
1

CHAPTER 1

INTRODUCTION

Computing technology has gone a long way since the first Babbage computer.

Today, many chores that were once manual have been taken over by

computersoftware. Our dependencies on software raise fundamental issues on

quality and reliability. Here, software testing becomes immensely important.

Providing confidence, identifying weaknesses, imposing an acceptable degree

of quality as well as establishing the extent to which the requirements have been

met are amongst the reasons for software testing (Alsewari,et al., 2012).

"Software testing is the process of analyzing a software item to detect the

differences between existing and required conditions and to evaluate the

features of the software item It is a standard, though imperfect, method of

assuring software quality ".

Of the primary purposes of testing are to detection of software failures so that

defects may be discovered and corrected, quality assurance, verification and

validation and reliability estimation (Pan, 1999).

Testing cannot establish that product functions properly under all conditions but

can only establish that it does not function properly under specific conditions

(Kaner, et al, 1999).

2

The scope of software testing often includes examination of code as well as

execution of that code in various environments and conditions as well as

examining the aspects of code: does it do what it is supposed to do and do what

it needs to do?. Software testing is a trade-off between budget, time and

quality(Software testing,[online]Availablefrom:http://en.wikipedia.org /wiki/

Software testing).

Testing is expensive part of software development. It often consumes between

1/3 and 1/2 of the total cost of software development. Although it would be

ideal to use as many test cases as possible, this is impractical since the total

number of possible test cases is usually prohibitively large. Therefore, new

approaches are required to generate test sets that are substantially smaller than

exhaustive test sets but highly effective at detecting faults (Kobayashi, et al,

2001).

Exhaustive testing of computer software is intractable, it’s completely infeasible

even for a small program, with a relatively simple set of variables and relatively

few possible states per variable and the total number of possible valid states in

combination is intractably large. To arrive at that number, we consider each

variable, and count the number of valid states for it. We then multiply the

numbers of all those valid states for each variable together. But empirical

studies of software failures suggest that testing can in some cases be effectively

exhaustive. Studies show that software failures in a variety of domains were

caused by combinations of relatively few conditions. These results have

3

important implications for testing. If all faults in a system can be triggered by a

combination of n or fewer parameters, then testing all n-tuples of parameters is

effectively equivalent to exhaustive testing, if software behavior is not

dependent on complex event sequences and variables have a small set of

discrete values (Kuhn, 2004).

In testing, we want to be sure that we don't miss problems based on conflicts

between two or more conditions, variables, or configurations, so we often test in

combinations in order to find defects most efficiently. In formal mathematics,

the study of combinations is called "combinatorics", combinations are,

formally, "selections of a number of different items from a set of distinguishable

items when the order of selection is ignored”. (Pairwise Testing,[online]

Available from:http://www.developsense.com/pairwiseTesting.html, [accessed

November 2007]).

Combinatorial testing, which has proven very effective in fault detection, is a

testing strategy that applies the theory of combinatorial design to test software

systems. Given a system under test with k parameters, t-way combinatorial

testing requires all combinations of values of t (out of k) parameters be covered

at least once, where t is usually a small integer. If test parameters are modeled

properly, all faults caused by interactions involving no more than t parameters

will be detected (N.Borazjany, et al, 2012).

To apply combinatorial testing, it is necessary to find a set of test inputs that

covers all t-way combinations of parameter values, and to match up each set of

4

inputs with the expected output for these input values. These are both difficult

problems, but they can now be solved with new algorithms on currently

available hardware (Automated Combinatorial Testing for Software

(ACTS).[Online] Available from:http://www.nist.gov/itl/csd/scm/acts.cfm).

Pairwise testing is a widely popular approach to combinatorial testing

problems.The number of articles and text books covering the topic continues to

grow as do the number of commercial and academic courses that teach the

technique (Bach, J. Schroeder, 2004).

 What has made combinatorial testing practical today is the development of

efficient algorithms to generate tests covering t-way combinations, and effective

methods of integrating the tests produced into the testing process. A variety of

approaches can be used to make combinatorial testing practical and effective

addition to the software tester’s toolbox.

There are basically two approaches to combinatorial testing that use

combinations of configuration parameter values, or combinations of input

parameter values. In the first achieving combinatorial coverage of configuration

parameter values, in the second approach, we select combinations of input data

values, which then become part of complete test cases, creating a test suite for

the application (Practical Combinatorial Testing.[Online] Available

from:csrc.nist.gov/groups/SNS/acts/documents/SP800-142-

101006.pdf[accessedOctober 2010]).

