
ABBRIVIATIONS 

FPo:fractional programming problem; other form ofDEA, measures

efficiency ,mean that the ratio of "virtual output" vs.  "Virtual 

input" should not exceed 1 for each

LPo:Linear programming problem; other form ofDEA,measures 

efficiency of for each DMU, mean that there are linear relation 

between variables.

DLPo:dual Linear programming problem ;has a feasible solution

  = 1 ,  o = 1,  = 1 ( j ≠  0) .looking for input that guarantees

at least the output level  Y
o  of DMUo in all components while

reducing the input vector x
o   proportionally to a value as small

as possible .

TFP:Total Factor Productivity indexapproach; itis the chain, which

measures a change in efficiency relative to a base year.

CHAPTER THREE

METHODOLOGY OF THE STUDY:

3.1 Introduction:
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This chapter covers some concepts related tothemethodology of

the  study  ;(  DEA)  and  Total  Factor  of  productivity  (TFP)  Index

Approach.  This  methodologyis  based  on  operation  research

concepts  and  theories.  The  study  builds  on  some  operation

research  principles,  which  search  for  optimal  solutions  among

different available solutions in order to reach the efficiency level

of productive system using inputs and outputs data. The research

is  searching  for  the  optimal  relationship  between  production

inputs  and  outputs  in  the  Sudanese  mechanized  rain  fed  and

Agricultural schemes in the two states.  

To  evaluate  efficiency,  and  examine  total  factors   productivity

change  in Sudanese agricultural products ,the study employed

both  the  Data  Envelopment  Analysis  (DEA)  models  and

Malmquist( Total Productivity Factors ) index .In  attempting (DEA)

approach the study uses both the two DEA models :CCR (Charnes,

Cooper , and Rhodes , 1978) , and the BCC (Banker, Charnes, and

Cooper, 1984 ). These DEA two models are employed to evaluate

and measure efficiency. In addition, Malmquist (TFP) index is used

to  measure  efficiency  changes  in  the  Sudanese  agricultural

productivity   over the period (2000- 2010).All these models are

used under the two assumptions: constant return to scale (CRS),

and  variable  return  to  scale  (VRS).  The  following  are  brief

explanation of each approach.  

3.2. Basic DEA models:
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DEA can be seen as extension of fractional programming analysis 

since it enables us to consider the use of multiple inputs which 

produce multiple outputs. Under the alternative assumption of 

constant return to scale (CRS) and variable return to scale (VRS) it

is possible to decompose the technical efficiency score into the 

component of pure efficiency and scale efficiency. Accordingly, it 

is possible to determine if the individual DMUs is experiencing 

increasing constant or decreasing return to scale, a separate 

production frontier can be estimated for each year of this study.

InDEAthe organization under study is called DMU (Decision 

Making Unit) the definition of DMU is rather lose to allow flexibility

in its use over the wide range of possible application. Generally a 

DMU is regarded as the entity responsible for converting inputs 

into outputs' and whose performance is to be evaluated.         

 DEA is a non-parametric technique for evaluating the technical

efficiencies of a collection of "Decision making units (DMUs)" (e.g.

bank  branches,  Crown  Health  Enterprises)  which  use  common

inputs to generate common outputs). A DMU is said to be 100%

efficient if:

(a)None of the outputs can be increased without either:

(i) Increasing one or more inputs, or

(ii) Decreasing some of the other outputs.

(b)   None of the inputs can be decreased without either

(i) Decreasing some of its outputs.
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(ii) Increasing some of its other inputs.

To employ DEA in efficiency studies, annual report of inputs and

outputs  must be specified , the outcome is to produce convex

production  frontier  for  output  orientation  ,  while  the  input

orientation  produce  concave  production  frontier  .DEA  generate

within- sample efficiency score between 1 and 0 , with 1 being

most efficient .              

 DEA approach as a mathematical  optimization technique looks

for  determining  the  relative  efficiency  of  production  frontier,

based on empirical data on chosen inputs and output of a number

of entities called decision making units (Boris, Igor, 2001) . From

set available data DEA identify references point(relatively efficient

DMUs) that  defined the efficient  frontier  (  as the best  practice

production  technology)  and  evaluate  the  efficiency  of  other  ,

interior  point  (relatively  inefficient  DMUs)  that  are  below  this

frontier  .   Ensuring  that  the  efficiencies  of  other  units  do  not

exceed 100%, besides, determining relative efficiency measures

for  each  DMU.  DEA also  identify  efficient  peer  DMUs  for  each

inefficient DMU and quantifies the required increase in outputs or

decrease in inputs required to transform an inefficient DMU into

an efficient DMU. It can help in answering the question "How can

they improve efficiency in agricultural production?

