! ) 5 PSP ,I'HER
Iy
\ J
1S an R—module. ForI=1. ........ , N we set
St
|
|
Cci — :
Sh,j
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The with standard basis vector. Here, S;; is the kronecken delta.

The set {e;. ....... ,en } 1s a basis for R".

These modules satisfy our first universal mapping property

which defines them up to isomorphism.

The proof of part (b) highlights the importance of the universal
mapping property. [15].

Proposition (1.2.24): Let R be a commutative ring, and let n be

positive integer. Let Mbe R—module, and let m;_ ....... ,m,EM
(a) There exists a unique R—module homomorphism
f: R"— m such that f (¢;) = m; for eachi=1...,n

(b) Assume that M satisfies the following for every
R—module P and for every sequence P ....... ,P.EP,

There exists a unique R—-module homomorphism

f: M — P such that f (m;) =P; foreachi=1........ .

Then M ~R".

Proof. (a) for the existence, let f : R"_, M be Given by
Z. re— ), hiei—
i i

The fact that {e; ....... ,en } is a basis for R" shows that
f 1s well-defined, it is straight forward to show that

f is an R—module homomorphism such that f (¢;) = m;
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foreachi1=1, ..., n.
For the uniqueness, assume that g: R"— M is an
R—module homomorphism such that g (e;) = m;

for eachi=1, ..., n. Since g is linear, we have
g (Zi I €) :Zi 1 g (e) :Zi rm; = f ( Zlfiiei)-
Since { e;.......... e, } generates R, this shows g=f

(b) By assumption, there exists an R—module homomorphism
f : M —R" such that f (m;) = ¢; for eachi=1,....n.

We claim that gf = Im and fg =1 R". (once this is shown, we
will have m ~R" viaf.) The map gf : M— M is an R—module

homomorphism such that
gf(m)=g[f(m) ]=g(e)=m; fori=1,..n.
Hence, the uniqueness' condition in our assumption implies

If = Im. The equality fg =T R" is rarified similar using to

uniqueness from part (a).
Here is a useful restatement of proposition in terms of commutative
diagrams. [15].

Remark (1.2.25): Let R be a commutative ring. Letj: {e;. ....... ,Cn}
— R"
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denote the inclusion (of sets). For every function (map of Sets)

Hence some notation from linear algebra. [15].
Remark (1.2.26): Let R be a commutative ring integer nm k > 1 and
let h:R*— R" be an R—module homomorphism. We can represent
h by an n x k matrix with entries in R as follows. Write elements of

K . .
R and R" as column vectors with entries in R.

Let e ....... ,e&«ER® be standard basis. Forj=1. .......... , k write
ellj‘]
|
he) = | aij
|
|
An,j



In the following since: For reach vector

aij

| J = h (2 rig) - Xrh () 21 [: J
] ] ]

Ap;
'Tll,j ceeark 1|V1
| |
anul .o .an,k rn

In particular, the image of h is generated by the columns of the

matrix (a;). [15]

Section (1.3) Categories and Functions:
Definition (1.3.12):
Let ¥ be a class of objects A, B, C, ....... Together with a set of
morphism ¥ (A,B), for each A,B €Y, and a law of composition.
¥ (A,B X¥ (B,C) »Y¥ (A,C)
(f.g) — gof
Then V¥ is a category if it satisfies the following axioms;
(1) The sets ¥ (A1B)), ¥ (A, B;) are disjoint unless A; = A,
B, = B,.
(2) (Associative law of composition) given f €Y (A,B),
g €Y (B,C), h €¥ (C, D), then h o (g of) = hog) of
(3) (Existence of identities) to each object AEY there is a
morphism [,€Y (A,A) such that, for any f €Y (A,B), g
€Y (CA), fI,= =g [13.25.35].
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Terminology:

*If £ €Y (A,B) then we think of f as a function from A (the
domain) to B (the codomain) or range), and write f : A — B.
(However, note that temorphism of a category may not

always be functions in the usual sense).

* The morphism I4, is uniquely determined by Axiom (3) and is

called the identity morphism of A.

* A morphism f: A — B is called an is morphism if there exists

a morphism g : B — A such that
gof = I, fog =1I. In this case we write g =f"' [1.25. 35].
Examples (1.3.27): The following are examples of categories;

(1) Set; the objects are sets and the morphism are function.

(2) Modgr: The objects are R—modules and the morphism are
R—module homomorphisms.

(3) Grp : The objects are groups and the morphism are group
homomorphisms.

(4) Top : The objects are topological spaces and the morphism
are continuous maps.

(5) Vec: The objects are vector spaces and the morphism is
linear transformations.

(6) Abgrp : The objects are a Belgian groups and the morphism
are group homomorphism.

(7Y Ho Top: The objects are topological space and the

morphism are homogony classes of continuous functions
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(note here that the morphism are not function).
(8) Diff : The objects are differentiable manifolds and the

morphism are smooth maps. [1.25. 35].

A category C consists of:

(1) A set ob (c) whose elements are called the objects ofc.
(1)) For each x,y € ob (¢), a set Hom, (x,y) whose elements
are called the morphism from X to y.
(i11) For any X,Y,Z €ob (c), a map, called the composition,
Hom, (X,Y)x Hom, (Y,Z) — Hom, (X,Z).
(a) o 1s associative,
(b) for each X€ ob (c), there exists id,€ Hom (X,X) such
that for all f € Hom, (Y,X) and g€ Hom, (Y,X),
foid, = f,id, og=g.

Note that idy€ Hom (X,X) is characterized by the condition in
(b) [6,71.72].

Notation (1.3.28): One often writes X€C instead o X€ ob (c) and

f: X —>Y (orelse f: Y — X) instead of f € Hom, (X,Y). one call X
the source and y the target of f.

A morphism f: X — Y is an isomorphism if there exists
g: X — Y such that fog = 1d, and gof = 1dy
In such a case, one writes f : X ——» Y or simply

X ~Y. of course g is unique, and one also denotes it by '
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A morphism f: X — Y is a homomorphism (resp, an

epimorphism) if or any morphism g; and g;-,.
fog, = fog, (resp, g; of = g, of) implies g; = g».

One sometimes writes f: X—Y else X —-Y (resp, f: X —Y) to

dente a monomorphism (resp, an epimorphism).

Two morphisms f and g are patrolled if they have the same
sources and targets, visualized by f,g : X3 Y. one introduces the

opposite category C*.

ob (C™)=ob (¢), Hom,, (X,Y) = Hom (Y,X), the identity

morphism and the composition of morphism being the obvious ones.
A category € is a sub category of ¢, denoted ¢ C ¢,

If : ob (¢) © ob (c), Hom¢ (X,Y)c Hom, (X,Y) of any x,y €C,
the composition o in ¢ is induced by the composition in ¢ and

identity morphism in ¢ is a full sub category if for all X,Y€¢, Hom;
(X,Y) = Hom, (X,Y).

A category 1s discrete if the only morphism are the identity
morphisms. Note that a set is naturally identities with a discrete

category.

A category c is finite if the family of all morphism in ¢ (hence, in

particular, the family of objects) is a finite sel.

A category c 1s a groupoid if all morphism are is omorphism's.[6.71.

72].
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Definition (1.3.14):

(1)

(i)

(iii)

an object P€c is called initial if for all Xec,Hom, (p,x) ~
{pt}. One often denotes by O, an initial object in c.

One says that p is terminal if p is initial in C*, i.e. for all
X€c,Hom, (x,p) ~ {pt}. One often denotes by p'. a
terminal object in c.

One says that p is a zeno-object if it is both initial and
terminal. In such a case, one often denotes it by o. If ¢ has
a zero object, for any objects X, Y€c, the morphism
obtained as the composition X — o —Y is still denote by

0. X—Y.

Note that initial (resp. terminal) objects are unique up to unique

isomorphism. [6, 71. 72. 93. 94].

Example (1.3.29):
(1) In the category set, O is initial and {pt} is terminal.
(i1)) The zero module o is a zero-object in mod (A).
(1) The category associated with the ordered set (z <) has

neither initial nor terminal object. [6, 71. 72].

Definition (1.3.15): Let ¢ and ¢ be two categories, A functor F: ¢ —

¢ consists of a map F: ob (¢) — ob (¢) and for all X, Y€Ec, of a map

still denoted by F: Hom, (X,Y) — Hom, [ F (X), F (Y) such that

F (1dy) = 1drx) F (fog) =F (f) o F (g).

A contravariant functor from c to ¢ is a functor from c® to ¢. In

other words, it satisfies F (gof) = F (f) o F (g). If one wishes to put
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the emphasis the fact that a functor is not contravariant, one says it is

covariant.

One denotes by op: ¢ — ¢ the contravariant functor, associated

with ideg, [1. 25. 35].

Example (1.3.30): Let A be k-algebra

(1)

(i)

Let M€ Mod (A). The functor.
Homy, (M,.): Mod (A)—Mod (K)
Associates Hom, (M,K) to the A—module K and to an alinear

map g: K — L it associates.

Homy (m,g): Homa (M,K) 80, Homy (M,L)
M—2s K, s Mm—bh,x —&, )
Clearly Homu (M,.) is a functor from the category Mod (A) of

A—module to the category Mod (K) of K—modules.
Similarly, for NeEMod (A), the contravariant functor
Homy (L,N) : Mod (A) — Mod (K)
Associate Homa (K,N) to the A—module K and to an a linear
map g: k — L it associates. Hom, (g,N): Homu(L, N)*5Homy,

KNCL_h ,Ny>®_& ,L _h N

Clearly the functor Homu (M,.) commutes with products that is,

Hom, (M, IIiN;) ~ Homs (M, N;) and the functor Homy, (.,N)

commutes with direct sums, that is,
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Homa ( ®; Mi, N) ~I1; Homyu (M;, N)

(iii) Let N be right A—module. Then N ®4.: Mod (A) —
Mod (K) is a functor. Clearly, the functor N ®4.

Commutes with direct sums, that is,
N ®A(® M) ~® (N®s M),
and similarly for the functor. ® \M. [6, 71. 72].
Definition (1.3.16): Let F : C — C be a functor

(1)  One says that F is faithful (resp, full, resp, fully faithful) if
for X,Y €c Hom, (X,Y) — Homq [ f (X), F(Y) ] is injective
(resp, surjective, resp, bijective).

(i) One says that F is essentially sujctive if for each YEC there
exists X€c and an isomorphism F (X) ~ Y.

(111) One says that F is conservative if any morphism f: X —Y in

c is an isomorphism as soon as F (f) is an isomorphism.

[6.71.72. 93. 94].

Example (1.3.31):

(1) Let C be a category and let X€C. Then Hom, (X, .) is a
functor from C to set and Hom, (.,X) is a functor from C
to set.

(i1) The forgetful functor for: Mod (A) — set associates to an

A—module M, and to a linear map f the map f. The functor
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for is faithful and conservative but not fully faithful.

(i11)) The forgetful factor for: Top — set [diffident similarly as
in (i) 1s faithful. It is neither fully faithful nor
conservative.

(iv) The forgetful function for set —Re is faithful and
conservative.

One defines the product of two categories ¢ and ¢ by: ob (¢ x ¢)

=ob (c) x ob (¢).
Homg, [ (X,X"), (Y,Y") ] = Hom, (X,Y) x Home (X,Y").

A bi functor F: cxé—¢  is a functor on the product category.
This means that for X€c and X€c and X'€¢, F(X,.): ¢— "¢, and F

(..X"): ¢ —»c" are ¢, the diagram below commutes.

FOXX) £ FXX)

F (yx) F(£y)

Fyx) 09 0 F(yy)
In fact, (£.g) = (idyz) 0 (£idy) = (£idy) o (idyy). [6].

Example (1.3.32):

(i) Hom, (.,.): C* x ¢ — set is a bi functor.

(i) If A is a k—algebra, Homy (.,.): Mod (A)® x
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Mod (A) — Mod (K) are bifunctor. [6.71.72].

Definition (1.3.17): Let F, F, are two functors from c to ¢. A
morphism of functor:

0 F,— F, is the data for all X€c of a morphism

0 (x): F; (X)— F, (X) such that for all

F: x —y, the diagram below commutes;

Fi (X)) °® | F,(X)
Fy (H) F> (f)

Fiy) —2 s F(Y)

A morphism of functor is visualized by a diagram

Hence, by considering the family of functors from ¢ to ¢ and the

morphism of such functors, we get a new category.

Notation (1.3.33): We denote by f ct (¢,¢) the category of functors

from ¢ to ¢. One may also use the shorter notation (¢%) [6,71.72].

Theorem (1.3.34): The functor F: ¢ —¢ is an equivalence of

categories if and only if F is fully faithful and essentially surjective.
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Proof:

If two categories are equivalent, all results and concepts in one
of them have their counter parts in the other one. This is why this
notion of equivalence of categories plays an important role in

Mathematics. [6.71.72].

Example: (1.3.35) Our most important example of a functor is Hom
(A,B), the set of all R—module homorphism from A to B. This is
easily seen to be an abelian group under addition. For any A€ Modg
we can define a covariant functor Hom (A,—): Modgr— AbGrp in the

following way.

(i) To every R—module B Hom (A,—) assigns the abelian
group Hom (A,B).

(i1)) To every R—module homomorphism f : x — y is assigns
the morphism Hom (A, f) = f* : Hom (A,X) — Hom
(A,Y) given by f* (g) = fog.

It can be easily shown that this definition does indeed satisfy the

two conditions given in the definition of functor.

Similarly, we can construct the contravariant functor Hom (—,B)

in the abvious way. [1.25 35].

Example (1.3.36): One of the motivating examples of a functor is

provided by the fundamental group.

To be careful, we must define the category Top* to be the

44



category of pointed topological space (X,x).

Where X is a topological space and x € X is a chosen base
point. A morphism f: (X,X) — (Y,Y) is a continuous map f: X —» Y
such that f (X) =Y.

The fundamental group I1; (X x) is the set of homotopy classes
(equivalence classes under continuous deformation) of paths starting

and ending at x, and every
f:(X,x) — (Y,y) induces a homomorphism of groups

£* ;11 (X,x)—11; (Y, y) thus IT; is a functor from the category
Top* into the category Grp. [1.25. 35].

Example (1.3.37): Let ¥ be the category set and let Q be the
category Grp, with x a set and y a group. Let G: Grp — set be the
forgetful functor, which associates with each group its underlying
set. Then G has a left adjoint given by the free functor F: set — Grp
which associates to every set the free group generated by words of
that set. Then there is a natural equivalence which associates to any
function x — Gy the corresponding homomorphism FX — Y. [1.25.
35].

Definition (1.3.18): Let c be a category. One defines the categories
¢= Fct (C™, set), ¢= Fct (C™, set™) and the functors
h. : ¢ — ¢, X ->Hom,(.,x)

k. : ¢ — ¢, X >Hom(x.,)
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since there is a natural equivalence of categories
€~ op

We shall concentrate our study on C". [6,71.72].
Proposition (1.3.38): (The Yoneda Lemma)

For A€ Cand X€Ec, there is an isomorphism

Home~ (h, (x),A) ~ A (x), functoral with respect to X and A.
Proof:

One constructs the morphism

Y : Hom,- (h, (x),A) — A (x) by the chain of morphism

Hom,~ (h. (x),A) -Hom (Hom, (X ,x), A (x) — A (k), where

the last map is associated with idy.

To construct ¥: A (x) — Homg (h, (X)., A), it i1s enough to

associate with SEA (x) and Y €c a map from Hom, (y,x) to A (y).
It is defined by the chain of maps Hom, (y,x) —

Homg [A (X), A (Y)] — A (y) where the last map is associated
with SEA (x).

One checks that s and s are inverse to each other [6.71.72].
Corollary (1.3.39): The functor h, is fully faithful.
Proof:

For X and Y in c, one has Hom,- [h, (X), he (Y)] ~ h. (Y) (X) =
Hom, (X,Y).

46



One calls h, the Yoneda embedding.

Hence, one may consider ¢ as a full sub category of ¢ . In
particular, for X€c, h, (x) determines X up to unique isomorphism,
that 1s, an isomorphism h(X) ~h(Y) determines a unique

isomorphism X ~ T, [6.71.72].

Corollary (1.3.40): Let ¢ be a category and let f: x — y be a

morphism in c.

(1) Assume that for any Z€c, the map Hom, (Z,X) of
Hom((Z,Y)is bijective. Then fis an isomorphism.

(ii) Assume that for any Z€c, the Hom, (Z,y) —of ,
Hom, (X,Z) is bijective. Then f'is an isomorphism.

Proof:

(1) By the hypothesis, h. (f) : h. (X) — h. (Y) is an
isomorphism in ¢". Since h, is fully faithful, this implies
that f is an isomorphism.

(i) Follows by replacing ¢ with C*. [6.71.93.94].
Section (1.4) Representable functors, adjoint functors:

Definition (1.4.18):

(i)  One says that a functor F from C® to set is representable

if there exists X€c such that F (y) ~Hom. (Y,X)
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functorially in Y€c. In other words. F ~ h, (x) in ¢". such
an object X 1s called a representative of F.

(1) Similarly, a functor G : ¢ — set is representable if there
exists X€c such that G (y) ~Hom, (X,Y) functorially in
YeEc.

It is important to notice that the isomorphism above determine x

up to unique isomorphism.

Representable functors provides a categories language to deal
with universal problems. Let us illustrate this by an example.

[6.71.72].

Example (1.4.41): Let A be a k—algebra. Let N be a right
A—module, M a left A—module and La K—module. Denote by B
(NxM,L) the set of A,K bilinear maps from NXM to L. Then the
functor F: L — B (NXM,L) is representable by N ® M [6.71.72].

Definition (1.4.19): Let F: ¢ — ¢ and G: ¢ — c to be two functors.
One says that (F,G) is a pair of adjoint functors or that F is a left
adjoint to G, or that G is a right adjoint to F if there exists an

isomorphism of bifunctors:
Hom [F ()9 ) ~ Hom, [ s G () ]

If G is an adjoint to F, then G is unique up to isomorphism. In

fact, G (y) is a representable of the functor x -Hom, [ F (x), y ].

The isomorphism is given isomorphism.
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Hom, [Fo€ (.), .]~Hom.[G () G ()],
Hom¢ [F (\) F ()] ~Hom. [ ., GoF (.) ],

In particular, we have morphism x — GoF (x), functorial in
X€C, and morphism GoF (y), — y functorial in y€C. In other

words, we have morphism of functors.
FoG — idg, id.— GoF, [72.6.7].

Example (1.4.42):

(1) Let X€ set using the bijection, we get that the functor
Homg (x,.) : set — set is right adjoint to the functor .xX,

(i1)) Let A be a K—algebra and let L Mod (k). using the first
isomorphism in (i), we get that the functor Homy (L,.):
Mod (A) to Mod (A) is right adjoint to the functor . ®,L.

(ii1) Let A ba K—algebra. Using the isomorphisms in (i1) with
N = Am we get that the functor for: Mo (A) — Mod (K)
which, to an A—module, associates the under lying K —
module is right adjoint to the functor A : Mod (K) — Mod

(A) (extension of scalars). [6.71.72. 93].
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Section (1.5) Free Modules:
Definition (1.5. 20): FE R—module if free <> F is isomorphic to a

sum of copies of R. Thatis F= 2. F; where F;= R.

1eJ

F;= R «F= Rx;for some x;€EF; with rx;= o if and only if r = 0.

If so then X : = { x; : J€J } 1s called an R—basis of F. Every Xx€F

has a unique expression X = ) xijrj with r;€ER and alost all r; = 0. [3].

Definiton (1.5.21): An R—module M is called a free Modul if M a
dmit a basis, In other words M is free if there exists a subset of M
such that M is generated by S, and s is a linearly independent set we

regard (0) as a free Module whose basis is the empty set [2].

Theorem (1.5.43): Let M be fee R-—module with a basis
(SR ,en) then M =R"

Proof:
n n
Define a mapping 6 : M— R by @ ( Y riej) = Y rif; where if =
i=1 i=1
(0, ...1.0,...0)E R" because };[-, r;e; = X,i= 1;e; implies by the

linear independence of ei’s Ri =ri for all 1, O is well defended.

Ifm=)",re, m"=)- e and@ (m+M)=0 (m + Q)
(m) and @ (rm) =19 (m). Further, if @ (m) o, then r;f; = 0, This
implies (r,......... ,m) = 0, an hence each r; = 0. Proving that @ 1s (1-

1). It is clear that @ is onto, and hence, @ is an isomorphism [2].
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Lemma (1.5.44): Every MER—mod is ahomomrphis image of a free

module.
Proof:
Take F free, with basis indexed by all elements of M,
say X = { Xy : m€M } (such F exists....).
Define f: X — M (a map on a set) by
f (xm) : = m. this is already onto.
Take f: F — M be the R-homomorphism extending f.
A free resolution of M is an exact sequence.
......... — F,— F-1— Fo— M— o

In which each F; is a free R—module every M has a free

resolution. [3].

Proposition (1.5.45): Suppose B—B, C — ois exact. If F is free
and a : F — Cis any R—-module homomorphism then there exists V :
F — B with a = Bv. (v not unique in general].
Proof:

Let X = {Xj} j€J be anR—basis for F.

For each j there is some b;€B such that B (b;) = a (x;).

Then there is a map (on sets) @ : X — B such that @ (x;) = b;

[by axiom of choice].

There is an R—-module homomorphism.
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v. F — B with y (xj) = O (xj) for all |
a =Py : check on basis x. [3].

Theorem (1.5.46): For any set x, the sub-module R®  of the
function module R™ which is spanned by the free R—module on the
set {Ex/XEX}.
Proof:

First we given another description of the sub—module R™.

Define the "support" of any function f: X — R to be the subset.
Supp (f) {x:x€X} and f (x) # o.

of x, the point wise definitions of the module operations in the

function module R show that; supp (f+ g)< (supp f) U (supp),
supp (kf) < supp ().

Therefore the set of all those functions f: x — R which have

finite support is closed under sum and under all scalar multiples, so

sub-module of R%,

Now each function Ex has support the one-element set {x}, so
Ex€eD if f is any function with finite support, say {x;. ....... , Xn }
then f is determined by its values f (xi) Exi + ........... f (x0) Exy

(Both functions displayed are equal at all x; and hence at all x).

Therefore the sub-moduleR™ spanned by all the element Ex is

identical to the sub-module D of all functions of finite support.

The assignment X — EX gives a function k : X — R™.
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To show that R* =D is free on {Ex/x€X} we must show that to
each function h on x to an R—module A, there is exactly one
R—linear function T: R*— A with Tok = h, as displayed in the
diagram.

Now to k = h states that t (Ex) = h (x) for all x, so any such
linear map t must have t (f) = f (x;) (hx;) +......... + { f (Xy) (hxy) ]
for each function of finite support, as displayed above. This shows
that t is unique if t exists; conversely one may verify as before that
the function t: R*— A defined by this formula is indeed R—linear,
hence R* is free [2].

Theorem (1.5.47): If P : A — A'is an epimorphism of R—modules,
each morphism t : F — A' with domain a free R—module F can be
written as a composite t = pos for some morphism S : F — A of

R—module.

Proof:

F =R" is free on some set x and the horizontal map p is an
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epimorphism; we wish to find a linear maps which makes the
diagram commute, ad if pos =t (we also say that t "factors through"
p or that t "lifts" to s) for each x€X, t (Ex) is an element of A', since
the epimorphism p is subjective as a function, we can choose to each
x€X some elements Ex€A with p (Ex) =t (Ex). Since F is free, there
is a linear map S: F — A with S (Ex) = Ex for each x. Then (pos)
(Ex) =t (Ex) for each free generator Ex, so the composite pos must

be t, as desired [2.3].
Section (1.6) Grothendieck's theorem:

Let R be a commutive ring and let us consider the scheme.
[P'R=Proj R |xo,x:|,Q},

We see that the category of quasi-coherent sheaves over the
projective line can be considered in terms of certain representation

of the quiver . —. «.

For if we take the basis affine open sets D + (x¢) D+ (x;) YD+
(x0) D+ (x1)N D £ (x¢ x;) covering the projective line. W have the
inclusions.

D+(X()) «— D+ (X() Xl) — D+(X1)
So applying the structure sheaf Q associated to p' (R) we get.
Q [D*(x0) = Q (D¥(x0 x1) «~ @ (D™ (x) ],
but now, Q [D*(x0) 1=R | x0, X1 | (x0) Q (D¥x0 x1) ] =
R | Xg, X1 | (X0 X1) and Q [D*(x;) ] =R | X0, X1 | (X1)

So we may identify
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R | X0, X1 | (X0), R | X0, X1 | (X0, X4), and R | Xo, X1 | (Xo)

With the rings R | x4/Xo | , R | X1/X0, Xo/X; |, R |Xo/X;| respectively.
So if we call x= x,/xo we follow that the schem [P'(R),Q] can be seen
as a representation of the quiver . —. <., given by R {x} — R {s,

xR {x"}
Hence, a sheaf of quasi-coherent modules F on P' (R) is a sheaf
of Q—modules, that is, are presentation of the form

f 0

M——»P <« N\,
With M€R | x |-mod and N € R | x ' | -mod and p €R | x, x
—mod, and with fa R | x | —linear map and ga R | x ' | —linear,

Satisfying the quasi-coherence property, that is F | spec — R | x |=
M, F|space R |x ' |= Nand F|space R|, x ' |= P. since M and N

are also quasi-coherent, it follows that
M |specR|n,x"'|=PN|specR|x "],
So p ={(spec R| X, X', p = M (spec Rlx, x?| =S'm

P=[(specR|,x"|,p]=N(specR|x,x"'|=T"'mbeingS={1.
X, X ...}, T={1.x"x7?,,,,} and the isomorphism are just S™'f

and T''S.

Considering the category in this way we are able to give a

short and elementary proof of Grothendieck's theorem.

We present some well-knows results concerning quasi-

coherent sheaves over p' (R) that are easy to prove in terms of our
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representation. We shall use these later in proving Grothendieck's
theorem.
Some of the results presented now are included.

We begin by classifying all representation of the form
Rix|—f 4 Rix,x"| «5- R|x"'[.[12.83.87]
Proposition (1.6.48):

Each representation of the form R | x |—f> RIx, X | «>—

n
R |x'|isisomorphictosome R|x | >R |x, x'| & _ R|x'],
with n€Z.

Proof. We may define a pai of adjoint functor (D,H) between

the categories of R {x}. Modules and Q. [ P' (R) ] defined by D (L)

=_1 , g'L <l—d S™' L is a right adjoint of H:

Qco[p'(R) ] = R {x} -mod, given by H (m — p < B) =M.
Then, by using this, we have

RIX__f , Rix,x [«Rx"]
lid lhl l h™' og
R [x| >R |x, x' &R x|
Where h = (s 'f) " and from this it follows

1 | d

R|x|— R|x,x'|«9 Rx'|
lid lh lid

Rx| - R|x,x'|— R|x, x|

56



(where d=h"' og=(s 'f)of). Then, since columns are isomorphism we
deduce that

d

RIx|—— R|x x| <*— R|x) = ®R|x|>R|x x| &
Rix|)

(notice R [x| > R | x, X '| <d_R |x '] in Qe [p' (R) ] because T
d=S"fo T gisan isomorphism). But if T d:

R|x, x| — R|x, x '|is an isomorphism, T"' d (1) must be a unit of
R | x, x ! |, so d =u,x", with u€Z; and n€Z; in fact we can supposed
n

g, X _
=X, because R | x| > R|x, X '| «—R |x |

n

and R |x |—>R|X,X_1|<X— R | x| are obriously isomorphic, finally,
we see that X" and x™ give isomorphic representation if, and only if,
n=m, if

X" 1 1 "
Rix|—>R|x,x |«*— R|x |JandR |x|—R[x,x | X
R |x' | are isomorphic, we have a diagram

1 X" -1
R|x|— R|x,Xx | «&— R[x |
R|x|— R|x, x| 'XH(IR|X,X_1|

With commutative squares, But it is dear that a = z,B =k, n and
vy = Z, for some 0 #k, z, ZER, | €Z, and then, by the commutatively
of the first square, it follows k, x' = Z, sok =z and I = 0, and from

the second square, z X" =z X", son =m,

In terms of quasi — coherent shears, are presentation R | x | —
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Rx, x| & R | x'|, with n€Z, corresponds to the (unique) line
bundles of degree n over p, which is denoted by Q (n). So this

justifies the following definition.

Definition (1.6.22): A representation R | x | » R | x, X | <R X!

|, n€Z is denoted by Q (n). [12.83. 87].

Proposition (1.6.49):

Q (n) ®Q (m)= Q (ntm).
Proof:
This is obvious because, in general, if A,B are R—modules,

T 1Tt T 1T '(A=B), for any multiplicatively closed set T, and this
isomorphism is precisely a/t@Qb/t' — (a@®b) /tt'
(notice that S' R |x [=R | x, x |.

Another well-known result which is easy to prove under our

notation is the following.