5

Combinatorial test data generators generate data tables for testing. The most

basic, commonly used combinatorial data generation strategy is what is known

as pairwise testing, all-pairs testing, covering arrays.

The theoretical basis for pairwise testing is what is known as coupling effect.

This is a practical hypothesis that software faults can be discovered by relatively

simple tests. How this is related to pairwise testing is that the coupling effect

hypothesis suggests that if there is a fault that manifests with a specific setting

of configuration variables, it is most likely caused actually by only a small

subset of those variable values.

Of course, there is no reason why coupling two variables and no more would be

always the best strategy. A natural extension of pairwise testing is indeed to

cover not only pairs but also triples, quartets and so on. This is not necessarily

good to do for all small subsets of data variables, so advanced combinatorial

data generation tools allow users to define the “strength” of data combination

individually for different data variables and their combinations(Huima, 2012).

To cover all pair-wise combinations of parameter values, we need only a small

number of test cases if we select them appropriately. Thus the use of this

approach can lead to reduced cost of testing

Pairwise testing has become an indispensable tool in a software tester’s toolbox.

The technique has been known for almost 20 years, but it is only in the last few

years that we have seen a tremendous increase in its popularity(Czerwonka,

2008).

6

Combinatorial data generation is a very good way to generate discrete test data

tables and combinatorial testing is a method that can reduce cost and increase

the effectiveness of software testing for many applications.

1.2Problem Statement

Combinatorial testing is a problem that show whenever we have a product that

processes multiple variables that may interact .The variables may come from a

variety of sources ,such as user interface ,operating system , peripherals ,

database or from across a network .

The task in combinatorial testing goes beyond testing individual variables and

verify that different combinations of variable are handled correctly by the

system.

Compared to extensive work that has been reported on the theoretical side, there

is a lack of empirical studies and experience reports on applying combinatorial

testing to real- life systems. This research pays special attention to usability of

the pairwise-testing technique. It refer to specific case study, it does not

describe any radically new method of efficient generation of pairwise test suites,

a topic that has already been researched extensively. Pairwise testing approach

must be modified to become practically applicable.

7

1.3 Objective of the research

The purpose is to know how to apply combinatorial testing in practice and to

evaluate the effectiveness of combinatorial testing applied to a real-life system.

 The Objective of this research is:

1.3.1 Provide a practical way to detect failures caused by parameter

interactions with trade –off between cost and efficiency.

1.3.2 Selects test cases with sampling mechanism to systematically cover

parameter value combinations using a small test set which is

relatively easy to manage and execute.

1.4 Research scope

 The scope of this research is in the area of combinatorial testing. The idea is

to apply combinatorial testing in practice by using combinatorial test generation

tool called PictMaster (http://en.sourceforge.jp/projects/pictmaster, 2013).Then

present a case study of applying combinatorial testing. Automation testing

increases the test coverage, improve accuracy, saves time and money in

comparison to manual testing. There are a number of automatic test case

generation tools available, but these can suffer from combinatorial explosions in

the number of possibilities to test.

8

1.5 Research methodology and tools

PictMaster is a tool that generates a test case for several types of tests, including

a combination test. Its Excel-based free software that improved PICT (Pairwise

Independent Combinatorial Testing Tool) making it easier and more

sophisticated. PictMaster is free generating combination test cases that use the

Pairwise method.

PICT itself is an application based on CUI (Character User Interface) to run on

the command prompt. Now, most people are unfamiliar with the command

prompt. There may be a lot of users who do not want to use PICT working in

command prompt, generating a combination test case in Excel would be very

useful. The Excel workbook, PictMaster, realized this useful mechanism.

PictMaster overlays the CUI-based PICT with an Excel GUI (Graphical User

Interface) based shell. This flexibility of the generation algorithm allows for

adding interesting new features easily, the algorithm is also quite effective, it is

fast enough for all practical purposes.

The steps are identify the test parameters based on system characteristics, test

values and System under Test (SUT). Generate test cases and control them by

use

Sub model, extend sub model, constrains, proto type .then get expected

result(http://en.sourceforge.jp/projects/pictmaster, 2013).

9

1.6Research organization

The remainder of this Research is organized as follows.

 Chapter 2 illustrates the literature review.

 Chapter 3 implement combinatorial methods in model uses pairwise

testing, (Case Study ElectronicRegistration program at the University of

IslamicOmdurman).

 Chapter 4shows result and discussion.

 Chapter 5 Conclusion and future work.