Now, there is an extensive literature discussing both theory and 

applications of DEA. While applications have been reported in the 

private sector (e.g. in retailing, banking, hotels and the airline 

industry), most of these  applications have occurred in the public 

sector for instance, In New Zealand the use of  DEA is promoted  
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the health sector. Also DEA is involved in schemes s in retailing, 

audit risk evaluation, and in agriculture in which it has been used 

to measure performance and quantify inefficiencies.

Several alternative DEA models have employed in banks 

efficiency literature .The DEA models differ according to the 

difference in the shape of the efficient frontier. Therefore, this 

approach has several advantages as follow:

First:   is suitable for assessing the efficiency of public sector 

nonprofit organization where multi inputs produce using multi 

outputs, when there are no needs to inputs and outputs prices 

data.

Second:   it  provide  quantitative  information  on  extent  of

inefficiency  and subsequently  on  the  largest  requireto  become

efficient.

Third:   it  identifies  best  practice  rather  than  average

performance  which  may  serve  as  benchmark  for  inefficient

schemes.  DEA  has  become  increasingly  popular  in  measuring

efficiencies in different private and public institutions.

The CCR and BCC models differ as the former evaluates scales as

well  as technical  inefficiencies.  For a DMU to be considered as

CCR  efficient,  it  should  be  both  scale  and  pure  technically

efficient. For a DMU to be BCC efficient, it only needs to be pure

technically efficient. As a result, the ratio of CCR efficiency score

over  the BCC score gives  the scale  efficiency index.  The main

objective of a DEA study is to put the inefficient DMUs onto the

most  efficient  frontiers  of  the  DMUs  in  the  sample,  under  the
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assumption of constant return to scale (CRS) and variable return

to scale (VRS). There are to direction; input orientation approach

that aims at reducing the input amount by as much as possible at

a given level of output, and the output orientation approach that

maximizes output level  at a given input level.  Below is a brief

discussion of the main concept of DEA and its model behind the

Malmquist  (total  factors  productivity)  index  concept  which

measures  change  in  efficiency  and  total  productivity  growth

change.

According to DEA approach, suppose there are a number of DMUs

which  have  certain  degree  of  managerial  freedom  in  decision

making, so as to evaluate the efficiency of this units we need the

following:

1-  Availability  of  numerical  data  for  each  inputs  and

outputs,assumingthat the data to be positive for all DMUs.  

2- The items (inputs, outputs and choice of DMUs) should reflect

the interest of the analyst or the manager in the components that

will enter into the relative efficiency evaluations of the DMUs.

3 - In principle, smaller inputs amounts are preferable and larger

outputs amounts are preferable, so the efficiency scores should

reflect these principles.

4-  The  measurement  units  of  the  different  inputs  and  outputs

need not be congruent. Some may involve number of persons, or

areas of floor space,money expended, etc.

3.2.1. The basic CCR model:
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This  model  of  DEA  whichdeveloped  by  Charnels,  Cooper  and

Rhodes (1978),is a non-parametric technique used for evaluating

the  efficiencies  of  a  collection  of  "Decision Making units  ,this

models introduces a measure of efficiency for each DMU that is

obtained  as  maximum  of  a  ratio  of  weight  outputs  to  weight

inputs.  the  weight  for  the  ratio  determined  by  restriction  that

similar  ratio for every DMU have to be less than or equal to  1 ,

thus  reducing  multiple  inputs  "virtual  "and  single  "virtual"  out

puts without requiring  changed weight . 

The efficiency measure is then functioning weight of the "virtual"

inputs – outputs combination. 

 Given the data; it is possible to  measure the efficiency for each

DMU once, and hence need  no optimization , one for each DMU j

to  be evaluated .let  the DMUj to  be evaluated on any trial  be

designed as DMU0  where 0 ranges over ( 1, 2, …,n) .

So, according to the above, measuring efficiency for  a number of 

agricultural schemes s ,  we need to solve the following fractional 

programming problem to obtain value for input " weight" (Vj)        

(  j=1,…,m) and output "weight"  " (ur)  ( r =1,…,s) as the 

variables .

u1Y 10+u2Y 20+…+usY so

V 1 x10+V 2 x20+…+V m xmo         (1. 1)Max  = (FPO)

Subject to = 
u1Y 1 j+…+us y s j
s1x1 j+…+V m xm j

  ≤ 1 (j=1,…,n)  (1.2)

V 1 ,  V 2 , …, V m    ≥ 0              (1.3)
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U1 , U 2 ,…,  U s❑ ≥ 0                (1.4)

The constraint mean that the ratio of "virtual output" vs.  "Virtual

input"  should  not  exceed  1  for  each  DMU.  The objective  is  to

obtain  weights  ( V r ¿    and  ( U r )  that  maximize  the  ratio  of

DMUo, the DMU being evaluated. by virtue of the constraints, the

optimum objective value  ❑
¿

 is at most 1 .mathematically the

non-negativity constraint (1.3) is not sufficient for the fractional

term (1, 2) to have a definite value. The weight of all input and

output has positive value. 

i. From fractional to a linear program:

Further,  we  can  shift  from  fractional  relation  to  the

linearrelation by the following linear program (LPo):

(LPo)  MAX   = µ1Y 1o  + …+ µ s Y  s o              (1.5)

Subject to:         V 1 x1o  +…+ V m xmo   = 1    (1.6) 

µ1Y 1 j  + µsY s j ≤ ν1 x1 j +… νm xm j                        (1. 7)

                                                 ( j=¿  1,…,n)  

ν1  , ν❑ 2  ,…, ν❑ m  ≥ 0       ( 1.8 )

µ1  , µ2   ,…, µs ≥ 0      (1 .9 )

Definition (1.1) (CCR-inefficiency):
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1- DMUo  is CCR – inefficient if * = 1 and there exist at least one

optimum ( v¿

  , u¿

) with v*> 0 and u¿

> 0.

2- Otherwise, DMUo is CCR- inefficient.

Thus , CCR efficiency means that either (i) *  < 1  ,or  (ii) *    =

1and  at  least  one  element  of  ( v¿

  ,  u¿

)  is  zero  for  every

optimum solution of ( LPo).

In case where DMUo*  < 1 (CCR – inefficient) , there must be at

least one constraint ( or DMU) for which the weight ( v¿

  ,  u¿

)

produces equality between the left and the right hand side since,

otherwise *   could be enlarged. Let the set of such j ∈ {1,…,n }  be

ΕO
1
={ j :∑

r=1

8

u ¿
r
Y r j=∑

i=1

m

ν ¿
r
x ri j }. (1 .8)

The best set EO of  ΕO
1

 composed of CCR-efficient DMUs, is called

the reference set or the peer group to the DMUO .

It  is  the existence of  this  collection of  efficient  DMUs that  the

DMUo  to  be  inefficient.  The  set  spanned  by  Eo is  called  the

efficient frontier of DMUo.

ii. Meaning of optimum weight 

The  ( v¿

,  u¿

)  obtained  as  an  optimum  solution  for  (  LPo )

resulting in asset optimum weight for the DMUo , the ratio scale is

evaluated by :
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* =  

∑
r=1

8

u ¿
r
Y ro.

∑
i=1

m

ν ¿
i
xio .

(1.9)      

From (2,8  ) the denominator is 1 and hence 

* =  ∑
r=1

8

u ¿
r
Y ro (1.10)      

As mentioned earlier, ( v¿u¿

) are the set of most favorable weight

for the DMUo in the since of maximizing the ratio scale.

v i  is  the  optimum  weight  for  the  input  item   i  and  it's

magnitude   expressed  how  highly  the  item  is  evaluated  ,

relatively speaking . Similarly, u ¿
r   does the same for the output

item r .furthermore, if we examine each item ν ¿
i
xio  in the virtual

input?

∑
i=1

m

ν ¿
i
xio.   =1          (1.11)      

Then  we  can  see  the  relative  importance  of  each  item  by

reference to the value of each  ν ¿
i
xio  , the same situation hold

for u ¿
r
Y ro where the u ¿

r    provide a measure of * .

These  value  not  only  show  which  item  contribute  to  the

evaluation of DMUo , but also what extent they do so.
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i. The CCR model and dual problem: 

Based on the matrix ( x . y) as linear program with row victor ν

for input multiplier and row vector u  as output multiplier . These

multipliers are treated as variable in the flowing (LP) problem: 

(LPo)     max uY o (1.12)

 Subject to:

v xo = 1( 1.13 )

-  vx+¿ u y ≤  0 ( 1.14 )

v ≥  0 , u ≥  0                                           ( 1.15 )The dual

problem  of  (  LPo)  is  expressed  with  areal  variable    and

non-negative vector   = ( ❑1 , …, ❑n¿
T

  of variables as follows:

(DLPo) min  (1.16 )

Subject to: xo  – x ≥ 0     ( 1.17 )

y ≥ Y (1.18)

≥ 0                                            (1.19)

Correspondence  between  the  primal  (  LPo)  and  dual  (DLPo)

constraint and variable are displayed in the coming table (1.1):

Table (3.2.1), Primal and dual correspondence 
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     Constraint                 dual 
variable  
     ( LP o)                          
( DLPo) 

   Constraint             dual  
variable  
   ( DLPo)            ( LP o)             

Vx0=   0      
- Vx + u y ≤ 0 ≥    0     

V0 -  x ≥ 0    V ≥ 0
             y≥ Y

ou ≥ 0

(DLPo) has a feasible solution    = 1 , o = 1,  = 1 ( j ≠  0) .

Hence the optimum  , denoted  * , is not greater than 1 , on the

other  hand  ,  due  to  the  non-zero  ( i . e. ,  semi  positive  )

assumption for the data , the constraint ( 3.8) forces ( ) to be

non-zero because  Y o ≥ 0 and  Y
o
≠  0 . Hence from ( 3.7) ,

must be greater than zero .