Proposition (1.6.50): Let m,n€Z be two integers. Then Hom (Q (m),
Q (n) is trivial if m > n and is equal to the space of polynomials of

degree n-m whenever m <n.
Proof:

Let (f. g, h) be a morphism between Q (m) and Q (n), so fis an
R | x | -morphism, gis an R | x " x | -morphism and his an R | x|
—morphism. Then we must have x™"g (I) =h (I)éR | x' |, hence

m—n <0 and g (I) = f (I) is a polynomial of degree less than or equal
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to n—m which determines uniquely the morphism Q (m) — Q (n).

[12.83. 87}.

Corollary (1.6.51): The space of 0—cohomologies of Q(n) is trivial
if N < 0 and is the space of polynomials of degree less than or equal

to n wherever n > 0.
Proof:

This is obvious, by noticing that H° [Q(n) = Hom [Q (0), Q(n) ],
and applying proposition [1.6.50].

It is very well know the proposition that vector bundles over the
projective line, p" and direct sums of line bundles in an essentially

unique way (Grothendieck's theorem.

The representation of Q co [ p'(k) ] which correspond to vectors
bundles are M — P «— N, with M, N finitely generated and free (for
examplek |x | = k| x " x| k | X <X In this secton, we are
going to prove this theorem, in terms of representation of the quiver .

— . . [12.83.87].

Theorem (1.6.52) (Grothendieck): Each representation of Qco [p'
(k) ] of the form M — P «— N, with M,N finitely generated and free,

1s direct sum of h

X
—

h
Q) =klx|—k|x x| &~ kix'[,

HEZ1=1........... , n with ;<,< ... <j, moreover the integers

(T ,Jn) are uniquely determined.
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Proof:

h
First of all note we can suppose M« > P« > N, with

M=k|x[,P=K|x"x[,N=KI[x [, is of the form M—P I N,

By using the right adjoint functor .

Let p be the nxn matric associated to h,p = (Pj), P;€K X" x|. We
known the k | x | —linear map h has a unique extension to ak [x " x |

—isomorphism between k [x " x |, so det (p) is a unit of k |x " x |,
that is, det (p) =ux" I€Z, 0 #u € R, in fact, we can suppose det (P)

=x', I€ Z changing abase of N corresponds to our column

operations on p, so we can assume p is a diagonal matrix,
This proves that each of our representation is a direct sum as desired.

To get uniqueness we follow an argument given by Grauert and

Remmert in theorem.

Let us suppose we have two de compositions.

QG)® oo ®G) Qk)® ... ® Q (ki)
With < .......... <Sjpand ki< ...l <k,. Let I be the first
index or which ji#k; and suppose ji< k;. By proposition (1.6.49) we
have
QG 1) ® ......... ®Q®QGi—Jji1)®....8 QGi—ji1)
= Q(ji_k1)® ......... & Q(J1_k1)® Q(JI_J1+1)®®Q(kn)
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Then the number of Q (t)'s with t > o is different in both sides,
which leads to a contradiction, by corollary (1.6.51), with the

dimension of o—cohomologies in both sides. [12.83. 87].

Remark (1.6.53): Straight forward modifications of the proof of

theorem (1.6.52) allow to prove the analogous result for, a non

"

commutative case, that is for the decomposition of a "non

commutative" vector bundle of the form
kixo| L Lk xx"x0| <5 k|x"q|,

Where 6 : k — k is an auto orphism. [12.83 — 87].
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Chapter Two
Limits

The aim of this chapter is to construct the projective and
inductive Limits and, as a particular case, the kernels and cockerels,
products and coproducts. We introduce the notions filtrant category
and cofinal functors, and study will some care filtrant inductive
Limits in the category set of sets. Finally, we define right or left
exact functors and give some examples.

And how we describe and continue the study of categories.

We also analyze some related notions, in particular those of
cofinal categories, filtrant categories and exact functors.

Special attention will be paid to filtrant inductive Limits in the
categories set and Mod (A).

Section (2.1) Products and co-products:

Let ¢ be a category and consider a family {x;}ie; of objects of ¢
indexed by a (small) set I, consider the two functors.

(2.1) C*® — set, Y — II; Hom, (x; x;),
(2.2) ¢—set, Y — I Hom, (x, y). [6].
In groups, rings and modules we have the notions of direct

product and direct sum. Given a family of sets {A;}ie; we build A: =
IT;e/A ;, which has as elements families (a;) i of elements a; EA;.

For each k€l we have projections Py: A — Ay

Defined by Py(aj) ier = ax. Then important property a direct
product has is that whenever we have a family of maps we can
always lift the if in to a single map{fi: S — A so that p; of = f; for
each I€L. This is a notion we can easily generalize to an arbitrary
category. [1.25. 35].

Definition (2.1.1.): Let {X;}ie; be a family of objects of the category
Y. Then a product (A; p;) of the objects A; is an object A, together
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with morphism P; : A — A, called projections, with the universal
property; given any objects S and morphism f; : S — A, there exists
a unique morphism f= {f; }: S — A with P;f=f,.

There is no guarantee that the product will all ways exist in P,

but if it does then the universal property guarantees it is essentially
unique, as the next proposition shows. [1.25. 35].

Proposition (2.1.1): If (A; p;) and (B;q;) are products of the objects
A;, then A and B are canonically isomorphic (i.e. the isomorphism
between them is unique).

Proof:

Using definition (2.1.1), first choose S = B and f; = q; to get a
unique f:B — A with p; f=qi. Then we puts = A and f, =pito get a
unique

h: A — B with gq; h = p;. This gives us

pifh=qih=p;and q;hf=p; f=q;.

But p; IdA = p; and q; IdB = g; so be by the uniqueness given in
the universal property, we must have th = IdA and hf = Idg. This A

and B are isomorphic. The natural next step is to dualise the notion
of product. [1.25. 35].

Definition (2.1.2): Let {M,}ie; be a family of objects of the category
Y. Then a co- product (m, q;) of the objects m; is object m, together
with morphisms q; : M; — M, called injections, with the universal
property; given any objects and morphisms fi: M; — S there exist a
unique morphism f; = (f;): M — S with f; = f; [1.25. 35].

Notation (2.1.2): When talking about products, we often write A =
ITA;. For coproducts we write M = I1IM;. [1.25. 35].

Example (2.1.3):

(1) In the category Modr of (left)R—module the product is the direct
product and the coproduct is the direct sum. In this case we write
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instead of 1. The injections q; : Mi =»®;¢;M; are defined by

qi(m;)=Q&(n;)iey with n; = m; and n; = o for j # 1.
It is worth noting that, for a finite family of modules, the product
and coproduct are the same.

(1) In the category set, the product is the usual Cartesian product and
the coproduct is the disjoint union. [1.25. 35].

Definition (2.1.3):

(1)

(i)

(iii)

(iv)

Assume that the functor (2.1) is representable. In this case
one denotes by II; X; a representative and calls this object
the product of the Xj's.

In case I has two elements, say I = {1.2}, one simply
denotes this object by X;x X,.

Assume that the functor (2.2) is representable. In this case
one denotes by II; X; a representative and calls this object
the product of the Xj's. In case I has two elements, say [ =
{1.2}, one simply denotes this object by X ;U Xo.

If for any family of objects {x;}ie;, the product (resp,
coproduct) exits, one says that the category c admits
products (resp, coproducts) indexed by I.

If X; = X for all j¢;, one writes.

Xf L= Hi Xi, X(l) = Hi Xi,

Note that the coproduct in ¢ is the product in C*. By this
definition, the product or the coproduct exists if and only if one has

the isomorphisms, functorial with respect to yeC:

(2.3) Hom (yILiX;)= ITHom. (yi,xi), [6].

(2.4) Hom, (IT; Xj,y)=IT Hom, (x3,y), [6].

Assume that IT; X; exists. By choosing y = I1;x; in (2.3), we get
the Hi, Hij,—>Xi

Similarly, assume that I1; X, exists. By choosing y =I1; Xj in
(2.4), we get the morphisms.
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gii Xi—>Hj Xj,

The isomorphism (2.3) may be translated as follows. Given an
object y and a family of morphisms

fi 1 Y — X, this family factorizes uniquely through I1I; X;. This is
visualized by the diagram

The isomorphism (2.4) may be translated as follows. Given an
object y and a family of morphisms f;: X;— Y, this family factorizes
uniquely through IT; X;. This is visualized by the diagram [6].

Example (2.1.4):

(1)  The category set admits products (that is, products indexed by
small sets) and the two definitions (I,) and that given in
definition (2.1.3) coincide.

(i) The category set admits coproducts indexed by small sets,
namely, the disjoint union.

(i11) Let A be aring. The category Mod (A) admits products, as
defined in (ii), the category Mod (A) also admits co-produces,
which are the direct sums defined in (i) and are denoted & .
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(iv) Let X be a set and denoted byXthe category of subset of X,
(the set X is ordered by inclusion, hence defines a category).
for S, S;€X, their product in the category X is their
intersection and their coproduct is their union. [6.71.72].

Remark (2.1.5): The forgetful functor for: Mod (A) — set
commutes with product but does not commute with coproducts. That
is the reason why the coproduct in the category Mod (A) is called
and denoted differently. [6.71.72].

Section (2.2) Kernels and co kernels:

Note: When we talk about kernels and co kernels we will
always assume that the category in question has a zero object (and

hence zero morphisms) other wise the definition would make no
sense. [1.25. 35].

Definition (2.2.4):

(1)  The kernel of a morphism @ : A — B in a category ¥ is a
morphism p : K — A such that (1) @ p = o,
(i) IfOY =o, then ¥ = p Wfor some unique P.

9,

This is a good example of the philosophy of category theory;
instead of thinking of the kernel as the space k, we think of the
kernel as the morphism p instead. Now, the canonical definition of
the co kernel of map @ : A — B 1s Coker@® = B/ImQ. However, we
may convert this into a definition about morphisms instead, as we
did before; [1.25. 35].

Definition (2.2.5): The cokernel of a morphism@ : A — B in a
category ¥ is a morphism V : B — C such that (1) V@ = o,
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(1) If YO =o,then¥V for some unique ¥

A 9 L, B vV »C

Y Y

As the realer may already have guessed, the co kernel is simply
the dual of the kernel! It is the same diagram, only the arrows have
been reversed. In the category of R—modules we can interpret the
cokerenl as been a measure of how surjestrve the map is, in the
sense that a map is surjective if and only if its co kernel is zero.

This is dual to the notion of the kernel measuring the injectivty
of a map. (Also notice the kernels are monomorphisms and co
kernels are epimorphisms). [1.25. 35].

Definition (2.2.6): Given f: X — Z and g: y— Z in P, a pull-back of
fand g consists of an object p and a pair of morphism p: P — X and
P,: P — Y such that the following diagram commutes;

P2

p1 g

v

Moreover, the pull-back must have the following universal
property; given q;: Q — X and q2: Q — Y with fq;: = fq, there
exists a unique U: Q — P with q;: = qu, q2 = quu;
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The dual notion of a pull-back is called a push-out.

We now give a nice theorem which combines the idea of pull-
backs with the new definition of kernel; [1.25. 35].

Theorem (2.2.6): Consider a pull-back diagram as shown in
definition (2.2.6) for a general category Y. Then.

(1) If(k, p) is the kernel of p;, (k,popt) 1s the kernel of g.
(i) If (k, v) 1s the kernel of g then v can be factored as
V = p, u where (k, p) is the kernel of p;,

Proof:First note that not every morphism has a kemel, so the
statement 1s not trivial.

K K
A4
n
Pv P, >YY
P1 g
v »V
X f

(1) Let v=pyp. Then gv = gp,pn = fp, u=0, so we need only show
that if gT = 0 then T=VTO for some unique To. So suppose T:
A—Y is such a rival for V. Then, since f o = o, then pull-back
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property shows that there exists 0:A—P such that 0= p, uo,

T=po. The first of these two properties implies that 6 = p To for

some unique To: K—A by the universal property of the kernel

p. Substituting this into the second property gives us T =uT=

p2uTo = vTo, as required. Thus v is the kernel of g.

(i1)) We have gv = 0, so by the same pull-back argument as in
(1) we know there exists p: K—P with the property p;u =
0, vV =p; W. It remasns to show that p is the kernel of p, p
so for some T: ep. Then we suppose P, T= o, P, T=0= P,
and P,T=VT 0 =P,u TO and by the uniqueness of the pull-
back (p;. p.) we deduce that T = p To.[1.95. 35].

Definition (2.27): Let ¢ be a category and consider two parallel
arrows f, g: Xo 3 X in ¢ consider the two functors

(2.5) C® — set, Y — ker [ Hom, (Y,Xo)— Hom, (Y,X)) ].
(2.6) c— set, Y — ker [ Hom, (X, Y) =2 Hom, (X,,Y) ].

(1)  Assume that the functor in eq (2.5) is reprentable. In this case
one denotes by kernel (f,g) a representative and calls this
object a kernel (one also says a equalizer) of (f,g).

(1)  Assume that the functor in (2.6) is representable.

In this case one denotes by Coker (f,g) a representative and calls
this object a co-kernel (one also says a co-equalizer) of (f,g).

(i11) A sequence Z — X Xo (resp, Xo 2 X;— Z)is exactif Z is
isomorphic to the kermel (resp. co-kernel) of X, = X.

(iv) Assume that the category C admits a zero-object 0. Let f:
X—Y be amorphism in c.

A kernel (resp. a co-kernel) of f, if it exists, is a kernel (resp. a
co-kernel) of f, 0: X 3 Y. it is denoted Ker (f) [ resp, Coker (f) ].

Note that the co-kernel in ¢ is the kernel in ¢c*. By this definition,
the kernel or the cockerel of f, g: XX, existed if and only if one has
the isomorphism functorial in Y€Ec;
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(2.7) Hom, (y, Ker (f,g)~ Ker [ Hom, (Y, Xo) 3 Hom«(Y,X1)],

(2.8) Hom, Cocker (f,g), y ] ~ Ker [ Hom. (X;Y) =3
Hom(X,,Y) ].

Assume that Ker (f,g) exists, By choosing y = Ker (f,g) in (2.7),
we get the morphism.

h: Ker (X():: Xl) —>X()

Note that h is a mono-morphism. Indeed, consider a pair of
parallel arrows a, b; Y3 X such that aok = bok = w. Then wof =
aokof = aokog = bokog = wog. Hence w factors uniquely through K,
and this implies a = b. Similarly, assume that Coker (f,g) exist.

By choosing y — Coker (f,g) in (2.8), we get the morphism
K: X;— Coker (X 2 X)

Note that K is an epimorphism.

The isomorphism (2.7) may be translated as follows.

Given an object y and a morphism u: Y —X, such that fou =
gou, the morphism u factors uniquely through Ker(f,g). This is
visualized by the diagram.

Ker(fg) | Xo_gX

— —
g

vy

<

The isomorphism (2.8) may be translated as follows. Given an
object y and amorphism u: X3,—Y such that uof = uog, the
morphism u factors uniquely through Coker (f,g). This is visualized
by diagram. Coker (f,g). [6.71.72]
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Example (2.2.7): [6.71.72]

(1) The category set admits kernels and the two definitions
that given in definition (2.2.7) coincide.

(ii) The category set admits co kernels. If f,g: Zy 3 Z; are two
maps, the co kernel of (f.g) is the quotient set Z;/R where R
is the equivalence relation generated by the relation x vy if
there exists z€Z, with f(z) =xand g (z) —y.

(ii1)) Let A be a ring. The category Mod (A) admits a zero
object. Hence, the kernel or the co kernel of morphism f
means the kernel or the co kernel of (f,0). As already
mentioned, the kernel of linear map f: M — N is the Z
A-module f' (0) and the co kernel is the quotient module
M/imf. The kernel and co kernel are visualized by the

diagrams.
Ker(f) , Xo Xy Xo X1 Cokgr () )
0 (0] ////
u u ) il
Y

Section (2.3) Limits:[6.71.72].

Let us generalize and unify the preceding constructions. In the
sequel, I will denote a (small) category. Let ¢ be a category. A
functor a: I— ¢ (resp B: I —c) is sometimes called an inductive
(resp, projective) system in C indexed by L.
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For example, if (i. < ) is a pre-ordered set, I the associated
category, an inductive system indexed by I is the data of a family
(xi)ier of objects of ¢ and for all 1 <j, a morphism X; —X;with the
natural compatibility conditions.

Definition (2.3.8):
y
(1) Assume that the functor X — Hom(X,p) is represent-able. We

lim
denote by «— [ its representative and say that the functor 3
admits a projective Limit in c.
In other words, we have the isomorphism, functorial in X€C.
lim lim
(2.10) Hom (X, « B) =« Hom, (X, B). [6].
lim
(i1) Assume that the functor X —«— Hom, (a, X) is represent-
lim
able. We denote by «— a its representative and say that the
functor a admits an inductive Limit.

lim

)
@2.11) Hom, (—a, X) =~ Hom, (a, X). [6].

y
When C = set this definition of — B coincides with the former one,
in view of lemma (2.3.8).

Notice that both projective and inductive Limits are defined
using projective limits in set;

lim
Assume that < [} exists in c. one gets;

lim lim lim . .
Hom, (« B, B)~ Hom, («— B, < Pand the identity
y
of i B defines a family of morphism.
lim
Piie=p—PB@.
Consider a family of morphisms { fi: X — B (i) }ie
In c satisfying the compatibility conditions

(2.12) f. = £, of (s) for all SEHom. (i, j). [6]-
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y

This family of morphism is nothing but an element of i Hom[X, 3
i

(1)], hence by (2.10), an element of Hom (X, Pl B, X). Therefore,

lim
< B is characterized by the "universal property";

For all XeC and all family of morphism
(2.13) { fi : X = P {i};e/n c satisfying (2.12), all morphism f'

1.
factorize uniquely through — B. [6].

This is visualized by the diagram

Similar, assume that Linhyexists in ¢, one gets;

lim lim lim lim
«— Hom, (0,— a)~Hom, (—a, — a)

y
And the identity of = o defines a family of morphisms

. lim
Pi:a(i)) > —a

Consider a family of morphism {fi: a (i)— X }iell, c satisfying the
compatibility conditions.

(2.14) £ = f; of (s) for all SE Homy; (i) [6]
This family of morphism is nothing but an element of

y
Hom (a (1), X), hence by (2.11), an element of Hom (Ln a, X),
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lim
Therefore, — a is characterized by the "universal property".

For all X € C and all family of morphism { fi : (i)
(2.15){— X}i € IIn c satisfying (2.14), all morphism fi's factorize
uniquely through a.

This is visualized by the diagram; « (i)

o (s)

a ()
Projective Limits in set.

Assume first that c¢ is the category set and let us consider
projective system. One sets.

(2.9) B = { {x3} 1eTIB (): B (5) (x) =, for al
SeHom, (i, J). [6]
The next result is obvious.

Lemma (2.3.8): Let  : I"— set be a functor and let X€ set.
There is a natural isomorphism .
proof:
Homyg (X, 1<iin[3) EELHHomset X, B),
where Homg (X, B) denotes the functor : I"— set, i —
Home [ X, B (i) ] 16.71.72].

Projective and inductive Limits:

Consider now two functors B: I"— ¢ and
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a : I — c. For XeC, we get functors from I”’to set;
Hom(X, B): I’€i »Hom,[ X, B (i) ] € set,
Hom(a, X) : I°’€i -Hom, (0, X) € set.  [6].

We will discuss only inductive Limits, since the notion of
projective Limits is dual. Let ¢ be a category, I be a preordered set
and A = (A;,Uij), be an inductive system over I with values in ¢ (u;; 1s
morphism A;j,—A,;, defined for 1 >j). We call (generalized) inductive
Limits of a system consisting of AEC and a family (ui) of morhism
u;: Ai, —A, satisfying the following conditions: (a) for I <j, we have
ui= u; u;; (b) for every BEC and every family (u;) of morphism u;:
A;—B, such that u;= uui for all 1€l.

If [ A, (w) ] 1s an inductive Limit of A = (A;,Uj), and if [ B, () ]
1s an inductive Limit of a second inductive system, B = (B;,Uj;) and
finally if w = (w;) 1s morphism from A to B, then there exists a
unique morphism w: A — B such that for all i€, w u; = ujw;.

In particular, two inductive Limits of the same inductive system
are canonically isomorphic (in an obvious way), so it is natural to
choose, for every inductive system that admits an inductive Limit, a
fixed inductive Limit (for example, using Hilbert's T symbol) which

li i
we will denote byi>n A or lfl A and which we will call the inductive

i€l

Limit of the given inductive system.

lim
If I and c are such that — A exists for every system A over I

lim
with values in c, it follows form the preceding that — A is a
covariant functor defined over the category of inductive system on I
with values in c, [11].

Proposition (2.3.9): Let c be an abelian category satisfying Axiom
AB (existence of arbitrary direct sums) and let I be an increasing
filtered preordered set. Then for every inductive system A over I
with values in ¢, the
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A exists, and it is a right exact additive functor on A. If c satisfies
Axion AB, this functor is even exact, and then the kernel of the

.’
canonical morphism u; : A; S5 A s the sup of kernel of the
morphism Uji : Aj— A for j > I (in particular, if the Uj; are injective,
so are the Uj).

To construct an inductive Limits of A = (A;Uj;) we consider KS = A;
and for every pair  <j, T=1<A; Ifu;: Aj — S and Uj: Ai—T are
the inclusion in to those coproducts, there are two maps d,e: T— S
defined as the unique maps for which d wj; = u; and € w; = u; Uj; S,
foralli<j.

lim

Then — A is the co equalizer of d and e. We see[11].

Example (2.3.10): Let X be a set and let x be the category. Let f: I
li li
— x and a: I — X b two functors. Then Pl B =N (1), = a=U; a(i).

Example (2.3.11):

(1) When the category I is discrete, projective and inductive
limits indexed by I are nothing but products and co- products
indexed by L.

(11) Consider the category I with two objects and two parallel

lim
morphisms other than, densities, visualized by — A functor

a: [ —c is characterized by two parallel arrows in ¢; —
(2.16) fg: Xy 3 X,

In the sequel we shall identify such a functor with the diagram
(2.15). Then the kernel (resp, co kernel)of (f, g) is nothing but the
projective (resp, inductive) Limit of the functor a.

y
(i) If I 1s the empty category and a: I —c is a functor, then —a
exists in ¢ if and only if ¢ has a terminal object and in this
case

lim
a= «—P!
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lim
Similarly, — « exists in ¢ if and only if ¢ has an initial object O,
lim
and in this case — a=0..
(iv) if I admits a terminal object, say i. and if B: I"— C and a:
I — c are functors, then

liln B= B (o) h—I>n a=x (ip).

This follows immediately of (2.15) and (9,13).

If every functor from I’” to ¢ admits a projective Limit, one says
that ¢ admits projective Limits indexed by 1. If this property holds
for all categories I (resp. finite categories I), one says that C admits
projective (resp. finite projective) Limits, and similarly with
inductive Limits. [6.71.72].

Remark (2.3.11): Assume that ¢ admits projective (resp, inductive)
li li

Limits indexed by I. then . Fet (I, ¢) — ¢ [ resp, = Fet (Ic) —

¢ ] is functor.

Projective Limits as kernels and products.

We have seen that products and kernels (resp. co products and
co kernels) are particular cases of projective (resp. inductive) Limits.
One can show that conversely, projective Limits can be obtained as
kernels of products and inductive Limits can be obtained as co
kernel of co products.

Recall that for a category I, Mor (1) denote the set of morphism
in L.

There are two natural maps (source and target) from Mor (i) to
ob (I);
o :Mor (I) > ob (D), (S;1—j))—1,
T : Mor (I) — ob (D), (S; i — j) = J,
Let ¢ be a category which admits projective Limits and let f: T — ¢
be a functor. For S; 1 — j. we get two morphism in c.
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B ()X B ()~ B i)

B (s)

From which we deduce to morphism in c:

B [ 6 (s) ]. These morphisms define the two morphism in c.

JLEL B (1) ’

a

2.17) et B (1)) b, Isemory P[0 (s) }. [6].

Similarly, assume that ¢ admits inductive Limits and let a: — c be
a functor. By reversing the arrow, one gets the two morphism in c;

—

(2.18) Hsemor ot [0 (s) }_;,Hiela Q). [6].

Proposition (2.3.12):
g
(i) <= p is the kernel of (a, b) in (2.17).

lim

(i1)) — aisthe co kernel of (a, b) in (2.18).

Sketch of proof. By the definition of projective and inductive
Limits we are reduced to check (i) when ¢ = Set and in this case this
is obvious.

In particular, a category ¢ admits finite projective Limits if and
only if it satisfies;
(1) ¢ admits a terminal object.
(1) Forany X, Y€ ob (c), the product X x Y exists in c,
(iii) For any parallel arrows in ¢, f, g: X =3 Y, the kernel
exists in c.

There is a similar result for finite inductive Limits, replacing a
terminal object by an initial object, products by co products and
kernels by co kernels.

Example (2.3.13): The category set admits project give and
inductive Limits, as well as the category Mod (A) for a ring A.
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Indeed, both categories admit products, co products kerels and co
kernels. [6. 71.72].

Section (2.4) Properties of Limits:
Double Limits:

For two categories I and c, recall the notation ¢' = Fct (I,c) and
for a third category J, recall the equivalence Fct (Ix J,c) ~ Fct [, Fct
(J.c)]. Consider bi functor B: T X —JC. It defines a functor

(2 19) Lim B~ Lim L1m BJ Lim L1m [31 [6].

Similarly, if o: I x J — ¢ is a bi functor, it defines a functor a;: I — ¢’
and one has the isomorphisms.

(2.20Lim, O~ Lim, 1m_ Oy)=~ _Lifn oy;)Lim,

In other words:

@21) L BQ.j)= <" B Lm g (i) ]~ oLim Lin [B .

(2.22) =2 le o (i, J)= Lj—m> [Ll—“%[a(l,J)]~ Lim, Lim, [a (i, j) ].

Consider a functor B: I°°— Fct (J?, ¢). It defines a functor

B: I’" x J®—c, hence for each j€J, a functor B (j):

I"— c. Assuming that ¢ admits projective Limits indexed by I, one
checks easily that | — —=M» B (j) is a functor, that is, an object of Fct
(J*, ¢), and is a projective Limit of B, There is a similar result for

inductive Limits.[6].

Proposition (2.4.14):(6. 71. 72) Let I be a category and assume that

¢ admits projective Limits indexed by L. then for any category J, the

category C' admits projective Limits indexed by I. Moreover, if B:
[*—C'*is a functor, then, then<=2BeC’ is given by

(<H B) () = Lim [ B () ], jeI
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Similarly, assume that ¢ admits inductive Limits indexed by 1. Then
for any category J, the category ¢’ admits inductive Limits indexed
by L. Moreover, if a: I — ¢’ is a functor, then Linge’ is given by

(Liny ) () H[a ) 1, j€J.
Corollary (2.4.15): (6. 71. 72)

Let ¢ be a category. Then the categories ¢ and ¢ admit
inductive and projective Limits. [6.71.72].

Section (2.5) Composition of Limits:
Let I,C and ¢ be categories and let a: [ — c,

B: I ¢ and F: ¢ — ¢ be functors. When ¢ and ¢ admit
projective or inductive Limits indexed by I, there are natural
morphisms.

(223)F (Lim ) — ¥ (Fop).
(2.24) Lim_ F (Foa) —F (Lim ).
This follows immediately of (2.15) and (2.13). [6].

Definition (2.5.9): Let I be a category and let F: ¢ — ¢ be functor.

(1)  Assume that ¢ and ¢ admit projective Limits indexed by 1.
One says that F commutes with such Limits 1f (2.23) is an
isomorphism.

(i1) Similar, assume that ¢ and ¢ admit indexed by 1. One says
that F commutes with such Limits if (2.24) i1s an
isomorphism. [6.71.93. 94].

Examples (2.5.16):

(1) Letc be a category which admits projective Limits indexed
by I and let X€&c. By (2.10), the functor Hom, (X,.): C —
set commutes with projective Limits indexed by L.
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Similarly, if ¢ admits inductive Limits indexed by I, then
functor Hom.—(.,X): C*— set commutes with projective
Limits indexed by I, by (2.11).

(i1) Let I and J be two categories and assume that ¢ admits pro-
jective (resp, inductive) Limits indexed by IxJ. Then the
functor Lim : Fct (J®, ¢) — ¢ [resp. Lim, [ Fact (J,C)
— ¢ ] commutes with projective (resp, inductive) limits
indexed by I. This follows from the isomorphisms (2.19)
and (2.20).

(i11) Let kbe a field, C= ¢ = mode (k), and let X€C. Then the
functor Homy (X,.) does not commute with inductive limit I
f* X is infinite dimensional. [6.71].

Proposition (2.5.17): Let F: ¢ — ¢ be a functor and let I be a
category.

(1)  Assume that ¢ and ¢ admit projective limits indexed I and
F admits a left adjoint G: ¢ — c. Then F commutes with
projective limits indexed by I, that is,

Flep B =« FIBG)].