10

CHAPTER 2

LITERATURE REVIEW

A combinatorial search problem is one where an initial state is to be

transformed into a goal state by application of a series of operators, such as

assignment of values to variables. The space of possible states is usually

exponential in the size of the input and finding a solution is NP-problem. A

common way of solving such problems is to use heuristics. A heuristic is a

strategy that determines which operators to apply when. Heuristics are not

necessarily complete or deterministic, they are not guaranteed to find a solution

if it exists or to always make the same decision under the same circumstances.

The nature of heuristics makes them particularly amenable to Algorithm

Selection.Choosing a heuristic manually is difficult even for experts, but

choosing the correct one can improve performance significantly.

An algorithm may be a system, a programme, a heuristic, a classifier or a

configuration. This is not made explicit unless it is relevant in the particular

context (Kotthoff, 2012).

Combinatorial testing refers to a testing strategy that applies the principles of

combinatorial design to the domain software test generation. It creates tests by

combining parameter values with combinatorial test generation strategies.

Cohen et al. proposed a strategy called Automatic Efficient Test Generator (or

AETG), which constructs a test set by repeatedly adding one test at a time until

11

all the combinations of parameter values are covered. A greedy algorithm is

used to construct the tests such that each test covers as many uncovered

combinations as possible. Several variants of this strategy have been reported in

the literature. These variants share the same framework as AETG but use

different heuristics for the greedy construction of each test.

Leietal(Lei, Tai, 1998) (Lei, Tai, 2002), proposed the IPO (In-Parameter-

Order) strategy, which builds a pairwise test set for the first two parameters,

extends the test set to cover the first three parameters, and continues to extend

the test set until it builds a pairwise test set for all the parameters (Lei et al .,

2007).

Higher interaction strength in the development of IPOG(In-Parameter-Order-

General). Jenny generates test data in a number of stages. Firstly, Jenny

generates test data to cover all the 1-way interaction. Then, Jenny will extend

the first stage test data to greedily cover the 2-way interactions. Optionally, this

process can continue until the nth-way interactions as specified by the user.

Covering one parameter at a time allows the IPO strategy to achieve a lower

order of complexity than AETG(Alsewari,et al., 2012).

Most recently, heuristic search techniques such as hill climbing and simulated

annealing have been applied to multi-way testing. Unlike AETG and IPO,

which builds a test set from scratch, heuristic search techniques start from a pre-

existing test set and then apply a series of transformations to the test set until a

test set is reached that covers all the combinations. Heuristic search techniques

12

can produce smaller test sets than AETG and IPO, but they typically take longer

to complete (Lei et al., 2007).

Pair-wise testing is an important testing approach. This is a type of

combinatorial testing which requires that for each pair of input parameters of a

system, every combination of valid values of these parameters be covered by at

least one test case. Studies have shown pair-wise testing to be a very practical

and effective software testing criterion (Alton, et al.,2012).

In general, existing interaction strategies for pairwise testing can be categorized

into two categories based on the dominant approaches, that is, algebraic

approaches or computational approaches. Algebraic approaches construct test

sets using pre-defined rules or mathematical function. Thus, the computations

involved in algebraic approaches are typically lightweight, and in some cases,

algebraic approaches can produce the most optimal test sets. However, the

applicability of algebraic approaches is often restricted to small configurations.

Orthogonal arrays (OA), use mathematics of arrays (MOA) and TConfig are

typical example of the strategies that are based on algebraic approach. Unlike

algebraic approaches, computational approaches often rely on the generation of

the all pair combinations. Based on all pair combinations, the computational

approaches iteratively search the combinations space to generate the required

test case until all pairs have been covered. In this manner, computational

approaches can ideally be applicable even in large system configurations.

However, in the case where the number of pairs to be considered is significantly

13

large, adopting computational approaches can be expensive due to the need to

consider explicit enumeration from all the combination space.

For PICT (Pairwise Independent Combinatorial Testing tool), it first generates

all the specified interaction before and randomly selecting their corresponding

interaction combinations to form the test cases as part of the complete test suite.

All pair’s strategy, TVG and CTE_XL share the same property as far as

producing deterministic test cases is concerned although little is known about

the actual algorithms employed due to limited availability of references. A more

recent strategies based on computational approaches are IRPS, and G2Way.