Putting all  this together ,  we have  0 <≤ 1 .the constraint of

( LPo )  require the activity ( x
o,  Y

o ) to belong P . While the

objective  seek  the  minimum  that  reduce  the  inputvector x

oradialy to  x
o  while remaining P .

In ( DLPo) we are looking for input that guarantees at least the

output level  Y
o  of DMUo in all components while reducing the

input vector x
o  proportionally to a value as small as possible .

It can be said that ( x ,y ) outperform ( x
o, Y

o ) when <  1 .

With  regard  to  this  property,  we  define  the  input  excesses

−¿ϵ Rm

S¿  and output shortfall 
+¿ϵR s

S¿  and identify them as" aslack"

vector by :
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−¿
S¿   =  x

o- x  ,  
+¿
S¿   =  y  - Y

o ( 1.20 )

With 
−¿
S¿ ≥0 ,

+¿
S¿ ≥ 0 for any possible solution (  ,  ) of(LPo) .

To discover the possible input excesses and output shortfall , we

solve the following tow- phase LP problem.

ii. Phase Ι

We solve (DLPo) .let the optimum solution value be ❑
¿

 . by the

dually  theorem  of  linear  program  ,  ❑
¿

 is  equal  to  optimum

objective value of ( LP o) and CCR – efficiency value , also called "

Farrell   efficiency",  this  value  of  ❑
¿

 is  incorporate  in  the

following phase two extension of ( LPo).

iii. Phase ΙΙ

Using our knowledge of  , we solve the following LP using ( ,

−¿
S¿ , 

+¿
S¿  )  as variables :

Max ω =  e
−¿
S¿  +e 

+¿
S¿                                   (1.21 )

Subject to :
−¿
S¿  =  ❑

¿

 x o – x ( 1.22 )

+¿
S¿  = y    – Y

o                     (1.23) 

≥0 ,
−¿
S¿ ≥ 0 , 

+¿
S¿ ≥ 0   . 

Where e  = ( 1,…,1) ( vector for ones ) so that
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 e
−¿
S¿   =  

Si
−¿

∑
i=1

m

¿     and 
+¿
S¿  = 

Sr
+¿

∑
r=1

s

¿   .

The objective of phase ΙΙ  is to find asolution that maximize the

some of input excesses and output shortfall  while keeping   =

❑
¿

 .

We should note that we could replace the objective term (1.21)

with any weight sum of input excesses and output shortfall such

as:

ω  = ω
 x 

−¿
S¿  + ω

 y 

+¿
S¿                      (1.24)

Where  the  weight  ω
x , ω

 y     are  positive  row  vector.  The

modified  objective  function  may  result  in  different  optimum

solution for phase  ΙΙ     . However, we can have the optimum

ω¿

 ≥ 0 in(1.21) if and only non-zero value is also obtained when

the objective in (1.21) is replaced with (1.24) .Thus the objective

in (1.21) will  identify some zero slack with inefficiency if  and if

some  non-zero(possible  deferent)  slack  are  identify  with  in

efficiency in ( 1.24).  

Definition (1.2) (max slack , zero slack activity) 

An optimum ( ❑
¿

, S−¿

 , S+¿

  ) of phase ΙΙ  is called max slack

solution .if the max –slack solution satisfies S−¿

 = 0 and S+¿

  =

1, then it is called zero slack.

Definition (1.3):(CCR – efficiency, ratio efficiency, technical

efficiency)
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If an optimum solution ( ❑
¿

 , ❑
¿

, S−¿

 , S+¿

  ) of two LPs above

satisfies ❑
¿

 = 1 and is zero slack ( S−¿

  =1, S+¿

 =1) then the

DMUo is  called CCR-  efficiency .  Otherwise the DMUo is  called

CCR- in efficiency because (i) ❑
¿

= 1   ( ii) all slack are zero. Must

both be satisfied if full efficiency is to be obtained?

The first of this two conditions are refer to as "radial efficiency" it

is also refer to as" technical efficiency" because a value ❑
¿

< 1

mean that  all  input  can  be simultaneously  without  altering  (=

proportion) in which they are utilized . Because( 1 -  ❑
¿

 ) is the

maximal  proportionate  reducing  allowed  by  the  production

possibility set ,any further reducing associate with non zero slack

will  necessarily  change  the  input  proportion.  Hence  the  in

efficiency associated with any non-zero slack identify in the above

two phase reduce are refer to as (mix efficiency).

Other name is used to characterize two source of in efficiency. For

instance the term ' weak efficiency " is also some time used when

attention restricted ( i) in definition  ( 3.2) the condition (i) and (ii)

taken  together  describe  what  is  called  "  Pareto  –Koopmans"

efficiency  which can be verbalized as follow:

Definition(1.4) (Pareto –Koopmans efficiency)

A DMU is fully efficiency if and only if it is not possible to improve

any input or output without worsening some of input or output.