(i1) Similarly, if ¢ and ¢ admit inductive limits indexed by 1|
and F admits a right adjoint, then F commutes with such
limits.

Proof:

It is enough to prove the first assertion, to check that (2.23) is an
isomorphism.

Let YEC. One has the chain of isomorphisms
Hom, (Y,F [«H2 B (i) ~ Home [ G (y),<Lim B (i) ]

U Hom, [ G (1), B ()]
le <K% Hom, [ YF (B (i) ]

~Hom¢, [ Y, 4Ll—m F (B (1) ]
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Section (2.6) Filtrant inductive limits.

Since it admits co products and co kernels, the category set
admits inductive limits. We shall construct them more explicitly.

Let a: I — set be a functor and consider the relation on [ Uieaf(i) ].
(2.25) { a(i) ExRy €a(1) if there exists KEI, s: [ — k
And t: ] — k with a(s) (x) = a(t) (y).

The relation R is reflexive and symmetric but is not transitive in
general.  [6].

Proposition (2.6.17): With the notations above, denote by ~ the
equivalence relation generated by R. Then

Lim_ o~ [Uiel(l(i) ] [~
Proof:

Let S€ set. By the definition of the projective limit in set we get:

Lim  Hom (a,5) = {{p (LX) eteu; P (i) €S, p (i,x) =
p (1,y) if there exists s: 1 — j with a(s) (x) =y}.
The result follows:

In the category set one uses the notation U better than II. For a
ring A, the category Mod (A) admits co products and co kernels.
Hence the category Mod (A) admits inductive limits. One shall be
aware that the functor for: Mod (A)— set does not commute with
inductive limits. For example, if I is empty and

a: I — Mod (A) is a functor, then a(I) = {0} and for ({0}) is
not an initial object in set. [6.71.72].

Definition (2.6.10): A category I is called filtrate if it satisfies the
conditions (1) —(ii1) below.
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(1)  Iisnon empty,

(1) For any 1 and j in I, there exists KEI and a morphism 1
—K,j—k

(i1) For any parallel morphisms f, g; : I =3 J, there exists a
morphism h: j — k such that hof = hog.
One says that I is co-filtrant if I is filtrant .
The conditions (i1) — (ii1) of being filtrant are visualized
by the diagrams; of course, if (I, <) is a non- empty
directed ordered set, then the associated category I is
filtrant [6.71.72].

e
1 1N ]

\\ \ |

\ |

— -4

1- k N
ww

k

Proposition (2.6.18): Let a: I — set be a functor, with I filtrant. The
relation R given in (2.25) on IT;a (1) is an equivalence relation.

Proof. Let x; €Ea (), j = 1.2.3 with x;~X; and x,~ X3.

There exist morphisms visualized by the diagram:

. 81
1 \>j1

12 u
I3 v
t3 V 1
2

Such that a (s1) Xx1= 0(s2) X2 = a (1) X,=a (t3) X3, and
VOUu;08;=vVOou,0t;.
Set w; =vou;0S;. W2 =vVOu;0S; =vou,ot, and w3 =vou,ot;.
Then o (w)) x; = a (W) X; = o (W3) X3. Hence x;~x3 [6.71].
Corollary (2.6.19): Let a: I — set be a functor, with I filtrant.

(i) Let s be a finite sub set in _Lim g, Then there exists i€l
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such that s is contained in image of a(i) by the natural
map o(i) — Lim, .

(1) Leti€l and let x and y be elements of a(i) with the same
image in-1iM, ¢. Then there exists s: i — j such that a(s)
(x) = a(s) (y) in a(j).
Proof, (i) Denote by o: Uieia (i) —E™ o the quotient
map. Lets = {x; ....... , Xp }. For j =1,..., n there exists
yJ€ a (1) such that x; = a (y)).
Choose k€I such that there exist morphism s;: o (1))
—a(k). Then xj=o { (a[ sj (y5) ] }-

(i) For x,y €a (i), xRy if and only if thee exits s: 1 — j with a

() X)=oa(s) (y) ina() [6.71.72.93].

Corollary (2.6.20): Let A be a ring and denote by the forget full
functor Mod (A) — set. Then the functor for commutes with filtrant
inductive limits. In other words, if I is filtrant and o: [ — Mod (A) is
a functor, then

Foro(ma(l)— Lig T foro a(i)]. %Nhl—m

Inductive limits with values in set indexed by filtrant categories
commute with finite projective limits.

More precisely: [6.71.72.93.94].
Proposition (2.6.21):

For a filtrant category I, a finite category J and functor a: IxJ” —

set, one has h—mxhia(l )—><h—ml—>a(1,3) In other words,

the functor 1—]> Fct (I, set) — set.

Commutes with finite projective limits.
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lim

Proof. It is enough to prove that —=- commutes with kernels
and with finite products.

(1)

lim

—— Commutes with kernels. Let a, B: I — set be two

functor and let f,g: o = B be two morphisms of
functor.Define y as the kernel of (f,g), that is, we have exact

sequences .

Y () —oa (HZP (1)

Let Z denote the kernel of h—mﬂx(i) = h_lm)B (1).

We have to prove that the natural map A: h—imw (1) — Zis

bijective.

(1)

(i)

(a) The map A is surjective. Indeed for XEZ, represent x
by some x;€a(1). Then fi (x;) and g; (x;) in B (1) having the
same image in _lim , B, there exists s: 1 — j such that B (s)
£ (%)) = B (s) g (xi). Set xi= a (s) x;. Then f; (x;) = gj (xi),

which means that x;€y (j). Clearly, A (x;) = x,

(i) (b) the map A is injective. Indeed, let x,y€ —1M 5y with
A (x) =X (y). We map represent x and y by elements x; for
some i€l. Since x; and y; have the same image in ﬂn—)d,
there exists 1 — j such that they have the same image in
a(j). Therefore their image in y (j) will be same.

_im , commutes with finite products. The proof is
similar to the preceding one. [6].

Corollary (2.6.22): Let A be a ring and let I be a filtrant category.
Then the functor Mod (A)' — Mod (A) commutes with finite
projective limits.[6.71.72].

Co final functor:

Let ¥: J — I be a functor. If there are no risks of confusion, we
still denote by W the associated functor ¥: J**—I*. For two functors
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a: I — Cand B: - C, we have natural morphism;

(2.26) LM (BoW) «— Lim B,
(2.27) Lim, (qoP) « Lim g,

This follows immediately of eq (2 ,15) and eq (2, 13).

Definition (2.6.11):] 6. 71. 72] Assume that ' is fully faith full and I
is filtrate. One say that ¥ is cofinal if for any 1 €I there exists j €J
and amorphism S: [ —¥(i).

Proposition (2. 6. 23): Let ¥:J — I be fully faithful functor.
Assume that [ is filtrant and W is co final. Then

(i) For any category ¢ and any functor B: I — c, the
morphism (2.26) is an isomorphism.

(1) For any category ¢ and any functor a: I — c, the
morphism (2.27) is an isomorphism.

Proof. Let us prove (i1), the other proof being similar. By the
hypothesis, for each i€l we get a morphism a(i) — <iheij[ ao? (j)]

from which onededuce.
a morphismihTH}) a(l) —> % [ a0 (§)].
One checks easily that his morphism is inverse to the

morphism in (2.24) [6.71.72].

Example (2.6.24): Let X be a topological space, x€X and denote by
Ix the set of open neighborhoods of x in X. we endow I with the
order: U<V if V cU. Given U and V in I, and setting W = UNV,
we have U<Wand V< W.

Therefore, I,is filtrant.
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Denote by C° (U) the c-vector space of complex valued continuous
functions on U. The restriction maps C° (U) — C° (V), VC U define
an inductive system of c-vector spaces indexed by Ix. One sets

lim

(2.28) €%, = C° (U)

An element ¥ of C\  is called a germ of continuous function at

0. Such a germ is an equivalence class (U,YU) / ~ with U a neigh-
borhood of x, Wua continuous functions on U and (U,YU) ~ o if
there exists neighborhood V of x with VCU such that the restriction
of Wu to V is the zero function. Hence, a germ of function is zero at
x if this function is identically zero in neighborhood of x. [6. 71. 72].

Passage to the limit in sheaf co homology.

Proposition (2.6.25): Let ¢ and ¢ be a belian categories. We assume
that every object of ¢ is isomorphic to a sub-object of an injective,
and that ¢ satisfies Axiom AB, which in particular makes it possible
to take inductive limits in ¢.

Let (Fi)ier be an inductive system of covariant additive functor
from ¢ to ¢é. Let F = 1™, F.be the inductive limit functor of the Fi,
defined by F (A) = Lim, E (A) for every A€C. The homomorphlsm
F,—F define natural transformation of 8-functors (R"F;)— R’F from
which we derive a natural transformation of d-functors

Lim, RPF, (A) — R°F (A)

(The co boundary homorphisms for the sequence of functor _Lim,
R'F; are defined as the inductive limit of the co boundary homorph-
isms relative to the R°F;). The natural transformations are
equivalence.

To see this, it suffices to take an injective resolution C = C (A)
of A. Then the left hand side ofis LM, H* [ F; C (A) ] and the
right side is H' [ Lim, F; C (A) ]. They are thus isomorphic since
the functor Lim, on the category of inductive systems on I with
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values in ¢ is exact and, in particular, commutes with taking
homology of complexes. [11].

Corollary (2.6.27): Let X be a topological space and Y be subspace
of X admitting a basis of para compact neighborhoods (it suffices,
for example, that x be Metris able or locally compact para compact).
Then for every abelian sheaf F over X, we have

H (Y, F)= _Lim, H" (U,F)=

The limit taken over the decreasing directed set of open neigh-
borhoods UCY.

In fact, this follows from the assumption that H° (Y ,F) = Lim o
(U,F). The derived functor of F — H° (U,F) are the H” (U,F) so that
corollary is special case of the proposition. We should note that we
also have H° (Y,F) =-1M, H° (U,F) and therefore corollary follows if
Y is closed and is contained in a single Para compact neighborhood.
We also find a simple counter-example (with p=0) for the case in
which no hypothesis of Para compactness is made.

By way of completeness, we indicate the following result
without proof, a special case of general results on projective
systems. Let X be a locally compact space. We consider the
increasing directed set of the relatively compact open sub aspics U
of X. Then for every abelian sheaf F over X, the restriction

homomorphism H? (X,F) — Lim, H (UF) define canonical
homomorphisms (which are obviously natural transformations of 9o-
functors);

H° (X,F) — <™ 1P (U,F)

Which are obviously bijective for p=o [11].
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Chapter Three

Additive Categories

Many results or constructions in the category Mod (A) of
Modules over a ring A have their counterparts in other contexts,
such as finitely generated A-Modules, or graded Modules over a
graded ring, or sheaves of A-Modules, etc. Hence, it is natural to
look for a common language which avoids repeating the same
arguments. This is the language of additive and abelian categories.
In this chapter, we give the main properties of additive categories.

Section (3.1) Additive categories:

An additive category is category c¢ for which is given, for any pair
A, B of objects of ¢ an abelian group law in Hom (A,B) such that the
composition of morphisms is a bilinear operation. We suppose also

that the sum and the product of any two objects A, B f ¢ exist. It is
sufficient, moreover, to assume the existence of ?the sum or the
product of A and B exists; the existence of the other can be easily
deduced and, in addition, A ® B is canonically isomorphic to AXB.

(Supposing, for example, that AXB exists, we consider the
morphism A — AXB and B — AXB whose components (ia,0),
respectively, (o,ig), we check that we obtain thereby a representation
of AXB as a direct sum of A and B). Finally, we assume the
existence of an object A such that 15 = o; we call it a zero object ofc.
It comes to the same thing to say that Hom (A,A) is reduced to o, or
that for any BEC, Hom (A,B) [ or Hom (B,A) ] is reduced to o. |f A
and A' are zero object, there exists an unique isomorphism of A to A'
(that is, the antique zero element of Hom [ A,A") ].

The dual category of an additive category is still additive.

Now let C be an additive category and u: A — B amorphism in
C. For u to be injective (respectively, surjective) it is necessary and
sufficient that there not exist a non-zero morphism whose left,
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respectively, right, composite with u is o. We call a generalized
kernel of u any monomorphism i: A' — A such that morphism from
¢ — A which are right zero divisors of u are exactly the ones that
factor through ¢ — A' L A. Such a monomorphism is defined up
to equivalence, so among the generalized kernels of u, if any there is
exactly one that is a sub object of A. We call it the kernel of u and
denote it by Keru. Dually we define the co-kernel of u (which is a
quotient object of B if it exists), denoted Coker u. We cal image
(respectively, co-image) of the morphism u the kernel of its co-
kernel (respectively, the co-kernel of its kernel) if it exists.

It is thus a sub object of B (a quotient object of A).

We denote them as Im u and coim u. If u has an image and a coim
age, there exists a unique morphism 1: coim — Im u such that u is the
composite A — coimu _u | Im u — B, the extreme morphism being
the canonical ones.

A functor F from one additive category ¢ to another additive
category ¢ is called an additive functor if for morphism u, v: A — B
in ¢, w have that F (ut+v) = F (u) + F (v). The composite of additive
functors 1s additive. If F is an additive functor, F transforms a finite
direct sum of object A;, into the direct sum of F (A)).

Definition (3.1.1) [6. 71. 72. 93. 94]: A category c is additive if it
satisfies condition (1)-(v) below:

(1) Forany X, YEC, Hom, (x,y) EAD,

(1)) The composition law o is bilinear,

(i11) Three exists a zero object in c,

(iv) The category ¢ admits finite co products,
(v) The category ¢ admits finite products.

Note that Hom, (X,Y) # O since it is a group and for all Xe€C,
Hom, (X,0) = Hom.(0,X) = 0.

(The morphism o should not be confused with the object o.)
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Notation (3.1.1) [6. 71. 72. 93. 94] If x and y are two objects of c,
one denotes by XQY (instead of XUY) their co product, and calls it
their direct sum. One denotes as usual by XxY their product. This
change of notations is motivated by the fact that if A is a ring, the
forget full functor Mod (A) — set does not commute with co
products.

Lemma (3.1.2) [6.71.72]: Let c be a category satisfying conditions
(1) — (i11) in definition (3.1.1) consider the condition (vi) for any two
objects x and y in c, three exists ZEC and morphisms x;: X — Z, X,:
Y — Z,pi: Z — X andpy: Z — Y satisfying.

(3.1) pio1,=idy, pioi=o
(3.2) p.01,=1dy, po1;=0
(3.3) 1,0 p; 120 pr=id,

Then the condition (iv), (v) and (vi) are equivalent and the
objects X®Y X, Y and Z are naturally isomorphic.

Proof:

(a) Let us assume condition (iv). The identity of x and the zero
morphism y — x define the morphism p;: XQY—X satisfying
eq (3.1). We construct similarly the morphism p>: YR®Y— Y
satisfying eq (3.2). To check eq (3.3), we use the fact that if f:
X ®Y—-XQY satisfies f oi; =1,and f o1, = 1, then f=1dy.

(b) Let us assume condition (vi). Let WEC and consider
morphismsf: - X — Wand g: Y — W. Set @h: =f o p; go p..
Then
h: Z — W satisfies h o1; =f and h o1, = g and such an h is
unique. Hence Z X QY.

(c) We have proved that conditions (iv) and (vi) are equivalent and
moreover that if they are satisfied, then Z ~ X®Y, Replacing ¢
with C®, we get that these condition are equivalent to (v) and Z
~XxY.
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Example (3.1.3) [6. 71. 72. 93. 94]

(i) If A is a ring, Mod (A) and Mod" (A) are additive
categories.

(1)) Bankh, the category of C—Bankh spaces and linear
continuous maps is additive.

(iii) Ifc is additive, then C is additive.

(iv) Let I be category, if ¢ is additive, the category c¢' of
functors form I to c, 1s additive.

(v) Ifcand ¢ are additive, then cx¢ are additive.
Let F: ¢ — ¢ be a functor of additive categories. One
says that F is additive if for X, YEC, Hom, (x,y) —
Hom, [ F (x), F (y) ] is a morphism of groups.

Proposition (3.1.4)[6. 71. 72]: Let F: ¢ — ¢ be a functor of additive
categories. Then F additive if and only if it commutes with direct
sum, that is, for x and y in c;

F(0)~o

F (x®y)~F (x) FQ (y)

Unless otherwise specified, functors between additive
categories will be assumed to be additive. [6. 71.72].

Example (3. 1. 5) [6. 71. 72] Consider the category A and for n > 0,
denote be ST*:[0,n] [0,n-1](0<i<n-1).

The surjective order — preserving map which takes the same value ati
k fork<ij

and i+1 in other words S} (k ){ k—1 fork>i

Generalization: Let k be a commutative ring. One defines the
notion of akOadditive category by assuming that for x and y in c,
Hom,(x,y) is a k-module and composition is k-bilinear.

Section (3.2) Complexes in additive categories:

Definition (3. 2. 2 [6. 71. 72]: (1) A differential object (x’, d’) in ¢ is
a sequence of objects x* and morphism d* (k€Z):
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(3.4) - > XM@Y XA XS

(i1) A complex is a differential object (x’, d’y) such that
d“ o d“"' = o for all keZ.

A morphism of differential objects f ": x’— y’ is visualized by a
commutative diagram:

One defines naturally the direct sum of two differential objects.
Hence, we get a new additive category, the category Diff(c) of
differential objects in c. One denotes by c¢(C) the full additive sub
category of Diff (c) consisting of complex.

From now, we shall concentrate our study on the category ¢ (C).
A complex is bounded (resp., bounded below, bounded above).

If X" = o for |n| >> o (resp., n << 0, n >> 0). One denotes by c*
(c) (* =D, +, —) the full additive sub category of C** (c) consisting of
bounded complexes (resp., bounded below, bounded above). We
also use the notation C (C) = ¢ (C) (ub for "unbounded").

One considers ¢ as a full sub category of C°(C) by indentifying

an object XC" C with the complex x* "concentrated in degree 0".
X:= .....20>X20—.......

Where x stands in degree 0.

Definition (3. 2. 3): Shift functor

Let ¢ be an additive category, let X€EC (c) and let p€Z. One
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defines the shifted complex x [p] by:

(x[p])'= X"
d" =(-1)pdn
ap  chpd
If f: x — y is a morphism in ¢ (c) one defines

f[pl: x [p] = y [p] by (f[p] )" =£f""

The shift functor [I]: x — x [I] is an auto-orphism (i.e an
invertible functor) of ¢ (¢c) [6].

Definition (3. 2. 4) [6]: Mapping cone

Let f: x — y be a morphism in ¢ (¢). The mapping cone of f,
denoted Mc (), is the object of ¢ (¢) defined by:

M. (D =(X[)'®y
k
k dxm ©
dme(p = pkel dl;
of course, before to state this definition, one should check that

dk+1 odk = 0. Indeed:
X Mc (f)

_di+2 o -d §+2
fk+l dl;ﬂ 0 g1 dl;, -0

Notice that although M. (= (X [I])* ® y*, M. (f) is not
isomorphis to X [I] ® y in ¢ (¢) unless f is the zero morphism.

There are natural morphisms of complexes.

(3.5) a®:y— M), H: Mc () —

X ({I),and B (H)=o0a (f)=o.

If F: ¢ — C is an additive functor, then G [ M, (f) ~ M, F () ].
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Example (3.2.6) [6] A category with translation (A, T) is a category
A together with equivalence T:A —— A. A differential object (X,

dy)in a category with translation (A,T) is an object X € A together
with morphism dy : X —T (x). A morphism f: (x, dx) — (y, dy) of
differential objects a commutative diagram

X & | TX

; T(f)

Y dy

One denotes by A4 category consisting of differential objects and
morphism of such objects. If A is additive, one says that a
deferential objects (x, dy) in (A, T) is a complex if the composition
X —dx ,T'(x) __Tdx) T°(x)is Zero. One denotes by A, the null
sub category of A4 consisting of complexes.

Definition (3.2.5) Homotopy [6] Let c be an additive category.

(1) A morphism f: x — y in (c) is homotopic to zero if for all
p there exists a morphism s”: xX*— y*'
such that: = "' od} +dri 0 .
two morphism f, g: x — y dare homotopic if f — g is
homotopic to zero.

(1)) An object x in ¢ (c) is homotopic to o if idy 1s homotopic
to zero. A morphism homotopic to zero is visualized by
diagram (which is not commutative).

p

xP! > XP _ e
sp P) sp+1
1
p-l ¥ ——1» Yp —_— yp+
y dg y

Note that an additive functor sends a morphism homotopic to
zero to a morphism homotopic to zero.
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Example (3.2.7):The complex 0 —» X' —» X' ® X" — X" — o is
homotoic to zero.

Example (3.2.8) [6.71.72]: We shall construct a new category by
deciding that a morphism in ¢ (¢) homotopic to zero is isomorphic to
the zero morphism. Set:

Ht (x, y) = { f: x — y; fis homotopicto o }.

If f: x — y and g: y— z are two morphism in ¢ (¢) and if for g
1s homotpic to zero, then go f is homotopic to zero. This allows us to
state:

Definition (3.2.6): The homotopy category k (¢) id defined by:
ob[k(c)] = ob[c(c)]
Homk(c) (X, Y) = Homc(c) (X, Y) / Ht (X, Y)

In other words, a morphism homotopic to zero in ¢ (c) becomes
the zero morphism in k (c¢) and homotopy equivalence becomes an
isomorphism.

One defines similarly K* (c), (* = ub, b, +, -). They are clearly
additive categories endowed with an autorphism, the shift functor
[1]:x — x [1].

Sextion (3.3) Double complexes:

Definition (3.3.7) [6. 93. 94]: Let c be as above an additive
category. A double complex (X dy) in c is the data of

{ Xn,m, d'n,m, d" nm (n,m) V5 V4 }

X X

n,m

Where x™"€C and the "differentials" d' |, :x""—

nt+l.m
,d

+1. :
X Sd"T XM X satisfy:

eq(3.6) *d=d" =o,d'od"=d"od"
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One can represent a double complex by a commutative diagram

(3.7) > X ,m L )‘('n,mﬂ — >

dyn,m d|1’1,m+1

Y _  » Wmt —
XnH,m dunH,m Xl ,m

v v

One defines naturally the notion of a morphism of double
complexes, and one obtains the additive category c, (2) of double
complexes.

There are two functors, F;. Fi; : ¢* (¢) — ¢ [ ¢ (¢) ] which
associate to a double complex x the complex whose objects are the
rows (resp., the cohumns) of x. There two functors are clearly
isomorphisms of categories.

Now consider the finiteness conditions:
(3.8) for all p€Z. { (m,n) €ZxZ; X""# om+tn=p }

Is finite and denote by;c (c) the full sub category of ¢* (c)
consisting of objects x satisfying eq (3.8).

To such an x one associates its "total complex" tot (x) by
setting:

tot (X)p = @nn=p XM
d?ot(x)| X =4+ (=) d"
This is visualized by the diagram:

(_)nd" Xn,m+]

Xn,m
d!

Xn,m+1 97



Proposition (3.3.9) The differential object { tot (x)*, d fot(x) tpez1s a
complex

(i.e., dﬁft(lx) od fot(x) =0 ) and tot : c% (c) — ¢ (c¢) 1s fucntor of
additive categories.

Proof. For (n,m) €ZxZ, one has

dod (x"™)=d"od" x"™) +d od (x"")
+()'d"od x*™)+ ()" d'od x"™)=0

We check that tot is an additive functor.

Example (3.3.10): Let f: x’— y" be morphism in c (c). Consider the
double complex Z™ such that Z " =X, 2> =Y", Z

=0 fori# 1. o, with differentials f': Z 1 — 7%,
Then eq(3.9) tot(Z”) M(f). [6.71.72.93.94]

Bifunctor: Let c,c' and c¢" be additive categories and let — c" be an
additive bifunctor (i.e, F (.,.) is additive with respect to each
argument).

It defines an additive bifunctor ¢ (F): ¢ (¢) x ¢ (¢') — ¢ (¢"). In
other words, if XE€c (c) x'Ec )c') are complexes, then ¢* (F) (x, X') is a
double complex.

Example (3.3.11): Consider the bifunctor .& Mod (A”™) x Mod
(A)— Mod (Z). We shall simply write ®instead of ¢* (®). Hence, for
X€EC [ Mod (A®™) ] and yeC [ Mod (A®) ], one has

(x®Y"" = X' ® y"
d™™ = d, ®y",d™ =x"® d,. [6]
The complex Hom’

Consider the bifunctor Hom, : ¢ x ¢ — Mod (2).
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We shall write Hom,™ instead of ¢* (Hom.), if x and y are two
objects of ¢ (c), one has

Hom.” (X,Y)*™ = Hom,(X™,y"),

d™" = Hom, (X", dy),d™" = Hom.[(-)"d x ,y"]

Note that Hom.™ (X,Y) is a double ocmp;lex in the category
Mod (z) and should not be confused with the group Hom) (X,Y).

Let xEC™ (c) and yeC" (c), one sets
(3.10) Hom, (X,Y) =tot [ Hom.™ (X,Y)]
Hence, Hom(X,Y)" =® Hom. (X", Y"*) and
d" : Hom, (X,Y)" — Hom, (X,Y)""
is defined as follows. To f= {f} € ® ez Hom(X",Y"™)
one associates Qd"f= {g"} ExezHom(X ,Y™™),
with gk S (_)k+n+1 gricntlkel el
In other words the components of d f in Hom, (X,Y)""" will be
eq (3.11) ("D =dE™ of+ ()" £ o dy .

Proposition (3.3.12): Let ¢ be an additive category and let x, YE ¢
(c) thereare isomorphism

Z° [ Hom. (X,Y) ] = kerd’~ Homg) (X,Y),

B° [ Hom, (X,Y)] = | md '~ Ht (XY),

H° [ Hom, (X,Y)] = kerd®/(|md™") ~ Homy (X,Y).
Proof:

(i) Let us calculate Z° [ Hom. (X,Y) ]. By eq (3.11), the
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component of d° {f}y in Hom, (X*, Y*'") will be zero if and

only lfdx of* ="' 0 d, that is , if the family {fk}k y defines a
morphism of complexes.

(i) Let us calculate B° [ Hom, (X.,Y) ]. An element f*¢ Hom,
(X5,Y" ) will be in the image of d ' if it is in the sum of the
image of Hom. (X*Y*") by d‘ ' and the image of Homc
1y by dk Hence, if it can be written as f = dk Posh+

sTod .[6. 1. 72].

Section (3.4) Simplicial constructions:
k

We shall ‘define the simplical category and use it to construct
complexes and homotopies in additive categories.

Definition (3.4.8) [6. 71. 72]:

(a) The simplical category, denoted by A, is the category
whose objects are the finite totally ordered sets and the
morphism are the order-preserving maps.

(b) We denote by Aj,j the sub category of A such that ob (Ay)
= ob (A), the morphisms being the injective order-
preserving maps. For integers n,m denote by [n,m] the
totally ordered set { kEZ; n <m }.

Proposition (3.4.13) [6]:

(i) The natural functor A— set' is faithful,

(11) The full sub category of A consisting of objects{[o,n]}n>—1
is equivalent to A

(i11) A admits an initial object, namely @, and a terminal object,
namely {o}.

The proof is obvious. Let us denote by
d: [0,n]—>[0,n—1 ] (OSISIH—I)

The injective order-preserving map which does not take the
value 1. In other words
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k for k <1,
d; (k) =
k+1  fork>1,

one checks immediately that

n+1

(3.12) ¢ 0d?= d{ od [foro<i<j<nt2

Indeed, both morphisms are the unique injective order-
preserving map which does not take the values 1 and j.

The category Aiy 1s visualized by:
(3.13) O-d golo] - dp [o1] —db  [0,1.2]

Sab

_ d;—>

Let ¢ be an additive category and F: Aj,— c a functor, we set for
nez;

F[(o,n)] forn>-1.

0 other wise
n+1

dp :F>F7, df = L () F@!)
Consider the differential object

1 n

o — - 0 0 n
GB.IHF:=.0-F' df F° dy F'— .. —>F d;

Theorem (3.4.14) [6. 71. 72]:
(1)  The differential object F" is a complex.

(i)  Assume that thee exist morphism S¢ : F'— F' (n> o)
Satisfying; S;ﬂ oF(dy)=1dm forn>-1

St oF(di)=F(d D' oS; fori>on>0.
Then F* is homotopic to zero.
Proof (1) By eq (3.12) we have
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nt2 nt+l

&' odp= X ) F(dj od))

= 2 REod)+

0< j<isntl 0<i<j=nt2

O Ed 0d])
n+1

1+JF(dn+1 d r)+ Z ( )1+J F(d l)

B 0< j<i<n+l1 ( ) 0<i<j<n+2

= 0

Hence, we have used

> (M Fd

0<i<j<n+1

0t O dil) :0 Z . (_)i+j+1 F(d ?+1O d 5
i <15<n

- YT Fd M od )i

0<j<i<n+1

(i1) We have

+ n —
st 1Od + an 1O s"
Il+1

—z( 1) sn“oF(d )+ z( 1) F(dnlosF)
= sn+loF<do)+ > (- 1)1“ el F(d1+1)+ S 1) Fd™ o5 )]

1i=o0 1=0

= lan+z( "' F (@ osn)+z( 1) F (" tos 1)

i=0

= lan.