IRPS is deterministic in nature and focuses on efficient data structure for storing

and searching pairs. In this manner, IRPS gives relatively fast execution time as

compared to other strategies. G2Way adopts a backtracking algorithm to merge

combinable pairs in order to generate the pairwise test suite.In a nut shell, SA

adopts a probability-based transformation equation along with a greedy binary

search algorithm to iteratively find the best test case to cover all the required

(pairwise) interactions from a random search space. In similar manner, PPSTG,

a PSO based strategy, iteratively performs local and global searches to find the

candidate solution to be added to the final suite until all the pairwise

interactions are covered. Table (2-1), (2-2)(Alsewari,et al., 2012).

14

Table (2-1) :show test suite size for configuration with 10 V-valued

parameters

V TVG PICT CTE-XL Tconfig IPOG Jenny PPSTG PHSS

3 18 18 18 17* 20 19 17* 17*

4 33 31 33 31 31 30 29 28*

5 50 47 50 48 50 45 45 43*

6 72 66 71 64 68 62 62 60*

7 98 88 97 85 90 83 81 79*

8 124 112 125 114 117 104* 109 105

9 152 139 161 139 142 129 139 127*

10 189 170 192 170 176 157 170 155*

15

Table (2-2) :show test suite size for a configuration with p 2-value

parameters

P TVG PICT CTE-XL Tconfig IPOG Jenny PPSTG PHSS

3 4* 4* 6 4* 4* 5 4* 4*

4 6 5* 6 6 6 6 6 6

5 6* 7 6* 6* 6* 7 6* 6*

6 6* 6* 8 7 8 8 7 7

7 8 7* 8 9 8 8 7* 7*

8 8 7* 8 9 8 8 8 8

9 8* 9 9 9 8* 8* 8* 8*

10 9 9 9 9 10 10 8* 8*

11 9 9 10 9 10 9 9 8*

12 10 9* 10 9* 10 10 9* 9*

13 10 9* 10 9* 10 10 9* 9*

14 10 10 10 9* 10 10 9* 10

15 10 10 10 9* 10 10 10 10

Cells with asterisk () in table (2-1)-(2-2) show the smallest generated size of the test suite by each

strategy.

16

CHAPTER 3

 Practical Combinatorial Testing

The demand for multi-functional software has grown drastically over the years.

To cater for this demand, software engineers are forced to develop complex

software with increasing number of input parameters. As a result, more and

more dependencies between input parameters are to be expected, openingmore

possibilities of faults due to interactions. Although traditional static and

dynamic testing strategies are useful in fault detection and prevention, however

they are not sufficiently effective to detect faults due to interaction. As a result,

many researchers nowadays are focusing on sampling strategy that is based on

interaction testing (termed t-way testing strategies where t indicates the

interaction strength).

The electronic registration system is one of the most important systems where

the IslamicOmdurman Universityoffers several services to students, colleges,

and financial management and converts operations relating to the registration of

the student to the digital environment.

It is important to note that the programs in the electronic registration are

relatively small, in terms of lines of code, and have a small number of input

parameters, Its abstract models contains 10 abstract parameters and 8

constraints.

17

3.1 APPROACH

This section, explainsthe approach to apply combinatorial testing. The approach

consists of threeprocesses:

3.1.1 Create an abstract model.

3.1.2 Generate an abstract test set.

3.1.3 Get Expected results.

Create abstract model this step has two major tasks:

 Define abstract parameters and values.

 Define relations and constraints.

3.1.1.1 Define abstract parameters and values:

First, Ianalysed the system specification and identify factors that may affect

the behaviour of the system. These factors are candidates for abstract

parameters.Consider a running example of an electronic registration

Application as shown inFigure(3-1), (3-2).there are many parameters for the

user to insert or choose in orderto complete the registration process for the

studentin this application.

For simplification I use symbolic values Table (3-1).Conveniently, as seen in

Table (3-2), the electronic registration option representation can also be

translated into a table of 10 columns (or parameters) and 2,3,4,5 rows (or

values).

18

Figure (3-1): Electronic Registration Application (1)

19

Figure (3-2): Electronic Registration Application (2)