The CCR –efficiency given in definition (3.2) is equivalent to that

given by definition (2.1)

Proof.  First,  notice that  the vector  V and  u  of  (  LPo)  and dual

multipliers  corresponding to  the constraints(  3.7)  and (  3.8)  of

(DLPo)  respectively  .  See  table  (3.1)  .Now  the  following
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"complementary condition" hold between any optimum solution (

v¿

    , u*) of (LPo) and (  ❑
¿

, S−¿

 , S+¿

 ) of ( DLPo) .

This means that if any component of v¿

 , u¿

is positive then the

corresponding of  S−¿

 or S+¿

  must be zero , and conversely ,

with the possibility also allowed in which both component may be

zero simultaneously .

Now we demonstrate definition ( 3.2) implies definition ( 2.1) 

 (i)    If  ❑
¿

<1 , then DMUo is inefficient by definition ( 2.1) since

( LPo) and( DLPo) have the same optimum objective value ❑
¿

.

 (ii)  If ❑
¿

   = 1 and is not zero slack ( S−¿≠    o and S+¿≠  0) then

by the complementary condition above, the element of v¿

 , u¿

corresponding to the positive slack must be non-zero.

Thus, the DMUo is in efficient by definition ( 2.1) .

 (iii)   Lastly  if  ❑
¿

  =  1  and zero  slack,  then by  the  (strong

theorem  of  complementary,  (  LPo)  is  assumed  is  assured  of

positive optimum solution ( v¿

  ,  u¿

) and hence DMUo is CCR-

inefficient by definition ( 2.1) .

The reverce is also true by the complementary theorem between (

v¿

 , u¿

) and ( S−¿

 , S+¿

 ).

(iv)The reference set and improvement efficiency 

Definition (1.5)  (reference set ) 

For an inefficient DMUo , we define its reference set Eo , based on

the max –slack solution as obtained in phases one and two by 

Eo  ={j ❑
¿

j > 0} (  j ∈ { 1,…,n} )

An optimum solution can be expressed as 
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❑
¿

xo = 
∑
j∈ Eo

x j❑
¿

j  + S−¿

.  (1.24)

Y
o = 

∑
j∈ Eo

Y j❑
¿

j  - S+¿

.     (1.25)

This can be interpreted as follows:

xo≥ θ¿

  x o - S−¿

 = 
∑
j∈ Eo

x j❑
¿

j   ( 1.26)

This means xo ≥ technical – mix efficiency

      = appositive combinations of observed input value (    ) 

Also Y
o ≤

Y
o  + S+¿

   =  
∑
j∈ Eo

Y j❑
¿

j   ( 1.27)

Means 

Y
o≤ observed output + shortfall

      = appositive combination of observed output value (      ) 

These relation suggest that the efficiency of (xo  , Y
o)  for DMUo 

can be improve if input value are reduced radially by θ¿

  by ratio

θ¿

 and input excesses recorded in S−¿

 are eliminated.Similarly 

efficiency can be attained if the output values are augmented by 

the output shortfalls in S+¿

.

(v) Reason for solving CCR model using ( DLPo) 

It is not advisable to solve ( LPo) directly . The reason is: 

(i)   The computational effort of LP apt to grow in proportion to

power of the number constraints. Usually in DEA, n, the number of

DMUs is considerable largely than (m +s) the number of input and
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output, and hence it take more time than to solve ( DLPo) which

( m+ s) constraints . In condition, since the memory size needed

for keeping these basis (or its increase) is square of the number of

constraints ( DLPo) is better fitted for momery

(ii) We cannot the pertinent max-slack solution by ( LPo) .

(iii) The interpretation ( DLPo) are more straight word  the solution

are characterized as inputs and out puts that correspond to the

original  data  whereas multipliers  provided by solution of  these

observe value . These value are also important,  ofcourse , but

they are generally best reserved for supplementary analysis after

solution to ( DLPo) is achieved.

( vi) The output oriented models

The type of model that attempts to maximize output while using

no more than the observed amount of any inputs is refer to as the

output oriented model , formulated as: 

( DLPo)   max  = η            ( 1.28)  

   Subject to xo  -  x µ≥  0  (1.29)

ηY o    - Y µ≤  0              ( 1.30)  

µ≥ 0                  ( 1.31)  

An optimum solution of ( DLPo) can be derived directly from an

optimum solution of input oriented model as follow: 

= µ/  ,  =  1 / η     ( 1.32)  

Then ( DLPo) become 

( DLPo) min     ( 1.33)  

Subject to   xo  - x ≥0  ( 1.34)  

Y o  -  Y ≤ 0  (1.35)  

≥ 0                ( 1.36)  
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This is input oriented CCR model. Thus, an optimum solution of

the output oriented model related to that of the input oriented

model ratio.

η¿

 = 1 / θ¿

   , U ¿

=  ❑
¿

 /  u¿

.