Example (3.4.15) Torus T°. We can view T as quotient of a
rectangle, this makes the drowning of triangles easier. There is a
simple cw-triangulation where one divides the rectangle by a diagonal
into two triangles. It gives a fast calculation of homology. One can
gate into ninerectangle and each of this into twotriangles. Then H, and
H, compiled from the dimension of H; can be compiled from the
invariance of Euler character — is tic under taken homology.

Section (3.5) Categories of diagrams:

A diagram scheme is a triple (I, @, d) made up of two sets I and
® and a function d from @ to IxI. The elements of I are retraces, the
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elements of ® are arrows of the diagram and if @ 1s an arrow of the
diagram d (©) is called its direction, characterized as the source and
target of the arrow (these are therefore vertices of the scheme). A
composite arrow with source I and target j is, by definition, an non-
empty finite sequence of arrows of the diagram, the source of the
first being I, the target of each being the source of the next and the
target of the last one being j. If ¢ is a category, we call diagram in ¢
from the scheme s a function D which associates to each i€l and an
object D (1) €C and to any arrow Q€® with source I and target j, a
morphism D (@): D (i) — D (j). The class of such diagram will be
denoted c’; it will be considered a category, taking as morphism
from D to D' a family of morphism u;: D (j) — D' (i) such that for
any arrow @ with source 1 and target j the following diagram
commutes:

D (i) » D' (1)
D (9) D' (9)
7o) — ~5

Morphisms of diagrams compose in the obvious way, and it is
trivial to verify the category axioms. If D is a diagram on the
schemes s, then for any composite arrow @ = (0. ....... , D) 1n s,
wedefine D(Q)=D(Qy) ...... D(9,); itis a morphismfrom D(1)— D(j)
if I and j are, respectively, the source and target ofd. We call D a
commutative diagram if we have D(0) = D(Q') whenever@ are two
composite arrows with the same source and same target. More
generally, if R is a set consisting of pairs (0,9') of composite arrows
having the same source and target, and of composite arrows whose
source equals its target, we consider the subcategory c¢™® of ¢’
consisting of diagrams satisfying the commutatively condition D(Q)
for (0, @) €R and D(0) is the identity morphism of D(1) if @€R has
I as its source and target.
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We have consider still other types of commutation for diagrams,
whose nature varies according to the category in question. What
follows seems t cover the most important cases. For any (i, j) €IxI
we take a set R of formal linear combinations with integer
coefficients of composite arrow with values in an additive category
c, then for any LER;;, we can define the morphsim D (L): D(i) — D
(1), by replacing, in the expression of L. a composite arrow @ and e;
by the identity element of D (i). If we denote by R the union of the
Rj;, we will say that D is R-commutative if all the D (L), LER, are o.
we call diagram scheme with commutatively conditions a pair (S,R)
> consisting of a diagram scheme s and a set R as above. For any
additive category ¢, we can they consider the sub category c€ of ¢’
consisting of the r-commutative diagram.

Proposition(3.5.16)[11] Let ) be a diagram scheme with commut-
atively conditions and ¢ an additive category. Then the category c® is
an additive category and if ¢ has infinite direct (respectively, infinite
direct sums), so does c¢’. Moreover, if ¢ satisfies any one of the
axioms.

Moreover, if D,D' € C°, and if U is a morphism from D to D',
then its Kernel (respectively, co kernel, image co image).

Is the diagram formed b the Kernels (respectively,..... of the
components u;, the morphism in this diagram (corresponding to the
arrows of the scheme) being obtained from those of D (respectively,
those of D',.....) in the usual way by restriction (respectively,
passage to the quotient). We interpret analogously the direct sum of
the direct product of a family of diagrams. Sub objects D' of the
diagram D are identified as families (D' (j) of sub objects of d(i) such
that or any arrow © with source 1 and target j we have D (@): D' (1)
—D' (j); then D'(Q) is defined as the morphism D'(i) —D'(j) defined
by D (@). The quotient objects of D are defined dually.

If s is a diagram scheme, we call the dual scheme and denote it
by s°, the scheme with the same retraces and the same sets of arrows

104



as s, but with the source and target o the arrows of s interchanged. If,
moreover, we give a set R of commutatively conditions for s, we
will keep the same set for s°. Using this convention, for an additive
category ¢, the dual category of c€ can be identified as (c°)®.

Let ¢ and c¢' be two additive categories and € be a diagram
scheme with commutatively condition. For any functor F from c to ¢,
we define in the obvious way the functor F° from ¢’ to ¢ *, called the
canonical extension of F to the diagram. F’behaves formally like a
functor with respect to the argument F, in particular, a natural
transformation F— F*. Finally we note that for a composite functor,
we have (GF)" = F°G, and the exactness properties of a functor are
preserved by extension to a class of diagrams.

Example (3.5.17) [11] Inductive systems and projective systems.
We take as a set of vertices preordered set O, with arrows being
pairs (I, j) of retraces' with 1 < j, the source and target of (i. j) of
vertices with 1 < j, the source and target of (i, j) being 1 and j,
respectively. The commutability relation are (i, ) (j, k) =(i, k) and
(1, 1)) = €. The corresponding diagrams (for a give category c, not
necessarily additive) are known as inductive systems over I with
values in c. If we change | to the opposite preordered set, or change
¢ to ¢” we get projective system over I with values in ¢. An important
case 1s the one in which I is the lattice of open sets of a topological
space x, ordered by containment: we then obtain the notions of pre-
sheaf over x with values in c.

Section (3.6) Combinatorial topology of simplicial complexes:

Some to polemical spaces in combinatorial terms. This will then
be used to calculate their invariants purely algebraically using the
combinatories of the space rather than the space itself.

A simplical complex is a set v together with a family k of finite
non-empty subsets of v such that with any element A€K, family k
also contains all subsets of A. [9. 73. 74.75. 40. 41].
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Lemma (3.6.18):

(a) Any simplicial triangulation T defines a simplicial complex
k(T).

(b) To any simplicial complex k we can associate a topological
space [k] called its realization. It comes with a triangulation
T such that k (T) is naturally identified with k.

Proof:

Procedure (a) has been described above. In (b) we start by
associating to each finite set A€K a topological simplex o with
vertices A (i.e., with vertices parameterized by A) this gives a
topological space k% Uxex o4. Then the topological space [k| is
obtained as a quotient k/ ~ of k by the equivalence relation ~ on x
given by X€ 64 and y € op are equivalent if (1) x lies in the facet 4,
ANB c op (i11) the coordinates of x and y with respect to the set of
vertices AMNB are the same (i.e., x and y are identified by the
canonical identification of topological simplices 65, ANB and og,
ANB given by the obvious identification of the sets of vertices of
these two simplices).

Notice that the canonical map II: k — [k| is injective on each
simplex 6,& Tk gives a homomorphism I1 A: cx —II(c4) so, one
can identify the image withc, and then o4 s cover |k| and one check
that they form a triangulation T of K. [9. 73.75.77. 79. 42].

Theorem (3.6.19) If we start with a triangulated topological space
(X,T) then the realization |k(T)| of the corresponding simplicial
complex K (T) is canonically Homomorphism to X.

Proof:

It 1s easy to construct a continuous map II: | k — x for k =k (T).
Since | k | has a quotient topology from k such map is the same as a
continuous map II: k — x such that x ~ y==I1 (x) = IT (y). Now, for
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any simplex a€T I will denote by ya its set of vertices. Then a
simplices 6y, K and aC x can be canonically identified since the sets
ya for some €T and then 65 = 6,4 0=, CX.

Since IT is continuous on each 6, it is continuous on the disjoint
unionk.  [9,73.74.75 - 79].

Lemma (3.6.20): The above formula for 0; gives a well defined k-
map

0: ¢i (X,T;:K) — ciy (X, T;K)
Proof:

(1) First one checks that the formula only depends on the orientation.
For instance for two orderings xyz and zxy which give the same
orientation one has 0 7, = Oy - Oy O = Oy, — OxzTOxyando 3y,
= coincide.

Now we have defined a map from the basis of ¢; to ¢; 1. 1,e, a k—
linear map c¢i—ci ;.

(i1) Next one needs to check hat the map descends to ¢; — ¢; ;. i.e,
that opposite orientations produce opposite results. For instance
for two orderings xyz and yxz which give opposite orientations
one has 0 %, =0x, - Oy, +=0yx Which is opposite of the 07,y =
Oyr— Oxz Oxy
The two requirements together say that for any permutation T of
Opeennnen ,i onehasd g,’o_____m- = &1 —Oyo...vi Where & 1s the sign of the

permutation T. This statement it suffices to check when T is one
of the transpositions T, which exchange p-1 and p, 1 <p <,
[9,73 —79,40,41].

Remark (3.6.21) [9.73.79]The above formula for 0 is for the
complex associated to a triangulation T, if one uses an oriented
triangulation Z° = (T,o0) then one can adjust the formula so then one
needs on extra orientation of simplices in T. The boundary operatory
operator 0; : ¢c;—¢;_; sends an oriented i—simplex y €X to the sum of
its faces, with certain orientation and a certain sign. For a give face z
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if the orientation from 0, y agrees with orientation on z from X we do
not need any adjustments, otherwise we change the orientation from
01y to the one from X and change the sign.

Corollary (3.6.22) [9.73. 79]: C+ (X,T;K) is a complex (of chains).

Proof. Homology groups of a topological space. We have seen
that any triangulation T of x associates to a topological space x the
homology groups.

H; (X, T;K) “'Hi[ (C+ (X, T;K), ) ]

However, by the next theorem these groups are really invariants
of x itself so we call them the homology groups of x and denote
them by H; (X,K).

Theorem (3.6.23) [9.73. 79] The homology groups H; (X,T;K) do
not depend on the choice of a triangulation T, in the sense that for
any two triangulations of x there is a canonical isomorphism

OT", T': H; (X, T;K) _=, H; (X, T"K).

Proof. We say that a triangulation s is a refinement of a triangulation
T if for each a € T the subset S, = { 6 € S;C6  « } is triangulation
of a.. Now the theorem follows from the following lemma.

Lemma (3.6.24) [9.73. 79]:

(a) For a refinement S of T there is a canonical isomorphism
H; (X, T;K) —»H; (X,S;K) obtained by sending a€T;with
orientation u to ,esqnsi (0,0/6) where % is the orientation o
restricted to .
(b) Any two triangulation T T" of x have a common
refinement T.
Example (3.6.25) [91 73. 79.40.41] S’ is the unit sphere S ¢ R’
which we can think of as C”.
Then S = {x € R'; (x')* + (x)* +(x)* + (x*)* = 1} can be written
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as
S={zeR%|z'[+|Z7=1}.

This point of view makes it obvious that the group T ~ s' of unit
complex numbers acts on s by z (z" 2°) = (zz" z2°).

This is a free action (i.e; there are no stabilizers), and the
quotient is homomrhic to s*. The quotient map s — s° is called Hopf
map. This is one basic example of a nontrivial vibration; all fibers
are homorphic (to s') but the map is still quite nontrivial. We will
revisit the Hopf map once we acquire the machinery of spectral
sequences.

However let us consider the quotients S/p, where p, T is the
-

group of all n™ roots of unity in c. Then Hx (S/ua; R) is naturally

identified with H« (S;R) and the same is true for homology with
coefficients in Z/mz as long as m 1s prime to n.

However when m is not prime to n then Hx (S/u,; Z/mZ) is
more complicated then H+« (S;R). All such complications (for all m's)

are already stored in Hx (S/p,; Z).

One can check the above statement using simplicial
triangulations; however it will be much easier to do it with the
machinery of sheaves. It provides as systematic use of maps in
calculating homology.

Example (3. 6. 26) Triangulations of spheres. To describe Triang-
ulation of S we choose an orientation of S™ and n distinct points A,
... A, that go in the direction of the orientation. The Triangulations
is given by 0 — simplices Tp = {A;. ..., Ay} And I — simplices T,=
{cA A, ..., 6ALA 1} (I denote by cAB or gust AB the sengment from
A to B) If, =1 this is not a simplice complex since A;A; is not really
a I — simplex y or detention its circle hence not homomorphic to o1.
N =2 still does not give simplicail complex since the intersection
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0A1A;n oA A, consist of two points so it is not a simplicail. For n >
3 we do not get a simplicail complex. The associated simplicail

complex has vertices vy = {A; ..., Ajtand K ={A1, oy An{ALALY,

L AAALY } For any finite set y with n elements ={AC y;ACO} is
asimplicail complex. Its realization [Klis the simplex or of
dimension [yI.

However, if remove the largest simplex L= {A Cvy; vy # A # O} the
realization is the boundary of oy, ie, a sphere of dimension [yl_;.

Section (3.7) Simplicial complexes:

Definition (3. 7. 8) [9] A simplicial complex k is a pair k = (v,s)
where:

e The component v is a totally ordered” set, the set of vertices
of k.
e The component s is a set of non-empty finite rates of v, the
simplice of k, satisfying the properties;
For every veEV, the singleton (v) € S.
For every c€V, then O+ ¢ < o simplies GEV.

For example the small simplicial complex drawn here

The butterfly simplicial

complex (y von sire's
terminology

is mathematically defined as the object B = (v,s) with
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V=(0,1.2.3.4.5.6)

(0), (1), (2), 3), (4), (5), (6).
(0,1), (0,2), (0,3), (1.2), (1.3), (2.3), (3.4), (4.5), (5.6), (6).
(0,1.2), (4.5.6).

-

2
Il
A

\

In other words, the second component, the simplex list, gives
the list of all vertex combinations which are (abstractly) spanned by
a simplex,. The vertex set v could be for example ordered as the
integers are. Note also, because the vertex set is ordered, the list of
vertices of a simplex is also ordered, which allows us to use a
sequence notation (....) and not a subset notation {.....} for a
simplex and also for the total vertex list.

A simplicial complex can be infinite. For example if v =N and
s={(n) }pex U { (o,n) } n > 1Im the simplicial complex so obtained
could be understood as an infinite bunch of seginents. Standard
algebraic topology proves that most "sensible" homogony types can
be modeled as simplical complexes, often infinite. We will see the
notion of simplicial set, roughly similar but more sophisticated, is
also much more powerful to teach this goal.

Definition (3. 7. 9) [9]: For example the set of simplices s, (k) is the
set of singletonss, (k) = { (v) }yvev. The set of 2-simplices of the
butterfly B is { (0,1.2), (4.5.6)}; in the same case, the set of 1-
simplices has ten elements.

Definition (3. 7. 10): Let k = (v, s) be a simplicial complex. Then
the chain-complex c+ (k) canonically associated with k is defined as
follows. The chain group c, (k) is the free module generated by s,
(k). Let (u, ....... , Up) be an n-simplex, that is, a generator of s, (k).
The boundary of this generator is then defined as;

do [ (Voservvs Vo) | = (V1. Voo oy Vi) (Vo, V2. V3, oo V) Lo F

(=1)"(vo,V1......vs1) and this definition is linearly extended to c, (k).
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A variant of this definition is important.

Definition (3. 7. 11) [9]: Let k = (v, s) be a simplicial complex. Let
n>1 and o <i<n be two integers n and i. Then the face operator 9}
is the linear map 97 (k); c, (k) — c,1 (k) defined by;

O (Voyeures Vi) ] = (Voyenvn.nn o Vil Vitl, +veee Vn);

the 1—th vertex of the simplex is removed, so that an (n—1) —
simplex is obtained.

Application (3.7.27): A computing a homology group amounts to
computing the relevant boundary matrices, and to determine a
kernel, and image and the equation first one by the second one. For
example, if we want to compute the homology group H; (B), the 1-
dimensional homology group of or butter f we have to describe the
kernel of d;.

Kerd, =R ((0, 1) + (1.2) - (0,2))

OR ((0J1)+(1.3)-(0,3))
OR((0,2) +(2.3)-(0,3))

OR((0,55) + (5.6) - (4.6))

and the image of d,.
imd, = R ((0, 1)+ (1.2) - (0, 2))

OR((4l5)+(5.6)- (4.6))

Note un particular the limping cycle (1. 2) + (2. 3) — (1. 3) is the
alternate sum of the first there ones is the discretion of ker d;. So that
the homology group H; (B) is isomorphic to R* with (0, 1) +(1. 3) -

112



(0, 3) and (0, 2) + (2. 3) as possible represent ants of genre lore, but
adding to such a represent ants and arbitrary boundary gives another
represent ants of the same homology class.

Let us examine for example the case of the real projective
plane P* R. It can be proved the minimal triangulation of P* R as
asimplicial complex is described by this figure:

This simplical complex has six vertices, fifteen edges and ten
triangles. The 1 — skeleton is a complete group with six vertices, any
to vertices are connected by an edge 4. Computing by hand the
homology groups of this simplical complex is a little lengthy. The
Kanzo program obtains the result.
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Chapter Four

Abelian Categories

In this chapter we are dealing with an abelian category. This
chapter also develops chapter three and gives the relations between
additive categories and abelian categories ¢, we shall assume that ¢
is a full abelian sub-category of a category Mod (A) for some ring A.
This makes the proofs much easier and more over there exists a
famous theorem (due to Freyd & Mitchell) that assets that this is in
fact always the case (up to equivalence of categories).

For us to be able to do any kind of useful homological algebra,
we need to work with structures that are richer than just plain
categories. We want to be able to talk about products, kernels and
pull-backs (none of which necessarily exist in an arbitrary category)
and to do more interesting things with exact sequences. We know
that we can do all these things in the category of R-modules but we
want to work with something a little more general than what. This
compromise between abstractness and usefulness motivates the
following definition:

Section (4.1) Abelian categories [6.71.72.93.94]: Let ¢ be an additive
category which admits kernels and co kernels. Let f: x — y be a
morphism in c. one defines.

Coim f = Coker h, where h: ker f — x
Im f = kerk, where k: y — coker
Consider the diagram:

Kerf _n _x f y k coker f

—_—t —— ) ——

Sl

Coim f Imf
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Since f oh = o, f fafctors uniquely through f, and k of factors
through k o f. Since k of = Kofos = 0 and s is an epimorphism, we
get that k Of = 0. Hence f factors through ker k = Imf, we have thus
constructed a canonical morphism.

(4.1) Colmf —Imf

Definition (4.1.1) [73.79.40. 42] An additive category u is a
category with zero object in which any two objects have a product
and in which the sets of morphism us (A,B) and abelian groups such
that the composition.

u (A,B) xu (B,c) — u (A, ¢) is bilinear

Definition (4.1.2) [9.73 . 79]: If u and B are additive categories, then
a functor

F: u — B is called additive if, for every A, BEU,
F:u (A, B) — B (FA, FB) is a homomorphism.
Equivalently, F preserves direct sums (of two objects).

Definition (4.1.3) [9]: An abelian category is an additive category in
which:

1- Every morphism has a kernel and a co kernel.

2- Every monomorphism is the kernel of its co kernel, and
every epimorphism is the co kernel of its kernel.

3- Every morphism f can be written as f = moe, where m is a
monomorphism and e is an epimorphism.

Example (4.1.1) [9.73. 79]: The category of abelian groups is the
archetypal example of an abelian category, as is the category of left
(or right) modules over a ring T. The category of free abelian groups
1s additive but not abelian.

Now we are ready to give a more general definition of a short
exact sequence.
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Definition (4.1.4) [9. 73 . 79]: A short exact sequence in an abelian

u &
category is a sequence. —. — , in which u is the kernel of € and € is
the co kernel of p. In particular, this means that € o p = o.
gn @n+1 . . .
A sequence ...~ A—>... in an abelian category is exact at A if

when we factor O,=p ,&, with @, monomorphism €, epimorphic, then

un en+1 . .
the dequence, —, — 1s short exact in the sense described above.

Note again that the condition O, 0 @, = 0 necessarily holds.

It is also worth noting that the concepts of projective and
injective objects can be applied to any abelian category and not just
to the category of R—modules.

Examples (4.1.2) [6.71.72]:

(1) For aring A and a morphism f in Mod (A), eq(4.1) is an
isomorphism.

(1) The category Ban admits kernels and co kernels. If f:
X—Y is a morphism of Banach spaces, define ker = f '(0)
and coker f =Y Imf where Imf denotes the closure of the
space Imf. Its well known that there exist continuous
linear maps f: X — Y which are injective, with dense and
non uosed image. For such an f, ker f = coker f = o
although f is not an isomorphism. Thus coim f ~ X and
Imf ~ Y. Hence, the morphism eq(4.1) is not an
isomorphism.

(ii1)) Let A be a ring. I an ideal which is not finitely generated
and let M = A/I. Then the natural morphism A — M in
Mod f (A) has no kernel.

Definition (4.1.5) [6]: Let c be an additive category, one says that ¢
is abelian if:

(1) Anyf: X — Y admits a kernel and co kernel.
(1)) For any morphism f in ¢, the natural morphism colm f —
Imf is an isomorphism.
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Exemple (4.1.3) [6. 71. 73. 93. 94]:

(1)
(i)

(iii)
(iv)

V)

If A is a ring, Mod (A) 1s an abelian category. if A is no
etherian, then Mod" (A) is abelian.

The category Ban admits kernels and co kernels but is not
abelian (see example (4.1.2) (i1).

If ¢ is abelian, then C* is abelian

If ¢ is abelian, then the categories of complexes

¢ (c) (* =ub, b, +, —) are abelian.

For example, if f: X—Y is a morphism in ¢ (c), the
complex z defined by z =ker(f:X"—Y"), with differential
induced by those of x, will be a kernel for f, and similarly
for co kernel f.

Let I be category. Then if ¢ is abelian, the category ¢ of
functor from I to c, is abelian. If F, G: I — ¢ are two
functors and @: F — G is a morphism of functors, the
functor ker O is given by ker @ (x) = ker [F (x) — G (x)]
and similarly with Coker . Then the natural morphism
coim @— Im O is an isomorphism.

The following results are easily checked.

e An abelian category admits finite projective limits and finite
inductive limits.

e In an abelian category, a morphism f is a monomorphism
(resp., an epimorphism) if and only if ker f ~ o (resp., Coker
f ~ 0). If f is both a monomerphism nd an epimorphism.

Then it is an isomorphism. Unless otherwise specified, we
assume unit the end of this chapter c is abelian.

: f g
Consider a complex x' = x = x" (hence, go f = 0).

It defines a morphism coim f — ker g. hence, ¢ being abelian, a

morphism Imf — ker g.
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Definition (4.1.6) [6]:

: f g . .
(1)  One says that a complex x' = x = x" is exact if Imf —

ker g.

.. . Pdp
(i) More generally, a sequence of morphism x— ...—X

with d' o d™' = of for alli € [p, n—1] is exact if Im

di —»ker d' for alli € [p, n—1].
(ii1)) A short exact sequence is an exact sequence 0 — X' — X

— X" —o.

Any morphism f: x — y may be decomposed into short exact
sequences;

o — Kerf— x — coim f — o,
0 — Imf — y — Coker f— o,
with coim f ~Imf.

Proposition (4.1.4) [6.71.72]: Let

f g n
42 0 - x'>x->x-0
Be a short exact sequence in c. Then the conditions (a) to (e) are
equivalent.

(a) There exists h: x"— x such that goh = id x".
(b) Thee exists k: x — x' such that k of — 1d x.

(c) There exists ¥ = (k,g) and ¥ = (h') such that x i X' @ x"

and x' @ x"— x are isomorphisms inverse to each other.
(d) The complex eq(4.2) is homotopic to o.
(e) The complex eq(4.2) is isomorphic to the complex
0—-X—-oxX & x">x"—>o0

proof (a) => (¢), Since g = go hog, we get go (id x — hog) =0,
which implies that id x — hog factors through kerg, that is, through
x'. Hence, there exists k: x — x' such that idx — hog — fok.

118



(b) => (c) follows by reversing the arrows.

(c) = (a). Since gof = 0, we find g = go hog, that is (go h —
1dx") og = 0. Since g is an epimorphism, this implies goh —idx" = 0.
(c) = (b) follows by reversing the arrows.
(d) Bt definition, the complex eq(4.2) is homotopic to zero if nd
only if there exists a diagram.
£ g

0o —» XLy, x—= 3 X" —>» 0

/
id h id h id

o—» 'L‘/g—> "—> o0

f

Such that 1dx' — kof, 1dx" — goh and idx = hog + fok. (e) is
obvious by (c).

Definition (4.1.7) [6.71.72]: In the above situation, one says that
the exact sequence splits.

Note that an additive functor of abelian categories sends split
exact sequences in to spit exact sequences.

If A is a field, all exact sequences split, but this is not the case
in general. For example, the exact sequence of Z-modules.

2
0— zoz—272272 —- 0
doesn’t split.
Section (4.2) Exact functors:

Definition (4.2.8): Let F: ¢ — c' be a functor of abelian categories.
One says that:

(1)  Fis left exact if it commutes with finite projective limits.
(1) F is right exact if it commutes with finite inductive limits.
(i1) F is exact if it is both left and right exact.
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Lemma (4.2.5) [6.71.72]: Consider an additive functor F: ¢ — ¢'

(a) The conditions below are equivalent.
(1)  Fis left exact,
(11) F commutes with Kernels, that is, for any orphism

f:X > Y,F[Ker(f)] —Ker[F(f],
(1) For any exact sequence o— x' — x — x" in c, the
sequence o — F (x') —» F (x) —» F (x") is exact in c'.
(b) The conditions below are equivalents
(1) Fisexact,
(11) For any exact sequence x' —x — X" in c, the sequence
o—FX')—F(x) —F(x")—oisexactinc'.
There is a similar result to (a) for right exact functors.

Proof:

Since F is additive, it commutes with terminal objects and
products of two objects. Hence F is left exact if and only if it
commutes with Kernels.

Example (4.2.6) [6.71.72.93.94]: Let A b a ring and let N be a right
A-module. Since the functor N @ A’ admits a right adjoint, it is right

exact. Let us show that the functors Homy (.,.) and N ® A" are not
exact in general. In the sequel, we choose A=k [x], with k a field,
and we consider the exact sequence of a—modules;

43) 0> A 5A— A/A, —0.

Where x means multiplication by x.

(1) Apply the fucntor Homa (.,A) to the exact sequence
eq(4.3) we get the sequence;

0 — Homy (A/A,) > A — 0.
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Which is not exact since X, is not surjective. On the

other hand, since x, is injective and Hom, (.,A) 1s left
exact, we find that Homa(A/Ax,A/Ax)—0. Cines Homu
(A/Ax,A/A5)=0 and Homu(A/Ax,A/Ax)#0,this sequence
not exact.

(1) Apply .® A/A, to the exact sequence eq(4.3). We get
the sequence

0 o AASA/A SAXA @rA/A, — 0
Multiplication by x is 0 on A/A«. Hence this sequence

0
1s the same as; 0 > A/A,— A/A, ® AA/A,— o which
shows that A/A,Q \A/A~A/A, and moreover that this
sequence is not exact.

(111) Notice that the functor Hom,a (.,A) being additive, it
sends split exact sequences to split exact sequences.
This shows that eq(4.3) does not split.

.
Example (4.2.7) [6]: We shall show that the functor Pl ; Mod (k)

—>pM0d (k) 1s not right exact in general.

Consider as above the k-algebra A: =k [x] over a field k.

Denote by I = A.x the ideal generated by x. Notice that A/I"" ~ k
[x]® ", where k [x]° ", denotes the k—vector space consisting of
polynomials of degree <n.

For p < n denote by U,,; A/I"— A/I" the natural epimorphosis.
They define a projective system of A—modules. One checks easily
that

AT~k [(x)].
The ring of formal series with coefficients in k, on the other
hand, for p < n the monarchisms I"— I" define a projective system of

A— modules and one has
li:li/ln: 0
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Now consider the projective system of exact sequences of A—
modules 0 — I">A — A/I'> o

By taking the projective limit of these exact sequences one gets
the sequence 0 — o k [x] — k [ (X) ] — o which is no more exact,
neither in the category Mod (A) nor in the category Mod (k).

f
Proposition (4.2.8) [6.71.72]: Let A,be a ring and leto — {M } i

gn

{M,} = {M",}—o0 be an exact sequence of projective systems of
A-modules indexed by N. Assume that for each n, the map M',;—
M, 1s surjective. Then the sequence

g

. l' ] .
0— < M, L, &2 M, —» £ M",— o s exact.

Proof:

Let us denote for short by up the morphisms M,— M,_; which
define the projective system {M,}, and similarly for u',, u",.

i
Let {x"p}p€ o M",.
Hence x",€ M"p, and G, (Xx"p) = 1.

We shall first show that u,: g5 (xa) =955 (x"s1) is surjective.
Letx, 1€EgnY; (x"n1). Take X,€gn 21 (X").