20

Table (3-1): Parameters and Values Conversion

ActualParameters and Their Values Symbolic Representations

University ID {correct number, wrong number } No = {v1,v2}

Name {correct name, wrong name} Na = {n1, n2}

Type Acceptance{ general, private, external

,mature study, Darfur student }

Acc = { a1,a2,a3,a4,a5}

Academic position {success, freeze, role of the

second, repeat }

Acad ={ s1,s2,s3,s4}

Registration fee {specific, unspecified } Reg ={ p1,p2}

Tuition fees { full fees, half fees , no fees } Fee = { f1,f2,f3}

Exception { exempt , non- exempt } Exe = { y1,y2}

Payment Type { first premium, last premium,

other fees}

Pay = { k1,k2,k3}

Type of college { scientific , theoretical } Coll = { l1,l2}

The academic year {correct year ,wrong year } Year = { b1,b2}

21

Table (3-2): Base Data Values

BASE

VALUES

Input Variables

No Na Acc Acad Reg Fee Exe Pay Coll Year

v1 n1 a1 s1 p1 f1 y1 k1 l1 b1

v2 n2 a2 s2 p2 f2 y2 k2 l2 b2

 a3 s3 f3 k3

 a4 s4

 a5

3.1.1.2 Define relations and constraints

Relations are used to create parameter groups that can be covered at different

strengths. Furthermore, parameters in different groups are independent and thus

their combinations do not have to be tested.I use the default relation where all

the parameters are considered to be in the same group. The parameters for input

data could be put into one group. Constraints are used to exclude combinations

that are not valid from the domain semantics. A total of7 constraints are

specifiedTable (3-3). All these 7 constraints are concerned with the position

values of different parameters.

22

Table (3-3): Application Constrains

No. Constraints

1 In the case of External Acceptance the student should pay the

enrolling + study fee in the first instalment.

2 If the student has passed and the Acceptance (general– private –

mature study) at theoretical faculty, the student should pay enrolling

+50% of study fee in the first instalment.

3 If the student has passed and the Acceptance (general – private –

mature study) at scientific faculty, the student should pay enrolling

+50% of study fee in another instalment.

4 If the Academics Situation of student is repeat, the student should pay

the enrolling fee + 50% of study fee in the last instalment.

5 If the student is Accepted from Darfur Student should be exempted

from the fee.

6 In the case of Academic freeze the student should only pay the

enrolling fee in the last instalment.

7 The name, university number and year of study should be inserted

correctly.

23

3.1.2.1 Generate an abstract test set

Generate abstract tests in this step, an abstract test set is generated using an

existing combinatorial test generation tool. I used the PictMaster tool.

PictMaster can generate a combinatorial test set with strength 2 through 6.

Firstbegan introducingparameters and values in the tool to build my model

Figure(3-3).

Figure (3-3): parameters and value hierarchy columns

24

Then selected settings Figure (3-4)

Figure (3-4): setting window

And pressed build button to get the test cases Figure (3-5):

25

Figure (3-5): Test Cases

I displayed the statistical information for the one-time test case generation after

the number of test cases has minimized completely (I increase the probability of

reducing the number of test cases by increase the frequency of generation in the

setting, usually 30 generations may be enough)to get the frequency of

generation; the minimized, maximized, or initial number of test cases; the

minimum seed value; and the elapsed time for the test cases generation Figure

(3-6).

26

Figure (3-6): statistical information

N-way coverage (combination coverage proportion of n-parameter interactions)

and t-way coverage, which have been created during the test cases generation,

as Figure (3-6). The value n is defined as the specified value in the "Number of

combined parameters.” in the setting window the value t equals the value ofn+1.

To compute the n-way coverage, the combination is generated once with n-

parameter interactions. To compute the t-way coverage, the combination is

generated once with t-parameter interactions.

PictMaster created the model file based on the parameters column, value

hierarchy column and constraints. PictMaster transmitted the model file a.txt to

PICT and the file is shown in Notepad format (first param)Figure (3-7).

27

Figure (3-7): Notepad format

To improve the test cases that obtained by adding constraints, used constrains

table in the setting Figure (3-8).

28

Figure (3-8): Constrains Tablesetting window

Translated the constraints in table 3 to the tool Figure (3-9).

29

Figure (3-9): Adding Constrains

Then create the new test cases Figure (3-10):

30

Figure (3-10): new test cases

Displayedthe statistical informationFigure (3-11).

Figure (3-11): statistical information window

The model fileshown in Notepad format (scond-const)Figure (3-12).

31

Figure (3-12): Notepad format

After that I used sub-models definition to specify certain parameters that need to

be tested more, I chose (exemption and tuition fees), I used sub-models table in

32

the settingFigure (3-13), (3-14). The multiple parameters specified in the sub-

models will generate the combination of the "Number of combined parameters”.

Figure (3-13): Sub-models settingwindow

Figure (3-14): sub-models table

33

Then pressed build button to create the new test cases Figure (3-15),while

minimizing the number of test cases, the progress bar, which is shown in Figure

(3-16), is displayed.