We can conclude that  an  input  oriented CCR model  will  be  in

efficient for any DMU if and only if it is also efficient when the

output oriented CCR model is used to evaluate its performance.

3.2.2. The basic BCC model: 

The BCC model evaluates the efficiency of DMUo (0= 1,…, n).

This model which developed by (banker, Charnes, and cooper, 

1984) .below is short a brief of the two way of BCC approaches 

the input oriented and output oriented.  

i. The input oriented 

The inputs orientation BBC model evaluate the efficiency of the 

DMUs (o = 1, 2 ,… ,n1 ) by solving the following (envelopment 

form ) linear program: 

BCC   min     B( 2.1.)  

Subject to B   xo   -  x≥ o                  ( 2.2)  

y≥   y o ( 2.3)  

≥o( 2.4)  

Where B    isscalar. 

The dual multiplier from this linear program (BCC) is expressed 

as: 
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Max z = u Y
 o - uo(2.5)  

Subject to vxo = 1 (2.6)  

vx + u y –u o e ≤ 0                  (2.7)  

V≥ 0, u≤ 0, uo free sign           

Where z and u are scalar and the latter being "free sign" may be 

positive or negative (or zero). The equivalent BCC fractional 

program is obtained from the dual program as:

Max  ¿
u y−u0

uxj    =                      (2.8)

Subject to          
u y j−u0

vxj (2.9)  

v≥ 0 , u ≥  o  , u o free             ( 2.10)  

Table (3.2.2) primal dual correspondence in BCC model.

Envelopment form       
multiplier form
             Constraint                 
variable   

    Envelopment form     
multiplier form

   Constraint               
variable   

 B xo –x Y ≥0 V   ≥  0  

Y≥ Y
o µ≥    0 

       V x0=  1  
  - V x  + u y – uo e ≤  0            
≤  0  
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e   =  1                                 u 
o

Correspondence between the primal dual constraints and variable

can be diagramed ad in above table.

It is clear that difference between CCR and BCC is present in the 

free variable µ0, which is dual variable associate with the 

constraint e  = 1 which also does not appear in CCR model. 

The primal problem (BCC) is solving using two phase procedure 

similar to CCR case. in the first phase , we minimize B  and , in 

the second phase , we maximize the  sum input excess and 

output shortfall , keeping B = ❑
¿

B ( optimum objective value ) . 

The evolution secured from CCR and BCC model are also related 

to each other as follow. Let an optimum solution for BCC be (

❑
¿

B❑
¿

 ,   S−¿

 ,   S+¿

 ), where  S−¿

 and  S+¿

 represent the 

maximal input excess and output shortfall, respectively. Notice 

that ❑
¿

B  is not less than the optimum objective value ❑
¿

  of 

CCR model, since BCC impose one additional constraint, e  = 1, 

so its feasible region is subset of that of the CCR model.

Basing on the above model for each DMU , BCC- efficiency

score are obtained ( with similar interpretation of its value as in

the CCR model )  ,  these score are also called " pure technical

efficiency score " , since they are obtained from the model that

allows variable return to scale and hence eliminate the " scale

part" of  the efficiency from the analysis . Generally, for each DMU
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the CCR-efficiency score will not exceed the BCC-efficiency score,

what  is  intuitively  clear  since  in  the BCC-  model  each  DMU is

analyzed "locally" rather than globally.

 Definition (2.1) (BCC – efficiency):

If an optimum solution ( ❑
¿

B  , ❑
¿

 , S−¿

 , S+¿

 ) for BCC satisfies 

❑
¿

B  = 1  and has no slack ( S−¿

 = 0 ,  S+¿

 = 0) , then the DMUo

is called BCC –efficient , otherwise it is BCC inefficient.

Definition (2.2) (reference set):

For the BCC – efficient DMUo, we define its reference set E0, based

on optimum solution ❑
¿

 by 

E0 = {j ❑
¿

j> 0} (j ∈   {1,…, n } )           (2.11)  

If there are multiple optimum solutions, we can choose any one to

find that 

❑
¿

B x o  = 
∑
j € Eo

❑
¿

j x j + S−¿

                  ( 2.12)  

Y
o =   

∑
j € Eo

❑
¿

j yj  - S+¿

                        ( 2.13)  

Thus, we have a formula for improving, the BCC schemes ion 

x́o + ⇐❑
¿

B xo – S−¿

(2.14)  

ýo + ⇐Y o  – S+¿

(2.15)
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To give more idea of DMUs efficiency according to (DEA) method, 

figure (3.2.2)  ,exhibit 4 DMUs  A,B,C ,and D each with one input 

and one output .

Figure (3.2.2)  , 4 DMUs  A,B,C ,and D each with one input and one

output .
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Figure (3.2.2) exhibit 4 DMUs A, B, C, and D each with one input 

and one output.