Then g, 1 [ Xn (Xn) — Xn1 | = 0. Hence X, (Xn) — Xpo1 = for (X'no1).
By the hypothesis f, | (x1) =f,1 [ u'h (x'w) ] for some x';, and thus u,
(Xp— T (X'n) = Xp1.

Then we can choose x,€g;,,* (x",) inductively such that u', (X,) = Xn|

Section (4.3) Injective and projective objects:
Definition (4.3.9) [6.71.72]:
(1) An object I of ¢ is injective if the functor Hom, (.,I) is
exact.
(1))  One says that ¢ has enough injective if for any x € C there
exists a monomorphism x — f with I injective.
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(ili) An object p is projective in ¢ if it is in jective in ¢, if the
functor Hom, (P,.) is exact.

(iv) One says that ¢ has enough projective if for any x € C
there exists an epimorphism p — x with p projective.

Proposition (4.3.9): The object I € C is injective if and only if, for
any X, yEC and any diagram in which the row is exact.

o — X—’X

\

The dotted arrow may be completed, making the solid diagram
commutative.

Proof. (i) Assume that I is injective and let x" denote the co-

kernel of the morphism x' — x. Applying Hom, (.,I) to the sequence
o — x' — x", one gets the exact sequence; 0 — x' — x — x"

Hom, (X",I) —» Hom, (X,I) —<f , Hom, (X'.I) — o
Thus there exists h: x — I such that hof =k,
(i1) Conversely, consider an exact sequence
f g

0 — x—1—» x —=» x" — 0. Then the sequence 0 —

Hom, (X",I) __oh , Hom,(X.I) _°", Hom, (X,) — 0 is
exact by the hypothesis.

By reversing the arrows, we get that p is projective if and only
if for any solid diagram in which the row is exact;
P

h k

X fl xvv—bo
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The dotted arrow may be completed, making the diagram
commutative. [6].

Lemma (4.3.10) [6.71.72]: Leto —» x' _ f , x % , x"—»
o be an exact sequence in ¢, and assume that x' is injective.
Then the sequence splits.

Proof. Applying the preceding result with k = idx', we find
h: x— x' such that kof = idx'. Then apply.

Proposition (4.1.11): It follows that if F: ¢ — ¢' is an additive
functor of abelian categories, and the hypotheses of the lemma are
satisfied, then the sequence o — F (x') — F (x) F (x") — o splits and
in particular is exact.

Lemma (4.3.12) [6]: Let x', x" belong to ¢. Then x' @ x" is injective
if and only if x' and x" are injective.

Proof. It is enough to remark that for two additive functors of
abelian categories F and G, x — F (x) ® G (x) is exact if and only if
F and G are exact. Apply lemmas (4.3.10) and (4.3.11), we get;

Proposition (4.3.13): Let 0 — x' — x— x"—0 be an exact sequence
in ¢ and assume x' and x are injectives. Then x" is injective.

Example (4.3.14) [6.71.72]:

(1) Let A be aring. An A—-modules M free if it is isomorphic
to a direct sum of copies of A, that is, M ~ A®. Tt follows
from proposition (4.2.8).

(i1)) That free modules are projective.

Let M€ Mod (A). For meM, denote by A,, a copy of A and
denote by Im€A,, the unit. Define the linear map.

lII®mEM Am—> M
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By setting ¥ (I,) = m and extending by linearity. This map is
clearly surjective. Since the left A—modules @mem An— M is
free, it 1s projective.

(i) Ifkis a field, then any object of Mod (k) is both injective
and projective.
(iii) Let A be a k—algebra and let M€ Mod (A"). One says that

M is flat if the functor M @a.: Mod (A) — Mod (k) is
exact. Clearly, projective modules are flat.

Definition (4.3.10) [1.25. 35]: Let Y and g be abelian categories and
let F: y—g be a covariant functor. We say that F is;

e Left exactif o - A — B — c is exact implies that o — F
(A) — F(B) — F (c) is exact.

e Right exactif A — B — ¢ — o is exact implies that F (A) —
F (B) — F (¢) — o is exact.

e Exactifo — A — B — ¢ — o is exact implies that o — F
(A) > F(B) — F (c) — o is exact.

If F: ¥Y— G be is contra variant functor, we say that D is left
exact if for every exact sequence A — B — ¢ — o, the sequence o
— D (c) - D (B) — D (A) is exact.

Similar contra variant definitions held for right exact and exact
functors.

Example (4.3.15) [1.25. 35]: The functor Hom (—,B) is left exact

u &
contra variant. In other words, if A' = A - A" — o is exact, then
the induced

E* U*
o — Hom (A",B) — Hom (A,B) - Hom (A',B), is exact.

Proof. First we show injectivity of €*. Let g: A" — B, and
suppose €* (g) =ge=o.
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By surjectivity of € this implies that g is the zero map, giving us
injectivity of g*.

Secondly we show that Ime*cKer p*. A map in | m € * is of the
form g€ for some g. Clearly g € p is the zero map, since € p already
1s.

Finally, we show that Ker p*C | m £*. Suppose h: A — B is Ker
pu*, so h p is the zero map. This means that Ker hojm p = Ker ¢,
since € is surjective, this means we can find a unique map o: A" — B
such that @€ = h, but then h = ¢* (0) € | me*. Note also that the
functor Hom (A,-) is an example of a left exact covariant functor.

Example (4.3.16) [1.25 . 35]: Consider the exact sequence 0— Z—t—
Z —9 37, o, where @ is multiplication by three, and ¥ is
reduction module three. Apply the functor Hom (—,Z;)

0o — Hom (Z373) —¥*» Hom (Z,Z;)—2*» Hom (Z,Z5)

However, if we recall the definition of we see that for f: z — Z,
O* (B) = B 0 O, which is the zero map as B is homomorphism. This
@* 1s not surjective, and the sequence above is not exact.

So Hom (—, B) is a contra variant functor which is left exact and
not exact.

From this example a natural question a rises; how can we make
a left (or right) exact functor in to an exact fucntor? Another way of
phrasing this question is the following; given a short exact sequence.

o—-A—-B—>c—o0

and a left exact functor F;: Y— Gm how can we extend the exact
sequence

o—F(A)—>F(@B)—F(c)

to the right to from a long exact sequence? The theory of derived
fucntors will provide an answer to this question, provided that ¥ is a
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'nice' enough category. What we will do is find ourselves a sequence
of functors R' F: Y— G and continue the above sequence like this.

o — F(A)— F(B) — F(c) » RF (A) - RF (B) = RF (¢)
—RF(A)— ....... (1)

Then F will be exact if f R'F = o, and we will have a measure of
'how exact' F is by the n for which R" F =o.

Lemma (4.3. 17) [1. 25 . 35]: If p is projective then Ext' (P,B) = o
for any R—module B.

Note: A similar proof shows that Ext' (A,I) = o for all R—
module A when I is injective.

Proof. We want to show that Hom (p,—) is an exact functor, then
from the definition of a derived functor it follows that Ext' (p,—) is
zero (and actually that Ext' (p,—) is zero (and actually that Ext' (p,—)
=o forall > 1). To this end, leto - A ——*B—-— ¢ — 0 be
short exact sequence and consider the sequence.

Hom (P,A) —¥ 4 Hom (P,B) —*— Hom (P,C)

This means that if we have a projective presentation of A,i.e. a
short exact sequence of R-modules S —%—»P —+ A with p
projective, then by applying, Hom (-, B) we get ourselves an exact
sequence.

0 —» Hom (A,B)—¢* » Hom (P,B)—% » Hom (S,B)
— + Ext* (A,B) —» 0

It then follows that we can think about Ext (A,B) as the co-
kernel of p*, in the traditional sense of the word, i.e. ExtA,B) ~
Hom (S,B) / Im p*. Then Ext' is composed of equivalence classes,
with We [@] if and only if ¥ = O + o 0 p*. some a: p —B.

[Recall that u* (o) =a p.].

Note: Ext' can also be computed using an injective presentation.
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Lemma (4.3.18) [1.25. 35}: Let the following be a commutative
diagram with exact rows.

B’ K E’ —'l)’> A
¥
0
k v
—» VY - 5
B E A

Then the left-hand square si a push-out diagram proof. Let

B' k' > E'

Y o
§

R— F

Be another push-out diagram. We deduce that if k' is a
homomorphism then so B. It also tells us that a induces an
isomorphism Coker B' — Coker k'. This means that there is a
injective map p:p — AsuchthatB' _ B _ p—H* , A is an
extension.

But in our original diagram we had another candidate for a
push-out, so by the universal property of push-outs there must exist a
map o: p — E with @ =da and k = 6.

<i—Eg

Q

Q -
N

oe
3|
=

O ) 0,
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All this information gives us the above diagram, and by the last
assertions made concerning the commutatively of & we see that 9,
and 9, are identity maps and thus isomorphism. An application of the
Lemma, then allows us to conclude that 6 is an isomorphism and we
are done.

Theorem (4.3.19) [1.25.35]: For R-modules A.B there is an
isomorphism between the E (A,B) and Ext., (A,B).

Proof. Let R —~ » p &, A be a projective presentation of
Aand let B—~— E — , A be an element of E (A,B),

u,/ €, A
///

i )

/

/7

R
1
B»’_k, L —Y
The map O exists since p is projective.

This map then induces a map ¥ which makes the diagram
commute, and ¥ in turn defines an equivalence class [VY] € Ext'
(A,B). We need to show that this is well defined, so suppose @, and
@, are two maps inducing ¥;, : R — B. Then 0, — @, = KT for
some T: P — B. This, together with commutatively of the diagram
tells us:

30, op =KoY
:)) (@1-@2) O},l:kO(\Pl—lPZ)
STop ¥, — ¥, since k is a monomorphism

3 Y) = ()

It is clear that if we had taken a different representative of the
same element of E (A,B) then it would have induced the same
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element in Ext' (A,B), so we have a well-defined map n: E (A,B) —
Ext' (A,B).

Conversely, let ¥: R — B a representative of an element in Ext'
(A,B), and take the push-out of ¥ and p. This gives us a similar
diagram to before;

Y

b4 T@
B E —

_k

We deduce that k is a homomorphism and v is the co kernel of
k, so that ok = 0. So the bottom sequence is exact, and is thus an
extension. As before we need to show that this extension is well
defined, i.e., it does not depend on the particular representative P.
However, this follows without too much effort from the definition of
representatives of Ext' and from Lemma (4.4.17).

We thus obtain a well-defined map C : Ext' (A,B) — E (A,B).
Applying Lemma (4.4.17) one more time also tells us that { are
inverses to each other, which finishes the proof.

Remark (4.3.20) [1. 25. 35]: In fat it turns out that the isomorphism
is canonical, as the maps n and ( are independent of the projective
presentation of A chosen in the first line of the proof. Furthermore,
the isomorphism is natural in both A and B.

Remark (4.3.21) [1.35. 35]: This equivalence of notions is very
useful because it means that Ext' is defined in a general abelian
category, even if that category has no projective or injective.

However, in practice Ext' is calculated using projective and
injective resolutions, and we will see some more examples of this.
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Section (4.4) Complexes in abelian categories [6.71.72]:
co homology
Recall that the categories ¢* (c) are abelian for * =+, — b.
Let Xe€C (c¢). One defines the following objects of c;
7" (X) :=Ker di
B'(X):=Imd.
H" (X) :=Z7" (X)/B" (X) [: = Coker (B" (X) — Z" (X) ]

One calls H" (X) the n-th co homology object of x, if f: x — y is
amorphism in ¢ (c¢), then it induces morphisms Z" (X)— Z" (y) and
B" (X) — B" (y), thus amorphism H" (f): H" (X) — H" (y). Clearly,
H" (XQY) ~H"(X). ® H" (y). Hence we have obtained an additive
functor: H" (.) : ¢ (¢) —> ¢

Notice that H" (X) = H® (X [n] ).
There are exact sequences
X" 47, kerd —H"(X) o0, o0— H"(X) — Coker
d 1’1 _d“>Xn+1
The next result is easily checked.
Lemma (4.4.21). The sequences below are exact; [6].

n— n n+l
(44) o— H"(X) > Coker (d) _%*,Kerd— H"! (X)—o.

One defines the truncation functors;

4.5) =" T=": ¢ (¢) — ¢' ()
(4.6) =", T=": ¢ (¢) — ¢’ (¢)
As follows. Let x: = ...... S XS X' XM L
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One sets;
T X):=..»X"">X"'Skerd —;(0 —
T (X):=...» X' 5>X">Imnd —>0—......
T=" (X) : = — 0 — coker d:1—> X" XM
”IQH(X) :=—>0—>Imd11>Xn—>XI1+1 .......
There is a chain of morphism in ¢ (¢);
TX >T"X > X > T"X > T"X,
And thee are exact sequences in ¢ (¢);

(0 T X 5T X — 1" (X) [-n] — o,
00— N'X)[n]->T"X ->T""(X) - o,

@47 < o= T"X—>X— T (X)— o,

0->T"'X5>X->T"X)—>o.

\

48) (T"X) —=» H(T"X)~JP®  j>n
0 j<n,

0 j<n,

%) = W) = {HJ‘ © iz
The verification is straight forward.

Lemma (4.4.22) [6.71.72]: Let ¢ be an abelian category and let f: x
— y be a morphism in ¢ (¢) homotopic to zero. Then H" (f): H" (X)
— H" (y) is the morphism.

n

n n-1
Proof, Let f*=S"" o d, + % 0s". Then dz = o on ker d*

n-1 n n-1
and CL os'=oonkerd,/Im dy . Hence H" (f);

1

0 n— n+l n-1 .
kerd /Imd_— kerd /Im dy 1s the zero morphism.

132



In view of lemma (4.4.22), the functor H’: ¢ (c) — ¢ extends as
a functor.

H’ k (c) > ¢

One shall be a ware that the additive category k (c) is not
abelian in general.

Definition (4.4.11) [6.71.72.93.94]: One says that a morphism f: x
— yin ¢ (c) is a quasi-isomorphism (a qis, for short) if H* (f) is an
isomorphism for all k€Z. In such a case, one says that x and y are
quasi-isomorphic.

In particular, x€C (c) is qis to o if and only if the complex x is
exact.

Remark (4.4.23) [6.71.72]: By lemma (4.4.22), a complex
homotopic to o is qis to o, but the converse is false. One shall be
aware that the property for a complex of being homotopic to o is
preserved when applying an additive functor, contrarily to the
property of being qis to o.

Remark(4.4.24) [6.71.72]: Consider a bounded complex x* and
denote by y* the comfglex gives by y = H' (x), d =0, one has;

4.9) y=@iH (x)[]

The complexes x" and y" have the same co homology objects. In
other words, H (y) ~ H (x). However, in general these
isomorphisms are neither induced by a morphism from x'—y’, nor
by a morphism from y'—x’, and the two complexes x* and y" are not
quasi-isomorphic.

Long exact sequence

Lemma (4.4.25) (The "five lemma'") [6.71.72] Consider a commutative
diagram; and assume that the
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o o

X x—

R

VO ——yl—

Bo B

Rows are exact sequence.

(1)
(i)

If f is an epimorphism and f" £ are monomorphisms,
then f* is a monomorphism.

If £ is a monomorphism and f°, f* are epimorphisms, then
f' is an epimorphism.

According to convention, we shall assume that c is a full
abelian subcategory of mod (A) for some ring A. hence
we may choose dements in the objects of c.

Proof (i) Let x,€X, and assume that f* (x,) = 0. Then £ 0
0> (X2) = 0 and f° being a monomorphism, this implies o,
(x2) = 0. Since the first row is exact, there exists x;€X|
such that o, (x;) =X,. Sety; = f (x1). Since B; o f x1)=0
and the second row is exact. There exists yo€Y" such that
Bo (Yo) = f' (x,). Since f’ is an epimorphism, there exists
x0€X" such that yo = f* (xo). Since f' 0 ay (xo) = f' (x)) and
f' is monomorphism, ay (X¢) = x. Therefore, x, = o (x;) =
0

(iii) Is nothing but (i) in C.

Lemma(4.4.26)(The snake lemma)[6.71.72] Consider the comm-
utative diagram in ¢ below with exact rows;

X _f X_8 , X"v , o

¢

1 £l g

O——yY —>» V —» y"

Then it gives rise to an exact sequence;

Ker a— Ker f— Ker yS o0 ker o— co ker f— co ker y The proof
is similar to that of lemma (4.4.25)
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Theorem (4.4.25) [6.71.72]: Leto —» x' £, x _2, x" — 0 be an
exact sequence in ¢ (¢).

(i)  For each k € Z, the sequence H* (x')— H* (x)— H* (x") is
exact.

(i) For each k € Z, there exists 8* : H* (x") —» H" (x)
making the long sequence.

4.10) ... > H'(x) » H'x") 25 "' x) - H"' x) -
exact. Moreover, one can construct 8 functorial with respect to short
exact sequence of ¢ (¢).

Proof. Consider the commutative diagrams;

0 0

(0]
H“L(x') Hkl<x) H<(x")

l l l

Cokerdk'fl — > Cokerdk! —— Cokerdkjl —> 0

dl;i i) |

Cokerdk-1 —* Cokerd! — > Cokerdk-1

x l X g x"
1

Hk+1( .) Hk ( ) Hk+1( ")
0 0 0

The columns are exact by lemma (4.4.21) and the rows are
exact by the hypothesis. Hence. The result follows from lemma
94.4.22).

Corollary (4.4.26) [6.71.72]: Consider a morphism f: x — y in ¢ (c)
and recall the Mc (f) denotes the mapping cone of f. There is along
exact sequence;

@.11) .. H" [Mc (D] H'(%) s H* (y) — H* [Mc (]—

4.12) o—»>y—->Mc(f)—x[l]—o0
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Clearly this complex is exact. Indeed, in degree, it gives the
split exact sequence 0 — y'— y"
X" x"'— o. Applying theorem (4.4.27), we find a long exact
sequence.
(4.13) ...—» H"'[Mc (D]—» H ' [x (1)] 8, H"(y)—
H* [Mc (D]— ......

It remains to heck that, up to a sign, the morphism & '; (x) —

H* (x) — H" (y) is H* (f). We shall not give the proof here.
Theorem (4.4.27) [6.71.72.93.94]: Let x~ be a double complex.

Assume that all rows x* and columns x" are o for j < o and are exact
for j > o, Then H? (x*") ~ H (x™°) for all p.

Proof. We shall only describe the first isomorphism H” (x”7) ~
HP (x°) in the case where ¢ = Mod (A), by the so-called "weil
procedure". Let x"°€XP®, with d' x»* = o which represents yeH"
(x7°). Define x™° = d" x™°. The d' x™° = 0, and the first column being
exact, there exists x* 'eXP ! with d' x* ' = x™!. One can iterate
this procedure until getting x*P€X"P,

Since d" x*? = o, and d' is injective on x*? for p > o by the
hypothesis, we get d" x*= 0. The class of x*’in H” (x™) will be the
image of y by the wail procedure. Of course, one has to check that

his image close not depend of the various choices we have made,
and that it induces as isomorphism. This can be visualized by

diagram,;
x*P T» (o)
d" d'l« 1.p-1
le -2 — X
Xp—l.l l
.4l
ey d Y
d'|
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Section (4.5) Resolutions [6.71.72]: The aim of this subsection is to
illustrate and motivate the constructions which will appear further.
In this subsection. We work in the category Mod (A) for a kOalgebra
A. recall that the category Mod (A) admits enough projective.

Suppose one is interested in studying a system of linear
equations.

No )
(414) 2 Dij Uj = U, (1 =1........ , Nl)
=1

Where the pjj is belong to the ring A and u;, u; belong to some
left A—modules. Using matrix notations, one can write equation
(4.14).

eq(4.15) Pou =y

Where P, 1s the matrix (p;j) with N; rows and N, columns,
defining the A—linear map P,.: S"°— S™'.

Now consider the right A—linear map
eq(4.16) P AN AN

Where . P, operates on the right and the elements of A™° and
AN are written as rows. Let (I eno) and (fi.......... N1
denote the canonical basis of AN and AN" respectively. One gets;

No
(417) fi. P, = jzl Pij S (1 =1........ , Nl)

j
Denote by M the quotient module AN/AN'.P, and by : ¥ A™°— M

the natural A—linear map.

N
Hence Im P, is generated by the element zopij ej fori=1.N;.
-1

Let (u;. ....... , Upo) denote the images by ¥ of (e;. ....... , €no) and
No

relation I pjuy =ofori=1....... , N1. By construction, we have
j=1

an exact sequence of left A—modules;
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(4.18) AN P ANy Mo,

—

Applying the left exact functor Homjy (.,S) to this sequence, we
find the exact sequence of k—modules;

eq4.19) o — Homx (M,S) — SN _Po_ SN

(where P,. operates on the left). Hence, the k—modules of
solutions of the homogeneous equation associated to eq(4.14) is
described by Homy (M,S).

Assume now that A is left Noetherian, that is, any sub module
of a free A—modules of finite rank is of finite type. In this case,
arguing as in the proof of proposition (4.5.31), we construct an exact
sequence.

...... LAV P AN P AN ¥ Mo

In other words, we have a projective resolution L'— M of M by
finite free left A—modules

L :.... N LN RNy AN

Applying the left exact functor Homyu (., S) to L', e find the
complex of A—modules;

(4.20) 08V P, g P gn
Then H°® (Homy (L', S) ~ ker P,

H' (Homy (L', S) ~ ker (P1) / Im (P,)

Hence, a necessary condition is sufficient if H' (Hom, 4, S) ~

0. As we shall see the co-homology groups H'(Hom, (L', S) do not
depend, up to isomorphism's, of the choice of the projective

resolution L' of M’
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Definition (4.5.12) [6.71.72]: Let J be a full additive sub category of
c. We say that J is cogenerating if for all x in c, there exist y € J and
monomorphism x— y.

If J is cogenerating in C” , one says that J is generating.

Notations (4. 5. 28) [6.71.72]: Consider an exact sequence in ¢, 0 —

X — J°— .... > J"> .... and denote by J the complex 0 — I°— ....

— J"— ..., we shall say for short that 0o — x — I’ is resolution of x.
If the J*° belong to J, we shall say that this is a J, we shall say that
this is a J-resolution of x. When J denotes the category of injective
objects one says this is an injective resolution.

Proposition (4. 5. 29) [6.71.72]: Let ¢ be an abelian category and,
let J be cogenerating full additive subcategory. Then, for any X€ C,
there exists an exact sequence.

4.21) 0—-ox— - ... . >T— ...
With J'eJ for alln > o
Proof we proceed by induction Assume to have constructed;

0o—->x—>I— ... .->J—....

For n = o this is the hypothesis. Set B" = coker (J"'—I") (with
J''=x). Then J*'>J"— B"— o is exact. Embed B" in an object of J;
0o — B"— J"! Then J"'> J"— J™' is exact, and the induction
proceeds. Then sequence.

(4.22) J=0-2J— . ... >J—> .. ..

Is called a right J-resolution of X. If J is the category of
injective objects in ¢, one says that J is an injective resolution. Note

that, identifying x and J" to objects of ¢ (c),
(4.23) x — J is apis
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Of course, there is a similar result for left resolution. If for any
x€C there is an exact sequence y — x — o with y€J, then one can

construct a left J- resolution of x, that is, aqis y— X, here the y"*
belong to J. If J is the category of projuective objects of ¢, one says

that J' is a projective resolution.

Proposition (4.5.31) is a particular case of a result that we state
without proof.

Proposition (4.5.30) [6.71.72]: Assume J is cogenerating. Then for

any X'€ ¢’ (c), thee exists y€ C' (J) and a quasi—isomorphismx —
y
Injective resolutions

In this section. ¢ denotes an abelian category and I, its full
additive subcategory consisting of injective objects. We shall
assume.

€q(4.24) The abelian category ¢ admits enough injective.
In other words, the category I, is cogenerating.
Proposition (4. 5. 31) [6.71.72]:
(i) Let f:x— I be a morphism in ¢" (c). Assume I" belong to

¢ (I) and assume X is exact. Then f is homotopic to o.

(ii) LetI'€c’ (c) and assume I’ is exact. Then I" is homotopic to
0.

Proof, (i) consider the diagram;
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We shall construct by induction morphism s* satisfying;
=" d R+ ot s~
X X

For j << o, s = 0. Assume we have constructed the s’ for j <k.
Define g*=f—d “lo s*. One has

god! =fod=dos od!
= ffod - d Tlof'+d ¥4d ¥b s'=0

k . k k-1 . . .
Hence, g facrizes through x” /Imd, . Since the complex x is
k k-1 K+1 - .
exact, the sequence 0 — x /Imd, " — x~  1s exact. Consider.

0— x°/ Imdlggle X<t

the dotted arrow may be completed by proposition (4.3.12)
(i)  Apply the result of (i) with X' =1 and f=idx
Proposition (4. 5. 32) [6.71.72]:

(i) Let: X—>Y be a morphism in ¢, let 0 > x — X be a

resolution of x and let 0 — y — J' be acomlex with the J*°
injective. Then there exists morphism
f: X'— J making the diagram below commutative:

—

(4.25) o ——»
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(i) The morphism f in ¢” (¢) constructed in (i) is unique up to
homotopy.

Proof.

(1) Let us denote by dy (resp. dy) the differential of the

complex x™ (resp. J'), by d ;1 resp. d ') the morphism x
— x° (resp. y — J°) and set f ' = f.

We shall construct the f*° by induction. Morphism f
constructed f°, ....f" Letg"=d o

F':ox" —

The morphism g" factories through h": x" / Imd— J**!
Since X' is exact, the sequence 0o — x" / Imlsx is

. 1. . . . 1
exact. Since J""' is injective, h" extends as ™" : x™"!

JH+1
(1i1) We may assume f = o and we have to prove that in this case
f is homotopic to zeno, since the sequence 0 — x — X is
exact, this follows from proposition (4.5.33) (1), replacing

the exact sequence o — y — J” by the complex o — 0 — J".

Section (4.6) Derived functors [6.71.72]:

Let ¢ be an abelian category satisfying (4.24). Recall that I,
denotes the full additive sub category of consisting of injective
objects in ¢. we look at the additive category k (I.) as a full ad dive
sub category of the abelian category k (¢).

Theorem (4. 6. 33) [6.71.72]: Assuming eq(4.24), there exists a
functor A: ¢ — k (I.) and for each x€C, a qis x — A (x). functorially
inx € C.

Proof. (i) Let x € C and let I € ¢’ (I.) be an injective resolution
of x. the image of I;( in k" (c) is unique up to unique isomorphism,
by proposition (4.5.34). Indeed consider two injective resolution
I, andJ_ofx. By proposition (4.5.34) applied to id,, there exists
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a morphism f, I,— J, making thediagram eq(4.25) commutative
and this morphism is unique up to homotopy, hence is unique in

k'(c).Similarly, there exists a unique morphism g": J — I'in k'(c).

Hence, f and g are isomorphism inverse one to each other.

(i) Let f: x — y be a morphism in c, let I, and Ibe injective
resolutions of x and y respectively, and let f : [,— I, be a
morphism of complexes such as in proposition (4.5.34).

Then the image of " in Homy.qq (Iy, Iy ) does not depend on

the choice of I' by proposition (4.5.34). In particular, we get
that if g: y—z is another morphism in ¢ and I, is an
injective resolution of z, then g" o f = (gof)” as morphisms
ink" (I,).
Let F: ¢ — c be a left exact functor of abelian categories and
recall that ¢ satisfies eq(4.24). Consider the functors.
¢ A, k() —> k() _H" ¢
Definition (4.6.13) [6.71.72):
(4.26) R'F=H"oFoA

And calls R"F the n-th right derived functor of F. By its
definition the receipt to construct R"F (x) is as follows;

e Choose an injective resolution I. of x, rthat is, construct an
exact sequence 0— x — [~ w1th>I EC (Io).

e Apply F to this resolution.

e Take the n-th cohomology.

In other words, R"F (x) ~H" [ F (i) ]. Note that:

e R'F is an additive functor from c to ¢.
e R'F(x) ~oforn<osincel,=of, fj< o,
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e R°F (x) ~F (x) since F being left exact, it commutes with
kernels,

e R'F (x) ~o for n # o if F is exact,

e R'F (x) ~o for n # o if F is injective, by the construction of
R'F (x)

Definitions (4.6.14) [6.71.72]: An object x of ¢ such that R“F (x) ~ o
for all k > o is called F-acyclic.

Hence, injective objects are Facyclic for all left exact functors F.

Theorem (4.6.34) [6.71.72]: Leto - x'—f ,x 2 , x" — o
be an exact sequence in c. Then there exists a long exact sequence

0 — F(x) F (x) —....—»R*F(x') —» R*F (x) »>R"F (x") —....

Sketch of the proof. One constructs an exact sequence of complexes

0 — x"— x'— x" — 0 whose objects are injective and this sequence

si quasi-isomorphic to the sequence o — x' f L, x—2 ,x">oin

c().0->FEx)>Fx)>Fx")—0

Since the objects x" are injective, we get a short exact sequence in ¢
(c);
Then one applies theorem (4.4.27).