Figure (3-15): new test cases

Figure (3-16): Progress Bar while minimizing the number of test cases

34

Displayedthe statistical informationFigure (3-17).

Figure (3-17): statistical information window

Then new model fileshown in Notepad format (a.txt)Figure (3-18).

Figure (3-18):Notepad format

35

To generate the test cases for a combination of certain parameters that is

different from the "Number of combined parameters" in the environment

settings form, used“extended sub-models" in the settings formFigure (3-

19).Chased (exemption and tuition fees) again with 3 "Number of

combinedcertain parameters"Figure (3-20).The test cases can be created only

for the particular parameters without having to significantly increase the number

of test cases, Compared with the usual sub-model, the increase in the number of

test cases can be drastically reduced.in my case the number Decreased from72

in the last result to 24 test casesFigure (3-21),Figure (3-22),Figure (3-23).

Figure (3-19): extended sub-models setting window

36

Figure (3-20): extended sub-models table

Figure (3-21): Progress Bar while minimizing the number of test cases after

press build bottom

37

Figure (3-22): new test cases (24)

Figure (3-23): statistical information window

38

For Generating Test Cases to Ensure the Desired Coverage I specified from

three-way to six-way coverage with the feature that generates the test cases. The

t-way coverage where the value n + 1 (n specified in "number of combined

parameters"

in the settings form) is ensured. For example, when you specified 2 in "Number

of combined parameters,” two-way coverage ensures 100 percent and three-way

coverage is ensured with the value in "Desired coverage” Figure (3-24),Figure

(3-25),Figure (3-26). The other t-way coverage shone inFigure (3-27) toFigure

(3-28).

Figure (3-24): Desired coverage (3-way) setting window

39

Figure (3-25): progress bar during generation with specified coverage

Figure (3-26): new test cases (27)

40

Figure (3-27): statistical information window

Figure (3-28): Desired coverage (4-way) setting window

41

Figure (3-29): progress bar during generation with specified coverage

 Figure (3-30): new test cases (79)

42

Figure (3-31): statistical information window

43

Figure (3-33): progress bar during generation with specified coverage

Figure (3-34): new test cases (160)

44

Figure (3-35): statistical information window

45

Figure (3-36): Desired coverage (6-way) setting window

Figure (3-37): progress bar during generation with specified coverage

46

Figure (3-38): new test cases (283)

47

Figure (3-39): statistical information window

The Summary in table(3-4):

Table (3-4): summary

t-way coverage Number of Test cases %

2 24 100

3 27 86.7

4 79 94.9

5 160 96.7

6 283 98.5

48

3.1.3.1GetExpected results

In this step, I identified the rules to get the expected results.

Rules:

 Students are allowed to register if his own (University ID, Name,

Academic year) right and must have his academic (success or freeze).

 A student is not allowed to register if disturbed any of the conditions

previously.

I used expected results tableFigure (3-40).

Figure (3-40): expected results setting window

49

Then entered the rules in theexpected results tableFigure (3-41).

Figure (3-41): expected results table

I used build bottom to get the resultFigure (3-42), (3-43).

Figure (3-42):Expected results

50

Figure (3-43): Statistical Information window

As the final result I get 76 test cases with 6 cases can register and 70 case not

register.

51

CHAPTER 4

Analysis of Result

This research is challenge to support the useof Combinatorial Testing in

Practice. PictMaster tool generates test casesafter it is give the model. Asthe

taster could controls the results by specifying constraints, sub models, extend

sub models desired coverage and rules.

Upon checking in the final outcomes obtained in the experiments which were

conducted in this versiontest casesfrom (no.28 to no.76) contained invalid

values of (University ID, Name, The academic year),these test cases not

werevery important because they were predetermined in the basic system

requirements, so selected test no. 28 to test the invalid University ID withother

parameterFor more verification.

The expected results explained that not any of the previous cases could

complete the registration process and that was what must be achieved in the

system. Test cases no.1 to no.27 explained that 6 cases can complete the

registration process and 21 cases can’t, althoughvalidity of University ID, Name

and Academic Year were correct. Finally the total number of the test cases this

research focused upon decreased from76to 28.

To analyze these results within the field of black box testing the researcher used

User Testing Dominant Style (Kaner, 2003),the researcher selected nine

ofRegistersof colleges .Then the researcher gave each of them the test cases

52

designed in such detail as in Figure (4-1)to execute and report whether the

program passed or failed.