The efficient frontier CCR model consists of bold line connecting 

A, B, and C. the production possibility set is the area consisting 

the frontier together with observed or possibility activities with an

excess of input and / or shortfall in output compare with frontier 

A, B, and D are on the frontier and the BCC efficient however, only

B is CCR – efficient.

ii. The output –oriented BCC model

The output –oriented BCC model evaluate the efficiency of the 

DMUs (o = 1, 2 ,… ,n ) by solving the following (envelopment form

) linear program: 

 (BCCCOo) max ηB                        (2.16) 

Subject to x ≤ xo (2.17)

ηBY o   – Y ≤ o            (2.18)

≥ 0         (2.19)

This is envelopment from the output oriented BCC model. The 

dual (multiplier) form associated with the above linear program 

(BCCCo) is expressed as: 

 Min z = ν xo  - ν  o                             (2.20)

 Subject to u Y o   = 1   (2.21)

V x – u Y – V o e ≥ 0           (2.22)
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V ≤0, u ≥ 0 , V o free sign    (2.23)

Where V o is scalar associated with e  = 1 in the envelopment 

model. Finally we have the equivalent (BCC) fractional 

programming for the latter (multiplier) model:

Min    
vxo−V o

uY o
                                  (2.24)

Subject to   
vx i−V o

uY i
≥1 (j = 1… n) (2.25)

V≥0, u ≥ 0 , Vo free sign .

Employing a CCR model in envelopment form to obtain an 

optimum solution ( ❑
¿

1 ,…,❑¿

n   )  , return to scale at this point can 

be obtained from the conditions:

(i ) If ∑
j=1

n

❑
¿

1    = 1  in any alternate optimum then  constant 

–return to scale prevail.

(ii) If ∑
j=1

n

❑
¿

1 > 1 for any alternate optima, then decreasing return 

to –scale prevail.

(iii) If ∑
j=1

n

❑
¿

1 < 1 for all alternate optima then increasing return to 

scale prevail.

3.2.3 TheMalmquist (TFP) index:
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The Malmquist index is the chain index approach, which measures

a change in efficiency relative to a base year. 

This approach measures change in efficiency with respect to a 

base year value of 1 , if  the index for the year other than the 

base year, is above 1 , there is an efficiency improvement , if the 

index value for the year is below  1 , there is efficiency regress . 

This change in efficiency can be decomposed  into components 

due to change in the technical efficiency and movement due to 

change in technology.

Change in firm's technical efficiency can be decomposed into 

change due to pure technical efficiency change and due to scale 

efficiency.

This measure of productivity change accommodates for multi 

–output and multi-input production processes and does not 

require the definition of specific functional form for the production

technology.

The Malmquist index has three main advantages according to the

Fischer and Tornqvist indices. 

Firstly,  it  does  not  require  the profit  maximization,  or  the  cost

minimization, assumption.

 Secondly, it does not require information on the input and output

prices. 

Finally,  if  the  researcher  has  panel  data,  it  allows  the

decomposition  of  productivity  changes  into  two  components

(technical efficiency change or catching up, and technical change

or changes in the best practice). 
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 The main disadvantage of using Malmquist index can represent

its  necessity  to  compute  the  distance  functions.  However,  the

Data Envelopment Analysis (DEA) technique can be used to solve

this problem.

IT is necessary to explain what is an index is . indexes are the

tools  that  are  used  to  measure  the  change  in  the  level  of

economical variable , an index number is define as a real number

which measure the change in set related variables. They are used

to compares the value of variables that change by time.

MalmquistFactorindex  (TFI)  measure  the  (TFP)  change  between

two data point by calculating ratio of the distance of each data

point  relative  to  common  technology.  The  distance  function  is

used  for  this  measurement.  Distance  function  defines  the

production  technology  for  multiple  outputs  and multiple  inputs

without  any  need  for  cost  minimization  of  profit  maximization

objectives.

Input  distance  function  define  the  production  technology

according to the most contracted input vector when the output

vector is given .similarly, output distance define the production

technology according to the most expanded  input vector when

the input vector is given.

The input distance function for  firm i  with respect to two time

period, t and S, is defined using following Equation ( 3.1) where

S t = {( x t , yt ): x t⇒ y t  }is the production technology thatgoverns

the transformation of inputs for period t :

❑
d
o
t

  ( xs , y s  )    =  
¿
¿0min

¿
 : ( ys   , xs  ) ∈St }                            ( 3.1)
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The  distance  function  in  Equation  (2)  measures  the  minimum

proportional change in input usage at period s required to make

the period s input-output set,  ( xs , y s ), feasible in relation to the

technology  St  at  period  t.  the  Malmquist  productivity  index

comparing periods t and t +1 can then be defined using distance

functions  representing  the  four  combination  of  adjacent  time

periods

This  study  adopts  the  output-oriented  Malmquist  productivity

change index, referring the emphasis on the equi-proportionate

increase of outputs, within the context of a given level of input.

The output-oriented Malmquist productivity change index. 