Definition (4. 6. 15): Let J be a full additive subcategory of c. one
says that J is F-injective if:

(1)  Jis cogenerating.

(1) For any exact sequence 0 — x' = x — X" — o in with x'
€J,x €], thenx" €.

(1) For any exact sequence 0 — X' = x — X" — o in ¢ with x'
€J, the sequence 0o —» F (x') - F (x) » F (x") — o is
exact.

By considering C*, one obtains the notion of an F projective
subcategory, F being right exact.
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Lemma (4. 6. 35) [6.71.72]: Assume J is F-injective and let x' €C"
(J) be a complex qis to zero.

Proof:

We decompose x into short exact sequences (assuming that this
complex starts at step o for convenience):

0o x> x>z >0
12 2
0—>Z—>X—>Z—>0
n—1 n n
0>z —X—>2zZ—0

by induction we find that all the z"* belong to J, hence all the
sequence,

0->F(EZ")>FE)—> (") —o
are exact. Hence the sequence

0>FEx)>F®x)—>........

is exact.

Theorem (4.6.36) [6.71.72.93.94]: Assume J is F—injective and
contains the category I, of injective objects. Let x € C and let 0 — x

— v be a resolution o x with y'x € C" (J). Then for each n, there is

an isomorphism R" F (x) ~H" [F (y)].

In other words, in order to calculate the derived functors R" F
(x), 1t 1s enough to replace x with a right J-resolution.

Proof:

Consider a right J-resolutiony” of x and an injective resolution I' of
X. by the result o proposition (4.5.34), the identity morphism x— x
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will extend to a morphism of complexes f: y— I making the
diagram below commutative;

0 —> X —

v
idl f l
0 — x — I

Define the complex k' = Mc ('), the mapping cone of f. By the
hypothesis k™ belongs to ¢* (J) and this complex is qis to zero by

corollary (4.4.28). By lemma (4.6.37). F (k) is qis to zero.

On the other-hand, F [Mc (f)] is isomorphic to Mc [F (f)], the
mapping we find a long exact sequence.

. > HY[F ()] = H*[F (I')] — H" [F (K)] = ...
Since F (k') is qis to zero, the result follows.

Theorem (4.6.37) [6.71.73]: Left F: — ¢' and G: ¢' — c¢" be left
exact functors of abelian categories and assume that ¢ and c¢' have
enough injective.

(i)  Assume that G is exact. Then R! (GoF) ~ Go R! F.

(i) Assume that F is exact. There is a natural morphism R!
(GoF) — (R' G) of.

(iii) Letx € C and assume that R’ F (x) ~ of or ] > o and that F

sends the injective objects of ¢ to G-a cyclic objects of c'.
Then R’ (Go F) ~ (R'G) of.

Proof:

For x€C, let o —» x — I be an injective resolution of x. Then
R (GoF) (x)~H [GoF (I,)].

(i) IfGis exact. H [GoF (I,)] is isomorphic to G [H(F (1)].

146



(1) Consider an injective resolution 0 — F (X) —jrx) F (X).
By the result of proposition (4.5.34), there exists a
morphism F(I,)—G (jrw). Applying G we get a morphism
of complexes; (Go F) (j ). = G (jr))- Since H' [GoF (1y)]
~R! (Go F) (x) and H [Gg)] ~R! G
[F (x), we get the result.

(i11)) Denote by I the full additive sub category of ¢' consisting
of G-acyclic objects (see Example letter (4.6.40). By the
hypothesis, F(I,) is qis to F(x) and belongs to ¢ (Iy).
Hence R’ G [F (x)] ~ H' [G (F (i,)] by theorem (4.6.38).

Example (4.6.38)[6.71.72.93.94]: Let F: c—¢ be a left exact
functor and assume that ¢ admits enough injective.

(1) The category 1. of injective objects of c is f—injective.

(1) Denote by Ir the full sub category of ¢ consisting of F—
acyclic objects. Then Ir contains, 1., hence is
cogenerating. It easily follows from theorem (4.6.36) that
conditions (i) and (iii)) of Definition (4.6.15) are
satisfied,. Hence I is F—injective.

Derived bi functor:

Let F: ¢ x ¢' — c" be a left exact additive bi functor of abelian
categories. Assume that ¢ and c¢' admit enough injective. For x€C
and yeC', one can thus construct [R'F (x,.)] (y) and [R'F (.,y)] (X).

Theorem (4.6.39) [6.71.72]: Assume that for each injective object
I€C the functor F (I..): c'—c" is exact and for each injective object
I'eC' the functor G (.,I'): c'—c". Then, for j € Z. X€C and y € C',
there is an isomorphism, functiorial in x and vy: [R' F(x,.)] (y) ~ [R
F(,y)] (x).

Proof:

leto >x —> 1, and o — y — I, be injective resolution o x
and y, respectively consider the double complex;
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L]

1
0—> 0 —» FIy)—> F(.y)—>

o

0 0 0 0 0
0o —» F(x,ly) —» F(Ix,ly) —»F(Ix,ly) —»

L

1 0 1 1
o —» F(x,Ix) — F(Ix,Iy) —F(x,Ily) —>

.

The co homology of the first row (resp., column) calculates R“F

(., y) (x) [ res., R“F (x, .) (y) ], since the other rows and columns are
exact by the hypotheses, the result follows from theorem (4.4.29).
Assume that ¢ has enough injectives and enough projective.

Then one can define the j-th derived functor of Hom, (x,.) and
the j-th derived functor of Hom, (.,y). By theorem (4.6.41) there
exists an isomorphism.

R’ Hom, (x,.) (y) = R’ Hom (.,y) (%)

Functorial with respect to x and y. Hence, if ¢ has enough
injectives or enough projective, we can denote by the same symbol
the derived fucntor either of the functor Hom, (x,.) or of the functor
Hom, (., y).

A similar remark applies to the bifunctor®, : Mod () x Mod
(A°")— Mod (k).

Definition (4.6.16) [6.71.72.93.94):

(1) If ¢ has enough injectives or enough projective, one
A
denotes by Ext]c, (+,.) the j-th right derived functor of

148



Hom..
(11) For a ring A, one denotes by Tor (.,.) the left derived
functor of .@a.

Hence, the derived functors of Hom, are calculated as follows.

Let x, y € C. If ¢ has enough injectives one chooses an injective

resolution I' of 'y and we get
y

(4.27) Exij (x,y) ~ H [Hom, (x, } )].

If ¢ has enough projectives, one chooses a projective resolution

p  of x and we get.

(4.28) Ext'. (x,y)~ H [Hom. (p ,y)].

If ¢ admits both enough injectiées and projectives, one can
choose to use either eq(4.27) or eq(4.28). When dealing with the
category Mod (A), projective resolutions are in general much easier
to construct.

Similarly, the derived functors of @4 are calculated as follows.
Let NE Mod (A™) and M€ Mod (A) One constructs a projective
resolution R of N or a projective resolution B, of M. Then.

Tor;" (N,M)=H' (R®a M)~ H' (N @4 P,)).

In fact, it is enough to take flat resolution instead of projective
ones.

Section (4.7) Koszul complexes [6.71.72]:

In this section, we do not work in abstract abelian categories but
in the category Mod (A), for a non necessarily commutative k-
algebra A. If afinite free k-Module of rank n, one denotes by A L the
k-Module consisting of j-multilinear alternate forms on the dual
space L* and calls it the j-th exterior power of L. (Recall that L*=
Homjy (L,K). Note that A'L ~L and A" L ~K. one sets A° L=K.
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5 N ,n }, one sets.

ForasubsetI, { 1........... ,n }, one denotes by | I | its cardinal.
Recall that;

N L is free with basis { Aejj ... Aein: i< i1<1i», <.....<i;<n}.

Ifi;. ., iy belong to the set (1. ..., n), oendefines Aej .... A€im

by reducing to the case where 1,< .....< 1, using the convention
ei/\ ¢ =— ej/\ Ci

let M be an A—modules and let Y=(Y¥;.....,'¥,) be an endomorphism
of M over A which commute with one another;

{P,¥;}=0,1<1,)<n
(Recall the notation [a,b]: =a b —ba). Set M (j) =M @ N k"

Hence M =M and M"™~ M. ~ M. Denote by (e;.....c,) the
canonical basis of k. Hence, any element of MY may be written
uniquely as a sum.

)
m = [1] =jm1 ®61.

One defines d € Homp (MG) , MGH)) by;

T
dm Qe; = i=1 v (my) Aer.

And extending d by linearity. Using the commutatively of the
Wi one checks easily that do d — 0. Hence we get a complex, called a

Koszul complex and denoted K (M,¥);
o—>M? _d , ... —>M" 5o

When n = 1. the chomology of this complex gives the Kernel
and co-kernel of ¥;. More generally
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H° [K' M,¥)] ~Ker¥,N ....... NKer ¥,
H'[K M¥)|~M/[¥, M)+ ...+ ¥, (M) ]

Set W'= {¥;. ........ ¥,1 } and denote by d' the differential in K’
(M,¥"). Then V¥ defines a morphism

(4.29) ¥n : K’ (M,?¥)— K'(M,¥')

Lemma (4.7. 40) [6.71.72]: The complex K'(M,¥") [1] is isomorphic
to the mapping cone o—¥,

~

Proof. Consider the diagram
Mc (lfln)pT> Mc (an)pH

xpl x“l

Kp+1 (M,\Ij) T’ Kp+1 (M,\I;)

k

Given explicitly by;
SMOAKH®A MBN K —> MAANK) @ —
-ynd
—)(M ® /\p+lkn—1)
1d®(id QenN)
d® (id®)|e.A )
M ® /\p+11‘{7n M ®!\p+2kn
—d >
Then
dr (a Qej+ b Qer) = —d'(a®e;) + [d' (b ®ei) -
¥1 (0)®e¢)

VaQe+b®e) =-d aQe+ b Re, Ack.
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(1)  The vertical arrows are isomorphisms. Indeed, let us treat
the first one. It is described by

X

(430) jaj®ej+z br®ex —>§:aj®ej +%bk®en/\ek

k

With | J | =p+1 and | k| = p. Any element of M @ A" k" may
uniquely be written as in the right hand side of (4.30)
(1)  The diagram commutes. Indeed.

A odh (a® e +b Qe = —d' (a e) +e, Ad' (b ®ey) + P, (a)
RenNej=d' (a Qej) —d'(b e, Aex) — ¥, (a)Qen\e;,
d,f“o 2 (a Qe +bRe) = — d(a Qe + bRenAex

=d' (aQe) — Vs (a)Qen/\ej —d' (b&en/ ex)

Theorem (4.7.41): There exists a long exact sequence.

431)..—H K (MP)] —2 » H[K (MY¥)] -

H' [K MP)] —.........

Proof. apply lemma (4.7.42) and the long exact sequence

eq(4.11).

Definition (4.7.17) [6.71.72]:

(i) Iffor each j, 1 <j <n, ¥ is injective as an endomorphism
of M/[W' M)+ ...+ ¥, (M)], one says (¥, .....,¥,) 1s
a regular sequence.

(i) If for each j, 1 <j <n, ¥; (¥, .....,%¥,) 1s co regular
sequence.

Corollary (4.7.42) [6.71.72.93.94]:

(1) Assume (Y¥;.....,'V,) 1s a regular sequence. Then
H [K' (M,¥)] ~o forj #n,
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(i)  Assume (Y¥;.....,'¥s) i1s a co regular sequence. Then
H [K' (M,¥)] ~o forj#o

Proof:

assume for example that (‘V;.....,'¥',) is a regular sequence, and

let us a rouge by induction on n. The co homology of K* (M,¥") is

thus concentrated in degree n—1 and is isomorphic to M/[¥; (M) +
........ + ¥ (M)].

By the hypothesis, ¥, is injective on this group, and corollary
(4.7.44) follows. g.e.d.

Second proof. let us give a direct proof of the corollary in case
n=2 for co regular sequences. Hence we consider the complex;

o-M —94, MxM —4 4, M=o

Where d (x) = [V (x), V2 (X)], d (v,2) =2 (y) -1 (z) and we
assume P, is surjective on M, ¥, is surjective on Ker ;.

Let (y,z) € MXM with Y,(y)=¥, (z). We look for x€M solution
of ¥, (x) =y. Then ¥, (x) = Z. First choose x' EM with ¥, (x') =y.
Then ¥, (x) ¥; o ¥, (x'). Thus ¥ [z ¥, (X')] = p and there exists t
eM with ¥, (t) =0, ¥, (t) =z — ¥, (X'). Hence y =¥, (t+x') and x =t
+ x' 1s a solution to our problem. g.e.d.

Example (4.7.43) [6.71.72]: Let k be a field of characteristic o and
let A=k {x;. ......, Xn}.

(1) Denote by x;, the multiplication by x; in A. We get the

complex;
0o—>AY _d , . _d LA Lo
Where;
n
d( ¥ a1 e)) Y Xj, a1, e\ e
1 =



The sequence (x;.......,X,) 1s a regular sequence in A. considered
as an A-module. Hence the Koszul complex is exact except in
degree n where its co homology is isomorphic to k.

(i1)) Denote by 6; the partial derivation with respect to x;. This
is a K-linear map on the k-rector space A. Hence we get
a Koszul complex.

)
0— A d ... ,

Where;

d ( 3 al® el) = znl Y 9, (a1)9® eja/\ €1.
1 1=1

T
The sequence (0;.......,0n.) 1s a co regular sequence, and the

above complex is exact except in degree o where its co homology is
isomorphic to k. writing dx; instead of e;, we recognize the "de Rham
complex".

Example (4.7.44) [6.71.72]: Let k be a field and let A =k [x,y], M =
K ~ A/x A + yA and let as calculate the k—-modules Ex (M,A), since
injective resolutions

are not easy to calculate, itis much simpler to calculate a free (hence,
projective) resolution of M. since (x,y) is a regular sequence of
endomorphism of A (viewed as an A-modules ), Mis quais-
isomorphic to the complex:

M:o - A — % A—° J Ao

Where u (a) = (y. — Xa), u (b, ¢) =x b + y c and the module A on
the right stands in degree o. Therefore, ExtJA(M,N) is the j-th co

homology object of the complex Homa (M',N), that is
0o > N_¥Y N —% ,No-o

Where v' = Hom (V,N), u' = Hom (u,N and the modul N on
theleft stands in degree o. Since v' (n) = (X, , yn) and u' (m,I) =
ym — xI, we find again a Koszul complex, choosing N = A, its
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chomology is concentrated in degree 2. Hence. ExtjA M,A)~o0
for j # 2 and ~k for j = 2.

Example (4.7.45) [6.71.72]: Let w=w(k) be the Wey algebra
introduced in Example (1.2.5) and denote by. d;. The (0.......,0n) 1s
a regular sequence on w (considered as an w-module) and we get the
Koszul complex:

Where

0 ( 3 a®e) = zn: 3 a1 9] Qe \er.
] =1 1
This complex is exact except degree n where its co homology is
isomorphic to k [n].

Remark (4.7.46) [6.71.72]:One may also encounter co Koszul
complexes. For [ = (i, ......,1y) introduce.

o i€ {i1mrnic )

e =

Ci1 = G }

Where e;, A ... AeJA... Aeix means that e;; should be C mittled
in ey ... Aei. Denote 0.by

D e = (1) enA AeiiA... Aeie if

0 (m ®e)) = %\Pl (m) | e

Hence again one checks easily that 0 o 0 = o, and we get the
complex.

K.(M¥): o->M" 2 , . - ... .MP-0,

This complex is in fact isomorphic to a Koszul complex x,
consider the isomorphism

N K~ AYK
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Which associates s m @ e; tom @ e;. where I" = (1......,n) \
I and ¢, 1s the signature of the permutation which send
(1...... ,n) to I U ] (any 1 € I is smaller than any j€ I).

Then, up to a sign * in ter changes d and 0.

De Rham Complexes [6.71.72]: Let E be v real rector space of
dimension n and let webe an open subset of E. Denote as usual by
C%(u) the c—algebra of C—valued function on u of class C*. Recall
that Q(u) denotes the C*(u)-module of C—functions on u with
values in E'®xC ~ Homg (E,c).

Hence Q'(u) ~ E'®r C(u)
For pEN, one sets
af (u): = A" Q(u)
~ (A" EN®rC®(v).

(The first exterior product is taken over the commutative ring ¢
(u) and the second one over R). Hence, Q° (u) = C*(u), QF(u) =o for
p>n and Q"(u) is free of rank 1 over C*(u). The differential is c—
linear map.

d:C®u) — QP (u)

The differential extends by multi linearity as a C—linear map d: QF (u)
— QP~1(u) satisfying

d2 = o,
= d (WA wy)=dw; Aw, + (=) wi A w, for any
(4,32)
| wiEQP (1) —»QP~(u) satisfying
(4.33) Dr (): =0 —»0°%u)—d ... —0"u) — o
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Let us choose a basis (ei. ....... , €n) of E and denote by x; the
function which, to x = X X; . ¢ € E, associates its i-th coordinate x;.
then (dx;. ....... , dxy) is 1‘[he dual basis on E" and the differential of a
function ¥ is given by

d Y = i§1 81‘1’ dXi

Where 0¥ = 0¥/0x. By its construction, the Koszul complex of
(G , On) acting on C*(u) is nothing, but the De Rham complex.

K [C@), @ ........ 5 ] =Dr ().

Note that H° (Dg (u) is the space of locally constant functions

on u, and therefore is isomorphic to c*e

(u) where # cc (u) denotes
the cardinal of the set of connected components of u. Using sheaf
theory, one proves that all co homology groups H' [ Dgr (u) ] are

topological invariants of u.

Definition (4.7.18) [9.73. 79.40. 41.42]: The Koszul complex KSZ
(m) of the R-module M is a chain complex of R—module constructed
as follows. The chain group in degree n > o 1s Kszn (m) =M QA V

Kszn—1

and the differential d: Ksz, ; (m)—— (m) is defined by the
formula:

d (adxi; ceeeenen. dx;) = 0 dXp ceneenens dx;,
- 0XdXir. dXi3 ceeenenns dxi,
o
+ (1) 0XindXif eeennnenn dXin1

Observe we write simply adx;s. dx;s instead o f
a® (dx; A dx4Adxs) if a€EM.

The definiton can be generalized to an arbitrary collection o
elements (0;. ....... , On); of dx; (1 <1<p) is then ;. Of R instead of
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"variables" (x;. ..., Xy); the differential are usual sign game shaws the
Kozul complex actually is a chain complex.

Furthermore this will be also a consequence of arecursive
construction given soon.

Section(4.8) Derived catogory of K - modules

Definiton (4.8.19):[9.73. 79] Making the definiton of the derived
rersion of duality.

L d (m) def d (P) for any free resoluton
P ofM;
Completely correct, depends on resolvign two problems:

(1) Existence of a free resoluton P* of M.

(2) Independence of choice ofa free resoluton P'.

The first one has already been delat with. For htesecond one

recall that a resoluton is a quasi-isomorphism P° — M # Our
problem would disappear if this quasiisoorphism were an
isomorphism since we would be repalcing M # with an isomorphic
object. So our problem will be resolved if we can find a setting in

which al quasi-isomorphisms in C' [m (k)] become isomorphism.
Such setting exists, the so called derived category of K—modules D

[m (k)].

The passage from C" [m (k)] to D [m (k)] requires inverting all

quasi-isomorphisms in C* [m (k)]. This can be done either by (i)

universal abstract construction of inverting morphisms in a category,
or

(i1)) Using some convenient sub cateory of m (k). We will
eventually do both since both dieas are useful in
applications.
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For the approach (i) we wil firstrecal the solution ofen
analogous problem in rings rather then categories.

Derived category of Modules and complexes of free Moudles.
According to the above defintion(4.8.18). D[m (k)] is a very abstract
construction it will turn outthatthere is a simple description of D [m
(k)] in terms of homotopy in the cateogry of complexes over the sub
cateogry of free modules. (This is the aproach (ii) above).

Do we really weant the derived category? The historical origin
of the idea is as we have introduced it: it is a good setting for doing
calculations with complexes. However, thederived category D(A) of
category A (say A= m(k) above), may be more "real" than the simple
category A we started with. One indication is thatthere are pairs of
very different cateogry A and B such htat their derived categories
D(A) and D(B) are canonically equivalent. For instance A and B
could be the categories of graded modules for the symmetric
algebras s (V) and the exterior algerbra

" VAfor dual vector speces V and V.

This turns out to be important, but there are more exciting
examples: the relation between linear differential equations and their
solutons, minor symmetry.

Bounded category of complexes. [9.73 . 79]:

We say that a complex C' is bounded from above if C" = 0, n

>> 0. The categories of such complexes is denoted C* (A) (meaning
that the complexes are allawed to streth in the negative direction)

simlarly one has C" (A) and D" (A). We say that a complex C’ is

bounded (or finite) if C™ = o for all but a finited many n€Z, this
gives C° (A) and D° (A) [9.73. 79]:

Definition (4. 8. 20): [9.73. 79] Improving objects mEA. Let A =m
(k) and meA. We improve m by replacing it with a cmplex P’ of free

159



(or say, projective) modules. This can be schematically described as

q

A . projective M . (GO —p'=p’>M—>o....
— *resolution -
B al B 0

C (A)_o, Cproj(A)]; (—o—>M;— 0—...) (—>p_1—> p°—o0 —
—

Notice that rertical arrows a natural constructions (i.e.,
fucntion), while horizontal arrows require some choices.

The compositon of o and 0 is a description of m in terms of
complexes of projective modules. the other route o' of indicates a
more formal formulation of the same idea — we first view modules as
complexes via B and then o' means describing complexes in A in
terms of quasi-isomorphic complexes in proj (A).

Any (additive) functor D: A — B extends to complexes. Let A
=m (k) and B = m (k') be categories of modules over two rings, and
let D be a way to construct from a module for k a module for k', i.e.,
a functor D: A — B it extends to a functor from

A—complexes to B—complexes D*: C" (A) — C (B), that assings
to each A—complex

A =(.—>A"_d A & A'_d | )aB-complex

D' (A)=[...—»D(A") _Dd-D, DA% _Dd), DAY -

D(d1) ]

.........

[As we know, if D is contravariant—for instance if D is a functor
it preserves compositon of morphisms, hence D (d") o D (d"") =D
(0) = 0. Asking that D is additive i.e. D (A' ®A") =D (A") D (A"),
A', A" €A, is needed for the laststep: D (0) =0

Left derived version LD of D. step D. [9.73. 79].
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It realy means that we do not apply D directly to M bbut to its
improved version p’:
M € L A projective

o .
—_— resolution

B o

v

C(A) Y C[proj(A)] D, C@B —5 D(P)>

(left and right drived categories).

Example (4. 8. 47): In order to say LD is realy an improvement of D,
we need to know that H’ [LD(M)], 1> 0. This is joing to be true
presisely if D has property called right exactnec (oluality Dis right
ecxact). There are important functors which are notright exact put have
a"dual" proprty of gift ezactness, they will require a"dual" strategy;
aright resolution of M:,

Mol ST —

by injective Modules. Will back to that.

Appliction(4. 8. 48): The commutative ring K=C [x;....., X,]is algebra
of functions on the n — dimensional of fine sbace A"defC". Natural

examples of K-modules have geometric meaing. We say that affine
algabraic variety is asubset Y of sune A" which is given by polynomial

conditions: Y = {z = (z,. ...., z,) €c"ifi(z) = ...=f.(z) = 0}. The set Iy
of functions that vanish on y is an ideal in K (i. e., a K-submodule of
the K — module K). we difine the ring O(Y) of polynomial functions on
y as the all rotrictions f/Yof polynomials f€ K to y. So O (y) =K/ [
is alos a module for K = O (A"). we will cosider the k module O (y)
where y is origin A,. Then Iy = ) x;. K and there fore O(y) = K/ Yx;. K
is isomorphic to C as ring (C valued functions on apoint). However its
more intersting as aK-module n= 1. Here C [x] and Iy = x ¢[x], so we

hve a resolution ... —» 0 — C [x] 5 C [X]i O(y) -0 — ... and the
conputation of the dual of O(y) is same as in the cese of x,One finds
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that D [O(y)] = O(Y) [ 1] n=2. Then O(A”) = C [x-y] and O(Y) = C [x-
¥/ <xy>-C [x-y]/ (xc [x, y] + c[x,y] = K/(xk+ yk).

The kerel of the cvering p0 = K kR O(y) 1s xk + yk. We can coverit turn
with p0 = K® K Sxk + vk, a (f, g) = x a + y B. This covering still
contains surplus: ker (a) = {(-yh, xh); h € K}. However this is afree

module so next covering p-2 = K E) kre (o) € P" B (h) (-yh, xh). This
gives aresolution

> 0 —se[xy] B efxy] @ clxy] Selxy] SO(Y) =0 ...

As acomplex this resolution is P[ — 0 — c[xy] BZ(—_xyz

a=(x,y)
c[x,y] ®c[x,y] —c[x,y] =0 —....]
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Chapter Five

Categories, Localization and chain complexes

In this chapter we construct the derived category of an abelian
category c¢ and the right derived functor RF of a left exact functor F:
¢ — c' of abelian categories.

We shall be a ware that in general, the derived category D+(c)
of all-category c is no more all-category.

Consider category C and a family's of morphism in C, the aim
of localization is fine anew category C, and a functors Q: C—Cs
which sends the morphism belonging toss is morphismes in Cs (Q,
Cs) being universal for such a property. In this chapter we shall the
construct the localization of a category. When S satisfies satiable
condition and the localization of functors, the study shall be a ware
that in general the localization of au — category C in more au —
category.

Section (5.1) The homotopy category k (¢). [6.71.72]:

Let c be an additive category. R call that the homotopy category
k(c) i1s defined by identifying to zero the morphism in C(c)
homotopic to zero.

Also recall that if f: X — y is a morphism in ¢ (¢) m one defines
its mapping cone Mc(f), an object of ¢ (c), and there is a natural
triangle.

5.1) y—2D, Mc () BD, X [1] M, y[1].

Such a triangle is called a mapping cone triangle. Clearly, a

triangle in ¢ (c) gives rise to a triangle in the homotopy category
k(c).

163



Definition (5.1.1): A distinguished triangle (d.t. for short) in k (¢) is
a triangle isomorphic in k (¢) to a mapping cone triangle.

Theorem (5.1.1). [6.71.72]: The category k (¢) endowed with the
shift functor [1] and the family of d.t. is a triangulated category.

We shall not give the proof of this fundamental result here.

Notation (5.1.2). [6.71.72]: For short, we shall sometimes write x —
y—7Z__*l J instead of x - y — z — x [1] to denote a d.t. in k (¢).

Definition (5.1.2). [6.73.72]: Let A« = {Ay, dq} and B+ = {Bg, dq} be
two chain complexes, A homotopy operator h: Ax — B+ is a
collection h = {hy : Ay, — Bg+1}4 of linear maps. In other words, it is
a linear map h: A« — B« of degree +1. this degree being implicitly
implied by the index " + 1' of Bxy;.

In particular, no compatibility condition is required with the
respective differentials of A« and B:. In the interesting cases, the
homotopy operator is rather "seriously non-compatible" with these
differentials.

Definition (5.1.3)[6.73. 79.40,41.42]: Let f, g: A« — B: be two
chain complex morphism. A homotop operator h: A« — Bsy is a
homotopy between f and g if the relation g-f — dh +h d is satisfied.

The next diagram shows there is a unique way to understand
this relation when you start from A, and arrive at B

Aq—l —d» Aq —d> Aq+1
h h
flle fl|q f q

Bet —— "Bq —5—> Batl

Proposition (5.1.3) [9.73. 79]: If two chain-complex morphisms f,
q: A+ — B+ are homotopic, then the induced maps f, q: H+ (A«)— Hx
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(B+) are equal.

Proof. Let h be a homotopy between f and q. if z is a g-cycle
representing the homotopy class h € Hg (Ax), then the relation qz —
fz = dhz + hdz is satisfied; butz is a cycle and hdz = o, so that qz — {z
= dhz, which expresses the cycles fz and qz representing the
homology classes th and gh are homologous, their difference is a
boundary; and therefore th - gh.

Definition (5.1.4). [9.73. 79]: A homology equivalence between two
chain — complexes A+ and B+ is a pair (f,q) of chain-complex
morphism f: A« — B« and q: A« — B such that qf is homotopic to
1da+ and fq 1s homotopic to idg-.

The terminology is not well stabilized, many authors use rather
chain equivalence, or homotopy equivalence. We feel more simple
and clear our terminology. We can also say that q: Ax — B« is a
homology equivalence if there exists a homological inverse
q:B+—A- such that the pair (f,q) satisfies the above definition.

Proposition (5.1.4): If f: A« — B is a homology equivalence, then
the induced maps { f;: Hy (A«) — Hy (B+) } are isomorphism.

Proof. The maps 1f and fq are respectively homotopic to idax
and 1dg+, so that the induced maps qf: Hy (A«) — Hy (A+) and fq: Hy
(B+) — Hq (B+) are equal to the corresponding identities.