No.
University
ID Name

Type
Acceptance

Academic
position

Registration
fee

Tuition
fees Exception

Payment
type college

Academic
year

Expected
Result

1
Correct
Number

Correct
name general Success Specific Half fees

Non
-exempt

First
premium theoretical

Correct
year Regist

2
Correct
Number Correct

name general Freeze Specific No fees
Non
-exempt

last
premium theoretical

Correct
year Regist

3

Correct
Number Correct

name general
Role of the
second un specified No fees Exempt

First
premium theoretical

Correct
year Notregist

4
Correct
Number Correct

name general
Role of the
second un specified No fees Exempt Other fees scientific

Correct
year Notregist

5

Correct
Number Correct

name general
Role of the
second un specified Full fees

Non
-exempt

last
premium theoretical

Correct
year Notregist

6

Correct
Number Correct

name general
Role of the
second Specific No fees

Non
-exempt

First
premium theoretical

Correct
year Notregist

7

Correct
Number Correct

name general
Role of the
second un specified Half fees

Non
-exempt Other fees theoretical

Correct
year Notregist

8
Correct
Number Correct

name general Repeat specific Half fees
Non
-exempt

last
premium theoretical

Correct
year Notregist

9

Correct
Number Correct

name general
Role of the
second Specific Half fees

Non
-exempt Other fees scientific

Correct
year Notregist

10

Correct
number Correct

name general
Role of the
second un specified No fees

Non
-exempt Other fees scientific

Correct
year Notregist

11

Correct
number Correct

name private
Role of the
second un specified Full fees

Non
-exempt Other fees scientific

Correct
year Notregist

12
Correct
number Correct

name private Freeze Specific No fees
Non
-exempt

last
premium theoretical

Correct
year Regist

13

Correct
number Correct

name private Success Specific Half fees
Non
-exempt

First
premium theoretical

Correct
year Regist

14
Correct
number Correct

name private
Role of the
second un specified No fees Exempt Other fees scientific

Correct
year Notregist

15

Correct
number Correct

name private Repeat Specific Half fees
Non
-exempt

last
premium theoretical

Correct
year Notregist

16

Correct
number Correct

name Mature study
Role of the
second Specific No fees

Non
-exempt Other fees theoretical

Correct
year Notregist

17
Correct
number Correct

name Mature study Success Specific Half fees
Non
-exempt

First
premium theoretical

Correct
year Regist

18

Correct
number Correct

name Mature study Repeat Specific Half fees
Non
-exempt

last
premium theoretical

Correct
year Notregist

19

Correct
number Correct

name

Mature study
Role of the
second un specified No fees Exempt

First
premium theoretical

Correct
year Notregist

20
Correct
number Correct

name
Mature study Role of the

second Specific No fees
Non
-exempt Other fees scientific

Correct
year Notregist

21

Correct
number Correct

name

Mature study
Freeze Specific No fees

Non
-exempt

last
premium theoretical

Correct
year Regist

22

Correct
number Correct

name

Mature study Role of the
second Specific Full fees

Non
-exempt

last
premium theoretical

Correct
year Notregist

23

Correct
number Correct

name external
Role of the
second Specific Full fees

Non
-exempt

first
premium theoretical

Correct
year Notregist

24
Correct
number Correct

name
Darfur
student

Role of the
second un specified No fees Exempt

last
premium theoretical

Correct
year Notregist

25

Correct
number Correct

name
Darfur
student

Role of the
second un specified No fees Exempt Other fees theoretical

Correct
year Notregist

26
Correct
number Correct

name
Darfur
student

Role of the
second un specified No fees Exempt

First
premium theoretical

Correct
year Notregist

27

Correct
number Correct

name
Darfur
student

Role of the
second un specified No fees Exempt Other fees scientific

Correct
year Notregist

28
Wrong
number

Correct
name general

Role of the
second un specified No fees

Non
-exempt

last
premium theoretical

Correct
year Notregist

Figure (4-1): Test Report

53

Summary ofthe resultsreached by theRegisterscameas follows:

Table (4-1): Result

Test no. result

1 pass

2 pass

3 pass

4 pass

5 fail

6 fail

7 fail

8 fail

9 fail

10 pass

11 fail

12 pass

13 pass

14 pass

15 fail

16 fail

17 pass

18 fail

19 pass

20 fail

21 pass

22 fail

23 fail

24 pass

25 pass

26 pass

27 pass

28 pass

54

After analyzing these resultsand comparing them with expected results shown in

figure (3-42), concluded that the students that their position academic (role of

the second or Repeat) allowed to register if any of the registration fees or tuition

specific.

This is a major fault in the Registration of Omdurman Islamic university

program and cannot be detected through regular testing.