According  to  Fare  (1994)  the  input  oriented  Malmquist(TPF)

change index between time period Sand t , this can be expressed

as follows: 

mo = ( x́
s, ý

s , x́
t, 

ý
t )  = √ ❑

d
o
s

( x⃗t , y⃗t )∗❑
d
o
t

( x⃗ t , y⃗ t )

❑
d
o
s ( x⃗s , x⃗s )∗❑

d
o
t ( x⃗ s , y⃗s )

( 3.2)

Where:   ❑
d
o
s ( x⃗ t , y⃗ t )  indicate of  the observation time S from the

technology of time t. If the function m (3 .2)  > 1 then it means

that TPF increase from time to time t. In opposite, if the function

m (3. 2) < 1 then it means that TPF decreases from time to time t.

Following Fare et al., (1994) an equivalentway of writing Equation

(3) is
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mo  = ( x́
s, ý

s , x́
t, 

ý
t )  =

❑
d
o
t

( x⃗ t , y⃗ t )

❑
d
o
s ( x⃗s , x⃗ s ) √❑

d
o
s

( x⃗ t , y⃗ t )∗❑
d
o
s

( x⃗s , y⃗s )

❑
d
o
t ( x⃗ t , x⃗ t )∗❑

d
o
t ( x⃗s , y⃗s )

( 3.3

The fist term on the right hand side of the equation is the 

measure of Farrell's output oriented efficiency change between 

time S and time t. Additionally, the term in the square root 

determine the technical change.  

Catch-up or recovery is related to the degree in which a decision

making unit (DMU) improves or worsens efficiency frontier shift

(or  innovation)  is  a  term  which  reflects  the  change  in  the

efficiency  its  frontiers  between  the  two  time  periods

(Berket&Lalitha 2012).

In addition, technical efficiency change can be further 

decomposed into pure technical efficiency change and scale 

efficiency change.

 Therefore, the two terms in equation (1) are:

 Efficiency change:

mo  = ( x́
s, ý

s  , x́
t , 

ý
t)  =

❑
d
o
t ( x⃗ t , y⃗ t )

❑
d
o
s

( x⃗s , x⃗ s ) ( 3.4)

Technical change:

mo  = ( x́
s, ý

s , x́
t, 

ý
t )  = √❑

d
o
s

( x⃗t , y⃗ t )∗❑
d
o
s

( x⃗s , y⃗s )

❑
d
o
t ( x⃗ t , x⃗ t )∗❑

d
o
t ( x⃗s , y⃗s )

( 3.5)
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Malmquist  (TFP)  index  can  be  evaluated  by  two  different

approaches which are the parametric and non-parametric.

In parametric approach the distance functions are determined by

parametric  method,  in  the other  words,  the production frontier

stochastic  frontier,  however  in  non-parametric  approach  the

distance functions are determined by non-parametric approach.  

The Malmquist productivity index can be interpreted as a measure

of total factors productivity (TFP) growth. Improvement in 

productivity, as well as improvement in efficiency and technology,

is indicated by values greater than one, whereas value less than 

one indicate regress. 

A. Technical efficiency:

Technical efficiency is expressed as the non-existence of any 

waste. In other words, technical efficiency is the success of 

producing the maximum output through utilizing the input in a 

most efficient way. It is a fact that all technical DMUs are located 

on the efficient frontier and the DMUs below the efficient frontier 

waste their resources relatively.

Given the fact that DEA is non- stochastic model, it's particularly 

sensitive to the problem of miss measurement, there for inclusion 

of those schemes in to the sample could seriously undermine the 

quality of the results.

It is important to note that scale efficiency can be affected by 

poor management within organization or disadvantageous 

operating environment. Thus, scale efficiency which is π i =  ❑i /

σ   means the extent to which the scheme can take advantage 
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of return to scale by altering its size towards optimum scale. The 

fraction of output lost due to scale inefficiency can be computed 

as (1- π i  ). Scale efficiency equal one unit at any time along the 

CCR frontier line, at which production technology exhibit constant 

return to scale. Scale efficiency can arise due to variable 

(increasing or decreasing) return to scale. On the other hand, pure

technical inefficiency occurs because a DMU uses more inputs 

than needed (input waste). Alternatively pure technical 

inefficiency can be caused by inefficient implementation of the 

production plan in converting input to output (managerial 

inefficiency) . However, scale inefficiency could be due to 

divergence of DMU from the most productive size. There for, 

decomposing technical efficiency into pure technical and scale 

efficiencies allows us to gain insight into the main source of 

inefficiency.

The  coming  chapter  reviews  descriptive  side  of   the  study

;Agricultural  sector  of  the  Sudan  it  gives  light  on  The  Sudanese

mechanized and rain fed schemes in south Kordofan and Gedaref state. Also the

chapter high lights some factors that have direct effect on agricultural production

efficiency  such  as  geographical  Features  (soil  type,  climate  characteristics)

andagricultural policies. 
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