Definition(5.1.5)[9.73.79]: The standard n-simplex A"of dimension
n is the simlicial complex [n, P« (n)] where n is the set of integers n
=(0, ...... , 1) from o to n and P+ (n) is the set of non-empty subsets
of n.

Theorem (5.1.5)[9.73. 79]: The homology groups of the standard
simplex A" are null except H, (A") = R, the ground ring.

Proof:

The result is obvious when n = o. Otherwise we can consider two
simplicial morphisms f: A° — A" and q: A" — A% where f (0) = 0 and
q(i) = o for every.
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The composition qf is the identity, the composition fq is not,
but the induced map fq: C« (A") — C+ (A") is homotopic to the
identity. The needed homotopy operator h: C+ (A") — Csiy (A") is

defined as follows; let =06 = (i, ......... , Ix) a k-simplex generator of
ck (A"), that is, an ordered sequence of k+1 integers i,<...... <1ig of n.
ifi,> 0, we decide h (o) = (o, I, ......... , 1x); 1f on the contrary i, =

o, then we decide h (o) = 0. An interesting but elementary
computation then shows dh + hd = id.+ (A") — fq. So that the map fq:
H: (A") — Hx (A") is simply equal to the identity and f: H« (A") — Hx
(A") is an isomorphism.

Example (5. 1.6)[6. 71. 72]: Let W be the Wey algebra in one
variable over a field K; W = K [x, 2] with the relation [x, 2] = -1. let
Q=W/W.2, Q=W/a. W and let us calculate Q ®, Q, we have an
exact sequence.

2
0->w—=>w—->Q—>0
Hence Q qis to the complex
2
0->w'=>w—0
Where Q'=Q° = Q and Q' is in degree 0. Since o: Q — Q is
surjective and has K as kernel, w oblain Q ®, Q = K [1].

Section (5.2) Derived categories [6.71.72]:

From now on, ¢ will denote an abelian category. Recall that if {:
X — y 1s @ morphism in ¢ (c), one says that f is aquasi-isomorphism
(aqis, for short) if H* (f): H* (x) — H* (y) is an isomorphism for all
k. one extends this definition to morphism in k (c).

If one embeds finto adtx—f , y—z _*1 , then fis aqis

iff H* (z) ~ o for all KZ, that is, if z is qi to o.

Proposition(5.2.7)[6.71.72]: Let ¢ be an abelian category. The
functor H: k (¢) — ¢ is a co- homological functor.

166



Proof:
B(D) +1 - ; :
M. (f) , X [1] ——» . Since the sequence in ¢ (c):

o—y— M. (f) = x[1] — o. Is exact, if it follows from, that
the sequence.

H* (y) = H* [Md(D] — H*"' (%)
Is exact. Therefore, H* (y) — H* (z) — H*"' (x) is exact.

Corollary (5.2.8)[6.71.72]: Leto —f , x 9 , y—z — o0bean
exact sequence in ¢ (c¢) and define ¥ M. (f) — z as ¥" = (0,g"). Then
Y is a qis.

Proof. Consider the exact sequence in ¢ (c);
o—»M(@Gd) v M) v z—o0

Where v": (x" ® x") — x""'®y" is defined by:
Idxn+1 0
v'=| o f|.Since H* [M(idx)] ~ o for all k, we get the result.

We shall localize k (c) with respect to the family of objects qis
to zero
(see definition (5.5.1).

N(c) = { x € K(c), H* (x) ~ o for all k }.
One also defines N'(c) =N (¢) N K'(c) for "=b, +,—.
Clearly, N'(c) is a null system in K'(c),

Definition(5.2.6) [6.71.72]: One defines the derived categories D (c)
as K'(c)/N"(c),

where * = ub,b, +, —. one denotes by Q the localization

functor K'(c)—D’(c). By theorem(4.5.23), these are triangulated
categories. Hence, a quasi-isomorphism in K(c) becomes an
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isomorphism in D(c). Recall the truncation functors in eq(4.5) and
eq(4.5). These functors send a complex homotopic to zero to a
complex homotopic to zero, hence are well defined on K'(c).
Moreover, they send aqis to aqis to aqis. Hence the functors below
are well defined:

H' (.): D(c) — C,
T=", =" D(c) — D (c),
T, T™": D(c) — D" (¢),

Note that there are isomorphisms of functor T="~T<" and T-",
T, Moreover, H (.) is a cohomological functor on D'(c). In fact, if x
€ N (c), then H (x) ~ o in ¢, and if f: x — y is aqis in K(c), then
T="(f) and T(f) are qis.

In particular, if x z _+1 _isad.tin D(c), we

L,y e,z #H

get along exact sequence:

(5.2) ...— H(x) —» H"(y) » H"(z) » H"'(x) —

Letx € K(c), with H(x) = o for j > n. Then the morphism
T= x—x in K(c) is aqis, hence an isomorphism in D(c).

It follows from proposition (4.5.25) that D'(c) is equivalent to
the full sub category of D(c) consisting of objects x satisfying H(x)
~ o for j <<o, and similarly for D (c), D°c). Moreover. C is
equivalent to the full sub category of D(c) consisting of objects x
satisfying D/(x) ~ o for j # o.

Definition (5.2.17)[6.71.72]: Let x,y be objects of c. one sets.
Extk (x,y) = Homp (x,y[k])

We shall see in Theorem (6.5.26) below that if ¢ has enough
injectives, this definition is compatible Definition.

Notation (5.2.9)[6.71.72]: Let Ab a ring, We shall write for short
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D’(A) instead of D [mod (A)], for =@, b, +, —.
Remark (5.2.10). [6.71.72]:

(1) Letx € K(c), and let Q (x) denote its image in K(c). one
can prove that;

Q (x) ~0 <> x 1s qis to o in K(c).

(i) Let f: x — y be a morphism in C(c). Then f~ o in D(c) iff
there exists x' and a qis g x'—x such that fog is
homotopic to o, or else iff there exists y' and a qis h: y—y'
such that hof is homotopic to o.

Remark (5.2.11)[6.71.72]: Consider the morphism v:z—x [1] in
D(c). If x,y,z belong to ¢ (i.e are concentrated in degree o), the
morphism H (v):

HY(z) — H"(x) is o for all k€ Z. However, v is not the zero
morphism in D(c) in general (this happens if the short exact
sequence splits). In fact, let us apply the cohomological functor
Hom¢(w;) to the d.t above. It gives rise to the long exact sequence:

...— Hom, (w,y) — Hom, (w,z) Hom, [w,s (1)]

Where v = (wv). Since Hom, (w,y) — Hom, (w,z) is not an
epimorphism in general, v is not zero. Therefore v is not zero in
general. The morphism v may be described as follows.

.= O—» 0 —m Z—>» 0

M(f): = 0—»X —» y—»o
o]
X[1]= O—» 0 —» 0 —» 0.

Proposition (5.2.12)[6.71.72]: Let x € D(c).

(1)  There are d.t. in D(c¢).
(53) T"Xx—»x —>
(54) T'x —T" £, H'(x) [-n] >

T 5t
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(5.5) H'X)[-n] — T —» T 41,
(i) Moreover, H'(x) [-n] ~ T=" T=" (x) ~T=" T=" x.

Corollary(5.2.13)[6.71.72]: Let c¢ be an abelian category and
assume that for any x, y € X, Ext" (x,y) =of fork > 2. Letx € D
(c). Then:

X~®;H x) [H].
Proof:

Call "amplitude of x" the smallest integer k such that H (x) =0
for j not belonging to some interval of length k.

If k = o, this means that there exists some I with H' (x) = o for
j#i, hence x ~ H' (x) [-i]. Now we argue by induction on the
amplitude. Consider the d.t. (6.4).

"' x - T"x — H"(x) [-n] L,

and assume T™""' x ~ i<n H (x) [j]. By the result, it enough to show
that Homp" (o, (H" (x) [-n], H' (x) [<j=1] = o for j <n.

Since n+1 — < 2. the result follows.
Example (5.2.14). [6.71.72]:

(1) Ifaring A is a principal ideal domain (such as a field, or
z, or k [x] for k a field), then the category Mod (A)
satisfies the hypotheses of corollary (6.2.12).

(1) See Example (6.5.29) to see an object which does split.

Example (5. 2. 15) Assume C has enough injective. Then R Hom,:
D (¢)®x D" (c) — D" (Ab) exacts and my be calculated as follows.

Let x € D (¢), y € D'(c). There exists aqis in K (¢), y — 1, the s
being injective. Then R Hom, (X, Y) = Hom', (X, I) if C has enough
projective, and P — X is aqis in K™ (c), the P**being projective, one
aloes has;
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R Hom, (X, Y) = Hom. (p, y).
These isomorphism hold D" (Ab)

Section(5.3) Resolutions:

Definition(5.3.8)[9.73.79]: Let M be an R-module. A free R—
resolution of M, in short a resolution of M, is a chain complex Rs-
(M) null negative degrees, made of free R—module, every differential
is an R—morphism, every homology group H, [ Rs, (M) ] ~ M is
given.

Note the isomorphism is a component of the date defining the
resolution; strictly speaking to resolution is the pair Rs; (M), € ).
You can also consider the isomorphism € : Rsl, (M) — M. If you
"add" Rsl,; (m): = M and this augmentation, you obtain the exact
sequence:

0 — M — & Rgl, (M) — Rsl; (M) — ...

Definition (5.3.9)[9.73. 79]: Let M be an R—module. An effective
resolution Rsl (M) is a resolution with a *R,e.e) —reduction p =
(f,g,h): Rsl (M) — M+ where the small chain—complex M=« is made
from M concentrated in degree o.

The prefix (R,e,e) for our reduction means we require f is an R—
morphism, but g and h in general are only e-morphims.

Definition (5.3.10) [9.73.79]: The definition of the Kosul complex is
extended as follows. We denote by Ksz? (M) the;sub—chain—complex
Ksz (M) = ’

M ® V> of Ksz (M). The only difference between Ksz ¢ (M) and
Ksz (M) is that in the first case a dx; with 1 < q is excluded.

Theorem (5.3.16)[9.73. 79]: Ksz (R) is an effective free R—
resolution of the R—module e. It is the particular cxse q = o of the
next theorem to be proved by decreasing induction.
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Theorem (5.3.17)[9.73. 79]: Ksz! (R) is an effective free R-—
resolution of the R—module R,. Note strictly speaking such a
statement is improper. When we claim some object is effective, we
mean some collection of algorithms, more or less difficult to be
constructed, will allow us to justify the qualifier.

Proof. The theorem is obvious for g = m: the chain—complex
0 < R « o concentrated in degree o is a resolution of R.

let us assume the theorem is proved for q and let us prove it for
g-1. A resolution P, = (fq, gq, hq): Ksz? (R) — Ry is available. Our
simple example above is easily adapted to prove:

Lemma (5.3.18) [9.73. 79]: The chain complex
0« qu»Rq «—0

Is an effective free resolution of Ry ;. It’s a sophisticated and
precise way to express the map XX, as imnjective and its cokerel 1s
Rgi. The relevant reduction is made of the projection f, | 4 which 1s
an R—morphism, the injection f; ;4 which an f,; -morphism only,
and the homotopy operator hy(a)=[a —o(Xq = 0)/Xq] Which 1s an Ry,
morphism.

Proof:

Thanks to the reduction P, the object Ksz? (R) is "above'. The
morphism Xx, is trivially lifted into a chian-complex morphism:
Xxq: Ksz? (R)«—Ksz" (R); the source and the target of this morphism
are reduced though P, over R, and we can apply the cone Reduction
theorem combining with the other reduction already available, we
obtain:

Cone (Ksz? (R) —X" s Kt (R) — cone (Ry+—X" 4 Ry+x) — Ry
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Lemma (5.3.19)[6.71.72]: Let J be an additive subcategory of c, and
assume that J is cogenerating. Let X' € C" (c).

Then there exists Let Y' € K'(J) and aqis X’ — y’
Proof:

The proof is of the same kind of those.

We set N'(J): = N (c) N K'(J). It is clear that N'(J) is a null
system in K'(J).

Proposition (5.3.20)[6.71.72]: Assume J is cogenerating in ¢. Then
the natural functor 0: K'(J/N'(J)> D'(c) is an equivalence of
categories.

Proof:
Apply Lemma (3.6.18) and proposition (4.5.32).

Let us apply the preceding proposition to the category Ic of
injective objects of c.

Corollary (5.3.21)[6.71.72]: Assume that ¢ admits enough injective.
Then K'(Ic)— D'(c) is an equivalence of categories.

Proof. Recall that if X' € C'(Ic) is qis to o, then xis homotopic
to o.

Remark (5.3.22): Assume that ¢ admit enough injective. then D'(c)
1s a u-category.

Example(5. 3.23): Let Ab airing. The functor - ®ﬁ~:D(m0d (A” ))><
D (mod (A)) — D (Ab) is well defined.

N®iM~S(N®,P)

~(®@4M)
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Where P (resp. q) is a complex of projective A — modules qis to M
(resp. N). In the preceding situation, one has

To r4 (N, M) = H* ( N ®, M). The following result relies the
derived functor of Hom, and Hom,, (c)

Section (5.4) Derived functors[6.71.72]:
In this section, ¢ and ¢ will denote abelian categories.

Let F: ¢ —¢ be a left exact functor. It defines naturally a
functor.

K'F:K' (c) = K'(¢)

For short, one often writes F instead of K' F. Applying the
results of chapter 5. we shall construct (under suitable hypotheses)
the right localization of F. [6].

Definition (5.4.11): If the functor K'(F): K'(c) —D"(¢) admit a right
localization (with respect to the gis in K'(c), one says that F admits a
right derived functor and one denotes by RF: — D'(c) — D'(¢) the
right localization of F.

Theorem (5.4.24)[6.71.72]: Let F: c—¢ be a left exact functor of
abelian categories, and let Jcc be a full additive sub category.
Assume that J is F-injective. Then F admits a right derived functor
RF: D'(c)— D'(¢).

Proof:

This follows immediately from Lemma (3.6.20) and proposition
(4.5.32) applied of K'(f): K'(c)— D'(¢).

It is visualized by the diagram

K'(5) —0 5 k()

9|
K'(H/N"(J)
Q
~ K'(R)Y/N(®)
v
D(c) ~-—- > D)
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Since ob (K'(J)/N'(J) = ob (K'(J), we get that for x € K'(c), if
there is aqis x — y with y € K'(J), then RF (x) ~ F (y) in D'(¢).
Note that if ¢ admits enough injectives, them (5.6).

(5. 6) R‘F = H* o RF.

Recall that the derived functor RF is triangulated, and does not

depend on the category J. Hence, if X' — x — x" 1, isad.tin

D'(c), the RF (x") — RF (x) —» RF (x") —fL, isad.tin D'(c).
(Recall that an exact sequence 0 — x' — x — X" — 0 in ¢ gives rise
to a d.t in D (c). Applying the cohomological functor H°, we get the
long exact sequence in €.

...~ R*F (x') » R*F (x) »R*F (x") ->R*'F (x) —»

By considering the category C®, one defines the notion of left
derived functor of a right exact functor F.

We shall study the derived functor of a composition.

Let F: ¢ —¢ and GL ¢— c" be left exact functor of abelian
categories. Then Go F: ¢ — c is left exact. Using the universal
property of the localization, one shows that if G,G and GoF are right
derivable, then there exists a natural morphism of functors.

(5.7) R (GoF) — RGoRF

Proposition (5. 4. 25)[6. 71.72]: Assume that there exist full additive
sub- categories JCc and

J' € ¢' such that J is F-injective, J' is G-injective and G(J) C J".
Then J is (G o G)-injective and the morphism in (6.7) is an
isomorphism: R (GoF)~ RGoRF.

Proof:

The fact that J is (GoF) injective follows immediately from the
definition. Let x € K'(c) and let yeK'(J) with aqi x — y. Then RF(x)
is represented by the complex F(y) which belongs to K'(J). Hence

175



RG (RG(x) 1s represented by G [ F(y) | = (GoF) (y), and this last
complex also represents R (GoF) (y) since y € J and J is GoF
injective. note that in general F does not send injective objects of ¢
to injective objects of ¢', and that is why we had to introduce the
notion of "F-injective" category.

Section (5.5) Bi functors [6.71.72]:

Now consider three abelian categories ¢, ¢', ¢" and an additive
bi functor:

F:cxc' —c".

E shall assume that F is left exact with respect to each of its
arguments.

Let x€ K'(c), x' € K'(c') and assume x(or x") is homotopic to o.
Then one checks easily that tot [F(x,x")] is homotopic to zero. Hence
one can naturally define.

K'(F): K'(c) x K'(c") =K (c") by setting:
K'(F) (x,x") = tot [F(x,x")]

If there is not risk of confusition, we shall sometimes write F
instead of K+F.

Definition (5.5.12)[6.71.72]: One says (J.H') is F-injective if:

(1) Forallx € J,J'is F (x,.)-injective
(i) Forallx'€ J,J' is F (.x')-injective

Lemma (5. 5. 26)[6. 71. 72]: Let xeK'(J),x' € K+(J). If x or X' is qis
to o, then F(x,x") is qis to zero.

Proof. The double complex F(x,y) will satisfy the hypothesis of
theorem (4.6.41).

Using Lemma (5. 3. 19) and proposition (5. 5. 26) one gets that
F admit a right derived functor.
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RF:D'(c)x D" (¢") = D" (c")

Example (5.5.27). [6.71.72]: Assume ¢ has enough injective. then R
Hom,.: D (c)® x D'(c) — D'(ADb).

Exists and may be calculated as follows. Let x€D(c), yED'(c).
There exists a qis in K'(c), y — I, the I>® being injective. Then

RHom, (x,y) ~ Hom, (X,I). If ¢ has enough projectives, and p—x is
a qis K (c), the p"s being projective, one also has:

RHom, (x,y) ~ Hom, (p,y).
These isomorphisms hold in D(Ab).

Example (5.5.28). [6.71.72]: Let A be a ring. The functor
®5": D [Mod (A®)] D [Mod (A)] — D (Ab) is well defined

N ®@M~S (N ®,P)
~S (Q®aM)

Where P (resp. Q) is a complex of projective A—modules qis to
M (resp. N).

In the preceding situation, one has
L
Tor ®", (N,M) = H* (M ®a M).

The following result relies the derived functor of Hom,
andHomp).

Theorem (5.5.29)[6.71.72]: Let ¢ be an abelian category with
enough injective. Then for x€ D(c) and yeED'(c),

H°R Hom, (X,y) ~ Homp (X,y),
Proof:
There exists I, € D'(I) and a qis y — L.

Then we have the isomorphism:
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Homp ( %,y [k] ) ~ Homg() (x,L[k] )
~H’om ( Hom. ( x,I,[k] )
~ R*Hom ( Hom, ( x,y)

Where the second isomorphism follows from theorem (5.5.29)
implies the isomorphism

Extlg (x,y) ~ H'R Hom, ( x,y).

Example (5.5.30)[6.71.72]: Let w be the Wey algebra in one
variable over a field k:w = k[x,6] with the relation [x,0] =—1.

Let Q = w/w.5, Qw/8.w and let us calculate QO ®%,Q. we have
an exact sequence:

00— W _°, w —— (lo
hence () is qis to the complex
0o->W' 2 4 W—o
Where W' = W° =W and W° is in degree o.

Then Q ®% Q is gis to the complex

0— Q_1 _ %, Q°—o
Where Q' = Q° = Q and Q° is in degree o. Since &: Q — Q is
surjective and has k as kernel, we obtain:
0 ®wQ kIII.

Example (5.5.31)[6.71.72]: Ket k be a field and let A=k][x;....., X,].
This is a commutative noetherian ring and it is known (Hilbert) that
any finitely generatedA—module M admits a finite free presentation
of length at most n, i.e. M is qis to a complex:

L:=0—>L"> ... _Po 150
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Where the L’ are free of finite rank. Consider the functor
Homjy (.,A): Mod (A)— Mod (A).

It is contra variant and left exact. Since free A-modules are
projective, we find that RHom, (M,A) is isomorphic in D® (A) to the

complex
Po

* _nk *
L:=0«—L"«—... «— L°«—o0

Where L = Hom, (L',A). Set for short’ = RHomj, (.,A) using
eq(6.7), we find a natural morphism of functors.

*

id—".
Applying RHoma (.,A) to the object RHoma (M,A) we find:
RHom, [RHoma (M,A), A ]~ RHomj, (L',A)
~L
~M.
In other words, we have proved the isomorphism in D (A): M ~M" .

Assume now n I, i.e. A = K [x] and consider the natural morphism
in Mod (A): f: A — A/Ax. Applying the functor * = RHomj (.,A),
we get the morphism in D” (A):

f: RHomy (A/Ax, A) — A.
Remember that RHom, (A/Ax, A) ~ A/x A [1-]. Hence H' ()
=o forall j € Z, although f #o since f = f.

Let us give an example of an object of a derived category which
is not isomorphic to the direct sum of its co homology objects
(hence, a situation in which corollary (5. 2. 13) does not apply).

Example (5.5.32)[6.71.72]: Let k be a field and let A=k[x;x,].
Define the A—modules M' =A/(Ax;+Ax;), M=A/(Ax;+Ax;x,;) and
M" =A/Ax;. There is an exact sequence.
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(5.8) 0->M->M->M"—->o0

And this exact sequence does not split since x; kills M' and M" but
not M. Gor N an A—module set N" =R Hom, (N, A), an object of D°
(A) (see example (5. 2. 29). We have M~ H(M") [-2], and N = H
(h") [-1]and the functor = RHomj, (.,A) applied to the exact
sequence (6.8) gives rise to the long exact sequence

o—->HM")>HM)>0—0—-H M)
H* (M") — o

Hence H' (M) [-1]~H' (M") [-1] ~M" and H* (M) [-2]
~H? (M") [-2] ~M". Assume for a while M ~ @Ij (M")[j]. This
implies M" ® M"hence (by Applying again the functor’ ), M' ~ M",
which is a contradiction.

Localization [6.71.72]: Consider a category ¢ and or family s of
morphisms in c¢. The aim of localization is not find a new category
Cs and a functor Q: C— C; which send the morphisms belonging to s
to isomorphisms in Cg,(Q,C;) being "universal" for such a property.

In this chapter, we shall construct the localization of a category
when s satisfies suitable conditions and the localization of functors.
We shall be aware that in general, the localization of all-category c is
no more all-category.

Localization of categories appears in particular in the construction
of derived categories.

Sectiob (5.6) Localization of categories:
Let C be a category and let S be a family of morphisms in C.

Definition(5.6.1)[6]: A Localization of C be S is the data of category
Csand afunctor Q: C — C;satisfying;

(a) Foralls€ S, Q (S)is an isomorphism.
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(b) For any functor F: C — A such that F(S) is an isomorphism
for all s € S, there exists a functor Fs: C;— A and an
isomorphism F ~ F; 0 Q,

C——>A

(c) If Gy and G, are two objects of Fct (Cs, A), then the natural
map.

(5.9) Homgy (Ci,A) (G1.G2) — Homgy (C,A) (G10Q, G20Q),) is
bijective.

Note that (c) means that the functor o Q: Fct (C;,A) — Fct
(C,A) 1s fully faithful. This implies that F; in (b) is unique up to
unique isomorphism.

Proposition(s. 6. 33):

(1) If Cexists, it is unique up to equivalence of categories.

(ii) If C, exists, then, denoting by C* the image of S in C* by
the functor op, (C™)s,p exists and there is an equivalence
of categories:

(C9)™~ (C™) sop
Proof:
(1) is obvious.
(i) Assume C; exists. Set (C™)sep: = (C;)™ and define

Q% C”"— (C™)sop by Q = op 0 Qo op. Then properties
(a), (b) and (c) of Definition (5. 1. 1) are clearly satisfied.

Definition (5. 6. 2): One says that S is a right multiplicative system
if 1t satisfies the axioms S;—S, below.

S, Forallx € C,id, € S.
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Ss Forallf€ S, g € S, if gofexists then go f € S.
Ss Given two morphisms, f: x — y and s: x — X'

With tes and gos =t of. This can be visualized by the diagram:

'

X' X' ————> Y
S

|

' I'

X — >y X — y

£
Let f,g: x — y be two parallel morphisms. If there exists s € S:w —

x such that fos = gos then there exists t € S: y — z such that t of =
tog.

This can be visualized by the diagram:
S f t
W X —3 Y-———»Z
g
notice that these axioms are quite natural if one wants to invert
the elements of s. In other words, if the element of s would be
invertible, then these axioms would clearly be satisfied.

Remark (5. 6. 34) [6. 71. 72]: Axioms S;,— S, asserts that S is the
family of morphisms of sub category S of C with ob (S) = ob (c).

Remark (5. 6. 35): One defines the notion of a let multiplicative
systems by reversing the arrows. This means that the conditionsS; is
replaced by; given two morphisms, f: x — yand t: y' — y, with t €
S, there exist s: x' — x and g: X' — y' with s € S and tog = fos. This
can be visualized by the diagram;

, g

X X' eos
|
|

" = s t :

f ' f ¢v
X >y

X 0y

and S, is replaced by: if there exists t€S: y—z such that tof= top
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then there exists s € S: w— x such that fos = gos. Then is visualized
by the diagram
S £ t

w »X 2 \ A/

In this literature, one often calls a multiplicative system a
system which is both right and left multiplicative.

Many multiplicative systems that we shall encounter satisfy a
useful property that we introduce now. [6].

Definition(5. 6. 3)[6]: Assume that S satisfies the axioms S;— S, and
let x€ C.

One defines the categories Sy and S™ as follows.
ob(SH={s:x—>s;s€e S}

Homgy ((s: x = X'), (s: x > x"))={ h:x' > x"; hos =¢s' }
ob(SX)={s:x'—>x;s€ S}

Homgy ((s: X' — x), (s": x" — x)) = { h: x' > x"; s'oh =5 }

Proposition (5. 6. 36)[6.71.72]: Assume that S is a right (resp. left)
multiplicative system. Fhen the category S* (resp. S ) is filtrate.

Proof:

By reversing the arrows, both results are equivalent. We treat
the case of S™.

(a) Let s: x — x' and s": x — x" belong to S. By S, thee exists
t: X' — x" and t": X" — X" such that t'os' =tos, and t € S.
Hence, tos € Sby S; and (x — x") belongs to S*.

(b) Lets: x — x'and s": x — x" belong to s, and consider two
morphism f,gl x' — x", with fos = gos = s'. By Sy there
exists t: X" — w, t € S such that tof = tog.

Hence tos': x — w belongs to S™.
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One defines the functors,
ax:S*—c¢ (s:x > x') > x.
Bx: S—gp C (s:x —x") —Xx.
Wwe shall concentrate on right multiplicative system

definition (5.6.4)[6.71.72]: let S be a right multiplicative system,
and let x, y € ob (c). we set.
Hom,r (x,y) = lim Hom, (x,y).
S B e

yy)e s
Lemmac(5. 6. 37)[6]: Assume that S is a right multiplicative system.
Lety € Cand lets: x — x'S.

Then S induces an isomorphism

Hom' (x,y) = —>Hom.* (X,y).
oS

> t
X' f  ye&—

(1) The map os is injective. this follows from S, as visualized
by the diagram in which s, t,t' € S;

W f X' f yl t yH
e _—3 ——
g
t
y

Using lemma (5. 9. 36), we define the composition

(5.10) Homer (x,y) = x Homer (y,2) Homer (y,z) = — Hom,r (x,z) as

lim lim
W» Hom, (x,y) =x - > Hom. (y,z)
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o om0
= P (Hom (xy) xS Hom. (v.2)
N yli)iy, Zli_)LZ.>Homc (x,2")

N Z,h_n)lz, Hom, (x,2')

Lemma (5. 6. 38)[71.72]: The composition eq(5. 2) is associative.

Hence we get a category ¢ whose objects are those of ¢ and
morphism are given by definition (5.1.4).

Let us denote by Qs: ¢ — ¢! the natural functor associated with

Hom, (x,y) — Aim ) Hom, (x,¥).

(y—y) €s'
If there is no risk of confusion, we denote this functor simply by Q.

Lemmac(5. 6. 39)[6]: If s: x—y belongs to s, then Q (s) is invertible.

Proof: r

S

For any Z€ Cs , the map Hom, (y,z) — Hom, (z,2) is
bijective by lemma (5.6.6).

A morphism f: x — y in Cj is thus given by an equivalence class
of triplets (y', t, 7') with t: y —» y', t € Sand f': x — y', that is
X —— Y=Y,

The equivalence relation being defined as follows:

(v, t.f) ~ (y"t,f") if there exists (y”,t",f'Y

(ttt" € S)and commutative diagram:

(5.11)




Note that the morphism (y',t,f) in Ctis Q (t)' 0 Q (f), that is,

(5.12) f=Q ) ' 0Q (D).

For two parallel arrows f, g: x ——3 y in ¢ we have the
equivalence.