 This result have been achieved after many experiment were conducted using

Pictmaster tool.

55

CHAPTER 5

Conclusion

Combinatorial Testing can detect failures triggered by interactions of

parameters in the Software Under Test (SUT) with a covering array test suite

generated by some sampling mechanisms. Combinatorial testing makes an

excellent trade- off between test effort and test effectiveness.

This research presents a three-step approach to apply combinatorial testing.

First the researcher create an abstract model for the system. Then, based on that

model, a combinatorial abstract test set was generated. Then a set of concrete

tests were driven from these abstract tests and applied combinatorial testing to

mentioned program. The details of the abstract model and the results of

applying combinatorial testing were presented in the research. The results show

that combinatorial testing can detect faults of the ElectronicRegistration

programs, and this is more effective than code testing.

This conclusion cannot be generalized to all other applications. The type of

interaction is highly dependent on the problem at hand. It is the

knowledge,understanding and the software tester that is crucial.

56

Suggestions for futureresearch

 While much useful research work has been done in the last decade, the

adoption of interaction testing for studying and testing real life systems has not

been widespread. In order to address this issue, more research into the

algorithms and techniques are required to facilitate its adoption in the main

stream of software engineering.

In the future, the researcher plans to conduct more empirical studies on larger

and more complex programs. believe this research will provide guidance for

practitioners to apply combinatorial testing in practice.

57

REFERENCES

Alsewari,et al., 2012.A harmony search based pairwise sampling strategy for combinatorial
testing [online] Available from:http://www.academicjournals.org/IJPS [accessed9 February,
2013].

Alton.B, et al., 2012.Effectiveness of pairwise testingfor software with Boolean inputs

[online] Available from: core.ecu.edu/vilkomirs/Papers/Vilkomir-CT-2012.pdf[accessed
2013].

Automated Combinatorial Testing for Software (ACTS). [Online] Available from:
http://www.nist.gov/itl/csd/scm/acts.cfm.

Bach, J. Schroeder, 2004. Pairwise Testing: A Best Practice That Isn’t.[Online] Available
from: www.testingeducation.org/wtst5/PairwisePNSQC2004.pdf.

Czerwonka, 2008. Pairwise Testing in the Real World: Practical Extensions to Test-Case
Scenarios. [Online] Available from:http://msdn.microsoft.com/en-
us/library/cc150619.aspx.[accessed February 2013].

Huima, 2012. Understanding Pairwise Test Generation. [online] Available from:
http://www.conformiq.com/2012/01/understanding-pairwise-test-generation.[accessed 3
January 2013].

Kaner, et al., 1999. Testing Computer Software, [online] Available from:
http://en.wikipedia.org/wiki/Software_testing.

Kaner, et al., 2003. An introduction to scenario testing,[online] Available from:

www.kaner.com/pdfs/ScenarioIntroVer4.pdf. [AccessedOctober, 2013].

Kobayashi, et al., 2001.A new method for constructing pair-wise covering designs for

softwaretesting. [Online]Available from:http://www.sciencedirect.com
/science/article/pii/S002001900100195817. [Accessed March 2014].

Kotthoff, 2012. Algorithm Selection for Combinatorial Search Problems: A survey.
[Online]Available from:http://scholar.google.com.[Accessed 30 Oct 2013].

Kuhn, et al., 2004. Software Fault Interactions and Implications for Software
Testing,[online] Available from: http://dl.acm.org/citation.cfm?id=998624[accessed6 June
2014].

Lei et al., 2007 IPOG: A general strategy for T-Way software testing. [Online]
available from: http://www.slideshare.net/Softwarecentral/ipog-a-general-strategy-for-tway-
software-testing. [accessed 16 Apr 2014].

N.Borazjany, et al, 2012. Combinatorial Testing of ACTS: A Case Study,[online]
availablefrom: http://www.google.com/url?sa [accessed October 2013].

58

Software testing, [online] Available from: http://en.wikipedia.org /wiki/ Software testing.

http://www.developsense.com/pairwiseTesting.html, [accessed November 2013]).

Pan, 1999. Software testing.[online] Available from: http://users.ece.cmu.edu/~koopman /
des_s99/sw_testing.[accessed May2014].

PictMaster. [online] Available from: http://en.sourceforge.jp/projects/pictmaster. [accessed 8
April 2014].

Practical Combinatorial Testing. [Online] Available from:
csrc.nist.gov/groups/SNS/acts/documents/SP800-142-101006.pdf [accessed October 2013].