(5.13) QMH=Q(ge C <> there exists: y — y', s
€ Swithsof=sog. ’

The composition of two morphism (y, t, f'): x — y and (7, s, f');
y — z is defined by the diagram below in which t, s, s' € S:

/ 44— \ +—
X TP y/'/—> z' TP\\Z' — Z

Theorem(S. 6.40)[6]: Assume that S is a right multiplicative system.
The category C¢ and the functor Q define a localization of C by S.

(i)  For a morphism f; x — y, Q (f) is an isomorphism in C if
and only if there exist g: y — z and h: z — w such that
gof € Sand hog € S.
Notation. From now on, we shall write Cs instead of C5 .
This is justified by Theorem (5. 1. 15).

Remark (5. 6. 41)

(1) In the above construction, we have used the property of S
of being a right multiplicative system. If S is a left
multiplicative system, one sets.

— lim '
HomC's (X9Y) —(?:)b €S, Homc (X 9Y)
By proposition (5. 1. 3) (i), the two constructions give equivalent
categories.

(i) If S is both a right and left multiplicative system.
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Homc, (X,y) ~ lim Hom, (xy").
(x'—x) € Sy, (y—y) € 8

Remark (5. 6. 42) [6]: In general, ¢, is no more all-category.
However, if one assumes that for any x € C the category S; is small
(or more generally, co finally small, which means that there exists a
small category confinal to it), then c; is all-category, and there is a
similar result with the Sy 's.

Example (5. 6. 43): Let C (resp.C [ ) be a category and S(resp. S [
) a right multicity system in C (resp.C [ ). One checks immediately
that S x S [ is a right multicity system in the category C xC [] and
(C xC [ )sxs 1s equivalent to Csx C [lg . Since abifunctor is
afunctor on the product C xC [], we my apply the preceding results
to the case of bifunctor. In the sequel, we shall write Fss | instead of
Fsxs .

Proposition(5. 6. 44)[6. 71. 72]: Let c be a category. I a full sub
category, s a right multiplicative system in ¢, I the family of
morphisms in [ which belong to s.

(1)  Assume that [ is a right multiplicative system in I. Then
I,— C; 1s well-defined.

(1)) Assume that for every f: y — x. f € S, y € I, there exists
g: x—w, WEI, with gof€S. Then I is a right multiplicative
system and I}— C; is fully faithful.

Proof (1) is obvious.
(i11)) We check that I is a right multiplicative system.

For x€l, T is full subcategory of S* whose objects are the
morphisms s: x—y with y€l. By proposition (5.1.4) and the
hypothesis, the functor I*— S* is co final, and the result follows from
Definition (5.1.4).
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Corollary(5.6.45)[6.71.72]: Let c be a category, I a full sub category,
S a right multiplicative system in c, I the family of morphisms in I
which belong to s.

Assume that for any x€C there exists s:xx — w with wel and
s€S. Then I is a right multiplicative system and Ir is equivalent to c.

Proof.

The natural functor I+— c; is full faithful by proposition (5. 2. 12)
and 1s essentially surjective by the assumption.

Example (5. 6. 46): The localization of a category A with respect to
a class of morphism S € mod (A) is the (universal) functor, 1. e,

l
morphism of category, A — Agsuch that the images of all morphism
is S are isomorphism in Ag(i. e, have inverses in Ag). Again,
localization exists can be described under some condition.

Section (5.7) Localization of functors:

Let ¢ be a category, S a right multiplicative system in ¢ and F:
c—A a functor, In general, F does not send morphisms in S to
isomorphism in A. In other words, F does not factorize through c;. It
is however possible in some cases to define a localization of F as
follows.

Definition (5. 7. 5)[6. 71.72]: A right localization of F (if it exists) is
a functor F; c;,—A and a morphism of functor T: F — F; o Q such
that for any functor G: c;—A the map.

(5.14) Hompe (cs,4) (Fs, G)— Homgg (¢ a) (F,G 0 Q) is bijective.
(This map is obtained as the compositon Homgy (ca) (Fs, G) —
Homgeyc, o) (Fs 0 Q, G 0 Q) —Homgg, a) (F, G 0 Q).

We shall say that F is right localizable if it admits a right
localization.

One defines similarly the left localization. Since we mainly
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consider right localization, we shall sometimes omit the word "right"
as far there is no risk of con fusition.

If (T,Fs) exists it is unique up to unique isomorphism’s. Indeed,
Fs is a representative of functor.

G— HomFCt (C,A) (F,G (0) Q)

(This last functor is defined on the category Fct (cs,A) with
values in set).

Proposition (5. 7. 47)[6]: Let ¢ be a category, I a full sub category,
S a right multiplicative system in c, I the family of morphisms in I
which belong to S. Let F:c — A be functor. Assume that

(1)  For any x€C there exists s: x—w with we [ and s€ S.
(i1)) Foranuyt €T, F (t) is an isomorphism.

Then F is right localizable.
Proof. We shall apply corollary (5. 2. 13).

Denote by 1: — ¢ the natural functor. By the hypothesis, the
localization Fr of Fo; exists,. Consider the diagram:

c X , c
i -

iQ
QT

— It [F;

Fo; \ v

A

Denote by i1 ;a qusi-inverse of 1 Q and set Fs: = Fry;y .
Q Q
Let us show that F; is the localization of F. Let

G: Cs— A be a functor. We have the chain of morphism:

A
—
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Homg (c,a) (F,G 0 Qs) Hompg (1,4) (Fol,G 0 Qsol)
— Hompg 1,4 (FroQr, Gocoqr)
~  Homegc (ir,a) (FrGocq)

Homg cs.4) (Fro LEzl , G)

[

~  Homgg cs,a) (Fs,G)

We shall not prove here that A is an isomorphism. The first
isomomorphism above (after A) follows from the fact that QT is a
localization functor [see Definition eq(5.1.1) (c)]. The other
isomorphisms are obvious.

Remark(5. 7. 48)[6. 71. 72]: Let ¢ (resp. c¢') be a category and S
(resp. S') a right multiplicative system in ¢ (resp. c'). One checks
immediately that S X S' is a right multiplicative system in the
category ¢ X C' and (cxc's) six' is equivalent to cexc's. Since a
bifunctor is a functor on the product cxc', we may apply the
preceding results to the case of bifunctors. In the sequel we shall
write Fg instead of F,.

Section (5.8) Triangulated categories [6.71.72]:

Definition (5. 8. 6): Let D be an additive category endowed with an
auto morphism T (i.e., an invertible functor T: D — D). A triangle in
D is a sequence of morphisms:

(5.15) x—f ,y 2 57 2 JTk).

A morphism of triangles is a commutative diagram:

X y y Z _. T(x)
P g u '
Xty g Tk
Example (5. 8. 49). [6]: The triangle xf_,y _ %z _h, T(x)
T S
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is isomorphic to the triangle eq(6.1), but the triangle x y

z _, T(x) is not isomorphic to the triangle eq(6.1) in general.
Definition (5. 8. 7). [6]: A triangulated category is an additive
category D endowed with an auto morphism T and a family of
triangles called distinguished triangles (d.t. for short),m this family
satisfying axioms TRO — TRS below.

TRy A triangle isomorphic to a d.t. is a d.t.

TR; Thetrianglex ., x—o0—-T(x)isadt.
X f

—
TR, Forall f: x — y there exists a d. t. x y — z — T(x).

TR; A triangle x f_>yg_> z T(x) is a d.t. if and only

ify , z _h | T(x) ZI®, T(y)isad.t.

TR, Given two d.t. x Y% ,z _h [ T(x)and x' _1f

_,y—>zi> T(x") and morphlsms a:x x'and

B: y — y' with f 0 a = Pof, there exists a morphism
Y:iz— 7 gining rise to a morphism of d.

X —y —2 » — T(x)
T(a)
a B Y
g '

X' — yv —_— ) —— T(X')
\TRs (octahedrad axiom) Given three d.t.

x ¢ _y _h z T(x),

y z X' T(x),
&8, = 5 -
X z y' T(x"),
_eof , 1 .,
¥ v ¥

there exists a distinguished triangle 7' yY—> X — »
T (z') making the diagram below commutative:
T(x)

lq, idi

I ' T(%)

fl idl l\y T(ﬂl
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y — 7 —  » X T(y)T(h)

yl X' T(Zl)

diagram eq(5.8) is often called the octahedron diagram. Indeed,
it can be written using the vertexes of an octahedron.

Remark (5. 8. 50)[6): The morphism vy in Tg4 1s not unique and this
is the origin of many troubles.

Remark (5. 8. 51): The category D endowed with the image by the
contra variant functor op: D — D of family of the d.t. in d, is a
triangulated category.

Definition (5. 8. 8). [6]:

(1)

(i)

(iii)

A triangulated functor of triangulated categories

F: (D,T) — (D', T") is an additive functor which satisfies
FoT ~ T'of and which sends distinguished triangles to
distinguished triangles.

A triangulated sub category D' of D is a subcategory

D' of D which is triangulated and such that the functor

D' — D is triangulated.

Let (D,T) be a triangulated category, ¢ an abelian
category, F: D — ¢ an additive functor. One says that F is
a co homological functor if for any dt. x >y —» z —
T(x) in D, the sequence F(x) — F(y) F(z) is exact in c.

Remark(5. 8. 52): By TR; a co homological functor gives rise to
along exact sequence:
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5.17) ...~ F(x) —» F(y) = F(z) —» F [T(x)] —.....
Proposition (5. 8. 53) [6]:

i Ifx —f , y_% , 75 T(x)isad.. then gof = o.

(1) For any we D, the functor Homp (w,.) and Homp, (.,w) are
co homological.
Note that (ii) means that if ¥: w — y (resp.W: y — w)
satisfies go¥ = o (resp. Wof = 0), then ¥ factorizes
through f (resp. through g).

proof:
(1) Appling TR; and TR4 we get a commutative diagram:

id
X — 33X — 5 0 — T(x)

14,11

X —— 3y —2 72 — 5 T(xX)
Then gof factorizes through o.

(i) Letx —>y—>z—T(x)bead.t and Letw € D. We want
to show that

Hom (w,x) —f , Hom (w,y) _£° , Hom (w,z)

1s exists, i.e.,: for all ¥: w — y such that go¥W = o, there exists
Y :w — x such that ¥ = f o W. This means that the dotted arrow
below may be completed, and this follows form the axioms TR, and
TR;.

Wi,w — >0 — T(w)

I

X L,y —=» 2z —  TX)
The proof for Hom (.,w) is similar.

Proposition (5. 8. 54). [6]: Consider a morphism of d.t.:
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f g
Xy — >z — » T(®

R
Y ! g' ' h'

X' — 5y = , 7z 25 TX)
If o and B are isomorphism, then so is y.
Proof:

Apply Hom (w,.) to this diagram and write X instead of Hom
(w,x), a instead of Hom (w,a), etc. we get the commutative diagram;

— >y
d
fi %

The rows are exact in view of the preceding proposition, and

T

T

~

o v

~

_n g T(X')

_— >
g,

1

ML —— P
NI —— NI

a, [~3, T (), T (B) are isomorphism’s. Therefore y =

Hom (w,y): Hom (w,z) — Hom (w,Z') is an isomorphism.

This implies that y is an isomorphism by the Yoneda lemma.
Corollary (5. 8. 55)[6]: Let D' be a full triangulated category of D.

(1)  Consider a triangle x f, y — z — T(x) in D' and assume
that this triangle is distinguished in D. Then it is
distinguished in D'.

(i) Consider ad.t. x -y — z— T(x) in D, with x and y in
D'

Then there exists z' € D' and an isomorphism z ~ Z'.
Proof (i) there exists a d.t. x—{»y — 7' — T(x) in D".
Then z' is isomorphic to z by TR4 and proposition (5.4. 25)

(i1) Apply TR, to the morphism x — y in D'.
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Remark (5. 8. 56)[6]: The proof of proposition (5. 4. 25) does not
make use of axiom TRs_and this proposition implies that TRs is
equivalent to the axiom: TR's : given f: x — y and g; y — z, there
exists a commutative diagram eq(5.8) such that all rows are d. t.

By proposition (5. 4. 25), one gets that the object z given in TR,
is unique up to isomorphism. However, this isomorphism is not
unique, and this is the source of many difficulties (e.g., gluing
problems in sheaf theory).

Example(5. 8. 57) Let D be a triangulated category and consider a

commutate diagram
f L L 0

X—> Y—»

|

Y f

' '

Assume that T (f) o h{] = o and the first row is ad. T. we prove that
the second row is also ad. t. Under one of the hypotheses;

(1) For any p €D, the sequence below is exact
Homp (P, X) —Homp(P, Y)—» Homp (P, Z[J [ ) —
Homp(P, T(X)).

(11) For any P € D, the sequence below is exact.
Homp (T(Y), P) »Homp (T(X), P) — Homp(Z (1, P) —
Homp(Y, P).

Section (5. 9) Localization of triangulated categories.

Definition (5. 9. 9): Let D be a triangulated category and let N cob
(D).

One says that N is a null system if it satisfies:
N1 o€ B,

N, x € N, if and only if T(x) € N,
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Nsifx - y—z—-T(x)isad.t.inDand x,y € N thenz € N.

To a null system one associates a multiplicative system as
follows. Define: s= {f: x — vy, there exists a d. t.

Xx—>y—>z—T(x)withze N }.
Theorem (5. 9. 58). [6]:

(1)  Sisaright and left multiplicative system.

(i1)) Denote as usual by Ds the localization of D by S and by Q
the localization functor. Then Ds is an additive category
endowed with an auto orphism (the image of T. still
denoted by T).

(i11)) Define a d.t. in Ds as being isomorphic to the image by Q
of ad. t. in D. Then Ds is a triangulated category.

(iv) Ifxe N then Q (x) ~o.

(v) Left F: D — D' be a functor of triangulated categories
such that F(x) ~ o for any x € N. Then F factors uniquely
through Q. The proof is tedious and will not be given
here.

Notation (5. 9. 59): We will write D/N instead of Ds.

Now consider a full triangulated sub category I of D. We shall
write NNI instead of NNob (I). This is clearly a null system in L.

Proposition (5. 9. 60): Let D be a triangulated category, N a null
system, I a full triangulated category of D. Assume condition (i) or
(i1) below (i) any morphism y — z with y € [ and z € N, factorizes
asy — z' — zwithz' € NNL

Then I/ (NNI) — D/N is fully faithful.
Proof:

We shall apply proposition (5. 2. 12). We may assume (i1), the
case (i) being deduced by considering D®*. Let f: y — X is a
morphism in s with y € I. We shall show that there exists g: x — w
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with w € I and fof € S. The morphism fis embedded inad. t. y — x
— z — T (x), with z € N. By the hypothesis, the morphism z —
T(y) factorizes through an object z' € NNI. We may embed z' —
T(y) into a d.t. and obtain a commutative diagram of d.t.

y—oX — >z & T(Y)

P,k

y—>w —» 7z N, T(y)

By Tr,. the dotted arrow g may be completed, and z' belonging
to N, this implies that gof € S.
Proposition(5. 9. 61). [6]: Led D be a triangulated category, N a
null system, I a full triangulated sub category of D, and assume
conditions (1) or (i1) below:
(1) Forany x € D, there exists ad. t. x = y — z — T(x) with
z€ Nandy€ L
(1) For any x € D, there exists a d.t. x — y — z — T(x) with
z€ Nandy€ L
Then I/NNI — D/N is an equivalence of categories.
Apply corollary (5. 9. 62). Let F: D — D' be functor of triangulated
categories, N a null system in D, one defines the localization of F
similar as in the usual case, replacing all categories and functors by
triangulated ones. Applying proposition (5. 3.20) we get;
Proposition (5. 9. 63)[6]:Let D be a triangulated category, N a null
system, I a full triangulated category of D. Let F: D — D' be
triangulated functor, and assume.
(1) Foranyx € D, there exists a d.t. x >y — z — T(x)with z
€ Nandy €,
(i) Foranyy € NNI, F(y) ~o.
Then F is right localizable.
One can define Fy by the diagram
D

—

» D/N

|

|

|I

|

|

|

|
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I I/NNI

D'

If one replace condition (i) in proposition (5. 4. 25) by the
condition (i)' for any x € D, there existsa d. t. x =y — z — T(x)
withz€ Nandy € |,

One gets that F is left localizable.

Finally, let us consider triangulated bifunctors, i.e. bifunctors
which are additive and triangulated with respect to each of their
arguments.

Proposition (5. 9. 64): Let D,N.I and D', N, I' be as in proposition
(5.5.27).

Let F: DXD' — D" be triangulated bifunctor, Assume:

(i) For any x € D, there exists A d.t. x = y — z — T(x) with
z€ Nandy€ L

(i) For any x' € D', there exists d.t. x = y — z — T(x) with
zZ€ N'andy' € L.

(1) Foranyy€landy' € I'NN', F(y,y')~o,

(iv) Foranyy € INN,andy'€T'F (y,y")~o0

Then F is right localizable.
One denotes by FNN' its localization.

Of coruse, there exists a similar result for left localizable
functors by reversing the arrows in the hypotheses (i) and (i1)
above.

Example(5. 9. 65): Let D be a triangulated category and let X;—
Y1—> Zl—> T(Xl) and X2—> Y2 — Zz — T(Xz) be to d. t. show that
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X1® Xz — Y1® Y2—> Zl® Zz—> T(Xl) ® T(Xz) be to d. t. show that
X1® Xz — Y1® Y2—> Zl® Zz—> T(Xl) ® T(Xz) 1s ad. t.

In particular, X— XQY— Yi T(X) is ad. t.

(Hint; consider ad. t, X;® X; —» Y,;® Y,— H — T(X;) ® T(X,) and
reconstruct the morphism H — Z,® Z,. Then apply the result of
example (5. 8. 57).

Section(S. 10) Effective Chain complexes:

Definition (5. 10. 10)[9. 73. 79]: Let A« ={A,,dq}, and B+={Bg,dy}»
be two chain complexes. A chain complex morphism f: A~— B« is a
collection of linear morphisms f = {f;, : A;— Bg}q satisfying the
differential condition: for every q, the relation f, ; d, = f;dg, or more
simply df = fd:

1s satisfied.

More and more frequently, we will not indicate the indices of
morphisms, clearly implied by context. Also we use the same
notation for a morphism and some other morphisms directly deduced
from the first one.

If f: A~— B+ 1s a chain-complex morphism, many other maps
are naturally induced; most often they aredenoted bythe same
symbol, f in this case. Because of the differential condition, the
image of a cycle is a cycle and we have induced maps

f: Zq (Ax) —=Z4(B+), the same for the boundaries f: B4 (Ax) — Bq(B+),
and for homolog classes and homology groups f: H+ (Ax) — H«(B+).

Definition (5. 10. 11) [7]: A chain complex is a collection of {c;}iez
of R—modules and maps {d;: c;— c¢;.;} called differentials such that
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di_; odi = o. similarly, a cochain complex is a collection of {c;};ez of
R-modules and maps {d": ¢'— ¢'"'} such that d"' od' od' =0

...... Ci+1 Ci Xi-1 e

Definition (5. 10. 12) [7]: Given two chain complexes ¢ =(c;,d) and
¢ = (c',d"), chain map between them is a collection of maps f ={f;;
ci—c'i} such that d'ofi =fi_; od, i.e., the following diagram commutes.

l fi+1 lfl l fi—l

c'; c'; d; c'; ,
...... — > 1+] ———» 1 1 i—-1 ceceee

Given a ring R, the collection of chain complexes of R—modules
and chain maps between them forms a category, which we shall
denote ch (R). Let ¢ be a chain complex. Let z; = Ker d; be the cycles
of ¢; and B; = in d;;; be the boundaries ofc;. Since d* = o, we have
that, for each 1, B;C Z; call the quotient by H; (¢) = Z;/ B;, the ith
homology of c. similarly, for a co chain complex, we define the ith
co homology H' (c).

Definition(5. 10. 13)[7]: Two chain maps f, g: ¢ — ¢' are chain
homotopic, written f~ g, if there exist c;: ¢; —c';+; such that f=g +
d's + sd. The terminology comes from topology, where two maps
which are homotopic at the level of topological spaces induce maps
on corresponding chain complexes which are chain homotopic.

Proposition (5. 10. 66): If f, g: ¢ —c'and f~ g, then f = g-.
Proof. It suffices to show that if f=d's + sd then f: = o.

First note that d'f = fd = d'sd, and sof is actually a chain map.
Let [x] € Zn/ Bn. Then f: ([x]) = [d's (x) + sd (X)]=[d' sx) + s (0)] =
[o].

There are certain kinds of chain complexes and chain maps
which, due to their usefulness, have names. A map is f : ¢ —c' a
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quasi-isomorphism if f+ is an isomorphism, and in this event, ¢ and c'
are said to be a homotopy equivalence and ¢ and c¢' are homotopy
equivalent.

If f and g are inverse chain homotopy equivalences, then fx and
g« are inverses, and thus f and g are quasi = isomorphism. Not all
quasi-isomorphims are chain homotopy equivalence. If idc ~ o, then
c 1s said to be contractible. If ¢ is ¢ not ratable, then at the level of
homology the identity map and the zero map are the same, and thus
all homology groups are zero. This is not a necessary condition for
the homology groups to vanish.

Remark(5.10. 67)[7]: The only difference between a chain complex
and co chain complex is whether the maps go up in degree (are of
degreel) or go down in degree (are of digree—1). Every chain
complex is canonically a co chain complex by setting ¢' = ¢; | and

d=d;,

Remark (5. 10. 68) [7]: While we have assumed complexes to be
infinite in both directions, if a complex begins or ends with an
infinite number of zeros, we can suppress these zeros and discuss
finite or bounded complexes. Additionally, if ¢; = o for all
sufficiently large or sufficiently small values of I, then we say that
the complex is bounded above or bounded below.

To ease notation, the sub scripts and superscripts on
differentials will be suppressed. For example, the condition that one
has chain complex becomes d” = o.

Remark (5. 10. 69) [7]: As we shall see later, there is a nice way to
associate a chain complex to a space with a given triangulation.
While two different triangulations of a space usually give rise to
different chain complexes, the homology of these chain complexes
will be isomorphic. This observation, one of the first applications of
homology, crated a powerful family of algebraic in variants for a
topological space. In general, most homology theories follow a
similar pattern. Given an object (e.g., a topological space, a module,
a pair of modules, a graph, a cow, a herd of chattel, etc.), we have a
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way to generate a chain complex, unfortunately the chain complex is
not what we want: either it is too unwieldy to work with, there is not
a canonical way to create it, similar objects will have dissimilar
chain complex or something else will go wrong. However, when we
pass to homology, our problems go away and we get an easy to
compute algebraic in variant of our object from which we can easily
read useful information.

Given a map f: ¢ — ¢' between two chain complexes, f maps
cycles and boundaries to boundaries, and thus f induces a map f:
H(c) — H (c"). It often happens that two different chain aps induce
the same maps on homology. The following is a useful sufficient
condition for this to occur.

proposition (5. 10. 70) [7]: Given a short exact sequence 0 > A—»
B — ¢ — o of chain complexes, there ar¢ maps 9, natural in the
sense of natural transfor-mations such that

f* 6* 6 f*
eeee. —» H; (A) — H; (B) - H; (C) — H;, (A)

Hii(B) 25, Hii () — ...
The following are all examples of complexes.

Examples (5. 10. 71) [7. 95]:

1. The complex ... 0 »z —2» z— 0 — ... has two non zero

homology groups, both isomorphic to z. In general, if all the
maps in a complex are zero, then H; (¢) ~ ci.

2. The complex ... 0 >z -1 » z— 0 — ... is exact. In fact, it
is contractible.

3. The complex ...0 -z —2» z—0— ... hasH,(c)~z/2z
and H; (¢) ~o.

4. The complex ... 0o >z —» 7/2z—0— ... hasH,(¢c)~o0
and H; (¢) ~ z.

Examples (5. 10. 72) [7. 95]: Assume that one has a surface x with a
triangulation T, namely a collection of (oriented) vertices, edges, and
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faces such that every point not on an edge is in the interior of a face,
every face is bounded by three edges, and no vertex is in the interior
of an edge. We can associate a chain complex ¢ to this triangulation
by denoting C/ to be the free abelian group on the i—1—cells of the
triangulation and defining the differential on a generator of ¢} to be
an alternating sum of the 1 — cells on its boundary. Given a
refinement T' O T, there is a natural inclusion map o: ¢'— ¢" which
1s a quasi-isomorphism. Given two triangulations T' and T", we can
consider a common refinement T, and since ¢' is quasi-isomorphic
to both ¢' and ¢, we see that H, (¢') ~ H, (¢") for every n, and
thus H- (¢") depends only on x.

This is the beginning of simplified homology, which is an
important tool in the proof of the classification of surface.

Section (5. 11) Locally effective chain complexes:

Definition(5. 11. 73)[9. 73. 79]: A reduction p: ¢+= ¢+« is a diagram:

A g.
P= h >CC*f—>C*

Where:

1. C« and c-« are chain-complexes.
2. fand g are chain-complex morphisms.
3. h is a homotopy operator (degree+1).
4. These relations are satisfied:

(a) fg =1idc-.

(b) gf + dh + hd = id¢-.

(c) Fh=hg=hh=o.

A reduction is a particular homology equivalence between a big
chain complex ¢+ and a small one c+. This point is deleted in the next
proposition (5. 11. 66) be a reduction. This reduction is equivalent to
a decomposition let be = C+= C+ = A«® B:«® C-:
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AN W N -

C+> C- = Img is a sub complex of C-.

A+Q® B« = Ker fis a sub complex of C«.

C.> A« Ker f N Ker h is not in general a sub complex of ¢-.
C.2 B« =Ker f N Ker h is a sub complex of & with null
differentials.

. The chain-complex morphism f and g inverse isomorphism’s

between ¢+ and c=.

. The arrows d and h are module isomorphism’s of respective

degrees—1 and +1 between A« and B-.

Theorem(5.11.73)[9]: Let p=(f, g, h): ¢~—c+ be a reduction where
the chain complexes and C+—c+ are locally effective. If the

homological problem is solved on the small chain-complex c+«, then
the reduction p induces a solution of the homological problem for

the big chain-complex C-.

Proof:

Let us examine the criteria of Definition (5.7.13).

1.

Let ¢ € Cx; the chain-complex &« is locally effective and the
"local" calculation dc can be achieved, which allows you to
determine whether the chain ¢ satisfies ds = o or not, where ¢
is a cycle or not.

The known relation idc« = fg and idc« = gf + dh + hd imply f
and g are inverse homology equivalences.

The homology groups H, (¢+) and H, (c+) are canonically
isomorphic. Let o+ be the algorithms provided by the
solution of the homological problem for c« and let us call o«
the algorithms to be constructed for ¢«. We can choose in
particular o,,= G,,, the last equality being a genuine one.

. The chain morphism f induces an isomorphism between

H.(¢+) and H,, (c+). This allows us to choose o3, (2):

= O3n [f(Z)]
In the same way, choose 64, (h): =f[c4, (h)].

. Finally, if z € C, is a cycle known homologous to zero, a
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boundary pre image is 65, (z): =h (z) + g [654 (f (2)]. In fact:
d(hz+ g (osn (f(z)]=dhz +gd o5, [f(z)]=dhz + gfz =27z —
hdz = z, for g is a chain complex morphism, o5, finds
boundary pre images, and z is a cycle.
Corollary (5. 11. 74)[9]: If p = (f, g, h): &+— c+ is a reduction where
¢+ 1s locally effective and c« is effective, then this reduction produces
a solution of the homological problem for C-.

Proof:

The small chain-complex c+ is effective and a solution of the
homological problem for c« therefore is elementary.

Application(5.11.75): We want to concretely illustrate how
reduction between locally effective and effective change complexes,
allow a user to obtain and use the corresponding solution at
homological problem. We considered the polynomial a RQ [t, x, z)
and this ring the ideal [= < T’ —x, £y - X" £Y-Xx 2 -y £ —y - tx°-,
X - ty2' y3-x2 Z, Xy>

It happens the homology of the Kesul complex K(R / I) effects

deep properties of the ideal, 1. the Koszul Complex is a Q -vector
space of finite dimension, yet an algorithm can compute it is
effective homology.

Keno constructs the ideal as a list of generator, each generator
being a combination (cmbn) of monomials, each monomials being a
list exponents. For example,(3 0 1 0) codes t’y.

(Setf ideal).
(cmobn 0 1. (500 0)-1. (0 1 0 0))

(cmobn 0 1. (301 0)-1. (020 0))

[ ... 6 lines deleted ...]
(cmohn 0 1. (01 1 0)-1.(100 1))
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(cmobn)
<1*S5000)<I*0100)>
[ ... other lines deleted....]

The display is simpOly the list of generators, only the first one

is given here.

The Kosul complex Ks(R/I) is then constructed.
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Appendix

Symbol Terminologies (the meaning)
A Rank
D Direct sum
® Tensor product
H° Zero CoHomology Groub

...~ F,—F,.;—Fy— m —0

a.....

Long exact sequence

— X— X'—0

Short exact sequence

C® Object
H, (X) The nth homology group (X)
H"(X) The nth cohomology group (X)
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